
mathematics

Article

Decoding Linear Codes over Chain Rings Given by Parity
Check Matrices

José Gómez-Torrecillas 1,* , F. J. Lobillo 2 and Gabriel Navarro 3

����������
�������

Citation: Gómez-Torrecillas, J.;

Lobillo, F.J.; Navarro, G. Decoding

Linear Codes over Chain Rings Given

by Parity Check Matrices.

Mathematics 2021, 9, 1878. https://

doi.org/10.3390/math9161878

Academic Editor: Jon-Lark Kim

Received: 13 July 2021

Accepted: 4 August 2021

Published: 7 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Algebra and IMAG, University of Granada, E18071 Granada, Spain
2 Department of Algebra and CITIC, University of Granada, E18071 Granada, Spain; jlobillo@ugr.es
3 Department of Computer Science and Artificial Intelligence and CITIC, University of Granada,

E18071 Granada, Spain; gnavarro@ugr.es
* Correspondence: gomezj@ugr.es; Tel.: +34-958-240-470

Abstract: We design a decoding algorithm for linear codes over finite chain rings given by their
parity check matrices. It is assumed that decoding algorithms over the residue field are known at
each degree of the adic decomposition.

Keywords: chain ring; linear code; decoding; parity check matrix

1. Introduction

One of the first applications of linear codes whose underlying alphabet is not a finite
field appears in [1], where nonlinear binary codes are built from Z4-linear codes by means of
the Gray map. Since then, considerable research efforts have focused on linear codes having
a finite ring R as their alphabet. Normally, R is assumed to enjoy suitable properties. For
instance, Wood, in [2], states MacWilliams identities for finite Frobenius rings, extending
the foundations of coding theory to linear codes over Frobenius rings. In [3] it is proven
that finite Frobenius rings are Frobenius algebras over their characteristic subrings, which
enriches the duality theory for linear codes over this kind of alphabet.

Feng et al. connect linear codes over finite chain rings to network coding in [4,5]
by means of matrix channels. They provide a general description of linear codes over
finite chain rings, where the m–adic decomposition is made with respect to any set of
representatives containing the element zero.

Concerning efficient decoding algorithms, a framework for decoding linear codes over
Galois rings is proposed in [6], which generalizes previous works like [7]. This decoding
framework assumes that there is a chain of linear codes over the residue field which have
efficient decoding algorithms. These codes are defined by their generating matrices.

In this paper we improve the decoding framework of [6] in two ways. In Appendix A
we observe that the decoding scheme from [6] works, with slight modifications, over any
finite chain ring and for any set of representatives containing 0 in each degree. Anyway,
the efficiently decodable codes are still ordered in a chain. In Section 3 we introduce a new
framework where the codes are provided by parity check matrices. This viewpoint has
an advantage: the codes over the residue field which are associated to each degree in the
corresponding m-adic decomposition do not need to be ordered in a chain. We gain thus
flexibility to build them from codes over fields with good decoding algorithms. In Section 4,
Smith normal form of matrices over chain rings are used to compute generating matrices
from parity check ones. So a complete coding/decoding scheme is provided. We have also
included the Sagemath code of the proposed framework in Appendix B.

2. Preliminaries

Throughout this paper, the word ring means finite commutative ring with identity. A
ring is said to be a chain ring if its ideals form a chain under inclusion. Every chain ring is a

Mathematics 2021, 9, 1878. https://doi.org/10.3390/math9161878 https://www.mdpi.com/journal/mathematics

https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-8945-0283
https://orcid.org/0000-0002-7372-0442
https://orcid.org/0000-0002-9895-5686
https://doi.org/10.3390/math9161878
https://doi.org/10.3390/math9161878
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math9161878
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math9161878?type=check_update&version=2

Mathematics 2021, 9, 1878 2 of 20

local ring and, therefore, its elements admit “adic” expansions with respect to the maximal
ideal. More precisely, let R be a finite local ring with maximal ideal m. Nakayama’s Lemma
shows that the powers of m form a finite chain with strict inclusions

R ⊃ m ⊃ · · · ⊃ mν−1 ⊃ mν = {0},

with mν−1 6= {0} for some positive integer ν called the nilpotency index of R. If R is a
chain ring, then all its ideals appear in this chain.

Given r ∈ R, we set
deg(r) = max{i ≤ ν : r ∈ mi},

the degree of r. For i = 0, . . . , ν− 1 we consider the canonical projection maps

πi : mi → mi/mi+1,

and we fix maps
ε[i] : mi/mi+1 → mi,

such that πiε[i] = idmi/mi+1 .
Every r ∈ R is expressed as

r = r[0] + r[1] + · · ·+ r[ν−1], (1)

for uniquely determined r[i] ∈ im ε[i], for i = 0, . . . , ν− 1. This expression is referred to
as the (m, ε[0], . . . , ε[ν−1])–adic expansion of r. Indeed, if r is written as in (1), then, since
πk(r[j]) = 0 whenever j > k, we have

πi(r[i]) = πi(r− r[0] − · · · − r[i−1]), (2)

for every i = 1, . . . , ν− 1. Now, r[i] ∈ im ε[i] implies ε[i]πi(r[i]) = r[i], so we deduce

r[i] = ε[i]πi(r− r[0] − · · · − r[i−1]). (3)

From (1) we also get that π0(r) = π0(r[0]) and, thus,

r[0] = ε[0]π0(r). (4)

Equality (4), in conjunction with the recursive formula (3), shows that the elements r[i] are
uniquely determined by r.

This idea also shows how to compute, granting in this way the existence of the
expression (1), the elements r[i] from a given r ∈ R. In fact, r[0] is computed according to (4),
and the subsequent elements r[1], . . . , r[ν−1] are defined recursively by (3). Observe that

r− r[0] − · · · − r[i−1] ∈ mi,

as a consequence of a recursive application of the identities πiε[i] = idmi/mi+1 , (4) and (3).
Finally, we may see that mν = {0} implies ε[ν−1]πν−1 = idmν−1 , which, by (3), gives

r[ν−1] = ε[ν−1]πν−1(r− r[0] − · · · − r[ν−2]) = r− r[0] − · · · − r[ν−2],

leading to (1).
When R is a chain ring, its maximal ideal is principal, and we may then choose m ∈ R

such that m = Rm (see e.g., Proposition 2.1 in [8] or §XVII in [9]). It follows that mi = Rmi

for each 0 ≤ i ≤ ν− 1.
Taking advantage of the well known fact that mi/mi+1 is a vector space of dimension

1 over the residue field F = R/m, we obtain a bijective map

{εi : F → R | π0εi = idF} →
{

ε[i] : mi/mi+1 → mi | πiε[i] = idmi/mi+1

}

Mathematics 2021, 9, 1878 3 of 20

as follows. The multiplication map R ·mi
// mi/mi+1 induces an isomorphism of R–modules

λi : R/m→ mi/mi+1, (r +m 7→ rmi +mi+1).

In this way, for each i = 0, 1, . . . , ν− 1, given εi : F → R such that π0εi = idR/m, we may
define the map ε[i] = (·mi)εiλ

−1
i . Now, since λiπ0 = πi(·mi), we get

πiε[i] = πi(·mi)εiλ
−1
i = λiπ0ελ−1

i = λi idR/m λ−1
i = idmi/mi+1 .

The maps ε[i] obey the rule

ε[i](rmi +mi+1) = εi(r +m)mi. (5)

Summing up the relevant information so far obtained, we state the following proposition.

Proposition 1. Let F = R/m denote the residue field of R. Fix a generator m of m and splitting
maps ε0, ε1, . . . , εν−1 : F → R such that π0εi = idF for all 0 ≤ i ≤ ν− 1. Then, for each r ∈ R,
there exist uniquely determined ρ0, . . . , ρν−1 ∈ F such that

r = ε0(ρ0) + ε1(ρ1)m + · · ·+ εν−1(ρν−1)mν−1. (6)

Moreover, if εi(0) = 0 for each 0 ≤ i ≤ ν− 1, then r ∈ mi if and only if ρ0 = · · · = ρi−1 = 0.

Proof. Define the maps ε[i] according to (5). For each i = 0, . . . , ν− 1 set, in the unique
decomposition (1), r[i] = εi(ρi)mi for suitable ρi ∈ F. Indeed, from this last equality we see
that πi(r[i]) = λi(ρi), which proves that ρi is uniquely determined by r[i]. We thus obtain
the expansion (6).

