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A B S T R A C T   

Recently, multi-level stress assessment has become an active research subject. In this context, researchers 
typically develop models based on machine learning classifiers and features extracted from biosignals like 
electrocardiogram (ECG) or electroencephalogram (EEG). For that purpose, EEG power spectral density (PSD) is 
a recurrent feature owing to its high responsiveness and remarkable performance. However, PSD is usually 
smoothed to cope with its bursty nature, what may cause data leakage and hence call into question classification 
performance. In this study, our aim was twofold: first, to examine the effect of EEG-PSD smoothing in three-level 
stress classification, and second, to evaluate the practical viability of a two-level stress detector without 
smoothing. To this end, we conducted participants through a stress-relax session while recording their EEG. 
Then, we estimated the EEG-PSD and used the stress reported by the participants as labels for classification. 
Initially, we developed a three-level stress classifier and examined the effect of smoothing on its performance. We 
found that classification performance was directly proportional to smoothing intensity (F1-score 0.61–0.94), and 
also that when smoothing was not applied to features, classification performance was insufficient for practical 
applicability (AUC < 0.7). We link this behavior to train-test contamination due to smoothing. Subsequently, we 
attempted two-level stress classification without smoothing. In this case, performance met the criteria for 
practical applicability (AUC = 0.76). This suggest that performance enhancement in three-level stress classifi-
cation was caused by data leakage produced by smoothing, and hence, to render realistic stress classifiers each 
epoch should be processed individually.   

1. Introduction 

Currently, mental stress is an unavoidable concern that affects peo-
ple on a global scale. According to the American Psychological Associ-
ation [1], main sources of stress include health care, climate change, and 
safety. Mental stress can be triggered by several aspects of daily life, such 
as work, routine, and restless periods, and is usually linked to psycho-
physiological symptoms like headaches or fatigue [2], although other 
important health issues may appear [3]. In terms of economic impact, 
annual expenses associated to work miss and stress-related health issues 
are estimated around USD 300 billion. These facts justify the growing 
interest in stress early detection and classification. 

According to literature, stress can be detected through several 
physiological markers, like galvanic skin response (GSR) [4–6], 

electroencephalography (EEG) [7–10], electrocardiography (ECG) 
[11–15], and cortisol [16]. With regard to EEG, brain activity is usually 
acquired and processed to obtain markers linked with stress, such as 
power in Theta, Alpha, and Beta bands, relative Gamma [17–19], 
coherence, and asymmetry. This technique has been widely applied in 
emotion recognition and mental illness screening studies [8,20–22]. In 
the case of ECG and GSR, stress level assessment is derived from 
heartbeat and skin conductance, respectively. In this context, cortisol is 
considered a gold standard for stress assessment, as the level of this 
hormone that is secreted into saliva increases when people are stressed. 
Among these techniques, EEG is the most generally cited approach for 
the evaluation of stress. This may be due to its high responsiveness and 
temporal resolution [19], what supports the implementation of real- 
time solutions [23]. 
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Current research trends dwell on stress assessment through the 
development of classification models that are built on biomarkers 
extracted from EEG, ECG, GSR, etc. With regard to EEG, classification is 
accomplished through the combination of brain activity features and 
classifiers such as support vector machines (SVM) [8,24,25], artificial 
neural networks (ANN) [26], random forest (RF) [27,28], etc. [29,30]. 
In this context, classification performance report is paramount, since 
practical stress classifiers require a certain level of efficiency. Although 
main approaches typically consider the classification of two levels of 
stress (stress and no stress), there are proposals for the discrimination of 
three or even more stress levels (typically low, medium, and high stress). 
For instance, in [31], authors aimed to evaluate the effect of music on 
the stress level of the participants from their EEG activity. They pro-
posed a three-level stress classification considering low, medium, and 
high stress classes. The highest accuracy that they obtained for the three- 
level classification was around 95%. In the case of [24], the authors also 
achieved a remarkable performance for a five-level discrimination (the 
minimum accuracy obtained for one class was 90.26%). These examples 
support the potential of multi-level stress classification. Nevertheless, 
two important aspects are occasionally obviated when the results of a 
multi-level stress classifier are reported: a detailed explanation of the 
EEG processing and a meticulous report of the classifier performance. 
Usual EEG processing involves smoothing and filtering (e.g., Butter-
worth, Chebyshev, and Savitzky–Golay filters) what may produce data 
leakage when the data are splitted using common procedures such as 
grid search cross validation or k-fold cross validation. For instance, if 
multiple epochs are smoothed out together, information from adjacent 
epochs is shared. Thus, when most reproduced cross validation methods 
are applied, epochs in the train and test sets may contain correlated 
information, what leads to unrealistic good performances. Therefore, to 
render reliable and reproducible results, non-adequate signal processing 
must be avoided. Additionally, when classifier performance is reported, 
authors often provide only accuracy, hence disregarding the perfor-
mance obtained in the discrimination of each stress level. To provide a 
comprehensive interpretation of the model performance, other metrics 
such as precision, recall, and F1 score should be considered. 

