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Abstract
In this paper, we analyze the influence of the usual movement variables on the spread
of an epidemic. Specifically, given two spatial topologies, we can deduce which topol-
ogy produces less infected individuals. In particular, we determine the topology that
minimizes the overall number of infected individuals. It is worth noting that we do not
assume any of the common simplifying assumptions in network theory such as all the
links have the same diffusion rate or the movement of the individuals is symmetric.
Our main conclusion is that the degree of mobility of the population plays a critical
role in the spread of a disease. Finally, we derive theoretical insights to management
of epidemics.

Keywords Optimal topology · Degree of mobility · Management guidelines · Patchy
models

1 Introduction

The spatial structure and the mobility of a population are critical factors for the con-
trol of any epidemic (Danon 2011; Heesterbeek 2015; Khan 2012; Prabodanie et al.
2020). In today’s world, with communities more connected than ever, the total eradi-
cation of an epidemic requires joint and coordinated efforts across different cities and
countries. Contact tracing, quarantine or vaccination programs are some examples of
control strategies that generally involve variables related to the movement of individ-
uals (Heesterbeek 2015; Silk 2019; Tien and Earn 2010; Keeling and Rohani 2011).
Yet even though these strategies are a possible solution in many cases, our knowledge
on their precise effect is still under development.
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Mathematical models offer a valuable tool to study these challenges. A natural man-
ner to study the spread of an epidemic is to divide the location of the population into
discrete subpopulations and consider a metapopulation. In the recent years, there has
been an increased interest in metapopulation models with regard to the existence and
stability of the disease free and endemic equilibria (Allen et al. 2007; Arino et al. 2016,
2012; Arino 2009; Artzy-Randrup and Stone 2010; Castillo-Chavez et al. 2016). Gen-
erally speaking, the basic reproduction number of the metapopulationR0 determines
the uniform persistence/global stability of the disease free equilibrium. These results
normally indicate that the network topology plays a paramount role in the dynamics
of the epidemic. However, there are many unsolved questions in network theory. To
the date, the majority of the works in spatial epidemiology assumes some type of sim-
plifying condition such as all the links have the same diffusion rate or the movement
of the individuals is symmetric (see Artzy-Randrup and Stone 2010; Lamouroux et al.
2015; Keeling and Eames 2005 and the references therein). Although these assump-
tions allow the treatment of some complex models, they normally lead to misleading
conclusions in real-world problems. For example, the condition that all patches are
equally accessible for dispersers generally produces a fictitious homogenization of the
population.

In this paper we develop a new methodology to study the influence of the spatial
topology on the total number of infected individuals. Specifically, given two spatial
topologies, we are able to deduce which topology leads to less infected individuals. In
particular, we determine the topology that minimizes the overall number of infected
individuals. In our analysis, we study the classical SIRmodel for a spatially distributed
population where patches are interconnected in any fashion. Importantly, we do not
assume any of the simplifying assumptions mentioned above. From a theoretical point
of view, the motivation is to understand the interplay between the different movement
patterns and the common epidemic variables. On the other hand, implementing a
management practice requires a previous analysis of the expected risks and costs.
From a more applied side, our paper suggests several theoretical recommendations
in control strategies related to the spatial topology. For instance, we have in mind
the questions: What connections should we remove to reduce the number of infected
individuals? When does the movement of individuals between two cities increase the
number of infected individuals?

2 Material andMethods

We consider a population distributed in n different patches. Each subpopulation is
divided into three subgroups: susceptible (Si (t)), infected (Ii (t)) and recovered (Ri (t))
individuals. Susceptible individuals contract the disease with a rate βi , only through
the contact with infected individuals that inhabit the same patch. The recovery and
birth rates are denoted by γi and λi , respectively. All newborns are susceptible. The
individuals die with rate μi independently of their current state. For simplicity, we
assume that the mortality rate does not depend on the patch, i.e., μi = μ for all
i = 1, . . . , n. The classical SIR metapopulation model with patch structure (see Allen
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et al. 2007; Castillo-Chavez et al. 2016; Lamouroux et al. 2015) is

