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Abstract: Background: Propyl propane thiosulfonate (PTSO) is an organosulfur compound from
Allium spp. that has shown interesting antimicrobial properties and immunomodulatory effects
in different experimental models. In this sense, our aim was to evaluate its effect on an experi-
mental model of obesity, focusing on inflammatory and metabolic markers and the gut microbiota.
Methods and results: Mice were fed a high-fat diet and orally treated with different doses of
PTSO (0.1, 0.5 and 1 mg/kg/day) for 5 weeks. PTSO lessened the weight gain and improved the
plasma markers associated with glucose and lipid metabolisms. PTSO also attenuated obesity-
associated systemic inflammation, reducing the immune cell infiltration and, thus, the expression
of pro-inflammatory cytokines in adipose and hepatic tissues (Il-1ß, Il-6, Tnf-α, Mcp-1, Jnk-1, Jnk-2,
Leptin, Leptin R, Adiponectin, Ampk, Ppar-α, Ppar-γ, Glut-4 and Tlr-4) and improving the expression of
different key elements for gut barrier integrity (Muc-2, Muc-3, Occludin, Zo-1 and Tff-3). Additionally,
these effects were connected to a regulation of the gut microbiome, which was altered by the high-fat
diet. Conclusion: Allium-derived PTSO can be considered a potential new tool for the treatment of
metabolic syndrome.

Keywords: cytokines; dysbiosis; glucose metabolism; lipid metabolism; microbiota; obesity; organosul-
fur compound
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1. Introduction

Allium vegetables are well recognized for their beneficial properties from time im-
memorial. Garlic (Allium sativum L.) and onion (Allium cepa L.) have historical importance
in the folk medicine of different cultures all over the world for treating heart problems,
headache, colds, tumors and other ailments, as well as for boosting vigor [1]. These proper-
ties are attributed to its richness in minerals, essential amino acids and diverse phenolic and
sulfur compounds [2]. Specifically, garlic is an excellent source of beneficial minerals, such
as selenium, while onions are rich in flavonoids, such as quercetin, which is widely known
for its biological properties [3]. Nevertheless, the most important bioactive compounds
in the Alliaceae family are organosulfur compounds, mainly allyl cysteine derivatives,
S-alk(en)yl-L-cysteine sulfoxides, thiosulfinates, thiosulfonates and sulfides, which are
biosynthesized during tissue damage and confer useful biological properties, such as
antimicrobial, anti-inflammatory, immunomodulatory, antioxidant, hepatoprotective and
neuroprotective properties [3–5]. In fact, it is well described that these plants have cardio-
protective effects that are associated with a positive effect on obesity and its associated
metabolic disorders, including dyslipidemia, mild hypertension, hyperlipidemia, high
blood glucose levels, impaired insulin sensitivity and liver lipotoxicity [6]. Thus, garlic
was shown to reduce plasma lipid levels while increasing HDL cholesterol levels [7,8].
Moreover, it could also reduce the accumulation of fat in the first stages of atherosclero-
sis [9] and delay the calcification of the coronary arteries [10], improving their elasticity [11].
Moreover, it was reported that Allium compounds can inhibit the lipid accumulation and
the transformation of monocytes into macrophages after stimulation with oxidized LDL
cholesterol, which could explain the beneficial effects of garlic in models of atheroscle-
rosis [12]), as well as enhance brown adipocyte-specific genes, like uncoupling protein
1, via the Krüppel-like factor 15 signal cascade [13]. These compounds also show anti-
adipogenic effects by hindering 3T3-L1 adipocyte differentiation in vitro via the activation
of AMP-activated protein kinase (AMPK) and carnitine palmitoyltransferase, as well as the
inhibition of acetyl CoA carboxylase-1 [13], or by means of extracellular signal-regulated
kinase activation [14]. Furthermore, a recent meta-analysis has proposed that garlic supple-
mentation may decrease waist circumference without changing body weight or body mass
index [15]. A parallel, double-blind, placebo-controlled, randomized study reported the
ability of aged garlic supplementation to modulate immune cell distribution and decrease
serum tumor necrosis factor (TNF)-α and interleukin (IL)-6 levels in healthy obese adults,
thus reducing obesity-induced inflammation [16]. In this regard, garlic consumption has
been reported to decrease resistin levels, a pro-inflammatory adipokine, in overweight and
obese women with osteoarthritis and reduce the pain compared with placebo patients in a
randomized, double-blind, placebo-controlled, parallel design trial [17].

