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Abstract

Knowing the influence of intrinsic and environmental traits on animals’ movement is a

central interest of ecology and can aid to enhance management decisions. The giant ant-

eater (Myrmecophaga tridactyla) is a vulnerable mammal that presents low capacity for

physiological thermoregulation and uses forests as thermal shelters. Here, we aim to pro-

vide reliable estimates of giant anteaters’ movement patterns and home range size, as

well as untangle the role of intrinsic and environmental drivers on their movement. We

GPS-tracked 19 giant anteaters in Brazilian savannah. We used a continuous-time move-

ment model to estimate their movement patterns (described by home range crossing

time, daily distance moved and directionality), and provide an autocorrelated kernel den-

sity estimate of home range size. Then, we used mixed structural equations to integra-

tively model the effects of sex, body mass and proportion of forest cover on movement

patterns and home range size, considering the complex net of interactions between these

variables. Male giant anteaters presented more intensive space use and larger home

range than females with similar body mass, as it is expected in polygynous social mating

systems. Males and females increased home range size with increasing body mass, but

the allometric scaling of intensity of space use was negative for males and positive for

females, indicating different strategies in search for resources. With decreasing propor-

tion of forest cover inside their home ranges, and, consequently, decreasing thermal qual-

ity of their habitat, giant anteaters increased home range size, possibly to maximize the

chances of accessing thermal shelters. As frequency and intensity of extreme weather

events and deforestation are increasing, effective management efforts need to consider

the role of forests as an important thermal resource driving spatial requirements of this

species. We highlight that both intrinsic and environmental drivers of animal movement

should be integrated to better guide management strategies.
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Introduction

Animal movement is a key process of ecology, driving animals’ survival and fitness [1]. The

individuals’ movement patterns shape their home range, which can be defined as the part of

their cognitive map that they choose to be continuously updated [2, 3]. The home range should

offer the needed conditions for basic activities of food gathering, mating, and caring for young

[4]. Describing movement patterns and quantifying the home range size allow us to better

understand the ecology and spatial requirements of animals to make appropriate management

decisions that can help to preserve wildlife populations [5, 6]. Such knowledge has become

even more important as human actions are increasingly endangering natural systems [7, 8].

Theoretical and empirical studies have more often focused on understanding ‘typical’ move-

ment of a species than understanding its variation [9]. However, both movement patterns and

home range size widely vary between individuals within a population, and these variations are

commonly influenced by intrinsic and environmental traits [5, 7].

Sex and body mass are among the main intrinsic traits driving intraspecific variations on

animal movement [10]. The mating system and the associated reproductive tactics employed

by males and females within a species influence the evolutionary selection of various characters

[11]. This can result in sex-related metabolic, cognitive, and behavioral differences that should

be reflected on movement patterns and, consequently, on home range size [12]. Body mass, in

turn, has direct influence on the individual’s body mechanics and physiology [13, 14]. Besides,

body mass can drive movement patterns and home range size by influencing, for example, the

energetic requirements of individuals [15, 16], the foraging experience [17], and/or the orien-

tation ability [18]. Therefore, the animal movement allometry relative to individuals’ body

mass is commonly found [13–18]. Among environmental traits shaping animal movement

patterns and home range size, the proportion of available forest cover stands out to animals

that habit fragmented landscapes and use forests as a resource [19–21].

The influence of intrinsic and environmental traits on animal movement is being increas-

ingly better understood as technological advances on tracking methods increase [9]. Although

the analysis of movement data is still challenging [22, 23], the recent implementation of con-

tinuous-time movement models on understanding movement patterns and on estimating

home range size has allowed great advances [24, 25]. For high-quality GPS tracking data of

range-resident individuals, these models allow the estimation of descriptors of movement pat-

terns such as home range crossing-time, daily distance moved and directionality [26]. These

descriptors bring insights on underlying movement processes determining home range and

can be used to provide an autocorrelated kernel density estimator of home range size [26].

However, previous research has focused on evaluating one specific movement metric at a time

[27, 28], disregarding the possible causal relationships of the descriptors of movement patterns

with each other and with home range size. Both accurate estimates of animal movement, based

on movement models, and integrative approaches that consider the complex network of rela-

tions between the variables can help us to understand the effect of intrinsic and environmental

traits on movement patterns and home range size.

