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“La ciencia es una empresa colectiva que abarca muchas culturas y se extiende a 

muchas generaciones. 

En todas las épocas, y a veces en los lugares menos probables, hay gentes que desean 

apasionadamente comprender el mundo. 

Gracias a la ciencia, hemos descubierto que las moléculas de la vida se forman 

fácilmente bajo condiciones comunes por todo el cosmos, hemos delineado mapas de 

máquinas moleculares en el corazón de la vida, hemos descubierto un microcosmos 

en una gota de agua, nos hemos asomado al caudal sanguíneo y al interior de nuestro 

planeta para ver la tierra como un solo organismo, hemos encontrado volcanes en 

otros mundos y explosiones en el sol, hemos escuchado los púlsares, y hemos buscado 

otras civilizaciones.

Por el momento, hemos caminado mucho… ¿o no? 

No hay forma de saber de dónde va a surgir el próximo gran descubrimiento, 

¿Cuál será el sueño de la mente que rehaga el mundo?” 

 “Cosmos: A Personal Voyage” . CARL SAGAN
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Abstract

CHILDHOOD OBESITY can develop early in life leading to the appearance of metabolic 

alterations such as insulin resistance (IR). If maintained during adulthood, obesity and IR usually 

derive into the development of more serious conditions like Type II Diabetes and cardiovascular 

disease, which considerably increase morbidity and mortality in affected populations. As many 

other complex disorders, obesity and its associated cardiometabolic comorbidities constitute a 

complex phenotype arising from the interaction between an at-risk molecular profile (involving 

genomics, transcriptomics, epigenomics and proteomics disturbances) and environmental 

exposures. On this sense, one of the most promising fields of research in obesity has involved the 

identification of early-life predictive molecular biomarkers able to stratify patients according to 

their risk for developing cardiometabolic complications later in life. Interestingly, the ideal and most 

robust biomarker discovery approach would involve the simultaneous analysis of multiple omics 

data layers at a once, allowing tracking a molecular disturbance from all its possible dimensions. 

Due to the complexity of omics data, nevertheless, new and innovative analytics approaches 

have been demanded. In the middle of this need, bioinformatics and artificial intelligence (AI) 

have experienced a remarkable boost due to their ability to automatically obtain descriptive or 

predictive models from massive amounts of data (Big Data). The present Doctoral Thesis gathers 

a series of research works in which bioinformatics and AI are conveniently applied to several 

obesity observational omics research projects for identifying new molecular biomarkers of IR and 

metabolic alterations in children and adolescents with obesity. Study populations are composed 

of more than 2000 Spanish children with ages ranging from 2-18 years. In summary, the results 

presented in the present Doctoral Thesis indicate that; 1) obesity is a complex disorder resulting 

from the interaction between genetic and environmental factors, 2) the creation of predictive 

tools based on the combination of small-risk effects genetic variants is an interesting but simple 

strategy for predicting future obesity, 3) multi-omics research approaches in obesity are necessary 

to understand the complex molecular mechanisms underlying disease, and 4) the application of 

eXplainable Artificial Intelligence (XAI) machine learning (ML) models can help us to unravel the 

complex relationships between omics molecular elements. The application of multi-omics research 

approaches and the use of complex analytical tools (such as bioinformatics and AI) are the correct 

way for approaching a true implementation of a personalized care in obesity. Further studies like 

those presented in the present Doctoral Thesis and as well as larger cohorts projects should be 

encouraged in order to validate presented findings. This will require a close collaboration between 

clinicians and basic researchers, and the creation of multidisciplinary teams, in which the presence 

of mixed bioinformatics profiles will be of great importance.
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LA OBESIDAD INFANTIL puede desarrollarse en etapas tempranas de la vida y dar lugar a la 

aparición de alteraciones metabólicas como la resistencia a la insulina (RI). Si se mantienen 

durante la edad adulta, la obesidad y la RI suelen derivar en el desarrollo de afecciones más graves 

como la diabetes tipo II y las enfermedades cardiovasculares, que aumentan considerablemente la 

morbilidad y la mortalidad en las poblaciones afectadas. Como muchos otros trastornos complejos, 

la obesidad y sus comorbilidades cardiometabólicas constituyen un fenotipo complejo que 

surge de la interacción entre un perfil molecular de riesgo (que implica alteraciones genómicas, 

transcriptómicas, epigenómicas y proteómicas) y las exposiciones ambientales. En este sentido, 

uno de los campos de investigación más prometedores en materia de obesidad ha consistido en 

la identificación de biomarcadores moleculares predictivos durante las etapas tempranas de la 

vida, capaces de estratificar a los pacientes en función de su riesgo de desarrollar complicaciones 

cardiometabólicas en la edad adulta. Uno de los enfoques más interesantes y robustos para el 

descubrimiento de biomarcadores implicaría el análisis simultáneo de múltiples capas de datos 

ómicos a la vez, permitiendo el estudio de una alteración molecular desde todas sus posibles 

dimensiones. Sin embargo, debido a la complejidad de los datos ómicos, se requieren enfoques 

analíticos innovadores. En medio de esta necesidad, la bioinformática y la inteligencia artificial (IA) 

han experimentado un notable impulso debido a su capacidad para obtener automáticamente 

modelos descriptivos o predictivos a partir de cantidades masivas de datos (Big Data). La presente 

Tesis Doctoral recoge una serie de trabajos de investigación en los que la bioinformática y la IA 

se aplican convenientemente a varios estudios ómicos de obesidad para identificar nuevos 

biomarcadores moleculares de RI y alteraciones metabólicas en niños y adolescentes con obesidad. 

Las poblaciones de estudio de la presente tesis doctoral están compuestas por más de 2000 

niños españoles con edades comprendidas entre los 2 y los 18 años. En resumen, los resultados 

recogidos en la presente Tesis Doctoral indican que 1) la obesidad es un trastorno complejo 

resultante de la interacción entre factores genéticos y ambientales, 2) la creación de herramientas 

predictivas basadas en la combinación de polimorfismos genéticos es una estrategia interesante 

pero sencilla para predecir el desarrollo de obesidad, 3) los enfoques de investigación multi-

ómicos en obesidad son necesarios para comprender los complejos mecanismos moleculares 

subyacentes a la enfermedad, y 4) la aplicación de modelos de aprendizaje automático de 

Inteligencia Artificial eXplicable (XAI) puede ayudarnos a desentrañar las complejas relaciones 

existentes entre los elementos moleculares ómicos. La aplicación de enfoques de investigación 

multi-ómica y el uso de herramientas analíticas complejas (como la bioinformática y la IA) son 

Resumen
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el camino correcto hacia una verdadera implementación de una medicina personalizada en la 

obesidad. En el futuro, deben fomentarse más estudios como los recogidos en la presente Tesis 

Doctoral, así como proyectos de reclutamiento de cohortes más grandes para validar los hallazgos 

presentados. Esto requerirá una estrecha colaboración entre clínicos e investigadores básicos, y la 

creación de equipos multidisciplinares, en los que la presencia de perfiles bioinformáticos mixtos 

será de gran importancia.

Keywords

Adolescencia; Epigenética; Estudio de Asociación del Epigenoma completo, EWAS; Estudio de 

Asociación del Genoma completo, GWAS; Expresión génica; Genética; Infancia; Metilación del ADN; 

Multi-ómicas; Obesidad pediátrica; Pubertad; Resistencia a la insulina; RNAseq.
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OVERWEIGHT AND OBESITY in children are a public health problem that has raised concern 

worldwide due to the alarming increase in cases observed during the last decades 1. Many 

children who are overweight or suffer from obesity before puberty maintain obesity in the early 

adulthood, which is associated with increased morbidity and mortality. Nowadays, obesity is one 

of the chronic disorders that most contribute to the worldwide global burden of disease, and one 

of the most expensive public health problems to be faced by both developed and developing 

countries. Among its associated comorbidities, Type II Diabetes and cardiovascular disease are the 

main responsible for the increased rates of mortality observed in obesity. The development of 

obesity and its associated comorbidities has been attributed to a complex interaction between 

genetics, epigenetics and environmental factors. Though the environmental factors influencing the 

development and worsening of obesity are pretty well-known, the complete molecular architecture 

of obesity is still far from being fully understood. On this sense, one of the most promising fields 

of research in obesity has involved the identification of early-life predictive molecular biomarkers 

able to stratify patients according to their risk for developing cardiometabolic complications later 

in life, or by their expected response after being treated with an anti-obesity agent or intervention. 

In the last decades, omics technologies have produced a vast amount of molecular data and have 

helped to draw a first sketch of the main molecules and pathways involved in the development of 

obesity and the associated metabolic derangement. Nevertheless, the complex interactions and 

epistatic phenomena existing between genes, RNA molecules, proteins and metabolites affecting 

obesity still remain unknown. Interestingly, the ideal and most robust biomarker discovery 

approach would involve the simultaneous analysis of multiple omics data layers at a once, allowing 

tracking a molecular disturbance from all its possible dimensions. Due to the complexity of omics 

data, nevertheless, new and innovative analytics approaches have been demanded. Some of 

the most remarkable drawbacks faced in omics data analysis involve handling with the massive 

dimensionality of genomics, epigenomics and transcriptomics as well as the need for methods 

able to mine complex patterns of interactions. Fortunately, bioinformatics and artificial intelligence 

(AI) are two emerging fields of research that have made available a vast number of resources for 

facing such methodological issues. Among the best examples of successful research applications 

derived from the bioinformatics and AI analysis of omics data in chronic diseases highlight; 1) 

The development of molecular-based tests and expert informatics systems for the stratification 

of patients according to their risk for disease, 2) Identification of new molecular subgroups of 

patients susceptible of a differential treatment or intervention, or 3) Identification of new potential 
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therapeutic molecular targets and biological pathways underlying the pathophysiology of 

disease.

The present Doctoral Thesis gathers a series of research works in which bioinformatics and 

AI are conveniently applied to several obesity epidemiological research projects with the above-

mentioned applications as main aims. The research works collected in the present Doctoral 

Thesis are a series of complex omics data analyses performed in Spanish children with obesity 

and involving the application of programming languages and advance algorithms or software 

tools. As an ultimate end, through the application of such bioinformatics and AI tools, the research 

works collected in the present Doctoral Thesis pursues approaching to a true implementation of 

a personalized care in obesity, which would allow to drastically reduce the associated deaths and 

economic costs of disease.

With the aim of giving the reader a broader knowledge of each of the topics covered by 

the works of the Doctoral Thesis, the present general introduction contains a series of sections 

detailing; 1) the epidemiology of obesity around the world, 2) the main cardiometabolic 

comorbidities and the derived health cost consequences associated with obesity, 3) the aetiology 

of obesity as a complex network of interactions between genetics, epigenetics and environment, 

and 4) the application of bioinformatics and AI for the analysis of complex omics datasets and the 

identification of predictive biomarkers with application in personalized medicine.

1 Childhood obesity: the unsolved pandemic of the 21st century

According to the World Health Organization (WHO), overweight and obesity are defined 

as abnormal or excessive fat accumulation that presents a risk to health. In adults, a body mass 

index (BMI) over 25 is considered overweight, and over 30 is obese. In children, BMI is estimated 

as a Z-Score, a measure of relative weight adjusted for child age and sex, and several cut-offs and 

criteria are available for defining obesity categories depending on the population under study 2. 

The obesity problem has grown to pandemic proportions, with over 4 million people dying each 

year as a result of being overweight or obese in 2017 according to the global burden of disease. 

Rates of overweight and obesity continue to grow in both adults and children. From 1975 to 

2016, the prevalence of overweight or obese children and adolescents aged 5–19 years increased 

more than four-fold from 4% to 18% globally. In 2016, the prevalence of obesity was estimated 

at 50 million girls and 74 million boys worldwide 3 (Figure 1). The prevalence of overweight and 

obesity in Europe in children aged 2 to 10 years ranges from less than 10% in the northern regions 

to more than 40% in the southern countries 3–5.
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Nowadays, obesity is one side of the double burden of malnutrition, and more people are 

obese than underweight in every region except sub-Saharan Africa and Asia. Once considered a 

problem only in high-income countries, overweight and obesity are now dramatically on the rise in 

low- and middle-income countries, particularly in urban settings. The vast majority of overweight 

or obese children live in developing countries, where the rate of increase has been more than 30% 

higher than that of developed countries. 

Figure 1. Age-standardised mean BMI, prevalence of obesity, and prevalence of moderate and severe underweight by sex 
and country in 2016 in children and adolescents Children and adolescents were aged 5–19 years. Obesity was defined as 
more than 2 SD above the median of the WHO growth reference. Moderate and severe underweight was defined as more 
than 2 SD below the median. See appendix for results for adults. BMI=body-mass index. Source: Abarca-Gómez, L. et al. 
Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 
population-based measurement studies in 128·9 million children, adolescents, and adults. Lancet 390, 2627–2642 (2017).
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2  Childhood obesity comorbidities and health costs consequences.

Overweight and obesity in children are major risk factors for a number of chronic diseases 

during adulthood, including cardiovascular diseases (CVD) such as hypertension, heart disease and 

stroke, which are the leading causes of death worldwide 6. Being overweight during childhood can 

also lead to diabetes and its associated conditions. Furthermore, obesity is associated with higher 

risk of suffering some cancers, including endometrial, breast, ovarian, prostate, liver, gallbladder, 

kidney and colon 7. The risk of these and other noncommunicable diseases increases even when a 

person is only slightly overweight and grows more serious as the BMI rise.

Reduced insulin sensitivity, or insulin resistance (IR), is a pathological condition in which cells 

fail to respond properly to insulin 8. IR is one of the metabolic comorbidities of obesity that shows 

A.

Figure 2. 

A. Interorgan crosstalk underlying the development of insulin resistance. Lipid spillover from adipocytes whose 
storage capacity has been overloaded can result in the inappropriate deposition of lipid in a range of tissues, 
including muscle, liver and pancreas, a phenomenon referred to as ‘lipotoxicity’. Collectively, this results in the 
development of muscle and liver IR as well as adipocyte IR. This results in further hyperinsulinaemia, which can 
further exacerbate the development of IR. 
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Figure 2. 

B. Role of adipose tissue expansion in IR. Adipocytes can expand in response to overnutrition by either hypertrophy 
(increased cell size, right) or hyperplasia (increased cell number, left). The inability to expand the tissue via hyperplasia 
due to genetic factors, inflammation or cell senescence is thought to play a major role in the onset of metabolic disease, 
as it reduces the capability of the tissue to store dietary lipids, causing increased levels of circulating free fatty acids that 
eventually lead to lipotoxicity. Adipocyte hypertrophy is also thought to cause inflammation by recruiting proinflammatory 
macrophages into the tissue, resulting in tissue fibrosis, reduced lipid storage capacity and maladaptive changes in the 
secretion of factors that contribute to IR in muscle and liver. Defective formation of new blood vessels in adipose tissue has 
also been suggested to be a contributor to systemic IR, since adipogenesis, which is implicated in IR, is intricately linked to 
angiogenesis.

 B.

an earliest appearance in patients consequence of interrelated stimuli from at least the liver, the 

pancreas, the gut and the adipose tissue (Figure 2). At the molecular level, IR results from the release, 

by adipose tissue, of increased amounts of non-esterified fatty acids, glycerol, hormones and pro-

inflammatory adipocytokines. IR is the main pathophysiological mechanism linking obesity and 

metabolic disorders such as type 2 diabetes and CVD. Therefore, IR has become a cornerstone in 

preventing obesity-associated morbimortality 8. The main aim of the present Doctoral Thesis was 

the identification of molecular markers of IR that can be measured non-invasively early in life for 

preventing the appearance of cardiometabolic alterations in children with obesity. This objective 

was addressed from a multi-omics perspective, reporting new genetics variants, DNA methylation 

patterns, RNA molecules and proteins associated with IR.
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As a consequence of all these cardiometabolic comorbidities, it is quite clear that obesity is 

associated with an increased health-care use 9. Adults with a BMI of 35–40 kg/m² had 63% higher 

general practitioner costs than normal-weight adults, a figure that rise to 116 % in adults with a BMI 

>40 kg/m². The same trend has been reported for the cost of medication use and indirect costs. A 

meta-analysis reported that the annual medical spending attributable to obesity was $1,900 per 

person in the year 2014, accounting for $149.4 million at the national level in the USA 10.

The last evidence of obesity as a serious risk factor for developing critical illness and premature 

death has derived from the coronavirus disease 2019 (COVID-19) pandemic 11. According to 

numerous studies; having obesity, and particularly severe obesity, increases the risk of severe illness 

from COVID-19, and people who are overweight may also be at increased risk. Moreover, having 

obesity has been reported to triple the risk of hospitalization due to a COVID-19 infection. 

All these costs and disease consequences are substantial and demand an urgent response 

from health professionals and policymakers. Identifying new treatment approaches, such as drugs 

for weight loss, is therefore a must, especially for children. Today, there are no approved and 

effective drugs for children and adolescents with obesity 12,13. The available and approved drugs, 

such as metformin or orlistat, have only very modest effects on body weight otherwise. In the 

present Doctoral Thesis, there will be a whole study focused in the identification of new genetics 

variants with utility as pharmacogenetics biomarkers for metformin response. Thanks to the study 

of such markers, children with obesity could be stratified into responders or not responders before 

beginning with a metformin treatment, in order to increase drug efficacy.

3  Puberty, obesity and insulin resistance: the perfect time to act

Regarding adolescence, data published in the past few years indicate that 17% of the 

adolescents in the USA have obesity (defined as a BMI >95th percentile) and 15% of the adolescents 

in Europe have obesity (defined as a BMI >97th percentile) 14–16. Studies have found that without 

intervention, children and adolescents with obesity will probably continue being obese into 

adulthood 5,17.

Puberty is a time period characterized by dynamic physiological changes, including activation 

of the reproductive axis and subsequent secretion of sex steroids, acceleration in growth, and 

accumulation of both lean and fat mass 18. Besides physiological events, puberty has also been 

associated with differential disease prognosis for conditions such as IR, reinforcing the relevance of 

this development period to the life-long health. Nevertheless, pubertal changes seem not to affect 

all individuals equally 9,19–22. While in healthy normal-weight youth, there is a bottom in insulin 

sensitivity in mid-puberty, which recovers at puberty completion, there is evidence that IR does 

not resolve in youth who are obese going into puberty, which may result in increased cardio-

metabolic risk. Accordingly, the incidence of youth-onset type 2 diabetes is also tightly linked 
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with pubertal development 23. Understanding the molecular and biological processes underlying 

metabolic changes during puberty and the additional impact of obesity on these changes is 

therefore crucial to prevent type 2 diabetes. 

The PUBMEP project is one of the study populations analysed in the present Doctoral Thesis. 

It is a longitudinal obesity study in which children are followed (from prepuberty to puberty) 

evaluating the prevalence of metabolic syndrome and the progression of the cardio metabolic risk 

factors related to it. In this population, a series of multi-omics analyses have been conducted with 

the aim of discovering new and promising molecular biomarkers of IR during the metabolically 

critical period of puberty. Results from these approaches will be exposed in details in two complete 

studies of the thesis.

4  Aetiology of obesity, insulin resistance and diabetes: a complex 
cocktail of genes and environment

Common obesity and its associated comorbidities constitute a complex phenotype arising 

from interactions between an at-risk genetic profile and environmental risk factors (Figure 3), 

such as physical inactivity, excessive caloric intake, the intrauterine environment, medications, 

Figure 3. Obesity and its metabolic comorbidities constitute a complex phenotype arising from interactions between an 
at-risk genetic profile and environmental risk factors.
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socioeconomic status, and possibly novel factors such as insufficient sleep, endocrine disruptors, 

and the gastrointestinal microbiome.

 Regarding genetics, in obesity we can differentiate between the existence of rare mutations, 

which cause cases of severe and monogenic obesity, and predisposing common single nucleotide 

polymorphisms (SNPs), which contribute with small but cumulative risk effects on disease, leading 

to the well-known phenotype of common polygenic obesity. In the case of rare mutations, they 

derive into a rare and severe early-onset obesity with abnormal feeding behaviour and endocrine 

disorders. Contrarily, in polygenic common obesity, the increase in body weight derives from the 

simultaneous effect of many polygenic variants. This polygenic basis of obesity implies indeed 

that the specific set of polygenic variants relevant for obesity in one individual is unlikely to be the 

same in another obese subject. For monogenic obesity, the most frequent variant is that in the 

melanocortin-4 receptor (MC4R), which accounts for up to 4% of cases of severe obesity 24. Other 

rare causes of monogenic severe obesity also include mutations in leptin and the leptin receptor, 

prohormone convertase 1 (PC1) and pro-opiomelanocortin (POMC) 24. Before 2007, candidate gene 

approaches examined these and hundreds of other genes, but few have been finally confirmed 

as genetic risk factors for common polygenic obesity in the era of genome-wide association 

studies (GWAS). Exceptions include variants in the MC4R and BDNF. Moreover, in 2007, four reports 

associated SNPs in the first intron of the gene FTO (fat mass and obesity associated gene) with 

obesity-related traits: a GWAS for anthropometric traits 25, a GWAS for early-onset severe obesity, a 

GWAS for type 2 diabetes,  and a population stratification study that incidentally discovered FTO 26. 

Nowadays, GWAS for BMI, waist-to-hip ratio, and other adiposity traits have identified more than 

300 SNPs associated, and FTO still remains the strongest and most cross-validated signal across 

multiple ancestries. Till date, the most remarkable GWAS conducted in obesity is the Genetic 

Investigation of ANthropometric Traits consortium (GIANT) meta-analysis (comprising more than 

339,000 individuals), which identified 97 loci for BMI, 56 of which were novel 27. Genes near these 

loci showed expression enrichment in the central nervous system, suggesting that BMI is mainly 

regulated by processes such as hypothalamic control of energy intake.

Furthermore, the gene variant most commonly associated with insulin sensitivity is the P12A 

polymorphism in PPARγ, which is related to an increased risk of developing diabetes 28,29. A number 

of genes associated with β-cell dysfunction have also been identified, and include hepatocyte 

nuclear factor-4α and 1α — genes known to cause the monogenic disorder maturity onset 

diabetes of the young (MODY) — the E23K polymorphism in the islet ATP-sensitive potassium 

channel Kir6.2 (encoded by KCNJ11), non-coding SNPs in the transcription factor 7-like 2 (TCF7L2) 

and mutations in the mitochondrial genome 28,29. Work is also ongoing on many candidate 

genes, including calpain 10, adiponectin (ADIPOQ), PPAR-γ coactivator 1 (PGC1) and the glucose 

transporter GLUT2 28,29. Interestingly, a great bulk of currently known IR-associated genes, such is 

the case of TCF7L2, are related to the extracellular matrix (ECM) in metabolically relevant tissues 30. 
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Healthy adipose tissue expansion in obesity depends on ECM remodelling and reorganization to 

provide enough space for the enlargement of adipocytes (hypertrophy) and for the generation 

of new ones through adipogenesis from the precursor cells (hyperplasia). Otherwise, a failure 

of this process results in necrotic adipocytes, and hypoxia, which triggers chronic, low-grade 

inflammation, fibrosis, and lastly IR 31.

Despite all these great advances, in the case of common polygenic obesity, identified loci from 

the GIANT study explain only 2·7% of the variance in BMI 27. Simulation studies have suggested that 

SNPs should account for around 30% of variance in BMI otherwise 32. This lack in phenotype variance 

explained by currently known genetic variants is a phenomenon termed as ‘missing heritability’ 
33,34. Potential sources explaining this missing heritability might include epigenetic alterations, 

interaction between genetics and environmental factors, the existence of low frequency and rare 

variants yet to be discovered as well as the presence of X chromosome genetic variation 33,34. On 

this regard, the first part of the Present Doctoral Thesis will focus in the study of X chromosome 

genetics variants and other mentioned obesity candidate-SNPs as potential biomarkers of IR and 

other alterations of glucose metabolism in children with obesity.

Environmental factors are the flip side of the coin in the development of obesity and type 

2 diabetes 35. Increased caloric availability and fat intake in the framework of decreased physical 

activity lead to over-nutrition, increased nutrient storage and finally to obesity. Long-term 

increased dietary fat consumption is also associated with reductions in insulin release. This effect 

has important consequences if adipocyte or β-cell function are already inherently abnormal owing 

to mentioned genetic susceptibility. Another proposed environmental mechanism is thought to 

occur in utero and/or during the early postnatal period when poor nutrition alters metabolism, 

resulting in a tissue adaptation that favours the storage of nutrients. The end result of these 

environmental changes is always a deleterious interaction with genes that predispose to the 

development of obesity and type 2 diabetes. This interactive phenomenon will be also reviewed 

during the Thesis, with one study focused in the investigation of interactions between health 

family history and other environmental variables and inherited genetic predisposition to obesity.

Although there are reasons to hope that identified genetics variants of obesity and diabetes 

will eventually lead to new preventive and therapeutic agents, this will take time because such 

developments require detailed mechanistic understanding of how an SNP influences phenotype. 

This involves identification of the gene or genes whose expression is affected by alleles at the 

variant, and the mechanism (e.g., enhancer, repressor, epigenetic alteration) whereby the variant’s 

alleles differentially affect expression. Consequently, there is growing interest in understanding the 

role of epigenetic mechanisms surrounding obesity and diabetes.



Augusto Miguel Anguita Ruiz

42

5  DNA methylation as an epigenetic link between environment and 
obesity

DNA methylation (DNAm) is a heritable epigenetic mark consisting of the covalent addition 

of a methyl-group to a cytosine followed by a guanine (CpG). DNAm is potentially reversible and 

can be altered by environmental factors, resulting in alterations of gene expression and providing 

an interactive connection between genetics and the environment. In epidemiological studies, 

DNAm is the most widely studied epigenetic mechanism, partly due to the fact that it can be 

measured at large scale in epigenome-wide association studies (EWAS). 

Differential DNAm in certain loci has been related to obesity 36, systemic IR 37–45, and type 

2 diabetes 36,38,39,46–50 in adults, either in blood or in other metabolically relevant tissues (Figure 

4). The dynamics of DNAm during puberty has also been investigated in one or both genders, 

emphasising how DNAm is stable at some CpG sites and varies at others 51,52. On the other hand, 

transcriptional dysregulation of genes has been reported as a key molecular mechanism associated 

with IR and obesity, possibly connected to DNAm alterations 53,54. Some of most replicated genes 

Figure 4. Epigenetic architecture of obesity and type II diabetes.
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with altered DNAm in obesity and diabetes include (e.g., ABCG1, ADCY5, CPT1A, FTO, HCCA2, HDAC4, 

HIF3A, IGF-1, KCNQ1, PPARG, and TCF7L2). Among them, the most strongly associated are the HIF3A, 

the CPT1A and the ABCG155–57. HIF3A encodes hypoxia-inducible factor 3 subunit alpha, which 

is part of a group of heterodimeric transcription factors that regulate responses to low oxygen 

(hypoxia). CPT1A encodes the enzyme carnitine palmitoyl transferase 1A, which takes Section In 

carnitine-dependent transport across the mitochondrial membrane when oxidation of long-chain 

fatty acids is initiated and is important for several metabolic processes. Of interest for obesity, the 

protein encoded by ABCG1 is involved in macrophage cholesterol and phospholipids transport. 

For many of these genes, EWASs studies in children have confirmed obesity associations 58,59. 

Particularly, recent reports from two robust longitudinal cohorts have found a strong association 

between their methylation in human fetal tissue and the subsequent development of childhood 

adiposity. Thus, epigenetic analysis at birth and childhood may have utility in identifying future risk 

of obesity. Otherwise, EWASs for IR in children and adolescents are still scarce. In the present Doctoral 

Thesis, EWAS analyses have been performed in hundreds of children with the aim of unveiling 

the epigenetic regulatory mechanisms underlying the appearance of IR and cardiometabolic 

disturbances in obesity. 

6  Omics, bioinformatics and Artificial Intelligence as the effective 
way to a personalized care in obesity

The term “omics” refers to the comprehensive characterization, quantitation and quantification 

of a large number of molecules, grouped according to the fundamental structural or functional 

biological similarities that they demonstrate. Across years, omics sciences have helped to unveil 

new and promising obesity predictive biomarkers and therapeutics targets. As we have mentioned 

in the previous sections, most of these biomarkers include SNPs and DNAm patterns at certain 

loci, but can also extend to the abundance of certain RNA molecules, serum proteins, or even 

multi-omics signatures (involving the simultaneous identification of several of such molecules 

in a tissue at a time) 60. Interestingly, many of these molecules can be measured non-invasively 

early in life, when children have not yet developed cardiometabolic disturbances and thus allow a 

better disease risk stratification of patients. Ultimately, these advances could lead to the so desired 

personalized medicine, in which the diet and clinical cares would be adapted to the needs and 

individual genetic preferences of each subject. 

Before this to happen, nevertheless, we first need to be able to appropriately model all the  “big” 

data sets deriving from high-throughput omics approaches. Fortunately, recent major advances in 

omics technologies have been accompanied by great innovations in the field of bioinformatics 

and AI. Within AI, Machine Learning (ML) techniques have experienced a notable boost due to their 

ability to automatically obtain descriptive or predictive models from massive amounts of data (big 
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data). These techniques learn models that allow us to characterize, adapt, learn, predict and analyse 

complex and large datasets, amplifying our understanding of disease and our capacity to predict 

with unprecedented precision. To date, there have been increasing applications of ML techniques 

in the field of obesity and omics research 61–70. Depending on the learning process implemented, 

we can distinguish between two main approaches in ML; supervised and unsupervised learning 
71. In supervised learning, the algorithm is provided with inputs (e.g., omics data) corresponding 

to specific outputs (e.g., presence of an obesity comorbidity or not), where the information is used 

to develop a general rule that will link the input to the output. However, an associated response 

or output is not always available. Or even if one is available, we may be interested in discovering 

other types of associations among variables. In these cases, a number of techniques can be used 

under the umbrella of what is called unsupervised learning. The term unsupervised refers to the 

fact that this learning is not based on the existence of a previously known response. We are not 

interested in prediction, rather, the goal is to discover other interesting relationships between the 

input variables.

ML tasks in obesity and omics research have typically included: a) dimensionality reduction to 

reduce the input data mass by decreasing the number of random variables under consideration, 

b) clustering-classification to organize different variables or subjects in groups with common 

characteristics, c) density estimation to assess distribution of input variables in specific space, and d) 

regression to estimate the relationships among variables and for developing predictive models70,72. 

Of special interest has been also the application of ML for the integration of multi-omics data sets, 

in which information from different layers of omics data is combined to discover the coherent 

biomarkers of a disease 73,74. Selecting a multi-omics approach compared to a single-omic analysis 

offers some profound advantages but has some serious challenges. A major advantage of the 

multi-omics analysis is the breadth of the information that it provides. As we have previously 

mentioned, the aetiology of obesity and type 2 diabetes is multifactorial. Thus, identification of one 

specific factor associated with disease will most probably have limited prognostic or therapeutic 

value. The multi-omics analysis allows for the identification of associated factors from different 

biological processes, i.e., gene expression, protein synthesis and posttranslational modifications, 

cellular metabolic processes, glycosylation, etc., maximizing the available information, and thus, 

increasing the possibility of identifying the root causes of a disease. Some of the best examples of 

multi-omics approaches involve the study of mQTLs (GWAS with metabolomics), meQTLs (GWAS 

with DNA methylation), eQTLs (GWAS with gene expression), eQTMs (DNA methylation and gene 

expression) and mCpG (DNA methylation with metabolomics) [http://www.metabolomix.com] 60. 

One the most ambitious studies conforming the present Doctoral Thesis is a large-scale molecular 

analysis investigating the multi-omics signatures that underlie the appearance and worsening of 

IR in children with obesity when they enter into puberty. Our results shed light on the molecular 

mechanisms underlying epigenetic alterations in obesity and propose novel and promising 

biomarkers for IR and metabolic alterations in children.
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Despite the tremendous advances that AI has experienced in recent times there has been 

also a wave of concern (especially in biomedical applications), as in most cases we do not know 

how the software learns and makes decisions. Cases such as the autonomous car project that 

after thousands of tests decided to turn off the road on a bridge, or the more recent case of IBM 

Watson at the Danish National Hospital, which made a very serious mistake by recommending a 

“lethal treatment” for cancer patients without being able to motivate why it was making such a 

recommendation, are generating a lot of controversy regarding the eXplainability of AI. Another 

example is the case of well-known deep learning techniques that cannot explain how they make 

their decisions despite their impressive predictive ability. This whole range of issues has been 

dubbed the “black box paradigm” and has recently been addressed in the prestigious journal 

Nature:  “Although today’s AI systems offer many benefits in many applications, their effectiveness is 

limited by the lack of explanations when interacting with humans”.  In all cases, there is agreement 

on the need to make AI explainable, giving rise to what has recently become known as eXplainable 

Artificial Intelligence (XAI). With this in mind, the present Doctoral Thesis has opted for the use of 

ML algorithms with high interpretability and eXplainability, such is the case of association rules, 

which will allow the expert to understand the internal process that leads the algorithm to make 

decisions. 

Other research field of tremendous success for the analysis of omics data has been the area 

of bioinformatics. Bioinformatics is defined as an interdisciplinary field that combines biology, 

computer science, information engineering, mathematics and statistics to analyse and interpret 

biological data, in particular when the data sets are large and complex. As one of the most 

successful application of bioinformatics in the field of obesity and genomics we can find the use of 

genetic risk scores 75. The construction of a genetic risk score consists on the calculation of a sum 

of the existing risk-increasing alleles in an individual, often weighted by the effect sizes from the 

studies that discovered them. In the case of BMI, a genetic risk score would be estimated as the 

sum of BMI-increasing alleles (0, 1, or 2) at each of the single-nucleotide polymorphisms (SNPs) 

robustly associated with BMI. Many studies constructing genetic risk scores for BMI have used the 

32 SNPs reported in the 2010 GIANT meta-analysis. As often observed for genetic risk scores of 

other traits, the genetic risk score values in obesity follow a bell-shaped distribution and BMI have 

been estimated to be 3 kg/m2 higher for those at the top of the distribution (genetic risk score 

≥38) than for those at the bottom (genetic risk score ≤21), with each unit increment in genetic risk 

score associated with nearly 2 kg/m2 higher BMI 76. A whole study of the present Doctoral Thesis 

will focus in the construction of a genetic risk score for BMI and evaluating its performance as a 

predictive tool for the appearance or worsening of obesity during puberty.

Furthermore, as we have already mentioned, gene-environment interactions, potentially 

through epigenetic mechanisms, may also affect the pathogenesis of obesity. Interestingly, 

genetic risk scores have been also employed successfully for the study of complex environment-
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gene interactions 77. Indeed, simulations have found that genetic risk scores have greater power 

than individual SNPs for detection of such phenomena 77.

The medical, financial and social problems deriving from the unsolved pandemic of obesity in 

children and adolescents are substantial and require an urgent response from health professionals 

and governments. Prevention in high-risk groups seems to be a promising strategy in addition 

to changing the obesogenic environment. Most importantly, treatment barriers in children have 

to be resolved. Omics technologies have shown potential for identifying effective predictive 

biomarkers or new therapeutics targets in recent years. New and exciting multi-omics data sources 

in obesity are requiring innovative and sophisticated mathematical methods for analysis. Existing 

and emerging methods in ML are meeting the need for sophisticated high-level prediction and 

description. The right application of such tools in obesity multi-omics longitudinal childhood 

cohorts will advance the goals of a personalized disease risk estimation and treatment.
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THE OVERALL AIM of this Doctoral Thesis is to identify early-life molecular predictive biomarkers 

of IR and other metabolic comorbidities in children and adolescents with obesity, as well as to 

implement and develop new AI-based tools for the study of complex omics longitudinal datasets 

in obesity. The present International Doctoral Thesis is composed of a total of seven studies. They 

are classified into three different parts: Section I focuses on the study of genetic variants associated 

with childhood obesity and its associated-alterations in glucose metabolism; Section II focuses 

on the identification of new multi-omics biomarkers of insulin resistance (IR) and cardiometabolic 

alterations in childhood obesity during the metabolically critical period of puberty; and Section III 

focuses on the implementation of unsupervised machine learning (ML) models for the analysis of 

longitudinal omics data in obesity. 

Section I

General objective 1: To investigate the genetics basis (alterations in the DNA sequence) of childhood 

obesity and its associated glucose metabolism disturbances.

•	 Specific	objective	1.1:	To	 study	 the	association	between	TNMD	X-chromosome	genetic	

variants and glucose metabolism complications related to childhood obesity, and to 

evaluate the potential functionality of the TNMD gene in human adipocytes (Study 1).

•	 Specific	objective	1.2:	To	make	public	and	describe	a	dataset	 incorporating	phenotype	

and X chromosome genotype data from a cohort of 915 normal-weight, overweight 

and obese children, and to deeply describe a whole implementation of the special X 

chromosome analytic process in genetics (Methodological Study 2). This study was 

conducted as an analytic pipeline to solve some methodological drawbacks encountered 

during the analysis of Study 1.

•	 Specific	objective	1.3:	To	 test	whether	obesity-related	genetics	variants	can	predict	 the	

response to metformin intervention in terms of the post-treatment change in glucose 

metabolism, anthropometry, lipid metabolism, adipokines, and inflammatory markers in 

children with obesity (Study 3).

•	Specific	objective	1.4:	To	evaluate	the	utility	of	an	adult	obesity-predisposing	genetic	risk	

score (GRS) for the prediction and pharmacological management of obesity in Spanish 

children, further investigating its implication in the appearance of cardio-metabolic 

alterations (Study 4).

AIMS
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Section II

General objective 2: To discover new biomarkers of IR through the integration of multi-omics data 

in children and adolescents with obesity.

•	 Specific	 objective	 2.1:	 To	 evaluate,	 through	 a	 multi-omics	 perspective,	 the	 association	

between the protein S100A4 and IR in children with obesity during pubertal development 

(Study 5).

•	 Specific	 objective	 2.2:	 To	 understand,	 through	 a	 large-scale	 multi-omics	 longitudinal	

analysis, the molecular architecture and biological processes underlying the development 

of IR in puberty and the additional impact of obesity on these processes (Study 6).

Section III

General objective 3: To implement and develop new unsupervised ML algorithms for the analysis 

of complex longitudinal omics data.

•	 Specific	objective	3.1:	To	implement	a	novel	rule-based	eXplainable	Artificial	Intelligence	

(XAI) strategy (including pre-processing, knowledge extraction and functional validation) 

for finding biologically relevant sequential patterns from longitudinal human gene 

expression data in obesity research (Study 7).
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THE PRESENT DOCTORAL THESIS employed multi-omics data derived from three ambitious 

epidemiological research studies conducted by our research group in Spain (involving the 

analysis of more than 2000 Spanish children with ages ranging from 2-18) as well as other datasets 

derived from the Public Repository “Gene Expression Omnibus”.

1 The GENOBOX Study: a multicenter cross-sectional design.

The GENOBOX study 1–3, is a project started in 2011 at the Aragon Institute for Health Research 

(IISA) - Lozano Blesa University Clinical Hospital (Zaragoza), the Santiago de Compostela Health 

Research Institute (IDIS) - University Clinical Hospital of Santiago de Compostela, the Maimonides 

Biomedical Research Institute of Cordoba (IMIBIC) - Reina Sofía University Hospital, Córdoba, 

Spain, and the Institute for Biomedical Research IBS-Granada (Figure 5). The GENOBOX study 

follows an observational cross-sectional design for investigating the relationship between genetic 

variants, markers of oxidative stress and inflammation, lifestyle, and cardiovascular risk in children 

and adolescents from Spain. All children attending the three recruiting hospitals for diagnosis of 

minor disorders; that were not confirmed after clinical and laboratory investigations, or suspecting 

overweight or obesity, were invited to participate. Exclusion criteria were: birth weight <2500 g, 

Presence of diabetes mellitus type I, presence of congenital, chronic, or inflammatory disease, 

psychomotor disability, use of hormonal medication or other that modifies blood pressure, glucose 

or lipid metabolism, having performed intense exercise in the 24 h previous to the examination, 

and/or having participated in a research study in the previous three months. The GENOBOX study 

recruited a total population of 1699 children and adolescents (878 girls) aged 2.00-18.10 years. 

Subjects were assigned to experimental groups according to their obesity status (513 normal-

weight, 412 overweight, and 774 children with obesity).  

2   The PUBMEP Study: a longitudinal design.

The PUBMEP study (‘Puberty and metabolic risk in obese children. Epigenetic alterations and 

pathophysiological and diagnostic implications’) is a longitudinal study based on the follow-up 

of a cohort of children who previously participated in the GENOBOX study (Figure 6). The main 

hypothesis of the PUBMEP study lies beneath the fact that puberty might constitute a metabolic 

risk factor for childhood obesity, and pursues two main objectives: 1) To clarify the relationship 
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Figure 5. General characteristics of the GENOBOX population, which is based on a previously conducted case-
control multicentre cross-sectional design.
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between obesity, metabolic alterations and the natural onset of pubertal maturation, and 2) To 

get a deeper understanding of the underlying epigenetic architecture of obesity and its metabolic 

complications. In the PUBMEP study, prepubertal boys and girls initially enrolled in the GENOBOX 

study who had already completed puberty at the time of the PUBMEP study start were invited to 

participate. During the course of the PUBMEP study (2012–2018), children remained under regular 

Figure 6. General characteristics of the PUBMEP population, which is based on a longitudinal design on 90 
children undergoing puberty.
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medical monitoring by the same paediatricians. The assessment of the pubertal stage was carried 

out following the Tanner classification and confirmed with a hormonal study. Another important 

inclusion criterion for this project was presenting a good-quality DNA sample in the prepubertal 

stage for omics analyses. A total of 374 subjects were contacted in the PUBMEP study, of which 

49 were not located, 36 could not participate because they had changed their place of residence 

or met any of the exclusion criteria, and 98 declined the invitation. One hundred ninety-one 

answered affirmatively, and their parents or legal guardians accepted an appointment to receive all 

the information related to the PUBMEP study. For omics analyses, a sub-population of 139 children 

(76 females) from the whole PUBMEP cohort was selected. From them, the 90 Spanish children 

(47 females) were allocated into five experimental groups according to their obesity and IR status 

before and after the onset of puberty. 

3  The Metformin pharmacogenetics Study: a randomized-control 
trial.

The Metformin pharmacogenetics study is a multi-centre and double blind randomized 

controlled trial conducted in 124 children with obesity (59 placebo (30 girls) and 65 treated children 

(33 girls)) (Figure 7). The aim of the present study was to test whether common genetics variants 

can predict the response to metformin intervention in children in terms of the post-treatment 

change in glucose metabolism, anthropometry, lipid metabolism, adipokines, and inflammatory 

markers. A complete workflow detailing the original study design can be found elsewhere4. 

Originally, 160 children with obesity were stratified according to sex and pubertal status and 

randomly assigned to receive either (1 g/d) metformin or placebo for 6 months after meeting the 

defined inclusion criteria. The study was registered by European Clinical Trials Database (EudraCT, 

ID: 2010-023061-21) on 14 November 2011 (URL: https://www.clinicaltrialsregister.eu/ctr-search/

trial/2010-023061-21/ES).

4   Gene Expression Omnibus Public Datasets:

With the aim of implementing new unsupervised ML models for the analysis of longitudinal 

gene expression data, six temporal gene expression datasets available in the Gene expression 

Omnibus Public Repository were selected (IDs: GSE77962 (N=22), GSE77962 (N=24), GSE70529 

(N=9), GSE35411 (N=9), GSE103766 (N=6), GSE103766 (N=13)). All datasets consisted on long-term 

human interventions for weight loss in individuals with obesity, with transcriptomics array data 

available in multiple time records (e.g., three or more). 
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 Figure 7. The Metformin pharmacogenetics Study corresponds to a previous multicentre and double blind 
randomized controlled trial (RCT) conducted in 124 children with obesity.
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5 Ethics statement.

All studies were conducted following the Declaration of Helsinki (Edinburgh 2000 revised), 

and they followed the recommendations of the Good Clinical Practice of the CEE (Document 

111/3976/88 July 1990) and the legal in-forced Spanish regulation, which regulates the clinical 

investigation of human beings (RD 223/04 about clinical trials). Accordingly, the corresponding 

ethics committees approved the study at each of the participating centers (Code IDs GENOBOX: 

Córdoba01/2017, Santiago 2011/198, Zaragoza 12/2010; and PUBMEP: Córdoba 260/3408, 

Santiago 2016/522, Zaragoza 22/2016, Granada 01/2017). The metformin pharmacogenetics study 

was approved by the Ethics Committee for Biomedical Research of Andalusia on 15 January 2012 

(acta 1/12) (ID code: 2010-2739).

6   Anthropometry, biochemical measurements, and inflammation 
and cardiovascular risk biomarkers.

Anthropometric measurements such as body weight (kg), height (cm), hip circumference 

(cm) and waist circumference (WC) (cm) were measured at each time point using standardized 

procedures, and BMI (kg/m2) was calculated. BMI z-score was estimated based on the Spanish 

reference standards published by Sobradillo et al. (2000) 5. Blood pressure was measured three 

times for each individual by the same examiner using a mercury sphygmomanometer and 

following international recommendations 6. Measures of lipid and glucose metabolism, hormones 

and classical biochemical parameters were performed at the laboratories of each participating 

hospital following internationally accepted quality control protocols. 

Blood samples from both time points were collected in overnight fasting conditions, 

centrifuged, and plasma and serum were stored at -80°C. Plasma adipokines, inflammation, and 

cardiovascular risk biomarkers (adiponectin, leptin, resistin, tumor necrosis factor alpha (TNF-α), 

high-sensitivity CRP (hsCRP), interleukin (IL)-6, IL-8, total plasminogen activator inhibitor-1 (PAI-

1), P-Selectin, myeloperoxidase (MPO), monocyte chemoattractant protein 1 (MCP-1), matrix 

metalloproteinase-9 (MMP-9), soluble intercellular cell adhesion molecule-1 sICAM-1, and soluble 

vascular cell adhesion molecule-1 (sVCAM)) were analyzed in all samples and time points using 

XMap technology (Luminex Corporation, Austin, TX) and human monoclonal antibodies (Milliplex 

Map Kit; Millipore, Billerica, MA) as previously reported. S100A4 and VASN protein levels were 

determined in plasma using enzyme-linked immune-absorbent assay kits according to the 

manufacturers’ instructions.
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7   Omics analyses.

Genomic DNA was extracted from peripheral white blood cells using two automated kits, the 

Qiamp DNA Investigator Kit for coagulated samples and the Qiamp DNA Mini & Blood Mini Kit for 

non-coagulated samples (QIAgen Systems, Inc., Valencia, CA, USA). All extractions were purified 

using the DNA Clean and Concentrator kit from Zymo Research (Zymo Research, Irvine, CA, USA).

a. Candidate-Gene Genotyping Analysis

Genotyping on a selection of candidate SNPs mapping genes previously associated with 

Obesity and Diabetes was performed by TaqMan allelic discrimination assay using the QuantStudio 

12K Flex Real-Time PCR System (Thermo Fisher Scientific, Waltham, MA, USA).

b. Genome-wide association study (GWAS)

Whole-genome genotyping analysis was performed on the i-SCan platform using the 

Infinium HTS Assay (Illumina, San Diego, CA, USA). The Bead Chip selected for the project was the 

Infinium Global Screening Array-24 v3.0 Kit, which includes ~ 654,000 genetic markers associated 

with complex diseases. After quantification of DNA samples by fluorimetry, they were normalized 

to 200-400 ng of DNA per sample in deep well plates, as established in the Infinium HTS Assay 

Protocol.

c. Next-generation transcriptome sequencing (RNA-Seq)

RNA was extracted from peripheral blood using the PAXgene® Blood RNA Kit (PreAnalytiX/

QIACUBE) according to the manufacturer’s instructions. The concentration and quality of extracted 

RNA were measured using the Qubit 4 Fluorometer (Thermo Fisher Scientific, MA, USA) and the 

2100 Bioanalyzer Instrument (Agilent Technologies, CA, USA). Libraries from mRNA were prepared 

using 1μg of RNA starting material and the TruSeq Stranded mRNA Library Prep Kit (Illumina, CA, 

USA) according to the manufacturer’s protocol. This protocol captures poly-adenylated RNA by 

transcription by oligo-dT primer, after which the RNA is fragmented. The sample is back transcribed 

to generate the cDNA, both in the first and second strands. The 3’ ends are adenylated, the adapters 

and barcodes are ligated, and finally, the sample is enriched by PCR. Adapters and sample codes 

(index-barcodes) are added to the libraries to be simultaneously sequenced. mRNA libraries were 

sequenced on the Next-Seq 500 system (Illumina, CA, USA) using the highest output mode and 

paired-end 75 bp read lengths with a depth of 20 million reads for each sample. To get a depth of 

20 million reads per sample 2 runs with 4 lanes for each run were conducted.
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d. Epigenome-wide association study (EWAS)

High-quality DNA samples (≥ 500 ng) were treated with bisulfite using the EZ-96 DNA 

Methylation Kit (Zymo Research Corporation, Irvine, CA). DNA methylation was measured with 

the Infinium Methylation EPIC array using bead chip technology, which analyzes the methylation 

status of ~850.000 CpGs across the human genome (Illumina, San Diego, CA, USA).
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Table 1.   Studies’ methodology overview. 

The column “omic approach” refers to the type of omic data analysed in each study. 

Study General Aim Cohort and 
number of 
participants 

Main Study 
outcomes

Omic 
approach

Design 

Study 2 To make public and describe a dataset 
incorporating phenotype and X chromosome 
genotype data from a cohort of 915 normal-
weight, overweight and obese children, and 
to deeply describe a whole implementation of 
the special X chromosome analytic process in 
genetics (Methodological Study 2). This study was 
conducted as an analytic pipeline to solve some 
methodological drawbacks encountered during 
the analysis of Study 1

Cross-sectional GENOBOX (N=915) 

Childhood 
obesity 
and Insulin 
Resistance 

Candidate-
Gene 
Genotyping 
Analysis

Study 1 To study the association between TNMD 
X-chromosome genetic variants and glucose 
metabolism complications related to childhood 
obesity, and to evaluate the potential 
functionality of the TNMD gene in human 
adipocytes

Cross-sectional GENOBOX (N=915) Childhood 
obesity 
and Insulin 
Resistance

Candidate-
Gene 
Genotyping 
Analysis

Study 3 To test whether obesity-related genetics 
variants can predict the response to metformin 
intervention in terms of the post-treatment 
change in glucose metabolism, anthropometry, 
lipid metabolism, adipokines, and inflammatory 
markers in children with obesity 

Randomized 
Controlled 
Trial 
The Metformin 

Pharmacogenetics 
Study 
(N=124)  

Childhood 
obesity, Insulin 
Resistance, lipid 
metabolism, 
adipokines, and 
inflammatory 
markers

Candidate-
Gene 
Genotyping 
Analysis

Study 4 To evaluate the utility of an adult obesity-
predisposing genetic risk score for the 
prediction and pharmacological management 
of obesity in Spanish children, further 
investigating its implication in the appearance 
of cardio-metabolic alterations 

•		Cross-Sectional	
•		Repeated	

Measures
•		Randomized	

Controlled Trial 

•	 GENOBOX	(N=574)
•	 PUBMEP	(N=96)
•	 The	Metformin	

Pharmacogenetics 
Study (N=124) 

Childhood 
obesity, Insulin 
Resistance, lipid 
metabolism, 
adipokines, and 
inflammatory 
markers
 

Candidate-
Gene 
Genotyping 
Analysis

Study 5 To evaluate, through a multi-omics perspective, 
the association between the protein S100A4 
and IR in children with obesity during pubertal 
development

•	 Cross-Sectional	
•	 Repeated	

Measures 

•	 GENOBOX	(N=279)
- PUBMEP 

(N=53) 

Childhood 
obesity 
and Insulin 
Resistance 

EWAS, Trans-
criptomics 
Array, Protein 
levels

Study 6 To understand, through a large-scale multi-
omics longitudinal analysis, the molecular 
architecture and biological processes underlying 
the development of IR in puberty and the 
additional impact of obesity on these processes

Repeated 
Measures 

•		PUBMEP	
(N=139) 

Childhood 
obesity 
and Insulin 
Resistance 

EWAS, GWAS, 
RNAseq, 
Protein levels

Study 7 To implement a novel rule-based XAI strategy 
(including pre-processing, knowledge extraction 
and functional validation) for finding biologically 
relevant sequential patterns from longitudinal 
human gene expression data in obesity research

Repeated Measures Gene Expression 
Omnibus (IDs: 
GSE77962 (N=22), 
GSE77962 (N=24), 
GSE70529 (N=9), 
GSE35411 (N=9), 
GSE103766 (N=6), 
GSE103766 (N=13)) 

Adult Obesity 
(weight-loss in 
response to ca-
loric restriction) 

Transcripto-
mics Array
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Effects of X-chromosome Tenomodulin Genetic 
Variants on Obesity in a Children’s Cohort and 
Implications of the Gene in Adipocyte Metabolism

Francisco Javier Ruiz-Ojeda1,2,*,#, Augusto Anguita-Ruiz1,2*, Azahara I. Rupérez1, 
Carolina Gomez-Llorente1,2,3, Josune Olza1,2,3, Rocío Vázquez-Cobela4, Mercedes Gil-
Campos3,6, Gloria Bueno3,5, Rosaura Leis3,4, Ramón Cañete3,6, Luis A. Moreno5, Ángel 
Gil1,2,3, Concepción María Aguilera1,2,3#.

Abstract Tenomodulin (TNMD) is a type II transmembrane glycoprotein that has been 
recently linked to obesity, and it is highly expressed in obese adipose tissue. Several sex-
dependent associations have been observed between single-nucleotide polymorphisms 
(SNPs) of the TNMD gene, which is located in the X-chromosome, and obesity, type 2 
diabetes mellitus (T2DM), and metabolic syndrome in adults. On the other hand, results 
are lacking for children. We aimed i) to study the association between TNMD genetic 
variants and metabolic complications related to childhood obesity and ii) to investigate 
the function of TNMD in human adipocytes. We conducted a case-control, multicenter 
study in 915 Spanish children and demonstrated significant positive associations between 
TNMD genetic variants and BMI z-score, waist circumference, fasting glucose, and insulin 
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resistance in boys, highlighting the SNP rs4828038. Additionally, we showed a BMI-
adjusted inverse association with waist circumference in girls. Second, in vitro experiments 
revealed that TNMD is involved in adipogenesis, along with glucose and lipid metabolism 
in differentiated adipocytes, and these effects may be mediated through AMPK activation. 
Hence, these results suggest that TNMD genetic variants could be potentially useful as 
early life risk indicators for obesity and T2DM. In addition, we support the fact that TNMD 
exhibits significant metabolic functions in adipocytes. 

Keywords: Obesity; adipocytes; tenomodulin; polymorphism, single-nucleotide polymorphisms; 

childhood.