Although many studies have been undertaken to examine the cardioprotective and
anti-obesity effects of Allium and their organosulfur products, the outcomes are very
variable; therefore, more investigations, both preclinical and clinical, are needed to better
elucidate the effects of Allium products and establish their use and safety in preventing the
metabolic syndrome.

In this sense, we evaluated an Allium organosulfur compound, namely, propyl propane
thiosulfonate (PTSO), in an experimental model of high-fat-diet-induced metabolic syn-
drome in mice. This product does not present toxic effects [18] and already showed
interesting antimicrobial properties for the livestock industry [19] and immunomodulatory
effects in experimental colitis [20]. Thus, concerning the latter, it was shown to be able
to downregulate pro-inflammatory mediators, improve the intestinal mucosal integrity
and ameliorate colitis-associated dysbiosis [20]. These effects could also contribute to
the amelioration of metabolic-syndrome-associated inflammation and its derived adverse
sequels. The present study has assessed the effects of PTSO on the metabolic alterations
and the inflammation that characterizes the metabolic syndrome, as well as on its abilities
to modulate the gut microbiota.
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2. Materials and Methods
2.1. Experimental Animals and Diets

The study was carried out following the “Guide for the care and use of laboratory ani-
mals” of the National Institute of Health (Washington, DC, USA), and the protocols were ap-
proved by the Committee of Ethics of the University of Granada
(reference no. 28/03/2016/030). Five-week-old male C57Bl/6 mice (Charles River, Barcelona,
Spain) were kept in the Animal Facility of the University of Granada at a controlled temper-
ature and humidity (22 ± 1 ◦C, 55 ± 10% relative humidity) with a 12 h light/dark cycle
and free access to food and drink. Mice were randomly divided into several groups (n = 10):
lean (control diet), lean treated (control diet treated), obese (HFD) and obese treated
(HFD treated). The lean mice were fed standard chow (210 Control Diet), while obese
mice received a high-fat diet (HFD) in which 60% of the caloric content came from fat
(Purified Diet 230 HF). The experimental design was as follows: obese treated mice were
administered different doses of PTSO (0.1, 0.5 and 1 mg/kg/day v.o.) dissolved in water
(100 µL), while lean treated mice received 1 mg/kg/day of PTSO under the same condi-
tions. Lean (control diet) and obese (HFD) groups were administered the same amount of
water daily. The mice were treated for 5 weeks and the weight and consumption of food
and water were monitored twice a week.

2.2. Glucose Tolerance Test and Plasma Determinations

At week 4, mice were fasted for 8 h and a glucose tolerance test was carried out as
previously described [21] (see the Supplementary Methods). At the end of the treatment,
the animals were sacrificed after taking a blood sample via a cardiac puncture. The blood
was centrifuged to separate the plasma at 5000× g for 20 min at 4 ◦C, which was frozen
at −80 ◦C until the following determinations were made: glucose, LDL cholesterol, HDL
cholesterol, total cholesterol and insulin (see the Supplementary Methods).

2.3. Morphological Variables

After the sacrifice, the adipose tissues (epididymal and abdominal fat) were removed,
cleaned and weighed. The relationship between fat and animal size was estimated by
dividing the weight of the fat by the length of the tibia. The liver and colon were also
removed, which were likewise cleaned and weighed. All samples were frozen in liquid
nitrogen and stored at −80 ◦C until further processing.