Now, from (2) we derive

ρi = λ−1
i (r− ε0(ρ0)− ε1(ρ1)m− · · · − εi−1(ρi−1)mi−1 +mi+1), (7)

with ρ0 = ε0(r +m). Using recursively (7), we prove that, when εi(0) = 0, r ∈ mi if and
only if ρ0 = · · · = ρi−1 = 0.

Remark 1. The coefficients ρi can be computed recursively from (7).

The decomposition (6) depends on ε0, ε1, . . . , εν−1 and m. We call it the (m, ε0, ε1, . . . , εν−1)-
adic decomposition of r, or m-adic decomposition, when no ambiguity is expected. If
ε = ε0 = ε1 = · · · = εν−1 and ε(0) = 0, this decomposition coincides with that of
Equation (2) in [4], since ε gives a choice of residuals modulo m.

Definition 1. A tuple (m, ε0, . . . , εν−1) such that m = Rm is called a splitting structure for R if,
for each 0 ≤ i ≤ ν− 1, εi : F → R satisfies π0εi = idF and εi(0) = 0,

Remark 2. Let (m, ε0, . . . , εν−1) be a splitting structure for R. Assume r = umi for some u ∈ R
and let (6) be its m-adic decomposition. Then, by (7) and Proposition 1,

ρi = λ−1
i (r +mi+1) = λ−1

i (umi +mi+1) = u +m = π0(u).

Hence, ρi does not depend on the splitting structure.

The m–adic expansion (6) is extended to matrices in a straightforward way. Let As×t

denote the set of all matrices of size s× t with coefficients in a commutative ring A, which

Mathematics 2021, 9, 1878 4 of 20

is a free A–module. We may extend any map ε : F → R component-wise to a map
ε : Fs×t → Rs×t. Then, every matrix L ∈ Rs×t has an m–adic expansion

L = ε0(Λ0) + ε1(Λ1)m + · · ·+ εν−1(Λν−1)mν−1,

for uniquely determined matrices Λi ∈ Fs×t.
Although the splitting maps are not additive neither multiplicative, they obey some

relations which will be used. Concretely, let ρ, σ ∈ F and εi, εj, εk : F → R splittings. Since
π0 : R→ F is a ring morphism, it follows that

π0(εi(ρ + σ)− εj(ρ)− εk(σ)) = (ρ + σ)− ρ− σ = 0

and
π0(εi(ρσ)− εj(ρ)εk(σ)) = (ρσ)− ρσ = 0,

hence
εi(ρ + σ)− εj(ρ)− εk(σ) ∈ m,

εi(ρσ)− εj(ρ)εk(σ) ∈ m.
(8)

The structure of the finite chain rings is well known, see (XVII.5) Theorem in [9]. We
will not use this description in full generality, so we only recall the rings that appear in
our examples.

Example 1. Recall that a Galois ring GR(pα, β) is an extension of degree β of Z/Zpα, i.e.,
GR(pα, β) ∼= (Z/Zpα)[x]/〈 f 〉, where f is a basic monic irreducible polynomial in (Z/Zpα)[x]
of degree β. Its maximal ideal is generated by the prime p. The nilpotency index of p is α, and
F ∼= (Z/Zp)[x]/〈 f 〉, where f is the canonical projection of f to (Z/Zp)[x]. In particular,
Z/Zpα = GR(pα, 1) is a chain ring. On the other side, GF(pβ) = GR(p, β) is a field, so it is
trivially a chain ring.

Example 2. The ring Fpα [x]/〈xβ〉, where Fpα is the field with pα elements, is also a chain ring.
The maximal ideal is generated by x, and it has nilpotency index β. Of course F ∼= Fpα .

In the rest of the paper, C is an R–linear code of length n. Vectors are represented by
boldface letters, whilst matrices with uppercase letters. We use Latin alphabet to represent
elements in R and greek alphabet to represent elements of F. Moreover, given a matrix M
over R with n rows, we denote

im(M) = {xxxM | xxx ∈ Rn} and ker(M) = {xxx ∈ Rn | xxxM = 0}.

The same applies to matrices over the residue field F.

Remark 3. By an abuse of language, for vvv = (v0, . . . , vn−1) ∈ Rn, we say that vvv ∈ mi if vj ∈ mi

for all 0 ≤ j ≤ n− 1. The same convention applies to matrices.

3. Decoding via Parity Check

Let us fix a chain ring R with maximal ideal m and nilpotency index ν, i.e., mν = {0}
and mν−1 6= {0}. We also fix a splitting structure (m, ε0, . . . , εν−1) for R. There are two
standard ways to present an R–linear code C, as the image C = im(G) of a generating
matrix G or as the kernel C = ker(H) of a parity check matrix H. In the first case, by §IV
in [5], we do not lose generality if we assume C = im(G), where

G =


G(0)

G(1)

...
G(ν−1)



Mathematics 2021, 9, 1878 5 of 20

and, for each 0 ≤ i ≤ ν− 1, G(i) is a ki × n matrix whose m-adic decomposition is

G(i) = εi(Γ
(i)
i)mi + εi+1(Γ

(i)
i+1)m

i+1 + · · ·+ εν−1(Γ
(i)
ν−1)m

ν−1,

with matrices Γ(i)
j whose entries are in F, and Γ(i)

i is full rank.
The decoding framework introduced in [6] and expounded in Appendix A uses this

presentation of codes as images. It needs a chain of linear codes over the residue field F

im(Γ(0)
0) ⊆ im

(
Γ(1)

1

Γ(0)
0

)
⊆ · · · ⊆ im


Γ(ν−1)

ν−1
...

Γ(0)
0


with efficient decoding algorithms. There are several ways to get it. For instance, even with
classical linear codes, if we want to use BCH (Bose-Chaudhuri-Hocquenghem) codes, we
shall use a decreasing chain of defining sets to build the chain of codes. Goppa codes can
also be used but taking as the Goppa polynomial of one code in the chain a divisor of the
Goppa polynomial of the previous code. Anyway, this is a limitation of the possible codes
we can use at each degree.

We are interested in the second presentation, so let C be an R-linear code given by a
parity check matrix H ∈ Rn×q, i.e.,

C = ker(H) = {xxx ∈ Rn | xxxH = 0}.

In this section, we develop a new decoding framework based on syndrome decoding
for each degree, i.e., we use the parity check matrices and the syndromes of the received
words to decode. This strategy allows one to choose independently the linear codes over
the residue field at each degree.

By §II.D in [4], we can replace H by its column reduced canonical form, so we do not
lose generality if we assume

H =
(

H(0) H(1) · · · H(ν−1)
)

,

where H(i) =
ν−1

∑
j=i

εj(Θ
(i)
j)mj

(9)

for suitable matrices Θ(i)
j ∈ Fn×qi such that the matrices Θ(i)

i are full rank.
As usual, let yyy = ccc + eee, where ccc ∈ C and eee is the error vector. The syndrome is

sss = yyyH = eeeH,

and we denote
sss(i) = yyyH(i) = eeeH(i), 0 ≤ i ≤ ν− 1.

Our decoding framework computes eee from H and sss by means of an iterative process.
Let us introduce notation for the corresponding m-adic expansions:

eee =
ν−1

∑
l=0

εl(ξξξ l)ml ,

sss(i) =
ν−1

∑
j=i

εj(σσσ
(i)
j)mj, 0 ≤ i ≤ ν− 1.

(10)

Mathematics 2021, 9, 1878 6 of 20

We have taken into account that sss(i) ∈ mi. Observe that, for each 0 ≤ i ≤ ν− 1,

eeeH(i) =
ν−1

∑
l0=0

εl0(ξξξ l0)m
l0

ν−1

∑
j0=i

εj0(Θ
(i)
j0
)mj0

=
ν−1

∑
j0=i

ν−1

∑
l0=0

εl0(ξξξ l0)εj0(Θ
(i)
j0
)mj0+l0

=
ν−1

∑
j=i

j−i

∑
l=0

εl(ξξξ l)εj−l(Θ
(i)
j−l)m

j,

(11)

where we use that mν = 0 and we performed the change of variable j = j0 + l0. Hence,

ν−1

∑
j=i

εj(σσσ
(i)
j)mj =

ν−1

∑
j=i

j−i

∑
l=0

εl(ξξξ l)εj−l(Θ
(i)
j−l)m

j (12)

for each 0 ≤ i ≤ ν− 1. The right hand side of (12) needs not to be an m-adic decomposition,
so we cannot infer from (12) any equality of the corresponding coefficients of each mj.