Introduction 

Childhood obesity is a major health problem (GBD 2015 Obesity Collaborators) characterized 

by an expansion of the adipose tissue (AT)1. Many children who are overweight or suffer from 

obesity before puberty maintain obesity in early adulthood, which is associated with increased 

morbidity and mortality 2. The expansion of AT implies metabolic alterations that are mainly related 

to glucose and lipid metabolism 3. White adipose tissue (WAT) is the main site for energy storage, 

but it is also an endocrine organ that secretes cytokines and adipokines 4. White subcutaneous 

adipose tissue (SAT) and white visceral fat depots (VAT) represent 80% and 20% of total body fat 

storage, respectively. VAT size is strongly associated with insulin resistance, and it is well established 

that VAT and SAT are different with respect to adipocyte size and metabolic activity 5. 

Tenomodulin (TNMD) was identified as a novel gene in 2001 by Brandau et al.6 (2001) and 

Shukunami et al. 7(2001), and it is located in the human Xq22 region, where it spans approximately 

15 kb 6,7. TNMD is a type II transmembrane protein; it is described as an angiogenesis inhibitor and 

is highly expressed in hypovascular connective tissues such as tendons and cartilage 6,8. Indeed, 

TNMD contains a putative proteinase cleavage and two glycosylation sites where the C-terminus 

of the protein is cleaved in those tissues 9–12. Furthermore, its expression in human AT has been 

recently observed to be higher in obesity and lower after diet-induced weight loss 13. Analyses of 

AT TNMD expression in obese and lean subjects have also shown that TNMD mRNA is correlated 

with body mass index (BMI) in adults 14–16. In line with these results, our research group previously 

found that TNMD was five-fold upregulated in the VAT of prepubertal children with obesity, 

compared with their normal-weight counterparts 17. Furthermore, TNMD is known to promote 

human adipocyte differentiation and to act as a protective factor against insulin resistance in obese 

VAT 18.

Likewise, several studies have indicated that single-nucleotide polymorphisms (SNPs) in the 

TNMD gene are associated with BMI, serum low-density lipoprotein cholesterol (LDL-c) levels, and 
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inflammatory factors in adults in a sex-specific manner 19. Specifically, the SNPs rs2073162 and 

rs2073163 have been associated with type 2 diabetes mellitus (T2DM) in men, central obesity in 

women and inflammation in men and women 19–23. On the other hand, results are lacking for 

children. 

At the GWAS level, none of the analyses that have been conducted on obesity traits have 

reported associations for TNMD SNPs. Since the X-chromosome has often been less scrutinized 

because of the unique statistical challenges it presents 24,25, the X-chromosomal location of TNMD 

could be one of the reasons why its genetic variants have not been widely studied in the genetic 

context of obesity. Despite this, the X-chromosome has been proposed as a potential source of 

missing heritability and an important genomic region to be included into analyses 26. Considering 

all this and the availability of new tools to overcome these complexities 25,27–30, the present work 

was undertaken to study the effects of TNMD genetic variants in children with obesity and to 

evaluate the potential metabolic function of this gene in human adipocytes. First, we studied the 

association between TNMD genetic variants and metabolic complications related to childhood 

obesity. Second, through gene silencing, we aimed to demonstrate that TNMD is required for 

adipocyte metabolism in fully differentiated adipocytes. To the best of our knowledge, this is the 

first study to report an association between TNMD SNPs and childhood obesity while supporting 

the implication of TNMD in adipocyte metabolism. 

Results
TNMD genetic variants are associated with BMI z-score in boys

The anthropometric, clinical, and metabolic characteristics of the children participating in the 

present study are shown in the supplementary material according to obesity status (Supplementary 

Table S1). Minor allele frequencies (MAFs) of all markers studied are listed in Table 1. All SNPs showed 

MAFs above 5% regardless of the obesity class. Given the location of TNMD in a sex chromosome, 

all genetic analyses were conducted separately for boys and girls. The linkage disequilibrium (LD) 

pattern of the region of TNMD that was studied is presented in Fig 1; two previous literature-

reported blocks were also identified in our population in a sex-stratified manner: haploblock-1 

(rs11798018, rs5966709, and rs4828037) and haploblock-2 (rs2073162, rs2073163, rs4828038, and 

rs1155974) 20. All SNPs within the haploblock-2 showed significant and positive association with 

the BMI z-score in boys but not in girls (Table 1). Conversely, no association was identified between 

variants of the haploblock-1 and BMI z-score in any sex group. Among the associated SNPs within 

the haploblock-2, the rs2073162 and the rs4828038 exhibited the highest effect sizes and the most 

significant P values. All mentioned associations remained statistically significant after applying 

multiple-test correction by False Discovery Rate (FDR). Instead, only the rs2073162 association 

stood multiple-test correction by Bonferroni adjustment (Table 1).
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No effects were reported for the haploblock-1 variants on any of the studied phenotypes, and 

rs4828038 was identified as a tag SNP within the haploblock-2 according to the Bakker’s method31; 

therefore, the paper will focus on all associations and findings that have been reported for this 

marker. A conditional joint multiple-SNP analysis for BMI z-score in boys further revealed there 

are no independent effects on the phenotype between all linked markers of the haploblock-2 

(Supplementary Figure S1). On this matter, our tag SNP rs4828038 might be a good representative 

marker for the region. Additionally, haplotype-based tests were performed to determine whether 

the reported associations remained statistically significant when each TNMD haploblock was 

analyzed as an allelic phase and not as independent single variants (Supplementary Table S2). 

As expected, the association between the haploblock-2 and the BMI z-score in boys remained 

statistically significant, even after applying a multiple-test correction.

Table 1. Association between TNMD SNPs and BMI z-score in children. BMI, body mass index; A1, minor allele; A2 major 
allele; MAF, minor allele frequency; β, Beta obtained under an additive model; CI, confidence interval. Linear regression 
analyses stratified by sex were performed under an additive model assuming TNMD locus escapes from the X-chromosome 
inactivation process. That is, while the female genotypes were coded 0, 1, or 2 according to 0, 1, or 2 TNMD SNP alleles, the 
genotypes for males were coded 0 or 1 according to 0 or 1 alleles. 



75

MULTI-OMICS INTEGRATION AND MACHINE LEARNING FOR THE IDENTIFICATION OF MOLECULAR 
MARKERS OF INSULIN RESISTANCE IN PREPUBERTAL AND PUBERTAL CHILDREN WITH OBESITY

The tag SNP rs4828038 is associated with central adiposity and impaired glucose 

metabolism in boys, while it correlates with lower waist circumference in girls.

To further explore the implication of TNMD in obesity and metabolic alterations, we studied 

the association between TNMD genetic variants and a range of additional anthropometric 

measurements and metabolic features including cardiovascular disease (CVD) and inflammation 

biomarkers (Table 2 and Supplementary Table S3).

Concerning anthropometric indicators of central obesity, a statistically significant and risky 

correlation was observed between the rs4828038-T-allele and waist circumference (WC) in boys, 

which disappeared after adjusting the model for BMI confounding. This finding did not remain 

statistically significant after applying FDR multiple-test correction neither. Conversely, we identified 

a protective association between the rs4828038-T-allele and WC in girls. The finding remained 

statistically significant after adjusting the model for BMI confounding (Table 2). Interestingly, this 

result also stood multiple-test correction and showed a 2.4% FDR value. Other central-adiposity 

indicators such as the waist-to-height ratio (WHR) reported equal findings in girls but did not reach 

multiple-test significance. 

Regarding glucose metabolism, the rs4828038-T-allele was associated with higher levels of 

fasting glucose and higher values of homeostatic model assessment for insulin resistance (HOMA-

IR) in boys. In the same way, the rs4828038-T-allele was also associated with a lower quantitative 

insulin sensitivity check index (QUICKI) (Table 2). All results were obtained under an additive 

model adjusted for age. Specifically, the correlation between our tag SNP and fasting glucose 

levels reached both nominal and multiple-test significance, exhibiting an FDR value of 4.9%. 

Significant results were also obtained after adjusting the model for BMI confounding but with 

only nominal statistical significance (P=0.009). In relation to HOMA-IR, each rs4828038-T-allele copy 

increased the index value by 0.33 units in comparison to the rs4828038-C-allele. For the QUICKI 

index, we reported a risky and statistically significant correlation in boys that stood multiple-test 

FDR significance. The same results were obtained after adjusting the model for BMI confounding 

but with only nominal statistical significance (P=0.039). No additional associations were reported 

regarding our tag SNP and any other glucose metabolism phenotype in neither boys nor girls. 

According to previous studies relating TNMD SNPs to inflammatory traits and diseases such as 

age-related macular degeneration (AMD) or T2DM 21,32, we investigated the association between 

the rs4828038 SNP and inflammation, CVD risk markers and adipokines (Table 2 and Supplementary 

Table S3). Interestingly, we reported a significant and positive correlation between the rs4828038-

T-allele and interleukin (IL)-6 levels in girls, which remained significant after multiple-test correction 

(FDR=4.7%). Concordant results were obtained after adjusting the model for BMI confounding but 

with only nominal significance (P=0.021). Associations in line with this result have been previously 

identified in adult females in relation to TNMD haploblock-1 SNPs 21, which suggests that TNMD 
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Figure 1. Location of selected markers in the TNMD gene and linkage disequilibrium (LD) analyses. (a) Light blue boxes 
represent exons, while the connecting blue lines are introns. Abbreviations: rs, reference SNP code; UTR, untranslated region. 
(b) and (c) show the LD pattern of the region in boys and girls, respectively. Left red triangles represent D’ values while 
right the black/gray triangles indicate R2 values. Triangle frames indicate observed haploblocks according to the solid 
spine of LD; the first consists of rs11798018, rs5966709, and rs4828037, and the second consists of rs2073162, rs2073163, 
rs4828038, and rs1155974. Between triangles, we listed each haplotype in a block along with its population frequency and 
connections from one block to the next. In the crossing areas, a value of multiallelic D’ is shown. This represents the level of 
recombination between the two haploblocks.
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could mediate its putative effects on obesity via low-grade inflammation. Nonsignificant results 

were observed for the rest of the analyzed traits of the block regardless of the sex. 

Other metabolic features such as blood pressure and lipid traits were also investigated. We 

detected a significant association between the rs4828038-T-allele and diastolic blood pressure 

(DBP) in girls when adjusting the model for BMI confounding (Table 2). The result did not remain 

statistically significant after applying multiple-test correction, showing an FDR value of 10.2%. 

Table 2. Association between rs4828038 TNMD and anthropometric, biochemical, and inflammation characteristics 
(mean (SD)) in children. BMI, body mass index; BP, blood pressure; HOMA-IR, homeostasis model assessment for insulin 
resistance; QUICKI, quantitative insulin sensitivity check index; TAG, triglycerides; HDL-C, high-density lipoprotein 
cholesterol; IL, interleukin; MAF, minor allele frequency; βBMI, Beta obtained under an additive model adjusted for BMI; 
P-value BMI, P (P value) obtained under an additive model adjusted for BMI; CI, confidence interval; NA, not applicable. 
Linear regression analyses stratified by sex were performed under an additive model assuming TNMD locus escapes from 
the X-chromosome inactivation process. That is, while the female genotypes were coded 0, 1, or 2 according to 0, 1, or 2 
TNMD SNP alleles, the genotypes for males were coded 0 or 1 according to 0 or 1 alleles. a Adjusted for age. b Adjusted for 
age and height.
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Remaining phenotypes of the block did not exhibit any significant correlation with analyzed 

markers (Table 2 and Supplementary Table S3). 

TNMD is associated with adipogenesis and lipid metabolism in human adipocytes 

Based on the data regarding the relationship between TNMD genetic variants and the BMI 

z-score and, especially, WC, together with our previously published results that described a highly 

significant upregulation of TNMD expression in the VAT of children with obesity 33, we performed 

a functional in vitro study. The aim of this study was to elucidate the role of TNMD in human 

adipocytes, as the major constituent cells in AT. To assess TNMD gene and protein expression 

in human adipocytes from adipose-derived stem cells (ADSCs), we determined the mRNA and 

protein levels at various times during adipogenic differentiation. In agreement with previous 

reports 13,18, we found that TNMD expression and protein levels were significantly upregulated 

in human differentiated adipocytes at day 14 compared with ADSCs at day 0. However, we did 

not find any significant differences between days 7, 10, and 14. Immunofluorescence images also 

showed the differences between TNMD expression at days 0 and 14 (Fig. 2).

In addition, it has been demonstrated that TNMD inhibition blocks adipogenesis in Simpson-

Golabi-Behmel syndrome (SGBS) preadipocytes and benefits VAT expansion in mice. Since TNMD 

is required for adipocyte differentiation in SGBS adipocytes 18, we first confirmed that TNMD was 

also required for human adipogenesis in ADSCs (Supplementary Fig. S2). Additionally, TNMD 

inhibition expression in fully differentiated adipocytes at day 14, downregulated the gene and 

protein expression of peroxisome proliferator-activated receptor gamma (PPARG), CCAAT/

enhancer-binding protein alpha (CEBPA) and angiopoietin-like 4 (ANGPTL4) in TNMD-knocked-

down adipocytes (Fig. 3). 

Regarding lipid metabolism, knock-down of TNMD led to reduced lipolysis as observed by 

decreased extracellular glycerol levels in cell supernatants (Fig. 3g). In addition, the expression 

levels of lipases such as hormone-sensitive lipase (HSL), adipose triglyceride lipase (ATGL), and 

perilipin (PLIN) were significantly downregulated upon shRNA-TNMD treatment (Fig. 3d-f), as was 

ANGPTL4, which is a mediator of intracellular lipolysis in adipocytes (Fig. 3c). 

Since TNMD is involved in the regulation of tenocyte proliferation, tendon development, 

and angiogenesis inhibition 12, we investigated vascular endothelial growth factor A (VEGFA) 

gene and protein expression in shRNA-mediated knocked-down TNMD cells. However, we did not 

observe significant changes (Supplementary Fig. S3). In this sense, no differences in blood vessel 

morphology and density have been previously found in TNMD transgenic mice 18.

TNMD knock-down impairs glucose metabolism in human adipocytes 

To test whether TNMD plays a role in glucose metabolism in adipocytes, TNMD was inhibited 
in fully differentiated human adipocytes at day 14. In this experiment, we observed that glucose 
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transporter 4 (GLUT4) gene and protein expression were downregulated when TNMD expression 

was inhibited (Fig. 4. a, b). This finding was supported by immunofluorescence images that 

showed reduced GLUT4 protein levels in shRNA-TNMD-treated adipocytes (Fig. 4g). However, 

TNMD inhibition did not affect basal glucose uptake in a significant manner; however, there was a 

tendency toward a reduction by approximately 1.5-fold (P-value: 0.08) (Fig. 4c). Adiponectin mRNA 

and protein levels were also decreased in TNMD-knocked-down adipocytes (Fig. 4d). 

Regarding the activation of kinases involved in glucose metabolism, we observed a lower 

activation of AMP-activated protein kinase-alpha (AMPKα) and no differences in AKT (phosphor-

AKT, Ser473) in TNMD-inhibited adipocytes. Thus, the association between TNMD and glucose 

metabolism in human adipocytes could be mediated by AMPK. 

TNMD knock-down triggers inflammation in human adipocytes.

Many studies have reported that inflammation occurs in adipocytes associated with obesity, 

which is further related to metabolic dysfunction and insulin resistance 34,35. Thus, we next studied 

the inflammatory status of TNMD-inhibited human differentiated adipocytes. In our study, TNMD-
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Figure 2. TNMD expression during adipogenic differentiation. 
(a) Gene expression of TNMD at various time points during 
adipogenic differentiation in human adipose-derived 
stem cells (ADSCs); mRNA levels were normalized to those 
of hypoxanthine-guanine phosphoribosyltransferase-1 
(HPRT1) and presented as fold-change, as calculated using 
the Pfaffl method. (b) TNMD protein levels from cell lysates 
were analyzed by Western blotting using a specific antibody 
against TNMD (N-14), normalized to the internal control 

(α-tubulin), and expressed as fold-change; the lower section presents a representative crop blot. (c) Immunofluorescent 
staining of ADSCs (d0) and differentiated adipocytes at day 14 N-14 terminal domains of TNMD (green) and 4.6-diamidino-
2-phenylindole (DAPI; blue; scale bar, 200 μm). All values are expressed as the means ± SEM of three independent 
experiments. Significant differences were identified using the nonparametric Mann-Whitney U test; P-value: *<0.05. 
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Figure 3. TNMD promotes 
adipogenesis and impairs lipid 
metabolism in human adipocytes. 
Human adipocytes were 
transfected with an adenovirus-5 
containing a shRNA-TNMD and 
shRNA-control (scrambled) at 
day 14 of adipogenesis induction. 
(a, b, c) Peroxisome proliferator-
activated receptor gamma 
(PPARG), CCAAT/enhancer-
binding protein alpha (CEBPA) 
and angiopoietin-like 4 (ANGPTL4) 
mRNA and protein levels were 
determined in the shRNA-TNMD 
and shRNA-control adipocytes. 
Protein levels in cell lysates were 
analyzed by Western blotting 
using specific antibodies against 
PPARG, CEBPA and ANGPTL4, 
normalized to the internal control 
(α-tubulin), and expressed as fold-
change; the lower section shows a representative crop blot. (d, e, f ) Hormone-sensitive lipase (HSL) gene expression, 
adipose triglyceride lipase (ATGL), and perilipin (PLIN) gene expression were determined in the shRNA-TNMD and 
shRNA-control adipocytes. (g) Glycerol levels (µM) in cell supernatants after treatment with shRNA-TNMD. All values 
are expressed as the means ± SEM of three independent experiments. Significant differences were identified using the 
nonparametric Mann-Whitney U test; P-value: *<0.05. 
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knocked-down cells showed an upregulation of inflammatory markers such as IL1-β and tumor 

necrosis factor-α (TNF-α) mRNA. Furthermore, we observed a significant upregulation of the 

protein levels in the shRNA-TNMD-treated adipocytes compared with that in cells transfected with 

shRNA-control (P-value <0.05) (Fig. 5). However, we did not observe significant differences in the 

activation of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway 

through p65 subunit phosphorylation. Although TNMD could play a role against inflammation in 

adipocytes, more studies are needed to elucidate the underlying mechanism. 

Discussion

In the present study, we show that X-chromosome TNMD genetic variants are associated with 

childhood obesity and metabolic alterations in a cohort of Spanish children. Particularly, we show 

that the tag SNP rs4828038 is associated with anthropometry, glucose metabolism alterations, 

and increased levels of pro-inflammatory biomarkers in a sex-specific manner. Furthermore, by 

in vitro gene silencing, we demonstrate that TNMD is required for an adequate glucose and lipid 

metabolism, and it plays a role in the control of inflammation in cultured human adipocytes. 

Genetic association studies are commonly focused on autosomal variants, and genetic 

polymorphisms in sex chromosomes are often neglected 25. Notwithstanding, the study of sex 

chromosomes might help to clarify the role of several genes in the development of many diseases, 

especially complex human traits that exhibit gender disparity in risk or symptoms 28,36,37. Studies 

that employ mouse models and allow the distinction of gonadal from chromosomal effects have 

revealed that X-chromosome dosage influences food intake, which in turn affects adiposity and 

the occurrence of adverse metabolic conditions such as hyperinsulinemia, hyperlipidemia, and 

fatty liver 38. 

To date, the present study is the first to analyze and detect associations between TNMD 

X-chromosome genetic variants and obesity and its metabolic complications in a cohort of 

children. For that purpose, we quantified our power in 96.12% to detect small GWAS-size genetic 

effects (estimated in F2=0.02) at an alpha level of 0.05.

Specifically, we found a risky correlation between the rs4828038, tag SNP of the TNMD 

haploblock-2, and the BMI z-score and WC in boys. Interestingly, findings related to BMI z-score 

remained statistically significant after applying multiple-test correction. Regarding these 

anthropometric measurements, others authors such as Tolppanen et al. (2007), have also reported 

TNMD associations 20. Surprisingly, they have found a protective association between variants 

located in the haploblock-1 (rs11798018, rs5966709 and rs4828037) and BMI and weight in 

adult European men. Although these findings are reported for a different haploblock than our 

associated haploblock-2 SNP, such controversy merits special attention. A possible explanation 

might rely on the fact that both haploblock-1 and haploblock-2 could elicit contrasting effects on 
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TNMD expression through, for example, the alteration of microRNA targets sites or the generation 

of different splicing patterns. Other sources of variability might also rely on the fact that we are 

studying a cohort of children, while Tolppanen et al. focus on adult population with an advanced 

status of impaired glucose tolerance (IGT) and T2DM. In this regard, further TNMD functional 

genetic studies are needed to clarify such an issue. 

Regarding girls, we showed a protective correlation between our tag SNP rs4828038 and WC 

and WHR. In both associations, BMI was controlled for as a confounder. Specifically, the association 

between our tag SNP and WC further stood multiple-test correction (FDR=2.4%). Interestingly, our 

findings are in accordance with prior works of Tolppanen et al. (2007), who detected an association 

between the rs2073162-A-allele (marker in complete LD with our tag SNP) and smaller horizontal 

diameters in adult females when adjusting the model by BMI. 
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Figure 4. TNMD is involved in glucose metabolism in human differentiated adipocytes. Human adipocytes were 
transfected with an adenovirus-5 containing a shRNA-TNMD and shRNA-control (scrambled) at day 14 of adipogenesis 
induction. (a) Glucose transporter 4 (GLUT4) mRNA levels were normalized to those of hypoxanthine-guanine 
phosphoribosyltransferase-1 (HPRT1), and the data from three independent experiments are presented as the fold-change, 
which was calculated using the Pfaffl method. (b) GLUT4 protein levels from cell lysates were analyzed by Western blot using 
a specific antibody against GLUT4, normalized to the internal control (α-tubulin) and expressed as fold-change; the lower 
section shows a representative crop blot. (c) Glucose uptake levels in shRNA-TNMD-treated adipocytes compared with the 
shRNA-control or insulin (1 μM, 30 min) as a positive control. (d) Adiponectin (ADIPOQ) mRNA and protein levels expressed 
as fold-change. (e) Ratio phosphor-AMPKα/total-AMPKα. (f ) Ratio phosphor-AKT/total-AKT. (g) Immunofluorescent 
staining of adipocytes at day 14 with GLUT4 (red) and 4.6-diamidino-2-phenylindole (DAPI; blue; scale bar, 200 μm) in the 
shRNA-control and shRNA-TNMD-treated adipocytes. All values are expressed as the means ± SEM of three independent 
experiments. Significant differences were identified using the nonparametric Mann-Whitney U test; P-value: *<0.05. 
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Considering all this, we can see how the same region (haploblock-2) appears as a risk factor 

for obesity in boys, while at the same time, it acts as a protective element for central obesity 

parameters in girls. Such sex-specific behavior in our study reflects the typical sexual dimorphism 

of the X-chromosome very well, and it could arise from some X-chromosome particularities 

including differential gene dosage, the escape from the X-chromosome inactivation (XCI) and the 

existence of distinct genomic imprint mechanisms 38–42. To account for all these X-chromosome 

particularities, several specific steps and procedures have been implemented following published 

recommendations 25,27–30 (see the method section).

Regarding glucose metabolism, several risky correlations were found for the rs4828038 SNP 

in boys. Particularly, we identified that the rs4828038-T-allele was associated with higher levels of 

fasting glucose and HOMA-IR, as well as lower values of QUICKI index. Interestingly, QUICKI and 

glucose associations remained statistically significant also after controlling for BMI confounding. 

In analyses without BMI-confounding adjustment, QUICKI and glucose insights further reached 

FDR multiple-test significance. Altogether, these associations are in concordance with previous 

findings that have been obtained by Tolppanen et al. (2007) during a 3-year follow-up study. For 

two TNMD SNPs (the rs2073163 and the rs1155974) in strong LD with our tag SNP, they showed 

that men carrying the C and T alleles (respectively) presented an altered oral glucose tolerance 

Figure 5. TNMD triggers inflammation in human differentiated adipocytes. (a) mRNA expression and protein levels of 
interleukin 1-β (IL-1B); (b) mRNA expression and protein levels of tumor necrosis factor-α (TNF-α), and mRNA levels were 
normalized to those of hypoxanthine-guanine phosphoribosyltransferase-1 (HPRT1); TNF-α and IL1B protein levels 
were analyzed by XMap technology (Luminex) as indicated in the methods section. (c) Phospho-NFκB p65 protein levels 
were analyzed by Western blot using a specific antibody against phospho-NFκB p65, normalized to the internal control 
(α-tubulin), and expressed as the fold-change. The lower section shows a representative crop blot. The data from three 
independent experiments are presented as the means ± SEM. Significant differences were identified using the Mann-
Whitney U test; P-value: *<0.05. 
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test in comparison to individuals with the T and C alleles. These markers, along with the rs2073162, 

were also associated with an increased risk to develop T2DM during a 5-year follow-up study 

conducted in men 20. Considering all this, we could hypothesize that the small alterations detected 

in the glucose metabolism of our boys according to the TNMD genotypes may be a premature 

signal of future complications during adulthood such as IGT or even its progression to T2DM. On 

this matter, TNMD genetic variants could be potentially useful as early life risk indicators for T2DM in 

male subjects. For girls we did not observe significant results in any glucose metabolism outcome. 

Previous studies in adults have reported contradictory findings in this regard. 

In summary, although some of our genetic observations show a multiple-test level of statistical 

significance, it is important to stress, however, that they have not been corrected for between-trait 

multiple-test error. Thus, showed FDR corrected values are not study-wide robust and should be 

interpreted with caution. On the other hand, although we have taken some steps to account for 

main X-chromosome particularities, not all available suggestions were possible to incorporate in 

our study since this is a candidate-gene analysis instead of a GWAS approach. This, along with the 

fact that previous TNMD studies are statistically weak and barely accounted for X-chromosome 

specifications 20–22, indicates that our study should be viewed as hypothesis-generating instead of 

a replication approach. On this matter, more detailed characterization in bigger and independent 

children samples as well as additional follow-up studies during adulthood are needed.

According to these results in children, TNMD SNPs are associated with impaired glucose 

metabolism and we previously found TNMD overexpression in VAT from prepubertal obese 

children 17. Other studies have also described that TNMD expression is highly upregulated in 

human AT, increased in obesity 14–16 and downregulated after diet-induced weight loss 13 and that 

TNMD expression is predominant in adipocytes compared with stromal vascular fraction (SVF) 

cells 18. Furthermore, TNMD expression promotes preadipocyte proliferation and adipogenesis in 

SGBS adipocytes, and they improved insulin sensitivity in Tnmd transgenic mice, which suggesting 

the protective role of TNMD in VAT to alleviate insulin resistance in obesity 18. Consistent with 

these results, TNMD knock-down led to lower gene expression and protein levels of important 

transcription factors that are involved in adipogenesis such as PPAR-γ and C/EBP-α. On the other 

hand, as TNMD is expressed in dense connective tissues as tendons and ligaments, and the 

C-terminal domain could be processed as a soluble factor, this fraction could reach the adipose 

tissue and promote the adipogenic differentiation in vivo. However, further studies are needed to 

clarify this possible effect. Therefore, our results confirm the fact that TNMD promotes adipogenic 

differentiation, and it could be implicated as a protective factor that contributes to AT expansion.

The reduced lipolysis observed in TNMD-knocked-down adipocytes could be explained 

by the reduced gene expression and protein levels of PPAR-γ, as well as by the reduced AMPK 

activation because AMPK is the master regulator of metabolism. Indeed, it has been described that 

PPARG2-knocked-out adipocytes exhibit reduced lipolysis 43; this could be explained by the lower 
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expression of HSL 44 and ATGL 45, since they are both transcriptional targets of PPAR-γ. On the other 

hand, it has been reported that ANGPTL4 promotes the expression of genes involved in lipolysis 

in adipocytes 46, and since ANGPTL4 gene and protein levels were significantly downregulated 

when TNMD was inhibited, the results indicate that TNMD could be directly associated with lipid 

metabolism through ANGPTL4. 

The association found between TNMD SNPs and fasting glucose levels in this study in children 

together with the higher 2-hour plasma glucose levels that was found in adults suggested a 

potential role for TNMD in adipocyte glucose metabolism. The confirmation of this hypothesis is 

another key finding in this study. We observed a down-regulation in gene expression and protein 

levels of the insulin-regulated glucose transporter GLUT4 in TNMD-knocked-down adipocytes and 

a tendency toward lower basal glucose uptake. Indeed, GLUT4 plays a critical role in the regulation 

of glucose metabolism and the maintenance of body glucose homeostasis 47. Moreover, these 

results are in agreement with the observed lower adiponectin expression and lower AMPK 

activation. Adiponectin is the major secreted molecule of adipocytes and exerts multiple functions 

in regulation of energy homeostasis and glucose and lipid metabolism 48. Adiponectin acts by 

increasing AMPK activity and stimulating GLUT4 expression 49 and improves insulin sensitivity 

through inhibiting inflammatory signaling 50. Upon activation, AMPK promotes GLUT4 expression 

and its translocation to the plasma membrane, thus favoring glucose uptake independent of 

insulin 51,52. 

On the other hand, it was reported that adiponectin knock-down did not affect the activation 

of AKT and p38MAPK (phosphorylation form/total form) but significantly decreased AMPK activation 

in insulin-responsive adipocytes 53. In accordance with this finding, when TNMD expression was 

downregulated, we observed a reduced AMPK activation, lower adiponectin protein levels, and 

lower GLUT4 expression. However, we did not observe differences in AKT activation. These results 

suggest that the mechanism underlying the link between TNMD and glucose metabolism involves 

activation of AMPK. We also observed downregulation of C/EBP-α, which could directly bind and 

activate the GLUT4 gene promoter. It has been demonstrated that insulin and dexamethasone 

activate GLUT4 gene expression through C/EBP-α gene expression in brown adipose tissue 54. 

Moreover, exogenous expression of C/EBP-α in C/EBP-null cells with PPAR-γ overexpression resulted 

in an increase in GLUT4 mRNA levels.

Obesity is also associated with an increased expression of pro-inflammatory mediators in AT, 

and this inflammation has been shown to interfere with glucose metabolism 55. More specifically, 

TNF-α has been proposed as a link between adiposity and the development of insulin resistance, 

given its high expression in the AT of subjects with obesity 56,57. TNF-α is mainly produced in 

adipocytes and induces tissue-specific inflammation and insulin resistance through a reduction 

in GLUT4 expression 58–60. Furthermore, TNF-α upregulates the expression of IL-6, IL1-β, and protein 

phosphatase 2C (PP2C), which, in turn, suppresses AMPK activity. In addition, TNF-α downregulates 
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the expression of other important genes such as adiponectin, C/EBP-α, PPAR-γ and PLIN 61. These 

circumstantial evidence support the fact that TNMD might be directly implicated in the protection 

against inflammation in the differentiated adipocytes since we found increased levels of TNF-α 

and IL1-β when TNMD was silenced. Additionally, IL-1β has been suggested to be involved in the 

development of insulin resistance 64. Collectively, these data suggest that lowering the expression 

of TNMD in adipocytes leads to a pro-inflammatory status, which contributes to the dysregulation 

of glucose metabolism. Nevertheless, these results warrant further studies to elucidate the precise 

mechanisms.  

Finally, in the present work, we find that TNMD is highly expressed in human ADSCs and 

that it is involved in their differentiation into mature adipocytes. This finding is in line with the 

study performed by Senol-Cosar et al. (2016), where TNMD was reported to be involved in human 

adipogenesis in preadipocytes 18. However, depending on the cell line, the effects of TNMD 

on adipogenic differentiation are not completely clear. Shi et al. (2017) 62 reported that TNMD 

overexpression did not affect the adipogenic differentiation in ASCs, which suggested that the 

endogenous TNMD gene is already expressed compared to other vascularized soft tissues 6. 

Additionally, TNMD overexpression showed an inhibitory effect on the adipogenic differentiation of 

C3H10T1/2 and mMSC cells 63. Interestingly, Lin et al. (2017) demonstrated the same results where 

TNMD knockout in mice exhibited significantly higher adipocyte accumulation, and TNMD-/- TSPCs 

exhibited a higher rate of differentiation into adipocytes 64. The diverse regulatory mechanism of 

TNMD is involved in different cell types, and further studies are needed to elucidate the specific 

TNMD function in vivo. 

In conclusion, our data show that TNMD genetic variants, specifically rs4828038, which is a 

tag SNP within the presented haploblock 2, are associated with obesity and alterations in glucose 

metabolism in children. These results replicate previous findings that have been observed in adults 

and suggest that these markers could be potentially useful as early life risk factor indicators for 

obesity and the occurrence of alterations in glucose metabolism during adulthood. Additionally, 

we found a novel paradigm for TNMD in human adipocytes, which plays a role in adipogenesis 

and glucose and lipid metabolism, and report that these effects might be mediated through AMPK 

activation. Recent studies have indicated that TNMD is not only a glycoprotein that is expressed in 

the connective tissue with antiangiogenic properties but also beneficial for VAT expansion 18. Thus, we 

demonstrated and supported the fact that TNMD presents significant metabolic functions in adipocytes 

and that it might be a potential therapeutic target to improve the glucose metabolic status.
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Methods
Study population

In this case-control multicenter study, 915 Spanish children (438 boys and 477 girls) were 

included from three health institutions: Lozano Blesa University Clinical Hospital, Santiago de 

Compostela University Clinical Hospital, and Reina Sofia University Hospital. Childhood obesity 

status was defined according to the International Obesity Task Force (IOTF) reference for children 65. 

There were 480 children in the obesity group, 177 in the overweight group, and 258 in the normal-

BMI group. Inclusion criteria were European-Caucasian heritage and the absence of congenital 

metabolic diseases. The exclusion criteria were non-European Caucasian heritage; the presence 

of congenital metabolic diseases (e.g., diabetes or hyperlipidemia); under-nutrition; and the use of 

medication that alters blood pressure, glucose or lipid metabolism. 

Ethics statement

This study was conducted in accordance with the Declaration of Helsinki (Edinburgh 2000 

revised), and it followed the recommendations of the Good Clinical Practice of the CEE (Document 

111/3976/88 July 1990) and the legally enforced Spanish regulation, which regulates the clinical 

investigation of human beings (RD 223/04 about clinical trials). The Ethics Committee on Human 

Research of the University of Granada, the Ethics Committee of the Reina Sofía University Hospital 

of Cordoba, the Bioethics Committee of the University of Santiago de Compostela, and the Ethics 

Committee in Clinical Research of Aragon approved all experiments and procedures. All parents or 

guardians provided written informed consent, and the children gave their assent.

Anthropometric and biochemical measurements

Body weight (kg), height (cm), and WC (cm) were measured using standardized procedures, and 

the BMI z-score was calculated based on the Spanish reference standards published by Sobradillo 

et al. (2004) 66. Blood pressure was measured three times by the same examiner using a mercury 

sphygmomanometer and following international recommendations 67. The biochemical analyses 

were performed at the participating university hospital laboratories following internationally 

accepted quality control protocols, including routine measures of lipid and glucose metabolism. 

QUICKI and HOMA-IR were calculated using fasting plasma glucose and insulin values. Adipokines, 

CVD risk, and pro-inflammatory biomarkers [adiponectin, leptin, resistin, TNF-α, IL-6, IL-8, total 

plasminogen activator inhibitor-1 (PAI-1), myeloperoxidase (MPO), matrix metalloproteinase-9 

(MMP-9), soluble intercellular cell adhesion molecule-1 sICAM-1, and soluble vascular cell adhesion 

molecule-1 (sVCAM)] were analyzed on a Luminex 200 system (Luminex Corporation, Austin, Tex., 

USA) with human monoclonal antibodies (EMD MilliporeCorp, Billerica, MA) using MILLIplexTM 

kits (HADK1MAG-61K, HADK2MAG-61K and HCVD2MAG-67K), as previously described 68. High-

sensitivity C-reactive protein (hsCRP) was determined using a particle-enhanced turbidimetric 

immunoassay (Dade Behring Inc., Deerfield, III, USA).



Augusto Miguel Anguita Ruiz

88

Genotyping

Genomic DNA was extracted from peripheral white blood cells using two kits, the Qiamp® 

DNA Investigator Kit for coagulated samples and the Qiamp® DNA Mini & Blood Mini Kit for 

noncoagulated samples (QIAgen Systems, Inc., Valencia, CA, USA). All extractions were purified 

using a DNA Clean and Concentrator kit from Zymo Research (Zymo Research, Irvine, CA, USA). 

Based on previously reported associations in adults 19–21 and according to the Tagger program 
31, which was used to capture (at r2 = 0.8) common (MAF>=5%) variants in European (CEU) HapMap 

population, we selected seven SNPs located at the TNMD locus for the present association analysis. 

The seven selected SNPs are distributed through all TNMD sequences and are representative of 

the region (Figure 1a). Genotyping was performed by TaqMan allelic discrimination assay using 

the QuantStudio 12K Flex Real-Time PCR System (Thermo Fisher Scientific, Waltham, MA, USA). The 

call rate exceeded 95% for all tested SNPs, except for rs11798018 (92.7%). Minor allele frequencies 

(MAF) of all SNPs were > 2% and were similar to those reported for Iberian populations in Spain, 

in phase 3 of the 1000 Genomes Project. The Haploview software 69 was used with specific sex 

chromosome settings to assess the LD between SNPs in a sex-stratified manner.

Given the number of markers, we considered several parallel approaches to correct for 

multiple hypothesis testing based on the number of SNPs 70. Specifically, we employed correction 

based on the methods proposed by Holm (1979) 70, Hommel (1988) 71, Benjamini and Yekutieli 

(2001) 72,73 and classical Bonferroni. To estimate the expected proportion of type I errors among the 

rejected hypotheses, we further computed false discovery rates (FDRs) as described in Benjamini 

and Hochberg 72. Given the presence of linkage disequilibrium (LD), the FDR method is a proper 

approach that does not assume independence between markers.

X-chromosome Inactivation (XCI) assumptions

XCI is one of the main X-chromosome particularities that affect the analytical process. Varieties 

of statistical tests are available for performing genetic analysis of the X-chromosome, and 

the choice will mainly depend on the XCI model assumed for each target-study gene.

After revising the literature, we found that the TNMD genetic region is barely covered by 

current studies and that there is a lack of XCI data in adipose-tissue-derived samples 74,75,76. In this 

sense, a recent study 77 reported that the XCI status of the TNMD region remains unknown. On the 

other hand, TNMD transcript levels have been reported to be two times higher in women than in 

men 78.

Given this controversy and lack of evidence, both possibilities (‘escape’ and ‘XCI’) were tested 

in our work (see the method section ‘X-chromosome particularities and analyses’ for more details).
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X-chromosome particularities and analyses

Differential gene dosage between sexes, the escape from the XCI and the existence of 

distinct genomic-imprint mechanisms are some issues that make the X-chromosome a special 

region for genetic analyses. These particularities will determine important decisions that affect 

genotype calling, data imputation, quality control and statistics selection. The whole QC process 

was implemented in PLINK v1.07 79. 

Concerning genotype calling, algorithms that apply different procedures to male and female 

samples (e.g., Illuminus and CRLMM) have been proven to generally perform better than methods 

that do not (e.g., GenCall and GenoSNP) 80. In our work, genotypes were called from fluorescence 

data files using the Applied Biosystems qPCR app module (ThermoFisher Cloud software) and the 

autocalling method. According to literature recommendations, sex information for each sample 

was supplied to the software and genotype calling was performed separately in both sexes. In 

this regard, although genotyped plates did not consist of only boys or girls, the balanced sex ratio 

of our population (477f/438m) (Table S1) favored a better performance. Five signal clusters were 

identified (three in the case of females and two in the case of males). Next, sex information and 

scatter of the clusters were used to call the genotypes (AA, AB and BB for females, and A- and B- for 

males). Since the employed software also allows the option of using user-definable boundaries for 

data analysis, those samples classified as undetermined by the autocalling method were recalled 

using the manual option. A set of controls were used to deduce these questionable genotype calls. 

Outliers were omitted from the analysis.

Next, we checked TNMD SNPs for sex-specific allele frequencies, which can induce type I 

errors in some statistical analyses (especially in the case of unbalanced designs). Tested by means 

of the Fisher exact test, all SNPs showed nonsignificant P values and thus equal allele frequencies 

across sex groups (Table S4). Two criteria concerning missing frequency were also employed (sex-

specific missing frequencies and the differential missingness between sexes) 29,81. As shown in 

table S5, our tag SNP passed the recommended filter in females (Missing Freq<= 2%) but not in 

males. Regarding the differential missingness test instead, only the rs11798018, rs4828037 and 

the rs2073163 passed the quality recommended filter (P ≥ 10-7). This test was performed in the 

PLINK software using the flag “test-missing” and replacing the phenotype column of the .ped 

file by sex information. Regarding additional MAF quality checks, all SNPs showed appropriated 

frequencies > 1% by sex groups (Table S4). When analyzing the Hardy Weinberg equilibrium (HWE) 

in girls belonging to the normal-BMI group, all SNPs reported proper values (P ≥ 10-4) (Table S6). 

According to this QC process, we ensured that there are no important genotyping errors and that 

our genetic data are reliable for further analyses.

Regarding high-level statistical analysis, both (‘escape’ and XCI) possibilities were tested as 

previously stated. At an initial phase, we assumed TNMD escapes from XCI and, thus, employed 
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linear and logistic regressions (stratified by sex) under an additive model. That is, females were 

coded as 0, 1, or 2, according to the presence of 0, 1, or 2 risk alleles, while males were coded as 

0 or 1 according to the presence of 0 or 1 risk allele. This codification was achieved in the PLINK 

software from the binary file using the flag “--dosage”. Additionally, we rerun all performed analyses 

using the X-chromosome specific version of common autosomal tests, developed by Clayton et al. 

(2008) 82. Clayton’s test explicitly accounts for random XCI and allowed the inclusion of females and 

males together, thereby, increasing the statistical power. This secondary analysis was performed 

using the snpStats R package 83. Major significant associations that were reported during the initial 

phase were further replicated using Clayton’s secondary approach (Table S7). 

Data Records

The complete genetic data set in the present study complies with the requirements, and 

it has been uploaded into the European Genome-Phenome archive (EGA). Using the title “X 

chromosomal genetic variants are associated with childhood obesity”, the reference identifier of 

the project is EGAS00001002738 (2018). Data were uploaded according to obesity classes. The 

affected group (cases) was composed of children with obesity and those who were overweight 

(EGA EGAD00010001482 (2018)), and the control group was composed of normal-weight children 

(EGA EGAD00010001481 (2018)). Three by-experimental condition files are available online (.bed, 

.bim and .fam files). The .bed file contains the raw genotype data, while the .bim file describes 

the genotyped SNPs showing information related to chromosome number, SNP identifier, genetic 

distance in morgans (set as 0 for all markers), base-pair position (bp units) and allele letters. Finally, 

available fam files contain information related to the study population (sample identifier, family 

and paternal identifiers (here set as 0), sex (1 for males and 2 for females) and phenotype group 

(1 for control and 2 for cases)). As previously stated, data are available online according to each 

experimental condition.

Cell culture and adipogenic differentiation

Human adipose-derived stem cells (ADSCs) were purchased directly from Invitrogen (Gibco, 

Thermo Fisher Scientific, Carlsbad, CA, USA) (GibcoTM Lot 2117, StemPro Human ADSCs). These 

commercially available ADSCs are isolated from normal (nondiabetic) women subcutaneous 

lipoaspirates that are collected during elective surgical liposuction procedures. ADSCs have 

been reported to differentiate into many different lineages, including chondrogenic, osteogenic, 

adipogenic, and neural lineages. We cultured, expanded, and differentiated ADSCs into adipocytes 

according to the manufacturer’s recommendations. Briefly, ADSCs were grown and expanded in 

appropriate sterile plastic dishes in complete Advanced-DMEM (Gibco, Thermo Fisher Scientific, 

Carlsbad, CA, USA) that was supplemented with 2 mM L-glutamine (25030, Gibco, Thermo Fisher 

Scientific, Carlsbad, CA, USA), 10% fetal bovine serum (FBS, PT-9000 H, Lonza, Basel, Switzerland), 

100 U ml-1 penicillin and 100 µg ml-1 streptomycin (10378-016, Gibco, Thermo Fisher Scientific, 
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Carlsbad, CA, USA). We incubated cells at 37°C in a humidified atmosphere containing 5% CO2. The 

cell culture medium was replaced twice per week, and the cells were passaged up to a maximum of 

6 times. To induce differentiation, we seeded cells in 35-mm dishes at a density of 30,000 cells/cm2, 

and we cultured them in MesenPRO RSTM medium (12746-012, Gibco, Thermo Fisher Scientific, 

Carlsbad, CA, USA). At 90% confluency, the growth medium was replaced with StemPRO RSTM 

adipogenic differentiation medium (A1007001, Gibco, Thermo Fisher Scientific, Carlsbad, CA, USA). 

ADSCs were incubated with differentiation medium for 14 days. We monitored and quantified 

adipogenesis through morphological examination of the cellular accumulation of lipid droplets via 

Oil Red O staining (234117, Sigma-Aldrich, St. Louis, MO, USA; Supplementary Figure S4A) and by 

spectrophotometric determination of washed Oil Red O staining (Supplementary Figure S4B). All 

treatments were performed on differentiated adipocytes at day 14. 

Adenoviral transduction

Briefly, knock-down of TNMD was performed simultaneously using four different shRNA 

(TR300905 from Santa Origene, Rockville, Maryland, USA) packed in an adenovirus-5 vector (Ad-

5). The production of ad-5 PacI-linearized plasmids (6 µg) containing the adenovirus genomes, 

as well as TNMD shRNA, or null sequences were transfected into 1×106 HEK293 cells and the 

viruses were recovered 8-10 days post-transfection. Next, the viruses were sequentially amplified 

until the infection of 4×108 HEK293 cells. Viruses were purified via two consecutive rounds of CsCl 

isopycnic density ultracentrifugation and desalted using a Sephadex PD-10 column (Amersham 

Biosciences, Uppsala, Sweden). The viral particles were measured via absorbance of disrupted 

virions at 260 nm where one O.D. equals 1×1012 particles per mL, while infective particles were 

measured via end-point dilution assay through counting the number of hexon-producing cells in 

triplicate 84. The production of the vectors was conducted at Unitat de Producció de Vectors Virals-

Cbateg, Barcelona, Spain. For adenovirus-shRNA experiments, human differentiated adipocytes 

were transfected with an Ad-5 containing shRNA-TNMD or shRNA-scrambled as a control using 

hexadimethrine bromide according to the manufacturer’s protocol. First, to characterize the 

toxicity of adenovirus transduction in human adipocytes, we monitored the cellular viability in 

adipocytes that were exposed to different multiplicities of infection (MOI) (0, 10, 50, 100, 300, 500 

and 1000 for 48 h) using a Neubauer chamber and trypan blue (4%). No toxicity was observed 

for the tested range of adenovirus. Subsequently, based on TNMD gene inhibition (approximately 

90%), the MOI selected was 300 in all subsequent experiments. Forty-eight hours after transfection, 

the cells were collected. 

RNA isolation and qRT-PCR

Total RNA was extracted from cells using the PeqGOLD HP Total RNA kit (Peqlab, Germany). 

Isolated RNA was treated with Turbo DNase (Ambion, Life Technologies, Carlsbad, CA, USA). 

We determined the final RNA concentration and quality, according to the 260/280 ratio, using 
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a NanoDrop2000 (NanoDrop Technologies, Winooski, Vermont, USA). Total RNA (500 ng) was 

transcribed into cDNA using the iScript cDNA Synthesis Kit (Bio-Rad Laboratories, California, 

USA). Next, we determined the differential gene expression levels of TNMD (330001 PHH12206A, 

Qiagen, Hilden, Germany), peroxisome proliferator-activated receptor gamma (PPARγ), leptin (LEP), 

and adiponectin (ADIPOQ) during the adipogenic differentiation via qPCR using specific primer 

sequences (Table S8). The specific primer sequences were designed using Primer3 (http://bioinfo.

ut.ee/primer3-0.4.0/). Primers for glucose transporter 4 (GLUT4), interleukin 1-beta (IL1B), CCAAT/

enhancer-binding protein alpha (CEBPA), angiopoietin-like 4 (ANGPTL4), tumor necrosis factor 

alpha (TNF-α), hormone-sensitive lipase (HSL), adipose triglyceride lipase (ATGL), perilipin (PLIN), 

and 5’ AMP-activated protein kinase (AMPK) were obtained from Bio-Rad Laboratories, California, 

USA. qPCR was performed using an ABI Prism 7900HT instrument (Applied Biosystems, Foster City, 

CA, USA) and SYBR Green PCR Master Mix (Applied Biosystems, Foster City, CA, USA). Hypoxanthine-

guanine phosphoribosyltransferase-1 (HPRT1) was used as a reference gene for the differentiation 

experiments. Quantification was performed using the Pfaffl method 85. Compliance with the 

minimum information for publication of quantitative real-time PCR experiments (MIQE) was made 

possible using Bio-Rad’s PrimePCR assays. We calculated the statistical validation of the stability of 

the reference genes in each sample. Bio-Rad recommends using a <0.5 value, which is the most 

stable expression in the tested samples. The results are expressed as the fold-change calculated. 

Western blot assays

Protein samples from cell lysates that contain 2.5 µg of protein were mixed with 3X SDS-PAGE 

sample buffer (100 mM Tris-HCl, pH 6.8, 25% SDS, 0.4% bromophenol blue, 10% β-mercaptoethanol 

and 2% glycerol), separated via SDS-PAGE using a TGX Any kD gel (Bio-Rad Laboratories, California, 

USA), and transferred to a nitrocellulose membrane (Bio-Rad Laboratories, California, USA). After 

incubation in blocking buffer [5% nonfat milk and 0.1% Tween 20 in Tris-buffered saline (TBS)], the 

membranes were probed with one of the following antibodies: anti-TNMD-N14 (SC-49325; 1:200 

in 5% nonfat milk), anti-GLUT4 (H61; 1:100 in 5% nonfat milk), and anti-Angptl4 (sc-373762; 1:500 in 

5% BSA), which were acquired from Santa Cruz Biotechnology, CA, USA. Anti-adiponectin (AF1065, 

R&D Systems, Inc, USA; 1:500 in 5% bovine serum albumin, BSA), anti-PPAR-γ (D69; 1:1000 in 5% 

BSA), anti-phospho-C/EBP-α (Ser21) (1:1000 in 5% BSA), anti-total AMPK-α, anti-phosphorylated 

AMPK-α (phospho-AMPKα T172) (both 1:1000 in 5% BSA), anti-AKT (C67E7), and anti-phospho-

AKT (Ser473, D9E) (1:1000 in 5% BSA), and anti-phospho-NF-kB p65 (Ser536) (1:500 in 5% BSA) 

were acquired from Cell Signaling Technologies (Beverly, MA, USA). We purchased anti-α-tubulin 

(internal control, 1:4000 in 5% nonfat milk) from Sigma. Immunoreactive signals were detected 

via enhanced chemiluminescence (Super-Signal West Dura Chemiluminescent Substrate, 34075, 

Thermo Fisher Scientific, Carlsbad, CA, USA). The membrane images were digitally captured and 

the densitometric analyses were conducted using the ImageJ software. The results were expressed 

as the fold-change in expression relative to the control. The graph shows a representative crop blot.
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Immunofluorescence analysis

Human ADSCs were seeded on cover glasses and cultured for 2 days. Subsequently, 

adipogenic differentiation was performed over 14 days. We washed the adipocytes twice with 

PBS and fixed them with 4% paraformaldehyde for 30 minutes. Next, we incubated the cells 

with a permeabilization solution (0.5% saponin) for 10 minutes and washed them twice with 

PBS. Subsequently, the cells were incubated with working buffer (WB) containing 0.05% saponin 

and 1% bovine serum albumin, for 1 hour. The primary antibodies were anti-GLUT4 (1:100 in WB, 

H-61) and anti-TNMD-N-14 (1:50 in WB, SC-49325). We incubated the samples at 4°C overnight 

and washed the cover glasses three times with a working buffer for 5 min per wash. Next, the 

secondary antibodies were added, and GLUT4 and TNMD were visualized using an Alexa 

488-conjugated chicken anti-goat IgG and Alexa 594-conjugated chicken anti-rabbit IgG at 1:1000 

dilutions (Molecular Probes, Thermo Fisher Scientific, Carlsbad, CA, USA). Finally, we used ProLong 

Gold Antifade Mountant with DAPI (P36931, Molecular Probes, Thermo Fisher Scientific, Carlsbad, 

CA, USA) to fix cells with cover slips (Menzel-Glaser, 24 × 60 mm #1, Denmark). Image acquisition 

was performed with cells examined under a Nikon A1 confocal microscope equipped with a 

20X immersion objective. Z-series optical sections were collected using a 1-micron-step-size and 

displayed as maximum z-projections using the NIS Elements/ImageJ software. Image acquisition 

was additionally performed using a fluorescence microscope (Olympus IX2). 

Intracellular IL-1β and TNF-α protein levels

The intracellular IL-1β and TNF-α levels were determined in cell lysates in the shRNA-TNMD- 

and shRNA-control-treated adipocytes. Samples were harvested with protein lysis buffer, diluted 

in the appropriate buffer diluents and added to the wells with the rest of the reagents. IL-1β 

and TNF-α were determined using a MILLIplexTM kit (HSTCMAG-28SK) on a Luminex 200 system 

(Luminex Corporation, Austin, Tex., USA).

Glucose-uptake assays

Glucose uptake was determined using a colorimetric assay kit (MAK083, Sigma-Aldrich, St. 

Louis, MO, USA). Briefly, we differentiated ADSCs in 12-well plates, as described in the “Cell culture 

and incubation” section. After adenovirus transfection at day 14, we washed the differentiated 

adipocytes twice with PBS and starved them overnight in a serum-free medium. Next, we washed 

the cells 3 times with PBS and glucose starved them by incubating for 40 min in KRPH buffer (5 

mM Na2HPO4, 20 mM HEPES, pH 7.4, 1 mM MgSO4, 1 mM CaCl2, 137 mM NaCl and 4.7 mM KCl) 

containing 2% BSA. Glucose uptake was assessed with 1 mM 2-deoxy-D-glucose in KRPH for 20 

min at 37°C and 5% CO2. As a positive control, the cells were stimulated with insulin (1 μΜ) for 20 

min. Glucose uptake levels were expressed in pmol/well.
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Statistical analysis 

The results in the tables are presented as the mean (SD). The one-way ANOVA test and 

Tukey post hoc test were performed to compare phenotype data between obese, overweight, 

and normal-BMI children. P values < 0.05 were considered statistically significant. These statistical 

analyses were conducted in R environment 86. A specific genetic analysis design was implemented 

in PLINK v1.07 78 and R environment to handle the X-chromosomal location of TNMD; the respective 

codes are available upon request.