In this paper, we examined the effect that smoothing filter window 
length has on the performance of a three-level stress classifier. We also 
evaluated a three-level and a two-level stress classifier from individually 
processed epochs and assessed their practical applicability. To this ef-
fect, we computed the EEG-PSD during a stress-relax session, and we 
performed two and three-level classifications of the stress perceived by a 
group of participants. We considered different performance metrics 
aside from accuracy, namely precision and recall for each class, and 
weighted F1 score. Finally, we discussed our results and examined other 
studies in literature. 

2. Material and methods 

2.1. Participants 

Twenty healthy volunteers (14 males, 6 females, mean age 24.20 ±
4.03) participated in the study. They belonged to the community of the 
University of Granada (mostly students and staff members) and were 
recruited via email distribution lists. The participants did not suffer from 
any health condition neither mental disorder. They were asked to sign 
an informed consent, and to avoid any stimulant or relaxant the day 
before the experiment. Furthermore, participants were not rewarded in 
any way for their participation in the study. Each participant took part in 
a single study session that lasted roughly 18 min. The entire data capture 
was completed in approximately two weeks. 

2.2. Experimental design 

Once we briefed the participants about the different phases of the 
study, we equipped them with an EEG acquisition system to record their 

EEG activity. The timeline of the experiment is illustrated in Fig. 1. 
First, the participants completed a two-minute eyes-closed resting 

state period. Then, they performed the Montreal imaging Stress task 
(MIST), a test specifically designed to induce psychosocial stress [32] 
that has been widely validated in literature [33–35]. Subsequently, 
participants were randomly separated into two groups. The first group 
was conducted through a relaxation program that used a loop of three 
ambient light colors (blue, magenta, and green) inside a chromotherapy 
room. The second group experienced an immersive virtual reality app 
that simulated the chromotherapy room program. Finally, the partici-
pants completed another two-minute resting state period. Throughout 
the experiment, we required the participants to report their self- 
perceived stress level (SPSL) via surveys. These surveys are referred as 
T1-T4 in Fig. 1. 

2.3. Experimental setup 

Regarding the MIST, we implemented the test using MATLAB 
R2016a (MathWorks, USA) as a graphical interface controlled with the 
touchscreen of a laptop. To complete the test, the participants sat in a 
chair and were asked to use only their dominant hand. The MIST lasted 
nine minutes, including a three-minute training period and a six-minute 
test period. To record the EEG activity, we used the RABio w8 acquisi-
tion system, that works at a sampling rate of 500 Hz. Our team at the 
University of Granada developed this device, and we have successfully 
utilized it in previous works [23,36]. We located the electrodes at Fp1, 
Fp2, F7, F8, Fz, Cz, O1, and O2 positions of the 10–20 International 
System. Nevertheless, we only considered frontal and pre-frontal posi-
tions (Fp1, Fp2, F7, and F8) for further analysis in this study. We defined 
this electrode montage according to previous successful studies on stress 
assessment [17–19,23]. We referenced and grounded the electrodes to 
the left ear lobe. 

In relation to the SPSL surveys, we conceived an adaptation of the 
perceived stress scale (PSS) to minimize the time required to answer. 
Only two questions were asked to the participants: “Is your current stress 
level higher or lower than the last time that we asked?” (possible an-
swers “lower”, “higher”, and “equal”) and “What is your stress level in a 
scale from 1 to 5?” (possible answers 1 to 5, where 1 is the minimum 
level of stress and 5 is the maximum). 