2.4. Gene Expression Analysis Using RT-qPCR

The total RNA of the different tissues was extracted with NucleoZOL® (Macherey-
Nagel, Düren, Germany) according to the manufacturer’s instructions. A reverse transcrip-
tion (RT) was then performed with oligo (dT) and reverse transcriptase primers M-MLV
(Promega, Southampton, UK) in a TProfessional Basic Thermocycler (Biometra, Göttingen,
Germany). The real-time polymerase chain reaction (qPCR) was performed in 48-well opti-
cal grade plates in EcoTM real-time PCR equipment (Illumina, San Diego, CA, USA) with
10 ng of complementary DNA, KAPA SYBR® FAST qPCR Master Mix (Kapa Biosystems,
Wilmington, MA, USA) and specific oligonucleotides at their hybridization temperature
(Table S1). To normalize messenger RNA expression, the housekeeping gene glyceralde-
hyde 3-phosphate dehydrogenase (Gapdh) was measured. The relative quantification of
messenger RNA was estimated using the ∆∆Ct method.

2.5. DNA Extraction and Illumina MiSeq Sequencing

DNA from fecal contents was extracted as described by Rodríguez-Nogales et al. [22].
The resulting sequences were quality-filtered, clustered and taxonomically assigned on the
basis of a 97% similarity level against the SILVA database [23] using the QIIME software
package (version 1.9.1) (Knight Lab, San Diego, CA, USA). Sequences were chosen to
estimate the total bacterial diversity of the DNA samples in a comparable manner and
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were trimmed to clear away barcodes, primers, chimeras, plasmids, mitochondrial DNA
and any non-16S bacterial reads and sequences that were <150 bp in size.

2.6. Vascular Reactivity Studies and NADPH Oxidase Activity

Descending thoracic aortic rings were dissected and the isometric tension was mea-
sured as described before [24]. Briefly, the aortic rings were placed in an organ chamber
filled with Krebs solution (composition in mM: NaCl 118, KCl 4.75, NaHCO3 25, MgSO4 1.2,
CaCl2, KH2PO4 1.2 and glucose 11) at 37 ◦C and gassed with 95% O2 and 5% CO2 (pH 7.4),
suspended in a wire myograph (model 610M, Danish Myo Technology, Aarhus, Denmark)
and loaded with a tension of 5 nN. After a 90 min stabilization period, cumulative
concentration–response curves to acetylcholine (10−9–10−5 M) were carried out in in-
tact rings pre-contracted by U46619 (10−8 M). Relaxant responses to acetylcholine were
expressed as a percentage of precontraction. The length–tension relationship was calculated
with the myograph software (Myodaq 2.01, Danish Myotechnologies, Denmark).

NADPH oxidase activity in intact aortic rings was evaluated with the lucigenin-
enhanced chemiluminescence assay, as reported before [25] (see the Supplementary Materi-
als for details).

2.7. Flow Cytometry

The cells from adipose and liver tissue were isolated following the procedure previ-
ously reported, with some modifications [26] (see the Supplementary Materials).

2.8. Statistics

All results are expressed as mean ± standard error of the mean. Statistical significance
between the different groups was calculated with a one-way analysis of variance (ANOVA)
and post hoc tests of significance. Differences between proportions were evaluated with
chi-square analysis. All statistical analyses were performed with the GraphPad 8 program
(GraphPad Software, Inc., La Jolla, CA, USA), establishing the significant differences at
p < 0.05.

3. Results and Discussion

Metabolic syndrome is defined by WHO as a pathological condition in which ab-
dominal obesity, insulin resistance, hypertension and hyperlipidemia may concur. Thus,
individuals suffering from it have an increased risk of cardiovascular mortality and mor-
bidity [27].

Two main drivers contribute to the advance of this disease, namely high-calorie–low-
fiber-food consumption and low physical activity; therefore, the first action that needs
to be taken is the promotion of lifestyle changes. However, when these actions are not
enough to control the symptoms, a pharmacological approach is necessary to prevent
the associated long-term effects. Metabolic syndrome is quite complex; consequently, the
long-term pharmacological interventions may include the use of several drugs to treat
the different complications, though they can also produce adverse effects [28] or become
ineffective in the long run.