In vitro experiments were repeated at least three times. In each experiment, two replicates 

were performed. Data are expressed as the mean ± standard error of the mean (SEM). Significant 

differences in the levels of gene and protein expression and glucose uptake were determined 

using the nonparametric Mann-Whitney U test; statistical significance was defined as P-value *< 

0.05, P-value **< 0.01. Statistical analyses were performed using SPSS version 22, for Windows 

(SPSS, Chicago, IL, USA).
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Abstract X chromosome genetic variation has been proposed as a potential source of 
missing heritability for many complex diseases, including obesity. Currently, there is a lack 
of public available genetic datasets incorporating X chromosome genotype data. Althou-
gh several X chromosome-specific statistics have been developed, there is also a lack of 
readily available implementations for routine analysis. Here, we aimed: 1) to make public 
and describe a dataset incorporating phenotype and X chromosome genotype data from 
a cohort of 915 normal-weight, overweight and obese children, and 2) to deeply describe 
a whole implementation of the special X chromosome analytic process in genetics. Data-
sets and pipelines like this are crucial to get familiar with the steps in which X chromoso-
me requires special attention and may raise awareness of the importance of this genomic 
region.
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Background & Summary

Overweight and obesity in children are a public health problem that has raised concern 

worldwide1. Childhood obesity is characterized by an expansion of the adipose tissue (AT)1 and 

plays an important role in the development of cardiometabolic alterations during early adulthood, 

thereby increasing morbidity and mortality2. According to twin and family studies, around 40–70% 

of the interindividual variability in body mass index (BMI) has been attributed to genetic factors3-5. 

Despite this, known single-nucleotide polymorphisms (SNPs) explain < 2% of BMI variation6, a 

phenomenon termed ‘missing heritability’. Potential sources explaining this missing heritability 

include epigenetic components, the existence of low frequency and rare variants as well as the 

presence of X chromosome genetic variation.

Analysis in current genetic association studies is usually focused on autosomal variants while 

the sex chromosomes, and specially the X chromosome, are often neglected. Among the reasons, 

it highlights a lower gene density on the X chromosome, a lower coverage of the region in current 

genotyping platforms and a number of technical hurdles including complications in genotype 

calling, imputation and selection of test statistics7.  According to a previous report, only 242 out 

of all 743 GWAS conducted from 2005 to 2011 considered the X chromosome in their analyses7. 

The proportion was similar when only family-based GWAS were considered. There is therefore 

a lack of available public datasets including X chromosome genotype data for analysis. On the 

other hand, although several X chromosome-specific statistical tests and guidelines have now 

become available, there is also a lack of readily available implementations and user-friendly apps 

incorporating them for routine analysis8,9.

The majority of the technical hurdles faced when analysing X chromosomal data rise from 

two of its main particularities. The first one is the fact of women having two allele copies while 

males having only one. As a consequence, if males are included in the analysis, special caution 

must be taken. Particularly, the study design process should be performed carefully, trying to 

maintain a balanced female/male ratio across experimental conditions. Otherwise, many available 

statistical tests will suffer from type I errors as soon as sex-specific allele frequencies occur, which 

is typically observed for a great number of variants. Other problems derived from an unbalanced 

sex ratio in the study sample include problems during the genotype calling process, as the signal 

intensities obtained from standard array genotyping platforms will be always lower in males than 

for females (who carry two alleles). 

The second uniqueness motivating X-chromosome specific analyses lies in the X 

chromosome inactivation (XCI) process, through which most of the cells of females express only 

one X chromosome allele in order to compensate the genetic dosage with regard to males. 

Before selecting a particular statistical approach, it should be mandatory to carefully investigate 

the concrete XCI model to assume for a gene in a particular tissue. Depending on the XCI model 
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assumed, we should proceed one way or another during the selection of the test statistics. These 

and other particularities must be addressed as long as X chromosomal data are included into 

genetic studies. 

In relation to obesity, only a few studies have reported association with markers on the X 

chromosome. One of the most remarkable findings involves the tenomodulin (TNMD) gene, a Xq22 

located locus encoding a type II transmembrane glycoprotein. First time associated with adult 

obesity at the genetic level10, its presence in adult human AT has been demonstrated showing 

higher expression in obesity and lower expression after diet-induced weight loss.  Regarding 

children population, our research group found that TNMD expression was five fold-times up-

regulated in visceral adipose tissue (VAT) of children with obesity, compared with their normal-

weight counterparts (Gene Expression Omnibus GSE9624)11,12. Recently, we have reported new 

associations between TNMD SNPs and childhood obesity and metabolic alterations in a Spanish 

children population13. Interestingly, our study has been the first to analyse and detect associations 

between X chromosome TNMD genetic variants and obesity in a children cohort. 

Similarly, SNPs in the SLC6A14 gene, also located in the X chromosome, have shown evidence 

of association with obesity14. As a whole, these TNMD and SLC6A14 reports support the fact that X 

chromosome genetic variants may be not only useful early life risk indicators of obesity but also an 

interesting source of missing heritability13.

Given the lack of public available genetic datasets incorporating X chromosome genetic 

variants and the still prevalent statistical hurdles that make the X chromosome a difficult region 

to be tested in functional genetics, we here aimed: 1) to make public and describe a dataset 

incorporating X chromosome genotype data from a children cohort13,15, and 2) to outline a whole 

implementation of the special X chromosome analytic process in genetics. The presented research 

dataset includes X-chromosomal SNP data (mapping the genes TNMD and SLC6A14) from a children 

cohort composed of 915 normal-weight, overweight and obese subjects. Some topics covered in 

this paper include dataset sharing and description, explanation of sample design, genotype calling, 

quality control, and test statistics selection procedures. Additionally, a short section explaining and 

interpreting findings obtained after analysing the dataset with a specific X chromosome analytic 

approach is presented.

Methods

Experimental design and study population

These methods are an expanded version of descriptions in our related work and general 

characteristics of the dataset have been previously described13. Briefly, in this case-control 

multicentre study, 915 Spanish children (438 males and 477 females) were recruited from three 
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national health institutions: Lozano Blesa University Clinical Hospital, Santiago de Compostela 

University Clinical Hospital and Reina Sofía University Clinical Hospital. According to specific 

X-chromosomal analytic requirements, the female/male ratio of the study sample was perfectly 

balanced.

Childhood obesity status was defined according to the International Obesity Task Force (IOTF) 

reference for children16 which is based on the application, on children population, of the widely 

used cut-off points of BMI for adults (25 and 30 kg/m2, for overweight and obesity respectively). 

Particularly, these criteria constitute a range of age and sex specific cut-off points for children 

that have been extracted from solid percentile tables constructed on 97876 boys and 94851 girls 

(ranging from 2 to 18 years). After the application these specific cut-off points, the dataset was 

composed of 480 children in the obesity group, 177 in the overweight group and 258 in the normal-

BMI group. Children were allocated into two experimental groups according to their obesity status; 

the affected group (cases) composed of both children with obesity or overweight and the control 

group composed of normal-weight children. An unbalanced female/male ratio across cases and 

controls has been proven to heavily affect the power of some specific X chromosome association 

tests17. In our study, a balanced female/male ratio was maintained across each experimental 

condition (122/136 in controls and 355/302 in cases) (Figure 1).

Inclusion criteria were European-Caucasian heritage and the absence of congenital metabolic 

diseases. Otherwise, the exclusion criteria were non-European Caucasian heritage, the presence of 

congenital metabolic diseases (e.g., diabetes or hyperlipidemia), undernutrition, and the use of 

medication that alters blood pressure, glucose or lipid metabolism. 

Ethical statement

All procedures in the study were conducted in accordance with the Declaration of Helsinki 

(Edinburgh 2000 revised), and followed the recommendations of both the Good Clinical Practice of 

the CEE (Document 111/3976/88 July 1990) and the legally enforced Spanish regulation for clinical 

investigation of human beings (RD 223/04 about clinical trials). The Ethics Committees on Human 

Research of all participant institutions approved all experiments and analyses with registration 

Code: “2011/198”. All parents or guardians provided written informed consent and children gave 

their assent.

DNA extraction, processing and analysis.

The presented dataset consists on genotype data for eight target SNPs mapping the 

X-chromosomal genes TNMD and SLC6A14 in the study population. Details regarding SNP selection 

and molecular analyses are briefly covered here since they have already been fully detailed in 

our previous work13. On the contrary, we pay special attention in the explanation of X chromosomal 

particularities, data description as well as in the summarization of each data analysis and processing step. 
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Figure 1. Study design and characteristics. (a) Experimental workflow used to generate and analyse the data output. (b) 
Genomic context of selected markers; light blue boxes represent exons, while the connecting lines are introns. Abbreviations; 
rs, reference SNP; UTR, untranslated region.
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Table 2. Allele frequencies 
in the study population 
stratified by experimental 
condition. Abbreviations; CHR, 
Chromosome; SNP, Single 
Nucleotide Polymorphism; BMI, 
Body Mass Index; A1, Minor 
Allele; and MAF, Minor Allele 
Frequency. 

Table 1. Allele frequencies in the whole study population and by sex group. P and OR columns correspond to P-values and 
Odd Ratios obtained by means of the Fisher exact test for sex-specific allele frequencies. Abbreviations; CHR, Chromosome; 
SNP, Single Nucleotide Polymorphism; BP, Base Pair; A1, Minor Allele; MAF, Minor Allele Frequency; A2, Alternative Allele; P, 
P-value; and OR, Odd Ratio. 
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Seven SNPs located at the TNMD locus and one located at the SLC6A14 were selected for 

genotyping analysis. Genomic DNA was extracted from peripheral white blood cells using two 

automated kits, the Qiamp DNA Investigator Kit for coagulated samples and the Qiamp DNA 

Mini & Blood Mini Kit for non-coagulated samples (QIAgen Systems, Inc., Valencia, CA, USA). All 

extractions were purified using the DNA Clean and Concentrator kit from Zymo Research (Zymo 

Research, Irvine, CA, USA). Genotyping was performed by TaqMan allelic discrimination assay using 

the QuantStudio 12K Flex Real-Time PCR System (Thermo Fisher Scientific, Waltham, MA, USA). 

Given the X-chromosomal location, it is recommendable to analyse females and males in separate 

plates during the genotyping process or, at least, maintain a balanced female/male ratio by plate.

Once genotyping was accomplished, we checked candidate SNPs for sex-specific allele 

frequencies, which can induce type I errors in some statistical X-chromosome analyses (especially 

in the case of unbalanced designs). Tested by means of the Fisher exact test, all SNPs in the TNMD 

showed no significant P-values and thus equal allele frequencies across sex groups (Table 1). On 

the contrary, the SNP in the SLC6A14 did not (P=0.01). This fact should be taken into consideration 

when selecting an appropriate test for high-level statistical analyses unless a balanced sex ratio 

across experimental conditions is presented in the population (which is our case). Information 

regarding minor allele frequencies (MAFs) stratified by experimental condition for all candidate 

markers is presented in (Table 2). Linkage disequilibrium (LD) status of the TNMD gene was studied 

using the Haploview Software separately in males and females13,18.

Data Records
The complete research dataset (genotype and phenotype data) has been uploaded into 

the European Genome-Phenome archive (EGA). The work can be found online with the title 

“X chromosomal genetic variants are associated with childhood obesity” or with the identifier 

EGAS00001002738 (2018)15. Online data are sorted and presented according to obesity status; 

the affected group (cases) composed of both children with obesity or overweight (EGA reference 

EGAD00010001482 (2018)) and the control group composed of normal-weight children (EGA 

reference EGAD00010001481 (2018)). Three files by-experimental condition (a total of six) are 

available online (.bed, .bim and .fam files). The .bed files contain raw genotype data while the .bim 

files describe information relative to target SNPs (chromosome number, SNP identifier, genetic 

distance in morgans (set as 0 for all markers), base-pair position and coding alleles). Instead, the 

.fam files contain information relative to subjects (sample identifiers, family and paternal identifiers 

(here set as 0), sex (1 for males and 2 for females) and experimental group (1 for control and 2 for 

cases)). All presented formats can be easily readable in PLINK 1.9 software using the –bfile command 

option and further transformed to a more standard file format with the –dosage option22. 

The complete data set in the current study complies with the requirements of the EGA 

archive. Detailed information about each sample and shared data files is presented in online-only 
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tables 1, 2 and 3. Specifically, DOI and descriptions for each shared file are provided in the online-

only table 2.

Technical Validation

X chromosome particularities

Before introducing further steps, we here list two issues making the X chromosome a difficult 

region for genetic analyses. These particularities will determine important decisions related to 

genotype calling, data imputation and statistical analysis. It is important to note, however, that all 

here-described particularities are only applicable to those X chromosomal loci outside the pseudo-

autosomal region of the X chromosome (which is the case of TNMD and SLC6A14). 

The first noticeable uniqueness of the X chromosome is the fact of women having two allele 

copies while males having only one. As a result, while females can present the standard three 

possible allele combinations (AA, AB and BB), males are homozygous and have only two distinct 

possible genotypes (A- and B-). For this reason, standard autosomal association tests, such as the 

Cochran-Armitage trend test23,24, are not immediately applicable to X chromosome data.  The 

second particularity affecting the X-chromosome analysis lies in the X chromosome inactivation 

(XCI) process, through which the transcription from one of the two X chromosome copies in 

female mammalian cells is silenced in order to balance the expression dosage between XX females 

and XY males. XCI is, however, incomplete in humans: with up to one-third of the X-chromosomal 

genes escaping from this silencing epigenetic mechanism. The degree of ‘escape’ from inactivation 

has been reported to strongly vary between genes, tissues and individuals25,26, with three possible 

scenarios at the gene level: complete XCI, partial XCI or total escape from XCI27,28. Depending on 

the XCI model assumed for a certain gene, we should proceed one way or another during the 

selection of the test statistics (see section ‘High-Level Analysis: Statistical Analysis’ for further details). 

The assumption of a particular XCI model is therefore a process that must be performed carefully. 

Until date, the extent to which XCI is shared between cells and tissues remains poorly 

characterized and there is a lack of standardized criteria nor well-established databases to check 

if a gene escapes or not from XCI in a concrete situation. In order to do so, an exhaustive search 

in PUBMED and other scientific databases should be performed looking for particular studies 

supporting a certain XCI hypothesis. Currently, the most similar resource to a standardized database 

on this regard is the initiative carried out by the Genotype-Tissue Expression (GTEx) consortium9 in 

2018, which describes a systematic survey of XCI, integrating over 5500 transcriptomes from 449 

Individuals, spanning 29 tissues from the GTEx (v6p release) and 940 single-cell transcriptomes, 

combined with genomic sequence data. Particularly, they show that XCI at 683 X-chromosomal 

genes is generally uniform across human tissues and that incomplete XCI affects at least 23% of 

X-chromosomal genes. Overall, this work presents an updated catalogue of XCI across human 
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tissues which may be of great utility during the selection of a particular XCI model for a gene. Other 

available resources also include the work of Slavney et al. (2016)29, which gathers the main insights 

from previous studies on X-chromosome gene expression datasets. 

By way of example, we here illustrate the whole process followed for the identification of 

the optimal XCI model in the case of TNMD. First, we interrogated the Slanvey et al. (2016) work29, 

where no evidence of escape from XCI was reported for this locus. In order to get more information 

about this fact, we further studied in detail the three works summarized in the Slanvey et al. (2016)29 

paper. The first work on which the paper is based is a study from Carrel et al. (2005)25, in which we 

could not identify any probe covering the TNMD region. Instead, a few surrounding regions were 

mapped; among which the SRPX2, ZD89B07 and the SYTL4 reported escaping from the XCI process. 

In spite of it, this study was based on a fibroblast cell model and thus not applicable to our adipose 

tissue context. Regarding the second revised article30, again, there were not available probes 

covering TNMD. Thus, neither conclusions nor new information could be extracted. In relation to 

the third included article31, we were not able to find any table or supplemental material showing 

an output list of the analysed regions. 

Next, we investigated the well-established work from the GTEx consortium9 and found that 

the XCI status of the TNMD region remains catalogued as unknown (supplementary tables S2 and 

S13 of this paper).

As a complementary approach, we performed a search in PUBMEP looking for individual 

studies focused on the gene expression status of TNMD from different sexes. As a result, we found 

a work reporting higher basal expression of TNMD in women than in men32, which could indicate 

that TNMD escapes from the XCI. 

Taking all this into consideration and given the lack of agreement, both possibilities (‘escape 

from XCI’ and ‘XCI’) should be tested in the case of TNMD. A searching process like this is highly 

recommendable to be done for any X chromosome locus before the selection of a particular 

statistical approach.

Raw data processing

The primary step of the data analysis consisted on the extraction of genotype calls from 

fluorescence array data and the construction of work data files for data manipulation and analysis. 

Details regarding the exact procedure for genotype calling, which is an important procedure in 

X-chromosomal analyses, are listed below (`Genotype Calling´ section). 

Once we obtained genotype calls for the 915 individuals, we generated standard format files 

(.ped and .map) transforming the ThermoFisher cloud-derived outputs from long to wide format 

using an own script in R environment33. Finally, data were imported into PLINK 1.9 software18 and 

converted into binary format files using the --make-bed flag. These binary formats (.bed, .bim and 



Augusto Miguel Anguita Ruiz

108

.fam) are a more compact representation of the data that saves space and speeds up subsequent 

analyses. 

Genotype calling 

This is the first step of any primary genotype analysis and consists on the extraction of 

genotype calls from fluorescence array data at the SNP and individual level. Along with the test 

statistics selection procedure, the genotype calling process is an analytical step heavily affected 

by X chromosome particularities. Specifically, the main X chromosome uniqueness affecting this 

process is the dosage imbalance between males and females. Since males carry only one X allele, 

signal intensities obtained from the Real-Time PCR System are lower in males than for females and 

thus a correction should be implemented. On this matter, calling algorithms which apply different 

models to male and female samples (e.g. Illuminus and CRLMM) have been proven to generally 

perform better than methods which do not (e.g. GenCall and GenoSNP)34. 

Here, we employed the Applied Biosystems qPCR app module (ThermoFisher Cloud software) 

and the autocalling method for genotype calling. According to literature recommendations, the 

sex information for each sample was supplied to the software and genotype calling was performed 

separately in both sexes. In this regard, although genotyped plates did not consist on only boys 

or girls, the balanced sex ratio of our population (477 females and 438 males) favoured a better 

performance of the algorithm. Five signal clusters were identified (three in the case of females and 

two in the case of males). Then, sex information and scatter of the clusters were used to call the 

genotypes (AA, AB and BB for females, and A- and B- for males). Since the employed software also 

allows the option of applying user-definable boundaries for data analysis, those samples classified 

as undetermined by the autocalling method were recalled using the manual option. A set of 

controls were used to deduce these questionable genotype calls. Outliers were omitted from the 

analysis.

Table 3. Quality control (QC) 
for missing frequency in the 
selected markers stratified by 
sex. P column correspond to 
P-value obtained in a differential 
missingness test between sex 
groups. Asymptotic P-values 
were obtained by means of 
Fisher’s exact test. SNPs in bold 
did pass the QC recommended 
filters. Abbreviations; CHR, 
Chromosome; SNP, Single 
Nucleotide Polymorphism; and 
MISS FREQ, Missing Frequency.
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Data QC

Prior to high-level statistical analyses, the quality control (QC) process is an important step 

in any genetic analysis and especially in the X-chromosome analysis. Specific QC guidelines for X 

chromosome genotype data have been previously reviewed in detail8. All these criteria can help us 

to detect genotype errors or not reliable SNPs which should be excluded from analysis. 

Here, the whole QC process was implemented in PLINK 1.9 software22. According to literature, 

two criteria concerning missing frequency were employed (the sex-specific missing frequency and 

the differential missingness between sexes)35,36. As genotype calling was performed separately 

Table 4. Genotype counts and Hardy-Weinberg test statistics for each SNP in the female group. Each SNP has three 
entries showing results for either ALL, AFF (overweight and children with obesity) or UNAFF (normal-BMI children only) 
individuals. Hardy Weinberg analysis was performed with the exact test described and implemented by Wigginton et al. 
42. Abbreviations; CHR, Chromosome; SNP, Single Nucleotide Polymorphism; A1, minor allele; GENO, genotype counts; 
O(HET), observed heterozygosity; E(HET), expected heterozygosity; and P, Hardy Weinberg obtained P-value.
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in males and females (that is, no heterozygote calls in males were allowed), the proportion of 

heterozygote calls in males, proposed as a filter criterion by Ling and Ziegler et al.35,36, was not 

considered in our QC process. All SNPs (with exception of the rs11798018 and the rs2073163 from 

the TNMD gene) passed the recommended missing frequency filter in females (<= 2 %) (Table 

3). On the other hand, none SNP passed the filter in males. Regarding the differential missingness 

test, the SNPs (rs11798018, rs4828037 and rs2073163) from the TNMD and the rs2011162 from the 

SLC6A14, passed the recommended filter (P ≥ 10-7). The other SNPs, instead, evidenced a marked 

differential missingness between sex groups. This test was performed in PLINK software using the 

flag “test-missing” and replacing the phenotype column of the .ped file by the sex information 

(Table 3).

Regarding additional MAF quality checks, all SNPs showed appropriated frequencies > 1% by 

sex groups (Table 1). When analysing the Hardy Weinberg equilibrium (HWE) in girls belonging to 

the normal-BMI group, all SNPs reported proper values (P ≥ 10-4) (Table 4). According to this QC 

process, we ensured that there were not important genotyping errors and that our genetic data 

were reliable for further analyses.

On this point, it is important to note that since genotyping array technologies are not specially 

designed for sexual chromosomes, quality is always hoped to be lower on X chromosome genetic 

variants compared to autosomal data.

High-Level Analysis: Statistical Analysis

As we previously mentioned, most of available test statistics for performing genetic 

association analyses are designed for autosomal variants and thus not applicable to X chromosome 

data (especially when dealing with mixed-sex samples). In these cases, testing for association on 

the X chromosome raises unique challenges that have motivated the development of X-specific 

statistical tests in the literature20,37. Association tests on the X chromosome should incorporate 

into their models not only the fact of dosage imbalance between males and females but also, 

depending on the analysed locus, a specific XCI model. Some of available approaches include:

-  Clayton Tests (2008)20. Clayton tests are two X chromosome specific versions of the common 

autosomal tests that explicitly account for the XCI process and allow the inclusion of males 

and females together. In the case of different allele frequencies in males and females, Clayton 

statistics have inflated type I error frequencies. These tests are available in the R package 

snpMatrix21:

•	 S120: It is analogous to a Cochran-Armitage trend test of a combined male and female 

genotype contingency table; it follows a Chi² distribution on one degree freedom (df ) 

under the null hypothesis.
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•	 S220: It is analogous to a Pearson’s Chi² test on 2 df of a combined male and female genotype 

contingency table, it follows a Chi² distribution on 2 df under the null hypothesis. 

-  Zheng tests (2007)37. They are a set of six different statistics that apply to the same SNP 

and from which a minimum P-value is computed, needing to be adjusted according to 

the correlation between the test statistics. Zheng et al.37 showed that the optimal choice of 

statistic among the six tests depends on whether HWE holds at the locus and whether males 

and females have the same risk allele. For example, in the case there is departure from HWE 

in females, the Zheng (Z2
mfG) test has been presented a good choice. For further information 

regarding test statistic selection, we recommend to read next works8,37. Of note is that the 

Zheng’s tests do not explicitly account for the XCI process.

As previously mentioned, an unbalanced female/male ratio between cases and control would 

affect the relative power of both Zheng and Clayton statistics. If combined with sex-specific allele 

frequencies, these tests will suffer from increased type I errors.

-  Traditional methods easily implementable in PLINK 1.9 or R environment:

•	 Ignore	 males	 entirely	 and	 analyse	 female	 data	 using	 conventional	 autosomal	 tests	 (a	

genotypic-based Cochran-Armitage trend test or an allele-based Chi² by Pearson with 1 

df ). The problem related to this approach is that we are missing all data from male subjects 

and therefore losing statistical power. The Cochran-Armitage trend test is the default test 

employed when a naive analysis of X chromosome data is run in PLINK using the flag 

–model22. Regarding males, an allele-based test accounting for the number of A- and B- 

alleles between experimental conditions should be employed apart. 

•	 Linear	or	 logistic	regression	analyses	on	all	 the	samples	adjusting	by	sex.	This	approach	

has the advantage of adjusting the model by covariates of interest. Here, if we assume the 

locus of interest escapes from XCI, females should be coded as 0, 1, or 2, according to 0, 

1, or 2 number of SNP risk alleles, and males should be coded as 0 or 1 according to 0 or 

1 allele copies. On the contrary, if XCI is assumed to occur, females should be coded as 0, 

1, or 2, according to 0, 1, or 2 number of SNP risk alleles, and males should be coded as 0 

or 2 according to 0 or 1 allele copies. By default, the application of the “--dosage” flag to 

X chromosome input data files (.bed, .bim and .fam) in PLINK will produce a codification 

which assumes escape from XCI. For XCI to be considered, new allele code numbers should 

be manually replaced in male samples with a standard text editor (e.g: gedit software). 

In general, the selection of the most suitable test among the presented choices will depend 

on three different criteria; the XCI model assumed for the locus of interest, deviation from HWE 

of analysed markers and the existence of sex-specific allele frequencies in the study population, 

which would be a substantial problem in the case of an unbalanced female/male ratio. Regarding 

XCI, if inactivation is assumed to occur, then either the Clayton’s statistics or regression models 
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(with males coded as 0 and 2 (for 0 and 1 risk allele, respectively) would be tests of choice. On the 

contrary, in the case of a locus ‘escaping’ from XCI, Zheng’s tests or regression models (with males 

coded as 0 and 1 (for 0 and 1 risk allele, respectively) should be employed. In the case of sex-

specific allele frequencies, independently of the XCI assumed model, the Zheng’s test (Z2
mfG) has 

been presented a better choice over the Clayton approach. On the other hand, in the case of an 

adjustment for covariates is required, only regression models can be applied. Of note is that most 

of the test statistics and analysis considerations covered here are available to implement by means 

of the command-line toolset XWAS developed by Keinan A. and collaborators38-40.

Although for the analysis of our dataset both possibilities (‘escape from XCI’ and ‘XCI’) were 

tested in the original work13, we here only present results under the XCI assumption. As we have 

Table 5. Association between X 
chromosome SNPs and HOMA-IR, 
Glucose and BMI Z-Score phenotypes 
in our dataset. SNPs in bold showed 
statistically significant associations 
with tested attributes under the 
Clayton Statistics. These tests 
explicitly accounted for random 
X-inactivation and allowed the 
inclusion of females and males 
together, increasing thereby the 
statistical power. P.1df and Chi.
squared.1.df columns corresponds to 
Clayton S1 statistic results while P.2df 
and Chi.squared.2.df corresponds to 
Clayton S2 results. Abbreviations; SNP, 
Single Nucleotide Polymorphism; 
N, number of included subjects in 
the analysis; HOMA-IR, homeostasis 
model assessment for insulin 
resistance; and BMI ZSCORE, body 
mass index adjusted by sex and age.
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previously seen, selected markers in our sample did not exhibit HWE deviations nor sex-specific 

allele frequencies. Moreover, the female/male ratio was balanced across experimental groups. For 

these reasons, and following published recommendations8, Clayton test was selected to perform 

the main statistical analysis17,20,41. According to an in silico simulation work, the Clayton’s S1 statistic 

showed the best performance among all X-specific introduced tests across a wide range of disease 

models, sex ratios and allele frequencies41. Moreover, it allows the inclusion of females and males 

together, increasing thereby the statistical power. 

In Table 5, results derived from the application of Clayton’s S1 and S2 statistics to three 

different continuous phenotypes of the population are presented. All these phenotype data have 

also been shared and are available in the metadata file (Online-only table 1). The implementation 

of this process was performed in R, using the snpStats R package and the code have been 

shared online19. All reported associations in our previous work13 were here replicated under XCI 

assumption. These findings support therefore a good performance of the Clayton statistics as well 

as ensure the reliability of the present dataset. 

In conclusion, we here share a genetic dataset and present a whole implementation of the 

special X chromosome analytic process in genetics. Altogether, the pipeline and the shared data 

will allow researchers to get familiar with the X chromosome particularities and should encourage 

them to include X chromosome into their genetic studies. Closing this gap is crucial to elucidate 

the genetic background of complex diseases, especially of those with sex-specific features.

Code availability 

All custom R codes employed in this work have been shared online in a GitHub repository 

(http://doi.org/10.5281/zenodo.2578182)19. Two short scripts are available online; “script_from_

long_to_wide.r” and “Clayton_analysis_code.r”. 

The first one (named “script_from_long_to_wide.r”) is a short script designed for loading a 

genetic dataset (genotype calls) derived from OpenArray technology and transforming it into a 

handy-format file, which can be further imported into PLINK software. Basically, this script carries 

out a dataset manipulation and transformation from long to wide format. In order to run the script, 

users will need an input file derived from OpenArray technology containing information in the 

long format arranged into three columns (NCBI_SNP_Reference, Sample_ID and Genotype_Call). 

The second script shared (named “Clayton_analysis_code.r”) gathers functions and R 

commands required for the application of the X-chromosome specific statistical tests developed 

by Clayton and collaborators20,21 (see section ‘High-Level Analysis: Statistical Analysis’ for further 

details).
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Common Variants in 22 Genes Regulate Response to 
Metformin Intervention in Children with Obesity: A 
Pharmacogenetic Study of a Randomized Controlled Trial
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Abstract Metformin is a first-line oral antidiabetic agent that has shown additional 
effects in treating obesity and metabolic syndrome. Inter-individual variability in 
metformin response could be partially explained by the genetic component. Here, we 
aimed to test whether common genetic variants can predict the response to metformin 
intervention in obese children. The study was a multicenter and double-blind randomized 
controlled trial that was stratified according to sex and pubertal status in 160 children 
with obesity. Children were randomly assigned to receive either metformin (1g/d) or 
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placebo for six months after meeting the defined inclusion criteria. We conducted a post 
hoc genotyping study in 124 individuals (59 placebo, 65 treated) comprising finally 231 
genetic variants in candidate genes. We provide evidence for 28 common variants as 
promising pharmacogenetics regulators of metformin response in terms of a wide range 
of anthropometric and biochemical outcomes, including body mass index (BMI) Z-score, 
and glucose, lipid, and inflammatory traits. Although no association remained statistically 
significant after multiple-test correction, our findings support previously reported variants 
in metformin transporters or targets as well as identify novel and promising loci, such 
as the ADYC3 and the BDNF genes, with plausible biological relation to the metformin’s 
action mechanism. Trial Registration: Registered on the European Clinical Trials Database 
(EudraCT, ID: 2010-023061-21) on 14 November 2011 [1].

Keywords: metformin; obesity; pediatrics; SNP; pharmacogenetics; clinical trials

1. Introduction

The prevalence of overweight and obese children is a serious worldwide issue and one 

of the major health challenges of the 21st century [2]. Childhood obesity plays an important 

pathophysiologic role in the development of insulin resistance, dyslipidemia, and hypertension[3], 

leading to type 2 diabetes mellitus (T2DM) and enhanced risk of cardiovascular disease during 

adulthood [2]. Several investigations have confirmed that intensive lifestyle interventions can 

increase weight-loss as well as reduce the later risk of developing T2DM in children with obesity[3]. 

Nevertheless, lifestyle changes alone are not always effective [5]. On the other hand, there are no 

approved weight-loss medications for children under 12 years of age [5]. Metformin is the first-line 

oral anti-hyperglycemic agent approved by the US Food Drug Administration to treat T2DM in 

adults and children aged >10 years. Beyond its antidiabetic effects, metformin has been considered 

a promising compound for the amelioration of adolescent and childhood obesity; especially 

through the reduction of body mass index (BMI) Z-score and waist circumference (WC) [5-7]. 

According to the literature, there is considerable inter-individual variability in response to 

metformin. In relation to the glycemic response, although an important heritable component has 

been described (20–34%), there is only a few available genome-wide association studies (GWAS) 

and yet no consistently replicated genetic variants [8,9]. Fewer efforts have been made in the context 

of the anti-obesity action of metformin in children, with only two available pharmacogenetic 

studies [10,11]. The first one, which is focused on the metformin organic cation transporter 1 (OCT1)  

(SLC22A1 gene), yielded controversial findings and reported the need for additional obesity targets 

to be analyzed in future approaches [10]. The other study is a pharmacokinetic approach in children 

with obesity, and could not identify any influence of genetic variants from the OCT1 and multidrug 

and toxin extrusion protein 1 (MATE1) transporters on the pharmacokinetics of metformin [11].
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GWAS and other genetic studies for BMI, waist-to-hip ratio, and other adiposity measures have 

identified more than 300 single-nucleotide polymorphisms (SNPs) that are strongly associated with 

obesity risk [12]. Interestingly, a pharmacogenetic approach focusing on these and other candidate 

genes might shed light on the action mechanism of metformin as a weight-reduction drug in 

children. At the same time, it might identify genetic variants that may be useful clinically to predict 

metformin efficacy.

On a previous work, we conducted a randomized control trial (RCT) in children with obesity 

and demonstrated that a six-month intervention with metformin decreases the BMI Z-score and 

improves inflammatory and cardiovascular-related obesity parameters [6]. Here, we conduct a 

genotyping study comprising hundreds of obesity and metformin candidate genes in 124 children, 

which are part of our previous RCT, with the aim to test whether common variants can predict the 

response to metformin intervention in terms of the post-treatment change in glucose metabolism, 

anthropometry, lipid metabolism, adipokines, and inflammatory markers. To our knowledge, this 

is the first candidate-gene pharmacogenetic approach focused on the effects of metformin in 

children with obesity. Pharmacogenetic studies such as this are crucial to provide new insight 

into the mechanisms regulating metabolic dysfunction and may point the way toward novel 

therapeutic targets for more precise interventions in childhood obesity.

2. Experimental Section

2.1. Study Design, Participants, and Intervention

The study was a multicenter and double-blind RCT, stratified according to sex and pubertal 

status in 160 children with obesity. Pubertal stage was determined according to Tanner criteria [13], 

and obesity was defined according to BMI by using the age and sex-specific cutoff points proposed 

by Cole et al. [14]. Children were randomly assigned to receive either (1 g/d) metformin or placebo 

for six months after meeting the defined inclusion criteria [15]. Figure S1 shows the flow diagram 

of participants throughout the study. All the details regarding study protocol, design, sample size, 

intervention, and participants (participant’s data collection and processing, samples codification, 

randomization method, double-blind condition, and adverse effects assessment) have been 

previously described [6,15]. The CONSORT statement (Consolidated Standards of Reporting Trials) 

has been considered in the study design report and the flow diagram (Figure S1).

2.2. Informed Consent and Ethics

All the patients and their parents/guardians were previously informed about the characteristics 

of the trial. The informed consent, read and signed, was mandatory to participate in this study. The 

study was conducted in accordance with the Declaration of Helsinki and received ethics approval. 

It was approved by the Ethics and Investigation Committees of the hospitals (Hospital Universitario 
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Reina Sofía, Hospital Universitario de Santiago de Compostela, Hospital Clínico Universitario 

Lozano-Blesa, Hospital Universitario Virgen de las Nieves) at which the study was developed, 

whose reference was provided by the Ethics Committee for Biomedical Research of Andalusia on 

15 January 2012 (acta 1/12) (ID code: 2010-2739). The study was registered by the European Clinical 

Trials Database (EudraCT, ID: 2010-023061-21) on 14 November 2011 [1].

2.3. Blood Samples Collection

Blood samples were obtained between 08:30 and 10:30, and collected in overnight fasting 

conditions at the beginning and at the end of the trial, as previously reported [15]. For DNA 

extraction, peripheral white blood cells (buffy coat) were taken. All the samples were collected and 

stored frozen at −80 °C until analysis.

2.4. Anthropometric and Biochemical Measurements

Anthropometry, blood pressure, and serum concentrations of glucose, insulin, lipids (total 

cholesterol, triglycerides, high-density lipoprotein cholesterol (HDLc), low-density lipoprotein 

cholesterol (LDLc)), apolipoprotein A1 (Apo A1), and apolipoprotein B (Apo B) were measured, as 

previously reported [15]. The quantitative insulin sensitivity check index (QUICKI) and homeostasis 

model assessment for insulin resistance (HOMA-IR) were also calculated. Specific plasma adipokines, 

inflammation, and cardiovascular risk biomarkers (adiponectin, leptin, resistin, myeloperoxidase 

(MPO), total plasminogen activator inhibitor-1 (tPAI-1), tumor necrosis factor-alpha (TNF-α), 

interferon-γ (IFN-γ), C-reactive protein (CRP), monocyte chemoattractant protein-1 (MCP-1), 

interleukin-8 (IL-8), soluble intercellular adhesion molecule-1 (sICAM-1), and soluble vascular 

adhesion molecule-1 (sVCAM-1) were analyzed in duplicate by using XMap technology (Luminex 

Corporation, Austin, TX, USA) and human monoclonal antibodies (Milliplex Map Kit; Millipore, 

Billerica, MA, USA), as previously detailed [6].

Based on the adiponectin and leptin concentrations, the adiponectin–leptin ratio (ALR) was 

calculated.

2.5. DNA Extraction and Genotyping

The 140 individuals that completed the study intervention (68 treated children and 72 placebo) 

were included for the current genetic analyses. Genomic DNA was extracted from peripheral white 

blood cells using two kits, the Qiamp® DNA Investigator Kit for coagulated samples and the Qiamp® 

DNA Mini & Blood Mini Kit for non-coagulated samples (QIAgen Systems, Inc., Valencia, CA, USA). 

Genotyping analysis was performed by TaqMan allelic discrimination assay using the QuantStudio 

12K Flex Real-Time PCR System (Thermo Fisher Scientific, Waltham, MA, USA).
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2.5.1. Candidate Gene and SNP Selection

For the genotyping in the 140 DNA samples, we selected candidate genes and SNPs 

according to seven categories (Table S1): (1) SNPs in high-likelihood candidate genes for human 

obesity according to the literature and previous genotyping studies conducted by our research 

group; (2) SNPs in brown fat cell differentiation genes; (3) SNPs in differentially expressed genes 

according to a previous own microarray analysis of visceral adipose tissue in obese and normal-

weight children; (4) SNPs identified by ongoing GWAS and big cohort studies for obesity and 

related metabolic traits in adult European populations; (5) SNPs related to metformin drug-

metabolizing enzymes, transporters, and other previously reported pharmacogenetic targets; (6) 

SNPs predicted as binding sites of microRNAs related to obesity and metabolic dysfunction; and 

(7) SNPs in inflammation, oxidative stress, and antioxidant defense genes. During the SNP selection 

procedure, we used the Tagger program to capture (at r2 = 0.8) common (minor allele frequency 

(MAF) ≥5%) variants in European (CEU) HapMap population in these candidate genetic regions. 

The candidate genes and the number of SNPs analyzed per category are detailed in Table S1 [9,12,16-

28]. Moreover, the genomic information for all the analyzed SNPs is summarized in Table S2. As a 

result, 255 SNPs on loci strongly associated with obesity as well as previously known metformin 

pharmacogenetic targets were finally genotyped. Our 255 selected markers map to 181 candidate 

loci across the human genome. 

For the quality control analysis of all the candidate markers, we evaluated the linkage 

disequilibrium (LD), call rate, Hardy–Weinberg equilibrium (HWE), and MAF by experimental arm. 

In both the treatment and placebo arms, the MAFs of all SNPs were >5% and similar to those 

reported for Iberian populations in Spain in phase 3 of the 1000 Genomes Project. To account for 

the presence of genotyping errors, all SNPs and individuals with a <90% call rate were excluded 

from the analyses. In relation to HWE, Wigginton’s exact test [29] was applied at an alpha of 0.05 in 

a cohort of 258 normal weight Spanish children [30]. After all quality control checks, 24 SNPs were 

removed. However, although due to significant deviation from HWE, the SNP rs7943316 should 

have been excluded, it was forced to analysis and therefore integrated in the SNP selection process 

(Figure 1; File S1). The reason was that it did not deviate from HWE in the Iberian population in 

Spain according to the frequency data presented from the 1000 Genomes Project in the Ensembl 

database (A|A: 0.112, A|T: 0.411 and T|T: 0.477). In addition, 16 individuals (three treated children and 

13 placebo) were excluded due to a call rate <90%. This resulted in 232 markers from a final study 

population of 124 participants (65 treated children (32 boys) and 59 placebo (29 boys)) available 

for the statistical analysis. A complete workflow detailing the SNP selection procedure in the study 

population can be found in Figure 1. Additionally, all lists of SNPs excluded at each step of the 

selection process and more detailed information are available as a supplementary file (File S1).

Among them, there are genes strongly associated with several forms of obesity (including 

monogenic obesity), T2DM, as well as known drug targets or drug-metabolizing/transporting 
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Figure 1. Workflow of the entire SNPs selection process for the statistical approach to identify the genetic variants as 
promising candidates of metformin-response regulation. 1 Quality control analysis, removed if: call rate per SNP <90%, call 
rate per subject <90%, HWE p-value < 0.05, MAF <5%, and LD is observed. * The SNP rs7943316 was forced to analysis and 
therefore integrated in the SNP selection process (more details in File S1). 2 Defined exclusion criteria: (a) SNPs presenting 
a weak p-value (defined as significant p-value ≥ 0.045) by trait analysis (removed = 11 SNPs); (b) SNPs only associated 
with one of the outcomes studied and not previously evidenced as metformin pharmacogenetic targets (removed = 
57 SNPs); and (c) SNPs not showing a coherent behavior in their association across different phenotypes (regarding the 
direction of their beta estimates) and not previously evidenced as metformin pharmacogenetic targets (removed = 28 
SNPs). Abbreviations: HWE, Hardy–Weinberg equilibrium; LD, linkage disequilibrium; MAF, minor allele frequency; SNP, 
single nucleotide polymorphism.
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enzymes. A functional enrichment analysis (FEA) performed with the GeneTerm Linker R package 

revealed that they participate in important cellular processes and functions. Functional meta 

groups identified in the FEA analysis comprise: brown fat cell differentiation, cellular response to 

insulin stimulus, glucose homeostasis, regulation of blood pressure, response to oxidative stress, 

cellular component movement, response to glucocorticoid stimulus, protein kinase binding, 

cytokine-mediated signaling pathways, activation of adenylate cyclase activity, and respiratory 

electron transport chain.

Previously associated metformin pharmacogenetic variants that were not genotyped in our 

study comprise the CAPN10-rs3792269, the OCT1-rs628031, the OCT1-rs36056065, the KCNQ1-

rs163184, and the SP1-rs784888. Thus, neither information nor new knowledge has been reported 

here for these variants.

2.6. Statistical Analysis

Pharmacogenetic analyses of metformin response were performed in the treatment arm 

as part of a discovery phase. However, since the application alone of a single-arm design could 

skip important pharmacogenetic behaviors (especially in the case of weight-loss interventions), a 

complementary phase to our treatment-arm approach was conducted including an SNP*treatment 

interaction term and placebo individuals (confirmatory phase). Especially for the case of weight-

loss interventions, the inclusion of a secondary phase such as this is of special importance, helping 

in the confirmation of true pharmacogenetic regulators of metformin-induced weight-loss. That is 

to say, it will allow the final confirmation of genetic loci with effects seen in the treatment arm but 

not the control arm. Figure 1 also describes all the steps for the statistical analysis.

In both phases, we applied multiple linear regression models to test the effect of each SNP 

on metformin response under an additive genetic model of inheritage, where gi  {0,1,2} is the 

number of minor alleles for the ith individual. Delta changes (T1–T2) for each outcome were 

calculated and used as dependent variables in the analyses. To address potential confounding, we 

implemented a variable selection procedure. Some variables were included in the models based 

on previous findings [6] or expert knowledge, while other variables were selected based on the 

backwards selection approach and the Bayesian information criterion. Final employed models after 

covariate selection can be found in File S2. Therefore, the covariates included in all the models 

were: the corresponding outcome, pubertal stage (prepubertal/pubertal), exact age (years) 

(all of them at baseline (T1)), center of recruitment (Hospital Universitario Reina Sofía, Hospital 

Universitario de Santiago de Compostela, Hospital Clínico Universitario Lozano-Blesa, Hospital 

Universitario Virgen de las Nieves), adherence (((pills ingested − pills returned)/pills predicted) × 

100), dose (mg metformin or placebo/kg body weight), and sex.  Additionally, models for outcomes 

strongly correlated to BMI Z-score (glucose metabolism, blood pressure, lipid metabolism, fat 

mass, adipokines, inflammation, and cardiovascular risk biomarkers) were further adjusted by the 
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percentage of BMI Z-score change as a confounder. Furthermore, height was also considered as 

another confounder for the blood pressure outcomes [31]. Continuous variables and calculated 

deltas were tested for normality using the Shapiro–Wilk test and transformed when necessary by 

means of the natural log or the rank-based inverse normal transformation. All regression models 

were evaluated by model control (investigating the linearity of effects on outcome(s), consistency 

with a normal distribution, and variance homogeneity). All residuals versus fitted, normal Q-Q, 

scale location, and residuals versus leverage plots are available upon request.

We quantified the statistical power of our approach to detect modest genetic effects (F2 = 

0.30) according to an alpha value of 0.05, a sample size of 65 metformin-treated children, and up 

to nine independent variables.

Correction for multiple tests requires special attention in genetic association studies. Given 

the high number of markers and collected measures, we considered several parallel approaches 

to correct for multiple hypothesis testing based on the number of SNPs and outcomes examined. 

Specifically, we employed multiple-test correction based on the methods proposed by Holm 

(1979), Hommel (1988), and Benjamini and Yekutieli (2001). To estimate the expected proportion 

of type I errors among the rejected hypotheses, we further computed false discovery rates (FDRs) 

as in Benjamini and Hochberg [32]. Given the presence of LD, the FDR method is a proper approach 

that does not assume independence between markers. Here, none of our findings underwent 

strict statistical correction for multiple hypotheses testing by FDRs. In this regard, the novel findings 

reported here should be viewed as hypothesis generating.

3. Results

3.1. Identification of 28 Common Variants as promising metformin pharmacogenetic markers

Among all the models that reached nominal statistically significance for the pharmacogenetic 

associations in the discovery phase (step 4: 124 SNPs; Figure 1), we removed 96 SNPs according to 

the exclusion criteria defined in the legend of the Figure 1. Although we tried to parameterize the 

process (more details are given in File S1), expert knowledge and a strict scientific criterion were 

the cornerstones during the SNP selection. Hence, as special conditions to maintain important 

SNPs in the analysis, we established SNPs that were considered as metformin pharmacogenetic 

targets [9,25,27,33,34] as well as SNPs that had presented a high p-value in their associations, as analyzed 

in step 4. Altogether, the selected markers represented the set of 28 common variants (Figure 1) 

distributed in 22 genes and mainly represented by intronic-like SNPs. Beyond the discovery phase, 

all associations were further interrogated for confirmation including a SNP–treatment interaction 

term and placebo individuals in the models. 

For the 28 selected SNPs, information related to SNP-type (exonic, ncRNA-intronic, promoter, 

UTR3’-5’, and intergenic variants), chromosome number, HWE, and MAF by experimental arm is 
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presented in Table S3. In relation to HWE, all associated SNPs, except for rs7943316, hold equilibrium 

according to Wigginton’s exact test.

For both intervention groups, the general and clinical characteristics of the 124 children at the 

baseline and post-treatment stages, as well as the details of the statistical analysis in relation to the 

differences at baseline and post-treatment between groups are reported in the Table S4. 

Among the reported pharmacogenetic associations, the results highlight a simultaneous effect 

of certain individual SNPs on several phenotypes as metformin-response regulators (Figure 2).

Figure 2. Interaction graph comprising all reported statistically significant associations in the discovery phase. Associations 
are clustered by phenotype block. The right half of the plot represents favorable-response associations, while the left half 
of the plot represents poor-response associations. Graph edges are weighted by the level of significance reported for each 
association. Abbreviations: ADIPO, adiponectin; ALR, adiponectin–leptin ratio; CRP, C-reactive protein; DBP, diastolic 
blood pressure; HOMA-IR, homeostasis model assessment for insulin resistance; INF-γ, interferon-γ; LDLc, low-density 
lipoproteins-cholesterol; QUICKI, quantitative insulin sensitivity check index; TC, total cholesterol; TG, triglycerides; SBP, 
systolic blood pressure; WC, waist circumference.
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3.2. Glucose Metabolism

Most results and metformin pharmacogenetic targets were identified within the axis of 

glucose-related phenotypes, which includes fasting glucose, insulin levels, and the HOMA-IR and 

QUICKI indexes. Table 1 gathers all the results obtained for the 28 selected common variants in 

this phenotype block. Genetic variants in the loci ADCY3, CAT, CEP57, ETV5, MVD, NTRK2, SLC01A2, 

and SLC22A1 behaved as poor-response markers after the six-month intervention (Figure 2). The 

most significant finding of the present block corresponded to the CEP57-rs7902 SNP and the 

QUICKI index change as outcome. This SNP stood out as a poor-response marker associated with 

a worsening in the ability of metformin to ameliorate the QUICKI index after the intervention (β = 

0.49, confidence interval (CI) = (0.2, 0.78), p-value = 0.002). The result was consistent with a study-

wide 62% FDR. Other poor-response associations were reported between the MVD-rs9932581, 

SLC22A1-rs622342, and ADCY3-rs11676272, and the HOMA-IR change as outcome (β = −0.45, CI 

= (−0.74, −0.16), p-value = 0.004; β = −0.38, CI = (−0.72, −0.04), p-value = 0.03 and β = −0.31, CI 

= (−0.58, −0.05), p-value = 0.03, respectively). On the contrary, the BDNF-AS-rs11030104 was the 

only variant underlined as a favorable pharmacogenetic marker in the block. Specifically, children 

carrying the G minor allele experienced an enhanced effect of metformin on fasting insulin levels 

(β = 0.48, CI = (0.11, 0.85), p-value = 0.01), HOMA-IR (β = 0.48, CI = (0.12, 0.83), p-value = 0.01), and 

QUICKI index (β = −0.47, CI = (−0.82, −0.11), p-value = 0.01) after the six-month intervention. All 

reported associations were independent of BMI Z-score. 

3.3. Anthropometry and Blood Pressure

The results for anthropometry and blood pressure outcomes are presented in Table 2. Here, 

while genetic variants in the ARRB1, CYP19A1, FTO, NEGR1 and USF-1 genes behaved as poor-

response markers, SNPs in the CAT, CNTFR, NTRK2, and PPARGC1A were reported as favorable 

pharmacogenetic targets (Figure 2). The top significant result of this phenotype block belonged 

to the USF-1-rs3737787 marker and the BMI Z-score change as outcome. The association implied a 

worsening in the response to metformin estimated in a less decrease, per the A allele copy, of BMI 

Z-score after the six-month intervention (β = −0.57, CI = (−0.91, −0.24), p-value = 0.001). The result 

was consistent with a study-wide 39% FDR. Similar direction in findings was obtained for the FTO-

rs10852521 SNP and the outcomes WC and diastolic blood pressure (DBP) (β = −2.41, CI = (−4.44, 

−0.38), p-value = 0.02 and β = −4.79, CI = (−8.07, −1.52), p-value = 0.007, respectively). In relation 

to favorable-response pharmacogenetic markers, there was a remarkable association among the 

variants PPARGC1A-rs8192678, CNTFR-rs3763613, and NTRK2-rs984430, and the BMI Z-score change 

as outcome (β = 0.51, CI = (0.16, 0.87), p-value = 0.007; β = 0.55, CI = (0.19, 0.91), p-value = 0.004; 

and β = 0.56, CI = (0.05, 1.08), p-value = 0.03, respectively); as well as between the CAT-rs1001179 

and the WC change (β = 3.03, CI = (1.24, 4.82), p-value = 0.002). All reported associations in blood 

pressure outcomes were independent of BMI Z-score and height. Further data obtained for weight 
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and height outcomes did not show any significant association and consequently these are not 

presented here, but are available upon request.

3.4. Lipid Metabolism

Regarding lipid metabolism outcomes, variants in the ADCY3, PPARGC1A, TCF7L2, and TMEM18 

genes were associated with a worse response to metformin intervention (Table 3). Otherwise, 

variants in the BDNF-AS, CAT, CPEB4, INSIG2, and KCTD15 were identified as favorable-response 

markers (Table 3 and Figure 2). The top findings of the present block corresponded to the SNP 

TMEM18-rs6548238, which was identified as a poor-response marker for the change in LDLc levels 

(β = −14.44, CI = (−23.88, −5), p-value = 0.005), and to the CPEB4-rs7705502, which was highlighted 

as a favorable-response marker for the change in total cholesterol levels (β = 13.81, CI = (4.77, 

22.85), p-value = 0.005). These results were consistent with a study-wide FDR of 67% and 49%, 

respectively. The SNP CPEB4-rs7705502 was further identified as a favorable metformin-response 

marker for the change in LDLc levels. On the other hand, the SNPs ADCY3-rs11676272 and ADCY3-

rs10182181 were again identified as poor-response pharmacogenetic targets, correlating with a 

worse ability of metformin to decrease total cholesterol levels in children carrying the effective A 

alleles (Table 3). In the same way, genetic variants in TCF7L2 and PPARGC1A loci showed statistically 

significant results in relation to change in triglycerides levels. All the reported associations were 

independent of BMI Z-score. Data in relation to HDLc and Apo B did not show any significant 

association and consequently these are not presented here, but are available upon request.

3.5. Adipokines and Inflammatory Biomarkers

With regard to adipokines levels, we found the STK11-rs8111699 SNP as a poor-response 

marker for the change of leptin levels after the intervention (Table 4). Other poor-response 

associations of the block were reported between the NTRK2 SNPs and the outcomes adiponectin 

and ALR changes. 

Finally, findings related to inflammatory biomarkers are presented in Table 5. Outstanding 

results from this block were reported for the INF-γ change as outcome and the poor-response 

markers ETV5-rs1516725 and MVD-rs9932581 (β = −1.13, CI = (−1.68, −0.59), p-value < 0.001 and 

β = −0.51, CI = (−0.82, −0.21), p-value = 0.002, respectively). These results were consistent with 

a study-wide 6% and 22% FDR respectively. Both SNPs also presented concordant associations 

as negative regulators of HOMA-IR metformin-response in previous blocks (Table 1 and Figure 

2). Getting back to the INF-γ outcome, the ADCY3-rs11676272 and the ADCY3-rs10182181 were 

also underlined as poor-response markers. In this regard, children carrying the effective A alleles 

experienced a lower amelioration of their INF-γ levels after the intervention in comparison to major-

allele carriers (β = −0.45, CI = (−0.73, −0.17), p-value = 0.003, and β = −0.45, CI = (−0.74, −0.16), 

p-value = 0.004, respectively). In relation to favorable-response markers, there was a remarkable 
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association reported between the variant CAT-rs1001179 and the change in CRP levels (β = −0.49, 

CI = (0.05, 0.93), p-value = 0.03). All associations reported here were independent of BMI Z-score. 