⎧
⎪⎨

⎪⎩

S′
i = λi − μSi − βi Si Ii + ∑n

j=1 Ai j S j

I ′
i = βi Si Ii − (γi + μ)Ii + ∑n

j=1 Bi j I j

R′
i = γi Ii − μRi + ∑n

j=1 Ci j R j for i = 1, . . . , n

(1)

with Ai j , Bi j and Ci j nonnegative diffusion coefficients for the susceptible, infected,
and recovered individuals respectively. We write Ai j = ai j h where h represents the
average number of changes of patch of an individual per unit of time and ai j ∈ [0, 1]
is the probability that an individual from patch j uses a route ending at the patch i
(with i �= j). If h = 0, the individuals never change their location. However, a large
value of h indicates an ample tendency to move. On the other hand, ai j = 0 means
that the susceptible individuals cannot use the route from patch j to patch i , whereas
a large value of ai j > 0 implies that the route is very likely to be used. Analogously,
we write Bi j = bi j h and Ci j = ci j h. We assume that there are no births and deaths
during travel. Thus,

n∑

i=1

ai j =
n∑

i=1

bi j =
n∑

i=1

ci j = 0 (2)

for all j = 1, . . . , n with

aii ≤ 0, bii ≤ 0, cii ≤ 0 and ai j , bi j , ci j ≥ 0. (3)

If both subindices coincide, i.e., aii , bii , cii , they do not represent probabilities. Actu-
ally, for example, 1+aii = 1−∑n

j=1
j �=i

a ji is the probability that a susceptible individual

of patch i remains in that patch (Arino 2009; Arino et al. 2016). In model (1), we study
a heterogeneous metapopulation. In particular, the patches sizes are in general differ-
ent each other. Althoughwe do not introduce an specific parameter for it, any epidemic
parameter in (1) depends critically on the patch size.

For the analysis of model (1), we employ a graph for each subgroup of individuals.
Network theory has experienced a considerable growth in different fields in last years.
It is rather common to find different definitions to refer to the same notion depending
on the field. To avoid misleading conclusions in the literature, we fix the definitions
employed in this paper. The network topology (also known as network architecture)
for the susceptible individuals refers to the collection of all the available routes for
these individuals. In model (1), there is an infinite number of matrices associated with
the same network topology. Specifically, two matrices A = (ai j ) and Ã = (̃ai j ) that
satisfy (2) and (3) represent the same network topology if

ai j > 0 ⇐⇒ ãi j > 0

for all i, j = 1, . . . , n with i �= j . The matrix A = (ai j ) is often coined as connec-
tivity matrix. According to Artzy-Randrup and Stone (2010), the adjacency matrix is
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easily reconstructed from the connectivity matrix by setting diagonal entries to zero.
A network topology for the susceptible individuals is symmetric when ai j > 0 implies
that a ji > 0. In other words, if there exists a link from patch j to patch i , then there
exists a link from patch i to patch j as well. Finally, the movement of the susceptible
individuals is symmetric if ai j = a ji , that is, an individual moves from patch i to
patch j with the same probability as from patch j to patch i . Obviously, a symmetric
movement implies a symmetric topology but not vice versa. We employ the analogous
notions for the infected and recovered individuals. A square matrix of order n is irre-
ducible if for each pair of indices i, j ≤ n, there is a sequence of indices i1, . . . , ik
so that aii1 > 0, ai1i2 > 0,…, aik j > 0. From a biological perspective, irreducibility
means that any two different patches can be always connected by a sequence of paths.

3 Results

Our aim is to describe the network topologies that minimize the total population size
of infected individuals at equilibrium

TI (h) =
n∑

i=1

I ∗
i (h), (4)

where (S∗
1 (h), I ∗

1 (h), R∗
1(h), . . . , S∗

n (h), I ∗
n (h), R∗

n(h)) is the equilibrium of system
(1), which is a global attractor. If we consider TI (h) as a function of h, the derivative
T ′
I (h)with respect to h provides information about the sensitivity of TI (h)with respect

to small variations of themobility parameter h.We distinguish three cases: populations
with a reducedmobility (h ≈ 0), populationswith a high degree ofmobility (h ≈ +∞)
and intermediate degrees of mobility. In the first case, since TI (0) is independent of the
matrices A, B and C, we can minimize TI (h) by finding the topology that minimizes
T ′
I (0). Hence,we aim tominimize T ′

I (0) provided the connectivitymatricesA = (ai j ),
B = (bi j ) andC = (ci j ) satisfy conditions (2) and (3). In the second case,weminimize

lim
h→+∞ TI (h).

A critical task in real problems will be to determine when a particular value of h is a
small parameter. To overcome this, we have to compare h with the smallest parameters
of (1).

