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Abstract: A joint and unified vision of stochastic diffusion models associated with the family of
hyperbolastic curves is presented. The motivation behind this approach stems from the fact that all
hyperbolastic curves verify a linear differential equation of the Malthusian type. By virtue of this,
and by adding a multiplicative noise to said ordinary differential equation, a diffusion process may
be associated with each curve whose mean function is said curve. The inference in the resulting
processes is presented jointly, as well as the strategies developed to obtain the initial solutions
necessary for the numerical resolution of the system of equations resulting from the application of
the maximum likelihood method. The common perspective presented is especially useful for the
implementation of the necessary procedures for fitting the models to real data. Some examples based
on simulated data support the suitability of the development described in the present paper.

Keywords: stochastic diffusion processes; stochastic differential equations; hyperbolastic curves

1. Introduction

In recent years, widespread interest has arisen concerning the description and anal-
ysis of dynamic systems governed by growth curves, owing to the need to explain the
evolution of a variety of phenomena in the most precise way possible. Some examples
include the study of cell growth (stem cells, tumors, and tissue regeneration), the diffu-
sion of innovations (social networks and the implementation of new technologies), or the
exploitation of energy resources (production peaks and length of exploitation periods).
In this regard, the latest rage is probably the study of the evolution of epidemics such
as COVID-19, in which concepts such as contagion peaks, inflection points in the spread
of disease, duration, and onset times of successive waves are of paramount importance
for the purposes of planning and policy making. In all cases, the objective is to explain
the behavior of the phenomenon and allow for its prediction while keeping in mind that
certain external influences may affect its evolution.

The study of growth curves has taken two distinct directions: the unification and
the generalization of models (Chakraborty et al. [1]). Unification refers to the compact
representation of different models through a single function, which allows for improved
mathematical manageability. As for generalization, it refers to the process that starts from a
simple equation to which parameters or functions are subsequently incorporated. Its goal is
to generate more flexible forms and thus increase applicability to a wider range of research
areas. Some outstanding examples of unification are the works of Martínez et al. [2] and
Tjørve [3] which propose a variety of approaches for a growth equation that unifies many
of the existing sigmoidal growth curves. As for generalization, we can cite the works of

Mathematics 2021, 9, 1835. https://doi.org/10.3390/math9161835 https://www.mdpi.com/journal/mathematics

https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-8686-6232
https://orcid.org/0000-0001-7752-8290
https://orcid.org/0000-0001-6254-2209
https://doi.org/10.3390/math9161835
https://doi.org/10.3390/math9161835
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math9161835
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math9161835?type=check_update&version=1


Mathematics 2021, 9, 1835 2 of 18

Tsoularis and Wallace [4] and that of Koya and Goshu [5]. Although generalized equa-
tions offer greater flexibility in form, the resulting models have a harder time of fitting
real data sets on account of their complexity. For this reason, the idea of including new
parameters has been recently combined with that of introducing flexible functions. In this
sense, Tabatabai et al. [6] have constructed the so-called hyperbolic curves and shown
their usefulness in the study of the evolution of tumor processes and stem cell growth
(Tabatabai et al. [7]). Furthermore, and more precisely, such models have been used to
describe the growth of the solid Ehrlich carcinoma under combined treatments (see in [8]).
To this end, all three hyperbolastic models are used and compared in different scenarios.
Related to this, the type II is employed to model the dynamics of cervical cancer mortality
rates [9]. See also in [10], where hyperbolastic curves are used to introduce a model of
wound healing. All of these models are the starting point for the development of others,
such as the oscillabolastic, which aim to model oscillatory growth (Eby and Tabatabai [11]).
Similarly, T-type models (Tabatabai et al. [12]) are capable of representing biphasic sig-
moidal growths characterized by stages of growth and decrease, that is, multisigmoidal
patterns of behavior. Along these lines, Erto and Lepore [13] have recently defined a new
type of sigmoidal curve which, given that certain parametric conditions are met, presents
more than one inflection point.

As the variability of the phenomena under study cannot be controlled in deterministic
models associated with growth curves, randomness is included in the ordinary differential
equations from which they originate. To this end, we employ stochastic differential equa-
tions whose solutions are, under certain conditions, diffusion processes. The most widely
studied curves in this context are, without a doubt, the logistic and Gompertz curves.
For example, Schurz [14] considered a fairly general version of the stochastic differential
equation associated with logistic growth, and Rupšys [15] introduced several versions of
the differential equation that included delays, whereas Schlomann [16] studied logistic
diffusion processes in the presence of catastrophes. This field is unceasingly producing
new research, as exemplified by the recent works of Rajasekar et al. [17,18] in which the
authors analyzed a stochastic version of the SIR models for the spread of the COVID-19
pandemic. On the other hand, the fact that the Gompertz curve is an excellent model
for the description of tumor growth has motivated the introduction of several diffusion
processes associated with it (see, for example, Lo [19] and Ferrante [20]). On the basis
of these processes, various modifications have subsequently been made with the goal
of describing the evolution of tumor growth in the presence of therapeutic treatments
(Albano et al. [21–23]).