No significant association was found for the following outcomes: resistin, MPO, tPAI-1, TNF-α, MCP-

1, IL-8, sICAM-1 and sVCAM-1. Hence, they are not presented here, but are available upon request.

3.6. Confirmatory Phase

In order to confirm our findings, as we previously mentioned, all reported associations were 

evaluated as SNP–treatment interactions after the inclusion of placebo individuals in the analyses. 

As a result, up to 18, among all the previously described associations, remained statistically 

significant (marked with an asterisk in Tables 1–5). These associations can be understood as true 

pharmacogenetic phenomena and drug–gene interactions exclusive of the individuals belonging 

to the metformin arm.

4. Discussion

Our results show that the well-known variability in metformin response might have a 

genetic origin, also in the context of weight-loss and childhood obesity. We provide evidence 

for 28 common variants as promising pharmacogenetic regulators of metformin response in 

terms of a wide range of anthropometric and biochemical outcomes including glucose, lipid, 

and inflammatory traits (Figure 2). Our results not only support previously reported associations 

of variants in metformin transporters or targets (SLC22A1, TCFL2 and PPARGC1A) but also identify 

novel and promising loci such as the ADYC3 and the BDNF-AS genes, with biological relevance in 

the AMP kinase (AMPK) route and other metformin-related pathways. Despite the study initially 

being focused on the effect of metformin as an anti-obesity agent, the bulk of the findings and 

metformin pharmacogenetic targets were identified within the axis of glucose-related phenotypes 

(Figure 2). This, although striking, is to be expected, taking into account the well-reported glucose-

lowering effect of metformin in T2DM European adult populations [9,25,27,33,34] and the improvement 

of insulin status in patients with hyperinsulinemia or insulin resistance [35,36]. In this regard, it might 

happen that some of the beneficial effects of metformin in childhood obesity could be mediated 

through an improvement of the impaired glucose metabolism. 

Among the novel and promising reported targets in our study, the ADCY3 (adenylate cyclase 

3) locus is especially interesting. Two SNPs within this gene were identified as poor metformin-

response markers in the glucose, lipid, and inflammatory phenotype blocks (Figure 2). The ADCY3 

protein is a member of the mammalian adenylyl cyclase family responsible for generating the 

second messenger cyclic adenosine monophosphate (cAMP) in human tissues. Several lines of 

evidence suggest the interesting possibility that the ADCY3 protein may play an important role 

in the regulation of adiposity as well as crucial physiological roles in mice muscle and liver [37], 

which are all target tissues of metformin. Likewise, it has been proposed that ADCY3 dysfunction 
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in peripheral tissues could be related to metabolic disorders by inducing adipocyte dysfunction 

and insulin resistance in mice [37]. The molecular mechanism of this relation might underlie the 

dysregulation of the ATP/cAMP cellular balance and the resulting disruption of the PKA-induced 

AMPK activation. Taking it into account and given that AMPK is the main target by which metformin 

elicits its effects in the body, our ADCY3 pharmacogenetic report merits special attention as a 

candidate gene for consideration in other genotyping and functional studies.

Other interesting findings involved two loci related to the brain-derived neurotrophic factor 

(BDNF) protein. These were the BDNF-AS region, which is an antisense RNA gene upstream the 

BDNF, and the NTRK2 locus, which encodes the BDNF receptor protein. SNPs within these loci 

were robustly associated as favorable and poor-response markers respectively in all the analyzed 

phenotype blocks (Figure 2). The BDNF-AS–rs11030104 discovery is especially noticeable according 

to previous works indicating that the BDNF-AS intron region has a key role in regulating BDNF 

expression in humans [38]. Furthermore, our BDNF-AS–rs11030104 and other BDNF SNPs have been 

strongly associated with obesity risk [39] and weight response after intensive lifestyle modification [40]. 

BDNF is a neurotrophin that plays important functions in the central nervous system and systemic 

or peripheral inflammatory conditions such as acute coronary syndrome and T2DM. Interestingly, 

BDNF has been demonstrated to have strong anti-hyperglycemic and anti-inflammatory effects 

against the progression of T2DM [41]. Some studies have also revealed a strong effect of metformin 

as a BDNF-expression enhancer in mice [42,43]. On this matter, a recent review suggested that the 

correlation between BDNF and metformin might be the reason for metformin-induced insulin 

action by insulin receptor binding, metformin-induced high BDNF levels due to increasing AMPK, 

and enhanced tyrosine kinase receptor activity, which may amplify BDNF signaling [44]. Altogether, 

these findings suggest that the BDNF product could be a key element for the successful action of 

the drug against both obesity and T2DM conditions. Therefore, the BDNF-AS, NTRK2, and the BDNF 

locus could be good candidate pharmacogenetic targets to be studied in future human and in 

vitro studies.

On the other hand, we also provide evidence for exclusive and robust pharmacogenetic 

associations within anthropometric traits (Table 2 and Figure 2). Top findings within the block 

involved well-known obesity genes such as the FTO, the CYP19A1 and the USF-1. Similar results for 

SNPs in the FTO gene have been reported in a previous metformin pharmacogenetic study for the 

BMI Z-score change in girls with androgen excess [45]. Given that FTO is a key obesity-associated 

gene and an important factor controlling feeding behavior and energy expenditure, it could be 

likely that metformin elicits direct actions on obesity via adiposity reduction. 

The most significant report in our study belonged to the poor-response marker ETV5-rs1516725 

and the INF-γ change as outcome. With a study-wide FDR of 6%, this finding almost reached 

multiple testing correction significance. This genetic variant also presented concordant association 

as a negative regulator of the HOMA-IR response (Table 1 and Figure 2). According to literature, 
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the ETV5 gene has been associated with BMI in multiple GWAS studies [46,47] and functionally linked 

to obesity [48]. Specifically, ETV5 seems to have a critical role in regulating insulin secretion and 

glucose metabolism in mice, which might support our strong association as a metformin-response 

regulator [48]. Other novel genetic regions identified in our study comprised the loci CEP57, CPEB4, 

CAT, or the SLC01A2, which showed concordant associations across different phenotype blocks 

(Figure 2). Interestingly, the encoded proteins of these loci participate in molecular processes that 

are strongly related to the action mechanism of metformin via AMPK-independent pathways [49,50].

Regarding previously reported genes in the literature, our study identified some well-known 

pharmacokinetic and pharmacodynamic targets of metformin such as the metformin transporter 

SLC22A1-rs622342 and the transcription factors TCFL2-rs7903146 and PPARGC1A (rs2970852 and 

rs8192678), for which we here replicate all previously reported associations [9,51-54]. Other literature 

variants also announced in our study map within the loci STK11, FTO, INSIG2, and the KCTD15. 

For these variants, although we do not replicate exact results, we provide findings in line with 

those previously presented [45,55-57], thereby strengthening our proposal and broadening previous 

knowledge. 

We are aware of some limitations in the current study: 1) First, our observations are from a 

setting of multiple hypotheses testing, which only reach a nominal level of statistical significance. 

2) Regarding null associations, there are variants such as the SLC47A1-rs2289669 or the ATM-

rs11212617 which, in spite the wide backup of association in previous GWAS and candidate studies 
[25,34,51,58-60], have not reached nominally statistically significance in any of our analyses. Although 

the association of the ATM-rs11212617 as a pharmacogenetic marker remains controversial in 

the literature [26], the lack of significance for this and other markers in our study requires special 

attention. One reason for that could be a lack of statistical power in our design. Although we 

have reported enough statistical power 83.36% to detect previously described modest effects 

(F2 = 0.30), we actually have an inadequate power for detecting such small effect sizes such as 

those identified in GWAS studies. Notwithstanding, considering the number of variants likely to 

influence the phenotypes under study, even a submaximal power is likely to provide a number 

of true positive associations. On this matter, reported associations in the ADCY3 locus and BDNF-

related regions still merit consideration as true pharmacogenetic associations. 

5. Conclusions

In conclusion, we propose novel mechanisms by which genetics might contribute to variation 

in response to metformin as an anti-obesity agent in different traits. Both poor-responses and 

favorable-responses were identified, relying upon the allele copy to achieve an effect of metformin 

on glucose levels and insulin sensitivity, anthropometric parameters, blood pressure, lipid profile, 

adipokines, and inflammatory biomarkers. Genetic variants in promising loci such as the ADYC3 
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and the BDNF-AS could explain the inter-individual variability in metformin response, and therefore 

clinically predict the metformin efficacy based on genetics. Although interesting, none of the 

reported associations remained statistically significant after multiple-test correction, and thus 

should be interpreted with caution. Certainly, these and other generated hypotheses require more 

detailed characterization in bigger and independent samples. Pharmacogenetic approaches such 

as this might provide new insight into mechanisms regulating metabolic dysfunction and may 

point the way toward novel therapeutic targets for more precise interventions in childhood obesity. 
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Abstract Polygenetic risk scores (pGRSs) consisting of adult body mass index (BMI) 
genetic variants have been widely associated with obesity in children populations. The 
implication of such obesity pGRSs in the development of cardio-metabolic alterations 
during childhood as well as their utility for the clinical prediction of pubertal obesity 
outcomes has been barely investigated otherwise. In the present study, we evaluated 
the utility of an adult BMI predisposing pGRS for the prediction and pharmacological 
management of obesity in Spanish children, further investigating its implication in the 
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appearance of cardio-metabolic alterations. For that purpose, we counted on genetics 
data from three well-characterized children populations (composed of 574, 96 and 
124 individuals), following both cross-sectional and longitudinal designs, expanding 
childhood and puberty. As a result, we demonstrated that the pGRS is strongly associated 
with childhood BMI Z-Score (B = 1.56, SE = 0.27 and p-value = 1.90 × 10−8), and that 
could be used as a good predictor of obesity longitudinal trajectories during puberty. 
On the other hand, we showed that the pGRS is not associated with cardio-metabolic 
comorbidities in children and that certain environmental factors interact with the genetic 
predisposition to the disease. Finally, according to the results derived from a weight-
reduction metformin intervention in children with obesity, we discarded the utility of the 
pGRS as a pharmacogenetics marker of metformin response.

Keywords: obesity; childhood obesity; metabolic syndrome; genetics; genetic risk score; 

pharmacogenetics; predictive ability; gene-environment interactions; puberty; childhood; Spanish 

children

1. Introduction

Among noncommunicable common diseases, overweight and obesity in children are a 

public health problem that has raised concern worldwide [1]. Characterized by an expansion of 

the adipose tissue, childhood obesity plays an important role in the development of cardio-

metabolic alterations during adulthood, further increasing morbidity and mortality [2]. The early-

life identification of high-risk individuals for severe obesity or cardio-metabolic alterations during 

adulthood is therefore indispensable to tackle down the obesity-associated mortality. A wide 

range of clinical and molecular factors have proven useful for obesity prediction. Among them, 

genetic markers are of special importance, since they allow a risk assessment from the moment of 

childbirth. This, combined with the strong modulatory effects of some environmental exposures, 

such as diet or physical activity (PA), would allow the design of personalized lifestyle plans that 

effectively prevent the appearance of severe obesity and cardio-metabolic alterations later in life.

Twin studies have proven a strong heritable component of body mass index (BMI), and 

genome-wide association studies (GWAS) have shown that adult BMI is influenced by hundreds 

of common genetic variants [3]. Evidence from cross-sectional and longitudinal studies has further 

indicated that some of these adult loci also affect BMI in childhood and puberty [4–8]. For many 

of these BMI-associated single-nucleotide polymorphisms (SNPs), significant pleiotropic genetic 

effects for adult cardio-metabolic traits have also been reported [9], and there is a strong evidence 

of a regulatory impact of environmental factors [10–12].
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Although initial expectations for obesity GWASs were high, the results derived after two 

decades of research have not met the previsions (e.g., mentioned SNPs individually account for 

only small proportions (1–2%) of the BMI heritability [3]). Consequently, the practice of utilizing 

individual SNPs to predict disease is now considered a limited approach [13] and other innovative 

perspectives have emerged to take advantage of available GWAS insight [14]. For example, several 

genomic studies have proposed to study multiple common SNPs collectively to improve the 

estimation of disease predisposition [15]. Based on the construction of polygenic risk scores (pGRSs), 

that include multiple genetic variants at the same time, these approaches have recently gathered 

considerable interest [16] and have proven utility to identify groups of individuals who could 

benefit from the knowledge of their probabilistic susceptibility to disease. In brief, a pGRS is usually 

calculated as a weighted sum of the number of risk alleles carried by an individual, where the risk 

alleles and their weights are defined by the loci and their measured effects as detected by GWAS 

in a particular trait [17].

The inclusion of adult-BMI SNPs under a pGRS could serve therefore as an excellent 

predictive, and preventive, tool for facing the obesity-associated morbidity and mortality from 

the early periods of life. Although some previous studies have already investigated the utility of 

adult-BMI pGRSs for the management of obesity in children [18–22], no study to date has addressed 

the question focusing in cardio-metabolic alterations, and never under a longitudinal design 

comprising the metabolically risky period of puberty. In fact, puberty has been designated as the 

life stage where the majority of obesity-associated cardio-metabolic derangements arise [23]. The 

exact mechanisms connecting puberty and metabolic alterations in obesity remain unknown 

otherwise [24]. Furthermore, it would be interesting to elucidate to which extent BMI is due to 

heritable genetic factors and lifestyle behaviors; studying how the environment modulates the 

genetic susceptibility to disease during childhood. Beyond prognostic utility, some pGRSs have 

also proven to have pharmacological utility. For example, a coronary artery disease pGRS is not 

only able to stratify individuals by risk for disease but also by the potential clinical benefit of statin 

therapy [25]. However, unlike heart disease, pGRS pharmacogenetics evidences for obesity have not 

yet been investigated in neither children nor adults. Considering all this, we decided to evaluate 

the utility of an adult BMI pGRS for the prediction and pharmacological management of obesity 

in children, further investigating its implication in the appearance of cardio-metabolic alterations. 

The study design consisted of three well-characterized children populations following both cross-

sectional and longitudinal approaches. For all these analyses, we employed a pGRS based on the 

top 44 SNPs that have previously been associated with adult BMI in the most comprehensible 

GWAS performed to date [3].
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2. Objectives

1. To demonstrate how a pGRS can quantify inherited susceptibility to obesity and its cardio-

metabolic comorbidities in children.

2. To evaluate the effects of genetic predisposition for obesity during childhood and how 

they evolve when entering puberty.

3. To describe the plausible modulatory role of environmental factors over inherited genetic 

susceptibility in children.

4. To investigate the utility of the pGRS for the pharmacological management of obesity in 

children.

3. Materials and Methods

3.1. Study Design

The present study design consisted of three independent children populations following 

cross-sectional and longitudinal approaches. A general description for each study population as 

well as each study design are presented in Figure 1.
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Figure 1. General description of study populations and design. (A) General characteristics of study population 
1, which is based on a previously conducted case-control multicentre cross-sectional design. (B) General 
characteristics of study population 2, which is based on a previously conducted longitudinal design on 96 
children undergoing puberty. (C) General characteristics of study population 3, which corresponds to a previous 
multicentre and double blind randomized controlled trial (RCT) conducted in 124 children with obesity.
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3.1.1. Study Population 1: Cross-Sectional Approach

In order to demonstrate how the pGRS can quantify inherited susceptibility to obesity, and its 

cardio-metabolic comorbidities, we counted on a cross-sectional cohort of Spanish children. This 

cohort was referred to as study population 1 and is based on a previously conducted case-control 

multicentre cross-sectional design (Figure 1A) [26,27]. Among all available participants from the 

previous work (N = 1699), current genetic analyses were performed in a subset population of 574 

children (293 girls) who had good quality DNA samples. Children were recruited at three Spanish 

health institutions: Lozano Blesa University Clinical Hospital in Zaragoza, Santiago de Compostela 

University Clinical Hospital in Santiago de Compostela and Reina Sofia University Clinical Hospital 

in Córdoba. Obesity status was defined according to BMI by using the age- and sex-specific cut-

off points proposed by Cole et al. (2000) [28]. For the present analysis, there were 256 children in 

the obesity group, 131 in the overweight group and 187 in the normal weight group. Inclusion 

criteria were European-Caucasian heritage and the absence of congenital metabolic diseases. The 

exclusion criteria were non-European Caucasian heritage; the presence of congenital metabolic 

diseases (e.g., diabetes or hyperlipidaemia); undernutrition; and the use of medication that alters 

blood pressure, glucose or lipid metabolism. General characteristics of the 574 participants with 

genetics data are presented in the Supplementary Table S1.

3.1.2. Study Population 2: Longitudinal Approach

With the aim of studying the effects of the pGRS on BMI changes during the course of 

childhood and puberty, we also performed a longitudinal analysis using data from 96 boys and 

girls undergoing sexual maturation (Figure 1B) recruited in the PUBMEP project (“Puberty and 

metabolic risk in obese children. Epigenetic alterations and pathophysiological and diagnostic 

implications”) [29]. Children were allocated into five experimental groups according to their 

obesity and insulin resistance (IR) status before and after the onset of puberty. Pubertal stage was 

evaluated by clinicians in all participants according to the Tanner scale (I for prepubertal and II-V 

for pubertal children) [30]. All details regarding the adopted longitudinal design are illustrated in 

Figure 1B. Obesity status was defined according to BMI by using the age- and sex-specific cut-off 

points proposed by Cole et al. (2000) [28]. On the other hand, the IR status was defined by means of 

the homeostatic model assessment for insulin resistance (HOMA-IR) index. Since HOMA-IR strongly 

varies with age, sex and diseases [31], and since no reference values have been yet established in 

neither children nor adult populations [31,32], cut-off points were extracted from a previous well-

described Spanish cohort composed of 1669 children and adolescents [27,33]. For the prepubertal 

stage, a single cut-off value of HOMA-IR ≥ 2.5 was considered for IR [26,33]. For the pubertal stage 

instead, sex information was taken into consideration and different cut-off points were adopted 

for IR according to the 95th HOMA-IR percentile. Extracted from 778 pubertal Spanish children, 

pubertal IR cut-off values were HOMA-IR ≥ 3.38 in boys and HOMA-IR ≥ 3.90 in girls. Descriptive 

statistics for baseline data as well as longitudinal within-group and between-group changes in 

analyzed variables for the 96 participating children are presented in Supplementary Table S2.
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3.1.3. Study Population 3: RCT Metformin Clinical Intervention

In order to test whether the constructed pGRS presents utility for the pharmacological 

management of obesity in children, a third obesity cohort was submitted to genetic analyses in the 

present work. This cohort corresponded to a previous multicentre and double blind randomized 

controlled trial (RCT) conducted in 124 children with obesity (Figure 1C). A complete workflow 

detailing the study design can be found elsewhere [34–36]. Briefly, 160 children with obesity were 

stratified according to sex and pubertal status and randomly assigned to receive either (1 g/d) 

metformin or placebo for 6 months after meeting the defined inclusion criteria [34,35]. All the details 

regarding informed consent, ethics, study protocol, sample size, intervention and participants 

(participant’s data collection and processing, samples codification, randomization method, 

double-blind condition and adverse effects assessment) were previously described [34,35]. The 

original study was registered by European Clinical Trials Database (EudraCT, ID: 2010-023061-21) 

on 14 November 2011 (URL: https://www.clinicaltrialsregister.eu/ctr-search/trial/2010-023061-21/

ES). Among the 160 subjects participating in the original RCT, 124 (59 placebo (29 boys) and 

65 treated children (32 boys)) had an appropriate DNA sample quality for the present genetic 

analyses. General characteristics of the selected study population at baseline and post-treatment 

stages are summarized in the Supplementary Table S3. For the present pharmacogenetics analysis, 

differential drug response was assessed via BMI Z-score reduction after the intervention.

3.2. Ethics Statement

All described projects were conducted in accordance with the Declaration of Helsinki 

(Edinburgh 2000 revised) and followed the recommendations of the Good Clinical Practice of 

the CEE (Document 111/3976/88 July 1990) and the legally enforced Spanish regulation, which 

regulates the clinical investigation of human beings (RD 223/04 about clinical trials). The Ethics 

Committee on Human Research of the University of Granada (ID code: 01/2017), the Ethics 

Committee of the Reina Sofía University Clinical Hospital of Cordoba (ID code: 260/3408), the 

Bioethics Committee of the University of Santiago de Compostela (ID codes: 2011/198 and 

2016/522), the Ethics Committee in Clinical Research of Aragon (ID codes: 12/2010 and 22/2016) 

and the Ethics Committee for Biomedical Research of Andalusia on 15 January 2012 (acta 1/12) 

(ID code: 2010-2739) have approved all experiments and procedures. All parents or guardians 

provided written informed consent, and the children gave their assent.

3.3. DNA Extraction, Genotyping and pGRS Construction

In all participants of the present study genomic DNA was extracted from peripheral white 

blood cells using two kits, the Qiamp® DNA Investigator Kit for coagulated samples and the Qiamp® 

DNA Mini & Blood Mini Kit for noncoagulated samples (QIAgen Systems, Inc., Valencia, CA, USA). 

All extractions were purified using a DNA Clean and Concentrator kit from Zymo Research (Zymo 
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Research, Irvine, CA, USA). Genotyping was performed by TaqMan allelic discrimination assay using 

the QuantStudio 12K Flex Real-Time PCR System (Thermo Fisher Scientific, Waltham, MA, USA).

A total of 56 previously BMI-associated SNPs from the largest and most comprehensive GWAS 

performed to date in obesity research [3] were considered for genotyping analyses. Among them, 

twelve SNPs were removed in our population either due to a call rate under 95% or to a deviation 

from Hardy Weinberg equilibrium (Supplementary Table S4). The remaining 44 SNPs were annotated 

and are listed in Supplementary Table S5. Raw fluorescence measures for these genetic variants 

were transformed into a dosage format, where each individual genotype was represented by the 

number of risk alleles. Next, regression coefficients (beta-estimates) of each SNP were obtained 

from the GIANT consortium meta-analysis for BMI (particularly from the European population with 

males and females combined) [3]. The weighted pGRS was finally calculated for each individual by 

multiplying the number of risk alleles carried for each SNP and the corresponding extracted beta-

estimate (further calculating the sum over all SNPs) (1):

3.4. Phenotypic Measurements and Lifestyle Factors

In all described cohorts, body weight (kg), height (cm) and waist circumference (cm) were 

measured using standardized procedures, and the BMI Z-score was calculated based on the 

Spanish standards reference [37]. Blood pressure was measured three times by the same examiner. 

Biochemical marker analyses were performed for all study populations at participating hospital 

laboratories following internationally accepted quality control protocols, including routine 

measures for lipid and glucose metabolism. Quantitative insulin sensitivity check index (QUICKI) 

and HOMA-IR index were calculated using fasting plasma glucose and insulin values. High-

sensitivity C-reactive protein (hsCRP) was determined using a particle-enhanced turbidimetric 

immunoassay (Dade Behring Inc., Deerfield, IL, USA). In study populations 1 and 3, adipokines, 

cardiovascular risk and proinflammatory biomarkers (i.e., adiponectin, leptin, resistin, tumour 

necrosis factor alpha (TNF-α), interleukin (IL)-6, IL-8, total plasminogen activator inhibitor-1 (PAI-1), 

myeloperoxidase (MPO), matrix metalloproteinase-9 (MMP-9), soluble intercellular cell adhesion 

molecule-1 sICAM-1 and soluble vascular cell adhesion molecule-1 (sVCAM)) were analyzed using 

a Luminex 200 system (Luminex Corporation, Austin, TX, USA) with human monoclonal antibodies 

from Millipore (EMD Millipore Corp, Billerica, MA, USA). Descriptive statistics for all measurements 

were conducted in each cohort separately and can be found in Supplementary Tables S1–S3.

For study population 1, environmental exposures were further assessed through an interview 

that focused on PA, sedentary behaviors, disease family history and familial educational level (at 

mother’s and father’s levels separately). Among all available environmental data, only quantitative 

or ordinal variables were selected for interaction analyses.
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This resulted in 47 lifestyle questions described in the Supplementary Table S6. The interviews 

were carried out during the school time or when children attended the consulting room at the 

hospital, taking approximately 30 min. In the case of PA performance and sedentary habits, they 

were evaluated by means of a short test based on the Physical Activity Questionnaire for Older 

Children (PAQ-C) and HELENA questionnaire, respectively, as well as an individual interview.

3.5. Statistical Analysis

3.5.1. General Descriptive Analysis

All continuous variables were tested for normality using the Shapiro–Wilk test and 

transformed when necessary by means of the natural log or the rank-based inverse normal 

transformation. Heteroscedasticity between experimental groups was explored by means of the 

Levene test. One-way Anova, Kruskal-Wallis and the Welch test were employed to assess group 

differences in measurements according to standard statistical assumptions. Pairwise-t-tests, 

pairwise Mann–Whitney U-tests and Dunn tests were applied conveniently as post-hoc analyses 

to determine which experimental groups differ from each other. Values in descriptive tables are 

expressed as mean and standard deviation, or median and range if not normally distributed. In the 

descriptive statistics of the longitudinal cohort, within-group changes from baseline to puberty 

in all continuous measurements were assessed by means of a paired design; employing either a 

paired t-test or a Wilcoxon signed-rank test. Between-group differences were instead assessed by 

conveniently applying One-way Anova, Kruskal–Wallis or Welch tests to the computed delta values 

(T1–T0) for each continuous measurement.

3.5.2. Association between the pGRS and Obesity Outcomes and Evaluation of the 

pGRS Predictive Ability

In the study population 1, logistic regression models were applied in order to test whether 

higher genetic risk scores were observed for subjects with obesity than for normal weight 

controls. A logistic regression model was further applied for comparing obesity prevalence among 

participants presenting a high-risk genetic profile (Q2, Q3 or Q4) versus those belonging to the 

reference quartile (Q1). Multiple linear regressions were employed instead to investigate the 

relationship between continuous measurements (including BMI Z-score) and the pGRS. For these 

analyses, the pGRS was treated both as a continuous and discrete variable (quartiles). To determine 

which SNPs within the pGRS had an independent contribution in the association with BMI Z-Score, 

we further performed stepwise linear regression using the “step” function included in the stats R 

package. This function uses the Akaike information criterion (AIC) to select variables for a linear 

model. Adjusted R2 and model deviance (D2) were calculated to assess the amount of outcome 

variability explained by each model. In all analyses, age, gender, pubertal stage, origin, height and 

BMI Z-score where adjusted for as confounders when necessary. Linear regression models were 

evaluated by model control (investigating linearity of effects on outcome(s), consistency with a 
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normal distribution and variance homogeneity). All residuals- vs.-fitted, normal Q-Q, scale-location 

and residuals- vs.-leverage plots are available upon request. A p-value < 0.05 was considered 

as statistically significant. Given the number of analyzed markers, we also considered the false 

discovery rate (FDR) as in Benjamini and Hochberg to correct for multiple hypothesis testing in all 

analyses.

The ability of the pGRS to comprehensively discriminate between normal weight and subjects 

with obesity was quantified (alone or in combination with other traditional risk factors) using the 

area under the curve (AUC) of the receiver operating characteristic curve. This plot represents the 

true positive rate (sensitivity) versus the false-positive rate (specificity) and is equivalent to the 

overall probability that the predicted risk of an individual with disease is higher than the predicted 

risk of an individual without disease [38,39]. Models were first constructed based on each risk factor 

alone and then all models reaching an AUC ≥ 0.6 were combined. For that purpose, all samples 

from the study population 1 with valid data for each factor were included (not restricted to the 

574 children with genetics information). Only subjects with normal weight and obesity were 

then selected and randomly assigned to training and test subsets in which predictive models 

were trained and evaluated respectively. All predictive assessments were conducted using the 

PredictABEL and the pROC R packages.

In order to study the ability of the pGRS as a predictor of future obesity outcomes following 

puberty entrance (study population 2), we performed logistic regression models with the 

dichotomized pGRS as an independent predictor variable (1st and 2nd tertiles vs. 3rd tertil), 

including the longitudinal experimental group classifications from Figure 1B as dependent dummy 

variables (each category vs. the reference normal weight group). Tertiles, instead of quartiles, were 

used here due to the low sample size of the cohort. Moreover, these models included a range 

of confounding factors as independent variables as indicated in the Results section. In study 

population 2, we further applied multiple linear regressions with deltas for continuous cardio-

metabolic measurements as input variables (computed as T1–T0).

All statistical analyses were performed in R environment, version 3.6.0 (R Project for Statistical 

Computing).

3.5.3. Identification of Gene × Environment Modulatory Effects

In the study population 1, and in each pubertal stage of the study population 2 separately, 

linear regression models were used to estimate the effect of gene-environment interactions 

(pGRS × E) for each collected lifestyle factor (E) individually. In addition to the pGRS × E interaction 

term, each tested model also included covariates such as origin and puberty, in accordance with 

previously published recommendations [40] (2):
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For assessing statistical significance, we focused our attention on the estimate β3 (pGRS x E) (2) 

and, more specifically, whether this estimate significantly deviated from zero. The null hypothesis 

H0 = 0 was either accepted or rejected, depending on the outcome of a two-sided marginal 

student’s t-test, which in this case (i.e., one degree-of-freedom difference between the nested 

models and normal regularity conditions) is equivalent to a likelihood-ratio test of the hypothesis 

H0 = 0. p-values lower than the significance level α = 0.05 were considered as statistically significant 

after accounting for the family-wise error rate using the FDR method. Calculations were performed 

in R environment, version 3.6.0 (R Project for Statistical Computing) using the “lm” function included 

in the stats package.

3.5.4. pGRS-Drug Interaction

Pharmacogenetics analyses of metformin response were performed using two parallel 

approaches in the study population 3. First, we applied a multiple linear regression to test the effect 

of the pGRS on BMI Z-Score responses. For that purpose, delta changes of BMI Z-Score (computed 

as T0–T1) were calculated and used as the dependent variable. On the other hand, we applied a 

linear mixed-effects (LME) model adjusted for confounders such as tanner stage and time as fixed 

effects and a random intercept for each patient. Test significance for the LME model was evaluated 

on the pGRS:Time:Group interaction term.

4. Results

4.1. The pGRS Associates with BMI Z-Score and Performs Well in the Identification of 

High-Risk Children

In order to investigate the general relationship between the pGRS and obesity, we merged 

the anthropometric baseline data available in the cross-sectional study population 1 (N = 574) 

and the metformin-RCT study population 3 (N = 124) (Figure 1A,C). Descriptive statistics for each 

study population can be found in Supplementary Tables S1 and S3. In the resulting population (N 

= 698), a model adjusted by puberty and origin showed a strongly significant association between 

the pGRS and the BMI Z-score (B = 1.56, SE = 0.27, t value = 5.69 and p-value = 1.90 × 10−8) (Figure 

2). This association was quantified with an increase of 1.56 Kg of weight by each additional 0.1 of 

the pGRS (B = 15.6, SE = 3.93, t value = 5.69 and p-value = 8.06 × 10−5). The amount of BMI Z-score 

variance explained by the full model was 14.12%, being 4.5 the percentage of variance explained 

by the genetic component alone. Supplementary Figure S1 represents the density distribution 

plot of the constructed pGRS by experimental condition and the Supplementary Figure S2 the 

observed obesity: overweight: normal weight counts within each quartile of the pGRS. The pGRS 

followed a normal distribution in the whole study sample (D = 0.03; p-value = 0.08 in Lilliefors test). 

The mean (SD) of the pGRS in the whole sample was 1.18 (0.13), being 1.15 (0.12) in normal weight 

children, 1.18 (0.13) in overweight children and 1.21 (0.14) in children with obesity. After excluding 
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overweight subjects, a logistic regression model adjusted for puberty and origin revealed a stronger 

risk association between the pGRS and the obesity status, so that the odds of having obesity were 

estimated to increase 4.7 times for each additional tenth in the pGRS (h2 = 5.6%, OR = 47.36; CI 95% 

= [9.8,229.38]; p-value = 1.64 × 10−6). The obesity variability attributable to the genetic component 

under this model was estimated in 5.6%. When comparing individuals presenting the highest risk 

scores (Q4 and Q3) to those belonging to the first quartile (Q1), significant associations were also 

evidenced (OR = 3.33; CI 95% = [1.96, 5.67]; p-value = 9.14 × 10−6 and OR = 1.66; CI 95% = [1.02, 

2.71]; p-value = 0.04 respectively) (Supplementary Figure S2).

Next, we aimed to know which SNPs contribute the most to the pGRS-BMI association. For 

that purpose, we performed a stepwise linear regression including all 44 tested SNPs and found 

the genetic variants rs543874-LOC101928778:SEC16B, rs7138803-BCDIN3D:FAIM2, rs10132280-

STXBP6:NOVA1, rs1558902-FTO and rs12940622-RPTOR to be the most determinant polymorphisms 

for BMI Z-Score (Supplementary Figure S3). This finding was further supported by the univariate 

association analyses conducted between the BMI Z-score and each individual SNP (Supplementary 

Table S7).

To demonstrate the validity of the pGRS for the clinical prediction of obesity (alone or in 

combination with other traditional risk factors), logistic regression models were constructed 

including different combination of risk factors and further evaluated using AUC (Table 1). For each 

Figure 2. Association between polygenetic risk scores (pGRS) and body mass index (BMI) Z-score in the 
study population 1; analysis adjusted for origin and pubertal status of children. (A) Boxplot graph for BMI 
Z-Score according to each quartile of the pGRS; the dashed line in the plot represents the cut-off BMI Z-Score 
for overweight and obesity in the study population 1. (B) Histogram of genetic risk score values in the study 
population 1 and their correlation with BMI (R2 = 0.2).
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predictive model, subjects presenting valid data for assayed variables were selected from the study 

population 1 and divided into a training set (composed of the 75% of total available samples) 

and a test set (formed by the remaining 25%). Performance statistics from each trained model in 

the respective test set are presented in Table 1. Among all single-variable predictive models, the 

model including the pGRS demonstrated one of the greater predictive abilities (only surpassed by 

the model including parental BMI information). The joint combination of all models individually 

surpassing an AUC of 0.6 yielded a considerable improvement in the predictive ability (AUC = 0.81 

CI 95%= [0.7–0.93]), which could be sufficient for clinical discrimination. 

4.2. The pGRS is Associated with Longitudinal Trajectories for Obesity and IR in Children 

Undergoing Puberty

With the aim of studying the effects of the pGRS on obesity during the course of puberty, we 

also performed a longitudinal design on 96 boys and girls undergoing sexual maturation (study 

population 2). All details regarding the adopted longitudinal design are illustrated in Figure 1B. 

The 96 individuals were stratified according to two classification criteria; (1) joint longitudinal 

trajectories for obesity and IR, and (2) the longitudinal trajectories for obesity. The number of 

resulting experimental groups per classification as well as the final sample size per group are shown 

in Figure 1B. Longitudinal within-group and between-group changes for all analyzed biochemical 

variables are shown in Supplementary Table S2, according to the experimental classification 1. 

Changes in anthropometric variables showed a coherent behavior according to each experimental 

condition. In particular, for waist circumference (WC), which is a metabolic health indicator in 

obesity, we found significant within-group increases accompanying sexual maturation in all 

groups. The higher increase corresponded to group 4, in which children with obesity become IR 

with pubertal maturation. The metabolic health derangement observed in groups 4 and 5 for WC 

was also confirmed by changes in blood pressure, insulin and glucose levels, QUICKI, HOMA-IR and 

triglycerides.

Regarding the pGRS, findings reported in the Results Section 4.1 (merged study populations 

1 and 3) were independently validated here with the longitudinal study population 2 (N = 96), 

using data from each time point individually. For the prepubertal stage, a multiple linear regression 

analysis revealed a significant association between the pGRS and the BMI Z-Score after adjusting 

by origin (B = 2.84, CI 95% = [0.31, 5.37]; p-value = 0.03). When excluding overweight individuals 

from analysis, the odds of obesity were quantified as 8.22 times higher in the children belonging to 

the 3rd tertile of the pGRS with regard to children belonging to the 1st and 2nd tertiles (CI 95% = 

[1.95, 34.61]; p-value = 0.004). For the pubertal stage, the multiple linear regression model did not 

find a significant association between the continuous pGRS and the BMI Z-Score after adjusting by 

origin and pubertal status (B = 0.9, CI 95% = [−1.57, 3.38]; p-value = 0.47). Instead, when excluding 

overweight individuals, the odds of obesity were estimated to be 5.54 times significantly higher in 
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pubertal children belonging to the third tertile of the pGRS in comparison to those belonging to 

the first two tertiles (CI 95% = [1.41, 21.52]; p-value = 0.01).

In order to study the ability of the pGRS to predict future outcomes after puberty entrance, 

we next performed logistic regression models with the dichotomized pGRS as an independent 

predictor variable (1st and 2nd tertiles vs. 3rd tertil), including the longitudinal experimental group 

classifications from Figure 1B as dependent dummy variables (each category vs. the reference 

normal weight group). These models also included the tanner stage and origin of children as 

confounding factors. When modelling the experimental groups based on obesity and IR outcomes 

together (classification 1), we found higher odds of being “obese or overweight with IR that 

remain IR after puberty entrance” in children within the 3rd tertil of the pGRS when comparing 

them to the children in the reference bottom pGRS group (1st and 2nd tertiles) (OR = 54.15, 

p-value = 0.008, FDR = 0.03). Higher odds of being “obese or overweight non-IR that become IR 

after puberty entrance” were also reported among 3rd tertile children in comparison to 1st and 

2nd tertiles children though without statistical significance (OR = 15.52, p-value = 0.05, FDR = 

0.12). Nonsignificant results were obtained for the rest of the comparisons performed. Figure 3A 

represents the boxplots for the continuous pGRS in each of the mentioned experimental groups. 

On the other hand, when modelling the experimental groups that consider only longitudinal 

trajectories for obesity (classification 2), we reported higher odds of being “obese remaining obese 

after puberty entrance” (OR = 31.91, p-value = 0.0009, FDR = 0.005), and “normal weight becoming 

Experimental Groups
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NW non-IR  no change
OB/OW non-IR no change
OB/OW IR to non-IR
OB/OW non-IR to IR
OB/OW IR no change

NW no change
OW to NW
OB to OW
OW no change
NW to OW
OW to OB
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Figure 3. Boxplots for the continuous pGRS according to the two available experimental group classifications 
of study population 2. (A) pGRS boxplots according to joint longitudinal trajectories for obesity and insulin 
resistance (IR). (B) pGRS boxplots according to the longitudinal trajectories for obesity. The x symbol in plots 
represents the mean pGRS for each group. Abbreviations: NW, normal weight; OB, obese; OW, overweight; IR, 
insulin resistance.
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overweight after puberty entrance” (OR = 26.31, p-value = 0.02, FDR = 0.07) among children in the 

3rd tertile of the pGRS when comparing them to children in the reference bottom pGRS group (1st 

and 2nd tertiles). Nonsignificant results were obtained for the rest of the comparisons performed. 

Figure 3B represents the boxplots for the continuous pGRS in each mentioned experimental group. 

4.3. The pGRS Does not Correlate with Increased Cardio-Metabolic Alterations in Children 

and Adolescents

In our cross-sectional cohort study population 1, we studied if the quartilized pGRS was 

associated with a metabolically unhealthy status as well as with any of its six dichotomized 

components (high glucose, HOMA-IR, DBP, SBP or triglycerides values or low HDLc levels) 

according to the criteria we have previously published [33]. In parallel, 30 continuous biochemical 

markers were tested for potential association with the pGRS. These biomarkers included lipid and 

glucose metabolism biomarkers, adipokines, as well as cardiovascular risk and proinflammatory 

biomarkers. From the analyses on the components of metabolic syndrome, models adjusted for 

BMI Z-Score, sex, age, puberty and origin showed no statistically significant association with pGRS 

(Supplementary Table S8). Instead, from the analyses on the 30 continuous biochemical outcomes, 

we found only one significant risk association for the APO B/LDLc ratio (Table 2) (that became 

nonsignificant after correction for multiple-hypothesis testing).

In order to validate these findings at the longitudinal level, we further applied multiple 

linear regressions with deltas for continuous cardio-metabolic measurements as input variables 

(computed as T1–T0) in the longitudinal study population 2. All analyses were again adjusted for 

confounders such as the change in BMI Z-score, sex, elapsed time, age at baseline or origin of the 

children. We found a significant positive correlation between the pGRS and APO B levels (p-value = 

0.02, FDR = 0.29) during the course of puberty (Table 3). Moreover, a significant inverse correlation 

was also reported between the pGRS and the change in HDLc levels (p-value = 0.03, FDR = 0.33). 

Again, no model passed the multiple-hypothesis testing correction.
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4.4. Lifestyle Factors Interact with the Inherited Genetic Susceptibility to Obesity in 

Children

Once we demonstrated the relationship between the pGRS and obesity as well as discarded 

a direct implication of the pGRS in the development of cardio-metabolic alterations, we next 

aimed to describe the plausible modulatory role of environmental factors over inherited genetic 

susceptibility to obesity. For that purpose, we applied multiple linear regression models including 

an interaction term for the pGRS and each assessed environmental factor in the study population 

1. As a result, this approach revealed the pGRS to interact with three lifestyle factors related to 

parental educational level and physical activity (Table 4 and Figure 4). When we applied FDR 

adjustment for multiple testing, only two of them remained statistically significant. Interestingly, 

higher educational level of mothers and fathers were separately associated with lower BMI Z-Score 

of children depending on the pGRS (p-value = 0.0004 and FDR = 0.02 and p-value = 0.0008 and FDR 

= 0.02 respectively). The “protective” effect of mother’s and father’s educational levels on BMI was 

only achieved in children presenting low values of the pGRS (Figure 4A,B).
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pGRS groups

     - 1 SD

     Mean

     + 1 SD

Figure 4. Interaction plots for observed significant modulatory effects of environment over inherited genetic susceptibility 
to obesity (pGRS-environment interactions) in study population 1; these analyses were adjusted for the origin and 
pubertal status of children. Subfigure (A) shows the modulatory effect of the educational level of mothers over the pGRS-
BMI Z-Score association. Subfigure (B) shows the modulatory effect of the educational level of fathers over the pGRS-BMI 
Z-Score association. In both subfigures, the pGRS is categorized according to the cut off values -1 standard deviation and 
+ 1 standard deviation. Abbreviations: BMI, body mass index; SD, standard deviation.   

4.5. The pGRS is not helpful for the Pharmacogenetics Management of Obesity in Children

On the other hand, we employed the data derived from a previous metformin RCT (study 

population 3) in order to test whether the constructed pGRS presents utility for the pharmacological 

management of obesity in children. As a result, we found no differential response (in terms of BMI 

Z-Score reduction) according to the pGRS (B = 0.39, SE = 0.41, t value = 0.97, p-value = 0.34 for 

the interaction term GRS*Treatment in the multiple linear regression, and p-value = 0.33 in for the 

interaction term GRS:Time:Experimental Group under a LME model).

5. Discussion

In the present study, we evaluated the utility of an adult-BMI pGRS for the prediction and 

pharmacological management of obesity in children, further investigating its implication in the 

appearance of cardio-metabolic alterations. For that purpose, we counted on data from three well-

characterized children populations following both cross-sectional and longitudinal designs. As a 

result, we demonstrated that the pGRS is associated with childhood BMI Z-Score and could be 

used as a good predictor of obesity longitudinal trajectories during puberty. On the other hand, we 

demonstrated that the pGRS is not associated with cardio-metabolic comorbidities in children and 
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that certain environmental factors interact with the genetic predisposition to the disease. Finally, 

according to the results derived from a weight-reduction metformin intervention in children with 

obesity, we discarded the utility of the pGRS as a pharmacogenetics marker of metformin response.

As one of the main findings from this work, it highlights the strongly significant association 

evidenced between the pGRS and the BMI Z-score in a children population composed of 698 pre- 

and pubertal subjects with and without obesity (Figure 1). When excluding overweight individuals, 

significant results were also obtained with even stronger effects sizes and a higher percent of 

heritability explained (Supplementary Figure S2). When performing logistic regressions based 

on quartiles, the most significant and strongest result was obtained when comparing children 

in the 4th quartile of the pGRS vs. those in the reference bottom group. On the other hand, we 

demonstrated that only 9 over the total 44 analyzed SNPs presented an individual significant 

association with the BMI Z-Score, showing barely significant p-values (Supplementary Table S7). 

The FTO locus was identified among the most relevant loci, which is in accordance with previous 

studies pointing out the FTO as a central piece within the genetics architecture of obesity [41]. A 

few conclusions could be extracted from these results. The first remark is the fact that, although all 

assessed SNPs individually elicit small risk effects for obesity, as shown here (Supplementary Table 

S7) and in previous studies [3]; it is the accumulation of many of these small-risk effect variants in the 

same individual which finally triggers the clinical manifestation of the obesity phenotype, leading 

to a robust significant association (Figure 2A). This is what is known as “concerted polygenetic 

behavior” and has been previously described for obesity and many other complex diseases [13,42]. 

Under these circumstances, the use of a weighted pGRS approach is the only way to account 

for small risk genetics effects on disease that would otherwise remain undetected. Thus the use 

of pGRSs is an additional way to unravel part of the missing heritability of complex traits [13]. 

Furthermore, the use of a weighted approach (e.g., instead of a simple sum of the number of risk 

alleles by individual) improved the robustness of associations and allowed us to create a model 

with a higher similarity to the real to the real molecular basis of the disease.

The second remark that could be extracted from our results is the fact that the overweight 

status seems to be a midway phenotype (between normal weight and obesity), in which genetics 

might not play a determinant role (Supplementary Figure S1). Although both remarks had been 

previously described in the literature [18,22], our approach reinforces these hypotheses and adds 

novel insights for Iberian populations in Spain, which is quite important considering the well-

known genetic interpopulations variability within the European ancestry [43]. All these findings from 

our cross-sectional study populations 1 and 3 were independently validated also at each pubertal 

stage of the study population 2 (please see Results Section 4.2.). This corroborates the robustness 

of our design and reaffirms the fact that genetic predisposition to obesity starts early in childhood 

and persists during puberty [2]. Interestingly, the obesity heritability attributable to these genetic 

markers in our study was estimated in 5.6%, which is far higher than the 1–2% reported in the 
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adult study from Locke et al. (2015) [3]. This could be explained by the fact that the environmental 

modulatory effects on genetics during childhood may be softer than in adults.

As a secondary aim, we demonstrated that the pGRS is useful for the prediction of obesity 

in children. Among all trained single-variable predictive models, the one based on the pGRS 

showed one of the greater predictive abilities (only surpassed by the model including parental BMI 

information). The joint combination of all models individually surpassing an AUC of 0.6 yielded a 

considerable improvement in the predictive ability (AUC = 0.81 CI 95% = [0.7–0.93]), which could 

be sufficient for clinical discrimination. All these results are in concordance with previous insights 

from Butler et al. (2019) [44], who demonstrated that early clinical factors, including maternal age, 

prepregnancy maternal (and paternal) BMI, birthweight, gestational age, weight gain during early 

infancy and other easily and measurable factors, do fairly well in predicting childhood obesity. 

Moreover, these results suggest that the combination of a high-risk genetic profile along with an 

unhealthy familial environment (represented in terms of parents BMI and obesity family history) 

could boost the predisposition to the disease. Beyond AUC predictive analyses, we also showed how 

a higher pGRS is associated with obesity longitudinal trajectories when entering puberty in study 

population 2. We found higher pGRS in children remaining obese after puberty when compared 

to children remaining with normal weight when entering puberty (Figure 3). From these results, 

we can conclude that the pGRS could be a powerful predictive tool, assayable from the moment 

of childbirth, with application in the risk assessment for future obesity. Besides, since severe 

obesity is usually accompanied by higher odds for metabolic complications during adulthood, 

these risk estimations could lead to the application of personalized preventive strategies in order 

to tackle the relevant problem of obesity-associated morbidity and mortality. Interestingly, as far 

as we are concerned, this is the first time a study focused on the longitudinal effects of a pGRS 

during pubertal development. Puberty has been identified as a major influence on cardiovascular 

risk factors, the impaired glucose tolerance of pubertal adolescents with obesity being the best 

explanation [24,45,46]. The demonstrated ability of the pGRS to predict, from early childhood, the 

pubertal obesity status of each child is therefore a tool of great interest for identifying children with 

higher odds for cardio-metabolic disturbances at this metabolically critical stage of life.

In previous studies performed in adults, obesity pGRSs have also yielded secondary findings 

for multiple cardio-metabolic outcomes, including a heightened risk of all-cause mortality, 

diabetes, coronary artery disease, hypertension, stroke, and venous thromboembolism, all of them 

after correcting for BMI. While we knew the clinical association of obesity with these outcomes and 

conditions, the pGRS correlation now adds the genomic underpinning. To date, no studies have 

demonstrated such associations in children populations otherwise. Here, we only found slightly 

significant associations (BMI-adjusted) between the pGRS and certain lipid metabolism outcomes 

(Table 2;  Table 3, and Supplementary Table S8), none of them passing multiple-test adjustment. 

Among the rest of the analyzed outcomes, such as inflammatory and cardiovascular biomarkers, 
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no additional significant association was found. From these results, we could conclude that the 

associations reported in adults between the pGRS and cardio-metabolic disturbances could be a 

consequence of the strong correlation between obesity, the obesogenic environment and these 

outcomes, rather than a direct consequence of having a higher pGRS. This is not surprising since 

most of the loci conforming the pGRS, 60% of them, are loci highly expressed in regions of the 

brain and hypothalamus regulating energy balance, appetite, food preference, and reward-seeking 

behavior [3], rather than loci involved in inflammatory or glucose metabolism-related processes.

From our gene-environment cross-sectional approach, we found that only the educational 

level of the parents demonstrated a significant interaction with the pGRS. Compared with other 

socioeconomic indicators, the educational level of the mother is the one that had presented the 

strongest association with unhealthy factors in literature, such as adiposity, in both children and 

adolescents [47,48]. Particularly, in our cohort, we saw how this variable was not able to break the 

genetic determinism or susceptibility to obesity conditioned by the pGRS. Although no other 

factor evidenced a genetic risk modulatory capacity in our study (neither PA measurements), this 

does not mean that there is no influence of the environment in the genetic predisposition to 

obesity in children.

Although we have previously shown that certain individual obesity-SNPs could act as 

pharmacogenetics regulators of metformin response in children with obesity [36], we here discarded 

the utility of the pGRS as a marker for the obesity pharmacological management. Again, this is not 

surprising given the type of SNPs included in the pGRS, where the metformin target pathways 

are not included. On this matter, we can conclude that a higher genetic predisposition to obesity 

(according to the genes involved in satiety and energy balance regulatory mechanisms) does not 

determine a worse BMI Z-Score response when treating with metformin. For the pharmacological 

personalized management of children with obesity instead, we recommend the use of individual 

validated target SNPs [36].

Among the limitations of our current approach, we can highlight the inclusion of only 

European ancestry individuals, limiting extrapolation for other ancestries and the lack of objectively 

measured physical activity and diet assessments. These important questions remain unanswered 

and will define the potential benefit derived from using this obesity pGRS.

Prevention of key medical conditions such as obesity has been a long-standing dream that 

largely remains unfulfilled. If we are to take advantage of the opportunity, we need to know as 

much as possible for prediction, acknowledging it will never be deterministic. The obesity pGRS 

reported in the present study provides an extremely powerful tool for the early risk detection. 

While there remains uncertainties and practical limitations for making such pGRS results widely 

available, such as the requirement for considerable education for the medical community and 

the general population, we are moving in the right direction for someday pre-empting important 

conditions that would have otherwise been manifest.
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The protein S100A4 as a novel marker of insulin 
resistance in prepubertal and pubertal children  
with obesity

Augusto Anguita-Ruiz1,2,3,4*, Andrea Méndez-Gutiérrez1,2,3,4*, Azahara I Ruperez4,5, 
Rosaura Leis4,6, Gloria Bueno4,5, Mercedes Gil4,7, Inés Tofe7, Carolina Gomez-Llorente1,2,3, 
Luis A. Moreno4,5, Ángel Gil1,2,3,4 & Concepción M Aguilera1,2,3,4#.

Abstract Background: S100A4 is a metastasis-associated protein also reported as a 
promising marker for dysfunctional white adipose tissue (WAT) and insulin resistance (IR) 
in adult and adolescent populations.

Objective: We aimed to evaluate the association between the protein S100A4 and obesity 
and IR in children and during pubertal development.

Design and Methods: The study design consisted of three cross-sectional populations of 
249, 11 and 19 prepubertal children respectively (named study population 1, 2 and 3), and 
a longitudinal population of 53 girls undergoing sexual maturation (study population 4). 
All subjects were classified into experimental groups according to their sex, obesity and IR 
status. All study populations counted on anthropometry, glucose, and lipid metabolism, 
inflammation and cardiovascular biomarkers as well as S100A4 plasma levels measured. 
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The study population 1 was intended as the discovery population in which to elucidate 
the relationship between Obesity-IR and S100A4 plasma levels in prepubertal children. 
The cross-sectional populations 2 and 3 further counted on WAT gene expression data 
for investigating the molecular basis of this association. Instead, the longitudinal study 
population 4 presented blood whole-genome DNA methylation data at each temporal 
record, allowing deepening into the Obesity-IR-S100A4 relationship during puberty as 
well as deciphering plausible epigenetic mechanisms altering S100A4 plasma levels.

Results: S100A4 plasma levels were strongly associated with several metabolic and 
anthropometric outcomes, namely IR, in prepubertal non-diabetic obese children. We 
also found highly significant positive associations during the course of puberty between 
the increase in S100A4 levels and the increase in HOMA-IR (P=0.0003, FDR=0.005) and 
insulin levels (P=0.0003, FDR=0.005). Methylation in two-enhancer related CpG sites of 
the S100A4 region (cg07245635 and cg10447638) was associated with IR biomarkers at 
the prepubertal stage and with longitudinal changes in these measurements. We further 
reported an association between visceral WAT (vWAT) S100A4 expression and HOMA-IR, 
insulin levels and BMI Z-Score, but not with circulating S100A4.

Conclusions: We report for the first time the association of S100A4 with IR and WAT 
dysfunction in prepubertal populations as well as how the change in plasma S100A4 levels 
accompanies longitudinal trajectories of IR in children during pubertal development. 
Moreover, we propose epigenetic changes in two methylation sites and an altered S100A4 
vWAT expression as plausible molecular mechanisms underlying this disturbance in 
obesity.

Keywords: Obesity; Longitudinal Study; Children; Puberty; Epigenetics.