The giant anteater (Myrmecophaga tridactyla) is a vulnerable mammal whose movement

patterns and home range size have been previously studied to better guide its management and

conservation [29, 30]. Their original spatial distribution covered from Belize to the south of

South America, excluding the Andes [29]. While some populations are already locally extinct,

others are facing habitat loss, wildfires, roadkills, conflicts with dogs and other threats [29]. In

this scenario, their low reproductive rate and long periods of parental care make giant anteaters

conservation status even more worrisome [31, 32]. Despite being commonly associated with

open habitats [33], forests have a fundamental role in giant anteater thermoregulation [34–36].
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This is because giant anteaters present reduced body heat production [37] and low capacity of

physiological thermoregulation, and forests act as important thermal shelters. Besides showing

smaller environmental temperature variation than adjacent open areas, forest patches buffer

rain and chilly winds and offer protection against solar radiation [38]. Therefore, it is also wor-

rying that deforestation may be reducing the habitat thermal quality for these animals across

their current distribution [39].

Despite the efforts to understand giant anteaters’ movement ecology, previous estimates of

their home range size have ignored the intrinsic autocorrelation of high-resolution movement

data and have not been based on movement models, probably generating underestimated

results [24, 30]. While some studies showed no evidence of sexual effects on their movement

[36, 40], other ones showed males presenting longer daily activity time [41, 42] and using

larger areas than females [42]. Because of their sexual size dimorphism [36], the possible influ-

ence of body mass on movement needs to be considered when assessing sexual effects. Besides,

although we know that giant anteaters select forests to set their home ranges and allocate time

within it [42], we still ignore if the proportion of forest cover within home ranges influences

their movement patterns and spatial requirements. Here we used a continuous-time move-

ment model to offer reliable estimates of giant anteaters’ movement patterns (specifically

home range crossing-time, daily distance moved and directionality) and home range size.

Then, we investigated the effect of sex, body mass and proportion of forest cover on giant ant-

eaters’ movement patterns and home range size. Using an integrative approach, we were able

to uncover all these effects simultaneously, controlling for the possible relations among

descriptors of movement pattern and with home range size.

Due to their probably polygynous social mating system [43], we expected male giant anteat-

ers to increase their chances of mating opportunities by moving longer daily distances and

using larger home ranges than females (Fig 1B and 1D) [44]. We also expected an allometric

scaling between body mass and movement, since larger bodied individuals have higher ener-

getic requirements than smaller ones [45]. Larger giant anteaters should increase the intensity

of space use, increasing home range crossing-time and daily distance moved while decreasing

directionality. This is because this increase in the intensity of space use should increase the

individuals’ chances to find food resources–mainly ants and termites–spread on the landscape

(Fig 1A–1C) [26, 45, 46]. Besides, it is reasonable to expect that larger animals will require

more space to meet their energetic requirements [45], so they would also increase home range

size with increasing body mass (Fig 1D). We expect that increasing the proportion of forest

cover inside the home range will lead the animals to increase home range crossing time,

decreasing daily distance moved and directionality, because the forests’ three-dimensional

structure should present physical obstacles to displacement, imposing more friction than open

grasslands (Fig 1E and 1G) [47]. Finally, lower proportions of forest inside home range would

decrease the animal’s access to thermal shelters, decreasing the habitat thermal quality. This

could lead animals to increase their spatial requirements, and, consequently, increase home

range size (Fig 1H) [48].

Methods

Study site

We carried the study out in two savannah areas in the Brazilian territory: (1) Santa Barbara

Ecological Station, São Paulo state (22˚ 48’ 59’’ S, 49˚ 14’ 12’’ W) and (2) Baı́a das Pedras

Ranch, Mato Grosso do Sul state (19˚ 18’ 9" S, 55˚ 47’ 4" W). The study areas have a tropical cli-

mate, with rainy summers and dry winters [49]. The landscape of both studied areas is com-

posed of mosaics of open grasslands, scrublands, savannahs, and woodlands [50, 51]. The
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landscape of Santa Barbara Ecological Station also includes anthropic elements, such as exotic

forests of Pinus sp. and Eucalyptus sp., as well as highways [51]. Baı́a das Pedras Ranch is

located within the Pantanal wetland, and it presents a naturally fragmented landscape with

permanent and temporary salty and freshwater ponds, where open grasslands are subjected to

seasonal flooding [50].