With regard to diffusion processes associated with other growth curves, the existing
references are scarce. Perhaps the main difficulty lies in the fact that, although the stochastic
differential equation may have a solution (and sometimes not in a totally explicit way),
the diffusion process obtained therefrom is not totally manageable. This is a problem
even in the logistic case. Skiadas [24] presented an exact solution for the logistic stochastic
differential equation with multiplicative noise, although its shape showed that some
characteristics cannot possibly be obtained in an explicit fashion, as is the case of transition
probability density functions. Therefore, when studying this process one must resort to
the discretization of the differential equation. However, convenient reformulations of
some growth curves have succeeded in verifying a differential equation of the Malthusian
type, which is the way to construct diffusion processes based on modifications of the
inhomogeneous lognormal process. Such modeling allows for diffusion processes with
transition densities whose functional form is perfectly known. Such is the case of the
Bertalanffy (Román-Román et al. [25]), Richards (Román-Román and Torres-Ruiz [26]),
and Hubbert curves (Luz Sant’Ana et al. [27]). An alternative way is the modification
of ordinary differential equations verified by certain growth curves, which can be done
by including in them certain temporal functions. Thus, from the logistic and Weibull
equations, Barrera et al. [28,29] introduced the hyperbolastic diffusion processes of type I
and III. Likewise, and following this same idea, a multisigmoidal stochastic version of the
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logistic process has been obtained (Di Crescenzo et al. [30]) as well as a diffusion processes
linked to the oscillabolastic curve (Barrera et al. [31]).

The main aim of this paper is to present a common model for diffusion processes
associated with the family of hyperbolastic curves. Our proposal not only allows for the
results obtained for the type I and type III models to be unified, but also extends them to
the hyperbolastic curve of type II. The present paper is structured as follows. Section 2
makes a brief summary of the family of hyperbolastic curves. Additionally, and with the
definition given by Tabatabai et al. in [6] as a starting point, it is verified how each of the
curves satisfies an ordinary differential equation of the Malthusian type, which extends
the deterministic models to stochastic ones that have the non-homogeneous lognormal
diffusion process as common point, this being the objective of Section 3. Furthermore,
and given that these models are appropriate to describe real phenomena governed by
hyperbolastic curves, the inference in them must be developed. Section 4 describes a
unified version for the three models presented. Of particular interest is the description
of how initial solutions are obtained for the resulting system of maximum likelihood
equations. Note that this joint vision enables an efficient computational implementation
of the procedures derived from the inferential development herein described. Finally,
Section 5 presents some simulation-based examples.

2. An Overview of Hyperbolastic Growth Curves

For the sake of clarity, this section will provide a brief summary of the hyperbolastic
curves to date. One of the most interesting aspects of the following description is the fact
that all three hyperbolastic models can be seen from a unified perspective.

The hyperbolastic model of type I (H1) appears as an extension of the classic logistic
model in which a certain hyperbolic function is introduced. Concretely, the H1 curve is the
solution of the initial value problem

d
dt

x(t) =
(

ρ +
τ√

1 + t2

)
M− x(t)

M
x(t)

x(t0) = x0, x0 > 0,

(1)

resulting in

x(t) =
M

1 +
(

M
x0
− 1
)

εν1(t0)−1εν1(t)
, ν1 = (ρ, τ)T , (2)

where εν1(t) := exp(−ρt− τ arcsinh(t)). Here, M represents the carrying capacity of the
system under consideration whereas real parameters τ and ρ jointly determine growth
rate. We note that parameter ρ gives the intrinsic growth rate, whereas τ controls the
distance from the H1 curve to the logistic one. Regarding function εν1 , it will play an
important role in the unification of the strategies required to work with this and similar
models, as it encodes the action of the temporal function that distinguishes models I
and III, and which also characterizes the type-II model. Another interesting aspect is the
value of the asymptote. As it is verified that limt→∞ εν1(t) = 0, then limt→∞ x(t) = M
if ρ > 0, and limt→∞ x(t) = 0 if ρ < 0. In any case, the value of M is independent from
the initial value, which can significantly restrict some applications. In practice, there are
situations in which the growth phenomenon under study shows an H1-type sigmoidal
growth and several sample paths are available, each with the same growth pattern but with
different initial values and upper bounds. This can be avoided by re-parameterizing the
curve. Indeed, after replacing εν1(t0)/(M/x0 − 1) with a new parameter η, and M with
x0(η + εν1(t0))/η, expression (2) becomes

xθ1(t) = x0
η + εν1(t0)

η + εν1(t)
,
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for which it is verified that limt→∞ xθ1(t) = x0(η + εν1(t0))/η. Here, θ1 represents para-

metric vector θ1 =
(
η, νT

1
)T . This last reformulation of the model allows us to describe

trajectories with different values of asymptotic stabilization in terms of the initial state x0.
Regarding the hyperbolastic curve of type II (H2), its introduction presents an increase

in complexity with respect to the type-I model. This curve is defined as

y(t) =
M

1 +
(

M
y0
− 1
) arcsinh εν2(t)

arcsinh εν2(t0)

, ν2 = (β, γ)T , (3)

being the solution of the ordinary differential equation

d
dt

y(t) = αβγtγ−1y2(t) tanh
(

M− y(t)
α y(t)

)
M−1,

with initial condition y(t0) = y0. Here, εν2(t) := exp(−βtγ), parameters M, β, and γ can
take any real value and

α =

(
M− y0

y0

)/
arcsinh εν2(t0).

In this case, β represents the intrinsic growth rate whereas γ is an allometric constant.
Note also that (3) tends to M when β > 0, and to extinction (y(t)→ 0) when β < 0. This
leads β to assume a key property in the dynamic evolution of the model. Again, this goes
to show how the limit value does not depend on the initial condition. By applying the
same reasoning as in the previous case, we arrive at the following reformulation of curve

yθ2(t) = y0
η + arcsinh εν2(t0)

η + arcsinh εν2(t)
,

verifying that limt→∞ yθ2(t) = y0(η + εν2(t0))/η, being now θ2 =
(
η, νT

2
)T .