2.4. Signal processing 

Upon completion of the data capture, we processed the EEG data of 
the participants offline. First, we filtered the EEG signals using a zero- 
phase shift 2nd order Butterworth filter with bandpass 1–50 Hz. Then, 
we applied a notch filter at 50 Hz to remove electric coupling. There-
after, we splitted the EEG signals into two-second epochs without 
overlapping. To reject artifacts, we zeroed the epochs above a pre-
arranged threshold of 100 µV. We selected this threshold following vi-
sual inspection and in compliance with previous EEG studies [37,38]. 
Subsequently, we detrended and z-scored each epoch, and estimated the 
channel-averaged PSD in five frequency bands (see Table 1) using the 
periodogram (no overlapping). For RS1 and RS2 (see Fig. 1), we pro-
cessed only the central minute, hence the total time span of the pro-
cessed signals was approximately 16 min. 

In addition, we calculated the Alpha asymmetry as the difference 
between the Alpha power at prefrontal electrodes (Fp1 and Fp2), and the 
relative Gamma as indicated in Equation (1). Furthermore, according to 
previous studies on stress assessment by relative Gamma [17–19], we 
inverted the gamma power for participants S01, S04, S06, S09, S10, S12, 
S13, S15, S18, and S19 after visual inspection. 

RG =
PGamma

PAlpha + PTheta
(1) 

Overall, we derived seven EEG-PSD signals for each participant. To 
equal the span of the signals from all the participants, we resampled 
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them to 480 samples (what corresponds to the aforementioned 16-min-
ute span divided into two-second epochs). Lastly, we smoothed the 
seven signals using a 2nd order Savitzky-Golay filter. This procedure is 
widely applied in EEG literature to cope with the high temporal vari-
ability of brain electrical activity. For this filter, we examined window 
lengths of 11, 21, 31, 41, 51, and 61 epochs in order to assess the effect 
of this parameter on stress level classification performance. We also 
examined the case where each epoch was processed individually 
(referred as 0 window length throughout the paper). To illustrate the 
smoothing effect, Fig. 2 shows the application of a Savitzky-Golay filter 
with different window lengths to the EEG Delta power. 

To conclude this subsection, it is worth to mention that EEG signals 
are affected by contamination sources such as MEG power and EMG 
power of forehead muscles. Decoupling of these signals would likely 
increase stress level classification performance. However, this procedure 
is out of the scope of this study, nonetheless the interested reader may 
refer to [32] and [33] for a comprehensive understanding about this 
topic. 

2.5. Feature extraction 

For each of the seven PSD signals extracted, we partitioned the 

minute preceding the SPSL surveys (T1-T4) into five segments, each one 
enclosing six epochs. Then, we averaged those six epochs for each 
segment, and we assigned it a label equal to the SPSL survey under 
consideration. Consequently, for each participant, we obtained a data 
matrix with 140 samples (4 surveys × 5 segments × 7 PSD signals), and 
one label per sample (values in the range 1–5 from the SPSL surveys). 
For classification, we combined the data matrices from all the partici-
pants. Fig. 3 represents the segmentation procedure described in this 
paragraph for one of the seven PSD signals. 

2.6. Classification 

As stated in the Introduction, in this study we examined a three-level 
classification task and a two-level stress detection. For the three-level 
classification task, we aimed to predict three stress levels (low stress, 
medium stress, and high stress). To this end, we merged the SPSL survey 
answers into three classes: low stress (labels 1 and 2), medium stress 
(labels 3 and 4), and high stress (label 5). For two-level stress detection, 
we intended to discern between two states (stress and no stress). Thus, in 
this case we combined the SPSL survey answers into two classes, namely, 
no stress (labels 1, 2, and 3) and stress (labels 4 and 5). 

