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Abstract: High transportation costs and poor quality of service are common vulnerabilities in various
logistics networks, especially in food distribution. Here we propose a many-objective Customer-
centric Perishable Food Distribution Problem that focuses on the cost, the quality of the product,
and the service level improvement by considering not only time windows but also the customers’
target time and their priority. Recognizing the difficulty of solving such model, we propose a General
Variable Neighborhood Search (GVNS) metaheuristic based approach that allows to efficiently solve
a subproblem while allowing us to obtain a set of solutions. These solutions are evaluated over
some non-optimized criteria and then ranked using an a posteriori approach that requires minimal
information about decision maker preferences. The computational results show (a) GVNS achieved
same quality solutions as an exact solver (CPLEX) in the subproblem; (b) GVNS can generate a wide
number of candidate solutions, and (c) the use of the a posteriori approach makes easy to generate
different decision maker profiles which in turn allows to obtain different rankings of the solutions.

Keywords: routing problem; fresh food distribution; many-objectives optimization; customer-centric;
metaheuristic

1. Introduction

In recent years, the global food market has shown substantial growth; therefore, posing
new challenges, including in the global logistics market of perishable foods. It is widely
known that the processing of the later is different from the distribution of other goods
because they deteriorate continuously and have an expiration date. The transportation
process is the most critical phase in the entire food supply chain, where the trip path length
have the potential to influence the deterioration rate [1,2].

According to the Food and Agriculture Organization FAO (2018) [3], nearly half of
fruits and vegetables and approximately one-third of food produced is damaged across the
supply chain. Consequently, maintaining food quality and safety has become a primary
goal, which must be achieved to satisfy the consumers.

In addition to product quality, the service quality is another driver of customer satis-
faction. Responsiveness is a key factor for differentiation in terms of service quality, and it
can be measured by the punctuality with which products are delivered. It is therefore
becoming extremely critical that products are delivered within the time frame specified
by customers.

Furthermore, customers may have a specific target time in which they prefer to be
served. For instance, some restaurants tend to implement the Just In Time (JIT) inventory
system, which is a company’s management strategy oriented to receive goods as close as
possible to when they are actually needed, to ensure the freshness of their meals. Therefore,
the service fulfilment in the customer’s preferred time is one of the key indicators to
evaluate the service level.

Electronics 2021, 10, 2018. https://doi.org/10.3390/electronics10162018 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-9079-3248
https://orcid.org/0000-0003-1185-395X
https://orcid.org/0000-0002-7653-1452
https://doi.org/10.3390/electronics10162018
https://doi.org/10.3390/electronics10162018
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10162018
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics10162018?type=check_update&version=2


Electronics 2021, 10, 2018 2 of 21

In some other situations arising from real life, customers may have different priority
levels. This issue can be very significant, for instance, when deliveries to small restaurants
are considered. In fact, such restaurants need to be cyclically supplied since their storage
capacities are limited.

The perishable food distribution problem is usually modelled as a multiobjective Ve-
hicle Routing Problem (VRP). For example, taking into account the total cost minimization
and average freshness maximization [4]. However, as far as we know, other objectives
such as the quality of service improvement, the freshness level maximization, the damage
minimization, etc., are less explored.

A Customer-Centric Perishable Food Distribution Problem is studied in this work. A
vehicle routing problem with time windows is extended to consider (in addition to the
cost minimization), other objectives centred on the quality of service issues. Each customer
has preferences to be considered that are expressed through the time windows, a specific
target time, and pre-defined priority index. The objectives of the problem are to minimize
the total cost, to maximize the average freshness, to maximize the service level, and to
minimize the tardiness resulted from non-respect of priorities.

It is clear that the addition of multiple conflicting objectives and many parameters
in the model formulation increase its complexity up to a point where it cannot be solved:
either because the model is unsolvable or a certain problem’s information is not available
at the solving stage.

In this situation, providing a set of alternative solutions (set of routes), that can be
examined from different perspectives, is highly desirable.

At the end, the decision maker should select the solution that best fits his/her pref-
erences. In the context of multiobjective optimization such preference articulation can be
done in three different ways [5]. (1) A priori: where the decision-maker preferences are
incorporated before the search, or (2) A posteriori manner: by considering the preferences
after the search process, and the (3) Progressive way when the decision-maker prefer-
ences are incorporated during the search process. In this work the a posteriori approach
is adopted.

Most of the metaheuristics based approaches for solving vehicle routing problems, focus
on finding a near optimum solution. In contrast, our proposed approach exploits the fact that
metaheuristics can produce several alternatives for further evaluation by the decision maker
from other perspectives non included in the model (for example, subjective measurements).