Finally, the hyperbolastic model of type III (H3) follows the structure established for
the H1 curve, but this time using the classic Weibull ordinary differential equation as a
starting point. In this way, the H3 ordinary differential equation arises, resulting in

d
dt

z(t) = (M− z(t))
(

βγtγ−1 +
τ√

1 + τ2t2

)
. (4)

Considering z(t0) = z0 > 0, the solution of (4) is

z(t) = M− (M− z0)
εν3(t)
εν3(t0)

, ν3 = (β, γ, τ)T ,

being εν3(t) := exp(−βtγ − arcsinh(τt)). The real parameters β and γ are an intrinsic
growth rate and an allometric value, respectively, whereas τ represents the distance from
the H3 curve to the classical Weibull model. By applying to the limit value of the curve a
reasoning analogous to the ones described above, we arrive at the following reformulation
of the curve

zθ3(t) = z0
η − εν3(t)
η − εν3(t0)

, θ3 =
(

η, νT
3

)T
,

for which it is verified that limt→∞ zθ3(t) = z0η/(η − εν3(t0)).
As it has been shown, each of the hyperbolastic curves is the solution to a certain

ordinary differential equation. However, it is not difficult to verify that each curve also
verifies a Malthusian-type differential equation. Specifically, one has

d
dt

`(t) = hθ`(t)`(t), ` = 1, 2, 3, (5)



Mathematics 2021, 9, 1835 5 of 18

where ` = δ1`xθ1 + δ2`yθ2 + δ3`zθ3 , being δ·· the Kronecker delta and

hθ`(t) =



εν1(t)
η + εν1(t)

(
ρ +

τ√
1 + t2

)
if ` = 1,

ρ εν2(t)
η + arcsinh εν2(t)

(
1 + εν2(t)

2)− 1
2 if ` = 2,

εν3(t)
η − εν3(t)

(
βγtγ−1 +

τ√
1 + τ2t2

)
if ` = 3.

Note that the hθ` functions do not depend on the initial values taken by the curves.
This unified formulation allows us to extend the hyperbolastic deterministic procedure to
stochastic versions under the prism of the inhomogeneous lognormal diffusion process,
which is the objective of the next section.

Finally, note that an important characteristic of this type of sigmoidal models is the
presence of inflection points, as well as the expressions that they must verify. Note that
the number of inflections generally increases the flexibility of the curve and its adaptation
to a variety of observations. From (5), the inflection time instants are the solutions of the
equation

d
dt

hθ`(t) + h2
θ`
(t) = 0, ` = 1, 2, 3. (6)

In general, the resulting equations are quite complex and in practical cases strategies
for their estimation will be developed from the observed data. On the other hand, such an
expression will allow us to integrate a procedure for calculating initial solutions for the
different parameters, as we will see in later sections.

3. Hyperbolastic Diffusion Processes

The deterministic hyperbolastic models presented in the previous section enable
the description of growth phenomena in contexts in which detailed knowledge of their
leading variables exists. However, such models do not account for the effects of external
factors influencing the development of phenomena. For this reason, we must address the
development of stochastic models which, while based on the previous ones, attempt to
overcome their shortcomings.

Such models are commonly built by adding a multiplicative noise to the original
ordinary differential equations. The multiplicative noise is considered more suitable than
the additive one in the context of growth phenomena. Thus, random influences are made
dependent on the state of the system at each instant.

However, this methodology can lead to stochastic differential equations whose solu-
tion is not easy to handle, mainly due to lack of explicit characteristics such as transition
densities, which may affect practical applications. For example, consider the case of the H1
hyperbolastic model. From (1) we consider the stochastic differential equation

dX(t) =
(

ρ +
τ√

1 + t2

)
M− X(t)

M
X(t)dt + σX(t)dW(t),

where W(t) represents the standard Wiener process, independent of initial condition
X(t0) = X0 for t ≥ t0, being σ > 0 the volatility parameter.

This equation can be solved by using the following integrating factor (see [32])

F(t) = exp
(

σ2

2
(t− t0)− σ(W(t)−W(t0))

)
,
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from which the solution can be expressed as

X(t) =
X0 εν1(t0)/(εν1(t)F(t))

1 +
X0

M

∫ t

t0

(
ρ +

τ√
1 + s2

)
εν1(t0)

εν1(s)
F(s)−1 ds

,

where εν1(t) = exp(−ρt− τ arcsinh(t)).
Note that, although the stochastic differential equation can be solved, the form of

the solution does not provide an explicit distribution of X(t), which renders the analytic
treatment of the process difficult. In fact, to this purpose the literature discretizes the
stochastic equation and obtains numerical approximations. This is the rationale behind
the next subsection, in which we will consider stochastic, more manageable versions of
the models.

Hyperbolastic Diffusion Processes from the Non-Homogeneous Lognormal Diffusion Process

Based on the previous comments, this section proposes the construction of hyperbo-
lastic stochastic models which are analytically manageable and in which the mean of the
process can be associated with the original curve. To this end, we will employ the lognor-
mal process with exogenous factors, which has the aforementioned properties and allows
us to work extensively with the resulting diffusions. As is known, the inhomogeneous
lognormal process is built on the basis of a differential equation of the Malthusian type
with a time-dependent growth rate, to which a multiplicative noise is added as described
above (see Roman et al. [33]). Therefore, and given that the hyperbolic curves all verify
a Malthusian-type differential equation, it is therefore possible to associate each of them
with an inhomogeneous lognormal diffusion process whose mean is precisely the curve
in question. In addition, the properties of this type of process make it perfectly treatable,
since its finite-dimensional distributions are explicitly available.