Abbreviations: WAT (white adipose tissue), IR (insulin resistance), sWAT (subcutaneous WAT), vWAT 

(visceral WAT), WC waist circumference), TNF-α (tumour necrosis factor alpha), hsCRP (high-sensitivity 

CRP), IL (interleukin), PAI-1 (total plasminogen activator inhibitor-1), MPO (myeloperoxidase), MCP-

1 (monocyte chemoattractant protein 1), MMP-9 (matrix metalloproteinase-9), sICAM-1 soluble 

intercellular cell adhesion molecule-1), VCAM (soluble vascular cell adhesion molecule-1), HPRT 

(hypoxanthine-guanine phosphoribosyltransferase-1), MLR (multiple linear regression), FDR (false 

discovery rate), LME (linear mixed-effects), AIC (Akaike information criterion).
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1. Introduction

The human S100A4 is a member of the soluble calcium (Ca 2+)-binding proteins [1] primarily 

classified as a metastasis-associated protein [2]. With reported expression in a wide variety of 

cell types [3–5]), S100A4 seems to participate in cell migration, chemotaxis, angiogenesis and 

extracellular matrix remodeling [6]. Given its implication in these biological processes, besides 

cancer, S100A4 has also been related to other non-tumour diseases including multiple sclerosis, 

psoriasis or rheumatoid arthritis, where it participates in pro-inflammatory pathways [7]. 

Recently, S100-proteins have been extensively reviewed in the context of adipose tissue 

and obesity [8]. Regarding the S100A4 protein, it highlights two recent studies postulating it as a 

promising circulating marker for dysfunctional white adipose tissue (WAT) and insulin resistance 

(IR) in adult [9] and adolescent populations [10]. Particularly, these studies have shown S100A4 as 

a novel adipokine associated with subcutaneous WAT (sWAT) inflammation, hepatovisceral fat 

excess, obesity-related IR as well as with a higher prevalence of type 2 diabetes. These associations 

have not been yet investigated in childhood, though it is the best period of life for understanding 

how obesity biomarkers correlate with later BMI changes and cardiometabolic derangement [11]. 

The early-life identification of high-risk individuals for IR and type 2 diabetes complications is of 

special importance for reducing obesity-associated mortality. Nowadays, monitoring non-invasive 

biomarkers such as S100A4 offers a great opportunity for disease prevention. However, today there 

is not enough evidence regarding the role of this protein as a biomarker of IR or the molecular 

mechanisms behind it.

In the last years, CpG DNA methylation has been involved in numerous diseases, where it has 

been established as an important etiological molecular mechanism and a link with environmental 

exposures [12]. Previous cancer studies have shown the epigenetic regulation of several members 

of the S100 family through methylation of key CpG sites within their genes or promoters [13,14]. In 

obesity, previous studies have confirmed that the epigenome is an important regulator of gene 

expression [15]. Therefore, our research hypothesis was that epigenetic alterations in S100A4 could 

be relevant for understanding its role in the IR-obesity axis.

The aim of the present study was to evaluate the association between S100A4 and different 

obesity and IR parameters making use of multiple well-characterized children populations under 

both cross-sectional and longitudinal designs. In both prepubertal and pubertal stages, we carried 

out a multi-omics approach (including gene expression and DNA methylation analyses) for 

elucidating the potential molecular basis of the S100A4-IR association.
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2. Research Design and Methods

2.1. The cross-sectional study design 

A total of 249 Spanish prepubertal children (124 girls), aged 3.5–12.6 years, all Caucasian, 

were recruited from primary care centers and schools in three Spanish cities (Córdoba (southern 

Spain) (N=87), Santiago de Compostela (northwestern Spain) (N=99), and Zaragoza (northeastern 

Spain) (N=63)) during the year period 2012-2015. This sample was named as study population 

1 and constituted the discovery population for investigating the relationship between S100A4 

and childhood obesity. Inclusion criteria were the absence of congenital metabolic diseases, 

prepubertal status (Tanner 0) and European-Caucasian heritage. Exclusion criteria were pubertal 

stage, the presence of congenital metabolic diseases or undernutrition, and the use of medication 

that alters blood pressure (BP), glucose, or lipid metabolism. After initial assessments at the school 

or primary care center, children fulfilling the inclusion criteria were invited for a clinical examination 

in the appropriated, participating hospitals (“Reina Sofia” University Hospital (Córdoba), Unit of 

Clinical Analyses “Valle de los Pedroches” Hospital (Córdoba), Pediatric department of “Lozano Blesa” 

University Hospital (Zaragoza), and Pediatric Department of Clinic University Hospital of Santiago 

(Santiago de Compostela)). Trained pediatricians performed the clinical examinations according 

to standardized methods. Pubertal stage was determined in each patient according to the Tanner 

criteria [16] and validated by plasma sex hormone concentrations. All employed recruiting protocols 

have been previously published [17,18]. All children were classified for obesity using the BMI age-

and sex-specific cut-off points proposed by Cole et al. [19] and allocated into experimental groups 

according to their sex, obesity and IR status. The experimental groups comprised non-IR normal 

weight children, non-IR children with obesity, and IR children with obesity (further stratified by sex). 

The minimum number of subjects per group was 40 and the maximum 43, therefore constituting 

a balanced design. General characteristics, anthropometry, biochemical parameters, adipokines, 

and cardiovascular/pro-inflammatory biomarkers of the study population 1 are presented in the 

Supplementary Table 1 stratified by group. 

In order to perform S100A4 gene expression analyses in WAT, two additional study 

populations were recruited and named as study population 2 and 3. The first one consisted of 11 

prepubertal Spanish children derived from a previously published work and followed the same 

recruiting protocols than the study population 1. In this case, all children were enrolled from our 

recruiting center in the southern of Spain (Córdoba) and comprised ages 7-12 years. General 

characteristics of these children are presented in the Supplementary Table 2. Prepubertal stage 

was again determined in each patient according to the Tanner criteria [16] and validated by plasma 

sex hormone concentrations [20]. As an independent and validation sample, the study population 

3 was composed of a total of 20 prepubertal children (10 with obesity and 9 normal-weight) [20] 

(Supplementary Table 3). Enrolled from our recruiting center in the southern of Spain, these children 
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comprised ages 6-13 years. Prepubertal stage was also determined in each patient according to 

the Tanner criteria [16] and validated by plasma sex hormone concentrations. 

The whole study design of this work has been summarized and extensively detailed in figure 1.

2.2. The longitudinal study design 

A longitudinal study was also conducted in 53 Spanish girls allocated into six experimental 

groups according to their obesity and IR status before and after the onset of puberty (study 

population 4). Pubertal stage was determined in each patient according to the Tanner criteria [16] 

and validated by plasma sex hormone concentrations. Of note, 17 girls from this subpopulation 

were also part of the previously mentioned cross-sectional study population 1. All these girls were 

first recruited as prepubertal children during the year period (2012-2015) and called again for 

follow-up medical consultation in 2018. At the moment of recruitment, girls were aged 4-10.7 and 

came from our three recruiting centers (Córdoba (southern Spain) (N=4), Santiago de Compostela 

(northwestern Spain) (N=27), and Zaragoza (northeastern Spain) (N=22)). At the second visit, girls 

were aged 9.7-17.4. All subjects with clinical signs of reached puberty were finally included in the 

longitudinal population. During all the course of the study (2012-2018), children remained under 

regular medical monitoring by the same pediatricians. In this longitudinal design, both S100A4 

levels and S100A4 DNA methylation were investigated in blood samples.

Further details regarding the adopted longitudinal design are illustrated in Figure 1.

2.3. Ethics statement

These studies were conducted in accordance with the Declaration of Helsinki (Edinburgh 

2000 revised) and they followed the recommendations of the Good Clinical Practice of the CEE 

(Document 111/3976/88 July 1990) and the Spanish legislation in force, which regulates the 

clinical investigation of human beings (RD 223/04 about clinical trials). The Ethics Committee on 

Clinical Research of Aragon, the Bioethics Committee of the University of Santiago de Compostela, 

the Ethics Committee of the Reina Sofia University Hospital of Cordoba, and the Ethics Committee 

on Human Research of the University of Granada approved all experiments and procedures. All 

parents or guardians provided written informed consent and the children gave their assent.

2.4. HOMA-IR cut-off points

The IR status was defined by means of the HOMA-IR index. Since HOMA-IR strongly varies 

between ages, genders, and diseases [21] and since no reference values have been yet established in 

either children or adult populations [22], we extracted our own cut-off points from a previous well-

described Spanish cohort composed of 1669 children and adolescents [23,24]. For the prepubertal 

stage, a single cut-off value of HOMA-IR=2.5 was considered for IR [23,25]. For the pubertal stage, sex 
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information was taken into consideration and different cut-off points were adopted for IR according 

to the 95th HOMA-IR percentile. Extracted from a subset of 778 pubertal Spanish children, cut-off 

values corresponded to HOMA-IR=3.38 in boys and HOMA-IR=3.905 in girls.

2.5 Anthropometric and biochemical measurements 

Body weight (kg), height (cm) and waist circumference (WC) (cm) were measured using 

standardized procedures and BMI was calculated. BMI z-score was calculated based on the Spanish 

reference standards published by Sobradillo et al. [26]. Blood pressure was measured three times 

for each individual by the same examiner using a mercury sphygmomanometer and following 

international recommendations [27]. Routine measures of lipid and glucose metabolism were 

performed at the laboratories of each participating hospital following internationally-accepted 

quality control protocols. 

Blood samples were collected in overnight fasting conditions, centrifuged, and plasma and 

serum were stored at -80°C. Plasma adipokines, inflammation, and cardiovascular risk biomarkers 

Longitudinal design:

Cross-sectional design in prepubertal children
Gene expression in vWATBlood concentration

Study population 3Study population 1 Study population 2

Description of the study
population

n=249 / Sex (125 ♂ / 124 ♀) 
Age [3,5-12,6] 
Experimental  groups:
• Normal-weight (NW non-IR): 43/40
• Obese non-IR (OB non-IR): 40/43
• Obese IR (OB IR): 42/41

n=11 / Sex (10  ♂ / 1 ♀)
Age [7-12] 
Experimental  groups:
• Normal-weight: 4/1
• Obese: 4/0

n=20 / Sex (14  ♂ / 6 ♀) 
Age [6-13] 
Experimental  groups:
• Normal-weight: 5/4
• Obese: 9/2

Plasmatic S100A4 ELISA kit ELISA kit ELISA kit

Blood biochemical Glucose and lipid metabolism,                                        
inflammation and cardiovascular 
biomarkers

Glucose and lipid metabolism Glucose and lipid metabolism

Gene Expression (WAT) Array Affymetrix HG-V133Plus 2.0 RT-qPCR

Omics-Epigenetic (Blood)

Blood DNA methylation

Study population 4

Description of the study
population

n=53 / Sex (0 ♂ / 53 ♀) 
Age prepubertal [3,5-12,6]  
Age pubertal [9,72-17,24] 

Plasmatic S100A4 ELISA kit

Blood biochemical Glucose and lipid metabolism,                                        
inflammation and cardiovascular 
biomarkers

Gene Expression (WAT)

Omics-Epigenetic (Blood) Infinium MethylationEPIC
microarray (Illumina)

Figure 1. Study design and experimental details of the study populations. Abbreviations: NW, normal-weight; IR, insulin 
resistance; WAT, white adipose tissue; vWAT, visceral WAT. 
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(adiponectin, leptin, resistin, tumour necrosis factor alpha (TNF-α), high-sensitivity CRP (hsCRP), 

interleukin (IL)-6, IL-8, total plasminogen activator inhibitor-1 (PAI-1), myeloperoxidase (MPO), 

monocyte chemoattractant protein 1 (MCP-1), matrix metalloproteinase-9 (MMP-9), soluble 

intercellular cell adhesion molecule-1 sICAM-1, and soluble vascular cell adhesion molecule-1 

(sVCAM)) were analyzed in samples of prepubertal children using XMap technology (Luminex 

Corporation, Austin, TX) and human monoclonal antibodies (Milliplex Map Kit; Millipore, Billerica, 

MA) as previously reported [24].

2.6. Plasma S100A4 levels

S100A4 protein levels were determined in plasma by CSB-EL02032HU (Cusabio Biotech Co, 

Ltd, Wuhan, China), an enzyme-linked immuno-absorbent assay kit according to the manufacturers’ 

instructions. The coefficient of variance was 7%. 

2.7. DNA extraction and methylation analysis

Buffy coat fractions from blood samples belonging to groups 1,3,4,5, and 6 of the longitudinal 

design (study population 4) were selected for DNA methylation analysis (N=48). Genomic DNA was 

extracted from peripheral white blood cells as previously described [24]. High-quality DNA samples 

(≥ 500 ng) were treated with bisulfite using the EZ-96 DNA Methylation Kit (Zymo Research 

Corporation, Irvine, CA). DNA methylation was measured with the Infinium MethylationEPIC 

microarray using bead chip technology (Illumina, San Diego, CA, USA). A detailed description of the 

methods employed for EWAS pre-processing, primary analyses, and statistical designs are available 

in the supplementary material.

2.8. Gene expression analysis

Genome-wide expression data from visceral WAT (vWAT) of 11 prepubertal Spanish children 

(study population 2) were obtained from a previously published work [20]. The dataset is freely 

available from the Gene Expression Omnibus repository [28] (GSE9624) and was composed of six 

normal-weight and five obese-derived RNA samples (Supplementary Table 2). Among all available 

probes within the HG-U133 Plus-2.0 array, one was found within the S100A4 locus, with the identifier 

“203186_s_at”. Stored plasma samples from each participant were thawed and plasma levels of 

S100A4 were determined in order to study their correlation with S100A4 gene expression. The 

LIMMA R package was employed for statistical analysis. Robust Multichip Average-normalized gene 

expression from the “203186_s_at” probe was tested for association with experimental conditions 

(normal-weight vs. obese) and with each continuous outcome (BMI Z-score, HOMA-IR, insulin 

levels, glucose levels, and S100A4 plasma levels). These analyses were adjusted for confounders 

when necessary.
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In order to validate microarray analyses, qPCR experiments for the S100A4 gene were 

performed in vWAT samples derived from an independent sample of 20 prepubertal children (10 

with obesity and 9 normal-weight) (study population 3) previously described [20] (Supplementary 

Table 3). Hypoxanthine-guanine phosphoribosyltransferase-1 (HPRT1) was used as a reference 

gene. Primers were acquired (refs. qHsaCED0048045 and qHsaCID0016375) from Bio-Rad 

Laboratories, California, USA) and qPCR was performed using the ABI Prism 7900 HT instrument 

(Applied Biosystems, Foster City, USA) and the SsoAdvanced™ Universal SYBR® Green Supermix 

(Bio-Rad Laboratories, California, USA). Data were analyzed using the 2−ΔΔCt approach and 

normalized against HPRT1 expression.

2.9. Statistical analysis

In the cross-sectional prepubertal study, continuous variables were tested for normality 

using the Shapiro–Wilk test and transformed when necessary by means of the natural log or the 

rank-based inverse normal transformation. Heteroscedasticity between experimental groups was 

explored by means of the Levene test. Then, the one-way ANOVA, Kruskal-Wallis and the Welch test 

were employed to assess group differences in S100A4 levels and other measurements according 

to standard statistical assumptions. The pairwise-t-tests, the pairwise Mann–Whitney U-tests, and 

the Dunn tests were applied conveniently as post-hoc analyses to determine which experimental 

groups differed from each other. Multiple linear regression (MLR) analyses were applied for all 

continuous variables in order to study their association with S100A4 levels. In these analyses, origin, 

age, gender, pubertal stage, height, BMI Z-score, and insulin were adjusted as confounders when 

necessary. A p-value < 0.05 was considered as significant. Given the number of analyzed outcomes, 

we considered false discovery rate (FDR) as in Benjamini and Hochberg to correct for multiple 

hypothesis testing.

In the longitudinal study, within-group changes from baseline (T0) to puberty (T1) were 

assessed by means of a paired design in all continuous variables (including S100A4 levels); 

employing either a paired t-test or a Wilcoxon signed-rank test. Between-group differences were 

assessed by the one-way ANOVA, Kruskal-Wallis, or Welch tests to the computed delta values (T1–T0) 

for each continuous measurement. Between-group differences in S100A4 levels were particularly 

investigated by means of a linear mixed-effects (LME) model including the covariates age, Tanner 

stage and time as fixed effects and a random intercept for each participant. Test significance for 

the LME model was evaluated on the “Time * Experimental Group” interaction term and further 

investigated using pairwise comparisons between groups. The existence of random intercepts was 

confirmed through the two-way ANOVA and the scatter plots. Homoscedasticity of within-group 

errors was assessed using residual vs. predicted plots and the Levene test (P=0.108, F-Value=1.923, 

df=47). The Akaike information criterion (AIC) was employed for validating the selected LME model 

versus model variations (AIC=1097.931, df=16). The statistical power was assessed by comparing 

the full model (including the Experimental Group*Time interaction) versus a model without the 
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interaction term. As a result of the application of 1000 simulations with the powerSim() function 

of the simr R package [29], we obtained that our approach presented a β = 94.90 % with a 95% 

confidence interval of [93.35-96.18]. Simulations were run for an alpha value of 0.05, using the 

106 available records and elapsed during 0 h 1 min and 47 sec in an i7-8700K CPU 3.70GHz with 

6 cores (12 threads) and 32 GB of RAM memory. MLRs were also applied for all calculated deltas 

in order to study their correlation with the change in S100A4 levels. On measurements showing 

significant results, cross-sectional MLRs were further investigated at each time point with S100A4 

as independent variable. All described analyses were performed in R environment version 3.6.0 [30].

Figure 2. Group comparisons 
for S100A4 plasma levels in the 
prepubertal population of 249 children 
(study population 1). The one-way 
ANOVA, Kruskal-Wallis and the Welch 
test were employed to assess group 
differences in S100A4 levels according 
to standard statistical assumptions. 
The pairwise-t-tests, pairwise Mann–
Whitney U-tests and Dunn tests 
were applied conveniently as post-
hoc analyses to determine which 
experimental groups differed from 
each other. * refers to comparisons 
yielding significant results (P < 0.05).

3. Results
3.1. The cross-sectional study

General characteristics of the 249 children in the cross-sectional study (study population 1) 

are shown in the Supplementary Table 1. S100A4 plasma levels according to obesity and IR by sex 

are shown in Figure 2. Higher S100A1 plasma levels were observed in girls with IR and obesity 

when compared with normal-weight non-IR girls (P=0.04). In the same way, higher S100A4 plasma 

levels were observed for boys with obesity and IR than for normal-weight boys, without statistical 

significance though. When all subjects of the sample were compared together, we reported 

significant differences between normal-weight and children with obesity (P=0.02) and between non-

IR and IR children (P=0.02), with higher values in the obesity and IR groups, respectively (Figure 2).

In order to clarify the relationship between S100A4, IR, and obesity, MLRs were further 

conducted in a wide range of metabolic outcomes (Table 1). The strongest association was found 

for glucose levels, for which each additional ng/mL of S100A4 in plasma was associated with an 

increase of 0.05 mg/dL (P=0.005). We also identified significant and positive associations between 

the S100A4 plasma levels and HOMA-IR (P=0.02) and plasma sICAM1 concentrations (P=0.02), all 
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of them properly adjusted for confounders (please, see table 1 legend). Otherwise, no significant 

association was identified with BMI Z-score.

3.2 The longitudinal study

All details regarding the adopted longitudinal design are illustrated in Figure 1. Longitudinal 

within-group and between-group changes for analyzed variables are shown in Table 2. Changes 

in anthropometric variables showed a coherent behavior according to the experimental condition. 

In particular, for WC, which is a metabolic health indicator in obesity, we found within-group 

significant increases in groups 1, 4, 5 and 6. The higher change corresponded to the group 5, in 

which girls with obesity become IR with pubertal maturation. The metabolic health derangement 

observed in groups 5 and 6 was also confirmed by changes in blood pressure, glucose levels, 

QUICKI, HOMA-IR and triglycerides (Table 2).
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GROUP 1 
 NW non−IR no change

GROUP 2 
 OB/OW non−IR to NW non−IR

GROUP 3 
 OB/OW non−IR no change

GROUP 4 
 OB/OW IR to non−IR

GROUP 5 
 OB/OW non−IR to IR

GROUP 6 
 OB/OW IR no change

1 2 1 2 1 2 1 2 1 2 1 2
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Figure 3. Longitudinal trajectories in S100A4 plasma levels by experimental condition in the longitudinal study (study 
population 4). Between-group differences in S100A4 levels were investigated by means of a linear mixed-effects model 
including the covariates age, Tanner stage and time as fixed effects and a random intercept for each participant. Test 
significance was evaluated on the “Time x Experimental Group” interaction term and further investigated using pairwise 
comparisons between groups.

Regarding S100A4 plasma levels at baseline, we found significant lower levels in the normal-

weight group (group 1) than in the obese with IR group (group 4) (Table 2 and Figure 3). Concerning 

longitudinal S100A4 changes, we identified significant within-group differences for groups 1, 5, 

and 6 (FDR=0.002 for group 1; FDR= 0.02 for group 5; FDR=0.01 for group 6). Interestingly, the 

observed increase in healthy normal-weight girls put the S100A4 levels in similar values to baseline 

levels of girls with obesity (Figure 3). These reached levels in healthy normal-weight pubertal girls 

were comparable to the mean S100A4 levels observed in healthy adult woman populations [8], 

suggesting that pubertal development is an important step for the stabilization/destabilization of 

S100A4 levels and the further appearance of its related phenotypes. Regarding between-group 

differences, an LME model reported a significant association (F-Value=2.72 and P=0.03) between 

the interaction term “Time*Experimental group” and the S100A4 levels (Table 2). The statistical 

power of the approach was evaluated obtaining a β = 94.90 % with a 95% confidence interval 

of [93.35-96.18]. Post-hoc pairwise comparisons between experimental groups revealed a strong 

association between a worsening/improvement of the IR status and the increase/decrease in 

S100A4 levels, yielding significant results in 4 of the 15 tested comparisons (P=0.02 for group 1-vs-

group 4, P=0.03 for group 3-vs-group 6, P=0.01 for group 4-vs-group 5, and P=0.004 for group 4-vs-
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group 6) (Figure 3 and Table 2). In order to validate these findings, we further applied MLRs with 

deltas for continuous measurements as input variables (computed as T1-T0) (Table 3). We found 

highly significant positive correlations between the increase in S100A4 levels and the increase in 

HOMA-IR (P=0.0003, FDR=0.005) and insulin (P=0.0003, FDR=0.005) during the course of puberty 

(Figure 4). A significant inverse correlation was also reported with the change in HDLc levels 

(P=0.003, FDR=0.03). Otherwise, no significant association was identified with the change in BMI 

Z-score. 

In the pubertal stage of the longitudinal population, we identified strong associations 

between S100A4 levels and HOMA-IR (P=0.003) and QUICKI (P=0.024) (Table 4), reporting effect 

sizes and significant values comparable to previous findings from adult populations [8], while a null 

association with BMI Z-score was reported. Details for adjusting covariates in all tested models can 

be found in the table legends or in the method section.
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Figure 4. Multiple linear regressions analyses between the change in S100A4 plasma levels and the changes in glucose 
metabolism outcomes and BMI Z-Score in the longitudinal cohort (study population 4). Deltas were calculated as T1 – T0. 
Figure A reports the linear model with delta HOMA-IR as dependent variable, B refers to the model with delta insulin levels 
as dependent variable, C the model for delta glucose levels and D the one for delta BMI Z-score.

3.3 S100A4 DNA methylation

Fourteen methylation sites were selected from the Infinium Methylation EPIC microarray 

of which thirteen were annotated as promoter associated CpGs (Supplementary Table 4). All 

the CpGs were annotated as open sea. At baseline, we found a positive significant association 

between the methylation status of the probe cg07245635 and HOMA-IR, insulin levels, and S100A4 

plasma levels (Figure 5, and Supplementary Table 5). Interestingly, the association with plasma 

S100A4 remained statistically significant after adjusting for HOMA-IR (Supplementary Table 5). At 

the pubertal stage, we found a significant inverse association between the methylation status 

of the probe cg10447638 and HOMA-IR, insulin levels, and S100A4 plasma levels (Figure 5 and 

Supplementary Table 5). These cross-sectional findings from pre- and pubertal stages were further 

validated at the longitudinal level by applying MLRs to delta measurements (computed as T1-T0) 

(Supplementary Figure 1 and Supplementary Figure 2). 

Following the same experimental design than in the longitudinal approach, we studied 

within-group changes in the DNA methylation status of analyzed probes. Both cross-sectional 

findings were validated with this approach (Supplementary table 6). For the cg07245635, we 

reported a significant fold change of 1.25 more methylation in the pubertal stage than in baseline 
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for the group 3, which corresponds to non-IR prepubertal girls with obesity that remained with 

insulin-sensitivity after puberty entrance. On the other hand, for the cg10447638, we revealed a 

significant fold change of 0.69 less methylation in the pubertal stage comparing with the baseline 

levels of the group 6, which corresponds to IR prepubertal girls with obesity for which IR remained 

after puberty onset. No significant results were obtained for the rest of experimental groups nor 

analyzed probes.
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Figure 5. Cross-sectional associations between S100A4 DNA methylation status and glucose metabolism outcomes. 
Figures A to D refer to baseline (prepubertal) data while figures E to H refer to the pubertal stage. Multiple linear regressions 
were employed with M values as independent variables and each outcome as dependent variable. Models were adjusted 
for confounders when necessary (Supplementary Table 5). Because percentage methylation is easily interpretable, beta 
values were employed for graphical representation of results.
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3.4 S100A4 gene expression

Descriptive statistics for the study population 2 employed in gene expression analyses are 

available in the Supplementary Table 2. The 203186_s_at probe, localized in the S100A4 locus, was 

found 1.6 times up-regulated in vWAT samples of children with obesity compared with their normal-

weight counterparts (Signal Log Ratio=0.67, Average Normalized Expression=11.03, P=0.007 and 

FDRwhole-array=0.78). This finding was supported by additional correlations with HOMA-IR, insulin 

levels, and the BMI Z-score (Adj-R2=0.63, Slope [CI]=0.46 [0.13, 0.79] and P=0.03; Adj-R2=0.56, 

Slope [CI]=1.91 [0.39, 3.43] and P=0.04; and Adj-R2=0.30, Slope [CI]=2.41 [0.36, 4.46] and P=0.04, 

respectively in each confounding-adjusted model) (Figure 6). We did not find any correlation 

between S100A4 gene expression and S100A4 plasma levels (AdjR2 = -0.11, Slope [CI]=2.16 [-52.85, 

57.18] and P=0.94 in the adjusted model), which might suggest that AT is not the main contributor 

to the systemic S100A4 levels in humans. A descriptive statistic of the population (study population 

4) used for the validation of microarray results by qPCR analyses is available in the Supplementary 

Table 3. Regarding the relationship between qPCR S100A4 expression and the studied biomarkers, 

we observed a trend in the association with HOMA-IR (AdjR2 = 0.03, Slope [CI]=0.03 [-0.002,0.05] 

and P=0.09 in the adjusted model), while no association with the rest of studied markers was found 

(Supplementary table 7). 

Figure 6. Visceral white adipose tissue genetic expression analyses in study population 2 for the S100A4 probe “203186_s_
at”. Robust Multichip Average-normalized gene expression from the “203186_s_at” probe was tested for association with 
each continuous outcome; A for HOMA-IR, B for insulin levels, C for glucose levels and D for BMI Z-score. These analyses 
were adjusted for confounders when necessary.



Augusto Miguel Anguita Ruiz

188

In the Study population 2, we chose the BMI Z-Score and age as confounders for the models 

with HOMA-IR and Insulin as dependent variables, the variables Insulin and Age as confounders for 

the model with BMI Z-Score as dependent variable, and the variable age for adjusting the model 

with S100A4 plasma levels as the dependent variable. For the study population 3, confounder 

models were the same than in the study population 2 but with the inclusion of sex (since in this 

population we counted on data for both sexes). 

4. Discussion

In the present work, we show a strong association between S100A4 plasma levels and a 

bulk of metabolic and anthropometric outcomes, with special relevance of IR status in children 

and adolescents with obesity. Our findings illustrate how this protein can be found in high levels 

already in the prepubertal stage of non-diabetic children with obesity, and how the evolution in 

S100A4 levels is related to trends in the IR status of children during sexual maturation. 

Previously, high serum levels of this protein have been associated with a greater prevalence of 

type 2 diabetes, obesity and IR in adult populations [9], as well as proposed as a circulating marker 

of hepato-visceral fat excess in adolescents [10]. Now, it is the first time that the relationship S100A4-

IR is investigated in a prepubertal population and during the first stages of puberty. The motivation 

for focusing in the course of puberty in the present work lies in the fact that sexual maturation 

has been presented as a significant metabolic risk period for children with obesity [31]. As far as we 

know, this work is also the first to address the role of S100A4 in IR through a multi-omics approach. 

As a result, we provide interesting knowledge into the plausible molecular mechanisms underlying 

this association. 

In a prepubertal sample of 249 children (study population 1), we showed a strong association 

between S100A4 plasma levels and glucose, and a weaker association with IR (assessed by the 

HOMA-IR index), independently of BMI (Table 3). Group comparisons for S100A4 levels also revealed 

significant results, although only when comparing extreme experimental conditions (normal-

weight vs. obese with IR) (Figure 2 and Table 2). In view of the results, it could be elucidated that 

the increase in S100A4 levels in the prepubertal stage of obese children is directly related to the 

pre-IR state of children with obesity rather than to the excess of adiposity itself. When analyzing 

the pubertal cross-data of a longitudinal cohort instead (study population 4), robustly significant 

associations were reported between the S100A4 levels and IR outcomes, whereas no association 

was detected with the BMI Z-Score (Table 3). MLRs for the change in obesity-related outcomes 

further corroborated the association with IR and discarded associations with the change in the BMI 

Z-Score (Table 4). Considering these results, we might state that S100A4 is apparently involved 

in the generation of an IR status in children and adolescents with obesity. Regarding literature, 

Arner et al. [9] demonstrated that S100A4 is associated with IR, type 2 diabetes and a pernicious 
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adipose phenotype (in a BMI-independent manner) in adult obese populations. Particularly, they 

showed strong associations with fat cell size in a BMI-independent manner. They also showed 

general differences in circulating S100A4 between non-obese and obese subjects as well as a 

correlation between S100A4 sWAT expression and BMI. Although interesting, none of their analyses 

were adjusted for HOMA-IR and thus there is no way to discard that their reported BMI-S100A4 

association actually could be a consequence of the strong overlapping between obesity and IR. 

The other available S100A4 study is the one of Malpique et al. [10], in which S100A4 was directly 

associated with hepato-visceral adiposity of non-obese adolescent girls with polycystic ovary 

syndrome (PCOS). Under an intervention design with spironolactone/pioglitazone/metformin, 

authors showed how the one-year changes in S100A4 correlated with a reduction of hepato-

visceral fat as well as with an improvement of fasting insulin, HOMA-IR, and LDL-cholesterol levels. 

Although these results would point to S100A4 as a protein with a direct role in the increase of 

adiposity and the total fat load, again analyses were not adjusted for HOMA-IR, which hinders 

the drawing of firm conclusions regarding the S100A4-IR-Obesity relationship. In any case, our 

findings, along with Arner’s previous work [9], clearly show how S100A4 could serve as an early-life 

predictive marker for the appearance of IR and type 2 diabetes later in life. 

In order to investigate the molecular basis of the reported IR-S100A4 relationship, we also 

conducted a multi-omics approach based on gene expression data and methylation reads derived 

from three independent children samples. Under the epigenetic approach, we counted on the 

methylation data derived from a longitudinal study conducted in 48 girls (study population 4). 

We showed how a differential methylation status in several S100A4 probes associated well with 

the prepubertal and pubertal IR status of analyzed children, as well as with their longitudinal 

trajectories for IR. The identified epigenetic associations corresponded with two-enhancer 

associated CpG sites (cg07245635 and cg10447638) and were mechanistically validated with the 

additional associations found between the methylation percentage and the plasma S100A4 levels. 

To date, only a few studies have investigated the relationship between the DNA methylation of 

S100A4 and the S100A4 levels [14,32,33]. Restricted to cancer tissues, these studies have shown a 

direct causal relationship between hiper/hipo methylation of different S100A4 domains and 

S100A4 mRNA expression levels. In the context of type 2 diabetes and obesity, a previous work 

reported differences in the methylation percentage of several S100A4 probes in WAT samples when 

comparing healthy individuals and type-2-diabetes patients [34]. Although these findings have 

been evidenced for different probes than the ones reported in our study, they are in concordance 

(regarding the direction of association) with the present results. Indeed, one of the previously 

associated CpGs (cg26894575) maps very near to one of our top identified sites (cg10447638). 

Altogether, these findings reinforce the theory that differential methylation of the S100A4 genetic 

region could be one of the molecular mechanisms by which this protein is deregulated in obesity 

and type 2 diabetes to exert a negative effect on the IR axis.
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Among the limitations of our epigenetic approach, we can highlight the fact of using blood 

instead of AT samples, though AT is the target tissue in obesity. As a result, we might be missing 

some of the key epigenetic signatures of AT cells (mainly represented by leukocytes and adipocytes) 

with real relevance for the obesity-associated IR. In spite of it, more and more studies are pointing 

a correlation between the global state of methylation in blood and AT [35]. This correlation might 

be explained by the abundant presence of leukocytes in both tissues and suggests that buffy coat 

might be a valid indicator of what happens at the methylation level in AT, especially for the case of 

inflammatory and immune system related questions.

On the other hand, in prepubertal children (study population 2) we found significant 

correlations between vWAT S100A4 expression levels and HOMA-IR, insulin levels, and BMI Z-Score, 

but not with plasma levels of S100A4. These results therefore might suggest that vWAT is not the 

main contributor to the systemic S100A4 load in humans. The associations between S100A4 vWAT 

expression and IR reported here are in accordance with the insights identified from our longitudinal 

and cross-sectional approaches and reinforce the fact that S100A4 might play a key role in AT 

dysfunction and IR. Contrarily to these results, S100A4 secretion in sWAT explants from obese and 

non-obese adults has previously shown a positive correlation with circulating S100A4 levels [9]. On 

this matter, further investigation is required for a better understanding of the contribution of sWAT 

and vWAT in systemic S100A4 levels, and the obesity-associated IR. 

Although we have yielded interesting insights regarding the role of S100A4 in IR and obesity, 

the main cell types contributing to S100A4 levels in obesity and the molecular pathways through 

which S100A4 induces IR in WAT remain unknown. Some studies support the idea that adipocytes 

could not be the main contributors and targets of S100A4 in WAT. Arner et al. [9] observed that, 

although S100A4 was present in every cell type of WAT explants, its gene expression was greater 

in progenitor and immune cells than in mature adipocytes [9]. These authors also treated human 

adipocytes with S100A4 without reporting any effect [9], suggesting that fat cells could not be 

the main target of this protein. In the same way, S100A4 expression has been mainly localized 

in stromal vascular fraction of mice WAT but seldom in mature adipocytes [36]. These facts are in 

accordance with our vWAT gene expression insights. S100A4 is a protein secreted by a wide range 

of inflammatory and immune cells, being leukocytes, fibroblasts, and macrophages the main 

sources [2,9,36]. Moreover, the binding of S100A4 with target proteins leads to pro-inflammatory 

processes including chemotaxis, cell migration, ECM remodeling and altered angiogenesis [37]. 

In relation to this, we observed a positive significant association between circulating S100A4 

and SICAM levels in our prepubertal study population 1, a cell adhesion molecule with a role in 

inflammatory processes [38]. It is known that S100A4 is involved in the epithelial-mesenchymal 

transition (EMT) through the activation of the transcription of β-catenin, a process characterized 

by changes in cell morphology and inflammation effects, tissue fibrosis and cancer progression [34]. 

Moreover, the association between obesity and cancer is well known, along with the involvement 
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of S100A4 in metastasis progression, where this protein has a key role as a biomarker for poor 

prognosis in several tumors [5,37,39]. Although it needs to be further investigated, S100A4 could 

represent a link between obesity, IR, and cancer. Even though it is unclear if circulating S100A4 is 

a cause or a consequence of obesity and IR, this protein could exacerbate the dysfunction of WAT, 

promoting an inflammatory environment where leukocytes, macrophages, and other immune cell 

types could be attracted to the tissue, triggering WAT fibrosis and consequently, IR. 

This is the first work reporting a robust association between S100A4 and IR in prebupertal 

children and under a longitudinal design in children undergoing pubertal development. 

Furthermore, it represents a complete research approach since it counts on data for S100A4 

protein levels in blood, S100A4 gene expression in vWAT and S100A4 DNA methylation in blood. 

Other strengths of this work include the inherent study design with multiple and independent 

cohorts under both cross-sectional and longitudinal designs as well as the fact of presenting cross-

replications among studied populations remaining significant after multiple-test corrections.

Concerning the limitations of the study, it could be remarked that the gene expression and 

methylation approaches were not performed in the same tissue, as well as the lack of a wide 

sample size in the longitudinal design. 

Regarding the translational potential of our research, the early-life identification of high-risk 

individuals for IR and T2D complications is of special importance for reducing obesity-associated 

mortality. Nowadays, new adipokines such as S100A4 offer a great window opportunity for disease 

prevention and could be monitored as non-invasive biomarkers. Beyond diagnostic implications, 

this investigation further offers interesting opportunities for novel therapeutic approaches.

5. Conclusion

In summary, we report for the first time the implication of S100A4 in IR and WAT dysfunction 

in prepubertal populations as well as how the change in plasma S100A4 levels accompanies 

longitudinal trajectories of IR in children during sexual maturation. Moreover, we propose 

epigenetic changes in two methylation sites and an altered S100A4  vWAT expression as the 

plausible molecular mechanisms underlying this disturbance in obesity. These results could 

encourage the use of circulating S100A4 as an early predictor of IR in pediatric population and lay 

the groundwork for future investigations and functional analyses.
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Integrative analysis of blood cells DNA methylation, 
transcriptomics and genomics identifies novel epigenetic 
regulatory mechanisms of insulin resistance during 
puberty in children with obesity: a longitudinal study

Anguita-Ruiz A1,2,3, Ruiz-Ojeda FJ1,2,3, Alcalá-Fdez J2,4, Bueno G3,5,6,7, Gil-Campos M3,8, 
Roa-Rivas J9, Moreno LA3,5,6,7, Gil A1,2,3, Leis R3,10,11,12†*, Aguilera CM1,2,3†*

Abstract Background: Puberty is a time of considerable metabolic and hormonal 
changes associated with a physiological increase in peripheral tissue insulin resistance 
(IR). There is evidence that physiological IR does not resolve in youth who are obese, 
which may result in increased cardio-metabolic risk. Understanding the molecular and 
biological processes underlying the development of IR in puberty and the additional 
impact of obesity on these processes is crucial to prevent type 2 diabetes. 

Methods: This is a longitudinal study based on the follow-up until puberty of a cohort of 
prepubertal Spanish boys and girls. The study population was composed of 139 children 
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organized in a longitudinal approach of 90 subjects (47 females) and two cross-sectional 
approaches of 99 (52 females) and 130 (71 females) subjects for prepubertal and pubertal 
stages, respectively. Children were allocated into experimental groups according to their 
obesity and IR status before and after the onset of puberty. All participants presented 
blood DNA samples for GWAS and EWAS analyses. In 44 children of the pubertal stage, we 
counted on blood RNA samples for RNA-seq analysis. 

Results: Our large-scale integrative molecular analysis identified novel blood multi-omics 
signatures (mapping the loci ABCG1, ESR1 and VASN, among others) significantly associated 
with IR longitudinal trajectories in children with obesity during pubertal maturation. 
Functional enrichment analysis revealed that identified loci participate in systemic 
metabolic pathways and sexual maturation processes relevant to the pathogenesis of 
IR in the context of puberty. Additional analyses on cardiometabolic and inflammatory 
phenotypes showed that blood DNAm patterns of some of the identified loci are further 
associated, beyond IR, with an overall risky-cardiometabolic profile in children. Serum 
protein levels of vasorin (VASN), one of the most promising novel biomarkers identified in 
this study, were further associated with IR in the pubertal stage. 

Conclusions: To our knowledge, this is the first longitudinal multi-omics approach 
characterizing molecular blood alterations for IR and obesity during the metabolically 
critical period of puberty. Our results shed light on the molecular mechanisms underlying 
epigenetic alterations in obesity and propose novel and promising biomarkers for IR and 
metabolic alterations in children.

Keywords: Adolescent; Child; DNA Methylation; Epigenetics; Epigenome-Wide Association Study, 

EWAS; Gene expression; Genetics; Genome-Wide Association Study, GWAS; Insulin resistance; 

Multi-omics; Pediatric obesity; Puberty; Vasorin; VASN

Abbreviations:  Cardiovascular disease (CVD); Differentially methylated site (DMS); DNA methylation 

(DNAm); Epigenome-Wide Association Studies (EWAS); Expression quantitative trait methylations 

(eQTMs); False discovery rate (FDR); Genome-Wide Association Studies (GWAS); Hardy-Weinberg 

equilibrium (HWE); Insulin resistance (IR); Methylation quantitative trait loci (mQTLs); Minor allele 

frequency (MAF); Multiple linear regression (MLR); Single nucleotide polymorphisms (SNPs). 
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Background

Insulin resistance (IR) is a pathological condition of glucometabolic sufferance contributing 

to type 2 diabetes and cardiovascular disease (CVD) in both adults and children. Of note, obesity 

is the main driver of IR in children [1, 2]. Many children who are overweight or suffer from obesity 

before puberty maintain obesity in early adulthood, which is associated with increased morbidity 

and mortality [3–5]. The high mortality rates among people with obesity are mainly due to the 

development of type 2 diabetes and the increased risk of CVD [6]. Therefore, it is crucial to prevent 

and treat obesity and IR from the early periods of life [7].

Puberty is a period characterized by dynamic physiological changes, including activation of 

the reproductive axis and subsequent increase in sex steroids secretion, acceleration in growth, 

and accumulation of both lean and fat mass [8]. Besides physiological events, puberty has also been 

associated with differential disease prognosis for conditions such as IR, reinforcing the relevance 

of this development period to life-long health. Nevertheless, pubertal changes seem not to affect 

all individuals equally [9–11]. In healthy normal-weight youths, there is a drop in insulin sensitivity in 

mid-puberty, which recovers at puberty completion. In youth who are obese going into puberty, 

otherwise, there is evidence that such IR does not resolve, which may result in increased cardio-

metabolic risk. Accordingly, youth-onset type 2 diabetes incidence is also tightly linked with 

pubertal development [12]. Understanding the molecular and biological processes underlying 

metabolic changes during puberty and the additional impact of obesity on these changes is 

crucial for preventing type 2 diabetes. Thanks to that, novel non-invasive early diagnostic markers 

could arise with a great utility for reducing obesity-associated mortality.

DNA methylation (DNAm) is a heritable epigenetic mark consisting of the covalent addition 

of a methyl group to a cytosine followed by a guanine (CpG). DNAm is potentially reversible and 

can be altered by environmental factors, resulting in gene expression alterations and providing 

an interactive connection between genetics, specific diseases and the environment. Indeed, 

differential DNAm in certain loci has been related to obesity [13], systemic IR [14–22], and type 2 

diabetes [13, 15, 16, 23–27] in adults, either in blood or in other metabolically relevant tissues. During 

puberty, the dynamics of DNAm have also been investigated in one or both genders, emphasizing 

how DNAm is stable at some CpG sites and varies at others [28, 29]. On the other hand, transcriptional 

dysregulation of genes has been reported as a key molecular mechanism associated with IR and 

obesity, possibly connected to DNAm alterations [30, 31]. In this regard, there is evidence of the 

interacting effects between DNAm and gene expression and the risk for glucometabolic alterations 

in adult women with obesity (phenomena known as expression quantitative trait methylations 

(eQTMs)) [17].

Although recent genome-wide association studies (GWAS) have identified numerous single 

nucleotide polymorphisms (SNPs) associated with type 2 diabetes and its related traits [32–38], 
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these variants only explain a small proportion of the estimated heritability (15–18 %), proposing 

that there are additional genetic factors left to be discovered. Among the best explanations, it 

highlights the existence of interacting phenomena between SNPs and DNAm epigenetics marks, 

known as methylation quantitative trait locis (mQTLs). Interestingly, a previous study demonstrated 

how interactions between SNPs and DNAm influence mRNA expression and insulin secretion in 

adult human pancreatic islets [39].

Although the understanding of the molecular and biological processes underlying IR in 

obesity is growing (especially in adults), none is known about the omics alterations characterizing 

IR in obesity during the metabolically critical period of puberty, and how it might contribute to 

the increased disease risk (e.g., for type 2 diabetes). For this purpose, multi-omics approaches 

present as a promising resource in which systems biology can be applied to mine the complex 

interactions between genetics, epigenetics, and transcriptomics. The identification of multi-omics 

signatures and how they relate with the progression of obesity and IR during puberty will allow us 

to provide pediatricians with robust non-invasive early biomarkers for type 2 diabetes risk. For this 

task, longitudinal designs are also encouraged.

Considering all this, in the present study, we have identified the multi-omics signatures 

(DNAm in CpGs, eQTMs and mQTLs) associated with IR in children with obesity, before, during, and 

after the onset of puberty. This research is a continuation of the PUBMEP study, which evaluates the 

prevalence of metabolic syndrome and the progression of the cardio metabolic risk factors related 

to it, from pre-puberty to puberty, in a longitudinal cohort of Spanish children [40].

Research Design and Methods

2.1. Study population

This analysis was conducted within the context of the PUBMEP study. The main clinical findings 

derived from the PUBMEP study and additional details on the whole study cohort have been 

already published and are available elsewhere. In the PUBMEP study, all children were first recruited 

as prepubertal children during 2012–2015 and called again for follow-up medical consultation 

in 2018. At the moment of recruitment, children were aged 4–12.1 years and came from three 

Spanish recruiting centers (cities). At the second visit, children were aged 9.72–18.07. All subjects 

with clinical signs of reached puberty were finally included in the longitudinal population. During 

the course of the study (2012–2018), children remained under regular medical monitoring by the 

same pediatricians. The assessment of the pubertal stage was carried out following the Tanner 

classification [41] and confirmed with a hormonal study. Here, a sub-population of 139 children 

(76 females) from the whole PUBMEP cohort was selected for omics analyses. The main inclusion 

criterion for this sub-project was presenting a good-quality DNA sample in the prepubertal stage. 

The following characteristics were considered as exclusion criteria: birth weight <2500 g; intake 
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of any drug that could alter blood glucose, blood pressure or lipid metabolism; not being able to 

comply with the study procedures and being participating or having participated in the last three 

months in an investigation project. The 139 participating children were organized in a longitudinal 

approach of 90 children (47 females) and two cross-sectional approaches of 99 (52 females) and 

130 (71 females) children for prepubertal and pubertal stages, respectively. A general overview 

of the study design, populations and statistical analyses performed is well-described in Figure 

1. The longitudinal approach consisted of 90 Spanish children (47 females) allocated into five 

experimental groups according to their obesity and IR status before and after the onset of puberty 

(Figure 2A). 

GWAS

Cardiovascular & Inflammation biomarkers

Clinical data

Anthropometry

Biochemistry

Blood EWAS

Blood RNA-seq
in 44 children from
the pubertal approach

Prepubertal approach (99) Pubertal approach (130)

Longitudinal approach (90)

N = 139 children (63 ♂ / 76 ♀)

9 40

90

STUDY POPULATION

Figure 1. Overview of the study design, populations under study and statistical analyses performed.
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Figure 2. The statistical design adopted for DNA methylation bioinformatics analysis of IR.
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All participants (N=139) presented DNA samples with enough quality for genomics (GWAS) 

and epigenomics (EWAS) analyses. Moreover, we also collected blood samples in 44 children of 

the pubertal stage using PAXGEN-RNA tubes for posterior RNA-seq analysis. Descriptive statistics 

for these longitudinal and cross-sectional approaches are available in the Additional files 1, 2 and 

3. The main blocks of analyses performed in this work consisted of 1) EWAS analysis of IR and 2) 

multi-omics integration of EWAS results along with GWAS and RNAseq. 

2.2. Ethics statement

These studies were conducted following the Declaration of Helsinki (Edinburgh 2000 revised), 

and they followed the recommendations of the Good Clinical Practice of the CEE (Document 

111/3976/88 July 1990) and the legal in-forced Spanish regulation, which regulates the clinical 

investigation of human beings (RD 223/04 about clinical trials). Accordingly, the corresponding 

ethics committees approved the study at each of the participating centers (Code IDs GENOBOX: 

Córdoba01/2017, Santiago 2011/198, Zaragoza 12/2010; and PUBMEP: Córdoba 260/3408, Santiago 

2016/522, Zaragoza 22/2016, Granada 01/2017). 

2.3. Anthropometry, biochemical measurements, and inflammation and cardiovascular 
risk biomarkers

Anthropometric measurements such as body weight (kg), height (cm), hip circumference 

(cm) and waist circumference (WC) (cm) were measured at each time point using standardized 

procedures, and BMI (kg/m2) was calculated. BMI z-score was estimated based on the Spanish 

reference standards published by Sobradillo et al. [42]. Blood pressure was measured three times 

for each individual by the same examiner using a mercury sphygmomanometer and following 

international recommendations [43]. Measures of lipid and glucose metabolism, hormones and 

classical biochemical parameters were performed at the laboratories of each participating hospital 

following internationally accepted quality control protocols. 

Blood samples from both time points were collected in overnight fasting conditions, 

centrifuged, and plasma and serum were stored at -80°C. Plasma adipokines, inflammation, and 

cardiovascular risk biomarkers (adiponectin, leptin, resistin, tumor necrosis factor alpha (TNF-α), 

high-sensitivity CRP (hsCRP), interleukin (IL)-6, IL-8, total plasminogen activator inhibitor-1 (PAI-

1), P-Selectin, myeloperoxidase (MPO), monocyte chemoattractant protein 1 (MCP-1), matrix 

metalloproteinase-9 (MMP-9), soluble intercellular cell adhesion molecule-1 sICAM-1, and soluble 

vascular cell adhesion molecule-1 (sVCAM)) were analyzed in all samples and time points using 

XMap technology (Luminex Corporation, Austin, TX) and human monoclonal antibodies (Milliplex 

Map Kit; Millipore, Billerica, MA) as previously reported [44, 45]. S100A4 protein levels were determined 

in plasma using the CSBEL02032HU (Cusabio Biotech Co, Ltd., Wuhan, China), an enzyme-linked 

immune-absorbent assay kit according to the manufacturers’ instructions. The coefficient of 

variance was 7%.



Augusto Miguel Anguita Ruiz

202

2.4. HOMA-IR cut off points

The IR status was here defined by means of the HOMA-IR index. Since HOMA-IR strongly varies 

between ages, genders and diseases, and since no reference values have been yet established in 

either children or adult populations [46, 47], own cut-off points were extracted from a previous well-

described Spanish cohort composed of 1669 children and adolescents [44, 48]. For the prepubertal 

stage, a single cut-off value of HOMA-IR=2.5 was considered for IR [44, 48]. For the pubertal stage 

instead, gender information was taken into consideration and different cut-off points were 

adopted for IR according to the 95th HOMA-IR percentile. Extracted from a subset of 778 pubertal 

Spanish children, cut-off values corresponded to HOMA-IR=3.38 in boys and HOMA-IR=3.905 in 

girls. These cut-off points have already been tested and validated as good metabolic risk classifiers 

in our population according to the results from a previous PUBMEP paper [40].

2.5. Epigenome-wide association study (EWAS)

EWAS analysis was performed in all children (N=139) and time points, including longitudinal 

and cross-sectional approaches (Figure 2). Buffy coat fractions from blood samples in all children 

and time points were selected for DNA methylation analysis. Genomic DNA was extracted 

from peripheral white blood cells using two automated kits, the Qiamp DNA Investigator Kit 

for coagulated samples and the Qiamp DNA Mini & Blood Mini Kit for non-coagulated samples 

(QIAgen Systems, Inc., Valencia, CA, USA). All extractions were purified using the DNA Clean and 

Concentrator kit from Zymo Research (Zymo Research, Irvine, CA, USA). High-quality DNA samples 

(≥ 500 ng) were treated with bisulfite using the EZ-96 DNA Methylation Kit (Zymo Research 

Corporation, Irvine, CA). DNA methylation was measured with the Infinium Methylation EPIC array 

using bead chip technology (Illumina, San Diego, CA, USA).

Raw intensity signals from IDAT files were loaded into the R environment using the MINFI R 

package. As a result, we obtained an RGChannelSet object containing all the raw intensity data, from 

both the red and green color channels, for each of the samples and time records. We generated a 

detection p-value for every CpG in every sample by comparing the total signal for each probe to 

the background signal level, which was estimated from the negative control probes. To minimize 

the unwanted variation within and between samples, we applied Beta-Mixture Quantile (BMIQ) 

intra-array normalization, including all individuals and time records. Poor performing probes were 

filtered out according to different criteria: probes with a detection p-value above 0.01 in more than 

10 % of the samples (number of probes= 230), probes with SNPs (number of probes= 30,432), 

cross-reactive probes aligning to multiple locations (number of probes= 25,570) and probes 

located on the Y chromosome (number of probes= 246). After applying all these filters, 809,381 

probes remained in the dataset.

As methylation is cell type-specific and methylation arrays provide CpG methylation values 

for a population of cells, biological findings from samples comprised of a mixture of cell types, 
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such as the case of peripheral blood, can be confounded due to variable cell-type composition. To 

correct analyses for the variable proportion of each white cell type in our subjects, we employed 

the reference EPIC 850k dataset published by Salas et al. (2012) and the Houseman procedure [49]. 

The influence of each confounding variable on the global state of methylation in our population 

was assessed by means of correlation studies and heatmap plots using the SWAMP R package 

v1.4.1.

Intensity values were used to determine the proportion of methylation at each CpG site. 

Methylation levels were reported as either beta values (β-Values = M/(M + U)) or M-values (M value 

= log2(M/U)), where M and U correspond to the Methylated and Unmethylated signals, respectively. 

Beta values and M-values are related through a logit transformation (M-value = log2(β-value /1- 

β-value)). Because percentage methylation is easily interpretable, beta values in the present paper 

were employed for describing the level of methylation at each locus and for graphical presentation 

of results. On the other hand, due to their distributional properties, M-values were selected for 

statistical testing. All described analyses were performed in R environment version 4.0.3.

2.6. Genome-wide association study (GWAS)

GWAS analysis was performed in all children (N=139) (Figure 1). When two samples of 

DNA were available for the same individual (e.g., in the longitudinal approach), the most recently 

extracted DNA sample was selected for genomics analysis. Whole-genome genotyping analysis 

was performed on the i-SCan platform using the Infinium HTS Assay (Illumina, San Diego, CA, USA). 

The Bead Chip selected for the project was the Infinium Global Screening Array-24 v3.0 Kit, which 

includes ~ 654,000 genetic markers associated with complex diseases. After quantification of DNA 

samples by fluorimetry, they were normalized to 200-400 ng of DNA per sample in deep well 

plates, as established in the Infinium HTS Assay Protocol.