Many papers in epidemiology focus on a reduced number of topologies for the
spatial network. Some popular options are the fully connected network, where direct
dispersal from every patch to every patch is possible, or the Erdös–Rényi random
graphs (Artzy-Randrup and Stone 2010). We stress that our main aim is to find the
graphs or topologies that minimize the total number of infected individuals. Therefore,
we do not impose any restriction on the type of graphs employed in this paper.
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3.1 Optimal Topologies for Populations with ReducedMobility in Model (1)

The basic reproduction number within patch i in the absence of movement is

R0,i = βiλi

μ(γi + μ)
.

This quantity determines the dynamical behavior of the system

⎧
⎪⎨

⎪⎩

S′
i = λi − μSi − βi Si Ii

I ′
i = βi Si Ii − (γi + μ)Ii

R′
i = γi Ii − μRi .

(5)

Concretely, if R0,i > 1, there is an endemic equilibrium that is a global attractor.
Otherwise, the disease is eradicated. The next discussion critically depends on R0,i
for all i = 1, . . . , n.

3.1.1 The Disease is Endemic in All Patches (R0,i > 1 for i = 1, . . . , n)

We have derived in Electronic Supplementary Material (ESM) that

T ′
I (0) =

n∑

i, j=1
i �= j

ai j
1

β j

(
� j

�i
− 1

)

+
n∑

i, j=1
i �= j

bi j
R0, jμ

β j� j

(
�i

� j
− 1

)

(6)

with �i = γi + μ and

�i = R0,i

�i (R0,i − 1)
. (7)

Since there is no reinfection of recovered individuals, the diffusion parameters ci j
of the recovered individuals do not appear in (6). Another observation is that there are
no additional benefits of the network itself, just independent effects of all the routes.
For populations with reduced mobility, if two different topologies produce the same
value of (6), then the total number of infected individuals behaves in the same manner
(for small values of h).

The contribution of the movement of susceptible individuals in the route from patch
j to patch i in formula (6) is

ai j
1

β j

(
� j

�i
− 1

)

(8)

If � j < �i or equivalently, the recovery rates satisfy γ j < γi , then the movement
of the susceptible individuals from patch j to patch i reduces the number of infected
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individuals and the movement in the opposite sense increases it. Thus, the recommen-
dation to reduce the number of infected individuals is to use a graph for the susceptible
individuals with only routes in which the recovery rates of the departing patches are
smaller than those of the arriving patches. Following this rule of thumbs, we obtain a
directed graph with the arrows always pointing to the patch with the largest value of
the recovery rate (γ ).

The contribution of the movement of infected individuals in the route from patch
j to patch i in formula (6) is

bi j
R0, jμ

β j� j

(
�i

� j
− 1

)

. (9)

The analysis of the benefits/damages of this route is analogous to that of the same
route for the movement of the susceptible individuals just replacing �i by � j . Specif-
ically, if �i < � j , the movement of the infected individuals from patch j to patch i
reduces the number of infected individuals. By expression (7), �i is smaller than � j

when the patch j is close to becoming disease-free. As above, the topology for the
infected individuals that minimizes the number of infected individuals is a directed
graph with the arrows always pointing to the region with the smallest value of �.

In summary, if the movement of all individuals is permitted but we can control
the movement of the individuals depending on their status, the recommendation is to
employ two directed graphs, one for the movement of the susceptible individuals and
other one for the infected individuals; see Fig. 1 (first row).

To describe the topology that minimizes the total number of infected individuals
when the movement of all individuals is permitted but there are no movement differ-
ences between them, i.e., ai j = bi j , we obtain the formula (see ESM)

T ′
I (0) =

n∑

i, j=1
i �= j

ai j
β j

[(
� j

�i
− 1

)

+ R0, jμ

� j

(
�i

� j
− 1

)]

. (10)

As above, the contribution of the movement of individuals from patch j to patch i
on the number of infected individuals is

ai j
β j

[(
� j

�i
− 1

)

+ R0, jμ

� j

(
�i

� j
− 1

)]

. (11)