The proposed approach consists of two main steps: (1) we solve a subproblem using
a General Variable Neighbourhood Search (GVNS) algorithm which generates a set of
different solutions and (2) using the decision-maker preferences, those solutions are ranked
using a possibility degree approach. In this way, a best compromise solution can be selected.

The paper is structured as follows. Section 2 provides a summary of related works.
In Section 3, we present the model formulation of the problem, and Section 4 describes
the proposed strategy to solve it. After that, we present the GVNS approach in Section 5.
Section 6 is devoted to assess the performance of GVNS, doing comparisons against CPLEX
software. A full example showing all the steps of the proposed solving strategy is shown
in Section 7. The last section is devoted to conclusions and provide some perspectives for
future research.

2. Related Works

Vehicle routing problems for perishable food are challenging compared to classical
VRP, due to the sensitivity of the handled products. Several works have addressed this
problem in different contexts, considering single objective. To overcome the issue of food
delivery in a cattle ranch, authors in [6] formulate the problem as a capacitated rural
postman problems with time windows and split delivery. In [7], a threshold-acceptance-
based algorithm was developed to solve vehicle routing and scheduling problem for fresh
milk, considering a fixed heterogeneous fleet. While in [8] a multi-depot VRP was used to
address a real-world fresh meat delivery problem. To solve the latter an approach based on
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stochastic search meta-heuristic was proposed. In a different work [9] a hybrid of heuristic-
exact method to solve a VRP with strict delivery quantities and narrow time windows
was presented. Authors in [10] proposed an application service provider that provides
delivery services to fresh food suppliers. The problem is modelled as a VRP that is solved
via a meta-heuristic. A decision support tool for grocery delivery service was proposed
in [11]. The tool helps in deciding to accept or reject deliveries, in addition to determining
routes and scheduling tasks to maximize the profit. In [12], authors describe a case-study
of perishable food delivery through a national highway. Considering an homogeneous
fleet able to carry fresh, frozen, and dry goods, the randomness in food delivery process is
considered in [13] through a stochastic VRP-TW model with time-dependent travel times.

For the distribution of fresh vegetables, authors in [14] solve the problem using
a heuristic. In [15], authors proposed an exact and approximate algorithms for blood
pickup. An integrated production-distribution for perishable food products was studied
by authors in [16], where they propose an iterative scheme to solve the problem in which
constructive heuristic is used to address the distribution part, and the production part
is solved using the Nelder–Mead method. In [17], the authors designed a closed-loop
multi-echelons supply chain for perishable goods considering uncertain demand, multiple
periods, and multiple products. An agent-based simulation was combined with geographic
information system in [18], to determine the quickest routes for delivering fresh products.
In another study [19], the authors propose a model and solving approach to address VRP for
perishables distribution on a real road network considering fuzzy time window. The real-
road network approach was also adopted by authors in [20] for perishables delivery.

Some researchers have considered several objectives. In [21], authors propose a
metaheuristic to solve the routing problem considering two main objectives: the total cost
minimization, and the maximization of the product freshness. The latter objectives were
also addressed in [22] using an evolutionary algorithm. To minimize the costs related to
the distribution, and the environmental effect in a two-echelon supply chain of perishable
food, authors in [23] proposed an approach based on particle swarm algorithm. Authors
in [24] applied a Genetic Algorithm (GA) to maximize the average freshness, and minimize
the total transportation cost.

Furthermore, the Gradient Evolution (GE) algorithm was used in [25] to solve multi-
objective routing problem with time windows, and time-dependency. A GA was suggested
by [26] to reduce the total overall cost of delivery, and environmental effect on a two-stage
capacitated vehicle routing problem. Recently, the GE algorithm was implemented by [27]
to solve a green VRP for perishables delivery, considering four objective functions. These
objectives were minimizing the overall distribution cost, reducing the environmental effects,
improving the service level, and minimizing the damage. Table 1 presents a summary of
related researches in the field of perishables distribution. Summing up the critical synthesis,
we have identified the following gaps in the literature:

• Most of the problems studied in the literature are bi-objective focusing on cost mini-
mization, and freshness maximization or service level improvement.

• There are a few studies that propose multi-objective models that take into account
simultaneously the economic, social, and environmental aspects.

• Those reviewed works considering the service level improvement objective, evaluate
the quality of service with respect to the satisfaction of the time window constraint.
However, the service level can be related to other criteria.

This paper is an attempt to fill in these gaps by proposing a many-objective model
that focuses on the cost, the quality of the product, and the service level improvement by
considering not only the time window respect, but also the target time and priority respect.