Therefore, the search for new alternative and safe products that holistically treat the
associated symptoms of metabolic syndrome has become a priority. Garlic, onion and their
organosulfur compounds show potential, but more work is needed to consider their use.
In this study, we explored the effects of PTSO, an Allium component with antioxidant, anti-
inflammatory and immunomodulatory properties [20], in a metabolic syndrome mouse
model that was induced by a high-fat diet (HFD).

3.1. PTSO Treatment Reduced Body Weight Gain and Ameliorated Metabolic Alterations in
HFD-Fed Mice

The mice that consumed an HFD experienced a significantly greater weight gain
than the mice fed the standard diet. However, HFD mice treated with PTSO (HFD-PTSO)
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experienced significantly lower weight gain compared to non-treated HFD mice (Figure 1A).
This was not derived from a satiating effect since the treatment did not affect energy intake.
However, it significantly reduced energy efficiency (Figure 1A). Moreover, a significantly
greater accumulation of adipose tissue was detected in the untreated HFD mice compared
to control diet mice, while all doses of PTSO significantly diminished it (Figure 1B).
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Figure 1. Effects of propyl propane thiosulfonate (PTSO) administration on (A) morphological changes (body weight
evolution, energy efficiency and energy intake); (B) epididymal and abdominal fat; (C) glucose tolerance test and area under
the curve (AUC) in the control and high-fat diet (HFD)-fed mice. Groups with different letters statistically differed (p < 0.05).
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The glucose tolerance test showed similar curves for all groups, reaching the glucose
peak at 15 min and decreasing to baseline values at 120 min (Figure 1C). However, blood
glucose values, both fasting and during the test, were over 300% higher in the HFD mice.
Thus, the area under the curve of obese mice had significantly higher values than non-obese
mice. The treatment significantly reduced this parameter by at least 20%, with no dose–
response relationship, in comparison with the obese non-treated mice, although the value
was still significantly different from non-obese mice (Figure 1C). The evaluation of glucose
homeostasis also included the measurement of the fasting plasma insulin level (Figure 2A).
The high-fat diet had no effect on this parameter, but the treatment with PTSO at 0.5 and
1 mg/kg decreased it significantly. Interestingly, when the marker of insulin resistance
HOMA-IR was calculated after taking into account the plasma glucose and insulin values,
it appeared significantly elevated in obese mice compared to the lean ones (Figure 2A). The
treatment with the two highest doses of PTSO reduced it significantly, although they were
still different from the lean mice. Therefore, the PTSO treatment was found to improve the
glucose metabolism, reducing the plasmatic levels and the systemic intolerance and insulin
resistance, after considering the HOMA-IR, in mice fed with the HFD, which agrees with
what was previously described for garlic, onion and their derivative [16,29–31].

Moreover, in addition to having greater adipose tissue deposits, the obese mice showed
an alteration in the plasma lipid profile, which was characterized by an elevation in the
total, HDL and LDL cholesterol levels, as well as an alteration in the LDL/HDL cholesterol
ratio, compared to lean mice. The PTSO also improved the lipid metabolism, reducing the
total and LDL cholesterol without modifying the HDL cholesterol (Figure 2B), as it has
been reported for aged garlic supplementation in obese adult patients [16].