Briefly, the non-homogeneous lognormal diffusion process (or with exogenous factors)
is the solution to the linear stochastic differential equation

dX(t) = hθ`(t)X(t)dt + σX(t)dW(t), ` = 1, 2, 3,

with initial condition X(t0) = X0. hθ` is a continuous function depending on a vectorial
parameter θ` ∈ Θ` ⊆ Rk whereas W(t) is the standard Wiener process, independent of X0
for t ≥ t0. The solution of this equation is

X(t) = X0 exp
(

Hξ`(t, t0) + σ(W(t)−W(t0))
)
, ξ` =

(
θT
` , σ2

)T
, (7)

where

Hξ`(t0, t) =
∫ t

t0

hθ`(u)du− σ2

2
(t− t0).

Indeed, if Z(t) = log X(t), then, by Itô’s formula, it follows that

dZ(t) =
(

hθ`(t)−
σ2

2

)
dt + σdW(t),

which leads to a Gaussian process Z, with X then being lognormal.
Given its Markovian character, the distribution of the process follows from that of

X0. Indeed, if X0 is a lognormal distribution Λ1
[
µ0, σ2

0
]
, or X0 is degenerate at a value x0

(X0 = x0 a.s.), it can be shown that the finite-dimensional distributions of the process follow
a lognormal distribution. Specifically, vector (X(t1), . . . , X(tn))

T , for t1 < . . . < tn with
n ∈ N, follows a n-dimensional lognormal distribution Λn[ε, Σ] where the components of
vector ε and matrix Σ are

εi = µ0 + Hξ`(t0, ti), i = 1, . . . , n
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and
σij = σ2

0 + σ2(min(ti, tj)− t0), i, j = 1, . . . , n,

respectively. In particular, from the two-dimensional distributions (X(t)|X(s)) = xs it
follows that

X(t)|X(s) = xs ∼ Λ1

[
log xs + Hξ`(s, t); σ2(t− s)

]
, s < t

so the transition probability density function takes the form

f (x, t|xs, s) =
1

x
√

2πσ2(t− s)
exp

(
−

log(x/xs)− Hξ`(s, t)
2σ2(t− s)

)
. (8)

Regarding the main characteristics of the process, we highlight the moments of order
n, whose expression is

E[X(t)n] = E[Xn
0 ] exp

(
n
∫ t

t0

hθ`(u) du
)

.

From this expression, it is evident that for n = 1 a convenient choice of function hθ`
allows many types of curves to be modeled by this process.

Note that by using this methodology in the construction of the processes, certain issues
are addressed which could not be if the classical method of introducing a multiplicative
noise in the original deterministic differential equation had been followed. Ultimately, we
must not forget that our goal is to model phenomena which exhibit behaviors that are
governed by these types of curves.

Figure 1 shows, for each hyperbolastic process, a comparative graph of the means
obtained from simulated trajectories using each stochastic differential equation (the original
and the Malthusian). This illustrates how the behavior is the same in both cases.

Figure 1. For every model, comparison of sample mean of simulated paths for the original stochastic
version (red) and the lognormal version (blue).

4. Inference

As shown above, one of the main strength of the models presented here is their flexibil-
ity, which makes them suitable for describing and fitting growth patterns in real cases.

There are, at least, two natural ways to identify the parameters in our stochastic
hyperbolastic models. The first is the direct use of likelihood methods, and the second
is particle filtering (PF). Herein, we will employ the former due to its widespread use.
However, we also want to point out that our unification and linearization work applies
equally well to PF (see, e.g., in [34,35]). In this method, the lognormality assumption on
X0 is not required. The parameters to be identified would become the signal (with trivial
dynamics) and the logarithm of the linearized hyperbolastic SDEs would become the
classical observations. Finally, one could use PF on the non-linearized SDEs, which would
require a little manipulation of the observation function coming from the integrating factor
solution (shown in Section 3 for the type-I case).
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Despite the above, in this section we address the estimation of the parameters of the
model by means of the maximum likelihood (ML) method. However, it must be taken into
account that the functional and parametric complexity of the models makes the estimation
procedure remarkably difficult. In order to tackle this issue, the estimation by maximum
likelihood will require the use of numerical procedures, many of which will demand the
computation of initial solutions for the parameters.

4.1. Maximum Likelihood Equations

The starting point for the estimation procedure is the observation of d sample-paths
at time instants tij, (i = 1, . . . , d, j = 1, . . . , ni). Note that neither the sample sizes nor
the times of observation have to be the same. Moreover, we will suppose that ti1 = t0,
for all i = 1, . . . , d. Let XT

i be the vector containing the random variables of the i-th sample-

path, that is Xi = (X(t0), . . . , X(ti,ni ))
T , i = 1, . . . , d, and denote X =

(
XT

1 | · · · |XT
d
)T .

Furthermore, we will consider that X0 follows a lognormal distribution, concretely X0 ∼
Λ1[µ1, σ2

1 ] (as it has been said before, this would not be a requirement if the particle filtering
approach were to be used).

From (8), and considering a fixed value x of X, the log-likelihood function for each
model, defined in a unified way for ` = 1, 2, 3, is

logL`
x(ς, ξ`) =−

(n + d) log 2π

2
−

d log σ2
1

2
− n log σ2

2

−
d

∑
i=1

log xi1 −
1

2σ2
1

d

∑
i=1

(log xi1 − µ1)
2 −

Z1 + Φξ` − 2Γξ`

2σ2

where n = ∑d
i=1(ni − 1), ς = (µ1, σ2

1 )
T is the parametric vector of the initial distribution,

and

Z1 =
d

∑
i=1

ni

∑
j=2

1
∆ij

(
log

xij

xij−1

)2

,

Φξ` =
d

∑
i=1

ni

∑
j=2

1
∆ij

H2
ξ`
(tij−1, tij),

Γξ` =
d

∑
i=1

ni

∑
j=2

1
∆ij

log
xij

xij−1
Hξ`(tij−1, tij),

being ∆ij = tij − ti,j−1. The expression of function Hξ` will depend on the hyperbolastic
case under study. Nevertheless, it is possible to find a unified formulation by considering
Hξ`(s, t) = Hθ`(s, t)− σ2