Our approach differs from the reviewed ones, in the sense that it exploits all the
alternative solutions’ generated by a metaheuristics and rank them afterwards for a set of
non-modelled criteria using scores intervals and a possibility degree approach. To the best
of our knowledge, we are the first to jointly integrate these aspects.
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Table 1. A review of the papers solving perishable food distribution problem.

References
Sustainability Aspect Sustainability Measure Objective

Functions MethodsEconomic Environmental Social

[6] * * Distribution cost
Time window respect Min. total cost Heuristics

[7] * Distribution cost Min. travel cost Heuristics

[8] * Distribution cost Min. travel cost Heuristics

[9] * Distribution cost Min. total distance Heuristics+
Exact

[10] * Distribution cost Min. total cost Metaheuristics

[11] * Profitability Max. profit Heuristics

[12] * Distribution cost Min. total cost Heuristics

[13] * * Distribution cost
Time window respect Min. total cost Heuristic

[14] * * Distribution cost
Products quality Min. total cost Heuristics

[15] * * Cost efficiency
Time window respect Min. total distance Exact+

Heuristics

[16] * *
Cost efficiency
Products quality
Time window respect

Max. profit Exact+
Heuristics

[17] * * Cost efficiency
Products quality Max. profit Exact

[18] * * *
Cost efficiency
Time window respect
Carbon emission

Min. total travel time Simulation

[19] * * Distribution cost
Time window respect Min. total cost Exact

[20] * * Distribution cost
Time window respect Min. total cost Exact

[21] * * Distribution cost
Products quality Min. total cost Heuristic

[22] * *
Cost efficiency
Products freshness
Time window respect

Min. total cost
Max. freshness

Mulit-objective
evolutionary
algorithm

[23] * * *

Cost efficiency
Products quality
Time window respect
Environmental impact

Min. total cost
Min. carbon emissions

Metaheuristics+

Pareto optimality

[24] * Distribution cost Min. total cost Evolutionary
computation

[25] * * Distribution cost
Time window respect

Min. total cost
Min. variance of vehicles

Multi-objective Gradient
Evolutionary algorithm

[26] * * *
Cost efficiency
Service level
Environmental impact

Min. total cost
Min. waiting time
Min. carbon emissions

NSGA-II

[27] * * *

Distribution cost
Products freshness
Time window respect
Environmental impact

Min. operational cost
Min. deterioration cost
Min. carbon emission
Max. service level

Many-objective Gradient
Evolutionary algorithm
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3. Model Formulation

The studied problem is represented as a direct graph denoted by G = (V, A).
V = {0, 1, . . . , n + 1} is the set of vertices, while the nodes 0 and n + 1 represents the
depot, and the remaining nodes C = {1, . . . , n} are the customers to serve. Each customer i
should be served within a specific time slot expressed by [ei, li].

The problem is modelled under the assumption of fleet homogeneity: all the refrig-
erated trucks have the same refrigeration characteristics, the same load capacity, and the
same constant velocity. All parameters are given in Table 2.

Table 2. Sets, parameters, and decision variables for model formulation.

Sets and Indices

V Set of nodes

C Set of customers

K Set of vehicles k ∈ K

i,j Indices of nodes

Decision Variables

xk
(i,j) A 0-1 decision variable, equal to 1 in case the truck k travels from node i to j, 0 otherwise.

yk
i A 0-1 decision variable, equal to 1 in case the customer i is served by the truck k, 0 otherwise.

tk
i A decision variable representing the starting service time at node i using the truck k.

Parameters

C(i,j) The transportation cost from node i to j.

F Fixed cost associated to a vehicle.

T(i,j) The travel time from i to j.

d(i,j) The distance between node i and j.

Ce The cost per unit time for the refrigeration during the transportation process.

Ui The unloading time at customer i.

C′e The unit refrigeration cost during the unloading.

Si The necessary time to serve customer i

qi The demand of customer i

P The price per unit product

qin The products remaining on the vehicle after serving the customer i

Q The loading capacity of trucks.

K The fleet of trucks

∂1 The spoilage rate of products during the transportation process

∂2 The spoilage rate of products during the unloading process

[ei, li] The time window of customer i

Ti
g The target time of customer i

SLi(t) The service level for customer i if we deliver their demand at time t.

M Large positive constant.
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3.1. The Optimization Goal Setting

The problem we are addressing is a many-objective customer-centric vehicle routing
problem with time windows. The objectives considered include the economic aspect by
minimizing different costs, and the customer-centric aspect by improving the quality of
service and product. The objectives are explained in detail in the following sub-sections:
Objective 1: Minimize the total cost

The overall cost Z1 includes: the fixed costs for using a vehicle denoted C1, transporta-
tion costs C2, the refrigeration costs C3, and the damage costs C4.