3.2. PTSO Treatment Lessened Inflammation and Improved Gut Barrier in HFD-Fed Mice

The onset and progression of these metabolic alterations are intimately related to a
chronic low-grade systemic inflammation that is typified by immune cell infiltration in the
metabolic tissues, liver and fat, and the subsequent overproduction of chemokines and cy-
tokines, as we observed. In this sense, mice fed the HFD showed increased gene expression
of pro-inflammatory mediators in the liver (Tnf-α, Il-1β, Il-6 and the attractant monocytes
chemotactic protein 1 (Mcp-1)) and in adipose tissue (Tnf-α and Il-6) (Figure 3). As reported
before in a model of experimental colitis [20,32,33], PTSO hindered the over-expression
of the pro-inflammatory mediators evaluated, including Il-1β and Mcp-1 in the liver, and
Tnf-α and Il-6 both in the liver and fat, which was linked with impaired insulin signaling.
Previous studies also described the anti-inflammatory properties of aged garlic extract and
Allicin, which were found to inhibit the production of nitric oxide, TNF-α and IL-4, and
could support their application for atherosclerotic vascular disease [33]. The JNK pathway
is considered a stressor sensor since JNK signaling can modulate cytokine synthesis, as
well as be activated by these cytokines. This is important for keeping homeostasis, but
when there is deregulation, JNK activation generates an aberrant production of cytokines
that leads to chronic inflammation and the development of metabolic disorders [34]. In fact,
JNK signaling has been linked with cardiometabolic inflammation, with the infiltration
of immune cells into liver and fat tissues being JNK-dependent [35]. Accordingly, obese
mice showed a significant over-expression of Jnk-1 and Jnk-2 in liver and fat tissues (Figure
3). However, treatment with PTSO normalized them in both tissues, thus downregulating
the obesity-associated inflammatory systemic response. AMPK is another nutrient sensor
that, unlike JNK, inhibits inflammation and oxidative stress, with its inactivation being
linked to the pathogenesis of metabolic syndrome and associated conditions [36]. The
control HFD-fed mice displayed a reduced expression of Ampk, while the PTSO treatment
reverted it, both in the liver and fat. This is very interesting since widely used antidiabetic
drugs, including metformin and rosiglitazone, act as insulin sensitizers through AMPK
activation [37].
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Figure 2. Effects of propyl propane thiosulfonate (PTSO) administration on (A) basal glucose, insulin levels and homeostasis
model assessment insulin resistance (HOMA-IR) index; (B) total, LDL and HDL cholesterol plasma levels in the control and
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As expected, the expression of the adipokines Leptin (in fat tissue) and Adiponectin
(in fat tissue and liver) were modified in obese mice, in association with a reduced expression
of Leptin Receptor (Leptin R) in both liver and adipose tissues. PTSO had no effect on Leptin
expression, but it significantly augmented the expression of its receptor in both tissues, thus
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indicating a partial amelioration of the obesity-associated dysfunction in leptin-mediated
signaling (Figure 4A). Nevertheless, it normalized the expression of Adiponectin, both in the
liver and fat. This effect may contribute to the improvement of insulin sensitivity and glucose
and fat metabolisms [38,39]. Moreover, adiponectin was reported to show anti-inflammatory
and antioxidant activities that could mediate the effects of PTSO [40].
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in the liver and fat and (B) on fat and liver gene expression of, Ppar-α and Ppar-γ in control and high-fat diet (HFD)-fed
mice. Analysis performed by real-time qPCR. Groups with different letters statistically differed (p < 0.05).

PPARs were described to exert a prominent role in obesity and inflammation. Thus,
PPARα appears expressed in metabolically active tissues, including fat and the liver, as
well as in immune cells [41]. PPARα was reported to exert anti-inflammatory effects in fat
tissue, which was mediated via different mechanisms that include decreasing adipocyte
hypertrophy and inhibiting inflammatory genes [42]. Its expression was downregulated in
control obese mice, while the treatment with PTSO increased it (Figure 4B). PPARγ was also
described as an inhibitor of pro-inflammatory gene expression by reducing macrophage
infiltration and upregulating the expression of adiponectin [43]. Thus, the control obese
mice displayed a decreased expression in their fat tissue, which, interestingly, was nor-
malized by the PTSO treatment. Of note, the treatment of obese rats with troglitazone, a
synthetic PPARγ agonist, was able to considerably diminish the adipocytes, as well as the
expression of TNF-α in comparison with untreated rats [44]. Thus, these effects on PPARs
could participate in the anti-inflammatory effect demonstrated by the garlic compound.