If � j < �i and � j > �i , the movement of individuals in the route from patch j to
patch i decreases the total number of infected individuals and the route in the opposite
sense increases it. If� j > �i and�i < � j , themovement of susceptible individuals in
the route from patch j to patch i diminishes the total number of the infected individuals
and themovement of the infected individuals enhances it. A grossmanner to determine
the resulting contribution is as follows: If R0, j ≈ 1, the negative influence of the
movement of the infected individuals on its own size dominates the positive influence
of the movement of the susceptible individuals. If R0, j is considerably greater than
1, the positive influence of the movement of the susceptible individuals dominates.
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Fig. 1 (Color figure online) Optimal topologies for the susceptible and infected individuals and represen-
tation of the total number of infected individuals TI (h) (blue curves) depending on the degree of mobility
of the population (h ∈ (0, 0.3)). The network is made of five patches with parameters λi = 0.5, μ = 0.5,
β1 = 1.3, β2 = 1.5, β3 = 1.9, β4 = 2, β5 = 2.1, γ1 = 0.7, γ2 = 0.9, γ3 = 1.1, γ4 = 1.2 and γ5 = 1.5.
To make a clear comparison, the purple curves represent TI (h) in the network topologies that maximize the
total number of infected individuals. The connectivity matrices employed are ai j = 0.2 (resp. bi j = 0.2)
if the route for the susceptible individuals (resp. infected individuals) from patch j to patch i exists. (First
row) The optimal network topologies when susceptible and infected individuals can follow different net-
work topologies. These topologies are given by two directed graphs. (Second row) The optimal network
topology when the network is assumed equal for all types of individuals. Informally speaking, the manner
of determining the best graph when ai j = bi j is to study the sign of (11). Note that any path between
patches 4 and 5 enhances the number of infected individuals. Figure A3 in the ESM describes the evolution
of the total number of infected individuals in a network of 50 nodes

Obviously, the dominating factors in the expressions of � and � are the terms in the
denominators. In many cases, it is not possible to determine the sign of (11) from
inequalities of type �i < � j and �i < � j . For instance, we give an example in Fig. 1
(second row) where �4 < �5 and �4 < �5 and the movement of individuals from
patch 4 to patch 5 and vice versa enhances the total number of infected individuals.

3.1.2 The Disease is Endemic in the Patches i = 1, . . . ,m and the Patches
i = m+ 1, . . . , n are Disease Free

In the ESM, we have obtained the formula

T ′
I (0) =

m∑

i, j=1
i �= j

ai j
1

β j

(
� j

�i
− 1

)

+
m∑

j=1

n∑

i=m+1

ai j

(−1

β j

)

+
m∑

i=1

n∑

j=m+1

ai j
λ j

μ�i

+
m∑

i, j=1i �= j

bi j
μR0, j

β j� j

(
�i

� j
− 1

)
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+
n∑

i=m+1

m∑

j=1

bi j
μ

β j

(
R0, j − 1

�i − βi
λi
μ

− R0, j

� j

)

, (12)

where again�i = γi +μ. The three first terms in (12) determine the contribution of the
movement of the susceptible individuals on the total number of infected individuals. A
noticeable fact is that the movement of susceptible individuals between two disease-
free patches has a negligible influence on the total number of infected individuals, see
Fig. A.1 in ESM.

The movement of susceptible individuals from a patch in which the disease is
endemic to a disease-free patch always reduces the number of infected individuals,
especially when the contact rate of the departing patch is small. In contrast, the move-
ment of susceptible individuals from a disease-free patch to a patch in which the
disease is endemic always increases the number of infected individuals. The influence
of the movement of susceptible individuals between two patches where the disease
is endemic follows the same rule as in (6). Hence, the topology for the susceptible
individuals that minimizes the number of infected individuals is as follows: First, we
construct all possible links from the patches in which the disease is endemic to the
disease-free patches. Then, among the patches where the disease is endemic, we con-
struct a directed graph with the arrows pointing to the patch with the largest value of
�; see Fig. 2.

The last two terms in (12) determine the contribution of the movement of the
infected individuals on its own population size. The influence of the movement of the
infected individuals between two patches where the disease is endemic is the same as
in (6). On the other hand, the influence of the movement of the infected individuals
from a patch where the disease is endemic (patch j) to a disease-free patch (patch i)
is

ξi j = R0, j − 1

�i − βi
λi
μ

− R0, j

� j
.