2 (t− s), where

Hθ`(s, t) := ζ` log
η + v`(εν`(s))
η + v`(εν`(t))

, ` = 1, 2, 3,

with

ζ` =

{
1 if ` = 1, 2,
−1 if ` = 3,

and

v`(u) =


u if ` = 1,
arcsinh(u) if ` = 2,
−u if ` = 3.
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Under the assumption that ς and ξ` are functionally independent, the estimate of ς is

µ̂1 =
1
d

d

∑
i=1

log xi1 and σ̂2
1 =

1
d

d

∑
i=1

(log xi1 − µ̂1)
2, (9)

while that of ξ` is obtained (see [33] for details) from the system of equations

Ξθ` +
σ2

2
Ωθ` = 0, (10)

σ2
(

n +
σ2

4
Z2

)
+ 2 Xθ`

2 − Xθ`
1 − Z1 = 0,

where the grouped variables are defined as follows:

Ξθ` =
d

∑
i=1

ni

∑
j=2

∆−1
ij

(
log

xij

xij−1
− Hθ`(tij−1, tij)

)
∂

∂θ`
Hθ`(tij−1, tij),

Ωθ` =
d

∑
i=1

ni

∑
j=2

∂

∂θ`
Hθ`(tij−1, tij),

Xθ`
1 =

d

∑
i=1

ni

∑
j=2

∆−1
ij H

2
θ`
(tij−1, tij),

Xθ`
2 =

d

∑
i=1

ni

∑
j=2

∆−1
ij

(
log

xij

xij−1
Hθ`(tij−1, tij)

)
,

Z2 =
d

∑
i=1

ni

∑
j=2

∆ij.

The partial derivatives ofHθ` are calculated with respect to the parameters of every
model, and therefore they depend on `. Indeed, these parameters involve a common
one, say η, as well as the particular ones of each model: ν1 = (ρ, τ)T for the H1 model,
ν2 = (β, γ)T for the H2 model, and ν3 = (β, γ, τ)T in the case of the H3 model.

All these expressions can be unified as follows:

∂

∂η
Hθ`(s, t) =

ζ`
η + v`(εν`(s))

− ζ`
η + v`(εν`(t))

,

∂

∂ν`
Hθ`(s, t) =

ζ` v′`(εν`(t))
η + v`(εν`(t))

∂

∂ν`
εν`(t)−

ζ` v′`(εν`(s))
η + v`(εν`(s))

∂

∂ν`
εν`(s),

where v′`(u) =
dv`(u)

du
and ` = 1, 2, 3.

Despite the few parameters involved, this system remains too complex to be solved
with analytical methods. Therefore, numerical methods, such as the Newton–Raphson
procedure, are the proper way to solve the system. Nevertheless, initial solutions for the
parameters are required in order to apply such methods. In this case, such solutions can be
obtained from the information provided by the data and taking into account the properties
of the curve.

4.2. Initial Solutions

As we mentioned before, solving the system of Equation (10) by means of numerical
methods requires finding initial solutions first. This task may prove daunting according
to the degree of complexity of the hyperbolastic models. In this section, strategies for the
search of initial solutions are proposed for each hyperbolastic stochastic model.

The vector of parameters to be estimated is ξ` = (θT
` , σ2)T , where θ` comprises η and

the rest of the parameters of the model under study. All of these parameters are related
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within the expressions derived from each model, and therefore the initial value of one
parameter may depend on the initial value of another. A strategy is then required which
will provide a sequence of steps that guarantee the final computation of all values.

As shown in Section 2, type-I and -II models have two parameters each, besides pa-
rameter η, which is common to both, and diffusion parameter σ2. On the other hand,
type-III models have three parameters: β, γ, and τ. This model will require a particular
step in the procedure. We propose the following search schema.

1. Initial solution for σ2: it is known that, for a lognormal distribution Λ1[ε, χ], an esti-
mation of χ is provided by the quotient between the arithmetic and geometric means.
By taking advantage of this result, the initial value of σ2, in the case of a degenerate
initial variable X0, is obtained by linear regression of σ2

i = 2 log(mi/mg
i ) against ti,

for i = 1, . . . , n. Here, mi and mg
i are, respectively, the arithmetic mean and the geo-

metric mean of the sample paths at time instant ti. If X0 is not degenerate, i.e., σ2
0 > 0,

then σ2
i provides an estimate of σ2

0 + σ2(ti − t0) for each ti, thus a previous estimation
of σ2

0 is required. This can be accomplished from the values of the sample paths at the
first observation time t0 by using (9).