We classified the landscapes using georeferenced maps (LANDSAT 7 TM) and the MapBio-

mas database (Collection 5) [52]. To test the effect of the forest cover in movement patterns

and home range size of giant anteaters, we summarized the observed habitats in two categories:

forest or non-forest. Forest areas included woodland savannahs, woodlands, riparian forests,

regenerating arboreal vegetation and exotic forests. Non-forest areas included open grasslands,

scrublands, open savannahs, and areas without vegetation cover. We calculated the proportion

of forest cover within each individual home range dividing the number of pixels classified as

forest by the total number of pixels. We performed satellite image processing and supervised

classifications using raster [53], maptools [54], and rgdal [55] packages available in the R envi-

ronment [56].

Capture and data collection

We searched for giant anteaters by horse or by pickup vehicle at low speed (maximum of 20

km/h). Once we saw the anteaters, we captured them using dip nets, dart-guns, or a blowpipe.

Anteaters were immobilized and sedated following the protocol described by [42] in Santa Bar-

bara Ecological Station and following the protocol described by [57] in Baı́a das Pedras Ranch.

Each captured individual was sexed, weighted, and equipped with a global positioning system

(GPS) harness during anesthesia. We conducted a T test [58] to compare the mean body mass

between individuals of our two study areas. None of the tracking devices exceeded 3% of the

animals’ body mass. All procedures were conducted in accordance with the Guidelines of the

American Society of Mammalogists for the use of wild mammals in research [59] and were

Fig 1. Hypothetical direction and shape of the expected effects of intrinsic (sex and body mass) and

environmental traits (proportion of forest cover inside home range) on three descriptors of movement patterns

(home range crossing time, daily distance moved and directionality) and home range size of giant anteaters

(Myrmecophaga tridactyla).

https://doi.org/10.1371/journal.pone.0253345.g001
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performed under the license numbers SISBIO 16010–1 and SISBIO 38326–5 (Chico Mendes

Institute for Biodiversity Conservation). After completing their recovery from the anesthesia,

we released the giant anteaters at the site of capture for movement GPS-tracking.

Movement patterns and home range analysis

We described animals’ movement patterns and estimated home range size using the ctmm R

package [24, 56, 60, 61]. We first examined the empirical variogram of each individual tracking

data to check for an asymptote [26], as it is an evidence of range residence and a premise for

the movement parameters estimation [61]. Because tracking data with such short sampling

intervals are inherently autocorrelated, we also used the variogram to investigate the autocor-

relation structure of data, obtaining starting values for the variance and autocorrelation time-

scales. Then, we fitted continuous-time movement models to the individuals’ location data via

maximum likelihood. Among the fitted models, we included the Brownian motion model

(BM), the Ornstein-Uhlenbeck model (OU), the Integrated OU model (IOU) and the Orn-

stein-Uhlenbeck-F model (OUF) [26]. We ranked the movement models based on the second

order Akaike Information Criterion (AICC) [62] and selected the one with the best fit for each

individual anteater data set.

For those animals that better fitted OUF model, we obtained the three descriptors of indi-

viduals’ movement patterns: home range crossing time (timescale of autocorrelation in posi-

tion), daily distance moved and directionality (direction persistence timescale), as well as their

confidence intervals [24]. For those animals that showed range residence (i.e., better fitted OU

or OUF models), we used the ninety-five per cent area corrected autocorrelated kernel density

estimator (AKDEc 95%) to estimate the individuals’ home range size and its confidence limits.

AKDEc is a nonparametric home-range estimator that assumes the data represent a sample

from a nonstationary, autocorrelated, continuous movement process [63]. This estimator

allows movement models to be fitted to data with different temporal structures (e.g., irregular

sampling regime, gaps, and short sampling time). Also, AKDEc allows to compare home

ranges of individuals with different monitoring times. This is because AKDEc extrapolates the

data, basing itself on parameters of the model selected for each individual data set, to provide

reliable home range estimates [63].

Structural Equation Modeling

We used mixed Structural Equations Modeling (mixed-SEM) [64] to investigate: (1) the effect

of intrinsic traits (individuals’ sex and body mass) in movement patterns and home range size

and (2) the effect of an environmental trait (proportion of forest cover inside the individuals’

home range) in movement patterns and home range size. Because the descriptors of move-

ment patterns can be related to each other, and can modulate home range size, we controlled

for these possible relationships in an integrative approach (see Fig 2). In this approach, the

same variable could simultaneously act as response in an equation and as predictor in another

one (Fig 2) [64]. Mixed-SEM allowed us to disentangle a complex net of interactions, estimat-

ing the indirect, direct, and total effects among variables [65]. Indirect effects were estimated

by the product of the direct effects that compose them, and total effects were given by the sum

of direct and indirect effects [66, 67].