• The fixed costs
The fixed costs of a vehicle are not related to the mileage, and represent the mainte-
nance, and depreciation costs. Assuming that the depot has k refrigerated trucks to
provide distribution services for the set of customers.
F represents the fixed cost related to a vehicle. The fixed costs can be formulated as:

C1 = F ∑
k∈K

yk
0 (1)

• The transportation costs
We denote these costs by C2. They are proportional to the vehicle mileage. We consider
only the fuel consumption cost and express it as:

C2 = ∑
k∈K

∑
i∈V

∑
j∈V

C(i,j)x
k
(i,j)d(i,j) (2)

• The refrigeration costs
Include two types of costs: the costs incurred by the vehicle’s energy usage to maintain
a specific temperature in the process of transportation, in addition to the costs of extra
energy during the unloading.
The refrigeration costs during transportation process denoted C1

3 are expressed as follows:

C1
3 = Ce ∑

k∈K
∑
i∈V

∑
j∈V

xk
(i,j)T(i,j) (3)

The cost of energy supplied during the unloading C2
3 is expressed as:

C2
3 = C′e ∑

k∈K
∑
i∈C

yk
i Ui (4)

the total refrigeration cost
C3 = C1

3 + C2
3 (5)

• The damage costs
The quality of perishable foods decay with the time extension, and the temperature
changes during the transportation and handling process. If product quality falls to
a certain level, damage costs are incurred. The quality of refrigerated goods can be
expressed using the following function [28]:

Dt = D0e−∂t

where Dt, and D0 are, respectively, the quality of product at time t and from the
depot 0. The parameter ∂ is the spoilage rate of the product, and it’s assumed as an
increasing function to the temperature. Thus, we differentiate between the damage
cost during the delivery C1

4 , and the damage cost during the unloading C2
4 due to the

temperature changes (∂ varies also). The damage cost C1
4 is expressed as follows:

C1
4 = ∑

k∈K
∑
i∈C

yk
i Pqi

(
1− e−∂1(tk

i−tk
0)
)

(6)
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Where the coefficient ∂1 represents the spoilage rate of product when the vehicle is
closed, tk

i the arrival time of vehicle k at customer i, tk
0 the departure time of vehicle k

from the depot, and yk
i is 0-1 decision variable taking the value 1 in case the vehicle k

is servicing the customer i, and 0 otherwise.
The damage cost during the unloading C2

4 is defined as:

C2
4 = ∑

k∈K
∑
i∈C

yk
i Pqin

(
1− e−∂2Si

)
(7)

With qin the remaining quantity of product after servicing the customer i, the necessary
time to serve is customer i is Si , and ∂2 is the spoilage rate when the vehicle is opened.
The total damage cost is therefore:

C4 = C1
4 + C2

4 (8)

Given the cost components defined above, the total cost can be formulated as :

Z1 = C1 + C2 + C3 + C4 (9)

Objective 2: Maximize the average freshness
The average freshness can be defined as in [29] by the following formula:

Z2 =

∑
k∈K

∑
i∈C

yk
i qie

−∂1(tk
i−tk

0)

∑
i∈C

qi
(10)

Objective 3: Maximize the service level
Our research was motivated by the real life distribution problem of perishable food.

Indeed, customers may prefer to receive the products at a specific time in order to start
preparing meals for example. In addition, restaurants tend to implement the Just In Time
inventory management strategy to reduce the storage cost. Thus, instead of serving the
customers within a time window, we focus on fulfilment of customer requests as much as
we can at a specific target time. To assess the service level, we use the target time as an
indicator by means of the following function:

SLi(t) =



0 t < ei
f (t) ei ≤ t < Ti

g
1 t = Ti

g
g(t) Ti

g < t ≤ li
0 t > li

(11)

Function SLi(t), shown in Figure 1, represents the service level ensured for customer
i if we deliver their demand at time t. Ti

g is the target time, ei and li are, respectively, the
lower, and upper bounds of the time window.

The function f is non-decreasing, while g is a decreasing function that are defined
as follows:

f (t) =
t− ei

Ti
g − ei

(12)

g(t) =
li − t

li − Ti
g

(13)

Thus, the objective is to maximize the following function:

Z3 = ∑
i∈C

SLi(t) (14)
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Figure 1. The service level function.