2. Initial solution for the rest of the parameters: the general procedure involves consid-
ering the two parameters at once (in the type-III model, one of the parameters must
be fixed) and using expressions derived from the curve. Indeed, we can see how,
for each of the reformulations made for the curves, parameter η can be expressed as a
function of the rest of the parameters and the limit value of the curve. Then η can be
viewed as a function η`(ν`) of the parameters of every curve. Note that this can be
accomplished because limt→∞ εν`(t) = 0 for all ` = 1, 2, 3. The expressions for every
model are then

η`(ν`) =


εν1(t0)(k1/x0 − 1)−1 if ` = 1,
arcsinh εν2(t0)(k2/x0 − 1)−1 if ` = 2,
εν3(t0)(1− x0/k3)

−1 if ` = 3,

where k1, k2, and k3 are the limit values of every curve, respectively. Given that these
values are, as a general rule, not known, an approximation that uses the last values of
the mean observed data can be considered.
The goal then is to use the information provided by the observed inflection time
of the curve. Let t∗ be an inflection time instant, which can be obtained by fitting
a spline function to the observed mean values and finding either the maximum of
its first derivative or a zero value of its second derivative. Note that t∗ must verify
Equation (6). This fact will allow us to obtain the initial values of the rest of the
parameters. To this end, we define function

I(θ`) =
∣∣∣∣ d
dt

hθ`(t∗) + h2
θ`
(t∗)

∣∣∣∣.
Here, notation hθ`(t) alludes to the fact that we have substituted functions η`(ν`) in
the expressions of functions hθ`(t), so that function I depends only on the parameters
of interest. Finally, the selected values will be those that minimize function I in a
bounded region. In particular, candidates can be obtained from such bounded region
satisfying the condition

I(θ`) ≤ ε,

where ε > 0 is a prescribed error threshold. We recommend varying its order of
magnitude between 0.0001 and 0.1, depending on the sample data. At this step, and in
order to achieve a good implementation, it is worth differentiating the following cases:

(a) Type-I and -II models: initial values for pairs of parameters (ρ, τ) (model I) and
(β, γ) (model II) can be obtained by applying the aforementioned methodology
where the bounded regions are two-dimensional in every case. The limits of
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such regions can be proposed following the nature of the parameters. ρ and β
are growth parameters in their respective models, so their magnitude would
be related with the observed growth. On the other side, τ is the “distance” to
the logistic curve and γ an allometric constant, and therefore their bounds can
also be proposed according to the phenomena observed.

(b) Type-III model: there are three parameters in vector ν3. In order to avoid a
three-dimensional region, we propose fixing parameter γ provided that τ is
the “distance” to the Weibull curve. That is, by fitting a Weibull model to the
observed data, an estimate of γ could be considered the initial value of the
parameter. Next, the methodology described above could be applied for the
pair (β, τ). Simulation studies may be carried out in order to verify the stability
of the solutions according to fluctuations in the fixed value of γ. On the other
hand, considerations about the bounded region are then the same as in the
other two models.

3. Initial solution for η: once solutions for the other parameters have been obtained,
an initial value of η follows from applying η`(ν`) to such initial values. As it has been
said, limiting values k` can be obtained by taking the last value of the observed mean
data. Nevertheless, if t0 = 0, then εν`(t0) = 1 for all ` = 1, 2, 3, and the initial value of
η is independent of the rest of the parameters.

5. Simulation

In this section, the proposed methodology is applied to simulated data. For the
three hyperbolastic models, a simulation study is carried out concerning the variabil-
ity of the diffusion parameter, named σ, and the number n of observations. For every
model, 20 sample paths were simulated with the same final time instant at t = 5 and
time step 0.1. Thus, 501 points for each path were simulated in every iteration. In all
three cases, an initial degenerate distribution at x0 = 1 were considered, in the sense
P(X(t0) = x0) = 1. Furthermore, three different diffusion coefficient values were used in
every simulation, being σ = 0.01, 0.05 and 0.075. Then, three subsets of equidistant points
were extracted according to values n = 11, 31 and 51. There were, therefore, 9 sets of data
for combinations of n and σ. In every case, 100 replications were carried out. In every one
of these, the sample paths were simulated following (7) and the proposed methodology
was applied. In particular, initial solutions were considered according to Section 4.2. Then,
the corresponding system of ML equations was solved following Section 4.1. In order to
obtain good performance and improved results, after every replication the mean value
between the current solution and the mean of the solutions from previous iterations were
computed. The particular parameters for every hyperbolastic models were:

• for the H1 model: t0 = 0, η = 0.05, ρ = 1, τ = 0.25,
• for the H2 model: t0 = 10−3, η = 1.5, β = 0.4, γ = 2.5,
• for the H3 model: t0 = 10−3, η = 2, β = 0.1, γ = 2.3, τ = 0.05.

Finally, the relative absolute error (RAE) from the observed mean to a new simulated
mean with estimated parameters was computed. The expression for RAE is done by

RAE =
1
n

n

∑
i=1

∣∣mi − Ê(X(ti))
∣∣

mi
,

where mi is the mean observed value at time ti, Ê(X(ti)) is the mean value of the estimated
process at time ti, and n is the sample size.

A total number of 2700 computations were performed. All of them were performed
in R. The solutions of ML equations were obtained with the packages “nleqslv” [36] and
“BB” [37].

Results are shown in the following tables for initial and final solutions. In the latter
case, an additional column showing the RAE has been included.



Mathematics 2021, 9, 1835 12 of 18

After a more in-depth analysis, it is shown that the RAE is low in all the three
hyperbolastic models. Note that this error measures the difference between the observed
mean and the mean of a new diffusion process simulated with the estimated parameters.
Furthermore, with σ being the parameter concerning the variability of the paths, it is
expected that the error growths as σ does. Nevertheless, the combination with different
sample sizes (n) can lead to particular behaviors for each hyperbolastic model.