The first step of the primary data analysis consisted of the extraction of genotype calls from 

fluorescence data and the construction of work data files for data manipulation and analysis. Using 

the GenomeStudio software, we obtained genotype calls for all individuals and generated the 

standard format files (.ped and .map). Data were then imported into PLINK 1.9 software [50], and 

converted into binary format files using the --make-bed flag. These binary formats (.bed, .bim and 

.fam) are a more compact representation of the data that saves space and speeds up subsequent 

analyses. We implemented a quality control (QC) process in PLINK 1.9 software before high-level 

statistical analyses. According to literature, we applied standard QC filters including: 1) Exclusion 

of SNPs and individuals with a missing data rate >= 10%, and 2) Exclusion of SNPs with a minor 

allele frequency (MAF) < 1% or a Hardy-Weinberg Equilibrium (HWE) P-value < 1×10−5 in controls. 

As a result, 471,192 SNPs remained in the dataset. These filters were selected in accordance with 

procedures described elsewhere [51] to minimize the influence of genotype-calling artefacts in a 

GWAS. 



Augusto Miguel Anguita Ruiz

204

2.7. Next-generation transcriptome sequencing (RNA-Seq)

RNA-seq analysis was performed in a subset of 44 children from the pubertal cross-sectional 

approach (Figure 1), which had also been included in the EWAS and GWAS. RNA was extracted 

from peripheral blood using the PAXgene® Blood RNA Kit (PreAnalytiX/QIACUBE) according to the 

manufacturer’s instructions. The concentration and quality of extracted RNA were measured using 

the Qubit 4 Fluorometer (Thermo Fisher Scientific, MA, USA) and the 2100 Bioanalyzer Instrument 

(Agilent Technologies, CA, USA). Libraries from mRNA were prepared using 1μg of RNA starting 

material and the TruSeq Stranded mRNA Library Prep Kit (Illumina, CA, USA) according to the 

manufacturer’s protocol. This protocol captures poly-adenylated RNA by transcription by oligo-dT 

primer, after which the RNA is fragmented. The sample is back transcribed to generate the cDNA, 

both in the first and second strands. The 3’ ends are adenylated, the adapters and barcodes are 

ligated, and finally, the sample is enriched by PCR. Adapters and sample codes (index-barcodes) 

are added to the libraries to be simultaneously sequenced. mRNA libraries were sequenced on the 

Next-Seq 500 system (Illumina, CA, USA) using the highest output mode and paired-end 75 bp 

read lengths with a depth of 20 million reads for each sample. To get a depth of 20 million reads 

per sample 2 runs with 4 lanes for each run were conducted.

Primary RNA-seq bioinformatics analyses were implemented in R environment separately for 

each run following standardized published recommendations. Primary analyses included processing 

raw sequencing reads, aligning to the reference genome, and quantitating the expression levels. 

The aligning of RNA-seq reads to the genome was conducted using HISAT software 2.2.1 release [52]. 

We sorted and converted the generated SAM files into BAM using SAMTOOLS [53]. Then, we used the 

FEATURECOUNTS R package [54] to generate count matrices from reads aligned to the genome. As 

reference genome, we used the hg38 version from the Ensembl [55]. From it, we created a transcript 

database, using the function makeTxDbFromGFF from the GENOMICFEATURES R package. Finally, we 

obtained two datasets of 60,058 quantified ENSG ids (one per run). After confirming the grouping 

of technical replicates (samples) among runs by PCA plot (Additional file 4), we merged the two 

counts datasets by applying a sum.

2.8. Descriptive statistics 

At each cross-sectional approach (Figure 2B), continuous non-omics variables were tested 

for normality using the Shapiro–Wilk test. Heteroscedasticity between experimental groups was 

explored through the Levene test. T-tests and Mann–Whitney U-tests were applied conveniently to 

determine group differences at each cross-sectional stage (prepubertal and pubertal). The resulting 

descriptive statistics are available in Additional files 2 and 3. In the longitudinal approach (Figure 

2A), within-group changes from prepuberty (T0) to puberty (T1) were assessed using a paired 

design, employing either a paired t-test or a Wilcoxon signed-rank test. Between-group differences 

were assessed by one-way ANOVA, Kruskal-Wallis or Welch tests to the computed delta values (T1–
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T0) for each continuous measurement according to standard statistical assumptions. The one-way 

ANOVA, Kruskal-Wallis and the Welch test were also employed to assess group differences (among 

the 5 experimental groups) at each stage (time point) of the longitudinal approach. Pairwise t-tests, 

pairwise Mann–Whitney U-tests and Dunn tests were applied conveniently as post-hoc analyses 

to determine which experimental groups differed from each other in these analyses. The resulting 

descriptive statistics are available in Additional file 1. All described analyses were performed in R 

environment version 4.0.3 [56].

2.9. DNA methylation bioinformatics analysis on insulin resistance

After pre-processing, 809,381 CpGs probes passing quality filters in the EWAS were selected 

for high-level statistical analyses. The statistical design adopted for DNA methylation bioinformatics 

analysis of IR is presented in Figure 2. The main objective of this analysis was identifying the DNA 

methylation patterns associated with IR development, amelioration or worsening in children 

with obesity during the onset of puberty. For avoiding confounding with non-pathological aging 

epigenetics marks, derived findings were contrasted to the DNA methylation patterns associated 

with the onset of puberty in the normal-weight group G1. For the longitudinal approach (N=90), 

we investigated the changes in DNA methylation from prepuberty to puberty of each included 

CpG site performing both within- and between- groups comparisons. Within-group changes in 

DNA methylation from prepuberty (T0) to puberty (T1) were studied exclusively for the groups G3 

and G4, since these were the only groups presenting changing trajectories for IR. Between-groups 

changes in DNA methylation from prepuberty (T0) to puberty (T1) were otherwise investigated 

for all pairwise group combinations that involved either the G3 or G4 group (for more details see 

Figure 2A). These analyses were implemented in the R environment using linear models from the 

LIMMA R package and considering the M-values of DNA methylation for each CpG as the outcome 

or dependent variable. For that purpose, a multi-level experiment was considered, treating the 

patient as a random effect, and the experimental group and time as a combined fixed factor. 

The inter-subject correlation was the input for the linear model fit. Contrasts of interest over the 

constructed linear model were then applied using a moderated t-test. All this was implemented 

in LIMMA using the functions duplicateCorrelation, lmFit, contrasts.fit and eBayes. Analyses were 

conveniently adjusted for confounders, including gender, city of origin, blood cell proportions and 

age. Raw p-values were corrected using the false discovery rate (FDR) according to the Benjamin-

Hochberg procedure for multiple comparisons.

In cross-sectional approaches (N=99 and N=130) (Figure 2B), the objective was also focused 

in identifying the DNA methylation patterns associated with IR, but including now those marks 

associated with IR before the onset of puberty. Since cross-sectional approaches included extra 

children with regard to the longitudinal cohort of 90 children (Figure 1), these analyses were 

also intended as validation approaches for the longitudinal findings. In these analyses, LIMMA 
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linear models were conducted with DNA methylation levels as outcome, experimental group as 

a categorical predictor and gender, city of origin, blood cells proportions, batch, obesity status 

(when necessary) and age as covariates. Raw p-values were corrected using the false discovery rate 

(FDR) according to the Benjamin-Hochberg procedure for multiple comparisons.

We selected exclusively overlapping findings from these analyses and different approaches 

(Figure 3), obtaining a curated list of loci whose methylation is robustly and repeatedly associated 

with IR in our design. This list of IR-associated CpGs (and their mapped genes) (thereinafter known 

as ‘validation-list’) was the input for the next blocks of analysis. For this selection, we first created 

a Venn diagram including the genes reported as significant in each statistical approach. Once 

overlapping IR-associated genes were identified, all significant CpGs mapping these genes were 

selected. The resulting list was composed of 267 IR-associated CpGs mapping 128 genes.

In cross-sectional approaches, we further applied multiple linear regressions (MLR) between 

DNA methylation M-values of the CpGs in the ‘validation-list’ and continuous non-omics outcomes 

(including all collected anthropometric and biochemical measurements, and inflammation 

and cardiovascular biomarkers) at each temporal record (T0 and T1). The main purpose of these 

additional analyses was to identify those CpGs, which instead or besides IR, are associated with 

other obesity-related metabolic alterations or parameters. In these analyses, IR, BMI Z-score, 

gender, age, city of origin and height were included as covariates conveniently. Given the number 

of analyzed outcomes, we again considered FDR as in Benjamin-Hochberg to correct for multiple 

hypothesis testing. 

Prepubertal approach (147) Pubertal approach (167)

Longitudinal Within approach (115)

1 113

1
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Figure 3. Overlapping findings (at loci level) between the statistical approaches of the EWAS on insulin resistance. These 
findings constitute the so called ‘validation-list’.
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2.10. Expression quantitative trait methylation (eQTM) analyses

The expression quantitative trait methylation (eQTM) analysis is intended for identifying gene 

expression regulatory phenomena, in which the methylation of a CpG influence (up- or down-

regulating) the expression of a target transcript. For these analyses, we used linear regression, as 

implemented in the MatrixEQTL R package, to test whether DNAm levels of the CpG sites from 

the ‘validation-list’ are associated with transcript expression levels (considering all the transcripts 

mapped by our RNA-seq analysis). For these analyses, gene expression data for 60,058 transcripts 

were normalized using the quantile normalization method. Here, the transcript expression level 

(normalized) was the outcome and the methylation level (M-value) of each CpG site was the 

predictor, with gender, age and city of origin as adjusting covariates. We searched for cis-eQTMs 

in and around 10,000 bp of each transcript and trans-eQTMs if the distance between the CpG and 

the transcript was higher than 10,000 bp. As a measure of eQTMs effect size, we reported the beta 

regressors estimated by the linear model. The p-values from the linear regression analysis were 

adjusted for multiple comparisons using the Benjamini-Hochberg FDR procedure. These analyses 

focused on 267 CpGs and 60,058 high-quality transcripts as input. In the cis-analysis, no correction 

value was used for correcting multiple testing. The correction value for the trans-analysis was 

calculated as the total number of analyzed CpG sites multiplied by the number of transcripts in 

the whole dataset.

2.11. Methylation quantitative trait loci (mQTL) analysis

The methylation quantitative trait loci (mQTL) analysis is intended for identifying epigenetics 

regulating phenomena, in which an SNP regulates the methylation levels of a CpG. These 

phenomena could be, therefore the molecular explanation for some epigenetics IR-associated 

marks for which the environment is not the causal mediator. For these analyses, we used linear 

regression, as implemented in MatrixEQTL R package. In the linear model, DNA methylation 

values were modelled as the outcome, SNP genotypes from GWAS were encoded as 0, 1 or 2 

according to the number of minor alleles (additive genetic model), and gender, age and city of 

origin were included as covariates. To distinguish between local (cis-mQTLs) and distant (trans-

mQTLs), an arbitrary boundary with the maximum distance of 500 bp between SNPs and CpG sites 

was used to define cis-mQTLs. All other SNP-CpG pairs were considered as trans-mQTLs. P-values 

were adjusted with a correction value for multiple testing, which considers the dependency of 

linkage disequilibrium (LD) between SNPs by LD-based pruning and thereby uses the number of 

independent tests. In the cis-analysis, no correction value was used for correcting multiple testing. 

The correction value for the trans-analysis was calculated as the total number of analysed CpG sites 

multiplied by the number of SNPs in the whole dataset.
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2.13. Reference genome assembly 

EWAS, GWAS and RNA-seq datasets were functionally annotated based on GO and KEGG 

ontologies using entrez gene identifiers and the database org.Hs.eg.db [57]. For eQTM and mQTL 

analyses, the three employed omics datasets were re-annotated or flipped (in terms of chromosome 

number and genomic locations) to the same assembly (hg38) as reference. 

2.14. Functional annotation of CpG sites and regions 

Selected CpG sites and regions were further annotated using the 

ILLUMINAHUMANMETHYLATIONEPICANNO.ILM10B4.HG19 and MISSMETHYL R packages. Genes 

associated with each CpG site were obtained using the getMappedEntrezIDs function. The 

annotation in terms of genomics regulatory elements consisted of two categories: 1) distance to 

a CpG island and 2) annotation to gene region. The distance related annotations identify whether 

CpG sites overlap a known CpG island, 2000bp of the flanking regions of the CpG islands (shores), 

2000bp of the flanking regions of the shores (shelves), or outside these regions (open sea). CpGs 

overlapping gene bodies were annotated as (Body). The gene region analysis classified CpGs in 

the context of genes, namely, exons, UTRs, introns, promoters, and intergenic regions. Additional 

annotation of CpG sites for nearby SNPs was determined using the UCSC database. To identify the 

regulatory potential of CpG sites, each site was categorized based on its predicted chromatin state. 

These data and additional information have been gathered for significant CpGs and are available 

in each table result.

2.15. Gene ontology and biological pathway enrichment analysis 

The gometh function from the R package MANIFEST was used to determine enrichment of 

CpG-annotated genes in KEGG terms, biological pathways, and cellular and molecular functions. 

This function takes a character vector of significant CpG sites, maps the CpG sites to Entrez Gene 

IDs, and tests for GO term or KEGG pathway enrichment using a hypergeometric test [58], taking 

into account the number of CpG sites per gene on the EPIC array. The gometh is based on the 

goseq method [59] and calls the goana function from the LIMMA R package [60]. The gometh tests all 

GO or KEGG terms, and FDR are calculated using the method of Benjamini and Hochberg (1995). 

The LIMMA functions topGO and topKEGG were used to display the top most enriched pathways.

Results

1. Clinical characteristics of participants

A general overview of the study design, populations and statistical analyses conducted is 

well-described in Figure 1 and Figure 2. Descriptive statistics for longitudinal and cross-sectional 

approaches are available in the Additional files 1, 2 and 3. Figure 2A describes all details on the 
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longitudinal approach. At baseline, there was no age difference between experimental groups, with 

all but the G5, which maintains IR with pubertal maturation, presenting not significant differences 

in the elapsed time between visits. As expected from the study design, groups maintaining or 

developing IR with the onset of puberty, G4 and G5, presented the highest increases in HOMA-IR 

and fasting serum insulin as compared with the insulin-sensitive groups (Additional file 1). Among 

them, the G4 group, which develops IR with the onset of puberty, also displayed the highest 

increase in waist circumference, hip circumference and SBP, and inflammatory and cardiovascular 

biomarkers (e.g., P-selectin and t-PAI) (Additional file 1). Interestingly, the G3 group, presenting 

the opposite behavior for IR (amelioration) than G4, showed a decrease in plasma glucose, 

triacylglycerol concentrations and MCP1 cytokine levels, and these changes were significantly 

different from the patterns observed in the rest of the groups. Thus, the experimental groups of 

our design were representative of the longitudinal IR and insulin-sensitive trajectories during the 

onset of puberty (Additional file 1). As expected from the experimental design, an overall decrease 

in total and low-density lipoprotein cholesterol levels during puberty was observed for all groups, 

as well as a decrease in adiponectin concentrations. Likewise, cross-sectional experimental groups 

showed coherent behaviors in anthropometry, glucose, lipid, inflammatory, and cardiovascular 

biomarkers (Additional files 2 and 3).

2. Blood cells CpG methylation is associated with obesity insulin resistance

After pre-processing, 809,381 CpGs EWAS probes passing quality filters were selected for 

high-level statistical analyses. The statistical design adopted for DNA methylation analysis of IR 

is presented in Figure 2. The main objective of this design was to identify the DNA methylation 

patterns associated with IR development, amelioration or worsening in children with obesity 

before, during, and after the onset of puberty. Our analysis identified 4,281 IR-associated unique 

CpG sites (P-value < 0.0001), from which 2,981 further presented an FDR < 0.05 (Additional file 

5). Annotation of differentially methylated sites (DMS) informed that reported CpGs were linked 

to 2,632 and 1,899 genes, respectively for raw P-value and FDR thresholds. We assessed the 

robustness of our findings by comparing our list of 2,632 IR-associated genes to a curated list of 

genes whose methylation degree is strongly associated with type 2 diabetes according to a recent 

large EWAS meta-analysis conducted in Europeans adults [23]. Our list contained 8 of the 38 type 2 

diabetes-associated EWAS genes validated by Juvinao et al. 2021  [23] (ABCG1, CDH23, CPT1A, HCCA2, 

HDAC4, KRT4, PBX1 and SGK2), highlighting three of them among the top 6 associated genes in the 

meta-analysis. Other 24 well-known diabetes and obesity epigenetics loci recently reviewed by 

Ling C et al. 2019 [13], were also present among our associations (ABCC3, ADCY5, ATP10A, CDKN1A, 

CXCL14, DNMT3A, FADS2, FTO, GLP1R, GRB10, HIF3A, KCNQ1, MALT1, MOGAT1, NCOR2, NFAM1, PLCB1, 

PPARG, PRDM16, PRKCE, SEPT9, TCF7L2, THADA and VAC14). Genes encoding proteins with a key role 

in the IR-puberty axis and strongly related to the growth hormone, such is the IGF-1, were also 

highlighted in our analysis [61]. Among associations, there were also loci whose DNA methylation, 
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beyond type 2 diabetes, have been specifically associated with IR according to literature (COL18A1, 

CTNND2, CXCL1, DNMT3A, GRB10, HDAC4, LAT, PAX6, SH3RF3 and SIRT2).

KEGG-pathways enrichment analysis showed that the 2,632 IR-associated genes (passing the 

raw P-value threshold) were over-represented for pathways with relevance in inflammation and 

human metabolism in the context of our research including; ‘Ovarian steroidogenesis’, ‘Cortisol 

synthesis and secretion’, ‘Extracellular Matrix-receptor interaction’, ‘Glucagon signalling pathway’, 

‘cAMP signalling pathway’, ‘Insulin secretion’, ‘Phospholipase D signalling pathway’ or ‘PPAR 

signalling pathway’ (P-value < 0.05) (Additional file 6). 

As expected from the study design, our analysis also revealed genes previously described as 

markers of dynamic DNA methylation changes during the course of puberty (e.g., ADCY9, ATK3, 

GRIK5, GNG7, PDE10A, or TRAF3IP2) [28]. 

From the initial list of 2,632 IR-associated genes, we exclusively selected those overlapping 

findings among statistical approaches (Figure 3), obtaining a reduced list of genes whose 

methylation is robustly and repeatedly associated with IR in our design. The resulting list of IR-

associated genes and their mapping CpGs (thereinafter known as ‘validation-list’) was the input 

for the next blocks of analysis. This list was composed of 267 IR-associated unique CpGs mapping 

128 genes (P-value < 0.0001), from which 130 IR-associated CpGs, mapping 91 genes, presented 

an FDR < 0.05 (Figure 4 and Additional file 7). Association results for the top 25 CpGs from the 

list are shown in table 1. Interestingly, functional enrichment analyses on KEGG terms for these 

CpGs, conserved interesting biological pathways such as ‘Ovarian steroidogenesis’, ‘cAMP signalling 

pathway’, ‘Insulin secretion’ and ‘Phospholipase D signaling pathway’, or reported new ones as 

‘estrogen signaling pathway’ (P-value < 0.1) (Additional file 8). This list also maintained top adult 

type 2 diabetes loci previously described in the literature (ABCG1, ADCY5, DNMT3, HDAC4, TCF7L2 

and HCCA2), and revealed new promising loci never reported as epigenetic marks of IR (e.g. 

CDC42BPB, ESR1, HMCN1, PRKAR1B, SNRK and VASN, among others). GO-terms enrichment analysis 

further revealed genes from the ‘validation-list’ mapping important pathways such is the ‘G protein-

coupled receptor signalling pathway’ (P-value = 0.002) (Additional file 9).

3. Association between DNAm and other phenotypic traits at key CpGs identified by our 

EWAS

At each cross-sectional approach, we applied multiple linear regressions to the CpGs from the 

‘validation-list’ and continuous non-omics outcomes (including all collected anthropometric and 

biochemical measurements, and inflammation and cardiovascular biomarkers). The main purpose 

of these additional analyses was to identify those CpGs, which instead or besides IR, are associated 

with other obesity-related metabolic alterations or parameters. In additional file 10, we present 

all significant associations showing a P-value < 0.05 with at least one trait after confounding 
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Table	  1.	  Association	  results	  for	  the	  top	  25	  CpGs	  from	  the	  ‘validation-‐list’.	  

Chromosome Position CpG Gene 
Symbol logFC AveExpr t P-Value FDR Beta Approach or Group Comparison 

2 182966420 cg04214142 PPP1R1C 0.49 2.09 5.35 2.77E-07 0.01 6.31 Longitudinal G5 vs. G3 
16 4424148 cg00041083 VASN -0.62 3.87 -5.40 3.39E-07 0.16 3.80 Pubertal non-IR NW vs. IR Obese & Overweight 
19 34013539 cg08085561 PEPD -0.35 2.84 -5.36 4.06E-07 0.16 3.69 Pubertal non-IR NW vs. IR Obese & Overweight 
7 645500 cg11327004 PRKAR1B 1.27 5.46 5.27 4.09E-07 0.02 5.97 Longitudinal G5 vs. G3 

16 11891221 cg19428841 ZC3H7A 0.93 -5.39 5.26 4.21E-07 0.15 4.57 Longitudinal G3 vs. G2 
2 173784502 cg12700273 RAPGEF4 0.78 3.32 5.22 5.20E-07 0.02 5.76 Longitudinal G5 vs. G3 
3 43331949 cg04244171 SNRK -0.44 1.26 -5.21 5.40E-07 0.15 4.39 Longitudinal G3 vs. G2 

12 56747353 cg15221261 STAT2 5.25 5.74 5.18 6.28E-07 0.34 2.21 Longitudinal G3 (within) 

1 186051470 cg10987850 HMCN1 -0.67 -1.00 -5.22 7.57E-07 0.47 3.55 Pubertal non-IR Obese & Overweight vs. IR Obese & 
Overweight 

4 184693663 cg23391907 - 1.97 5.39 5.05 1.15E-06 0.02 5.06 Longitudinal G5 vs. G3 

6 165958729 cg01555560 PDE10A -0.53 3.78 -5.13 1.15E-06 0.47 3.26 Pubertal non-IR Obese & Overweight vs. IR Obese & 
Overweight 

1 186051470 cg10987850 HMCN1 0.67 -1.01 5.12 1.23E-06 0.61 2.90 Pubertal IR vs. non-IR 
16 11891221 cg19428841 ZC3H7A 0.85 -5.39 5.03 1.25E-06 0.34 1.84 Longitudinal G3 (within) 
1 12336998 cg24654877 VPS13D 1.66 4.96 5.02 1.28E-06 0.55 -1.04 Longitudinal G4 (within) 

12 105073955 cg15744837 CHST11 0.28 0.13 5.01 1.36E-06 0.20 4.29 Longitudinal G1 vs. G3 
21 43655919 cg16740586 ABCG1 -0.34 0.88 -5.07 1.45E-06 0.24 2.86 Pubertal non-IR NW vs. IR Obese & Overweight 
8 22755479 cg25434773 PEBP4 -0.38 3.67 -5.07 1.47E-06 0.24 2.86 Pubertal non-IR NW vs. IR Obese & Overweight 
2 240115678 cg22877230 HDAC4 0.91 4.31 4.95 1.74E-06 0.02 4.69 Longitudinal G5 vs. G3 

11 1299477 cg10583204 TOLLIP -0.55 2.96 -5.03 1.76E-06 0.24 2.74 Pubertal non-IR NW vs. IR Obese & Overweight 

10 126437015 cg22006088 - -0.52 4.95 -5.02 1.80E-06 0.48 2.97 Pubertal non-IR Obese & Overweight vs. IR Obese & 
Overweight 

7 157650205 cg02802834 PTPRN2 1.08 3.05 4.91 2.11E-06 0.02 4.52 Longitudinal G5 vs. G3 
8 22755479 cg25434773 PEBP4 0.33 3.68 4.98 2.20E-06 0.61 2.53 Pubertal IR vs. non-IR 

11 66024941 cg00041759 KLC2 0.94 -5.28 4.86 2.65E-06 0.54 1.42 Longitudinal G3 (within) 
8 98900139 cg07792979 MATN2 0.93 3.84 4.86 2.67E-06 0.02 4.31 Longitudinal G5 vs. G3 
6 165958729 cg01555560 PDE10A 0.51 3.78 4.91 2.92E-06 0.61 2.35 Pubertal IR vs. non-IR 

The	  logFC	  field	  represents	  the	  change	  in	  the	  average	  M-‐value	  between	  conditions	  (a	  change	  in	  the	  log-‐odds	  of	  methylation;	  larger	  logFC	  refers	  to	  stronger	  differential	  
methylation).	  The	  AveExpr	  field	  represents	  the	  average	  M-‐value	  across	  all	  samples,	  which	  gives	  a	  measure	  of	  the	  overall	  amount	  of	  methylation	  for	  each	  probe.	  The	  B-‐
statistic	  is	  the	  log-‐odds	  of	  differential	  methylation	  to	  constant	  methylation	  (note,	  not	  the	  log-‐odds	  of	  methylation	  to	  nonmethylation,	  which	  is	  the	  M-‐value	  itself).	  	  

Figure 4. Manhattan plot showing the full list of associations derived from the EWAS on insulin resistance. Loci from the 
‘validation-list’ are highlighted in green and labelled.
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adjustment. A sub-selection of the top significant associations from these analyses is available in 

figure 5 (P-value threshold < 0.005). Interestingly, the methylation degree of three genes showed 

significant associations with assessed phenotypic traits at both cross-sectional stages (prepubertal 

and pubertal) (CNBD2, FGD4, and VASN). Among them, the loci CNBD2 and FGD4 reported an 

association with anthropometry (BMI Z-Score and WC). At the same time, VASN reinforced its 

association with glucose metabolism (glucose, insulin and HOMA-IR) in the pubertal stage. CNBD2 

and FGD4 also presented associations with metabolic traits in the pubertal stage including, leptin 

concentrations and QUICKI, and triacylglycerol levels, respectively. Previously literature described 

genes such as ABCG1, or other novels such as VASN, CEMIP and HMCN1 reported strongly significant 

associations with glucose metabolism at the pubertal stage (glucose, insulin and HOMA-IR) in this 

study. On the other hand, DNAm in the ESR1 and VASN genes was associated with kidney-function 

markers (creatinine and uric acid levels).

4. Association between gene expression and DNA methylation – A genome-wide eQTM 

analysis in human blood cells

With the intention of investigating the mechanistic relevance of identified IR epigenetics 

marks, RNA-seq analysis was performed in a subset of 44 children from the pubertal cross-sectional 

approach (Figure 1), which had also been included in the EWAS analysis. In this sub-population, we 

searched for cis-eQTMs in and around 10.000 bp of each transcript, and trans-eQTMs if the distance 

between the CpG and the transcript was higher than 10.000 bp. These analyses focused on the 267 

CpGs from the ‘validation-list’ and 60,058 high-quality transcripts (whole-genome distributed) as 

input.

The cis-eQTM analysis identified 19 CpG-transcript pairs that met a P-value < 0.05, comprising 

19 transcripts and 17 CpG sites (Table 2A). Methylation levels of CpG sites were both positively 

(45%) and negatively (55%) correlated with expression levels. Some genes reported in our 

regression analysis on obesity phenotypes were also revealed here as cis-eQTMs (highlighting 

ABCG1, CEMIP, CNBD2, ESR1, FGD4, HMCN1 and VASN). Among them, only the FGD4, showed an FDR 

< 0.05. Identifed cis-eQTM CpGs for the genes HMCN1, CASP7 and VASN, were annotated within 

enhancer regions according to the list of 450k enhancer predicted elements.

The trans-eQTM analysis identified 317 CpG-transcript pairs that met an FDR < 1x10-5, 

comprising 317 transcripts, and 5 CpG sites mapping the genes CDC42BPB, CEMIP, LIN7A and 

RASGRF1 (Additional file 11). Methylation levels of CpG sites were positively correlated with 

expression levels in the majority of trans-eQTM pairs (98.74%). 

Identified cis- and trans-eQTMs were annotated according to the genomics regulatory 

elements they map (Additional file 12). The annotation consisted of two categories: 1) distance 

to a CpG island and 2) annotation to gene region. In terms of distance to CpG islands, we did not 
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find differences in the annotation of eQTMs compared to the annotation derived from the whole 

list of CpGs in the EPIC array. On the contrary, in terms of annotation to gene regions, we found 

a higher proportion of CpGs mapping promoter regions (e.g., TSS200 and untranslated regions 

[UTRs]) among the eQTMs in comparison to the whole list of CpGs in the EWAS EPIC array. Using 

the BIOS QTL browser [62, 63], we validated in silico some of the identified eQTMs. Particularly, we 

found evidences of blood cis-eQTMs for the same transcripts but distinct CpGs in the genes ABCG1, 

CDC42BPB, ESR1, IFT140 and LIN7A.

Some identified cis- and trans-eQTM loci, like the ABCG1, ESR1, FGD4, VIPR2, RGS6, and 

CEMIP, mapped biological process GO-terms with relevance in obesity, puberty and metabolism; 

‘activation of GTPase activity’, ‘antral ovarian follicle growth’, ‘cellular response to estrogen stimulus’, 

‘G protein-coupled receptor signaling pathway’, ‘positive regulation of protein kinase C activity’, or 

‘regulation of cholesterol esterification’. 

Figure 5. All significant associations showing a P-value < 0.005 with at least one trait in our continuous outcome DNA 
methylation analyses.
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5. Association between genetic variation and DNA methylation – A genome-wide mQTL 

analysis in human blood cells

At each cross-sectional approach (prepubertal and pubertal), mQTL analyses were conducted, 

revealing epigenetics regulating phenomena by which SNPs affect the methylation levels of a 

CpG. These analyses focused on the 267 CpGs from the ‘validation-list’ and 471,192 SNPs, whole-

genome distributed, as input.

At the prepubertal stage, a total of 7 SNP-CpG pairs were found to be located in cis and 5 SNP-

CpG pairs were located in trans (P-value < 0.05 and FDR < 0.005 respectively) (Table 3). Cis-mQTLs 

involved genes with special relevance to type 2 diabetes, such as the ADCY5 or others previously 

highlighted in our pipeline, like ESR1. All but one SNP-CpG pair located in trans involved the gene 

BRD1. At the pubertal stage, a total of 10 SNP-CpG pairs were found to be located in cis and 10 SNP-

Table 2. Cis CpG-transcript pairs (distance of 10,000 bp) identified in the eQTM analysis. 

Cis-eQTMs  
CpG_Gene Transcript_Gene Statistic P-Value FDR Beta  

cg03418231_FGD4 ENSG00000139132_FGD4 -5.059 1.04E-05 0.004 -0.854  
cg10956605_VIPR2 ENSG00000106018_VIPR2 3.796 0.001 0.108 1.759  
cg25069618_CEMIP ENSG00000103888_CEMIP 3.487 0.001 0.112 1.974  

cg26675212_KLHL29 ENSG00000119771_KLHL29 3.483 0.001 0.112 2.419  
cg02102832_IFT140 ENSG00000131634_TMEM204 3.467 0.001 0.112 1.452  
cg00041083_VASN ENSG00000262246_CORO7 -2.817 0.008 0.497 -0.882  
cg02102832_IFT140 ENSG00000187535_IFT140 2.793 0.008 0.497 1.166  
cg03565996_ABCG1 ENSG00000160179_ABCG1 -2.739 0.009 0.500 -0.823  
cg21608605_ESR1 ENSG00000091831_ESR1 2.604 0.013 0.554 0.733  

cg02213678_KIAA0513 ENSG00000135709_KIAA0513 -2.573 0.014 0.554 -0.794  
cg09050582_LIPJ ENSG00000204022_LIPJ -2.570 0.014 0.554 -0.821  

cg20463298_HMCN1 ENSG00000143341_HMCN1 2.438 0.019 0.699 0.595  
cg11078674_RGS6 ENSG00000182732_RGS6 -2.368 0.023 0.762 -1.411  

cg23202420_NPBWR2 ENSG00000286999_NA 2.280 0.028 0.870 1.599  
cg00041083_VASN ENSG00000168140_VASN -2.168 0.036 1.000 -0.712  

cg12363898_IL17RB ENSG00000271976_NA -2.137 0.039 1.000 -0.405  
cg21891499_CLPTM1L ENSG00000286388_NA -2.126 0.040 1.000 -0.696  

cg11043559_CNBD2 ENSG00000149646_CNBD2 2.066 0.046 1.000 0.998  
cg17580480_CASP7 ENSG00000165806_CASP7 -2.053 0.047 1.000 -0.935  

As a measure of eQTMs effect size, we reported the beta regressors estimated by the linear 
model. The P-Values from the linear regression analysis were adjusted for multiple comparisons 
using the Benjamini-Hochberg FDR procedure. Theses analyses focused on 267 CpGs and 
60,058 high quality transcripts as input.	  
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Table 3a. Cis SNP-CpG pairs (distance of 500 bp) identified in the mQTL analysis of the 
prepubertal stage. 

Cis-mQTLs  
SNP CpG_Gene Statistic P-Value FDR Beta  

rs73186452 cg00978808_ADCY5 3.391 9.99E-‐04 0.074 0.939  
GSA.rs114659838 cg07504762_TINAGL1 3.074 0.003 0.089 1.672  

rs12282 cg21561989_GOLGA3 -‐2.980 0.004 0.089 -‐0.592  
GSA.rs117733790 cg23792592_MIR1-‐1 2.434 0.017 0.306 1.053  
GSA.rs35882398 cg12001846_ESR1 -‐2.351 0.021 0.306 -‐1.302  

rs2067011 cg10648542_GRM6 2.171 0.032 0.398 0.291  
GSA.rs114827188 cg20329510_LIMS2 -‐2.107 0.038 0.398 -‐0.576  

As a measure of mQTLs effect size, we reported the beta regressors estimated by the linear 
model. The p-values from the linear regression analysis were adjusted for multiple comparisons 
using the Benjamini-Hochberg FDR procedure.  

 

Table 3b. Trans SNP-CpG pairs (distance higher than 500 bp) identified in the mQTL analysis 
of the prepubertal stage. 

Trans-mQTLs 
SNP CpG_Gene Statistic P-Value FDR Beta 

rs28372042 cg16053902_BRD1 -‐8.873 2.91E-‐14 2.53E-‐06 -‐1.052 
rs14065 cg20872261_SLC37A2 -‐8.808 4.03E-‐14 2.53E-‐06 -‐1.050 
rs138843 cg16053902_BRD1 -‐8.622 1.03E-‐13 4.30E-‐06 -‐1.069 

GSA.rs11912619 cg16053902_BRD1 -‐7.669 1.16E-‐11 3.65E-‐04 -‐1.039 
GSA.rs7287579 cg16053902_BRD1 -‐7.055 2.29E-‐10 0.006 -‐1.010 

As a measure of mQTLs effect size, we reported the beta regressors estimated by the linear 
model. P-values were adjusted with a correction value for multiple testing, which takes into 
consideration the dependency of linkage disequilibrium (LD) between SNPs by LD based 
pruning and thereby uses the number of independent tests. These analyses focused on the 267 
CpGs from the ‘validation-list’ and 471,192 SNPs, whole-genome distributed, as input. The 
correction value for the trans-analysis was calculated as the total number of analysed CpG sites 
multiplied by the number of SNPs in the whole dataset.	  

CpG pairs were located in trans (P-value < 0.05 and FDR < 0.005 respectively) (Table 4). Cis-mQTLs 

for the loci ADCY5, TINAGL1, GOLGA3 and GRM6, identified in the prepubertal approach, were also 

validated in the pubertal stage. The CpG mapping the TINAGL1 was further annotated within an 

enhancer region. Two cis-mQTLs from the pubertal approach presented FDR < 0.05 (MEGF6 and 

SCN1A). Another interesting gene, according to literature, and highlighted as cis-mQTL in the 

pubertal approach, is the TNXB. DNAm levels in this gene have been associated with an under 

nutrition status in adults [64] and previously reported as a mQTL in human pancreatic islets [39]. 

Using the BIOS QTL browser [62, 63], we validated in silico some of identified mQTLs. Particularly, we 

found evidence of blood cells cis-mQTLs for the genes (ESR1, MEGF6 and TNXB), although involving 

different CpGs and SNPs.
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Table 4a. Cis SNP-CpG pairs (distance of 500 bp) identified in the mQTL analysis of the 
pubertal stage. 

Cis-mQTLs  
SNP CpG_Gene statistic P-Value FDR Beta  

GSA.rs78267041 cg00418943_MEGF6 3.750 0.00026329 0.019 1.583  
rs16851382 cg15434576_SCN1A -‐3.563 0.00051099 0.019 -‐0.533  
rs12282 cg21561989_GOLGA3 -‐3.088 0.002 0.051 -‐0.505  

rs7774197 cg24252708_TNXB -‐2.968 0.004 0.051 -‐0.952  
GSA.rs114888185 cg20320283_FOXE3 -‐2.959 0.004 0.051 -‐1.121  
GSA.rs114659838 cg07504762_TINAGL1 2.918 0.004 0.051 1.258  

rs73186452 cg00978808_ADCY5 2.447 0.016 0.166 0.679  
rs2067011 cg10648542_GRM6 2.189 0.030 0.281 0.250  
rs3742476 cg12913090_ATG2B -‐2.131 0.035 0.287 -‐0.254  

GSA.rs33932952 cg25711726_SLC37A2 2.019 0.046 0.337 0.296  
As a measure of mQTLs effect size, we reported the beta regressors estimated by the linear 
model. The p-values from the linear regression analysis were adjusted for multiple comparisons 
using the Benjamini-Hochberg FDR procedure.	  

Table 4b. Trans SNP-CpG pairs (distance higher than 500 bp) identified in the mQTL analysis 
of the pubertal stage. 

Trans-mQTLs 
SNP CpG_Gene statistic P-Value FDR Beta 

GSA.rs11912619 cg16053902_BRD1 -‐11.263 4.87E-‐21 6.13E-‐13 -‐1.189 
rs138843 cg16053902_BRD1 -‐11.116 1.14E-‐20 7.19E-‐13 -‐1.148 
rs14065 cg20872261_SLC37A2 -‐10.820 6.34E-‐20 2.66E-‐12 -‐0.953 

GSA.rs7287579 cg16053902_BRD1 -‐10.723 1.11E-‐19 3.50E-‐12 -‐1.179 
rs7410612 cg16053902_BRD1 -‐10.361 8.97E-‐19 2.26E-‐11 -‐1.121 
rs28372042 cg16053902_BRD1 -‐10.282 1.41E-‐18 2.97E-‐11 -‐1.069 
rs1009321 cg21561989_GOLGA3 -‐7.104 6.79E-‐11 0.001 -‐0.678 

GSA.rs761878 cg16053902_BRD1 -‐7.021 1.05E-‐10 0.002 -‐1.077 
rs4477450 cg20872261_SLC37A2 -‐6.936 1.63E-‐10 0.002 -‐0.732 
rs2824560 cg20401955_CHODL 6.807 3.17E-‐10 0.004 0.678 

As a measure of mQTLs effect size, we reported the beta regressors estimated by the linear 
model. P-values were adjusted with a correction value for multiple testing, which takes into 
consideration the dependency of linkage disequilibrium (LD) between SNPs by LD based 
pruning and thereby uses the number of independent tests. These analyses focused on the 267 
CpGs from the ‘validation-list’ and 471,192 SNPs, whole-genome distributed, as input. The 
correction value for the trans-analysis was calculated as the total number of analysed CpG sites 
multiplied by the number of SNPs in the whole dataset.	  

	  



217

MULTI-OMICS INTEGRATION AND MACHINE LEARNING FOR THE IDENTIFICATION OF MOLECULAR 
MARKERS OF INSULIN RESISTANCE IN PREPUBERTAL AND PUBERTAL CHILDREN WITH OBESITY

6. Serum protein levels of vasorin are associated with IR and obesity in the pubertal stage

To further investigate the role of one of the most promising biomarkers identified for IR, we 

measured VASN serum protein levels in the cohort. Descriptive statistics for experimental groups 

reported lower levels of VASN protein significantly associated with IR and obesity in the pubertal 

stage of the children (P=0.007) (Additional file 3). Moreover, in the longitudinal approach (N = 90), 

groups maintaining or developing IR with the onset of puberty, G4 and G5, presented the lowest 

increases in VASN levels (P = 0.06) (Additional file 13). At the opposite, insulin-sensitive groups such 

as G1 and G3 showed a pronounced increase in VASN levels. 

With the aim of functionally validate our EWAS and eQTM findings for VASN in the pubertal 

stage, we also studied the correlation between VASN DNAm and VASN serum protein levels, as well 

as between VASN mRNA and VASN serum protein levels. Interestingly, in the 130 pubertal children, 

a suggestive trend was reported for the correlation between DNAm at the cg00041083 and VASN 

protein levels after adjusting for confounders such as age, sex, origin and BMI Z-Score (P = 0.09) 

(Additional file 14); higher DNAm levels related to lower protein levels. Contrarily, in the 44 pubertal 

children with available RNAseq data, we did not find a significant correlation between mRNA levels 

at the ENSG00000168140 and VASN serum levels (P = 0.34).

Discussion

The current large-scale integrative molecular analysis identifies novel blood multi-omics 

signatures such as DNAm marks, eQTMs and mQTLs, underlying the development, amelioration 

and worsening of IR in children with obesity during puberty. Functional enrichment analysis 

revealed that identified loci participate in systemic metabolic pathways and sexual maturation 

processes with relevance to the pathogenesis of IR. Additional analyses on cardiometabolic and 

inflammatory phenotypes show that blood DNAm patterns of some identified loci are further 

associated, beyond IR, with an overall risky-cardiometabolic profile in children. To our knowledge, 

this is the first longitudinal multi-omics approach characterizing molecular blood alterations for 

IR and obesity during the metabolically critical period of puberty. With our results, we propose 

novel and promising biomarkers with predictive utility for the identification of children with 

obesity at high risk of developing IR and metabolic alterations. Likewise, we also aid insights into 

the molecular and functional mechanisms linking epigenetics alterations and the IR phenotype in 

obesity.

Our EWAS analysis on IR identified 4,281 associated unique CpG sites, from which 2,981 

further presented an FDR < 0.05 (linked to 2,632 and 1,899 genes, respectively) (Figure 1). Among 

them, we selected only those loci presenting significant associations in at least two of our statistical 

approaches (Figure 3). The resulting list was composed of 267 IR-associated unique CpGs mapping 

128 genes, from which 130 CpGs (mapping 91 genes) presented an FDR < 0.05 (Figure 4 and 
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Additional file 7). Among our top significant results (Table 1 and Additional file 7), there were new 

and promising regions never reported as epigenetics marks of IR (e.g., CDC42BPB, ESR1, HMCN1, 

PRKAR1B, SNRK and VASN, among others). From them, DNAm levels of the ESR1 showed association 

with IR not only in the pubertal but also in the prepubertal stage (Figure 3), indicating that they 

might accompany IR already from early childhood. The rest of them otherwise showed association 

with IR in our longitudinal and pubertal approaches, resembling marks associated with IR in the 

context of puberty. On these and the rest loci from our ‘validation-list’, associations with a bulk of 

cardiometabolic phenotypes other than IR were also investigated (Figure 5). As a novelty, these 

confounding-adjusted analyses allowed us to distinguish between regions in which the initial 

IR-association is direct (e.g., ABCG1 and VASN), or rather derives from an indirect or secondary 

association with anthropometry and obesity traits (e.g., CNBD2 and FGD4), or with inflammation 

(e.g., CDC42BPB). Interestingly, the functional enrichment analysis of reported CpGs indicated that 

identified loci participate in systemic metabolic pathways, inflammatory and sexual maturation 

processes with relevance to the pathogenesis of IR. Among them, the terms related to the 

synthesis and secretion of sexual hormones outline the importance of puberty and its hormonal 

and biochemical changes as plausible contributors to the development and worsening of obesity IR. 

Beyond the new targets identified, we also found genes whose methylation levels have been 

previously and repeatedly associated with adult type 2 diabetes and obesity in the literature (e.g., 

ABCG1, ADCY5, CPT1A, FTO, HCCA2, HDAC4, HIF3A, IGF-1, KCNQ1, PPARG, and TCF7L2, among others) 
[13, 23]. Therefore, our results remark the role of IR as an important pathophysiological mechanism 

linking obesity and cardiometabolic comorbidities, and reinforce the fact that epigenetics marks 

of IR may have utility as predictive markers of future disease outcomes. In addition to type 2 

diabetes, our associations also highlighted loci specifically associated with adult IR in the literature 

(e.g., COL18A1, CTNND2, CXCL1, DNMT3A, GRB10, HDAC4, LAT, PAX6, SH3RF3 and SIRT2) [18–22]. This is 

important since literature IR studies had mostly focused on studying the relationship between the 

methylation levels of candidate genes and the HOMA-IR [22], and EWAS on IR are still scarce [14–16, 22, 

65] (with barely one study conducted in children) [66]. The fact of validating here previously known 

adult epigenetics marks of IR may indicate that the DNA methylation patterns of IR are established 

early, under the influence of childhood or puberty obesogenic environments, and remain stable 

throughout adulthood.

In order to elucidate the molecular mechanisms behind identified IR epigenetics marks, we 

integrated our EWAS data along with other omics sources in the same cohort (GWAS and RNAseq 

data). As a result, we reported that some of the identified loci might be participating in phenomena 

that alter gene expression levels (eQTMs) while others could be explained by the existence of SNPs 

(mQTLs) (Figure 1).
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Regarding eQTMs phenomena, our analysis reported that some of the most promising regions 

identified could exert their effects of IR through a modification, either up- or down-regulating, 

the expression of target transcripts in situ (cis-eQTMs), or at long distances from their occurrence 

(trans-eQTMs) (Table 2). Among identified cis-eQTM phenomena, we can highlight previously 

well-known eQTM loci (like the ABCG1) [23] but also some of our promising new markers (CDC42BPB, 

ESR1, HMCN1 and VASN). Interestingly, most identified CpGs mapped into genomics regulatory 

elements (e.g., enhancers, transcription start sites or UTR), reinforcing their role as plausible gene 

expression controllers. To date, this is the first study integrating RNAseq and EWAS data in the 

blood of pubertal insulin-resistant children with obesity. Previously, a recent study investigated 

the existence of eQTMs phenomena in the adipose tissue of African American adult women 

with IR [17]. Although with no overlapping regions between their and our approach, our findings 

reinforce the idea that DNAm-mediated regulation of gene expression could be implicated into 

the pathogenesis of IR. 

Previous studies have shown that DNAm alterations at the cg06500161 of ABCG1 strongly 

correlate with glucose metabolism dysfunction and diabetes in adults [14, 65, 67]. Many of these 

studies have also evidenced that these DNAm alterations elicit effects on ABCG1 gene expression 

through eQTM interactions. Moreover, the connection between ABCG1 and diabetes-related traits 

and dyslipidemia has been supported by animal and human studies [14, 65, 67]. The protein encoded 

by ABCG1 is a member of the superfamily of ATP-binding cassette (ABC) transporters. ABC proteins 

transport various molecules across extra- and intracellular membranes. More specifically, ABCG1 

is involved in macrophage cholesterol and phospholipid transport and may regulate cellular lipid 

homeostasis in other cell types. Although a bulk of insights had been reported in adults, our results 

are the first evidence of such relationships in children with obesity and IR. Thus, we contribute to 

the body of evidence supporting the role of lipid metabolism, specifically of ABC transporters, in 

IR and highlight the interest of ABCG1 as a potential non-invasive biomarker for future glucose 

metabolism complications.

Here, mQTL analyses were also conducted revealing epigenetics regulating phenomena, by 

which SNPs affect the methylation levels of CpGs (Figure 1). For this approach, we counted on the 

EWAS data from both the prepubertal and pubertal stages, which allowed us to look for replicated 

mQTL phenomena across time points. Among results, we again reported some previously known 

diabetes loci (such is the case of ADCY5) [68, 69] but also interesting new IR epigenetics marks (ESR1), 

for which previous mQTL evidence had been reported in the literature [13]. These phenomena 

could be, therefore, the molecular explanation for some epigenetics IR early-life marks for which 

the environment is not the causal mediator.

ESR1 is a non-imprinted gene that encodes the estrogen receptor-α (ER-α), a transcription 

factor involved in the regulation of energy homeostasis [70]. In females, estrogens maintain energy 
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homeostasis via ERα by suppressing energy intake and lipogenesis, enhancing energy expenditure 
[71]  and ameliorating insulin secretion and sensitivity [72]. In males, however, testosterone is 

converted to estrogen and maintains fuel homeostasis via ERα and androgen receptors, which 

share related functions to suppress adipose tissue accumulation and improve insulin sensitivity. 

Conversely, the lowering in estrogens levels observed in postmenopausal women provoke IR and 

increase the risk of type 2 diabetes [70]. Although no previous evidence of an association between 

DNAm levels and IR has been reported for the ESR1 in the literature, dynamic changes in the DNAm 

of this region have been previously associated with aging [73]. It is noteworthy to see how the ESR1, 

which had not been previously evidenced as an epigenetic marker of IR, appears as a significant 

locus in all the approaches of our study (EWAS on IR, association with cardiometabolic traits, cis-

eQTMs and cis-mQTLs). From this, we can conclude several things; 1) DNAm alterations in the ESR1 

locus during puberty could be an important contributor to the appearance and worsening of IR in 

children with obesity, 2) these alterations could exert their effects on the phenotype through the 

alteration of ESR1 gene expression levels, and 3) there could also be some from-birth predisposing 

SNPs favouring the alteration of DNAm levels in the region. The evidenced mQTL phenomenon 

of the region agrees with the fact of ESR1 appearing as a significant epigenetic marker of IR in 

both prepubertal and pubertal stages in our study. Considering our results and the implication of 

the estrogen axis into the context of IR and puberty, we propose that ESR1 could be a promising 

epigenetic target to prevent age-related metabolic disorders associated with obesity.

Besides the ESR1, the most promising and novel biomarker identified from our approach is the 

VASN, which was reported as a top association from the ‘validation-list’ in the EWAS on IR (Figure 

4 and table 1), as well as a participant of a cis-eQTM phenomenon. Particularly, we report for the 

first time that both higher blood VASN DNAm levels and lower serum protein concentrations are 

strongly associated with IR in the pubertal stage in children with obesity. Although our eQTM 

analysis showed that the higher DNAm of VASN is associated with lower mRNA VASN levels in our 

children, we could not validate the results with an association between mRNA VASN levels and 

VASN serum levels. This is not surprising otherwise since the elevated VASN serum levels associated 

with IR are a systemic finding that could derive from many other tissues than blood cells. Moreover, 

the population sample size with RNAseq data and VASN serum levels measured was small (barely 

40 subjects). VASN is a type I transmembrane protein (SLIT-like 2), highly expressed in smooth 

muscle cells and with reported expression in adipocytes [74, 75]. VASN was originally found to play a 

role in vascular injury repair and angiogenesis, and is a potential biomarker for hepatocarcinoma 
[75]. Mechanistically, VASN directly binds to the transforming growth factor (TGF-B) and attenuates 

TGF-B signaling in vitro. A recent study has also shown that hypoxia increases Notch signaling in 

glioma-like cells through the induction of VASN and the hypoxia-inducible factor-1 (HIF1)/STAT3), 

thus describing a possible action mechanism of VASN. However, the relationship between VASN, 

obesity and IR remains unknown. Our main hypothesis is that VASN could play an important role in 
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obesity as a potential biomarker of IR and/or a predictor of future development of type 2 diabetes 

in children.

The main limitations of our study are, on the one hand, the low number of participants 

included in our populations. On the other hand, it is the fact that our findings are based on 

data from blood, which was the only accessible tissue, and may not be representative of other 

metabolically relevant organs such as live and adipose and muscle tissues. In this regard, there is 

a trend pointing to a correlation between the global state of methylation in blood and adipose 

tissue [76]. This correlation might be explained by the abundant presence of white cells in both 

tissues and suggests that buffy coat might be a valid indicator of what happens at the methylation 

level in adipose tissue, especially for the case of inflammatory and immune system-related 

aspects. Another possible source of bias would be the difference in time elapsed between the two 

measurements (prepubertal and pubertal times) between the different participants. 

The main strengths of our study are the high significance of our associations (many of them 

passing multiple-test correction thresholds) as well as the multi-omics design, from which we 

validate our top associations in a multi-omics dimensional space. Likewise, another positive point 

is the future pubertal study design, which strengthens the statistical robustness of our reports. 

Finally, it is a fact of being the first longitudinal multi-omics approach characterizing molecular 

blood alterations for IR and obesity during the metabolically critical period of puberty. 

Conclusions

With our results, we propose novel and promising biomarkers of IR and metabolic alterations 

in children with obesity (ABCG1, CDC42BPB, ESR1, HMCN1, PRKAR1B, SNRK and VASN, among 

others). Thanks to our multi-omics design, we also aid insights into the molecular and functional 

mechanisms linking epigenetics alterations and the IR phenotype in obesity (mQTLs and eQTMs). 

If validated in other cohorts and longitudinal designs, our identified loci could serve as predictive 

non-invasive biomarkers for reducing the high rates of mortality and morbidity associated with 

obesity. Especially for genes with a promising but unknown role in the development of IR in the 

adipose tissue, such is the case of VASN, additional in vitro and in vivo functional analyses should be 

conducted in the near future.
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eXplainable Artificial Intelligence (XAI) for the 
identification of biologically relevant gene 
expression patterns in longitudinal human studies, 
Insights from obesity research

Augusto Anguita-Ruiz 1,2,3 *, Alberto Segura-Delgado4, Rafael Alcalá4, Concepción M. 
Aguilera1,2,3, Jesús Alcalá-Fdez.4

Abstract Until date, several machine learning approaches have been proposed for the 
dynamic modeling of temporal omics data. Although they have yielded impressive results 
in terms of model accuracy and predictive ability, most of these applications are based 
on “Black-box” algorithms and more interpretable models have been claimed by the 
research community. The recent eXplainable Artificial Intelligence (XAI) revolution offers 
a solution for this issue, were rule-based approaches are highly suitable for explanatory 
purposes. The further integration of the data mining process along with functional-
annotation and pathway analyses is an additional way towards more explanatory and 
biologically soundness models. In this paper, we present a novel rule-based XAI strategy 
(including pre-processing, knowledge-extraction and functional validation) for finding 
biologically relevant sequential patterns from longitudinal human gene expression data 
(GED). To illustrate the performance of our pipeline, we work on in vivo temporal GED 
collected within the course of a long-term dietary intervention in 57 subjects with obesity 
(GSE77962). As validation populations, we employ three independent datasets following 
the same experimental design. As a result, we validate primarily extracted gene patterns 
and prove the goodness of our strategy for the mining of biologically relevant gene-gene 
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temporal relations. Our whole pipeline has been gathered under open-source software 
and could be easily extended to other human temporal GED applications.