As commented before, the metabolic disorders linked to obesity are intimately re-
lated to the inflammatory status that is developed. In vitro studies have reported that
IL-6 reduces the expression of adiponectin, glucose transporter-4 (GLUT-4) and insulin
receptor substrate-1 (IRS-1), while TNF-α causes the elevated secretion of MCP-1 and
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IL-6 from pre-adipocytes [45], which agrees with the results presented in this study. In fact,
IL-6 overproduction was associated with reduced GLUT-4 expression [46], as it was also
observed in the obese mice in the current study (Figure 5A). In adipocytes, glucose uptake
in normal conditions takes place via insulin-stimulated transport, which is mainly medi-
ated by GLUT-4 [47], but when there is an excess of glucose in the blood, this is diffused
into adipocytes through GLUT-4, triggering the synthesis of fatty acids and glycerol and
inhibiting lipolysis. Nevertheless, Glut-4 gene expression in adipose tissue is hindered in
obesity-associated insulin resistance [48]. Consequently, this could participate in insulin
resistance and produce the increased plasma glucose levels that were detected. Remarkably,
the PTSO treatment significantly upregulated Glut-4 expression (Figure 5A), which may
have contributed to enhancing the insulin sensitivity and thus blood glucose uptake into
adipocytes, as well as producing lower blood glucose levels.

The pro-inflammatory and oxidant environment that characterizes obesity may be
triggered by so-called “metabolic endotoxemia,” which is associated with a low-level
increase of gut-derived lipopolysaccharide (LPS) that acts through TLR4 [48]. Accordingly,
we observed significantly higher levels of circulating LPS in obese mice, together with a
greater expression of Tlr-4 (Figure 5A), which agrees with previous reports. In this regard,
we showed that HFD can increase paracellular transport of bacterial products by impairing
intestinal permeability since we evidenced a reduced colonic expression of tight junction
proteins, Occludin, Zo-1 and Tff-3, as well as mucins (Muc-2 and -3) (Figure 6A), in which an
altered intestinal microbiota composition can have a key role [49]. Extraordinarily, PTSO
reduced the plasma LPS levels and Tlr-4 expression in the liver, as well as normalized the
expression of these key elements for the epithelial gut barrier integrity, as was previously
seen in an experimental model of mouse colitis [20].

Bearing the above in mind, it is clear that the impact of PTSO treatment on the immune
response may contribute to the positive effects, maybe by restoring the infiltration and com-
position of the immune population in fat and liver tissues. In this sense, it is well described
that immune cells, such as myeloid-derived suppressor cells (MDSCs) (Ly6C+CD11b+), are
a diverse subset of immature and mature myeloid cells with immunoregulatory proper-
ties [50,51] (Figure 5B). Under physiological conditions, immature myeloid cells (IMCs)
differentiate into mature granulocytes, macrophages or dendritic cells, while in pathological
conditions, such as in inflammatory diseases, the overproduction of pro-inflammatory medi-
ators boosts the proliferation of IMCs and partially blocks their differentiation producing
an accumulation of MDSC. In fact, the liver is the major organ where IMCs accumulate [52].
Our data correspond to data published by other authors [53], where the percentage of total
MDSCs (Ly6C+CD11b+) in the liver was augmented in obese mice compared to control
mice, which indicates a blockage in the regular differentiation of these cells and, therefore,
an accumulation of these cells in the liver. Further studies are needed to understand why
these cells are especially recruited into the liver. Several hepatic cell populations, such as
hepatocytes, Kupffer cells, sinusoidal endothelial cells and hepatic satellite cells, are able
to produce chemokines and/or chemotactic cytokines upon activation. These mediators
may control the migration of these cells and drive their accumulation in the liver. HFD-
derived compounds could trigger these cells in the liver and, thus, stimulate the recruitment
of these circulating activated immature myeloid cells into the liver. Among these medi-
ators, IL-6 could be highlighted. Studies showed that IL-6 is over-expressed in NAFLD
patients and it was also reported to inhibit immature myeloid cell differentiation [54,55].
Subsequently, these activated cells are accumulated in the liver. This hypothesis was con-
firmed by our results (Figure 5B), where Il-6 expression was also increased in liver tissue.
Remarkably, PTSO treatment restored this population to normal values, along with its Il-6
expression levels. Nevertheless, macrophages and dendritic cells are widely known as
key regulators of this inflammatory process. These cells can be reshaped and respond to
varied stimuli, including metabolic signals [56]. It is widely described that in the liver
and adipose tissue, the accumulation of inflammatory macrophages and dendritic cells con-
tributes to the deregulation of glucose homeostasis, increase of obesity-induced inflammation
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and hepatic fibrosis [53,57,58]. In the present study, we confirmed these previous studies
(Figure 5B). Hepatic pro-inflammatory macrophages’ population and plasmatic glucose
levels were increased in obese mice and, interestingly, the treatment was able to restore both
determinations. Moreover, these immune cells were also pivotal in the fat tissue, where the
existence of a substantial population of pro-inflammatory macrophages and DCs in the HFD
group was significantly re-established by the treatment (Figure 5B). These results confirm
the inhibitory effect exerted by PTSO against macrophage/DC cell infiltration and, therefore,
an improvement in the inflammatory status characteristic of this pathological condition.
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3.3. PTSO Treatment Improved Endothelial Dysfunction