In regard to classification, first we splitted feature matrix X and 
target array y into stratified train and hold-out sets (80% train, 20% 
hold-out). We used the train set to find the best combination of hyper-
parameters for multiple classifiers, and the hold-out set to evaluate the 
classifier that achieved the best performance. Subsequently, we applied 
standardization and oversampling to the feature matrix. We imple-
mented oversampling through SMOTE (Synthetic Minority Over-
sampling Technique), as the high stress class (label 5) had a lower 
presence in the data compared to the rest. Essentially, this technique 
synthetizes new instances from the minority class by interpolating real 
instances of that class. After interpolation, we applied grid search cross- 
validation (GSCV) to find the combination of classifier and hyper-
parameters that best predicted SPSL from spectral features. The classi-
fiers considered in this study included logistic regression (LR), support 
vector machine (SVM), random forest (RF), k-nearest neighbors (KNN), 
and multi-layer perceptron (MLP). We configured GSCV to perform a 5- 
fold cross-validation over all the possible combinations of hyper-
parameters for each classifier. For this procedure, we selected the 
weighted F1 score as scoring metric. In multiclass problems, this score is 
calculated per class and then averaged to obtain a general metric for the 
classifier performance. We selected the weighted approximation of the 
F1 score to account for class imbalance. 

Lastly, as stated in subsection 2.4, we considered different window 
lengths for the Savitzky-Golay filter (0, 11, 21, 31, 41, 51, and 61 
epochs) to assess the effect that this parameter had on three-level stress 
classification performance. To sum up, Fig. 4 represents the procedures 
described through this section. 

Fig. 1. Timeline of the experimental process. First the participants completed a two-minute resting state period (RS1). Then, they performed the Montreal imaging 
stress task (MIST). Subsequently, they went through a relax session (Relax). Finally, the participants completed another two-minute resting state period (RS2). 
Several surveys (T1-T4) were fulfilled by the participants to grade their self-perceived stress level (SPSL). The total span of the experiment was 18 min. 

Table 1 
Frequency bands where we obtained the PSD of 
the EEG.  

Band Range (Hz) 

Delta 1–4 
Theta 4–8 
Alpha 8–13 
Beta 13–25 
Gamma 25–45  

Fig. 2. Effect of smoothing Delta power using a 2nd order Savitzky-Golay filter. 
The curves in the graph correspond to smoothing windows of length 0, 21, 41, 
and 61 epochs (dotted gray, dashed blue, solid green, and dashed-dotted red, 
respectively). 
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3. Results 

3.1. Cross-validation 

Table 2 presents GSCV results for the three-level stress classification 
task. In this table, we report the F1 score obtained by each of the five 
classifiers for each of the smoothing window lengths examined in this 
study. 

Table 3 shows the GSCV results for the stress detection task. In this 
case, we did not apply a smoothing filter. The left column corresponds to 
the classifiers, and the right column displays the F1 score obtained by 
each of the models in the stress detection task. 

Fig. 5 represents a graphic arrangement of Table 2, and is intended to 
facilitate its overview. It displays the F1 score obtained by the classifiers 
during GSCV for each of the smoothing window lengths considered in the three-level stress classification task. 

3.2. Test 

Table 4 presents the performance of the best model yielded by GSCV 
on the hold-out set. The top part of the table corresponds to three-level 
classification and the second part refers to stress detection. The first 
column represents the different smoothing window lengths analyzed. 
For each of these lengths, the rest of the columns indicate the best 
classifier and its performance in terms of class precision and recall, F1 
score, and accuracy. 

Fig. 6 illustrates the receiver operating characteristic (ROC) curves of 
the best model for each smoothing window length considered in three- 
level stress classification. Each graph includes three curves, that repre-
sent the binary classification problem for each class versus the rest. 

Fig. 7 depicts the ROC curve for the best model in the stress detection 
task. 

Fig. 8 displays the F1 score obtained on the hold-out set by the best 
model for each of the smoothing window lengths analyzed in the three- 

Fig. 3. PSD segmentation. We partitioned the minute preceding each SPSL survey into five segments each one holding six epochs (in blue). Then, we averaged each 
segment (in green) and we assigned it a label (in gray) corresponding to the SPSL of the corresponding survey. This figure is referred to the first survey that we 
conducted in the study (T1). 

Fig. 4. Stress classification pipeline. First, we performed the EEG acquisition using RABio w8 system. Then, we estimated the PSD in different frequency bands, and 
we applied a Savitzky-Golay filter to smooth spectral data. Subsequently, we splitted the minute preceding the SPSL surveys (T1-T4) into five segments, and we 
estimated the average spectral features in each of them. Then, we reshaped the spectral features and survey answers to build feature matrix X and target array y. After 
that, we splitted these two data structures into training and hold-out sets. Thereafter, for each classifier analyzed in the study, we performed GSCV using only the 
training set. Finally, we assessed the best classifier on the hold-out set. 