Let us describe the iterative decoding framework.

3.1. First Step: Computing ξξξ0

Equation (12), when i = ν− 1, gives

εν−1(σσσ
(ν−1)
ν−1)mν−1 = ε0(ξξξ0)εν−1(Θ

(ν−1)
ν−1)mν−1.

By (8),
ε0(ξξξ0)εν−1(Θ

(ν−1)
ν−1)− εν−1(ξξξ0Θ(ν−1)

ν−1) ∈ m,

hence
ε0(ξξξ0)εν−1(Θ

(ν−1)
ν−1)mν−1 = εν−1(ξξξ0Θ(ν−1)

ν−1)mν−1.

By Proposition 1,
σσσ
(ν−1)
ν−1 = ξξξ0Θ(ν−1)

ν−1 . (13)

Proposition 2. Let dν−1 be a decoding algorithm for the linear code ker(Θ(ν−1)
ν−1). If the weight of

ξξξ0 is below the correction capability of dν−1, then ξξξ0 = dν−1(σσσ
(ν−1)
ν−1).

Proof. Just observe that ξξξ0 is the only one solution of (13) whose weight is below the
correction capability of ker(Θ(ν−1)

ν−1).

3.2. Second Step: Computing ξξξ1

We include this second step to help the reader to follow the framework. At this step,
ξξξ0 is known. If we put i = ν− 2 in (12), we have

εν−2(σσσ
(ν−2)
ν−2)mν−2 + εν−1(σσσ

(ν−2)
ν−1)mν−1 =

ε0(ξξξ0)εν−2(Θ
(ν−2)
ν−2)mν−2 + ε0(ξξξ0)εν−1(Θ

(ν−2)
ν−1)mν−1 + ε1(ξξξ1)εν−2(Θ

(ν−2)
ν−2)mν−1. (14)

Since the vector ξξξ0 is assumed to be known, the element

εν−2(σσσ
(ν−2)
ν−2)mν−2 + εν−1(σσσ

(ν−2)
ν−1)mν−1−

ε0(ξξξ0)εν−2(Θ
(ν−2)
ν−2)mν−2 − ε0(ξξξ0)εν−1(Θ

(ν−2)
ν−1)mν−1 ∈ mν−1

Mathematics 2021, 9, 1878 7 of 20

can be computed. Hence, by Proposition 1, there exists δδδ ∈ Fn such that

εν−2(σσσ
(ν−2)
ν−2)mν−2 + εν−1(σσσ

(ν−2)
ν−1)mν−1−

ε0(ξξξ0)εν−2(Θ
(ν−2)
ν−2)mν−2 − ε0(ξξξ0)εν−1(Θ

(ν−2)
ν−1)mν−1 = εν−1(δδδ)mν−1, (15)

which can be computed since all elements appearing in its definition are known. Equa-
tions (14) and (15) imply

εν−1(δδδ)mν−1 = ε1(ξξξ1)εν−2(Θ
(ν−2)
ν−2)mν−1.

By (8),
ε1(ξξξ1)εν−2(Θ

(ν−2)
ν−2)− εν−1(ξξξ1Θ(ν−2)

ν−2) ∈ m,

hence
ε1(ξξξ1)εν−2(Θ

(ν−2)
ν−2)mν−1 = εν−1(ξξξ1Θ(ν−2)

ν−2)mν−1.

By Proposition 1, it follows that
δδδ = ξξξ1Θ(ν−2)

ν−2 . (16)

Proposition 3. Let dν−2 be a decoding algorithm for the linear code ker(Θ(ν−2)
ν−2). If the weight of

ξξξ1 is below the correction capability of dν−2, then ξξξ1 = dν−2(δδδ).

Proof. Same proof that Proposition 2, ξξξ1 is the only one solution of (16) whose weight is
below the correction capability of ker(Θ(ν−2)

ν−2).

3.3. General Step: Computing ξξξ l

We assume that ξξξ0, . . . , ξξξ l−1 have been computed. Proceeding as in the previous cases,
Equation (12) for i = ν− 1− l provides

ν−1

∑
j=ν−1−l

εj(σσσ
(ν−1−l)
j)mj =

ν−1

∑
j=ν−1−l

j−ν+1+l

∑
i=0

εi(ξξξ i)εj−i(Θ
(ν−1−l)
j−i)mj

=
ν−2

∑
j=ν−1−l

j−ν+1+l

∑
i=0

εi(ξξξ i)εj−i(Θ
(ν−1−l)
j−i)mj

+
l

∑
i=0

εi(ξξξ i)εν−1−i(Θ
(ν−1−l)
ν−1−i)mν−1

=
ν−2

∑
j=ν−1−l

j−ν+1+l

∑
i=0

εi(ξξξ i)εj−i(Θ
(ν−1−l)
j−i)mj

+
l−1

∑
i=0

εi(ξξξ i)εν−1−i(Θ
(ν−1−l)
ν−1−i)mν−1

+ εl(ξξξ l)εν−1−l(Θ
(ν−1−l)
ν−1−l)mν−1.

(17)

By Proposition 1, there exists δδδ ∈ Fn such that

ν−1

∑
j=ν−1−l

εj(σσσ
(ν−1−i)
j)mj −

ν−2

∑
j=ν−1−l

j−ν+1+l

∑
i=0

εi(ξξξ i)εj−i(Θ
(ν−1−l)
j−i)mj

−
l−1

∑
i=0

εi(ξξξ i)εν−1−i(Θ
(ν−1−l)
ν−1−i)mν−1 = εν−1(δδδ)mν−1 ∈ mν−1. (18)

Mathematics 2021, 9, 1878 8 of 20

The left hand side of the equality in (18) is known because i < l in all summands. So
vector δδδ can be computed. By (8),

εl(ξξξ l)εν−1−l(Θ
(ν−1−l)
ν−1−l)− εν−1(ξξξ lΘ

(ν−1−l)
ν−1−l) ∈ m,

hence
εl(ξξξ l)εν−1−l(Θ

(ν−1−l)
ν−1−l)mν−1 = εν−1(ξξξ lΘ

(ν−1−l)
ν−1−l)mν−1. (19)

Therefore, Equations (17)–(19) imply

εν−1(δδδ)mν−1 = εν−1(ξξξ lΘ
(ν−1−l)
ν−1−l)mν−1.

It follows, by Proposition 1 again, that

δδδ = ξξξ lΘ
(ν−1−l)
ν−1−l . (20)

Proposition 4. Let dν−1−l be a decoding algorithm for the linear code ker(Θ(ν−1−l)
ν−1−l). If the

weight of ξξξ l is below the correction capability of dν−1−l , then ξξξ l = dν−1−l(δδδ).

Proof. As we observed before in Propositions 2 and 3, ξξξ l is the unique solution of (20)
whose weight is below the correction capability of ker(Θ(ν−1−l)

ν−1−l).

The decoding framework is summarized in Algorithm 1.

Algorithm 1: Syndrome decoding.

Parameters H given as in (11), and decoding algorithms d0, d1, . . . , dν−1

Input sss = (sss(0), sss(1), . . . , sss(ν−1)) ∈ Rq

Output The error vector eee = ∑ν−1
l=0 εl(ξξξ l)ml .

Assumption For each 0 ≤ l ≤ ν− 1, the Hamming weight of ξξξ l is below the correction
capability of dl .

1: For each 0 ≤ i ≤ ν− 1, compute the m-adic expansion of sss(i) in (10)
2: for 0 ≤ l ≤ ν− 1 do
3: Compute δδδ from (18)
4: ξξξ l = dl(δδδ)
5: end for
6: return ∑ν−1

l=0 εl(ξξξ l)ml .

Theorem 1. Let yyy ∈ Rn and sss(i) = yyyH(i) for each 0 ≤ i ≤ ν − 1. If there exists eee =

∑ν−1
l=0 εl(ξξξ l)ml ∈ Rn such that (yyy − eee)H = 0 and the weight of ξξξ l is below the correction ca-

pability of dl for each 0 ≤ l ≤ ν− 1, then Algorithm 1 correctly computes it.

Proof. Follows directly from Propositions 2–4.