Mixed-SEM was fitted using the PiecewiseSEM package [65, 68], available in the R environ-

ment [56]. We included random variables in the model to account for the hierarchical struc-

ture of our data (i.e., individuals’ intercepts were nested within the sites; see [65]). We also

took into consideration the uncertainty associated with the estimated values of movement pat-

terns and home range size. Accordingly, we used an autoregressive error structure to weigh
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the contribution of the values of the response variables for the inverse of its variance in the cor-

responding equations [69, 70]. We standardized the estimated coefficients to allow comparison

between the different parameters [71]. Finally, we checked the global goodness-of-fit of our

mixed-SEM by a Fischer’s C test, which measures the discrepancy between predicted and

observed covariance matrices of our causal predictions [72].

Results

General results

We GPS-tracked 19 individuals–six individuals (three males and three females) in Santa Bar-

bara Ecological Station (SP) in 2015, and 13 individuals (eight males and five females) in Baı́a

das Pedras Ranch (MS) between 2013 and 2017. The individuals weighed between 21.6 kg and

38.7 kg (mean = 32.5 kg). Individuals’ body mass was similar for both study areas (t test; t = -

0.69; df = 12.53; p = 0.50). The GPS devices recorded location points at intervals ranging

between 20 and 70 minutes. The monitoring time varied between individuals, ranging from 45

to 136 days in Santa Barbara Ecological Station (mean = 90 days) and from 69 to 509 days in

Baı́a das Pedras Ranch (mean = 371.5 days). The total dataset consisted of 213,901 locations.

We provided individual information on sex, body mass, sample regime and monitoring time

in S1 Table.

Fig 2. Schematic representation and estimated coefficients of the intrinsic (sex and body mass) and

environmental effects (proportion of forest patches inside the home range) on movement patterns (described by

home range crossing time, daily distance moved and directionality) and home range size of giant anteaters

(Myrmecophaga tridactyla), as well as of the relationships between the descriptors of movement patterns to each

other and with home range size. The standardized coefficients (β) represent the relative strength of significant effects.

https://doi.org/10.1371/journal.pone.0253345.g002
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The individuals’ empirical variogram showed the plotted semi-variance reaching an asymp-

tote on a timescale that roughly corresponded to the home-range crossing time. Therefore, all

the monitored giant anteaters showed constrained space use and were defined as range resi-

dents. For all individuals, the highest ranked movement model was the OUF–that takes into

account autocorrelation in both location and velocity [26]. The estimates of home range cross-

ing time, daily distance moved, directionality, and home range size varied between individuals

(Tables 1 and S2). The mixed-SEM explained a substantial amount of the observed variation in

home range crossing time (R2 = 0.67), daily distance moved (R2 = 0.72), directionality (R2 =

0.88), and home range size (R2 = 0.81).

Intrinsic effects on movement patterns and home range size

Home range crossing time and daily distance moved had positive influence of sex, with males

presenting higher values than females (Fig 2; β1 and β2, respectively; Fig 3A and 3B). The effect of

body mass in home range crossing time and daily distance moved depended on the sex, and it

was negative for males (Fig 2; β3 and β5, respectively; Fig 3A and 3B) and positive for females (Fig

2; β4 and β6, respectively; Fig 3A and 3B). Directionality was indirectly driven by sex through

daily distance moved (Fig 2; β2
� β7 = - 1.56; Fig 3C). The effect of body mass on directionality was

also given indirectly via daily distance moved (Fig 2; β5
� β7 for males, and β6

� β7 for females), and

it was equal to 1.29 for males and—0.50 for females (Fig 3C). The effect of both sex and body

mass on home range size was mediated by home range crossing time, daily distance moved and

directionality. The total effect of sex on home range size was given by β1
� β8 + β2

� β7
� β9 = 0.45

(males> females; Figs 2 and 3D). The total effect of body mass on home range size was given by

β3
� β8 + β5

� β7
� β9 = 0.41 for males, and β4

� β8 + β6
� β7

� β9 = 1.27 for females (Figs 2 and 3D).

Environmental effect on movement patterns and home range size

The proportion of forest cover within the individuals’ home range ranged between 0.17 and 0.88

(mean = 0.42, S2 Table). The proportion of forest had no influence on home range crossing time

or daily distance moved (Figs 2 and 3E and 3F), however, it negatively influenced directionality

(Fig 2; β10 = - 0.60; Fig 3G). It means that individuals whose home range presented a higher pro-

portion of forest cover showed less directionality–i.e., more tortuous movements–than individu-

als occupying areas with a low proportion of forests. The total effect of the proportion of forest

cover on home range size resulted of the sum of its direct effect (Fig 2; β11) with indirect effects,

mediated by directionality (Fig 2; β10
� β9), totaling an effect of—0.68 (Figs 2 and 3H). In other

words, individuals increased home range size with a decreasing proportion of forests inside it.