Objective 4: Minimize the total tardiness
In this work, we study a customer-centric version of routing problems which focus

on customer satisfaction. In this variant, we consider serving the customers according to
priority level. Such a problem arises when customers have different levels of attention.
The motivation behind including priority indexes to our problem is that a customer may
have a set of locations to be serviced, and preferences to serve each node. Priorities of
customers can be defined by the decision-maker. We assume that we have a pre-defined
priorities. To consider priority indexes, we define a precedence matrix P, where Pij = 1
indicate that the customer i should be supplied before the customer j, and Pij = 0 if
customer i might be supplied after customer j.

The aim is to reduce overall tardiness as much as possible. The latter arises when a
lower-priority customer is served before a higher-priority customer; these customers are
either on the same route, or served by two different vehicles. In other words, the arrival
time of a vehicle k ∈ K at a customer with lower priority (tk

i ) is less than the arrival time
of a vehicle l ∈ K at a customer with higher priority (tl

j), with (l = or 6= k). The arising
tardiness in this case can be denoted τij, and can be expressed as the difference between
arrival times (when Pij = 1, with i 6= j) as follows:

τij =

{
tl

j − tk
i Pij = 1

0 Pij = 0/i = j
(15)

Therefore the tardiness of the system can be computed using the following formula:

Z4 = ∑
i∈C

∑
j∈C

τij (16)

3.2. Mathematical Model

Giving the parameters, decision variables, and the objectives described above, the prob-
lem can be formulated as a Mixed integer Program (MIP) as follows:

Min Z1 = C1 + C2 + C3 + C4 (17)

Max Z2 (18)

Max Z3 (19)

Min Z4 (20)

subject to:

xk
(i,i) = 0, ∀i ∈ V, ∀k ∈ K (21)



Electronics 2021, 10, 2018 9 of 21

xk
(0,n+1) = 1, ∀k ∈ K (22)

∑
k∈K

yk
i = 1, ∀i ∈ C (23)

∑
i∈V

xk
(i,j) = yk

j , ∀j ∈ C, ∀k ∈ K (24)

∑
j∈V

xk
(i,j) = yk

i , ∀i ∈ C, ∀k ∈ K (25)

∑
j∈V

xk
(0,j) ≤ 1, ∀k ∈ K (26)

∑
i∈V

xk
(i,n+1) ≤ 1, ∀k ∈ K (27)

∑
i∈C

Diyk
i ≤ Q, ∀k ∈ K (28)

tk
i + Si + T(i,j)x

k
(i,j) −M(1− xk

(i,j)) ≤ tk
j , ∀i, j ∈ V, ∀k ∈ K (29)

ei ≤ tk
i ≤ li, ∀i ∈ V, ∀k ∈ K (30)

∑
j∈C

∑
k∈K

xk
(0,j) ≤ |K| (31)

xk
(i,j) ∈ {0, 1}, ∀i, j ∈ V, ∀k ∈ K (32)

tk
i ≥ 0, ∀i ∈ V, ∀k ∈ K (33)

yk
i ∈ {0, 1}, ∀i ∈ C, ∀k ∈ K (34)

The objectives (17)–(20) correspond, respectively, to, minimize the total cost, maxi-
mize the average freshness, maximize the service level, and minimize the total tardiness.
Constraint (21) avoids going from a point to itself. Constraint (22) avoids going from the
depot to node n + 1, which represents the depot. Constraint (23) states only one vehicle
visits each customer exactly once. Constraint (24) and (25) indicate the flow balance of
input and output in each node. They state that for every truck and for every served client i
there is at most one client j such that the truck traverses the arc (i, j). The vehicle depart
from the depot 0, and return to the depot node n + 1 according to the Constraint (26)
and (27). Constraint (28) guarantees the respect of vehicle loading capacity. Constraint (29)
establishes the relationship between the service starting times at a customer and its suc-
cessor. Constraint (30) is the time window constraint. The maximum number of routes is
controlled by Constraint (31) to guarantee that the number of trucks departing from the
depot do not exceed the available fleet of trucks |K|.

4. The Solving Strategy

The problem under study is a many-objectives optimization problem. As the objectives
are conflicting, finding a single optimal solution is not possible. Instead, there is a set of
optimal solutions.Therefore, the decision maker has to settle on the importance of each
objective at some stage, in order to come up with a single solution.

The idea of this paper is to articulate the preferences after the optimization process as
an a posteriori approach. To the best of our knowledge, there is no effective tool that can
deal with the problem on its original form, considering simultaneously all the objectives.
Therefore, we propose to follow the steps described in the workflow diagram of Figure 2.
We start by solving a sub-problem using General Variable Neighbourhood Search (GVNS)
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by considering a single objective (17). Afterwards, we exploit the fact that meta-heuristics
can generate a set of alternative solutions. These alternatives are good with respect to the
modelled objective, and expected to perform relatively well with respect to unconsidered
objectives (the average freshness, the service level, and the tardiness).