Example 3. In order to explain how this decoding framework works, we are going to develop a step
by step example. Let R = GR(4, 2), so F = F4 = F2[a]/〈a2 + a + 1〉. Let C = ker(H), where

H =


2a + 3 2a + 2 2 0
2a + 2 2a + 1 0 2
2a + 1 2a + 3 2 2

3 3a + 2 2 2a
1 3a + 1 2 2a + 2

.

The splitting structure is (2, ε0, ε1), where

Mathematics 2021, 9, 1878 9 of 20

0 1 a a + 1
ε0 0 2a + 1 3a + 2 a + 3
ε1 0 3 3a 3a + 1

According to this splitting structure, we have

H(0) =


2a + 3 2a + 2
2a + 2 2a + 1
2a + 1 2a + 3

3 3a + 2
1 3a + 1

 = ε0


1 0
0 1
1 1
1 a
1 a + 1

+ 2ε1


1 a + 1

a + 1 0
0 1

a + 1 0
a a + 1


and

H(1) =


2 0
0 2
2 2
2 2a
2 2a + 2

 = 2ε1


1 0
0 1
1 1
1 a
1 a + 1

.

Observe that Θ(0)
0 and Θ(1)

1 are the parity check matrices of a Hamming code of length 5 and
dimension 3, which corrects one single error. It can be checked that

(2, 2a + 1, a + 3, 2a, 3a + 3) ∈ C.

Although the error vector
(2a + 2, 0, 0, 3a + 2, 0)

has Hamming weight 2, its (2, ε0, ε1)-adic decomposition is

(2a + 2, 0, 0, 3a + 2, 0) = ε0(0, 0, 0, a, 0) + 2ε1(a + 1, 0, 0, 0, 0),

so our framework should be able to decode the received word

(2, 2a + 1, a + 3, 2a, 3a + 3) + (2a + 2, 0, 0, 3a + 2, 0)

= (2a, 2a + 1, a + 3, a + 2, 3a + 3).

The syndrome of the received word is

(2a, 2a + 1, a + 3, a + 2, 3a + 3)


2a + 3 2a + 2 2 0
2a + 2 2a + 1 0 2
2a + 1 2a + 3 2 2

3 3a + 2 2 2a
1 3a + 1 2 2a + 2


= (3a, 3a + 3, 2a, 2a + 2) = ((3a, 3a + 3), (2a, 2a + 2))

whose (2, ε0, ε1)-decompositions are

(3a, 3a + 3) = ε0(a, a + 1) + 2ε1(1, a)

(2a, 2a + 2) = 2ε1(a, a + 1)

Algorithm 1 can now be applied. In the first round, i = 0, we have δδδ = σσσ
(1)
1 = (a, a + 1),

which is a times the fourth row of Θ(1)
1 . So ξξξ0 = (0, 0, 0, a, 0).

Mathematics 2021, 9, 1878 10 of 20

In the second round, i = 1, we need to compute the (2, ε0, ε1)-adic decomposition of

ε0(a, a + 1) + 2ε1(1, a)− ε0(0, 0, 0, a, 0)ε0


1 0
0 1
1 1
1 a
1 a + 1



− 2ε0(0, 0, 0, a, 0)ε1


1 a + 1

a + 1 0
0 1

a + 1 0
a a + 1

 = (2a + 2, 0),

which is
(2a + 2, 0) = 2ε1(a + 1, 0).

So, δδδ = (a + 1, 0), the first row of Θ(0)
0 multiplied by a + 1. Therefore, ξξξ1 = (a + 1, 0, 0, 0, 0).

It follows

ε0(0, 0, 0, a, 0) + 2ε1(a + 1, 0, 0, 0, 0) = (2a + 2, 0, 0, 3a + 2, 0),

as expected.
Unlike the former case, if we make use of a different splitting structure to decode, the framework

could not work. For instance, consider the splitting structure (2, ε′0, ε′1), where

0 1 a a + 1
ε′0 0 2a + 3 3a a + 1
ε′1 0 2a + 1 a + 2 3a + 1

The (2, ε′0, ε′1)-decomposition of the error vector is

(2a + 2, 0, 0, 3a + 2, 0) = ε′0(0, 0, 0, a, 0) + 2ε′1(a + 1, 0, 0, 1, 0),

which provides a vector of Hamming weight 2 in degree 1, so Algorithm 1 does not apply.

Remark 4. Our parity check decoding framework could be used to design a McEliece like cryp-
tosystem following the proposal in [10]. However, by Remark 2, given H as in (9), the matrices
Θ(0)

0 , . . . , Θ(ν−1)
ν−1 do not depend on the splitting structure, so an eavesdropper could use any struc-

ture to compute the parity check matrices of the linear codes over F. Therefore, the security of this
possible cryptosystem would be equivalent to ν consecutive linear codes over the residue field F.

Remark 5. The time complexity of Algorithm 1 is bounded by the theoretical efficiency of the chosen
decoding algorithms d0, . . . , dν−1 (Line 4), and the intermediate calculations are described in Lines
1 and 3. Indeed, with respect to the number of elementary operations (additions, multiplications,
and map images) over the residue field, let us assume that di belongs to O(fi) for i = 0, . . . , ν− 1
with respect to the length of the code. Moreover, for simplicity, assume that fi ∈ O(f) for all i.

According to (7), an m-adic expansion can be computed by 2ν operations, so that Line 1 belongs
to O(ν2). Now, the calculation of δ in Line 4 is obtained by solving a linear system over the residue
field F. This can be computed by Gaussian elimination, which can be done in O(tω), where ω is the
matrix multiplication exponent and t is the dimension of the matrix. We may consider the classical
algorithm and set ω = 3, so that Line 3 in each iteration of the loop belongs to O(n3 + f (n)),
where n is the length of the code. Thus Algorithm 1 can be executed in O(ν2 + νn3 + ν f (n)). In
general, since ν� n, we may say that the complexity belongs to O(max(n3, f (n))).

Mathematics 2021, 9, 1878 11 of 20

4. Parity Check and Encoders

There are known interesting applications of linear codes over finite chain rings as those
mentioned in [4,5]. So, even though the decoding framework is based on the syndrome
decoding by means of parity check matrices, it is needed to provide an encoding process.
So we need to build a generating matrix from the parity check matrix H which defines
our code. This task may be performed by using the Smith normal form. Recall that a
k × n matrix M over an arbitrary ring has a Smith normal form if there exist invertible
k× k and n× n matrices P, Q and a diagonal (non necessarily square) matrix D, where
d1, . . . , dmin(k,n) are the elements in the main diagonal, such that PMQ = D and di | di+1.

Any matrix over a commutative principal ideal ring has a Smith normal form (Chapter
15 in [11]). In the particular case of a chain ring, Algorithm 2 gives a way to compute this
normal form which simplifies the general procedure in [11].

We may assume k ≤ n, otherwise we can compute it for its transpose MT , and if
PMTQ = D we have QT MPT = DT .

Algorithm 2: Smith normal form for finite chain rings.

Input A matrix M ∈ Rk×n over a finite chain ring R with nilpotency index ν, such
that k ≤ n.

Output D, P, Q such that D is a Smith normal form, P and Q are invertible, and
D = PMQ.

1: if k = 1 then
2: Q← In×n.
3: Find m1,j of lowest degree in M.
4: Swap columns 1 and j in M and Q
5: for 2 ≤ j ≤ n do
6: Compute t ∈ R such that m1,j = tm1,1
7: In M and Q, replace column j with column j minus t times column 1.
8: end for
9: return D = (m1,1, 0, . . . , 0), P = 1, Q.

10: else
11: S, T ← Ik×k, In×n
12: Find mi,j of lowest degree in M
13: Swap row 1 and row i in M and S
14: Swap column 1 and column j in M and T
15: for 2 ≤ i ≤ k do
16: Compute t ∈ R such that mi,1 = tm1,1
17: In M and S, replace row i with row i minus t times row 1.
18: end for
19: for 2 ≤ j ≤ n do
20: Compute t ∈ R such that m1,j = tm1,1
21: In M and T, replace column j with column j minus t times column 1.
22: end for
23: Set M′ ∈ R(k−1)×(n−1) the matrix obtained from M deleting its first row and column.
24: Apply Algorithm 2 to M′ and compute D′, P′, Q′ such that D′ is a Smith normal

form for M′ and D′ = P′M′Q′.

25: return
(

m1,1
D′

)
,
(

1
P′

)
S and T

(
1

Q′

)
26: end if

Remark 6. Observe that, once a generator m has been fixed for the maximal ideal m of R, it is
easy to check that deg(r) = d if and only if r = umd where u ∈ R \ m, the set of units of R.