If ξi j > 0 (resp. < 0), the movement of the infected individuals has a detrimental
(resp. beneficial) influence. If the basic reproduction number of the arriving patch is
R0,i < 1 but R0,i ≈ 1 and the reproduction number of the leaving patch R0, j is
much larger than 1, then ξi j > 0. This means that any small perturbative event could
lead to R0,i > 1 and could provoke the continuous presence of the epidemic. On the
other hand, the movement of infected individuals from a disease-free patch to a patch
in which the disease is endemic and the movement between two disease-free patches
have a negligible influence on the number of infected individuals; see Fig. A 1 in
ESM. To construct the topology for the infected individuals that minimizes its own
population size, we have to follow the next steps: First, we construct all the links from
the patches in which the disease is endemic to disease-free patches provided ξi j < 0.
Then, among the patches where the disease is endemic, we construct a directed graph
with the arrows always pointing to the patch with the lowest value of �; see Fig. 2.
We present an example with one of the values of ξi j < 0 in Fig. 3.
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Fig. 2 (Color figure online) Representation of the optimal topologies for the susceptible (left) and infected
individuals (right). Representation of TI (h). The network is made of five nodes with parameters: λi =
0.5, βi = 1 for all i = 1, . . . , 5, μ = 0.5,γ1 = 0.32, γ2 = 0.3, γ3 = 0.2, γ4 = 0.6 and γ5 = 0.51. The
connectivity matrices employed are ai j = 0.1 (resp. b_i j = 0.1) if the route for the susceptible individuals
(resp. infected individuals) from patch j to patch i exists. The disease is endemic in the patches 1, 2 and
3, and it is eradicated in the patches 4 and 5. After simple computations, we obtain that �1 > �2 > �3.
Moreover, ξi j > 0 for i = 4, 5 and j = 1, 2, 3

Fig. 3 (Color figure online) Representation of the optimal topologies for the susceptible (left) and infected
individuals (right). Representation of TI (h). The network is made of five nodes with the same value of
parameters as in Fig. 2 except for γ1 = 0.4. Again, the disease is endemic in the patches 1, 2 and 3, and it
is eradicated in the patches 4 and 5 and �1 > �2 > �3, but now ξ41 < 0, which originates the new path
from 1 to 4.

3.2 Optimal Topologies for Populations with a High Degree of Mobility

A possible manner to reduce the number of infected individuals is the isolation of the
susceptible individuals in one patch and the exportation of the infected individuals
to any of the other patches. If these movements are done almost instantaneously, i.e.,
h −→ +∞, the number of infected individuals will go to zero, see the ESM and Fig.
A2 therein. Thus, the optimal topologies are directed graphs both for the susceptible
and infected individuals but each one pointing to different patches. Note that if the
greatest value of γi and the lowest value of �i are attained in different patches, then
the recommended topologies made for small values of h are also valid for large values
of h.

Despite this similarity, the influence of the network topology on the number of
infected individuals for highly mobile populations is different from that with reduced
mobility. For example, if the movement is symmetric, the topology and the precise
values of the diffusion parameters ai j , bi j , and ci j do not have any influence on
the number of infected individuals provided the topologies for the three groups are
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Fig. 4 (Color figure online) (Left) Representation of two different networks of five nodes. (Right) Rep-
resentation of TI (h). Model parameters: λi = 0.5 and βi = 0.1 for i = 1, . . . , 5, μ = 0.5, γ1 = 0.3,
γ2 = 0.4, γ3 = 0.5, γ4 = 0.6 and γ5 = 0.7. We assume that ai j = bi j . The connectivity matrices are
ai j = bi j = 0.1 if the route exists and ai j = bi j = 0 otherwise

irreducible. In fact, if the disease is not completely eradicated,

lim
h→+∞ TI (h) = n

(
(
∑n

i=1 λi )(
∑n

i=1 γi )(
∑n

i=1 βi )

nμ(nμ + ∑n
i=1 γi )

− nμ

)

. (13)

We stress that (13) is independent of the presence of some patches where the disease
is not endemic; see Fig. 4. The reader can consult (Arino 2009) for further results in
this direction.

4 Discussion

In this paper, we have described the topologies that minimize the number of infected
individuals in epidemic models with spatially distributed populations. For simplicity,
we have presented our results with the classical SIR model with patch structure (Allen
et al. 2007;Arino 2009; Castillo-Chavez et al. 2016; Lamouroux et al. 2015). However,
any epidemic model can be treated in an analogous manner, see ESM.