Figure 2. Graphical depiction of the solving strategy.

The alternative solutions provided by the GVNS will be then ranked using the possi-
bility degree approach proposed in [30], allowing the DM to choose the best solution with
respect to their preferences for each criteria. The proposed ranking approach consists of
assigning an interval to each solution, where the intervals correspond to the potential scores
depending on the DM preferences. The solutions are then ranked through comparing their
corresponding intervals using the possibility degree. The steps of the possibility degree
approach are described in Appendix B. For further details, you can refer to [30].

5. General Variable Neighborhood Search Heuristic

Inspired by the successful application of variable neighbourhood search (VNS) heuris-
tics in solving vehicle routing problem, we propose a General Variable Neighbourhood
Search (GVNS) to solve the problem in hand. In this section, we begin describing the
VNS and the basic details of the proposed GVNS (additional details can be found in
Appendix A).

5.1. Variable Neighborhood Search (VNS)

VNS is a trajectory based-meta-heuristic proposed in [31] to solve combinatorial and
global optimization problems. The method’s key principle is to adjust neighbourhoods in a
systematic manner in order to arrive at an optimal (or near-optimal) solution. The VNS
heuristic is made-up of three major phases: neighbour generation, local search, and jump.

Let Nk, k = 1, ..., kmax be the neighbourhood structures, and let Nk(x) denote the set
of solutions in the k-th order neighbourhood of a solution x. The first step known as the
shaking or diversification phase, consists of applying a neighbour x

′ ∈ Nk of the current
solution is applied. Afterwards, by applying a local search to x

′
, a solution x” is obtained.

Finally, the current solution jumps from x to x” in case the latter improved the former.
Otherwise, the neighbourhood’s order is incremented, and all the steps are repeated unless
a stopping criteria is met.

In the field of vehicle routing problems, VNS and its variants have been widely used
and recognized as efficient for solving such hard optimization problems. As examples, we
can mention a VNS for a multi-depots VRP with time windows [32], a guided VNS for a
large scale VRP [33], a RVNS to solve the VRPTW [34], and a VNS for periodical VRP [35].
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5.2. GVNS Implementation Details

In GVNS, Variable Neighbourhood Descent (VND) is used for local search. When
designing a GVNS, one should take the following design decisions: the number of neigh-
bourhood structures, the order in which they will be explored, how the initial feasible
solution is generated, the acceptance criterion and the stopping conditions. These elements
define the configuration of the GVNS.

The main steps of GVNS are shown in Algorithm 1. GVNS starts by an initialization
phase (line 1) in which a feasible solution is generated. The best solution is set as the first
feasible solution (line 2). After selecting the neighbourhood structures for the shaking
stage Ns, and for local search Nk (line 3), the stopping condition is then chosen (line 4).
The stopping condition corresponds to a number of iterations M that will be set in the
computational experience. The loop corresponding to lines 4–25 is repeated M times.
The shaking process (line 8), the local search (line 9), and the move decision (line 19) are
repeated until S = Smax. In the shaking phase a solution X′ is generated randomly at the
Sth neighbourhood of X∗(X′ ∈ Ns(X∗)). Then the local search is performed to find a better
solution X” from X′ using the NK neighbourhood structures.

Algorithm 1: GVNS

1 Initialization;
2 Set the current best solution X∗ ← X0;
3 Select the set of neighbourhood structures to be used in shaking phase NS(s = 1, . . . , smax) and the set of

structures for local search Nk (k = 1, . . . , kmax);
4 Choose a stopping condition M;
5 while the stopping condition M is not meet do
6 S← 1;
7 repeat
8 Shaking : randomly create a solution X’ from the Sth neighborhood of Ns(X∗), the current best solution;
9 Perform Local search using Variable Neighbourhood Descent;

10 set K ← 1 ;
11 repeat
12 explore the Kth neighbourhood searching for the best neighbor X" of X’ in Nk(X′);
13 if f (X”) ≤ f (X′) then
14 Update x′ ← X” and K ← 1;
15 else
16 K ← K + 1
17 end
18 until K = Kmax;
19 Move or not;
20 if the local optima is better that the current best solution then
21 Update x∗ ← X′ and S← 1
22 else
23 S← S + 1
24 end
25 until S = Smax;
26 end

Remaining details are available in Appendix A.