Mathematics 2021, 9, 1878 12 of 20

Therefore, deg(r) = d and md = Rr are equivalent conditions on r. Since deg(r) ≤ deg(s)
implies s ∈ mdeg(r), we get

deg(r) ≤ deg(s) if and only if s = tr for some t ∈ R. (21)

Since deg(r + s), deg(rs) ≥ min{deg(r), deg(s)} for all r, s ∈ R, once m1,1 is an element of
lowest degree, any operation involving sums and products cannot decrease the degree, so, by (21),
we can compute t ∈ R in lines 6, 16 and 20, and all entries of M′ have degree greater or equal than
the degree of m1,1. Since S and T are built to obtain

SMT =

(
m1,1

M′

)
it follows(

1
P′

)
SMT

(
1

Q′

)
=

(
1

P′

)(
m1,1

M′

)(
1

Q′

)
=

(
m1,1

P′M′Q′

)(
m1,1

D′

)
,

so the output of Algorithm 2 is correct.

Once the Smith normal form of the parity check matrix has been found, we may
compute a generating matrix. Indeed, assume H ∈ Rn×q and let D, P, Q matrices such
that D is a Smith normal form for H and D = PHQ. Since Q is invertible, it follows
that ccc ∈ ker(H) if and only if ccc ∈ ker(HQ). Moreover, xxx ∈ ker(D) if and only if xxxP ∈
ker(HQ), so, if ker(D) = im(E) we get ker(H) = im(EP). Now, recall D is diagonal with
d1 | d2 | · · · | dmin{n,q} which, by (21), is equivalent to say that deg(d1) ≤ deg(d2) ≤ · · · ≤
deg(dmin{n,q}). It follows that E can be taken as an n× n diagonal matrix whose diagonal

elements are {mν−deg(d1), mν−deg(d2), . . . , mν−deg(dmin{n,q}), 1, . . . , 1}. We may summarize
these ideas in Algorithm 3.

Algorithm 3: Generating matrix computation from a parity check matrix.

Input A parity check matrix H ∈ Rn×q.

Output A matrix G such that ker(H) = im(G).

1: Compute D, P, Q by means of Algorithm 2 applied to H.
2: Compute E as the n× n diagonal matrix with elements

mν−deg(d1), mν−deg(d2), . . . , mν−deg(dmin{n,q}), 1, . . . , 1

in its main diagonal.
3: return EP.

Author Contributions: All authors equally contributed to every aspect of this work. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by AEI (https://doi.org/10.13039/501100011033 (accessed on 6
August 2021)), grant number PID2019-110525GB-I00.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

https://doi.org/10.13039/501100011033

Mathematics 2021, 9, 1878 13 of 20

Appendix A. Decoding via Encoders

In this appendix we show that the decoding framework for linear codes over Galois
rings presented in [6] is still valid for the broader class of chain rings. In addition, we
amend a subtle gap in [6].

A splitting structure (m, ε0, . . . , εν−1) is fixed for a chain ring R with maximal ideal m
and nilpotency index ν. As we pointed out in Section 3, we may assume C = im(G), where

G =


G(0)

G(1)

...
G(ν−1)


and, for each 0 ≤ i ≤ ν− 1, G(i) is a ki × n matrix whose m-adic decomposition is

G(i) = εi(Γ
(i)
i)mi + εi+1(Γ

(i)
i+1)m

i+1 + · · ·+ εν−1(Γ
(i)
ν−1)m

ν−1,

with matrices Γ(i)
j whose entries are in F, and Γ(i)

i is full rank.
Information is presented as vectors

uuu =
(

uuu(0)| · · · |uuu(ν−1)
)

,

where the m-adic expansion of uuu(i) is

uuu(i) = ε0(υυυ
(i)
0) + ε1(υυυ

(i)
1)m + · · ·+ εν−1−i(υυυ

(i)
ν−1−i)m

ν−1−i

with υυυ
(i)
j ∈ Fki . Observe that υυυ

(i)
j = 0, if ν− 1− i < j. The reason for this restriction is that

terms of higher degree are annihilated in the encoding process. Indeed, let ccc = uuuG. Then

ccc = uuuG

=
ν−1

∑
i=0

uuu(i)G(i)

=
ν−1

∑
i=0

ν−1−i

∑
j1=0

εj1(υυυ
(i)
j1
)mj1

ν−1

∑
j2=i

εj2(Γ
(i)
j2
)mj2

=
ν−1

∑
i=0

ν−1−i

∑
j1=0

ν−1

∑
j2=i

εj1(υυυ
(i)
j1
)εj2(Γ

(i)
j2
)mj1+j2

=
ν−1

∑
i=0

ν−1−i

∑
j1=0

ν−1−i

∑
j=0

εj1(υυυ
(i)
j1
)εj+i(Γ

(i)
j+i)m

j1+j+i

=
ν−1

∑
l=0

l

∑
j=0

l−j

∑
i=0

εl−j−i(υυυ
(i)
l−j−i)εi+j(Γ

(i)
i+j)m

l

=
ν−1

∑
l=0

l

∑
j=0

(
ε0(υυυ

(l−j)
0) · · · εl−j−1(υυυ

(1)
l−j−1) εl−j(υυυ

(0)
l−j)

)


εl(Γ
(l−j)
l)
...

ε1+j(Γ
(1)
1+j)

εj(Γ
(0)
j)

ml

(A1)

This is not necessarily the m-adic decomposition of ccc, since we do not know if the
coefficients of each ml belong to im(εl). Actually, this is the inaccuracy in Equation (11)

Mathematics 2021, 9, 1878 14 of 20

in [6]. However, we may fix this issue, since the knowledge of υυυ
(i)
j , for 0 ≤ i ≤ ν− 1 and

0 ≤ j ≤ ν− 1− i, allows one to recover the codeword.
Let yyy = ccc + eee with m-adic expansions

ccc =
ν−1

∑
l=0

εl(ζζζ l)ml ,

yyy =
ν−1

∑
l=0

εl(γγγl)ml ,

eee =
ν−1

∑
l=0

εl(ξξξ l)ml .

For each 0 ≤ l ≤ ν− 1 it follows that

l

∑
i=0

εi(γγγi)mi −
l

∑
i=0

εi(ξξξ i)mi −
l

∑
i=0

εi(ζζζ i)mi ∈ ml+1

and, by (A1),

l

∑
i=0

εi(ζζζ i)mi −
l

∑
i=0

i

∑
j=0

(
ε0(υυυ

(i−j)
0) · · · εi−j(υυυ

(0)
i−j)

)
εi(Γ

(i−j)
i)
...

εj(Γ
(0)
j)

mi ∈ ml+1.

Hence, for each 0 ≤ l ≤ ν− 1,

l

∑
i=0

εi(γγγi)mi −
l

∑
i=0

εi(ξξξ i)mi −
l

∑
i=0

i

∑
j=0

(
ε0(υυυ

(i−j)
0) · · · εi−j(υυυ

(0)
i−j)

)
εi(Γ

(i−j)
i)
...

εj(Γ
(0)
j)

mi ∈ ml+1 (A2)

We use (A2) to describe the decoding framework. We start by computing ξξξ0 and υυυ
(0)
0 .

Let C(0) = im(Γ(0)
0). By (A2) with l = 0,

ε0(γγγ0)− ε0(ξξξ0)− ε0(υυυ
(0)
0)ε0(Γ

(0)
0) ∈ m.

By (8),
ε0(γγγ0 − ξξξ0 − υυυ

(0)
0 Γ(0)

0)− ε0(γγγ0) + ε0(ξξξ0) + ε0(υυυ
(0)
0 Γ(0)

0) ∈ m.

These last two equations imply that

ε0(γγγ0 − ξξξ0 − υυυ
(0)
0 Γ(0)

0) ∈ m,

i.e.,
γγγ0 − ξξξ0 − υυυ

(0)
0 Γ(0)

0 = 0.

Observe that υυυ
(0)
0 Γ(0)

0 is a codeword in C(0) and γγγ0 is a received word with error ξξξ0. If we

can decode γγγ0, then we can compute ξξξ0 and υυυ
(0)
0 . It follows from (8) that ζζζ0 = γγγ0 − ξξξ0 =

υυυ
(0)
0 Γ(0)

0 .