AUTHOR SUMMARY

Biological processes in humans are not single-gene based mechanisms, but complex systems 

controlled by regulatory interactions between thousands of genes. Within these gene regulatory 

networks, time-delay is a common phenomenon and genes interact each other within a four-

dimension space. Hence, to fully understand or to control biological processes we need to unravel 

the principles of gene-gene temporal interactions. Until date, several approaches based on Artificial 

Intelligence methods have tried to address this issue. Nevertheless, the research community has 

claimed for more interpretable and biologically meaningful models. Particularly, scientists claim for 

methods able to infer gene-gene temporal interactions that could be later validated with real-life 

experiments at the lab. The recent revolution known as “eXplainable Artificial Intelligence” offers a 

solution for this issue, where a range of highly interpretable and explicable models has become 

available. Many of these methods could be applied to temporal gene expression data in order to 

decipher mentioned temporal gene-gene relationships in humans. Here, we propose and validate 

a new pipeline analysis including an eXplainable artificial intelligence method for the identification 

of comprehensible gene-gene temporal relationships from human intervention studies. Our 

method has been validated in six datasets from obesity research (consisting of low calorie diets 

interventions), where it was able to extract meaningful gene-gene temporal interactions with 

relevance to the etiology of the disease. The application of our pipeline to other type of human 

temporal gene profiles would greatly expand our knowledge for complex biological processes, 

with a special interest for drug clinical trials, in which identified gene-gene regulatory interactions 

could reveal new therapeutic targets.

Introduction

Biological processes in humans are not single-gene based mechanisms, but complex systems 

controlled by regulatory interactions between thousands of genes. Within these gene regulatory 

networks, time-delay is a common phenomenon and genes interact each other within a four-

dimension space [1]. That is to say, it may take a time since the product of a gene is generated, 

until it finally causes an effect on its target molecule. Some of the main sources of time-delay in 

gene regulation may include; 1) the action of gene expression co-activators or co-repressors, 2) the 

influence of external environmental factors, and 3) the natural self-degradation of messenger RNA 

and proteins in cells. Time-delayed gene regulation is especially present in long-term interventions, 

in which changes in gene expression reflect the response of genes to external factors and may 

cause subsequent changes on the expression of other genes.
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DNA microarray technology has provided a powerful vehicle for exploring biological processes 

on the genomic scale. In spite of it, in most of the genome scans performed to date, the effects of 

each gene on the trait of interest have been interrogated one at a time; thus presenting a limited 

throughput to get the overall picture of gene networks and their temporal relations. Unsupervised 

methods implemented in conventional microarray software (such as clustering solutions) have 

also failed in the discovery of network phenomena, since genes can participate in more than 

one network all at once. As a result, there is not a clear picture of the dynamic trends in gene-

gene interactions and much of the heritability of complex human traits remains unexplained, a 

phenomenon termed as the “missing heritability” problem [2]. 

The creation of public functional genomics data repositories has enabled a huge amount 

of genome-wide expression profiles become available to the scientific community [3]. Among 

available datasets, the recent increase of massive temporal microarray experiments (such as clinical 

and dietary long-term interventions) open up new opportunities to uncover time-delayed gene-

gene relationships. Several machine learning (ML) approaches have been proven very effective for 

extracting associations between different genes, highlighting Boolean models, Bayesian networks 

and Neural networks [4–7]. Due to their great predictive ability, these ML methods have been widely 

used in this and other field applications. Nevertheless, despite yielding impressive results, most 

of these techniques output unintelligible and complex gene networks, and can not explain how 

they arrive at specific decisions (which is known as the “black box” problem) [8–10]. For scientists to 

trust they must first understand what machines do, since in many cases it is not so much what 

an algorithm predicts but the relationships it establishes and how it predicts it. This is especially 

important in gene networking, where one of the main concerns of biologists is how to translate 

inferred networks into particular hypotheses that can be tested with real-life experiments. On 

this sense, there is a recent increased need to provide ML models with more interpretability and 

explicability, giving rise to what it is known as eXplainable Artificial Intelligence (XAI) [8,10,11]. As 

one of the most naturally interpretable and popular knowledge discovery techniques, association 

rule mining has become a highly relevant technique within the XAI revolution, being able to 

generate practical knowledge understandable from the point of view of human experts [12,13]. 

Practical knowledge in association rule mining is extracted in the form of association rules and it 

refers to concrete relationships between the elements of a database. Association rules constitute 

representations with the form of XgY, which means that when X occurs it is likely that Y also occurs. 

Due to its natural explicability, association rule mining methods have emerged as an excellent 

choice for the data mining of complex biological datasets in humans [14]. On this sense, they have 

been successfully applied to gene expression data (GED) in order to represent how the expression 

of one (several) gene(s) may be linked or associated with the expression of a different set of genes 

(gene-gene interactions discovery) [14,15].

Although interesting insights have been derived from the application of association rule 
mining to GED, previously mentioned time dependencies between associated genes cannot be 
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modelled making use of conventional association rule mining methods. To face this problem, 

sequential rule mining (SRM) algorithms could be used instead. SRM algorithms are intended to 

discover interesting sequential relationships between the elements of a sequence database, in 

which the data are represented sequentially (e.g. time ordered or spatially localized). The concept 

of a sequential rule is similar to that of association rule but, in this case, X must appear before Y 

according to the sequential ordering criterion of the database [13,16]. By way of example, sequential 

rules that can be extracted from the application of SRM to temporal microarray designs has the 

next form; [gene Ah, gene Bi] g (time delay) [gene Ch, gene Dh, gene Eh], which represents that 

the upregulation of gene A and the significant repression of gene B are followed by (or cause) a 

significant upregulation of genes C, D and E after a given time delay.

Until date, there has been only one adaptation of SRM methods to temporal microarray 

data[15], consisting of an Ad-hoc application for in vitro time-series GED in Saccharomyces cerevisiae. 

Referred to as temporal ARM (TARM), the employed method is based on the conventional 

association rule mining algorithm “Apriori” and has been exclusively designed to work with GED 

derived from yeast (composed of 799 genes evaluated during five transcriptional time points in the 

same culture). This method builds a sequence database conformed by a single sequence of events 

(i.e. same culture) by converting each continuous gene expression value into a discrete item by 

time interval (upregulation, downregulation, or none). Then, TARM is able to identify concrete and 

understandable temporal causal relations among genes with relevance in the yeast cell cycle. 

Besides previous approach, it is also remarkable a more recent work published by Liu et al. 

(2013) [17], in which a sequential pattern mining algorithm is proposed for the identification of 

temporal co-expression networks from in vitro human data. Sequential pattern mining algorithms 

belong to the ML branch of frequent pattern mining and could be considered as a simpler version 

of SRM (sequential rule mining). The main drawback of sequential pattern mining algorithms, in 

comparison to SRM methods, is that they find sequential patterns that appear frequently in a 

sequence database but without generating sequential rules from them. Thus, they are unable of 

establishing causal relationships between items, and their resulting sequential patterns could be 

misleading in certain occasions, especially in the presence of very frequent elements in a sequence 

database [16]. For these reasons, although the Liu et al. (2013) [17] approach interestingly moves 

forward from yeast models into in vitro human data, and is based on a highly interpretable ML 

method, it still presents some drawbacks for its fully application in the modeling of temporal gene 

networks. 

As Liu et al. (2013) [17], many other researchers have also explored co-expression for the 

reconstruction of gene networks in humans (although not from a pattern mining approach). These 

methods have become thereby the gold-standard when studying a microarray experiment from 

a systems biology perspective [4, 5, 18, 19]. In the case of time course genomics experiments, most 

of conducted co-expression approaches have been based in clustering analyses or unsupervised 
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learning without class labels [20]. These temporal co-expression approaches are generally based on 

similarity or correlation or distance measures for the identification of groups of genes with ‘similar’ 

temporal patterns of expression, and reveal hidden patterns in the original data by transforming raw 

temporal data into logically structured, clustered, and interconnected graphs [18,19]. Co-expression 

graphs can be visualized with nodes representing genes, and with edges indicating interactions, 

and have helped to understand how genes interact each other within the context of an integrated 

and global biological network. Nevertheless, despite the widespread use of these approaches [4], 

there are some drawbacks and limitations remaining for their application in the inference of causal 

gene-gene relationships:

-   Co-expression networks are good to study the general interactome of an organism (free-scale 

network topology), but their results make hard to infer particular details such as the causal 

direction or the importance of each individual interaction within the whole network [20]. Thus, 

they may hinder the translation of inferred networks into particular hypotheses that can be 

tested in wet-lab experiments. On the contrary, SRM results (in the form of individual rules 

for each interaction) allow a concrete quality evaluation for each relationship and an easy 

biological interpretability of findings, which is crucial to demonstrate that a gene network is 

functionally meaningful, and not just biostatistical fluke [4].

-  Co-expression is a very strict assumption for the extraction of gene-gene interactions from 

time course data [21]. That is to say, co-expression networks with temporal GED generally 

do not include the time order information in graphs, and they are not capable of detecting 

positive, negative and time-lagged gene correlations at the same time [20]. However, in living 

systems, gene regulations can be positive or negative possibly with time lags, and may also 

not span all conditions or time points. For example, some of the target genes could have 

a negative feedback loop and could block their own expression, which could explain fast 

transient dynamic changes, while other target genes could have a positive feedback loop and 

therefore maintain gene expression longer. Additional regulation could happen after a longer 

time or very fast without protein translation, i.e. by the action of functional large non-coding 

RNAs. All these kind of phenomena, which are missed by most of co-expression approaches, 

could be captured by an appropriate SRM approach. 

Given all these concerns and the interesting properties of SRM methods (e.g. existence of 

statistical quality measures by rule, possibility of functional validation by interaction, inclusion of 

causality or sequential order information, discovery of complex temporal regulatory phenomena...), 

SRM approaches are presented as an alternative of great interest and interpretability against 

temporal co-expression clustering methods when inferring gene-gene temporal relations. 

Unfortunately, as far as we concern, the work of Nam et al. (2009) [15] in Sacharomyces cerevisiae 

is the only SRM approach developed to the moment and it constitutes no more than an Ad-hoc 

application for in vitro experiments (whose extension to in vivo GED would elicits challenges that 
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could not be solved with simple algorithm modifications). The application of these methods 

to human temporal gene profiles otherwise would greatly expand our knowledge for complex 

biological processes, with a special interest for long-term interventions (such as clinical trials), in 

which identified gene-gene regulatory interactions could reveal promising and new therapeutic 

targets [22,23]. Among the main issues that may have prevented the adaptation of SRM for temporal 

gene networking in in vivo human data we can highlight:

1) The high dimensionality of human gene expression microarrays. With more than 30,000 

probes under study in conventional human microarray platforms, the volume of the search 

space is so big that any available data will become sparse (especially in the case of clinical 

trials where sample sizes are barely composed of a few tens). The low number of temporal 

records that are normally assessed in this kind of interventions (rarely more than four) 

further worsens this sparsity. Within this context, most of ML approaches will thus present a 

detrimental performance and reliable results can be obtained only if the study sample size 

is exponentially increased or if effective ‘feature-selection’ methods are employed prior to 

analysis for dimensionality reduction. 

2) The lack of gene expression discretization methods for in vivo datasets. Most of available SRM 

algorithms require categorical data as input to perform inference. Thus, the selection of an 

appropriate discretization strategy is a key step for a successful performance. A wide range of 

in vitro discretization methods has been recently revised and gathered under open-source 

software [24]. Of note, performance of these methods have shown strong dependence on 

the particularities of each biological problem. Regarding human GED, there are few issues 

to take into account before performing discretization, including not only the fact of having 

multiple sequences but also the great variability between (and within) subjects, tissues and 

conditions. Considering all this, the extension of existing in vitro discretization strategies to 

humans is not a trivial issue and new approaches should be proposed.

3) The problem of mining sequential rules common to multiple sequences. Contrary to what 

happen in vitro, in human or animal experiments the “subject variability” is the main issue to 

address, so that databases include multiple sequences instead of a single one. That is to say, 

we pass from single-sequence experiments where only one microarray is conducted in the 

culture by time record, to an experimental framework with N > 1 gene expression profiles 

evaluated at each data point (being N the number of subjects under study). Since classical 

SRM methods have been originally intended for mining sequential rules in a single sequence 

of events, gene networking in human temporal microarrays will require the adaptation of 

more modern and specific SRM algorithms.

4) The need for functional validation of results. As it is well known, when facing high-

dimensionality data with low sample sizes, data mining methods may yield results which 
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seem to be significant; but which do not actually represent real behaviors of the dataset. 

Regarding the case of SRM and its application to GED, this problem is presented in the form 

of too many output rules even after pruning quality application, which can reach the order 

of thousands. In such cases, the extracted SRM-based gene networks will represent a chaotic 

set of “potential” interactions whose biological interpretation will become a serious challenge 

for biologists. 

In this paper, we present a three-stage and rule-based XAI strategy (including pre-processing, 

knowledge-extraction and functional validation) for finding biologically relevant sequential rules 

from longitudinal human GED. Particularly, our strategy involves the proposal of an improved 

version of the well-known SRM algorithm CMRules [25] in order to mine time-delayed gene 

relationships from in vivo human temporal microarray data. Furthermore, we not only adapt the 

CMRules algorithm to the specific GED problem but also propose a full-detailed data pre- and 

post-processing pipeline that solve previously mentioned human data limitations and increase 

model explicability. As a result, our methodology is able to generate temporal gene expression 

networks in long-term human interventions. The proposed pre- and post-processing pipeline 

could be briefly summarized in the following key aspects:

•	 First,	the	initial	number	of	probes	is	reduced	to	those	differentially	expressed	by	time	interval	

and experimental condition. This way, we simplify the experimental problem and reduce the 

search space, further favoring a better performance of the algorithm.

•	 Secondly,	we	propose	a	new	discretization	approach	for	the	conversion	of	continuous	gene	

expression values into discrete categories representing temporal changes in gene expression. 

Based on signal log ratios by gene and time interval, this discretization strategy maps data 

from a vast spectrum of numeric gene expression values into three discrete categories. 

Therefore, it can be viewed as a secondary data dimensionality reduction technique in favor 

of model explicability. 

•	 Third,	we	apply	the	SRM	algorithm	CMRules	to	the	discretized	dataset	and	generate	sequential	

rules from it with the form of [gene Ah, gene Bi] g (time delay) [gene Ch, gene Dh, gene Eh]. 

Each rule is assessed in terms of quality and robustness by means of five interestingness or 

quality metrics as described in the method section.

•	 After	 the	 knowledge-extraction	 stage,	 we	 propose	 the	 integration	 of	 output	 gene	 rules	

along with external biological resources such as functional annotation and gene regulation 

databases. Three well-known and reliable biological resources (GO, KEGG and TRRUST 

databases) are consulted in order to compute five new biological quality measures by-rule. 

Through this strategy, each interaction result is biologically pruned and placed within the 

context of those molecular systems that commonly underlie gene-gene interactions in 

humans (e.g. Transcription factor (TF)-target gene regulatory relationships [26]). 
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•	 Finally,	we	propose	data	visualization	 for	 the	 joint	 representation	of	gene	patterns	and	all	

accessed biological information. By means of hierarchical edge bundling visualization 

methods, we concentrate a lot of information in a single shot and facilitate the identification 

of a finite set of genes composing a good quality network. 

The whole pipeline of our proposal is illustrated in the Supplementary Fig 1 and has been 

fully detailed in the method section. The strategy presented in this work (with special relevance of 

the adopted ML algorithm, and the functional validation and graphical representation of results) 

constitute a value proposal whose main objective is to increase model eXplainability and to help 

biologists understanding extracted gene interactions. In this way, we pretend to move away from 

the black box concept that is usually adopted in most of the current artificial intelligence (AI) 

omics applications [27], and to provide researchers with a great power to discern between random 

and causal gene relationships. Our whole pipeline and the SRM adaptation have been gathered 

as open-source software in the public hosting GitHub (https://github.com/AugustoAnguita/

GeneSeqRules) and could be easily extended to other temporal GED applications. At the end, we 

hope this proposal becomes a helpful strategy for the identification of comprehensible genetic 

interactions in long-term human interventions, with special interest for the discovery of novel 

therapeutic targets in clinical datasets. 

 Since our method is the first application of a rule-based SRM strategy for the extraction 

of gene interactions in longitudinal human in vivo experiments, there is not currently a SRM 

benchmark tool that we could use to compare the performance of our pipeline with. At least, 

not without implementing algorithm modifications in such comparison methods. In spite of it, 

from the biomedical perspective the real challenge issue when inferring gene networks is their 

reliability for avoiding false discovery as well as their reproducibility across different patient 

cohorts. For this reason, we decided to validate our approach in two alternative ways: 1) First, we 

applied our methodology to an example dataset and give the derived results to a group of field-

experts in order them to evaluate the usability of inferred networks for the generation of particular 

gene-gene interaction hypotheses; and 2) We repeated the application of the full pipeline to 

three additional datasets, following the same experimental design than the discovery sample, 

and mined results looking for replication patterns across studies. As a result, we validated some 

of the primarily extracted gene patterns and thus proved the goodness of our strategy for the 

mining of biologically relevant gene-gene temporal relations (see results section). Full details for 

the evaluation guidelines committed by field-experts during the interpretation of model results 

have been addressed in the method section.

Main topics covered in this paper include: 1) Preliminary concepts in ARM. 2) Methodological 

description of the proposed pipeline (including pre-processing, Knowledge-extraction stage and 

Functional validation of results), 3) Description of the research problem and employed datasets, 4) 

Results description, where we evaluate the performance of our pipeline in terms of the insights 
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extracted from a discovery sample and their validation in independent cohorts and 5) Discussion 

section, where we deepen the goodness of our proposal and list some drawbacks and challenges 

to be faced in future applications.

Methods

Preliminary: Association Rules and Sequential Rules

The concept of association rules was first proposed by Agrawal et al (1993) [12] as a market 

basket analysis tool in order to discover what items are bought together during a supermarket 

purchase. Many algorithms for mining association rules and other that extend the concept of 

association rule mining have been proposed so far to extract useful knowledge from different 

types of transactional datasets (T). As previously mentioned, association rules have the form of Left 

Hand Side (LHS) g Right Hand Side (RHS), where LHS and RHS are sets of items, and it represents 

that the RHS set being likely to occur whenever the LHS set occurs. Interestingly, association 

rules move forward from the simpler concept of frequent patterns and allows the opportunity to 

uncover true causal relationships between items [13]. In the field of gene networking, an example 

of transactional dataset would be a subset of individuals belonging to an experimental condition; 

where each individual from the subset would be considered as a transaction of the database, and 

each gene expression event for that particular individual (e.g. gene Ah, gene Bi, gene Ch, gene 

Dh, gene Eh...) would be considered as an item composing that particular transaction. Support 

and confidence are the most common measures used to assess association rules’ quality, both of 

them based on the support of an itemset. In the previously introduced example, an itemset would 

refer to any combination of items from the database (e.g. gene Bi & gene Ch), being also possible 

the fact of an itemset composed by only one item. In association rule mining, the support for an 

itemset I is defined as: 

where the numerator is the number of examples (t) in the dataset T covered by the itemset I, and | 

T | is the total number of examples in the dataset. Thus, the support and confidence for a rule LHS 

g RHS are defined as
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In other words, support could be viewed as the percentage of transactions where the rule 

holds, and confidence as the conditional probability of RHS with respect to LHS (i.e. the relative 

cardinality of RHS with respect to LHS). The classic techniques for mining association rules attempt 

to discover rules whose support and confidence are greater than certain user-defined thresholds 

called minimum support (minSup) and minimum confidence (minConf ). However, several authors 

have pointed out some drawbacks of this framework that lead to find many misleading rules 
[28]: 1) First, the confidence measure is not able to identify statistical independence or negative 

dependence between LHS and RHS, mainly due to the fact that the RHS support is not taken into 

account during the computing process, and 2) Second, itemsets with very high support will be a 

source of misleading rules because they exist in most of the examples (transactions) and therefore 

any itemset could seem to be a good predictor of the presence of the high-support itemset. The 

following example is from [29] and it illustrated very well previous misleading behaviors: in the 

CENSUS database of 1990, the rule “past active duty in military _ no service in Vietnam” has a 

very high confidence of 0.9. This rule suggests that knowing that a person served in military we 

should believe that he/she did not serve in Vietnam. However, the itemset “no service in Vietnam” 

has a support over 95%, so in fact the probability that a person did not serve in Vietnam decreases 

(from 95% to 90%) when we know he/she served in military, and hence the association is negative. 

Clearly, this rule is misleading.

To face these problems, researchers have proposed additional quality metrics by rule and 

have introduced the concept of “very strong association rules” [30], which are of great aid for the 

selection and ranking of rules according to their potential causality and coherence. Next, we briefly 

describe some of the additional metrics that have been used in this paper as well as introduce the 

framework of “very strong association rules”.

The conviction [29] measure analyzes the dependence between LHS and ¬RHS, where ¬RHS 

means the absence of RHS. Its domain is [0,∞), where values less than one represent negative 

dependence, a value of one represents independence, and values higher than one represent 

positive dependence. Conviction for a rule LHS gRHS is defined as

The lift [31] measure represents the ratio between the confidence of the rule and the expected 

confidence of the rule. As with conviction, its domain is [0,∞), where values less than one imply 

negative dependence, one implies independence, and values higher than one imply positive 

dependence. Lift for a rule LHS g RHS is defined as
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The certainty factor (CF) [32] is interpreted as a measure of variation of the probability that RHS 

is in a transaction when we consider only those transactions where the LHS is present. Its domain is 

[-1,1], where values less than zero represent negative dependence, zero represents independence, 

and values higher than zero represent positive dependence. CF for a rule LHS g RHS is defined in 

three ways depending on whether the confidence is less than, greater or equal to SUP(RHS):

if confidence(LHS g RHS) > SUP(RHS)

 

if confidence(LHS g RHS) < SUP(RHS)

 

Otherwise is 0.

Some of presented metrics, such as the CF, have been further employed to create a framework 

intended to make easier the discovery of those patterns known as “very strong association rules” 
[30]. Particularly, a rule will be considered as very strong (and thus not a misleading relationship) if 

it fulfills the following conditions (Support > minSup, Not(Support) > (1- minSup) and CF > 0). The 

concept of very strong rule is very intuitive, since it is based on the logical equivalence between a 

rule and its counter-reciprocal, and it captures the idea that, since both rules are equivalent, finding 

evidence of both in data enforces our belief that the rule is important.

Although association rule mining methods and all presented metrics have shown a good 

ability to mine hidden relationships in many different domains (such as genetics [14], biomedicine 
[33], and so on), these methods are aimed at analyzing data where the sequential ordering of events 

is not taken into account. Consequently, when such techniques are applied on data following a 

specific time or sequential ordering criterion, this information will be ignored. This situation may 

result in the failure of association rule mining methods to extract interesting knowledge from 

the data, or in the extraction of knowledge that may not be useful for the experts. Otherwise, in 

many domains, the ordering of events or elements is important and, particularly in genetics, the 

temporal information is especially critical for the understanding of the regulatory mechanisms of 

biological processes. SRM algorithms [16] have proven to be an interesting method for discovering 

sequential relationships between the elements of a sequence database (in which the data are 

represented sequentially or time ordered). Whenever the time dimension appears, SRM approaches 

will present a greater predictive and descriptive power than conventional association rule mining 

algorithms and will provide an additional degree of interestingness. Furthermore, SRM resolve an 

important limitation of the previously introduced simpler technique sequential pattern mining, 

since a sequence pattern may appear frequently in a sequence database but may have a very low 
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confidence (which makes it therefore not useful for the identification of causal relationships). The 

concept of a sequential rule that can be extracted from SRM is similar to that of association rule 

except that it is required that LHS must appear before RHS. Previously mentioned quality measures 

(support and confidence) are also employed in SRM in order to evaluate the interestingness of each 

mined rule. In SRM, rules are extracted from a sequence database. Recovering the same previous 

example of gene networking, an example of sequence database could be a subset of individuals 

belonging to a long-term intervention (with more than two time point records available) in which 

each individual from the subset would be considered as a sequence of the database, and each 

gene expression change event for a particular individual and a particular time interval (e.g. gene 

Ah from T1 to T2, gene Bi from T1 to T2, gene Ch from T2 to T3…) would be considered as items 

composing that particular sequence. In SRM, the introduced basic quality metrics by rule are 

defined as sequential support (seqSup) and sequential confidence (seqConf ) 

Here, the |SD| refers to the total number of sequences in the sequence database. The element 

sup(LHSgRHS) refers to the number of sequences from the sequence database in which all the 

items of LHS appear before all the items of RHS (note that items within LHS (or RHS) do not need 

to be in the same sequence nor temporal order within each sequence). The notation sup(LHS) 

refers to the number of sequences that contains LHS. In addition to seqConf and seqSup, the 

rest of previously introduced association rule mining quality metrics (such as conviction, lift and 

CF) have also their extension in SRM based in the definition of sequential support, keeping their 

original meaning and domains. All of them have been incorporated by our methodology for the 

mining of temporal sequential patterns in GED and allow practitioners a quick identification of the 

robustness of each extracted pattern from a frequentist perspective.

Pre-processing Stage: Feature Selection and Data Discretization

As input files, our methodology receives raw fluorescence intensity signals (one .cel file per 

subject and time point), and perform a transformation into the form of an N x M matrix of gene 

expression values, where the N rows correspond to subjects under study and the M columns 

correspond to evaluated gene probes. All available time records are then merged into a single 

primary database so that each subject under study will present as many consecutive entries in the 

database (Long-format) as temporal points exist in the experiment (corresponding to the subject’s 

gene expression profile at each time point). A primary quality control process is then conducted 

following straightforward pre-processing analyses in transcriptomics (generating chip pseudo-
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images, histograms of log2(intensities) and MA-plots). Finally, all microarray fluorescence signals 

are normalized together by means of the robust multichip average (RMA) method and probes are 

annotated according to the latest released version of the “org.Hs.eg.db” database [34]. 

When dealing with Affymetrix microarray technologies, the huge number of probes available 

in platforms (often around 33,000) may induce an exponential growth of the search space, so that 

the knowledge-extraction process (independently of the ML method used) will become a difficult 

and complex task exceeding the processing capability of conventional systems. In order to solve 

this problem, prior to knowledge-extraction, our methodology includes a feature-selection step in 

which the number of probes is reduced according to the differentially expressed (DE) genes by time 

interval and experimental condition. Given a longitudinal GED experiment, our method identifies 

DE probes by assessing the changes in gene expression during each period of intervention. A 

probe will be selected for downstream analyses when its Bonferroni-adjusted P-value is < 0.05 and 

the associated Log2(FoldChange) (which is also known as the signal log ratio) is >= 1 or <= -1 in a 

paired t-test with Bayesian correction. 

After feature-selection, as the second main-step of the data pre-processing process, gene 

expression data discretization is also incorporated in our pipeline. Data discretization is a technique 

commonly employed in computer science that has been successfully applied to GED applications 
[24]. Here, the main motivation behind the application of GED discretization is allowing the use of 

ML algorithms, such as SRM, that requires discrete data as an input for the inference of biological 

knowledge. Nevertheless, there are many other advantages that arise from data discretization 

in genetics; 1) Discrete states favor the inference of qualitative models [35], which are of special 

importance in terms of model explicability. The explicability improvement in qualitative models is 

achieved due to the fact that for scientists, discrete values are easier to understand, use and explain 

than continuous values [35,36]. On this matter, GED discretization can be viewed as a secondary 

data pre-processing technique that move ML approaches closer to the XAI trend. 2) Another 

advantage emerging from GED discretization is the homogenization of different datasets in terms 

of interpretability. If the same semantics is used for the discretization of heterogeneous datasets, 

their results will be more easily comparable and the application of the same ML method to all of 

them will be a more straightforward and affordable task [37]. 3) Finally, the learning process from 

discrete data is more efficient and effective (requiring a reduced amount of data and yielding more 

compact and shorter results) [36]. Therefore, this step not only allows the inference of large-size 

models with a higher speed of analysis but also facilitate a significant portion of the biological and 

technical noise presented in the raw data to be absorbed, which may indirectly lead to a better 

model accuracy.

A wide range of in vitro GED discretization methods have been recently revised [24]. In our 

method, we adopted an unsupervised discretization approach based on expression variations 

between time points and adapted it to the problem of in vivo human data. For that purpose, 
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continuous gene expression values from the filtered gene expression primary matrix (N x M) are 

transformed into three discrete categories (items) representing changes in gene expression. This 

approach gives a discretized matrix A of M probes and N - 1 conditions, in which each probe by 

time interval may have one of three discrete states: 2, 1 and 0, meaning ‘increase’, ‘decrease’ and 

‘nochange’ respectively. For the assignation of these discrete states by probe and time interval, 

each experimental condition of a dataset is considered separately as the ‘data scope’ framework 

and the next criteria are considered:

•		 For	probes	ik	showing	a	positive	signal	log	ratio	in	the	previous	DE	analyses	(feature-selection	

step):

 If log2(FoldChange)ikj > log2(FoldChange)ikJ Then assign the label ‘Upregulation’. 

 Otherwise type ‘No change’

•	 For	probes	ik	showing	a	negative	signal	log	ratio	in	previous	DE	analyses	(feature-selection	

step):

 If log2(FoldChange)ikj < log2(FoldChange)ikJ Then assign the label ‘Downregulation’. 

 Otherwise type ‘No change’

Where the term log2(FoldChange)ikj refers to the signal log ratio (i.e. change in the gene 

expression) for the i probe, in the k time interval and the j subject from the group or dataset 

under study, and the term log2(FoldChange)ikJ otherwise refers to the mean signal log ratio for that 

particular probe i, in the k time interval in all subjects from the group or dataset under study J. 

The discretization approach adopted in this work can be viewed as an extension of two 

previously described in vitro temporal methods that have been successfully applied for the 

reconstruction of gene regulatory networks [24,35,38]. The main motivation behind its choice is the 

fact that, when facing temporal GED, discretization methods based on transitions between time-

points have been shown to obtain better results than those using absolute values [39]. Moreover, 

in our case, the use of a standardized measure of gene expression change (such is the Signal Log 

Ratio (SLR)) is a more sophisticated approach than the employment of simple differences between 

values. For example, the use of logs in the analysis eliminates difficulties caused by one very high 

data point in the set masking information from lower valued data points. On the other hand, base 

2 is further used as the log scale, therefore a SLR of 1 represents a two-fold increase in abundance 

of an mRNA and a value of –1 represents a two-fold reduction in transcript expression. Finally, 

the use of the mean SLR (log2(FoldChange)ikJ) as the threshold for discretization allowed us to 

exclusively focus on general change trends in the dataset, which most likely will be consequence 

of the intervention conducted in the cohort and not particular gene expression changes due to 

individual’s idiosyncrasy. Mapping data from a vast spectrum of numeric gene expression values 

to a reduced subset of three discrete states, this type of discretization could further be viewed as a 

secondary data reduction technique in favor of algorithm efficiency and eXplainability. 
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Knowledge-Extraction Stage: Extension of the Sequential Rule Mining Method CMRules

Once the dataset is properly formatted, for performing knowledge-extraction, our method 

includes an adaptation of the well-known SRM algorithm CMRules [25]. Contrarily to other SRM 

methods that can only discover sequential rules in a single sequence of events, CMRules is able 

to mine sequential rules in several sequences, which makes it an excellent choice for dealing with 

human microarray temporal data. Furthermore, CMRules proposes a more relaxed definition of 

sequential rule with unordered events within each (LHS/RHS) part of the rule. Thanks to that, it 

presents a great ability to recognize the fact that similar rules can describe a same phenomenon; 

thus avoiding undesirable losses of information. Moreover, this characteristic also allows the 

method to detect some particularities of gene temporal interactions in human, such is the fact 

that gene regulations may not span all conditions or time points or that they could not occur 

at the same time-delay interval in all subjects from the intervention. Generally, CMRules starts 

applying the classic association rule mining method Apriori for extracting association rules without 

taking into account the temporal information. Next, the sequential support of each extracted rule 

is calculated in order to generate sequential rules from them. A detailed description of CMRules 

algorithm is presented in Supplementary Fig 2 and has been reported elsewhere [25]. Besides the 

classical presented metrics (sequential confidence and support), we further computed more 

sophisticated sequential quality measures by rule as previously introduced (sequential lift, CF 

and conviction). Altogether included quality metrics allow practitioners a quick evaluation of the 

robustness of each extracted rule.

In order to deal with a common particularity of long-term interventions in humans (which is 

the fact of having two different intervention groups usually consisting on a placebo and a treatment 

group), a particular extension was implemented in the final step of the algorithm. This modification 

allows the user to choose that CMRules only show those sequential rules which besides fulfilling 

the condition (seqSup(r) > minimum sequential support (MinSeqSup) & seqConf(r) > minimum 

sequential confidence (MinSeqConf )), are further exclusive of each experimental group. These 

would be thereby all rules that assert the condition (seqSup(r) > MinSeqSup & seqConf(r) > 

MinSeqConf ) in one experimental group but not in the other, and viceversa. Thanks to that, this 

extension of our method is presented as an excellent choice for the study of human clinical trials 

in which researchers are commonly interested in the discovery of gene-gene signatures activated 

by a specific treatment but not by a placebo. 

Functional validation stage: New Biological Quality Measures by rule and Visualization Tool

Previous works have demonstrated that the integration of external biological resources 

within the gene networking process is a helpful strategy that improves model eXplainability and 

helps biologists to better understand genes and their complex relationships [14]. In recent years, 

a great variety of external databases containing biological knowledge has become available. 
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Among the most robust and reliable ones, it highlights those containing information relative to 

gene function, protein localization and molecular interaction (e.g. the gene ontology (GO) project 
[40] and the Kyoto Encyclopedia of Genes and Genomes (KEGG) [41]). The GO project is an annotation 

database that provides a structured and controlled vocabulary to describe gene and gene product 

attributes in multiple organisms according to three different categories or ontologies (cellular 

component, molecular function and biological process). The KEGG database, on the other hand, 

is a bioinformatics resource that integrates current knowledge on molecular interaction networks, 

cellular pathways and functional information of genes and their products. Both GO and KEGG 

resources have been successfully employed in previous microarray ARM analyses aiding biological 

explanation to the extracted associated gene sets [14]. 

One of the main mechanisms controlling gene expression changes in living organisms is 

the action of gene-specific TFs. By binding to a particular DNA sequence, TFs regulate the —turn 

on and off— of target genes in order to make sure that they are expressed in the right cell and at 

the right time. Understanding the basis of genetic interactions between TFs and their targets is 

therefore likely to be important for the understanding of time-delayed gene regulatory relations 

in humans. For this reason, we propose the use of an additional biological database, known as 

TRRUST [26], which includes information relative to transcriptional regulatory relationships between 

hundreds of genes. The current version of the TRRUST database (version 2) contains 8,444 and 

6.552 TF-target regulatory relationships for 800 human and 828 mouse TFs respectively. Especially 

for the application of SRM to temporal microarray data, the integration of TFs information is 

indispensable if we want to understand the complex gene relationships that are illustrated in the 

form of sequential rules.

In this paper, we propose the incorporation of these three well-known biological data 

resources (TRRUST, KEGG and GO) in order to evaluate extracted rules within a biological framework 

and to aid explicability to output models. For that purpose, we compute five new by-rule quality 

measures named “Biological Process (BP)”, “Molecular Function (MF)”, “Cellular Compartment (CC)”, 

“Signaling Pathway (SP)” and “Transcription Factor (TF)”; that respectively integrate annotation 

terms from the three categories of the GO project, metabolic pathway annotations from the KEGG 

resource and transcriptional relationships from the TRRUST database. The computing process for 

each measure differs according to their biological meaning and the external resource in which 

their are based on. The first four measures (BP, MF, CC and SP) constitute rankings computed on 

the identical matches (between LHS and RHS items) that each rule presents for pathway identifiers 

and GO-terms annotated at the gene level in the previously mentioned GO and KEGG resources. 

Therefore, a lower resulting value in these biological metrics for a certain rule will indicate that 

the rule is a good candidate for representing a potentially causal and biologically relevant gene 

interaction. For each of these four quality measures, the final ranking-score by rule is computed 

based on the type and number of reported matches between LHS and RHS. According to the 
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encountered types of matches, rules will be allocated into five different categories and will receive 

different number of points (Figure 1). Based on these definitions, the final ranking score for a given 

rule is computed as follows:

Where MEASURE refers either to “BP”, “MF”, “CC” or “SP”, RS(r) refers to the ranking score obtained 

for the rule under study, CAT(r) refers to the designated rule category, NP(r) refers to the number of 

points assigned to the rule under study and max(NP(i)), (i )  Cat(r) corresponds to the maximum 

number of points that have been assigned to a rule from the same category. Specific details for 

the calculation of NP(r) and for the designation of a rule category CAT(r) are illustrated in Figure 1.

On the other hand, the biological quality measure TF constitutes a range of four possible values 

by rules (0, 1, 2 or 3) which are assigned according to the TF-target gene regulatory information 

hosted in the TRRUST database. The computing process for the TF measure is slightly different from 

the previous ones and is performed as follows; if at least one LHS gene from the evaluated rule has 

been reported as a validated TF in the TRRUST resource, then assign 1 point to the rule. Otherwise, 

assign 0 points. If the first condition has been fulfilled, then check if any of the RHS items (genes) 

from the rule has been presented in the TRRUST database as one of the previously-identified 

TF confirmed targets. In such case, assign 2 points to the rule. Otherwise, assign 0 points. If the 

previous condition has been further fulfilled, then check for the type of relationship that is reported 

in the TRRUST database for both TF and target genes (upregulation, downregulation or unknown). 

In the case of match between the relationship illustrated by the sequential rule (upregulation or 

downregulation of the target) and the information hosted in the TRRUST database, then 3 points 

are assigned to the rule. 

The choice of that particular procedure, against other available standard GO-similarity 

measurements [42], was argued in the fact that we needed an evaluation method, based on 

categories, with the ability to discern the quality of a rule regardless of the items conforming it. 

If this were not the case, the rules with the highest number of antecedent/consequent elements 

would always have a higher score by the simple chance of coinciding in GO terms due to the 

greater number of genes composing them. On the contrary, with our heuristic approach, the score 

is adjusted by the number of items (from the total elements that constitute the rule) that share a 

specific GO term. Thanks to that, the rules in which all its elements share the same GO term will 

be identified as more robust than others, which although perhaps share a greater number of GO 

terms among all its antecedent elements, do not share any GO between all LHS and RHS items.

The computing process of these new five biological quality measures by rule has been 

implemented in python environment and can be directly applied to any output generated from 

the application of our ML method to temporal GED. The software requires a .pmml file as input 
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Figure 1. Assignable categories and ranking scores for a rule in the biological measures “BP”, “MF”, “CC” and “SP”. First, a 
rule will be assigned to a particular category from the bottom category 5 to the top category 1. This assignation will be 
conducted according to the type of matches encountered for a rule in its annotated terms as is described in the figure. 
Once a rule is designated to a particular category, a score will be computed for the rule taking into consideration all type 
of matches encountered for the rule. Each match is weighted with a number of points as illustrated in the figure. The final 
score for a rule is computed as detailed in the method section.
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(containing extracted rules with CMRules) and will output a same format file but with the new 

biological quality measures computed by rule. The software will also output a secondary file with 

.xml extension in which all the matches between the items of a rule are fully detailed (including 

information for genes and GO or KEGG terms composing each match of the rule). This software 

constitutes therefore a useful tool for the evaluation of extracted rules within the context of different 

human molecular systems and effectively complements the action of previously introduced 

classical SRM quality metrics. The main utility of the introduced biological quality measures has 

been illustrated in Figure 2, where we have tried to show their capacity to distinguish between 

true potential causal gene-gene interactions and those representing spurious biostatistical fluke. 

This figure represents how, although the statistical quality metrics by rule have been shown 

effective for detecting robust associations between items, not always a gene in the LHS will be the 

cause of the change in the gene expression of a RHS gene (from a biological point of view). In many 

cases, rules could be just referring to a range of parallel phenomena that occur simultaneously at 

the gene level because of co-expression. Contrarily, in other cases, the method could be effectively 

representing true causal relationships between genes (e.g. rules 1 or 4). Precisely to discern these 

spurious associations from those true phenomena of interaction is why we propose the functional 

validation of the results and why some of the biological quality measures presented, such as the TF 

measure, become especially relevant.

↑

G3 ↑

G2 ↑

G4 ↓
Known

TF

Known
TF target 

for G3

BP TF

0.9 0.85 1.001 0

0.9 0.85 5 0

0.9 0.85 5 0

0.9 0.85 5 2

Figure 2. Role of biological quality measurements for the functional assessment of each discovered gene-gene relationship. 
While all extracted rules present acceptable and identical quality metrics (support=90% and confidence=85%), only the 
rule 1 presents a good BP measure value (remember that the range of values available for the BP measure was from 5 to 
1, being the values near to 1 the ones corresponding to a higher number of GO matches between LHS and RHS genes). On 
the other hand, it is only the rule 4 the one presenting a good value for the TF measure (whose range of values was from 0 
to 3, being 3 the maximal score for indicating a true TF-target gene relationship). The figure illustrate how the functional 
validation of results is critical to discern between spurious associations and true phenomena of interaction.
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Data visualization techniques have been widely employed in data science applications 

given their ability to transform model results into useful knowledge [43]. Beside their high ability to 

simplify big amounts of extracted information, graphs further allow information to be transferred 

in a very intuitive way to the user. In the context of high-dimensional data, such is the case of 

biological data, the problem of knowledge-extraction is much greater due to the large number 

of rules derived from the application of ML techniques [44]. Under these conditions, visualization 

techniques are presented as an attractive solution that serve as an interface between scientists 

and the extracted knowledge [45]. In this paper, we propose a new visualization tool that integrates 

output gene networks along with all accessed biological information. Based on hierarchical edge 

bundling methods [46], our tool generates circular plots illustrating the full picture of sequential 

rules discovered by our algorithm. In order to be extended to other temporal GED applications, 

this visualization method has been implemented as open-source software in R environment. By 

modifying circular diameters, edge width, edge type and the color intensity of each connection, 

the software generates plots comprising both the new biological quality measures and the 

classical SRM metrics computed by rule . Of note, our visualization tool is not restricted to the 

information presented in figures and can be easily adapted to each user demands. The greatest 

virtue of generated plots lays in their ability to concentrate different types of information in single 

shot, which further allows an easy identification of the top and more coherent rules from the both 

the technical and biological points of view. On summary, our visualization tool constitutes an 

additional value proposal in favor of model explicability and interpretability. 

Problem and Datasets Description: Long-term Interventions in Obesity

From the clinical or biomedical perspective, the real challenge issue when inferring gene 

networks is their reliability for avoiding false discovery as well as their reproducibility across 

different patient cohorts. For this reason, and given the lack of benchmark SRM methods, we 

decided to validate of our proposal in two alternative ways: 1) First, we applied our methodology 

to an example dataset (discovery sample) and give the derived results to a group of field-experts 

in order them to evaluate the usability of inferred networks for the generation of particular gene-

gene interaction hypotheses; and 2) Second, we repeated the application of the full pipeline to 

three additional datasets, following the same experimental design than the discovery sample, and 

mined results looking for replication patterns across studies. 

As an example of long-term human interventions, we chose a discovery dataset consisting of 

in vivo temporal GED derived from human adipose tissue (AT) samples collected in different time 

points during the course of a dietary intervention. With up to three time records available in the 

dataset, this study constitutes a perfect example of the in vivo temporal microarray experiments in 

which our method could extract biologically relevant gene-gene temporal relationships. Published 

by Vink et al. (2016) [47], the original clinical trial investigated the effects on weight loss (WL) of two 
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different dietary interventions in 57 adults with obesity. Subjects were randomly assigned to each 

experimental group: a low-calorie diet (LCD; 1250 kcal/day) for 12 weeks (slow weight loss) or a 

very-low-calorie diet (VLCD; 500 kcal/day) for 5 weeks (rapid weight loss). In both experimental 

conditions, the WL period was followed by a 4-week additional phase of weight stabilization 

(WS). Abdominal subcutaneous AT biopsies were collected from each subject at each time point 

(baseline, after WL and after the WS period) and submitted to microarray analysis using the Human 

Gene 1.1 ST Affymetrix platform (one array per subject and time). A more detailed description of the 

study design can be found in the original publication of the dataset [48].

The full dataset was downloaded from the public repository GEO with identifier GSE77962. 

Fluorescence data were transformed into the form of an N x M matrix of gene expression values, 

where the N rows correspond to subjects under study and the M columns correspond to evaluated 

gene probes. The dataset presented valid fluorescence measures for 33,297 probes (M columns) 

mapping 19,654 unique genes across the genome. The number of individuals presenting valid 

gene expression data was 24 on the VLCD group and 22 on the LCD group. Since all available time 

records were merged into a single primary database, each individual presented three consecutive 

entries in the database (long format), corresponding to its gene expression profile at each temporal 

point (baseline, after WL and after the WS period). The final number of rows in the database was 

N=138. 

Data were normalized using RMA and submitted to feature-selection. The original number 

of probes was thus reduced to those DE genes by time interval and experimental condition. Time 

intervals corresponded to the WL period (comprising the end of WL vs baseline), the WS period 

(comprising the end of WS vs the end of WL) and the dietary intervention (DI) period (comprising 

the end of WS vs baseline). As a result, 431 probes matching 398 unique genes were selected for 

further analyses.

Remaining GED for the 431 probes were then submitted to data discretization. In each 

experimental group, a discretized matrix A of 431 probes was obtained, in which each probe by 

time interval may have one of three discrete states: 2, 1 and 0, meaning ‘increase’, ‘decrease’ and 

‘nochange’ respectively. Once discretized, two sequence databases were constructed (one database 

per diet group) where each sequence corresponded to a subject and each event represented the 

change in the gene expression of a certain probe during a particular time interval (WL period 

or WS period). An example of the general structure of each constructed sequence database in 

the discovery case of study is presented in the Supplementary Fig 3. Details for each sequence 

database are presented in the caption of the figure. 

Knowledge-extraction was conducted by CMRules in each experimental group separately 

and also by contrast (extracting only those association patterns exclusive for each experimental 

group). With the aim of avoiding losses of information, only results derived from the mining of each 
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group separately were employed for functional validation. CMRules results in form of sequential 

rules were thus submitted to functional validation and the five biological quality measures were 

computed by rule and added to the already present five frequentist quality metrics. Finally, derived 

output were visually represented by means of our hierarchical edge bundling visualization tool.

Field-experts received sequential rules results in the form of both tables and figures with 

traditional quality metrics and biological quality measurements included. The evaluation and 

interpretation of sequential rules and graphs by field-experts was committed following a few 

foundations: 1) Rules were ordered according to SRM quality metrics and biological quality 

measures; 2) Rules with very low values for SRM quality metrics were removed according to the 

reference values presented in the first method subsection. For this prune, the concept of very 

strong association rules was taken into account; 3) Correlation analyses were conducted between 

quality metrics and biological quality measures for remaining rules in order to evaluate the 

ability of CMRules to extract biologically relevant patterns; 4) Identification, on the help of visual 

representations, of interesting sequential rules and generation of particular gene-gene interaction 

hypotheses; and 5) Exploration of most interesting hypotheses (either by accessing to the list of GO 

annotation terms matches or by performing intensive literature search). Field-experts were selected 

from the research group “CB12/03/30038”, belonging to the Spanish research network CIBEROBN 

(Physiopathology of Obesity and Nutrition), Institute of Health Carlos III (ISCIII), Madrid, Spain.

In order to validate and contrast the insights derived from this discovery dataset, we further 

accessed temporal GED from WL interventions in three independent cohorts (GSE70529[49], 

GSE35411 [50] and GSE103766 [51]). Dataset details and main characteristics of the technical 

validation process are presented in table 1. Each validation dataset was processed and analyzed 

following exactly the same pipeline than the discovery population. Results and gene patterns 

discovered during the validation process are reported in a specific result subsection. Not restricted 

to the obesity field, our entire pipeline could be applied to any human long-term intervention with 

up to two experimental conditions (e.g. placebo and treatment).

Results
Discovery approach in the case of study

As we previously explained, with the aim of illustrating the performance of our method on 

human long-term intervention data, we accessed and downloaded a discovery dataset composed 

of 57 subjects with obesity participating in a long-term dietary program [47,48]. The dataset 

consisted on temporal GED collected in three different time records during the course of two 

dietary interventions (VLCD and LCD). In this dataset, we sought to mine sequential rules with 

the form of [gene Ah, gene Bi] g (time delay) [gene Ch, gene Dh, gene Eh], that could illustrate 

the WL-induced gene regulatory responses of AT in obesity. Before the application of our SRM 
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methodology to the dataset, all described pre-processing stages were conducted. Once the data 

were properly formatted as described in methods, the data mining process was initiated. Specific 

minimum sequential support and sequential confidence thresholds were set by experimental 

condition during the knowledge-extraction stage (minSeqSup=0.45 and minSeqConf=0.4 for 

the VLCD group, and minSeqSup=0.4 minSeqConf=0.4 for the LCD group). Standard quality 

measures employed in SRM (lift, CF and conviction) were further computed in order to estimate 

the interestingness of each mined pattern. Beside conventional quality measures, the method also 

computed five new biological quality measures by rule based on external biological information 

(including functional and pathway annotations, and TF-target gene regulatory data). Through this 

strategy, interaction results were biologically pruned and placed within the context of already well-

explored molecular systems [26,40,41]. Finally, the method applied a data visualization technique for 

the joint representation of output gene networks and all accessed biological information.
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From the application of this pipeline to the discovery dataset, 50 output sequential rules were 

identified from the LCD group and 325 from the VLCD group (S1 and S2upplementary tables 1 and 

2 respectively). With up to seven times more number of rules mined from the VCLD group than 

from the LCD group, our results are in accordance with previous findings from Vink et al. (2016) [47], 

which showed a higher impact in the gene expression of AT elicited by a rapid and aggressive WL 

in comparison to the effects derived from a light but more prolonged WL. From all extracted rules, 

only very strong sequential rules were considered for further evaluation (SeqSup > minSeqSup, 

Not(SeqSup) > (1- minSeqSup) and CF > 0), which constitute a suitable framework to discard 

misleading rules. During the evaluation process, output sequential rules were biologically assessed 

by means of the five new biological quality measures and graphically represented in two circular 

plots (Figures 3 and 4). Main descriptive statistics for the extracted rules by experimental condition 

are presented in table 2. In general, extracted rules presented robust values for all computed quality 

measures, which indicates a good performance of the algorithm during the gene association 

mining process. With robust quality metrics values, we refer to a minimum support higher than 

established threshold, a confidence higher to 0.8, a conviction value higher than 1, a lift higher 

than 1.1, and CF distinct of zero and as near as possible to 1 (see preliminary method subsection). 

According to mean values by group, slightly better metrics values were obtained for the VLCD 

than for the LCD, which probably was motivated on the higher impact elicited by this intervention 

in AT. In both groups, top rules (presenting higher values in the traditional quality measures) 

involved genes participating in molecular processes previously reported as part of the WL-induced 

AT response (e.g. mitochondrial function, angiogenesis, inflammation and lipid and glucose 

metabolism) [47,50] (Supplementary Fig 4). Of note, top sequential rules also presented good rates 

in the new proposed biological quality measures (Figure 5). Especially for the case of biological 

quality measures TF and BP, we showed significant correlations with the traditional quality metrics 

CF, conviction and confidence. This fact reflects a good performance of the knowledge-extraction 

process, where the best sequential patterns identified (from the ML perspective) are also the more 

biologically soundness. On the other hand, the fact of absence of correlation between some other 

biological quality measures and traditional metrics (Figure 5) reinforces the need for the functional 

validation of results. That is to say, although traditional metrics may indicate that some rules are 

good from the technical point of view, the biological information is not always what it could be 

expected.

In order to assess the biological utility of our gene networking strategy, obesity-field experts 

evaluated all extracted rules making use of the computed biological quality measures and the 

graphical representations as previously described (Figures 3 and 4). Since the most plausible 

mechanisms underlying gene regulation is the action of TFs on their target genes, the TF metric 

was the first measure employed by experts for filtering and evaluating output sequential rules. 

Through the application of a specific TF threshold (>=1), four rules were selected from the LCD 

group and sixty-two from the VLCD group. Among them, a subset of biologically meaningful 
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rules are described in table 3. From both intervention groups, several similar rules were identified 

sharing the same TF gene (Notch3) as an LHS item. In these rules, the gene Notch3 emerged as 

a TF factor whose downregulation (provoked by the WL intervention) elicited later secondary 

changes in the expression of other genes during the WS period. Since each group was mined 

independently during the knowledge-extraction process, the fact of finding similar rules from each 

diet speaks well of the performance and the validation ability of our method. Notch3 is mammalian 

transmembrane protein that bind membrane-bound ligands expressed by adjacent cells in 

human tissues. By triggering intracellular proteolytic cleavages and through the release of active 

intracellular domains of Notch (NICD), Notch3 controls the expression of a wide range of target 

genes participating in different obesity-related processes such as differentiation, proliferation, 

angiogenesis and apoptosis. Interestingly, several Notch3 target sequences have been identified 

within and near the genomic sequences of a few of its RHS genes (such is the case of Nmt2 and 

Clmn) [52]. In these cases, sequential rules illustrate how a downregulation of the Notch3 is followed 

by a downregulation and upregulation (respectively) of mentioned RHS genes. Despite these 

interesting results, it is important to clarify that the identification of sequential rules including a TF 

as LHS does not necessarily imply a causal relationship between the TF and its reported RHS gene. 

In these cases, functional in vitro studies should be performed for validating proposed interactions. 

Figure 3. Visual representation of the sequential rules discovered by our method in the GSE77962 dataset (LCD group). 
Node names refer to (probe/gene).
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Figure 4. Visual representation of the sequential rules discovered by our method in the GSE77962 dataset (VLCD group). 
Node names refer to (probe/gene).
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From the LCD group it is also remarkable a rule with the Notch3 as LHS and the Egfl6 gene as RHS 

(Figure 3). Although no target sites for Notch3 have been identified within the genetic sequence 

of Egfl6, a special functional connection has been evidenced between both genes in the context 

of obesity and angiogenesis [53,54].  In general, despite only a few previous evidences support 

an implication of the Notch3 gene in obesity molecular pathways [55], the findings presented in 

this paper seem to point this TF as an important element for the proper regulation of AT cellular 

responses to WL.