6. GVNS Performance Evaluation

This section reports the computational experiments done to evaluate the efficiency of
the proposed GVNS. The results are compared against those provided by an exact method
(CPLEX) on a subproblem of the original model.
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6.1. Data Description

To assess the performance of the proposed GVNS algorithm we conduct computa-
tional experiments on a subset of the well-known Solomon instances (https://www.sintef.
no/projectweb/top/vrptw/solomon-benchmark/(accessed on 20 August 2021)). These
instances, originally developed for the classical vehicle routing problem with time window
are modified to fit our problem. They are, in total, 56 instances that are classified into
six categories. In our case, we test on the following categories: R1, RC1, and C1. In R1
customers locations are generated randomly; in C1 instances have clustered distributions
of customers, while in RC1 instances have semi-clustered with a mix of clustered and ran-
domly distributed customers. We conduct experiments on the following selected instances:
R101, C104, and RC107. We denote the instances as in the following example: R101-20 is
the instance of class ‘R1’ with 20 customers.

The parameters of the algorithm are set to the following values: α1 = 0, α2 = 1, Λ = 2, µ = 1.
The stopping criteria M which correspond to the number of iterations, is fixed to 10.
The experiments were carried out on an Intel Core i7 processor with 1.99 GHz speed and
8 GB RAM.

6.2. Computational Experiments

Using a a sub-model of the MIP problem presented before, we run a set of experiments
to test the GVNS efficiency.

The submodel is:
Min C1 + C2 + C3 (35)

Subject to:
(21)− (22)− (23)− (24)− (25)− (26)− (27)

(28)− (29)− (30)− (31)

(32)− (33)− (34)

The GVNS algorithm was coded in Python and the mathematical model was coded in
the OPL modelling language, and solved with the CPLEX optimization solver. For CPLEX,
we set the run time limit to 900 (s).

Table 3 provides the best results obtained by GVNS (out of 10 runs), the CPLEX
solutions, and also the percentage gaps between both solutions. The GAP is calculated
as follows:

GAP =
ZGVNS − ZCPLEX

ZCPLEX
× 100 (36)

The results indicates that our algorithm achieved the same objective value as CPLEX
in 4 instances (R101-10, R101-20, R101-40, RC107-10). Furthermore, CPLEX failed to solve
22 instances within the time limit. The CPU time consumed by GVNS is less than the time
spent by CPLEX. This can be clearly identified in Figure 3.

https://www.sintef.no/projectweb/top/vrptw/solomon-benchmark/
https://www.sintef.no/projectweb/top/vrptw/solomon-benchmark/
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Table 3. Comparison between best GVNS and CPLEX solutions.

Instance
GVNS Solution CPLEX Solution

Gap (%)
Objective Time (s) Objective Time (s)

R101-10 630.52 0.04 630.520 1.76 0
R101-20 1224.18 3.59 1224.18 7.15 0
R101-30 1665.78 3.64 1664.10 11.20 0.1
R101-40 2223.10 6.51 2223.10 363.00 0
R101-50 2600.48 14.36 2589.92 858.00 0.4
R101-60 2969.64 26.44 No Sol
R101-70 3543.04 35.74 No Sol
R101-80 3794.16 51.77 No Sol
R101-90 4159.70 84.99 No Sol

R101-100 4398.88 111.70 No Sol

RC107-10 436.32 0.06 436.32 1.74 0
RC107-20 771.70 1.45 No Sol
RC107-30 1147.52 4.09 No Sol
RC107-40 1469.18 8.21 No Sol
RC107-50 1860.02 20.33 No Sol
RC107-60 2434.92 45.78 No Sol
RC107-70 2657.12 180.10 No Sol
RC107-80 3023.60 249.30 No Sol
RC107-90 3401.92 358.50 No Sol
RC107-100 3591.20 589.60 No Sol

C104-10 1068.34 0.01 1068.34 0.65 0
C104-20 2121.10 5.02 2118.96 15.15 0.1
C104-30 3111.16 23.75 No Sol
C104-40 4279.34 51.13 No Sol
C104-50 5228.74 75.10 No Sol
C104-60 6341.10 69.57 No Sol
C104-70 7572.30 151.30 No Sol
C104-80 8591.68 590.80 No Sol
C104-90 9636.78 777.90 No Sol

C104-100 10740.60 943.40 No Sol

Figure 3. The GAP and CPU time difference between GVNS and CPLEX for every exactly solved
instance.
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7. Application Example

Once verified the efficiency of the GVNS, we provide here a complete example of the
proposed solving approach, shown in Figure 2. This section reports the test instance used,
the computational experiments performed, and the results obtained.