For the general recursive step, assume that ξξξ i for 0 ≤ i ≤ l − 1 and
(

υυυ
(j)
0 · · ·υυυ

(0)
j

)
for 0 ≤ j ≤ l − 1 are known. Let us describe how to compute ξξξ l and

(
υυυ
(l)
0 · · ·υυυ

(0)
l

)
.

Equation (A2) implies

Mathematics 2021, 9, 1878 15 of 20

l

∑
i=0

εi(γγγi)mi −
l

∑
i=0

εi(ξξξ i)mi −
l

∑
i=0

i

∑
j=0

(
ε0(υυυ

(i−j)
0) · · · εi−j(υυυ

(0)
i−j)

)
εi(Γ

(i−j)
i)
...

εj(Γ
(0)
j)

mi ∈ ml+1.

Rearranging its summads we get

l−1

∑
i=0

εi(γγγi)mi −
l−1

∑
i=0

εi(ξξξ i)mi

−
l−1

∑
i=0

i

∑
j=0

(
ε0(υυυ

(i−j)
0) · · · εi−j(υυυ

(0)
i−j)

)
εi(Γ

(i−j)
i)
...

εj(Γ
(0)
j)

mi

−
l

∑
j=1

(
ε0(υυυ

(l−j)
0) · · · εl−j(υυυ

(0)
l−j)

)
εl(Γ

(l−j)
l)
...

εj(Γ
(0)
j)

ml + εl(γγγl)ml

− εl(ξξξ l)ml −
(

ε0(υυυ
(l)
0) · · · εl(υυυ

(0)
l)
)

εl(Γ
(l)
l)

...
ε0(Γ

(0)
0)

ml ∈ ml+1. (A3)

Equation (A2) also implies

l−1

∑
i=0

εi(γγγi)mi −
l−1

∑
i=0

εi(ξξξ i)mi −
l−1

∑
i=0

i

∑
j=0

(
ε0(υυυ

(i−j)
0) · · · εi−j(υυυ

(0)
i−j)

)
εi(Γ

(i−j)
i)
...

εj(Γ
(0)
j)

mi ∈ ml ,

so, by Proposition 1, there exists δδδl ∈ Fn such that

l−1

∑
i=0

εi(γγγi)mi −
l−1

∑
i=0

εi(ξξξ i)mi

−
l−1

∑
i=0

i

∑
j=0

(
ε0(υυυ

(i−j)
0) · · · εi−j(υυυ

(0)
i−j)

)
εi(Γ

(i−j)
i)
...

εj(Γ
(0)
j)

mi − εl(δδδl)ml ∈ ml+1. (A4)

Combining (A3) and (A4), we get

εl(δδδl)−
l

∑
j=1

(
ε0(υυυ

(l−j)
0) · · · εl−j(υυυ

(0)
l−j)

)
εl(Γ

(l−j)
l)
...

εj(Γ
(0)
j)



+εl(γγγl)− εl(ξξξ l)−
(

ε0(υυυ
(l)
0) · · · εl(υυυ

(0)
l)
)

εl(Γ
(l)
l)

...
ε0(Γ

(0)
0)


ml ∈ ml+1. (A5)

Mathematics 2021, 9, 1878 16 of 20

Equation (8) implies

εl

δδδl −
l

∑
j=1

(
υυυ
(l−j)
0 · · · υυυ

(0)
l−j

)
Γ(l−j)

l
...

Γ(0)
j

+γγγl − ξξξ l −
(

υυυ
(l)
0 · · · υυυ

(0)
l

)
Γ(l)

l
...

Γ(0)
0




− εl(δδδl) +
l

∑
j=1

(
ε0(υυυ

(l−j)
0) · · · εl−j(υυυ

(0)
l−j)

)
εl(Γ

(l−j)
l)
...

εj(Γ
(0)
j)



− εl(γγγl) + εl(ξξξ l) +
(

ε0(υυυ
(l)
0) · · · εl(υυυ

(0)
l)
)

εl(Γ
(l)
l)

...
ε0(Γ

(0)
0)

 ∈ m. (A6)

Equations (A5) and (A6) imply

εl

δδδl −
l

∑
j=1

(
υυυ
(l−j)
0 · · · υυυ

(0)
l−j

)
Γ(l−j)

l
...

Γ(0)
j

+γγγl − ξξξ l −
(

υυυ
(l)
0 · · · υυυ

(0)
l

)
Γ(l)

l
...

Γ(0)
0


ml ∈ ml+1

so, by Proposition 1,

δδδl −
l

∑
j=1

(
υυυ
(l−j)
0 · · · υυυ

(0)
l−j

)
Γ(l−j)

l
...

Γ(0)
j

+γγγl − ξξξ l −
(

υυυ
(l)
0 · · · υυυ

(0)
l

)
Γ(l)

l
...

Γ(0)
0

 = 0

which is an equation in F. Let C(l) = im

 Γ(l)
l
...

Γ(0)
0

. We decode the known word δδδl + γγγl −

∑l
j=1

(
υυυ
(l−j)
0 ··· υυυ

(0)
l−j

) Γ(l−j)
l
...

Γ(0)
j

 to compute ξξξ l and
(

υυυ
(l)
0 · · ·υυυ

(0)
l

)
.

Appendix B. SageMath Code

Here we provide the SageMath [12] code we have implemented to check our algo-
rithms and to produce examples. We have tested our implementation on the Galois rings
R = GR(4, 3), GR(2, 5), GR(3, 3) (see Example 1). As far as we have checked, code inside
the boxes can be cut and pasted from a PDF file opened with Adobe Acrobat Reader in
a Sagemath notebook running under Jupyter. The character represents a white space.
Although the code inside the boxes is uglier using this character, it is needed to obtain the
correct indentation when pasting the code into Jupyter.

p,nu,r␣=␣2,3,2
#p,nu,r␣=␣2,5,1
#p,nu,r␣=␣3,3,1
if␣r␣==␣1:
␣␣␣␣F␣=␣GF(p)
␣␣␣␣R␣=␣IntegerModRing(p^nu)
else:
␣␣␣␣F.<a>␣=␣GF(p^r)
␣␣␣␣R.<a>␣=␣IntegerModRing(p^nu).extension(F.modulus())

The splitting structure is introduced as a list of lists, each one having the images of the
elements of the residue field F. The last element is a generator for the maximal ideal.

Mathematics 2021, 9, 1878 17 of 20

#␣p,nu,r␣=␣2,3,2
splitting_structure␣=␣[[R(0),R(5*a+4),R(3*a+7),R(4*a+3)],
␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣[R(0),R(3*a+6),R(1*a+5),R(2*a+7)],
␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣[R(0),R(5*a+6),R(5*a+1),R(6*a+1)]]␣+␣[p]
#␣p,nu,r␣=␣2,5,1
#splitting_structure␣=␣[[R(0),R(7)],
#␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣[R(0),R(5)],
#␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣[R(0),R(3)],
#␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣[R(0),R(1)],
#␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣[R(0),R(3)]]␣+␣[p]
#␣p,nu,r␣=␣3,3,1
#splitting_structure␣=␣[[R(0),R(7),R(8)],
#␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣[R(0),R(25),R(17)],
#␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣[R(0),R(19),R(11)]]␣+␣[p]
mm␣=␣splitting_structure[nu]

The canonical projection π : R→ F, splitting maps, m-adic expansion, and its inverse
are defined as follows.