In the case of the H1 model, Table 1 shows that the RAE increases with σ and, for every
value of this parameter, it remains approximately the same for all sizes n. This leads to the
conclusion that the H1 model behaves well regardless of sample size. Let us remember that
such model can be viewed as an extension of the classic logistic growth model. Furthermore,
such invariant behavior for different values of n could be expected seeing the contents of
Table 2, which shows that initial values for parameters η and σ are exactly the same for every
n. In the case of η, they are also the same for all σ. Figure 2 shows a comparison between
the observed sample mean and the mean of the simulated new process after extracting the
corresponding number of equidistant points. It can be seen that the fitness of the model is
good, even when variability is high. For that case, the last row of figures shows a slight
growing deviation from the observed mean. Nevertheless, the overall behavior of the model
is appropriate. On the other hand, the evolution of RAE alongside σ and independently
of n for the H1 model can be observed clearly in the corresponding table. As an addition
to this, and in order to illustrate the procedure, graphs related with the search of initial
values for the H1 model in the last combination, corresponding to n = 51 and σ = 0.075,
are shown in Figure 3. Following the methodology proposed in Section 4.2, a search for
initial solutions ρ0 and τ0 had been performed in square [0.25, 1.5]× [0.1, 0.75] divided into
100 points at every dimension, amounting to 1002 points in the whole region. At every
pair of points, the inflection function derived from (6) was tested for an error ε = 0.1.
The histograms for all suitable values of ρ0 and τ0 are shown in Figure 3, respectively,
as well as red lines at the selected values (the median). Furthermore, a plot showing levels
of the inflection condition function is shown in the last image. The region at which the
error is below of ε is filled in blue. Finally, red lines from final ρ0 and τ0 are crossed at each
selected pair.

The final results for the model H2 are shown in Table 3. They shown the expected
behavior, with an increment of the error proportional to that of related with σ. Nevertheless,
this model exhibits the lower error among the three hyperbolastics. Initial solutions β0 and
γ0 (see Table 4) were found in a region [0.001, 1]× [2, 4], where bounds for γ0 are chosen
according to the fact that it appears as the exponent of time, that is, tγ−2, in the expression
of the H2 model. The comparisons between observed and estimated mean values for
every combination are shown in Figure 4, where the influence of σ can be observed in the
variability of observed values. Such influence is particularly noticeable in this example
because the curve reaches its limit behavior earlier than in other models. This implies
that more observations are therefore subject to growing variability. Even in that case,
the estimated mean points are a good fit for the observed ones, for all σ and all n.

Finally, estimated values and initial solutions for the H3 model are shown in Tables 5
and 6, respectively. According to the former, it can be observed that errors (RAE) follow
the same pattern for every value of σ and their combination with n. Indeed, the estimated
values lead to the same errors for all σ. The reduction of the error in this model appears
when n increases, as expected, but being more noticeable that in the other models. In any
case, RAE remains practically the same for all combinations. On the other side, initial values
of η and σ are the same when n is varying. In the case of the H3 model, the search region
for initial values β0 and τ0 was the rectangle [0.005, 0.25]× [0, 0.1]. The initial value γ0
was obtained, in every combination, after fitting a Weibull curve to the observed mean by
nonlinear least squares (a study of the stability of such approach concerning γ0 was carried
out in [29]). This behavior is illustrated by Figure 5. In particular, the most noticeable
differences between observed and estimated mean points appear for low values of σ. When
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variability increases the model appears to behave better, showing that it would be suitable
to describe complex growth dynamics with a high degree of variability.

A comparison between the results of the three models shows that the lowest RAE
is achieved with the hyperbolastic model of type II. The type-I model also yields low
RAE values, but mainly for low variability. The type-III model is the one showing the
highest RAE for σ = 0.01. Despite such error being higher than in the other two models for
high values of σ, it remains stable and does not vary too much. The first conclusion to be
drawn from this comparison is that the type-II model displays the best behavior, but the
type-III model seems to be more flexible as it can be more successfully adapted to a variety
of scenarios.
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Figure 2. Observed mean vs. estimated mean obtained from simulated sample paths with the
estimated parameters, for the case of a hyperbolastic process of type I.

Table 1. Final solutions for simulated data of the H1 process and RAE to estimated mean. Original
parameters are η = 0.05, ρ = 1, and τ = 0.25.

Combinations η̂ ρ̂ τ̂ σ̂2 RAE

σ = 0.01 n = 11 0.0500 0.9994 0.2508 0.0082 0.0017
n = 31 0.0501 1.0099 0.2337 0.0121 0.0019
n = 51 0.0500 0.9991 0.2511 0.0095 0.0019

σ = 0.05 n = 11 0.0500 0.9978 0.2528 0.0408 0.0087
n = 31 0.0501 1.0070 0.2375 0.0472 0.0090
n = 51 0.0499 0.9961 0.2550 0.0477 0.0092

σ = 0.075 n = 11 0.0502 0.9977 0.2529 0.0612 0.0131
n = 31 0.0501 1.0056 0.2392 0.0702 0.0136
n = 51 0.0499 0.9946 0.2570 0.0715 0.0138
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Table 2. Initial solutions for simulated data of the H1 process.

Combinations η0 ρ0 τ0 σ2
0

σ = 0.01 n = 11 0.0540 0.7327 0.2901 0.0097
n = 31 0.0540 0.8327 0.3301 0.0097
n = 51 0.0540 0.8578 0.3342 0.0097

σ = 0.05 n = 11 0.0540 0.7331 0.2901 0.0485
n = 31 0.0540 0.8232 0.3251 0.0485
n = 51 0.0540 0.8482 0.3304 0.0485

σ = 0.075 n = 11 0.0540 0.7302 0.2891 0.0727
n = 31 0.0540 0.8165 0.3211 0.0728
n = 51 0.0540 0.8455 0.3266 0.0728

Table 3. Final solutions for simulated data of the H2 process and RAE to estimated mean. Original
parameters are η = 1.5, β = 0.4 and γ = 2.5.