Another manifestation of the inflammatory process associated with HFD-induced
obesity in mice is an endothelial dysfunction characterized by an altered response to acetyl-
choline, which was previously reported by other authors. This encompasses the vascular
synthesis of reactive oxygen species (ROS), including superoxide anion, which quickly
inactivates nitric oxide (NO) [53], the main source of vascular superoxide anion in obese
rodents [59] and humans [60]. The vasorelaxant effect of acetylcholine on endothelium-
intact aortic rings was significantly reduced in HFD mice in comparison with the control
diet group (Figure 6B), with the values of the maximal relaxant response in HFD mice
being lower than in the control diet mice, although no significant changes were observed
in the concentration of acetylcholine that produced the half-maximal relaxation (Figure 6B).
PTSO treatment given to HFD-fed mice improved endothelial function since it ameliorated
the endothelium-dependent relaxation induced by acetylcholine (Figure 6B). Agreeing
with the literature, non-treated obese mice presented altered vasodilatation in response to
acetylcholine mediated by an increased NAPDH oxidase activity, evidencing an endothe-
lial dysfunction (Figure 6B). However, the treatment with PTSO normalized the NADPH
activity and, consequently, improved endothelial dysfunction (Figure 6B). This may justify
the traditional use of garlic and its derivatives for the treatment of hypertension and other
cardiovascular conditions, which needs more studies to determine their true impact, as
supported by the latest meta-analyses [61,62].
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3.4. Prebiotic Properties of PTSO Modulate Gut Dysbiosis in HFD-Fed Mice