def␣proj(rr):
␣␣␣␣if␣r␣==␣1:
␣␣␣␣␣␣␣␣return(F(rr))
␣␣␣␣else:
␣␣␣␣␣␣␣␣return␣F(rr.list())

def␣splitting(ff,splitting_list␣=␣[R(ele)␣for␣ele␣in␣F.list()]):
␣␣␣␣if␣ff.parent()␣==␣F:
␣␣␣␣␣␣␣␣if␣(len(splitting_list)␣!=
␣␣␣␣␣␣␣␣␣␣␣␣F.cardinality())␣or␣([proj(r_)
␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣for␣r_␣in␣splitting_list]␣!=
␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣F.list()):
␣␣␣␣␣␣␣␣␣␣␣␣return␣’Incorrect␣splitting’
␣␣␣␣␣␣␣␣return␣splitting_list[F.list().index(ff)]
␣␣␣␣elif␣isinstance(ff,sage.modules.free_module_element.FreeModuleElement):
␣␣␣␣␣␣␣␣ff_␣=␣ff.list()
␣␣␣␣␣␣␣␣aux␣=␣[splitting(ele,␣splitting_list)␣for␣ele␣in␣ff_]
␣␣␣␣␣␣␣␣output␣=␣vector(R,aux)
␣␣␣␣␣␣␣␣return␣output
␣␣␣␣elif␣isinstance(ff,sage.matrix.matrix0.Matrix):
␣␣␣␣␣␣␣␣n_rows␣=␣ff.nrows()
␣␣␣␣␣␣␣␣ff_␣=␣ff.list()
␣␣␣␣␣␣␣␣aux␣=␣[splitting(ele,␣splitting_list)␣for␣ele␣in␣ff_]
␣␣␣␣␣␣␣␣output␣=␣matrix(R,n_rows,aux)
␣␣␣␣␣␣␣␣return␣output
␣␣␣␣else:
␣␣␣␣␣␣␣␣return␣’Type␣non␣supported’

def␣m_adic(rr,splitting_structure):
␣␣␣␣mm_␣=␣splitting_structure[nu]
␣␣␣␣if␣rr.parent()␣==␣R:
␣␣␣␣␣␣␣␣rr_␣=␣rr
␣␣␣␣␣␣␣␣output␣=␣[]
␣␣␣␣␣␣␣␣for␣ii␣in␣range(nu):
␣␣␣␣␣␣␣␣␣␣␣␣if␣r␣==␣1:
␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣output␣+=␣[proj(R(ZZ(rr_)//mm^ii))]
␣␣␣␣␣␣␣␣␣␣␣␣else:
␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣output␣+=␣[proj(R([ZZ(ele)//mm_^ii
␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣for␣ele␣in␣(rr_).list()]))]
␣␣␣␣␣␣␣␣␣␣␣␣rr_␣=␣rr_␣-␣mm_^ii*splitting(output[-1],
␣␣␣splitting_structure[ii])
␣␣␣␣␣␣␣␣return␣output
␣␣␣␣elif␣isinstance(rr,
␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣sage.modules.free_module_element.FreeModuleElement):
␣␣␣␣␣␣␣␣rr_␣=␣rr.list()
␣␣␣␣␣␣␣␣aux␣=␣[m_adic(ele,␣splitting_structure)␣for␣ele␣in␣rr_]
␣␣␣␣␣␣␣␣output␣=␣[vector(F,[aux[jj][ii]
␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣for␣jj␣in␣range(len(rr_))])
␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣for␣ii␣in␣range(nu)]

Mathematics 2021, 9, 1878 18 of 20

␣␣␣␣␣␣␣␣return␣output
␣␣␣␣elif␣isinstance(rr,
␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣sage.matrix.matrix0.Matrix):
␣␣␣␣␣␣␣␣n_rows␣=␣rr.nrows()
␣␣␣␣␣␣␣␣rr_␣=␣rr.list()
␣␣␣␣␣␣␣␣aux␣=␣[m_adic(ele,␣splitting_structure)␣for␣ele␣in␣rr_]
␣␣␣␣␣␣␣␣output␣=␣[matrix(F,n_rows,[aux[jj][ii]
␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣for␣jj␣in␣range(len(rr_))])
␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣for␣ii␣in␣range(nu)]
␣␣␣␣␣␣␣␣return␣output
␣␣␣␣else:
␣␣␣␣␣␣␣␣return␣’Type␣non␣supported’

def␣inv_m_adic(rr,splitting_structure):
␣␣␣␣mm_␣=␣splitting_structure[nu]
␣␣␣␣return␣sum(splitting(rr[ii],splitting_structure[ii])*mm_^ii
␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣for␣ii␣in␣range(nu))

In our experiments we have used Goppa codes as efficiently decodable codes over the
residue field. The current implementation of Goppa codes in [12] works only for prime
fields. Since some of our tests need Goppa codes over F4, we have implemented their
construction and decoding by means of the Sugiyama algorithm.

from␣sage.rings.finite_rings.hom_finite_field␣import␣FiniteFieldHomomorphism_generic

def␣GoppaCodeConstructor(n_,t_,F_):
␣␣␣␣m_␣=␣ceil(n_.log(F_.cardinality()))
␣␣␣␣k_␣=␣n␣-␣2*m_*t_
␣␣␣␣L_␣=␣GF(F_.cardinality()^m_)
␣␣␣␣embFL_␣=␣FiniteFieldHomomorphism_generic(Hom(F_,L_))
␣␣␣␣secLF_␣=␣embFL_.section()
␣␣␣␣V_,␣from_V_,␣to_V_␣=␣L_.vector_space(embFL_,␣map=True)
␣␣␣␣R_.<x>␣=␣PolynomialRing(L_)
␣␣␣␣tg␣=␣cputime()
␣␣␣␣print(’Starting␣generation’)
␣␣␣␣tt␣=␣cputime()
␣␣␣␣g_␣=␣R_(x^(2*t_))␣+␣R_.random_element(2*t_-1)
␣␣␣␣while␣not(g_.is_irreducible()):
␣␣␣␣␣␣␣␣g_␣=␣R_(x^(2*t_))␣+␣R_.random_element(2*t_-1)
␣␣␣␣print(’Goppa␣polynomial’,cputime(tt))
␣␣␣␣#␣Goppa␣points
␣␣␣␣tt␣=␣cputime()
␣␣␣␣pts_␣=␣[]
␣␣␣␣aux␣=␣L_.list()
␣␣␣␣for␣ii␣in␣range(n_):
␣␣␣␣␣␣␣␣ind␣=␣ZZ.random_element(len(aux))
␣␣␣␣␣␣␣␣pts_␣+=␣[aux[ind]]
␣␣␣␣␣␣␣␣aux.remove(aux[ind])
␣␣␣␣print(’Points’,cputime(tt))
␣␣␣␣tt␣=␣cputime()
␣␣␣␣Htilde␣=␣matrix.vandermonde(pts_).transpose()[0:2*t_]
␣␣␣␣Htilde␣*=␣diagonal_matrix([g_(ele)^(-1)␣for␣ele␣in␣pts_])
␣␣␣␣print(cputime(tt))
␣␣␣␣tt␣=␣cputime()
␣␣␣␣aux␣=␣[]
␣␣␣␣for␣cc␣in␣range(Htilde.nrows()):
␣␣␣␣␣␣␣␣aux2␣=␣Htilde[cc]
␣␣␣␣␣␣␣␣aux3␣=␣[]
␣␣␣␣␣␣␣␣for␣ele␣in␣aux2:
␣␣␣␣␣␣␣␣␣␣␣␣aux3␣+=␣[to_V_(ele).list()]
␣␣␣␣␣␣␣␣aux␣+=␣(matrix(aux3).transpose()).list()
␣␣␣␣Hhat␣=␣matrix(F_,len(aux)/n_,aux).rref()
␣␣␣␣Paux␣=␣random_matrix(F,n_-k_)
␣␣␣␣while␣Paux.is_singular()␣==␣True:
␣␣␣␣␣␣␣␣Paux␣=␣random_matrix(F,n_-k_)
␣␣␣␣H_␣=␣Hhat.transpose()*Paux
␣␣␣␣print(’Parity␣check␣matrix’,␣cputime(tt))
␣␣␣␣print(’Generation␣success’,␣cputime(tg))

Mathematics 2021, 9, 1878 19 of 20

␣␣␣␣return␣H_,[L_,␣g_,␣pts_,␣embFL_,␣secLF_]

def␣GoppaCodeDecoder(received_,GoppaDecodingData_):
␣␣␣␣L_␣=␣GoppaDecodingData_[0]
␣␣␣␣g_␣=␣GoppaDecodingData_[1]
␣␣␣␣pts_␣=␣GoppaDecodingData_[2]
␣␣␣␣t_␣=␣floor(g_.degree()/2)
␣␣␣␣R_.<x>␣=␣PolynomialRing(L_)
␣␣␣␣synd_poly␣=␣sum(received_[ii]*R_(x␣-␣pts_[ii]).inverse_mod(g_)
␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣for␣ii␣in␣range(len(received_)))
␣␣␣␣remainders␣=␣[g_,synd_poly]
␣␣␣␣coefs␣=␣[R_(0),R_(1)]
␣␣␣␣while␣remainders[-1].degree()␣>=␣t_:
␣␣␣␣␣␣␣␣cociente,resto␣=␣remainders[-2].quo_rem(remainders[-1])
␣␣␣␣␣␣␣␣remainders␣+=␣[resto]
␣␣␣␣␣␣␣␣coefs␣+=␣[coefs[-2]␣-␣coefs[-1]*cociente]
␣␣␣␣locator␣=␣coefs[-1]
␣␣␣␣evaluator␣=␣remainders[-1]
␣␣␣␣error_␣=␣[]
␣␣␣␣for␣ii␣in␣range(len(pts_)):
␣␣␣␣␣␣␣␣root_␣=␣pts_[ii]
␣␣␣␣␣␣␣␣if␣locator(root_)␣==␣0:
␣␣␣␣␣␣␣␣␣␣␣␣error_␣+=␣[evaluator(root_)/locator.derivative()(root_)]
␣␣␣␣␣␣␣␣else:
␣␣␣␣␣␣␣␣␣␣␣␣error_␣+=␣[L_(0)]
␣␣␣␣return␣vector(error_)