Table 2 
Results obtained during GSCV for the three-level stress classification task. The 
left most column represents the classifiers. The rest of the columns display the 
average F1 score (±std) obtained by each classifier for the different smoothing 
window lengths reported in epochs (0–61). Shadowed, the best classifier for 
each smoothing window length.  

F1 score per smoothing window length 

Model 0 11 21 31 41 51 61 

LR 0.45 ±
0.02 

0.45 ±
0.03 

0.48 ±
0.04 

0.52 ±
0.02 

0.55 ±
0.07 

0.54 ±
0.05 

0.56 ±
0.05 

SVM 0.55 ±
0.04 

0.63 ±
0.04 

0.63 ±
0.05 

0.72 ±
0.05 

0.78 ±
0.07 

0.84 ±
0.02 

0.89 ±
0.05 

RF 0.60 ±
0.05 

0.62 ±
0.03 

0.62 ±
0.08 

0.67 ±
0.07 

0.66 ±
0.08 

0.74 ±
0.06 

0.76 ±
0.05 

KNN 0.54 ±
0.03 

0.63 ±
0.05 

0.63 ±
0.04 

0.68 ±
0.03 

0.74 ±
0.06 

0.83 ±
0.04 

0.82 ±
0.03 

MLP 0.59 ±
0.02 

0.61 ±
0.08 

0.64 ±
0.06 

0.68 ±
0.06 

0.74 ±
0.08 

0.75 ±
0.08 

0.78 ±
0.03  

Table 3 
Results obtained during GSCV for the stress 
detection task. Left column indicates the 
models analyzed. Right column represents the 
average F1 score (±std) for each of the models 
analyzed. Shadowed, the classifiers that ob-
tained the highest performance.  

Model F1 score 

LR 0.65 ± 0.06 
SVM 0.84 ± 0.02 
RF 0.84 ± 0.03 
KNN 0.78 ± 0.04 
MLP 0.84 ± 0.02  
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level stress classification. We included this figure to illustrate the 
enhancement in performance as the window length is increased. 

4. Discussion 

In this study we have assessed the effect of smoothing filter window 
length on the performance of a multi-level stress classifier. Moreover, we 
have examined the practical appropriateness of a three-level stress 
classifier and a stress detector when each EEG-PSD segment is processed 
individually. With respect to three-level stress classification, for the non- 
smoothed case (zero epochs), the best model yielded an accuracy of 
0.61. Alternatively, for the longest smoothing window length (61 
epochs), the accuracy obtained by the best model was 0.94. In regard to 
the stress detection task, the best performing model yielded an accuracy 
of 0.81. These results evidence that, (i) the smoothing of the EEG-PSD 
improves classification performance, possibly due to train-test contam-
ination; (ii) although the performance of our three-level stress classifier 
with no smoothing is not good enough for practical implementations, 
stress can be successfully detected by means of a two-level classification 
from non-smoothed EEG-PSD signals. 

4.1. Cross-validation results 

According to the results presented in Table 2, with scarcely smoothed 
data (filter window lengths 0–31 epochs) all the classifiers performed 
similarly, with the exception of LR. However, for longer windows 
(lengths 31–61 epochs), SVM performed noticeably better than the rest 
of the classifiers. These findings suggest that SVM outperforms other 
EEG-based multi-level classifiers when intense smoothing is applied to 
EEG data. This is coherent with other results reported in the literature 

for multi-level stress classification [8,24,25,27]. With respect to stress 
detection, SVM, RF, and MLP yielded the highest performance, while 
KNN reached reasonable performance and LR discriminated worst. For 
the stress detection task, we processed each epoch individually, what 
prevents from spreading correlated information between adjacent 
epochs, and enhances the timing capabilities of the system. For instance, 
for a 61-epoch window, classification requires a 1-minute delay as a 
result of the collection of the 30 epochs posterior to the central sample. 
Conversely, for the non-smoothed approach, we used segments of 6 
consecutive epochs, and hence, classification can be performed with a 
latency of 6 s and 12-second time resolution. 