4.1 TheMovement Timescale is a Critical Factor for the Optimal Networks

For populations with reduced mobility, we assign a number to each topology so that
two networks with the same number behave in the same manner, (see 6 and 12). With
this strategy, the recommendation to reduce the total number of infected individuals is
to employ two directed graphs, one for the susceptible individuals and other one for the
infected individuals. As indicated in Shtilerman and Stone (2015), this type of graphs
is frequently excluded because many tools in network theory assume irreducibility.
The study for highly mobile populations requires a different methodology and new
phenomena emerge. Inspired by Arino (2009), we have deduced that the conjunction
of a symmetric movement and a high degree of mobility leads to perfect mixing, i.e.,
the population has the same behavior as a population that inhabits a single region
with averaged values of the parameters. We stress that both elements are critical
for the negligible influence of the spatial variables. For instance, the isolation of
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infected individuals in a unique region, i.e., employing two different directed graphs
(one for the susceptible individuals and other for the infected individuals) pointing
to different regions, always produces the global eradication of the disease for highly
mobile populations; see Fig. A 2 in ESM. In this case, the movement is not symmetric
and obviously there is no perfect mixing.

The computation of the basic reproduction number and the synchrony have been
the dominant topics in spatial epidemiology (Allen et al. 2007; Johnstone-Robertson
et al. 2020; Rohani et al. 1999; Sun 2016). Nevertheless, neither the computation of
the basic reproduction numbers nor the synchrony are well understood in complex
metapopulations. Moreover, the recommendations based on these results are some-
times rather restrictive. On the other hand, the next subsection shows that an analysis
of the evolution of the total number of infected individuals can facilitate the control
of the epidemic independently of the precise value of the basic reproduction number
of the whole metapopulation.

4.2 Theoretical Insights in Management

Next we provide several guidelines that complement recent results (Artzy-Randrup
and Stone 2010; Heesterbeek 2015; Lamouroux et al. 2015; Silk 2019; Tien and Earn
2010): 1 The optimal topologies for populations with reduced mobility are suitable
directed graphs as described in Sect. 3. The use of directed graphs normally yields to
the concentration of infected individuals in one patch. Managers could take advantage
of this concentration to eradicate the epidemic by means of an additional vaccination
campaign in this patch.

2 The patches with the highest contribution to reduce the number of infected indi-
viduals are those with endemic disease that are close to becoming disease free. The
exportation of infected individuals from these patches is critical because any improve-
ment of them could lead to the local eradication of the disease.

3 For highly mobile populations with symmetric movement, the topology and the
diffusion coefficients do not play any role on the number of infected individuals.
Consequently, the suppression of connections between nodes has a negligible influence
on the number of infected individuals provided the resulting network is irreducible
and the movement is symmetric.

4 A folkloric result in epidemiology claims that increasing the movement rates has
a deleterious effect for disease eradication when there are patches with high risk of
infection. Nevertheless, the analysis of Sect. 3.1.2 suggests that, under certain condi-
tions, it is possible to see the opposite effect. Many authors have stressed that these
paradoxical phenomena are similar to those in source sink theory (Lamouroux et al.
2015; Ruiz-Herrera and Torres 2020). These words deserve some caution. Inmetapop-
ulation theory, for specieswith reducedmobility, if themovement from patch i to patch
j has a positive (resp. negative) effect on the total population size, then the movement
in the opposite sense has a negative (resp. positive) influence. However, as illustrated
in Fig. 1 second row, it is possible to see the same influence on the total number of
infected individuals for both routes in model (1).
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4.3 Future Research Directions

Thegenerality of ourmethodology implies that our results donot dependon aparticular
model formulation and are applicable to a broad range of situations. Nevertheless, we
have made several assumptions that would be desirable to drop in future works. For
instance, model (1) assumes implicitly that individuals continually change the number
of effective contacts per unit of time (Keeling and Eames 2005). A possible next
step could be to adapt our results in pairwise models. On the other hand, we always
assume that the dynamical behavior of (1) is simple, namely the global attraction to
an equilibrium. However, the presence of oscillations and chaotic patterns is broadly
documented in epidemiology (Barrientos et al. 2017; Ruiz-Herrera 2020). In this
context, our results are not valid and a different approach is needed. Other important
challenge is the analysis of populations with an intermediate degree of mobility, i.e.,
a finite value of h that is not close to zero. After profuse numerical computations, we
have observed that TI (h) follows the same pattern (independently of the topology):
TI (h) is essentially constant beyond a threshold h̃. In the interval (0, h̃), TI (h) can
exhibit oscillatory behaviors but at most, either a local maximum or a local minimum.
For instance, TI (h) is never of sinusoidal type.
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