The parity check matrix H, as described in (9), is built as follows.

length,␣correction_capability␣=␣60,␣3
#length,␣correction_capability␣=␣256,␣7
#length,␣correction_capability␣=␣20,␣2
n,t␣=␣length,␣correction_capability

Decoding_info␣=␣[]
blocks␣=␣[]
for␣ii␣in␣range(nu):
␣␣␣␣parity_check,decoding_data␣=␣GoppaCodeConstructor(n,t,F)
␣␣␣␣blocks␣+=␣[mm^ii*splitting(parity_check,
␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣splitting_structure[ii])
␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣+␣sum(mm^jj*splitting(random_matrix(F,
␣␣␣parity_check.nrows(),
␣␣␣parity_check.ncols()),
␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣splitting_structure[jj])
␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣for␣jj␣in␣range(ii+1,nu))]
␣␣␣␣Decoding_info␣+=␣[decoding_data]
H␣=␣block_matrix(1,blocks)

The error vector is built taking random words of bounded Hamming weight at each
degree. We assume the codeword is the zero word.

error␣=␣zero_vector(R,n)
for␣ll␣in␣range(nu):
␣␣␣␣xi␣=␣zero_vector(F,n)
␣␣␣␣while␣xi.hamming_weight()␣<␣t:
␣␣␣␣␣␣␣␣xi␣=␣xi.list()
␣␣␣␣␣␣␣␣jj␣=␣floor(n*random())
␣␣␣␣␣␣␣␣xi[jj]␣=␣F.random_element()
␣␣␣␣␣␣␣␣xi␣=␣vector(xi)
␣␣␣␣error␣+=␣splitting(xi,
␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣splitting_structure[ll])*mm^ll
received␣=␣error
error,␣error.hamming_weight()

The decoding algorithm (Algorithm 1) is the last piece of code.

Mathematics 2021, 9, 1878 20 of 20

syndrome␣=␣[received*H.subdivision(0,ii)␣for␣ii␣in␣range(nu)]
sigma␣=␣[m_adic(ele,splitting_structure)␣for␣ele␣in␣syndrome]
Theta␣=␣[m_adic(H.subdivision(0,ii),
␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣splitting_structure)␣for␣ii␣in␣range(nu)]
xi␣=␣[]
for␣ii␣in␣range(nu):
␣␣␣␣delta␣=␣m_adic(
␣␣␣␣␣␣␣␣sum(splitting(sigma[nu-1-ii][jj],
␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣splitting_structure[jj])*mm^jj
␣␣␣␣␣␣␣␣␣␣␣␣for␣jj␣in␣range(nu-1-ii,nu))
␣␣␣␣␣␣␣␣-␣sum(sum(splitting(xi[ll],
␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣splitting_structure[ll])*
␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣splitting(Theta[nu-1-ii][jj-ll],
␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣splitting_structure[jj-ll])*mm^jj
␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣for␣ll␣in␣range(jj-nu+ii+2))
␣␣␣␣␣␣␣␣␣␣␣␣␣␣for␣jj␣in␣range(nu-1-ii,nu-1))
␣␣␣␣␣␣␣␣-␣sum(splitting(xi[ll],␣splitting_structure[ll])*
␣␣␣␣␣␣␣␣␣␣␣␣␣␣splitting(Theta[nu-1-ii][nu-1-ll],
␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣splitting_structure[nu-1-ll])*mm^(nu-1)
␣␣␣␣␣␣␣␣␣␣␣␣␣␣for␣ll␣in␣range(ii)),␣splitting_structure)[nu-1]
␣␣␣␣rec_aux␣=␣Theta[nu-1-ii][nu-1-ii].solve_left(delta)
␣␣␣␣error_L␣=␣GoppaCodeDecoder([Decoding_info[nu-1-ii][3](ele)
␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣for␣ele␣in␣rec_aux],
␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣Decoding_info[nu-1-ii])
␣␣␣␣xi␣+=␣[vector([Decoding_info[nu-1-ii][4](ele)
␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣for␣ele␣in␣error_L.list()])]
computed_error␣=␣inv_m_adic(xi,␣splitting_structure)

References
1. Hammons, A.R.; Kumar, P.V.; Calderbank, A.R.; Sloane, N.J.; Sole, P. The Z4-linearity of kerdock, preparata, goethals, and related

codes. IEEE Trans. Inf. Theory 1994, 40, 301–319. [CrossRef]
2. Wood, J.A. Duality for modules over finite rings and applications to coding theory. Am. J. Math. 1999, 121, 555–575. [CrossRef]
3. Gómez-Torrecillas, J.; Hieta-Aho, E.; Lobillo, F.J.; López-Permouth, S.; Navarro, G. Some remarks on non projective Frobenius

algebras and linear codes. Des. Codes Cryptogr. 2020, 88, 1–15. [CrossRef]
4. Feng, C.; Nóbrega, R.W.; Kschischang, F.R.; Silva, D. Communication over finite-ring matrix channels. In Proceedings of the 2013

IEEE International Symposium on Information Theory, Istanbul, Turkey, 7–12 July 2013; pp. 2890–2894.
5. Feng, C.; Nóbrega, R.W.; Kschischang, F.R.; Silva, D. Communication over finite-chain-ring matrix channels. IEEE Trans. Inf.

Theory 2014, 60, 5899–5917. [CrossRef]
6. Babu, N.S.; Zimmermann, K.-H. Decoding of linear codes over Galois rings. IEEE Trans. Inf. Theory 2001, 47, 1599–1603.

[CrossRef]
7. Greferath, M.; Vellbinger, U. Efficient decoding of Zpk -linear codes. IEEE Trans. Inf. Theory 1998, 44, 1288–1291. [CrossRef]
8. Dinh, H.Q.; Lopez-Permouth, S.R. Cyclic and negacyclic codes over finite chain rings. IEEE Trans. Inf. Theory 2004, 50, 1728–1744.

[CrossRef]
9. McDonald, B.R. Finite Rings with Identity; Marcel Dekker: New York, NY, USA, 1974.
10. Albrecht, M.R.; Bernstein, D.J.; Chou, T.; Cid, C.; Gilcher, J.; Lange, T.; Maram, V.; von Maurich, I.; Misoczki, R.; Niederhagen,

R.; et al. Classic McEliece: Conservative Code-Based Cryptography; Technical Report; NIST’s Post-Quantum Cryptography
Standardization Project: Gaithersburg, MD, USA, 2020.

11. Brown, W.C. Matrices over Commutative Rings; Number 169 in Monographs and Textbooks in Pure and Applied Mathematics;
Marcel Dekker, Inc.: New York, NY, USA, 1993.

12. The Sage Developers. SageMath, the Sage Mathematics Software System (Version 9.1). 2020. Available online: https://www.
sagemath.org (accessed on 6 August 2021).

http://doi.org/10.1109/18.312154
http://dx.doi.org/10.1353/ajm.1999.0024
http://dx.doi.org/10.1007/s10623-019-00666-1
http://dx.doi.org/10.1109/TIT.2014.2346079
http://dx.doi.org/10.1109/18.923743
http://dx.doi.org/10.1109/18.669412
http://dx.doi.org/10.1109/TIT.2004.831789
https://www.sagemath.org
https://www.sagemath.org

	Introduction
	Preliminaries
	Decoding via Parity Check
	First Step: Computing -.40
	Second Step: Computing -.41
	General Step: Computing -.4l

	Parity Check and Encoders
	Decoding via Encoders
	SageMath Code
	References