4.2. Test results 

Table 4 shows the results of the test phase. In literature, it is frequent 
to report just the accuracy of three-level stress classifiers [8,25]. 
Nevertheless, to offer a comprehensive performance report, other rele-
vant metrics such as precision and recall are required. To this end, in 
Table 4 we have reported accuracy, F1 score, and intra-class precision 
and recall. For both the three-level classification and stress detection 
tasks, the performance of the best classifier for all smoothing window 
lengths yielded results similar to those obtained in the cross-validation 
phase (confront the F1 score in Tables 2 and 3 with the same metric in 
Table 4). 

To gain insights about the prediction capacities of the classifiers, we 
computed the ROC curves. Fig. 6 shows the ROC curves for all the 
smoothing window lengths considered in the three-level stress classifi-
cation task. If we consider the clinical environment criterion in regard to 
AUC [39]: acceptable (AUC 0.7–0.8); excellent (AUC 0.8–0.9), we could 
interpret the results of Table 4 and Fig. 6 as follows: 

Fig. 5. GSCV score yielded by each classifier for the three-level stress classification task. Y axis corresponds to the F1 score, and X axis refers to the window length of 
the Savitzky-Golay filter used during EEG-PSD smoothing. Each bar in the graph represents a classifier: LR (blue), SVM (orange), RF (green), KNN (red), and 
MLP (purple). 

Table 4 
Performance metrics on the hold-out set for three-level classification (top) and stress detection (bottom). Reported metrics include precision (P) and recall (R) for each 
class, F1 score, and accuracy.  

Smoothing window length Best model Class 1 (P) Class 1 (R) Class 2 (P) Class 2 (R) Class 3 (P) Class 3 (R) F1 score Accuracy 

Three-level stress classification 
0 RF  0.68  0.70  0.58  0.46 0.29 0.67  0.61  0.61 
11 SVM  0.71  0.81  0.72  0.54 0.25 0.33  0.68  0.69 
21 MLP  0.74  0.76  0.57  0.54 0.67 0.67  0.67  0.67 
31 SVM  0.84  0.86  0.77  0.71 0.75 1  0.81  0.81 
41 SVM  0.89  0.86  0.78  0.75 0.6 1  0.83  0.83 
51 SVM  0.92  0.95  0.91  0.83 0.75 1  0.91  0.91 
61 SVM  0.95  0.95  0.92  0.92 1 1  0.94  0.94  

Stress detection 
0 MLP  0.92  0.85  0.38  0.56 – –  0.83  0.81  

E. Perez-Valero et al.                                                                                                                                                                                                                           



Biomedical Signal Processing and Control 69 (2021) 102881

6

Fig. 6. ROC curves for three-level stress classification task. Smoothing window lengths of 0 (a), 11 (b), 21 (c), 31 (d), 41 (e), 51 (f), and 61 (g) epochs. Each graph 
includes three curves, representing the binary problem for a class versus the rest of the classes, for low stress (blue), medium stress (orange), and high stress (green). 
The area under the curve (AUC) is reported in brackets. Black dashed line represents the chance level. 
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• Three-level stress classification: a smoothing window length of 31 
epochs is enough to achieve an excellent prediction capability of the 
three classes (low-medium–high AUC 0.90–0.87–1.00, respectively). 
With lengths shorter than 31 epochs, the quality of our classifier is 
below acceptable for low and medium stress classes (AUC between 
0.60 and 0.64). Regardless the smoothing window length, the 
detection of high stress level is always excellent (AUC between 0.86 
and 1).  

• Stress detection: the detection of stress from non-smoothed data can 
be described as acceptable (AUC 0.76). 

In view of the results, we can conclude that our methodological 
approach is reproducible and the stress detection we proposed in this 
study constitutes a feasible alternative for practical implementations of a 
two-level stress classifier. With regard to three-level stress classification, 
our non-smoothed classification approach is close to acceptable for low 
and medium levels of stress (AUC 0.67 and 0.64, respectively), and 
excellent for high level of stress (AUC 0.86). The reason behind the 
remarkable performance in the discrimination of the high stress class 
might be justified by more energetic EEG-PSD features than the other 
stress levels, although this assumption requires further analysis. 
Consequently, our non-smoothed three-level classification approach is 
not appropriate for practical implementations of multi-level stress 
classifiers. For wider smoothing windows (31–61 epochs), the perfor-
mance of the three-level stress classifiers improves considerably. How-
ever, as stated before, when smoothing is applied, the classification may 

incur in train-test contamination, as the information of adjacent EEG 
segments is shared, and diminish timing capabilities. 