As mentioned above, obesity is linked to an alteration of the intestinal microbiota
composition, which is induced by the consumption of a high fat/energy diet that leads to
metabolic endotoxemia and thus low-grade systemic inflammation and metabolic alter-
ations. This obesity-associated dysbiosis, mostly triggered by external factors, can produce
a strong alteration of the symbiotic relationship between the gut microbiome and the host.
Thus, it can prompt the development of metabolic diseases [63]. In this sense, both in
humans and mice studies, it is well described that the enrichment of Firmicutes, together
with a reduction in Bacteroidetes, is associated with these disorders. Administration of PTSO
was able to counteract the altered composition and the diversity in the gut microbiota,
normalizing the proportion of the major bacteria phyla seen in standard diet-fed mice
(Figure 7A,B; Figure S1). This demonstrates that the change in the gut bacterial compo-
sition by the PTSO treatment is related to amelioration in obesity-associated dysbiosis.
Since the Firmicutes-enriched microbiome demonstrated enhanced energy harvesting from
food [64], the relative underrepresentation of Firmicutes in PTSO-HFD mice could lessen
energy assimilation and potentially contribute to the observed resistance to diet-induced
obesity. Additionally, the significant modifications observed in control HFD-fed mice in
the proportions of Bacteroidetes and Verrumicrobia were also restored in those obese mice
treated with PTSO (Figure 7B). Furthermore, it is important to highlight the role of Akker-
mansia muciniphila in obesity, which was considered as the dominant human bacterium that
abundantly colonizes this nutrient-rich environment [65]. In fact, it was reported that the
abundance of this bacterial species is inversely associated with body weight and type 1
diabetes in mice and humans [66,67]. Actually, A. muciniphila treatment was reported to
reverse HFD-induced metabolic disorders [68]. In this study, a reduction in the proportion
of the genus Akkermansia was seen in control obese mice, and this was overturned by
treatment with PTSO. The restoration of the abundance of Akkermansia sp. exerted by
PTSO could be linked to the improvement of the gut barrier function through the enlarged
production of mucins in the colonic tissue, considering that they are the principal nutrients
for these bacteria.

Additionally, Lachnospiraceae bacteria were associated with obesity and diabetes [69,70].
A metagenomic study reported that the taxonomic family Lachnospiraceae may be associated
with type 2 diabetes in humans and mouse models [70,71]. Moreover, Lachnospiraceae is
positively linked to the plasma fasting glucose concentration, aspartate transaminase
activity, insulin signaling in response to nutrient availability via the mammalian target
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of rapamycin and contributes to the development of diabetes [69]. This pattern agrees
with a previous study that was carried out in mice, indicating the importance of the family
Lachnospiraceae for metabolic diseases, such as obesity and diabetes [69]. Our present
data clearly showed that HFD highly increased the abundance of Lachnospiraceae, which
is positively associated with the increased inflammatory status, while PTSO treatment
was able to restore it and improved the inflammatory status (Figure 7C). Another Allium
product, namely, alliin, has also been reported to reduce Lachnospiraceae [31]. Therefore,
this suggests that the possible mechanisms involved in regulating glucose metabolism due
to PTSO treatment can be associated with the reduction of Lachnospiraceae in the gut.
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The other important result obtained in this study concerning the gut microbiota was
that HFD also significantly amplified the relative abundance of Streptococcaceae. This finding
brings to light the relationship between obesity-related inflammatory bowel diseases and
colon cancer because Streptococcaceae was connected to metabolic syndrome and colon
cancer [72,73]. The ability of PTSO administration to restore its abundance suggests
that PTSO could also be considered for the development of a novel approach to prevent
colorectal cancer (Figure 7C).

Moreover, Lactobacillus was also described to have an anti-obese effect in diet-induced
obesity murine models, and the probable mechanisms might concern the preservation
of the intestinal barrier and protection from chronic inflammation [74]. These results
were confirmed by our study, where the HFD group showed a reduced proportion of
Lactobacillus compared with control mice. Remarkably, the PTSO treatment increased the
Lactobacillus abundance and improved markers that are associated with the barrier integrity
maintenance and the inflammatory process (Figure 7C).

4. Conclusions

In conclusion, Allium-derived PTSO was shown to globally treat the different condi-
tions that are associated with metabolic syndrome in this experimental model of high-fat-
diet-induced obesity in mice. The mechanisms behind its positive effects may be mediated
by their antioxidant, anti-inflammatory and prebiotic activities, which eventually reduced
the low-grade obesity-associated systemic inflammation and improved the glucose and
lipid metabolisms. Therefore, PTSO constitutes a potential new tool for the management of
metabolic syndrome.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/nu13082595/s1, Figure S1. Impact of PTSO administration on microbiome diversity (PD whole
tree, observed OTUs, Shannon index and Chao1). Groups with different letters statistically differed
(p < 0.05), Table S1. qPCR primer sequences.
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