Discussion

As far as we know, we provided here for the first-time movement model-based estimates of

home range crossing time, daily distance moved and directionality for giant anteaters, allowing

Table 1. Estimates and confidence intervals of movement patterns (described by home range crossing time, daily distance moved and directionality) and home

range size of giant anteaters (Myrmecophaga tridactyla).

Minimum (95% CI) Mean Maximum (95% CI)

Home range crossing time (days) 0.26 (0.23–0.29) 2.15 10.58 (7.01–15.96)

Daily distance moved (km) 5.41 (3.74–7.08) 8.01 12.04 (11.90–12.19)

Directionality (min) a 1.64 (0.94–2.87) 13.82 34.9 (31.76–38.37)

Home range (km2) 1.44 (1.09–1.84) 8.94 20.74 (15.26–27.06)

a Directionality was measured as the timescale of the persistence in direction.

https://doi.org/10.1371/journal.pone.0253345.t001

PLOS ONE Intrinsic and environmental effects on giant anteaters’ movement

PLOS ONE | https://doi.org/10.1371/journal.pone.0253345 August 18, 2021 7 / 15

https://doi.org/10.1371/journal.pone.0253345.t001
https://doi.org/10.1371/journal.pone.0253345


a better characterization of the species’ movement patterns. Once home range crossing time

indicates the timescale of autocorrelation in position, our results show that, on average, a two-

days interval between consecutive relocations is necessary to consider them spatially indepen-

dent [63]. However, previous studies using GPS devices have adopted monitoring regimes

much shorter than that and unconsidered the spatial autocorrelation of data [30, 42], probably

leading to underestimating results. This is an important factor explaining why our estimates of

daily distance moved, and home range size were, in average, bigger than those provided by

recent studies [30, 42], once AKDEc incorporates and controls for the autocorrelation in both

location and velocity [63]. Other possible explanations to this discrepancy can be related to the

intrinsic characteristics of monitored individuals and the environmental characteristics associ-

ated with the site and period of monitoring.

The use of mixed-SEM allowed us to disentangle the effects of sex, body mass and propor-

tion of forest on movement patterns and home range size, simultaneously estimating the direc-

tion and intensity of direct and indirect effects. The three descriptors of movement patterns

(home range crossing time, daily distance moved and directionality) mediated the effects of

sex and body mass on home range size, illustrating the importance of integrating these rela-

tionships in the same model [65]. We were able to clarify the sexual effects on movement pat-

terns and home range size by considering body mass effects and the interactions between

individuals’ sex and body mass. Even though the intraspecific effect of body mass on move-

ment patterns and home range size is generally weak in mammals [12], we were still able to

detect it with this integrative approach. To our best knowledge, this is the first record of allo-

metric scaling in the movement patterns and home range size in giant anteaters. On the other

hand, environmental traits, such as the proportion of forest cover, are common direct drivers

of mammal’s home range size at the individual level [12], and our model provided additional

details, showing the direct and indirect paths of this effect. Despite the great explanatory

power of our model, we recognize that there must be other intrinsic and environmental factors

Fig 3. Graphical representation of the shape and direction of the effects of intrinsic and environmental traits on

movement patterns and home range size of giant anteaters (Myrmecophaga tridactyla). Intrinsic traits are

represented by sex and body mass. The environmental trait is represented by the proportion of forest cover within

individuals’ home ranges. Movement patterns are described by home range crossing time, daily distance moved and

directionality. Estimated coefficients are provided above tendency lines for each relationship.

https://doi.org/10.1371/journal.pone.0253345.g003
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influencing giant anteaters’ movement that we did not investigate here, and some of them may

even seasonally change.

In general, male giant anteaters presented more intensive space use than females with simi-

lar body mass, showing longer home range crossing-time, longer daily distance moved and

smaller directionality. Besides, males also exhibited larger home ranges than females. We

expected males moving longer distances and occupying larger areas than females. However, it

was surprising that they also took more time to cross their areas and were less directional at

doing it. The higher intensity of space use and larger home range in males than females are,

probably, strategies to increase the chances to find receptive females on landscape [44]. This is

because the home range of a male giant anteater usually overlaps with the home range of sev-

eral females [73]. Hence, males could increase their chances of finding receptive females

exploiting their home ranges and increasing their home ranges size to include more females

inside it. In line with these results, male giant anteaters were recorded presenting longer activ-

ity time and larger home range than females [42]. Therefore, we reinforced the idea that giant

anteaters present a polygynous social mating system, with a male mating with more than one

female [43, 44].