4.3. Comparative discussion 

In literature, many studies have reported high performance for multi- 
level stress classification. However, a direct comparison with our results 
is not trivial. In some of those studies, authors only reported accuracy 
[8,25] and did not provide an analysis of the intra class performance (e. 
g., confusion matrix, precision, recall, or ROC curves). This is not an 
appropriate way to report the performance of a three-level stress clas-
sifier. For instance, a classifier with a very high sensibility and low 
specificity for a high-probability class, and null sensibility and speci-
ficity for a low-probability class, could obtain a very high accuracy. In 
addition, although segmentation and filtering greatly influence classi-
fication performance, theses aspects of the EEG processing are often 
overlooked. In [31], the authors declared that they applied a 75% 
overlapping method (unspecified) to the EEG signals to obtain the PSD, 
and reached an accuracy of 98.76%. Other studies reported accuracies 
up to 93.6% and 94.3% [24,25], but the authors only indicated that the 
EEG spectral bands were denoised without providing additional details. 
Figs. 5 and 8 demonstrate that three-level stress classification perfor-
mance increases as the smoothing window is enlarged. Therefore, a 
comparative discussion with other studies that do not accurately report 
the EEG processing is inherently unviable. 

5. Conclusions 

In this work, we evaluated the performance of a three-level stress 
classifier for different smoothing filter window lengths, and we also 
approached three-level and two-level stress classification from non- 
smoothed EEG-PSD data. To this effect, we recorded the brain activity 
of participants during a stress-relax session and we extracted EEG-PSD 
features. We used self-perceived stress level surveys as labels for clas-
sification. We assessed multiple stress classifiers whose hyperparameters 
were derived via GSCV. To evaluate the effect of smoothing on three- 
level stress classification, we considered smoothing filter window 
lengths ranging from 0 to 61 epochs, and we estimated multiple per-
formance metrics (accuracy, F1 score, and intra-class precision and 
recall). The results we obtained do not support the appropriateness of a 
three-level stress classifier from non-smoothed EEG data for practical 
applications. Our results also evidence that data smoothing increases 
classification performance at the expense of train-test contamination 
and poorer timing capabilities. According to our results, it is feasible to 
classify three stress levels from individually processed EEG segments 
with remarkable performance (AUC 0.67, 0.64, and 0.86 for low, me-
dium, and high stress classes). In terms of stress detection, we imple-
mented a two-level stress classifier without smoothing of adjacent 
segments that achieved close to excellent performance (AUC 0.76). This 
supports the implementation of our two-level stress approach in prac-
tical stress detection solutions. In this regard, an EEG stress classifier 
could be extended to real-time applications, avoiding the need to 
enquiry the participants about their SPSL. These applications may 
include stress relief therapies or neuromarketing, as in these environ-
ments stress is considered an important concern, and there is still a lack 
of stress anticipation solutions. Lastly, we provide the following rec-
ommendations for future EEG-based stress classification studies: (i) 
performance of three and two-level stress classifiers could be further 
enhanced if the EEG spectral features were combined with other fea-
tures, such as galvanic skin response or heart rate variability; (ii) each 
EEG segment should be processed individually, so the content of adja-
cent segments is not combined; (iii) an appropriate classifier perfor-
mance report should include metrics aside from accuracy, like intra- 
class precision and recall, F1 score, or AUC. In the future, reliable 
three-level stress classifiers could be used in brand new scenarios such as 
offices, schools, or even at home. 

Fig. 7. ROC curve for the binary classification problem (stress vs. no stress). 
AUC is reported in brackets. Black dashed line represents the chance level. 

Fig. 8. Smoothing effect on three-level stress classification performance. X axis 
refers to the length of the smoothing filter window in epochs. Y axis represents 
the weighted F1 score yielded on the hold-out set by the best model. 
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