Figure 5. Correlation between traditional quality metrics and biological quality measures by rule in the sequential rules 
discovered from the whole GSE77962 dataset (LCD and VLCD groups). R2 values quantify the level of correlation for each 
pair of measures while the level of statistical significance (adjusted by Bonferroni multiple test correction) is evidenced with 
an X for P-values > 0.05 and nothing for P-values < 0.05. 
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For investigating the sequential rules discovered in the VLCD group (Figure 4), the use of 

other biological quality measures instead of TF (such as BP and MF) allowed experts to identify 

several interesting patterns. On the one hand, it highlights a sequential rule involving the loci Fasn 

(Fatty Acid Synthase) and the Gpam (Glycerol-3-Phosphate Acyltransferase 1, Mitochondrial); both 

of them genes coding for enzymes with a central role in the process of lipogenesis. The sequential 

rule between these genes was easily identified from its color intensity in the circular plot and may 

suggest a special relevance of the lipogenesis process as part of the responses of obese AT after a 

strong caloric restriction. Another interesting insight extracted from the graph is the fact that most 

of the gene expression changes elicited by the dietary intervention in the VLCD group ended in a 

later and secondary downregulation of the gene expression levels of Adam9 during the WS period. 

Among all sequential rules illustrating this behavior, there are a few ones with special biological 

relevance (Figure 4); one highlighted by the BP metric and involving the gene Hgf, and another 

one including a TF-target gene regulatory relationship with the protooncogene protein Ski. Adam9 

is a cell-surface metalloprotease present in almost all cells and tissues of the body that participates 

in key processes such as cell migration, proliferation and cell-cell interactions. Mostly expressed 

by white cells, Adam9 has been reported to get upregulated during many pathological processes 

including cancers. Regarding obesity, previous transcriptomics analyses have demonstrated 

how Adam9 is significantly up-regulated in obese AT and how it plays a major mediating role 

in a chain of interactions that connect local inflammatory phenomena to the alteration of AT 

metabolic functions [56,57]. On this sense, the downregulation of Adam9 evidenced in our study 

might constitute a biologically meaningful finding with relevance for the understanding of the AT 

metabolic health amelioration achieved with dietary intervention in this case of study. All quality 
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metrics for the sequential patterns highlighted in this section have been resumed in table 3, while 

the full list of sequential rules identified can be explored in Supplementary tables 1 and 2. Taking 

all these into consideration, the model and its output results were considered by field-experts as 

an easily interpretable approach that could be successfully extended to other human long-term 

intervention datasets for the identification of biologically relevant molecular signatures.

Validation approach in independent cohorts:

In order to validate and contrast the insights derived from the discovery dataset, we accessed 

additional temporal GED from three WL interventions performed in independent cohorts 

(GSE70529[49], GSE35411 [50] and GSE103766 [51]). Dataset details and main characteristics of each 

population are presented in table 1. Although there were slight differences in the study design of 

each cohort, all studies constituted dietary interventions (caloric restriction programs) performed 

during a long-term intervention period in adult subjects with obesity. Each experimental group 

(in the case of datasets presenting more than one study condition) was again considered as an 

individual dataset. During the knowledge-extraction stage, minSeqSup=0.5 and minSeqConf=0.6 

thresholds were set and only “very strong rules” were selected for subsequent evaluation. In 

table 1, we report the number of very strong association rules mined from each dataset. Visual 

representations of output gene patterns by dataset are presented in Supplementary Figs 5, 6, 7 and 

8. Graphs illustrated again coherent gene-gene interactions within the context of obesity research 

(e.g. the gene association patterns governed by the locus Abca1 reported in the dataset GSE70529 

(Supplementary Fig 5)) [58]. These figures display information following the same code of colors and 

format than previously presented Figures 3 and 4.

Very strong rules extracted from all datasets were pulled together for the identification of 

replicated patterns. During the process of contrasting rules between datasets, probe information 

was removed from each rule and only the locus tag of each item was considered. That is to say, 

we considered two sequential rules as replicates when they contain the same genes within LHS 

and RHS (but not necessarily the same probes). As a result, we found gene expression changes in 

11 loci acting as trigger mechanisms (LHS items) concurrently in sequential rules extracted from 

different datasets (these were C6=Up-regulation, Hnrnpa1=Up-regulation, Srsf7=Up-regulation, 

Gsap=Up-regulation, Sncg=Downregulation, Notch3=Downregulation, Srpx=Up-regulation, 

Itpka1=Downregulation, slc-transporters=Downregulation, Tmem-proteins=Downregulation 

and Znf-proteins=Up-regulation). Interestingly, these validated trigger loci included TFs, splicing 

factors, mRNA processing molecules and cell surface transporters with a great implication in the 

control of the global gene expression cell profiles [59–62]. In the same manner, we found the gene 

expression change of 1 loci represented as a consequence (RHS item) in several ARs extracted from 

different datasets. This gene expression change corresponded to a downregulation of the locus C6, 

which encodes a component of the complement cascade with implication in the innate immune 
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system and inflammation pathways. Among all extracted rules, those containing at least one of 

the described common LHS and RHS loci were selected for further evaluation (Supplementary 

table 3). The graphical representation of all these rules allowed the identification of very interesting 

gene patterns and replicated interactions which have been shown in Supplementary Fig 9. On 

the one hand, we found rules from different datasets illustrating a sequential association between 

the downregulation of Slc-transporter genes and a subsequent downregulation of proteins 

from the Adam-family (Supplementary Fig 9A).  In the same manner, we replicated a sequential 

relationship between the gene expression change of Tmem genes and the later modification in 

the expression of loci from the Srsf-family (Supplementary Fig 9A).  Particularly, while a relationship 

of the type (down-regulation -> down-regulation) was found between these genes in the weight 

losers of the dataset GSE35411, a relationship of the type (up-regulation –> up-regulation) was 

found between these genes in the GSE103766 dataset (a cohort composed of weightregainers) 

(Supplementary Fig 9A). The target loci of these rules corresponded to serine/arginine-rich (SR) 

proteins, a conserved RNA-binding protein family, which consists of 12 members, serine/arginine-

rich splicing factor (SRSF)1-12 in humans [60]. SR proteins have demonstrated multiple key roles 

in the control of gene expression, including constitutive and alternative pre-mRNA splicing, 

transcription, mRNA transport, mRNA stability and translation [60]. Therefore, these genes could 

perfectly be key regulatory points through which the WL intervention elicit long-term changes 

in adipocytes. Beside these replicated patterns, during the investigation of the set of rules 

containing common LHS or RHS (Ssupplementary table 3), we also noticed a rebound effect in the 

gene expression of certain loci during the dietary intervention program (Supplementary Fig 9B). 

Particularly, we observed how although certain genes experimented a downregulation of their 

gene expression in response to WL, these genes returned to their original gene expression status as 

soon as a normal-calorie diet was restored (exhibiting some kind of negative and positive feedback 

loop regulations of their own expression, which could be the explanation of fast transient dynamic 

changes or the maintaining in time of their expression levels). Altogether, these validated patterns 

might represent the sequence of genetic changes that occur in AT during a long-term weight loss 

intervention. Indeed, some of the identified loci have already been drawn as key genes or targets 

for the management of many complex diseases [62].

Discussion

Temporal gene networking has emerged as an effective approach for filling the missing 

heritability gap of complex human traits. Until date, several ML approaches have been proposed for 

the dynamic modelling of time course omics data, highlighting co-expression clustering methods 
[1]. Although they have yielded impressive results in terms of model accuracy and predictive ability, 

most of these applications are based on “Black-box” algorithms and more interpretable models 

have been claimed by the research community [10]. Especially during the reconstruction of gene 
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networks, one of the main concerns of biologists has been how to translate inferred networks into 

particular hypotheses that can be tested with real-life experiments. Fortunately, the recent XAI 

revolution offers a solution for this issue [63–65], were rule-based approaches are highly suitable for 

explanatory purposes [16,17]. Within this context, SRM approaches have emerged as an interesting 

XAI method for the modelling of temporal gene-gene interactions in vitro [15]. Some of the best 

characteristics of SRM methods for this task include the existence of statistical quality measures by 

interaction, the possibility of biological validation by relationship, the inclusion of time (causality) 

order information in networks or their ability to discover complex regulatory phenomena. Taking 

all these into account, and given the fact that temporal co-expression clustering methods present 

some drawbacks as described earlier, we propose that SRM could serve as an alternative of great 

interest and interpretability for mining particular temporal relations between genes in humans. 

The further integration of the data mining process along with functional annotation and pathway 

resources is an additional way towards more explanatory and biologically soundness models [4].

In the present study, we propose a full pipeline for extracting sequential rules from temporal 

GED through the application of SRM in longitudinal microarray human studies. As far as we concern, 

this is the first application of a naturally interpretable method for the modelling of temporal gene-

gene relationships in humans. The whole pipeline of our method is illustrated in the Supplementary 

Fig 1. Gathered under open-source software, our proposal could be extended to any temporal GED 

human study, with special applicability in long-term interventions or clinical trials. The presented 

pipeline is organized on three main blocks:

1. Data Pre-processing stage, involving feature-selection and data discretization.

2. Knowledge-extraction stage, consisting of the adaptation of the algorithm CMRules to the 

problem of temporal GED.

3. Functional validation of results, in which we propose five new biological quality measures 

by rule and a tool for visualizing the results.

The two strategies adopted during the data pre-processing stage were intended to deal 

with some of the well-known human omics data complexities. As evidenced in the case of study, 

both strategies resulted useful for increasing model interpretability and for reducing the search 

space into a high quality data subset. During the second phase of the approach (knowledge-

extraction), an SRM algorithm was adapted to the temporal GED problem given the previously 

proven ability of rule mining methods for extracting biologically meaningful gene association 

patterns both in static [14] and dynamics datasets [15]. Particularly, a method known as CMRules was 

chosen as a good technique for this task. CMRules implementation was accomplished following 

published recommendations in gene association analysis [14] and the biological knowledge played 

an important role during the mining process. 
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With this work, we have tried to move away from the “black-box” concept that is adopted 

in many of the current AI omics highthroutput applications, in which complex genetic networks 

are extracted from datasets without obtaining useful knowledge for the experts. An example of 

this kind of “poorly explanatory” models is the work recently published by Tareen et al. (2018) [66], 

with one of the datasets employed here. Although some interesting gene networks are reported 

in the work, the output format of co-expression networks and their visual representation are 

poorly explainable by itself, especially for the generation of particular hypotheses of gene-gene 

interactions. Moreover, the approach lacks of a method for the functional validation of established 

gene-gene relationships, thus hindering the biological interpretation of results. 

In contrast, our approach presents a high eXplainability, which is mainly achieved by two 

consecutive ways: 1) given the type of employed knowledge-extraction algorithm, and 2) 

Thanks to the third proposal of the pipeline, which includes the functional validation and visual 

representation of results. 

Regarding the knowledge-extraction algorithm, the chosen SRM method CMRules constitutes 

a methodological advance in comparison to previous SPM approaches. Moreover, it greatest virtue 

emanates from the format in which its results are presented. This is the form of rules: X -> (time delay) 

Y, where each interaction between two or more genes could be suggesting a causal time-lagged 

relationship between them. For example, sometimes, these interactions could be indicating how 

the increase in the amount of a TF causes a subsequent increase or decrease in the expression of a 

target gene, while other times they could suggest how two distinct genes (participating in a same 

metabolic route) increase their expression consecutively after an intervention. In the latter case, for 

example, the interaction would be illustrating how the activation of certain biological pathway is 

maintained over time in response to an intervention, after a first trigger event. Additionally, in other 

cases, when it is the same gene the one that occupies both LHS and RHS positions, rules could be 

suggesting negative or positive feedback phenomena (which could serve as explanation for fast 

transient dynamic changes or the maintaining in time of expression levels of certain genes in long-

term interventions). Interestingly, all introduced types of relationships have been reported in our 

tested datasets (see results section) and assert with the two core ideas of XAI:

•	 Explainable	models,	while	maintaining	a	high	level	of	learning	performance	(e.g.	support,	

confidence, conviction, CF, lift).

•	 Enabling	 human	 users	 to	 understand,	 appropriately	 trust,	 and	 effectively	 manage	 the	

emerging generation of artificially intelligent methods.

On the other hand, eXplainability is also achieved in our pipeline with the creation of five new 

biological quality measures by rule and by the visual representation of results. Although previous 

association rule mining studies have already employed the GO and KEGG resources for the 

functional validation of extracted rules  [14], this is the first time specific biological quality measures 
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by rule are computed taking into consideration external molecular knowledge. The creation of 

biological quality measures by rule constitute an ideal initiative to sort and explore identified gene 

patterns according to any desired biological criterion. Moreover, it is also the first time that TF-

target gene regulatory information has been taken into account for the functional interpretation of 

gene rules. Since TF gene regulation is the most plausible molecular mechanism underlying gene-

gene and gene-environment interactions, this initiative could be extended to any other gene 

association analysis. Finally, although the results obtained directly from the CMRules algorithm 

in the form of sequential rules are perfectly interpretable themselves, their exploration from a 

global perspective may be somewhat complicated. For this reason, we though that the evaluation 

of these rules including their biological quality information would greatly benefit from a visual 

group approach, where all the rules could be studied together. Thus, we decided to incorporate 

our visualization tool as a stage for the functional validation of the results. We chose a type of plots 

whose greatest virtue lays in their ability to concentrate different types of information in single 

shot, which would allow practitioners an easy identification of the top and more coherent rules 

from the both the technical and biological points of view. On this matter, our visualization tool 

it is not intended as a network analysis tool (for generating networks from raw data) but only an 

additional value proposal in favor of model explicability and interpretability.  

From the analyzed datasets, computed biological quality measures and the visualization 

tool demonstrated utility for the biological interpretation of results and the transference of large 

gene patterns to the expert eye. Thanks to them, field-experts were able to identify several rules 

corresponding to known biological relationships among genes. Moreover, although our CMRules 

algorithm does not strictly output a network-format like result such as co-expression approaches 

do, when one visualizes all sequential rules at a single shot, It is evidenced how SRM interestingly 

keep the scale-free network topology for inferred interactions. This network topology, which is also 

evidenced by co-expression approaches results, it is in tune with the concept of “good enough 

solutions” that seems to rule most biological systems and it consists on the existence of a few 

nodes with many connections (”hubs”) and many nodes with few connections [18]. This, again, 

demonstrates the suitability of our SRM approach alongside the visualization tool for the modeling 

genetic interactions in humans. 

Given the absence of a gold-standard which to compare with our approach, and taking into 

account that the important thing when inferring genetic networks in the biological field is to 

validate results in independent cohorts, in this work we decided to validate our proposal through 

its direct application to different cases of study. Within the context of the chosen research problem 

(“WL interventions in obesity”), this is the first study implementing a XAI analytic approach in 

temporal gene networking. Moreover, by incorporating data from up to 4 independent cohorts 

and 6 experimental groups (N=83 subjects), this analysis also constituted one of the biggest 

omics applications in the field of omics interventions. After applying our whole pipeline on these 
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datasets, we not only identified interesting gene networks within each of the mined datasets but 

also validated some of the patterns primarily extracted from the discovery sample. Altogether, 

these results further reinforce the goodness of our strategy for the mining of biologically relevant 

gene-gene temporal relations under different conditions and clinical designs. An exhaustive 

study of all the results from the case of study is needed otherwise to understand the concrete 

molecular patterns underlying WL-induced responses in obesity. In order to make this pipeline 

analysis extensible to any other temporal GED, we have implemented all described methods 

in open-source scripts and the codes have been shared online. Our method is not necessarily 

restricted to microarray data and could also be extended to RNAseq and other NGS technologies. 

For example, for applying our methodology to RNAseq datasets, it would be enough by simply 

counting on an N x M gene expression matrix of normalized reads. In future works, it would be of 

great interest testing our approach with RNAseq expression datasets given the stronger reliability 

of these data in term of the technical robustness of sequencing platforms. Approaches like this 

would greatly expand our knowledge for complex biological processes, with a special interest for 

long-term intervention experiments (such as clinical trials), in which gene regulatory mechanisms 

could reveal new drug targets.

The high dimensionality of microarray data is a permanent problem for this kind of 

approaches. For future analyses, it would also be advisable to test the effect of employing different 

“feature selection” and “discretization” strategies on the performance of the algorithm. In addition, 

it would be convenient that the biological quality measures could be computed at the same time 

that the rule extraction process, in such a way that they can guide the method within the search 

space. As a result, methods will be able to find fewer rules but with higher biological quality, which 

may otherwise remain hidden.

Finally, future works could also be focused on improving the computing of biological quality 

measurements based on GO ontology terms. For that purpose, we will combine our heuristic 

approach alongside the available tools that have been developed to evaluate the biological 

similarity of two genes based not only on the identical GO terms that they share, but also on 

the rest of GO terms that are annotated (not identical) [42]. In the future, a combined approach 

like this could be of great interest to improve the functional validation of our method and will 

be taken into consideration for the continuation of the work. Besides this modification, other 

future approaches could also consist of performing the visual representation of the rules with 

ontology terms representing nodes instead of genes. This would allow us to visualize networks 

in terms of functionality and to understand how cellular functions follow each other in human 

tissues after long-term interventions. In this case, the difficulty would be to identify which GO 

terms are the most characteristic for each gene in order to represent them within the network. 

Once achieved, the way in which the nodes of the network are connected could be different to 

our current representations and thereby reveal novel information extracted by the method that is 

not observed with our current approach.
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Code availability
All data manipulation and processing steps as well as all secondary statistical GED analyses were conducted in R 
environment using the next list of libraries (“Matrix”, “lattice”, “fdrtool”, “rpart”, “affy”, “oligo”, “affydata”, “ArrayExpress”, 
“limma”, “Biobase”, “Biostrings”, “genefilter”, “affyQCReport”, “affyPLM”, “simpleaffy”, “ggplot2”, “dplyr”, “pd.hugene.1.1.st.
v1”, “FGNet”, “RGtk2”, “RDAVIDWebService”, “topGO”, “KEGGprofile”, “GO.db”, “KEGG.db”, “reactome.db”, “org.Hs.eg.db”, 
“arules”, “arulesViz”). All employed codes have been gathered under a unique pre-processing R script, which is 
available online. The implementation of CMRules was carried out in Java using the open-source data mining library 
“SPMF” (http://www.philippe-fournier-viger.com/spmf/). The computing process for the five new biological quality 
measures was implemented in Python  version 3.7 (http://www.python.org). The data visualization process instead 
was implemented in R environment. The codes for running all described processes (pre-processing, CMRules mining, 
computing of biological quality measures and the data visualization tool) have been shared online and can be 
easily extended to any other application. This software is distributed as open source software under the terms of 
the GNU Public License GPLv3 and it is hosted in the public hosting GitHub (https://github.com/AugustoAnguita/
GeneSeqRules).

Supplementary data
Supplementary Data are available online  at https://doi.org/10.1371/journal.pcbi.1007792.
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FROM THE FIRST SEQUENCING of the human genome in 2001, genetic technologies have 

rapidly emerged discovering batteries of SNPs as risk variants for chronic diseases. The use of 

such SNPs as risk markers initially appeared as an interesting clinical tool, since DNA sequence is a 

parameter that can be studied from the moment of birth, when there is still room for clinical actions. 

Likewise, SNPs were also proposed as interesting markers for assessing differential responses 

to pharmacological treatments in order to increase drug efficacy. The potential clinical utility of 

SNPs together with the rapid improvements and costs reductions of genotyping and sequencing 

technologies have made genetics to become one of the preferred tools in the individualisation or 

personalisation of clinical care. 

In the first section of the present Doctoral Thesis (Figure 8), SNPs in candidate genes are 

investigated as risk biomarkers for obesity and its metabolic alterations, as well as for their potential 

utility as pharmacogenetics signals of metformin response. Particularly, studies 1 and 2 show that 

SNPs in the X chromosome TNMD gene are associated with alterations in the glucose metabolism 

of children with obesity, and that the TNMD gen potentially plays interesting metabolic roles in 

adipocytes. Study 3, otherwise, provides evidence for 28 SNPs as promising pharmacogenetic 

regulators of metformin treatment response in terms of a wide range of anthropometric 

and biochemical outcomes, including glucose, lipid, and inflammatory traits. Finally, study 4 

demonstrates that gathering obesity SNPs into a single obesity-predisposing GRS increases the 

robustness of their association with childhood BMI Z-Score, and that it could be used as a predictor 

of obesity longitudinal trajectories during puberty. 

Despite the great findings reported by genetic research in obesity during the last decades, 

the SNPs identified so far explain only about 2–4% of the adult BMI variability, suggesting that there 

are still unknown genetic elements involved. This genetic gap or lacking knowledge has been 

termed as the 'missing heritability' problem, and is a common issue in complex disorders showing 

a polygenic architecture like the case of common obesity. According to several studies, part of this 

'missing heritability' could be explained by the effect of SNPs that have not been yet discovered 

(for example, rare variants or SNPs mapping genomics regions neglected in previous GWASs) but 

could also be attributed to more complex and non-genetics phenomena. Indeed, obesity depends 

not just on genetics, but also on environment and the interaction between the two. On this regard, 

we might also be missing the existence of SNPs that increase the risk of obesity but only under 

certain conditions or environmental exposures. 
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As a common objective, the studies composing the first section of the present Doctoral Thesis 

address the 'missing heritability' issue in two ways. Primarily, they focus in the study of genomics 

regions previously neglected in obesity GWASs and that could harbour SNPs ever identified as 

associated with metabolic dysfunction. Particularly, they investigate SNPs mapping the TNMD gene 

in the X chromosome, which has been previously omitted from GWASs due to the complexity of its 

analysis. Secondly, they combine the effects of obesity SNPs as part of a more sophisticated tool, 

such is the case of a GRS, which allow for taking into account the cumulative polygenic nature of 

obesity. Interestingly, GRSs have been evidenced as a perfect tool for the investigation of gene-

environment interactions, and thus are another efficient way of addressing the 'missing heritability' 

problem. As main results, these studies corroborate that potentially interesting SNPs and genes 

for obesity and metabolic dysfunction might remain unknown in the sexual chromosomes, and 

that the rationale combination of known obesity SNPs might increase the variability explained 

by the genetic component. Particularly, the obesity heritability attributable to assessed genetic 

markers in our study populations was estimated in 5.6%, which is higher than the 2–4% reported 

in adults. This is an interesting finding which could also be explained by the fact that hormonal 

and environmental modulatory effects on genetics during childhood may be softer than in adults. 

Therefore, it highlights the relevance of focusing on childhood for the study of the genetics basis 

of a disease. Finally, beyond prediction, the studies included in the first section of this Thesis, are 

also interesting since they contribute to the identification of new potential therapeutic molecular 

targets and biological pathways underlying the pathophysiology of disease. On this regard, it is 

not all about developing new predictive tools but simply increasing our knowledge about disease 

mechanisms, which at the end could open new lines of research in the development of novel and 

more effective anti-obesity drugs.

Despite the positive results and conclusions evidenced from this section, some limitations 

should be noticed. On the one hand, GRSs based on standard GWAS-discovered SNPs may not be 

the most suitable tool for investigating gene-environment phenomena, since many of the SNPs 

that truly interact with environmental exposures are not usually discovered as associated with 

obesity under the standard case-control obesity designs. In this sense, particular GRSs should be 

constructed based on environment-related SNPs in order to better asses the presence of gene-

interactions in obesity. On the other hand, although there are reasons to hope that identified SNPs 

of obesity and diabetes will eventually lead to new preventive and therapeutic agents, this will 

take time because such developments require detailed mechanistic understanding of how an 

SNP influences phenotype. This involves the identification of the gene or genes whose expression 

is affected by alleles at the variant, and the mechanism (e.g., enhancer, repressor, epigenetic 

alteration) whereby the variant’s alleles differentially affect expression. On this sense, genetic 

variants can introduce or delete methylation sites in CpG context, thereby inducing changes in 

DNA methylation at the SNP site. Moreover, SNPs located in cis or trans of a CpG site can alter the 

action of methylation enzymes. In order to test the existence of potential interactions between 
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Figure 8. Graphical summary of the first section of the present doctoral thesis.
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epigenetic profiles and genetic factors several studies have performed correlation analyses of DNA 

methylation and SNP genotypes (mQTLs). Other interesting approaches have involved the study of 

the correlation between DNA methylation and gene expression patterns (eQTMs).

The need for a better characterization of the molecular mechanisms underlying obesity and 

metabolic dysfunction was the motivation for the second section of this Thesis (Figure 9), in which 

two original researches are included (studies 5 and 6). In this second section, new multi-omics 

biomarkers for IR and cardiometabolic alterations are proposed in children with obesity during the 

metabolically critical period of puberty. Notably, this section focuses in the IR phenotype more than 

in obesity, since as mentioned in the general introduction, IR is one of the metabolic comorbidities 

of obesity that shows an earliest appearance in patients. Likewise, IR is the main pathophysiological 

mechanism leading to type 2 diabetes and CVD. For the investigation of such molecular patterns in 

IR and obesity, the second section of this Doctoral Thesis employs cross-sectional and longitudinal 

data derived from our Spanish cohorts within the context of puberty, a life stage of considerable 

metabolic risk for children with obesity. 

Within this second section, the study 5, is an original research in which a potential candidate 

molecular marker for IR, the S100A4 protein, is investigated from a multi-omics perspective 

(involving the parallel analysis of EWAS, Transcriptomics Array and protein data). Otherwise, the 

study 6 is an ambitious research project analysing EWAS, GWAS, RNAseq and protein data in the 

PUBMEP longitudinal cohort. The study 6, which is the main research work conducted within the 

context of the present Doctoral Thesis, is a large-scale multi-omics integrative and longitudinal 

analysis aiming to unveil the molecular architecture and biological processes underlying IR in 

puberty, and the additional impact of obesity on these processes. As far as we concern, the study 

6 is the first longitudinal multi-omics approach conducted to date for characterizing the molecular 

blood alterations for IR and obesity during the metabolically critical period of puberty. 

In general, the results derived from the second section of this Doctoral Thesis shed new lights 

onto the molecular mechanisms and the epigenetic alterations of obesity and IR, and propose 

novel and promising multi-omics biomarkers for disease prevention. Particularly, two of the 

proteins highlighted in this section are the S100A4 and the VASN, that had never been investigated 

in children with obesity. Interestingly, our results indicate that epigenetic signatures in these 

genes could be potentially useful as predictive tools for the appearance and development of IR in 

children with obesity when they enter into puberty. Moreover, given the strong changes in DNA 

methylation evidenced for these genes during puberty, they could also be part of the molecular 

mechanisms by which the obesogenic environment contributes to the IR prognosis in obesity. 

Given the importance and robustness of our findings, in the near future, additional in vitro and in 

vivo functional studies should be encouraged in order to clarify the exact role of these proteins 

in the pathophysiology of disease. An example of required studies can be seen in the first section 

of this Thesis, in which the TNMD genotyping analysis conducted in children was complemented 
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Figure 9. Graphical summary of the second section of the present doctoral thesis.
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with a molecular biology approach involving the study of the metabolic functionality of the 

TNMD gene in adipocyte cultures. This kind of collaborative research is being more and more 

adopted by current biomedical laboratories and involve the work of multidisciplinary teams 

(molecular biologists, bioinformaticians, geneticists, physicians, etc). This type of research should 

be encouraged in the next years since it acts as a bridge between basic and clinical research and 

allow materializing the concepts of “bench to bedside” and “bedside to bench”.

As we have previously mentioned, the aetiology of obesity and type 2 diabetes is multifactorial. 

Thus, identification of one specific factor associated with disease will most probably have limited 

prognostic or therapeutic value. Additionally, association does not imply causation and associations 

actually outnumber causations, where many of the reported associations are not reproduced in 

future studies. In this context, the multi-omics approach implemented in studies 5 and 6 allows 

for the identification of associated factors from different biological dimensions, i.e., DNA genetics 

variants, DNA methylation, gene expression, protein synthesis, etc., maximizing the available 

information, and thus, increasing the possibility of identifying the root causes of a disease. A second 

advantage of multi-omics analysis is the depth of the information it provides. For example, a single 

change in gene expression may be weakly associated with the pathophysiology of a multifactorial 

disease such as obesity. However, when this finding is further supported with alterations in DNA 

methylation and in protein concentration, the possibility that this gene or protein is an important 

factor in the pathogenesis of the disease increases. On this regard, the findings derived from 

the present Doctoral Thesis propose novel and reliable molecular mechanisms underlying the 

development of IR and reveal important pathways never associated with the aetiology of disease 

that merits additional attention. 

Some limitations to highlight in this second section are, on the one hand, the low number 

of participants included in study populations and the fact that findings are mainly based on 

data from blood, which was the most accessible tissue, and may not be representative of other 

metabolically relevant organs such as live and adipose and muscle tissues. In this regard, there is 

a trend pointing to a correlation between the global state of methylation in blood and adipose 

tissue. This correlation might be explained by the abundant presence of white cells in both tissues 

and suggests that buffy coat might be a valid indicator of what happens at the methylation level in 

adipose tissue, especially for the case of inflammatory and immune system-related aspects. Another 

possible source of bias would be the difference in time elapsed between the two measurements 

(prepubertal and pubertal times) between the different participants of the PUBMEP cohort.

From presented results, it can be concluded that the concept of precision medicine is more 

than the use of genetic variants, and that the use of multi-omics approaches in the clinic would 

be extremely valuable. In spite of it, since the availability of multi-omics research approaches is still 

scarce, the clinical application of multi-omics signatures as predictive and prognostic biomarkers 

of disease will have to wait. One of the main reasons why multi-omics approaches are not yet 
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Figure 10. Graphical summary of the third section of the present doctoral thesis.

Section 3: Implementation of unsupervised machine learning (ML) 
models for the analysis of longitudinal omics data in obesity
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widespread in obesity research are the complexities in data analysis they involve (e.g., integration 

of multiple layers of complex data, high dimensionality datasets, existence of noise and spurious 

associations, and the need for an easy interpretation of findings). In the middle of this need, ML 

techniques, one of the areas of AI, have experienced a remarkable boost due to their ability to 

automatically obtain descriptive or predictive models from massive amounts of data (Big Data). 

These models not only allow us to improve our understanding of obesity, but also to improve our 

ability to predict with unprecedented accuracy. 

The high potential of ML techniques and the need for new analytics approaches in multi-omics 

research was the motivation for the third and last section of the present Doctoral Thesis (Figure 

10), in which an unsupervised ML model was proposed for the extraction of gene expression 

temporal patterns (study 7). Particularly, here, it was opted by the application of a method for 

the discovery of sequential associations in accordance with the current trend of making ML 

models more interpretable and explainable, giving rise to what is known as eXplainable Artificial 

Intelligence (XAI). Explainability in AI is a heavily debated topic with far-reaching implications 

that extend beyond the technical dimension, as in most cases, scientists do not understand how 

algorithms learn automatically from data and how they make decisions (the so-called "black box 

problem"). For fields such as health care, where mistakes can have devastating effects, the lack 

of interpretability in AI makes it even more difficult for physicians to trust it. XAI is also especially 

important in omics research, where one of the main concerns of biologists is how to translate 

inferred networks into particular hypotheses that can be tested with real-life experiments.

In the present Doctoral Thesis, this approach was implemented and materialized in the 

form of a methodological paper (including pre-processing, knowledge extraction and functional 

validation) based on sequential rule mining (study 7). The proposed method was validated in six 

datasets from obesity research (consisting of low-calorie diets interventions), where it was able 

to extract meaningful gene-gene temporal interactions with relevance in the aetiology of the 

disease. The application of such pipeline to other type of human temporal gene profiles would 

greatly expand our knowledge for complex biological processes, with a special interest for drug 

clinical trials, in which identified gene-gene regulatory interactions could reveal new therapeutic 

targets.

Ultimately, the clinical purpose of molecular sciences is to provide diagnoses and forecasts 

of future disease risk. Relatively simple statistical approaches such as GRSs have allowed for certain 

stratification ability for some common complex diseases, as it has been demonstrated in the present 

Doctoral Thesis. Nevertheless, they are still far from offering a true clinical utility. Complementarily, 

a few studies have attempted genomic prediction of complex human traits using AI algorithms, 

but most of those reported in the literature to date are probably overfit as they purportedly explain 

substantially more trait variance than should be possible on the basis of heritability estimates. 

In the future, an intelligent use of AI would probably come from the integration of a variety of 
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omics, health data types and risk factors as comprehensive predictors of disease risk. Future lines of 

research in the study populations collected in the present Doctoral Thesis thus might involve the 

creation of supervised AI predictive models based on prepubertal multi-omics and environmental 

data for the prediction of the future IR status in children with obesity. These tools would be of much 

interest for personalizing care in obesity and, at the end, would drastically reduce the associated 

deaths and economic costs of disease.

In summary, the results presented in the present Doctoral Thesis indicate that; 1) obesity is 

a complex disorder resulting from the interaction between genetic and environmental factors, 2) 

part of the missing heritability in obesity could be explained by the existence of neglected SNPs 

and rare variants in genomic regions such as the sexual chromosomes, 3) the creation of predictive 

tools based on the combination of small-risk effects SNPs is an interesting but simple strategy for 

predicting future obesity, 4) a multi-omics study of obesity is necessary to understand its complex 

underlying molecular mechanisms, and 5) the application of XAI ML models can help us to unravel 

the complex relationships between omics molecular elements. Further studies like those presented 

in the present Doctoral Thesis and as well as larger cohorts recruitments should be encouraged 

in order to validate presented findings. This will require a close collaboration between clinicians 

and basic researchers, and the creation of multidisciplinary teams, in which the presence of mixed 

bioinformatics profiles will be of great importance.
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General Conclusion

The molecular basis of childhood obesity represents a complex network of interactions between 

omic elements (SNPs, DNA methylation, RNA molecules, and proteins) and environmental factors. 

Only through the application of multi-omics research approaches and by employing complex 

analytical tools (such as bioinformatics and AI) we will be able to understand the complete 

molecular architecture of obesity, which at the end will allow us to design effective preventive 

tools or develop new personalised treatments.

Specific Conclusions

Section I. Study of genetic variants associated with childhood obesity and alterations in the 

glucose metabolism. 

Study 1. Genetic variants within the TNMD gene in the X chromosome are associated with obesity 

and alterations in the glucose metabolism in children. Moreover, the TNMD protein might present 

significant metabolic functions in adipocytes and thus constitute a potential therapeutic target to 

improve the altered glucose metabolic status.

Study 2. X chromosome is an under-investigated genomic region with great potential for disease 

prevention. X-chromosome datasets and pipelines are crucial to get familiar with sex chromosome 

particularities and raise awareness of the importance of this genomic region. SNP and genotype 

data repositories should improve in some ways in order to provide data access without barriers in 

genetics.

Study 3. Genetic variants within previously-reported and well-known obesity loci, such as the 

ADYC3 and the BDNF-AS, could explain part of the inter-individual variability in metformin response, 

and therefore clinically predict metformin efficacy based on genetics.

Study 4. Gathering obesity SNPs into a GRS increases the robustness of their association with 

childhood BMI Z-Score, and could be used as a predictor of obesity longitudinal trajectories during 

puberty. Otherwise, the GRS is not associated with cardio-metabolic comorbidities in children and 

certain environmental factors interact with the genetic predisposition to the disease.

Section II. Identification of new multi-omics biomarkers of IR and cardiometabolic alterations in 

childhood obesity during the metabolically critical period of puberty.
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Study 5. The protein S100A4 is a novel and promising biomarker of IR in prepubertal and pubertal 

children with obesity, exhibiting altered multi-omics signatures in blood and metabolically relevant 

tissues. Particularly, we propose epigenetic changes in two methylation sites and an altered S100A4 

expression as plausible molecular mechanisms underlying this disturbance in obesity.

Study 6. Blood DNA methylation patterns significantly associate with IR longitudinal trajectories 

in children with obesity during pubertal maturation. Among identified genes, some new targets 

never reported in obesity research, such is the case of VASN, shed light onto new molecular multi-

omics mechanisms underlying metabolic alterations in obesity and could serve as promising 

predictive biomarkers for IR.

Section III. Implementation of unsupervised machine learning (ML) models for the analysis of 

longitudinal omics data in obesity.

Study 7. Sequential rule mining is a type of unsupervised ML technique highly interpretable and 

self-eXplainable with a great potential for finding biologically relevant sequential patterns from 

longitudinal human gene expression data. The application of rule-based methods to other type 

of human temporal gene profiles would greatly expand our knowledge for complex biological 

processes, with a special interest for drug clinical trials, in which identified gene-gene regulatory 

interactions could reveal new therapeutic targets.
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13/04/2019. ISBN 978-3-030-17935-9 DOI: https://doi.org/10.1007/978-3-030-17935-9_29 

Rupérez-Cano A; Anguita-Ruiz A. Genetics of Oxidative Stress and Obesity-Related Diseases.Obesity. Oxidative Stress
and Dietary Antioxidants. pp. 17 - 40. Elsevier, 01/10/2018. ISBN 9780128125045 DOI: https://doi.org/10.1016/
B978-0-12-812504-5.00002-7
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Participation in R&D and Innovation projects 

PI20/00711., Enfoque Machine Learning y Big Data Multi-Ómico: Medicina Personalizada. Instituto de Salud Carlos III.
Proyectos de Investigación en Salud de la convocatoria 2020 de la Acción Estratégica en Salud 2013-2016. Jesús Alcalá
Fernández. (Universidad de Granada). 01/01/2021-31/12/2022. 27.830 €. Collaborator.

PI20/00563., Omicas e Inteligencia Artificial. Herramientas para entender los mecanismos moleculares de la resistencia a
la insulina en niños obesos durante la pubertad. PI20/00563 Instituto de Salud Carlos III. Proyectos de Investigación en
Salud de la convocatoria 2020 de la Acción Estratégica en Salud 2013-2016. Concepción María Aguilera. (Universidad de
Granada). 01/01/2021-31/12/2022. 173.030 €. Collaborator.

P18-RT-2248., Explicabilidad de la Inteligencia Artificial para el Análisis Inteligente de Datos: Aplicaciones en Problemas
de BioSalud y del Internet de las Cosas. P18-RT-2248. Junta de Andalucía. Ayudas a proyectos de I+D+I Programa
Operativo FEDER 2014-2020 (PAIDI 2020) - Convocatoria 2018 (BOJA n.º 203, 18/10/2018). Jesús Alcalá
Fernández. (Universidad de Granada). 01/01/2020-31/12/2022. 35.542 €. Team member.

PY18-4455., Transductores Moleculares del Ejercicio Físico y la Activación del Tejido Adiposo Pardo: en Busca de Nuevas
Dianas Terapéuticas en la Comunicación Intercelular. PY18-4455. Junta de Andalucía. Ayudas a proyectos de I+D+I
Programa Operativo FEDER 2014-2020 (PAIDI 2020) - Convocatoria 2018 (BOJA n.º 203, 18/10/2018). Concepción María
Aguilera. (Universidad de Granada). 11/02/2020- 31/12/2021. 140.352 €. Collaborator.

PI18/00930, Mediterranean lifestyle in pediatric obesit prevention: MELI-POP. PI18/00930. Instituto de Salud Carlos III.
Proyectos de Investigación en Salud de la convocatoria 2018 de la Acción Estratégica en Salud 2013-2016. Mercedes Gil
Campos. (Instituto Maimónides de Investigación Biomédica de Córdoba). 01/01/2019-31/12/2021. 64.130 €. Team
member.

PI16/00871, Puberty and metabolic risk in obese children. Epigenetic alterations and pathophysiological and diagnostic
implications. PUBMEP Study. PI16/00871. Instituto de Salud Carlos III. Proyectos de Investigación en Salud de la
convocatoria 2016 de la Acción Estratégica en Salud 2013-2016. Concepción María Aguilera García. (University of
Granada). 01/01/2017-31/12/2020. 99.220 €. Team member.

Integration of omics and environmental data to develop artificial intelligence-based predictive tools for the early-life
prevention of adulthood obesity-related chronic diseases Fundación Mapfre. AYUDAS A LA INVESTIGACIÓN IGNACIO H.
DE LARRAMENDI en su edición 2017. Concepción Aguilera García. (University of Granada). 14/02/2018-
18/04/2019. 35.000 €. Team member.
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Selected Conference Presentations 

My academic and business careers have allowed me to demonstrate good oral communication skills in more than 8
International conferences (e.g. https://youtu.be/l0LQ9di2YsQ)

Epigenetic changes in key metabolic genes accompany obesity and insulin-resistance trajectories during puberty. 
European and international congress on obesity ECOICO. 02/09/2020. (Online).
A poor diet quality during puberty is able to induce epigenetic changes in key genes participating in pathogenic
pathways of obesity and IR. FINUT 2020 International Virtual Conference. 11/10/2020. (Online).
Towards a novel marker of insulin resistance in obesity: S100A4 in girls before and after pubertal onset —
Evidences from the longitudinal study “PUBMEP” –. FENS 2019 ,13th European Nutrition Conference. 15/10/2019. (D
ublin, Irlanda).
X chromosome genetic data in a Spanish children cohort: dataset analysis and pipeline. "Better Science Through
Better Data", an international event organized by Springer Nature and the Welcome trust. 15/10/2019. (London,
England).
Describing sequential association patterns from longitudinal microarray data sets in humans. 7th International
Work-Conference on Bioinformatics and Biomedical Engineering. 08/05/2019. (Granada, Spain).
Association of an obesity-predisposing genetic risk score with a set of metabolic and inflammatory traits in a
cohort of Spanish children. 17th Conference of the Spanish Nutrition Society (SEÑ) and 10th Meeting of the Catalan
Association of Food Science (ACCA). 27/06/2018. (Barcelona, Spain).
Tenomodulin genetic variants on the X chromosome are associated with childhood obesity. IUNS-INC 21st
International Congress of Nutrition "From sciences to nutrition security". 15/10/2017. (Buenos Aires, Argentina).
Genetic Polymorphism of PPAR Gamma modified the effects of metformin on BMI z-score in obese children. IUNS
-INC 21st International Congress of Nutrition "From sciences to nutrition security". 15/10/2017. (Buenos Aires,
Argentina).

Computer Skills 

Statistical language: R
Programming language: Python
Database Management System : R, Excel
Operating system: Unix/Linux shell
Data Science Skills (using R)

Machine learning: Association Rule Mining, Sequential Rule Mining, linear regression, logistic regression, decision
tree, random forest,Naive Bayes, k-means, PCA and k-nn.
Data visualization: Shiny, plotly, ggplot, leaflet
Data manipulation: dplyr, tidyr
Text Mining: tm, rtweet, tidytext

Member of the organizing committee: V Meeting on Bioinformatics. 

Affiliation entity: University of Granada City affiliation entity: GRANADA, Andalusia, Spain Start-End date: 24/02/2019 -
26/02/2019

Member of the organizing committee: IV Meeting on Bioinformatics. ISBN: 978-84-09-16565-0 

Affiliation entity: University of Granada City affiliation entity: GRANADA, Andalusia, Spain Start-End date: 14/02/2020 -
15/02/2020

Member of the organizing committee: III Meeting on Bioinformatics. ISBN: 978-84-09-09196-6 

Affiliation entity: University of Granada City affiliation entity: GRANADA, Andalusia, Spain Start-End date: 14/02/2019 -
05/02/2019

COMMUNICATION AND INTERPERSONAL SKILLS 

◦ 

◦ 

◦ 

◦ 

◦ 

◦ 

◦ 

◦ 

JOB-RELATED SKILLS 

◦ 

◦ 
◦ 
◦ 

ORGANISATIONAL SKILLS 
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Member of the organizing committee: 1st Edition MOOC "Machine Learning y Big Data para la Bioinformática" 

Organising entity: Universidad de Granada 
Type of entity: University
Hours of teaching: 112
Teaching date: 22/02/2021
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Resulta para mi imposible concentrar en apenas unas páginas el reconocimiento a todas esas 

personas que me han apoyado durante los años que me ha llevado terminar este trabajo.

Entre todas esas personas, si tengo que empezar por alguien, sin duda lo haría por la profesora 

Concepción Aguilera (Chiqui), mi directora, maestra, compañera, amiga, ¡Y hasta business angel!. 

GRACIAS, GRACIAS y GRACIAS, por tantas cosas. Nuestra relación comienza años antes de empezar 

el doctorado, cuando un compañero de la carrera y yo acudimos a ella, en busca de apoyo para 

iniciar una aventura empresarial con una todavía inmadura idea de negocio basada en la aplicación 

de la genética y la medicina personalizada. En ese mismo momento no lo dudó, y nos brindó todo 

su apoyo. Y es que, si algo la caracteriza, y así me lo ha enseñado durante todos estos años, es 

el dar a todo el mundo la oportunidad de demostrar lo que vale. Una oportunidad que no solo 

me permitió desarrollar un proyecto empresarial con el que aprendí infinidad de cosas, sino que 

también me abrió las puertas al mundo de la investigación biomédica. Un mundo al que nunca 

me había planteado dedicarme seriamente, pero que me cautivó desde un principio, despertando 

en mí una pasión desmedida por la genética humana y la bioinformática. Una pasión que Chiqui 

ha cultivado y animado cuidadosamente durante estos años; creyendo en mí, motivándome con 

su ejemplo, otorgándome responsabilidades dentro del grupo que me han hecho crecer como 

profesional, y procurándome un crecimiento académico y formativo excelente. ¡Por todo ello, 

gracias!. Además, más allá de lo profesional, también me gustaría agradecer su trato, su cariño, con 

el que ha conseguido convertirse en una persona importante para mí. En ella he encontrado una 

amiga a la que contarle mis preocupaciones e inquietudes, recibiendo siempre un consejo sincero 

y una simpatía inmejorables. Chiqui es una excelente científica, profesora y comunicadora, con 

una habilidad impresionante para la gestión de equipos, de la que he aprendido MUCHO, y con la 

que he trabajado inmensamente feliz durante el desarrollo de mi tesis. Por ello, y aunque se quede 

corto, con estas líneas quiero agradecértelo de corazón. Igualmente, espero que, de alguna forma 

u otra, me sigas acompañando y enseñando tanto en mi vida científica como personal durante 

muchos años más.

Si hay otro gran responsable de que me encuentre aquí hoy, ese es el profesor Ángel Gil, líder 

de mi grupo de investigación, y el primero en apoyar, junto con Chiqui, el proyecto empresarial que 

finalmente derivó en el desarrollo de mi tesis doctoral. Ángel es sin duda, una de las mentes más 

maravillosas que he conocido, con una capacidad de hacer BUENA ciencia incomparable. Aunque 

por el momento en el que he llegado al grupo de investigación, en el que Ángel se encuentra 
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culminando su carrera científica, no he tenido la suerte de poder compartir tantos momentos con 

él cómo los que me hubiera gustado, para mí ha sido un verdadero orgullo contar con su sabiduría 

y experiencia siempre que la he necesitado. Gracias por tus invalorables lecciones de bioestadística 

y bioquímica, que me acompañarán durante toda mi carrera. Gracias también por tus consejos y 

por hacer todo lo posible para que el grupo de investigación siga creciendo.

Mil millones de gracias también al profesor Jesús Alcalá, mi co-director de tesis, en quien he 

encontrado un inmejorable maestro, consejero y ejemplo a seguir. Gracias a él, me he formado 

en el apasionante mundo de la inteligencia artificial y he aprendido a aplicar adecuadamente 

técnicas de análisis de datos avanzadas para resolver complejos problemas biológicos. Ha sido 

un camino de aprendizaje que he disfrutado inmensamente gracias a su enorme capacidad de 

trabajo e instinto científico. Y es que, en Jesús he encontrado un excelente mentor, capaz de 

transmitir de forma sencilla complejos conceptos informáticos y matemáticos. Jesús, eres en gran 

parte responsable del bioinformático en el que me he convertido y por eso te doy las gracias. 

Te agradezco también por preocuparte por mi crecimiento profesional y mi futuro académico, 

dándome siempre los mejores consejos, permitiéndome participar en todos tus proyectos, y 

procurándome una formación inmejorable (cursos, estancias, etc.). Para mí ha sido un verdadero 

lujo contar con tu apoyo durante estos tres años intensos y he aprendido muchísimo. Gracias 

también por tu entusiasmo y motivación, que son realmente contagiosos para acometer cualquier 

proyecto de investigación, por complicado que pueda ser. En definitiva, gracias por regalarme 

algo tan valioso, tu tiempo. Igualmente, me gustaría agradecer a mi “co-director en la sombra”, el 

profesor Rafael Alcalá, otro científico y mente maravillosa, quien con su siempre desinteresada 

disponibilidad y brillantes ideas ha sido una fuente de lecciones magistrales en las múltiples e 

interminables reuniones de trabajo en las que planteábamos posibles metodologías de análisis. 

¡GRACIAS de corazón a los dos!

Me gustaría agradecer también a todos mis compañeros, quienes han hecho de mi día a día 

un verdadero placer. Empezando cronológicamente, gracias a Belén Pastor y a Fran Ruiz pues 

fuisteis mis primeros compañeros de trabajo y ejemplos a seguir. Gracias por vuestra disponibilidad 

para resolver dudas, vuestro apoyo en la gestión de muestras en los congeladores del laboratorio, 

y por contarme de primera mano todos los entresijos del mundo de la investigación en el que 

me metía. Gracias por esos congresos y viajes en los que me he divertido tanto como aprendido. 

Ha sido un lujo teneros como ejemplo de doctorandos en el laboratorio, y para mí ha sido una 

alegría ver como vuestras carreras investigadoras se han proyectado con tanto éxito. Gracias 

a Julio, quien, aunque siempre he visto como un investigador senior, se ha empeñado en ser 

uno más. Un compañero más del que aprender, tanto en el aspecto profesional como personal. 

Gracias por tu generosidad, por tu amabilidad, por tus bromas y tus sabios consejos. Sin duda 

tienes la capacidad para unir al grupo de investigación y de transmitir siempre tu sonrisa. Espero 

que en un futuro volvamos a compartir laboratorio y aventuras de congresos. Gracias a Josune, 
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por dedicarme tanto tiempo al principio de mi doctorado, y por transmitirme tu conocimiento, 

siempre en un tono dulce y amable. Gracias por supuesto a M Cruz, la alegría del laboratorio. Eres 

fuente inagotable de simpatía y ánimos. Gracias por obligarme a despegarme del ordenador y el 

trabajo, y por preocuparte de que desayunara cada día. Gracias por hacer de consejera y compartir 

tantas experiencias conmigo. Ha sido una suerte tenerte por allí tanto tiempo. Gracias a Andrea, 

¡camarada doctoranda de fatigas! Hemos sido compañeros de despacho, congresos, docencia y 

preocupaciones, que se hacían más llevaderas al compartirlas. Gracias a todo el grupo de Marga, 

en quienes he encontrado compañeros tan buenos como los de mi propio grupo. A todo el 

equipo INYTA, Carolina, MD, Marga y Jesús, gracias por los “gallineros” (como dice Chiqui), que 

llenaban de risa y buen ambiente el laboratorio. Gracias por todos los desayunos y momentos de 

desconexión. 

Gracias a todos los miembros del Departamento de Bioquímica y Biología Molecular II de 

la Facultad de Farmacia, en el que he tenido la envidiable oportunidad de impartir docencia. 

Gracias a Luis, quien además de haber sido un excelente jefe de grupo de investigación, ha sido 

un verdadero ejemplo docente en el que fijarme y apoyarme. Debo confesar que las prácticas 

de Patología son las que más me ha gustado enseñar de todas las asignaturas que he impartido 

durante el doctorado. Gracias a M Carmen y a José Manuel, que hacen que uno se sienta en 

el departamento como en casa.  Y por supuesto, gracias al resto del equipo docente, Paloma, 

Mercedes, Marina, etc., de quienes he aprendido mucho y por darme la oportunidad de formar 

parte del mismo durante estos años. También a Olga y a Fermín, mis otros business Angels, a 

quienes estaré siempre agradecido por el apoyo inicial en la creación del proyecto Novgen.

Otros responsables directos de que esta tesis se haya podido realizar con éxito son el 

magnífico equipo CIBERobn-PUBMEP formado por los clínicos e investigadores del centro de 

investigación IMIBIC y los hospitales de Santiago de Compostela, Reina Sofía y Lozano Blesa 

(Rosaura, Rocío, Gloria, Azahara, Esther, Luis Moreno, Mercedes, Katy, Fran, Juan Roa, etc.). 

Gracias a todos por vuestro inestimable trabajo, sin el que no sería posible llevar a cabo este tipo 

de investigación. Gracias por vuestra profesionalidad y por vuestro entusiasmo, pues no es fácil 

compaginar las tareas asistenciales con todo el trabajo de investigación. Gracias igualmente por los 

buenos momentos en congresos y reuniones, ha sido un placer trabajar con vosotros.

Fuera del ámbito profesional, me gustaría agradecer también este logro a mi familia y amigos, 

quienes con su apoyo continuo me han dado las fuerzas necesarias para conseguirlo. Gracias a 

Abel, por los momentos de desconexión en bici y por tragarte charlas interminables sobre lo que 

iban mis investigaciones, a pesar de no entender ni la mitad, ¡y encima poniendo cara de que sí, y 

que interesaba!. Gracias a Paco, por tantas cosas, desde enseñarme una nueva manera de pensar y 

de hacer ciencia, hasta todas esas conversaciones filosóficas interminables. Gracias por acogerme 

en París como a un hermano, y por ser un excelente amigo a la vez que colega de profesión. Estoy 

seguro de que vas a ser (ya lo eres) un científico con una carrera brillante.
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GRACIAS a Inés, mi compañera de camino, por aparecer en mi vida y llenarla de felicidad. ¡Eres 

fuente inagotable de energía y ánimo!. Gracias por ser una de las personas con más voluntad que 

conozco, y todo un ejemplo en el que fijarme. Durante toda esta etapa ha sido una SUERTE para 

mí el contar contigo; has sido la primera en escuchar mis presentaciones de congreso (siempre 

atendiendo con tu mejor cara de entusiasmo), has sido editora de revista científica revisando mis 

publicaciones y figuras en busca de erratas, a la vez que la mejor interlocutora científica cuando 

necesitaba exponer en voz alta mis ideas… Has sido eso, y MIL cosas más. Gracias por tu cariño, por 

tu comprensión, y por hacerme el mejor regalo que se le puede hacer a una persona, creer en mi 

incondicionalmente, que ha sido el mejor combustible para lograr metas que parecían imposibles. 

Gracias por ser TU y por hacer el camino tan sencillo y bonito. 

GRACIAS a mis padres, mis héroes, María José y Augusto, por TODO. Gracias a mi padre por 

su empeño en hacer de mi loca cabeza una mente racional desde pequeño; por inculcarme la 

importancia de PENSAR y ANALIZAR, pues ha acabado siendo una de las mejores herramientas 

para desarrollar mi trabajo. Gracias también por ser un ejemplo de superación continuo y 

valentía. Gracias a mi madre por su continuo sacrificio, por hacerme entender desde pequeño la 

importancia del estudio y del esfuerzo, y por ser mi mayor confidente. Gracias por ser un ejemplo 

a seguir de trabajadora nata, valor y coraje. Gracias a los dos por darme las mejores condiciones 

para desarrollar mis ideas e inquietudes. Gracias por vuestro interés y pasión por mi trabajo, y por 

los momentos de felicidad que me regaláis cada día. GRACIAS por creer en mí. Sois los MEJORES 

padres del mundo, y sin vosotros nada de esto habría sido posible.