Female giant anteaters behaved as expected, increasing the intensity of space use with

increasing body mass. This is probably related to an increase in the search for food resources

[26], once larger animals have higher energetic requirements [45]. For species that have their

food resources unpredictably spread on the landscape, such as the invertebrate nests that giant

anteaters prey upon, the intensity of utilization of food resources depends on the intensity of

use of space that provides physical access to those resources [74, 75]. Besides, female giant ant-

eaters also increased home range size with increasing body mass, showing a second strategy to

increase the access to food resources: increasing the size of the space used to find those

resources. A positive allometric scaling of both intensity of space use and home range size has

been found in some mammals [76, 77], including other xenarthrans with myrmecophagous

diets such as giant armadillos (Priodontes maximus) [78] and southern three-banded armadillos

(Tolypeutes matacus) [79]. This relationship indicates that the search for energetic resources is

one of the main factors driving female giant anteaters’ movement across body mass.

On the other hand, males did not display the same pattern. With increasing body mass,

males reduced intensity of space use and increased home range size. This reveals a change of

males’ movement strategy guided by body mass: while small males used their small areas inten-

sively, large males ranged over large areas with comparatively lower intensity of use. Consider-

ing a limited quantity of metabolic energy available for movement [80], animals moving close

to their limit capacity should experiment a trade-off between the intensity of use and the area

size, and this can be the case of male giant anteaters. Both strategies can increase the access to

both food resources spread on the landscape and receptive females [81]. Meanwhile, small

males could minimize the chances of agonistic interactions with other males if they use smaller

areas than the big ones [82, 83]. Further studies, such as behavioral assessments, will help us to

confirm these hypotheses and better understand the species’ reproductive biology.

As we expected, male and female giant anteaters reduced the directionality as the proportion

of forest patches inside their home ranges increased, probably due to the physical obstacles that

forests impose to displacement [84]. Similarly, small mammals have presented shorter step

lengths and higher tortuosity within forest areas [85], and African wild dogs have shown that

the movement permeability of the vegetation decreases with its increasing density [86]. How-

ever, it is worth noting that, contrary to our expectations, a greater proportion of forest inside

the home ranges did not influence the home range crossing time or daily distance moved.

Decreasing the proportion of forest inside giant anteaters’ home range led males and females

to an increase in the home range size. This is probably because giant anteaters present a low
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capacity for physiological thermoregulation [37], and less forest implies less access to thermal

shelters and, consequently, a reduced habitat thermal quality [34–36]. As a result, animals

would increase the home range size as a strategy to maximize the chances of accessing this ther-

mal resource. Supporting this idea, the increase of home range size with decreasing habitat qual-

ity has been widely documented for terrestrial vertebrates [87–89]. Furthermore, the

importance of forests as thermal shelters has also been shown for other mammals [90, 91], and

it should increase with the predicted increasing frequency of extreme weather events [92]. In

the Brazilian territory, where this study was conducted, massive agricultural expansion has

caused extensive habitat degradation and dramatically decreased forest patches on savannah

areas in number and size [93, 94]. In this current deforestation scenario, our results bring an

important implication for giant anteaters’ management: the minimal area needed to preserve a

given giant anteaters’ population should increase as the proportion of forests inside it decreases.

In this study, we brought reliable measures of giant anteaters’ movement patterns and

home-range size, showing that their movements are influenced by sex, body mass and propor-

tion of forest cover; and revealed two important strategies used by giant anteaters to maximize

the access to resources: they modulate movement patters, increasing space use intensity, and/

or increasing home range size. This information contributes to the understanding of giant ant-

eaters’ spatial ecology and can help define the spatial scale of effective management efforts for

their conservation [95], especially as the anthropogenic impacts on landscapes increase. We

highlight the need to consider the sexual differences on movement strategies and the role of

forests as an important thermal resource driving giant anteaters’ spatial requirements (also see

[96]). In accordance with [36], we strongly suggest that management efforts should focus on

maintaining the giant anteaters’ access to forest patches inside their home ranges to provide

environmental conditions for behavioral thermoregulation. Both intrinsic and environmental

traits driving animal movement should be integrated when establishing conservation strategies

for populations and species.
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