Combinations η̂ β̂ γ̂ σ̂2 RAE

σ = 0.01 n = 11 1.4993 0.4002 2.5021 0.0099 0.0012
n = 31 1.5000 0.3966 2.5105 0.0101 0.0014
n = 51 1.5000 0.3998 2.5040 0.0100 0.0014

σ = 0.05 n = 11 1.4991 0.4006 2.5191 0.0495 0.0059
n = 31 1.5027 0.3951 2.5363 0.0500 0.0065
n = 51 1.5020 0.3988 2.5256 0.0501 0.0066

σ = 0.075 n = 11 1.5010 0.4006 2.5370 0.0742 0.0088
n = 31 1.5059 0.3941 2.5572 0.0749 0.0096
n = 51 1.5047 0.3981 2.5438 0.0751 0.0097

Table 4. Initial solutions for simulated data of the H2 process.

Combinations η0 β0 γ0 σ2
0

σ = 0.01 n = 11 1.4991 0.1780 2.3030 0.0096
n = 31 1.4991 0.3012 2.3071 0.0096
n = 51 1.4991 0.3720 2.3192 0.0096

σ = 0.05 n = 11 1.5020 0.1760 2.3038 0.0477
n = 31 1.5020 0.3230 2.3113 0.0477
n = 51 1.5020 0.3588 2.3186 0.0477

σ = 0.075 n = 11 1.5088 0.1759 2.3040 0.0716
n = 31 1.5088 0.3244 2.3113 0.0715
n = 51 1.5088 0.3591 2.3179 0.0716
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Figure 3. Histograms of initial solutions of ρ and τ for the H1 model in the combination n = 51 and
σ = 0.075, and contour plot of the inflection condition function. Red point: initial solution (ρ0, τ0).
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Figure 4. Observed mean vs. estimated mean obtained from simulated sample paths with the
estimated parameters, for the case of a hyperbolastic process of type II.

Table 5. Final solutions for simulated data of the H3 process and RAE to estimated mean. Original
parameters are η = 2, β = 0.1, γ = 2.3, and τ = 0.05.

Combinations η̂ β̂ γ̂ τ̂ σ̂2 RAE

σ = 0.01 n = 11 2.0137 0.0831 2.1378 0.0495 0.0098 0.0394
n = 31 2.0137 0.0926 2.1387 0.0485 0.0099 0.0293
n = 51 2.0137 0.0972 2.1347 0.0485 0.0099 0.0246

σ = 0.05 n = 11 2.0154 0.0862 2.1373 0.0502 0.0492 0.0359
n = 31 2.0154 0.0939 2.1331 0.0488 0.0493 0.0294
n = 51 2.0154 0.0987 2.1244 0.0487 0.0493 0.0256

σ = 0.075 n = 11 2.0167 0.0915 2.1369 0.0507 0.0740 0.0317
n = 31 2.0179 0.0955 2.1258 0.0480 0.0741 0.0309
n = 51 2.0193 0.0999 2.1157 0.0478 0.0741 0.0282
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Table 6. Initial solutions for simulated data of the H3 process.

Combinations η0 β0 γ0 τ0 σ2
0

σ = 0.01 n = 11 2.0136 0.0831 2.1381 0.0495 0.0098
n = 31 2.0136 0.0925 2.1391 0.0485 0.0098
n = 51 2.0136 0.0970 2.1351 0.0485 0.0098

σ = 0.05 n = 11 2.0151 0.0866 2.1394 0.0503 0.0489
n = 31 2.0151 0.0933 2.1357 0.0489 0.0489
n = 51 2.0151 0.0973 2.1285 0.0487 0.0489

σ = 0.075 n = 11 2.0178 0.0911 2.1393 0.0508 0.0733
n = 31 2.0178 0.0942 2.1312 0.0491 0.0733
n = 51 2.0178 0.0977 2.1224 0.0489 0.0733
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Figure 5. Observed mean vs. estimated mean obtained from simulated sample paths with the
estimated parameters, for the case of a hyperbolastic process of type III.

6. Conclusions

Associated with each of the hyperbolastic functions (H1, H2, H3), a stochastic model
has been presented based on a diffusion process whose mean function is the curve under
consideration. A previous analysis of the hyperbolastic curves determines that all of
them can be considered as the solution of a linear ordinary differential equation, more
specifically of the Malthusian type. This provides a joint vision of all the curves and
allows us to extend the deterministic models to stochastic ones, which is done through
stochastic differential equations obtained by adding a multiplicative noise to the previously
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mentioned Malthusian equation. Thanks to this unification of models, global inference
procedures can be presented for all of them, which include both obtaining the system of
maximum likelihood equations and describing the common procedure by which the initial
solutions required to solve said system are obtained. This unified perspective is particularly
useful in simplifying the computational implementation of numerical procedures to fit
data from real phenomena.

A simulation study has been carried out concerning initial and final solutions for
different combinations of variability and sample size. Results show that every model
behaves as expected but with subtle differences according to the combination of σ and
n. As a matter of fact, the type-I model is affected by increasing variability, with this
being higher as the sample size increases. The type-II model shows the lower errors and,
finally, the error in the case of the type-III model remains the same for every combination
of variability and sample size, and its reduction with n becomes more noticeable than in
other models.

Future research lines might concern the inclusion of the processes herein described
in richer models able to describe more complex behaviors. Indeed, hyperbolastic growth
models could be useful in addressing random growth in several other models (e.g., epi-
demiological models such as SIR or SEIR, or any other describing biological phenomena
such as tumor growth or tumor suppression). To this end, it must be noted that the power
of hyperbolastic models, as is the case of many others, relies mainly on their number of
parameters as well as the flexibility of their intrinsic functions. This implies a growing,
data-dependent complexity in the estimation of parameters and the performance of other
statistical procedures. This limitation must be acknowledged and considered in order to
build reliable models.
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