7.1. Data and Parameter Setting

The proposed approach is applied to identify the solutions of interest for a set of
100 customers. For the data, we conduct experiments on the the category RC101 of
Solomon’s instance presented in Section 6.1, that we adapted to our problem. For set-
ting the customer’s target time, we assume that it’s the midpoint of the corresponding time
window. The refrigerated vehicles used to deliver products have a fixed cost of EUR 25,
and the fuel consumption is estimated to be 3 EUR/km. For the GVNS parameters, we use
the same as in previous experiment Section 6.1. The other parameters are given in Table 4.

Table 4. Problem parameters setting.

Parameter Value

P 20 EUR/Unit
∂1 0.002
∂2 0.003
Ce 0.03 EUR/unit
C′e 0.04 EUR/unit
α 0.8

7.2. Generation of Alternative Solutions

We ran our GVNS metaheuristic 9 times to obtain the alternative solutions reported
in Table 5. The algorithm provides only the total cost for each solution. Afterwards, we
compute the average freshness, the service level, and the tardiness corresponding to each
alternative solution. We can observe that the total cost varies between 17,966.3 and 18,323.9,
the average freshness between 58.64 and 62.17, the service level from 25.71 to 30.17, and
the total tardiness varies from 1,328,918 and 1,716,339.

Table 5 can be understood as a decision matrix, where solutions (1–9) are the alterna-
tives among which the DM have to choose, and the total cost, average freshness, service
level, and tardiness are the criteria for which the performance of alternatives is measured.

Table 5. The set of alternative solutions.

Total Cost Average Freshness Service Level Tardiness

S1 18,294.37 62.17 29.02 1,455,295
S2 18,323.90 58.64 25.71 1,621,316
S3 18,256.38 62.02 30.06 1,498,330
S4 18,120.14 61.03 28.32 1,716,339
S5 18,277.78 62.12 30.71 1,328,918
S6 18,011.75 61.74 27.91 1,504,620
S7 18,179.60 61.08 27.16 1,467,776
S8 18,013.66 61.76 27.51 1,480,522
S9 17,966.30 61.66 26.87 1,562,182

7.3. Decision Maker Preferences and Ranking of Solutions

At this point, the preferences of the decision maker should be considered to rank the
alternatives. These will be done using scores intervals and the possibility degree approach
described in Appendix B.

The preferences are established through a linear ordering of the criteria and every
order corresponds to a DM profile. We define the following three profiles:
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• Economic-centric (E-c): Cost �p Average freshness �p Service level �p Tardiness.
• Product-centric (P-c): Average freshness �p Cost �p Service level �p Tardiness.
• Customer Satisfaction-centric (C-c): Service level �p Cost �p Average freshness

�p Tardiness.

where the symbol �p should be read as “at least as preferred to”
The rankings of solutions under the three profiles are shown in Table 6.

Table 6. Ranking of solutions for every DM profile.

Rank 1 2 3 4 5 6 7 8 9

E-c S5 S3 S6 S8 S1 S4 S9 S7 S2
P-c S5 S1 S3 S8 S6 S7 S9 S4 S2
C-c S5 S3 S1 S6 S8 S7 S4 S9 S2

The results show that every profile lead to a different rank of the solutions. Analysing
the highly ranked alternative over different scenarios, we can note that the solution S5
presented in Figure 4 retain the first position among all scenarios. For the second-ranked
alternatives, S3 retain the position for both economic and customer-centric scenarios.
However, there is a rank reversal for the profile P-c, where the alternative S1 moves to the
second position. We can also notice that S1 and S3 interchange their positions in profiles
P-c and C-c.

Figure 4. The Top-Ranked solution S5 represented on graph.

By analysing the top-ranked solution S5 represented in Figure 4, we found that
13 vehicles are used to deliver the products under customer requirements. Furthermore, we
observe many arcs crossing in the tours. Indeed, in the literature, many solving strategies
for VRP are based on crossing avoidance hypothesis, which is stated in [36,37]. However,
crossing arcs appeared in our solutions due to customers requirement ( time windows,
priority indexes).
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8. Conclusions and Perspectives

In this paper, we propose a many objective customer-centric Perishable Food Distribu-
tion Problem and a strategy to solve it. The model distinguishes four objectives: minimize
the overall cost, maximize the average freshness of products, maximize the service level by
fulfilling the customer demand within the time range required, and in the target time if
possible. We also minimize the tardiness of the system resulted from the non-respect of
customer’s priority.

To solve the problem, we propose a strategy that starts by solving a sub-problem
considering only the cost minimization objective, using a General Variable Neighbourhood
Search algorithm (GVNS). The performance of GVNS in the sub-problem is compared
against an exact method (CPLEX) allowing us to conclude that the method is efficient.

Moreover, the algorithm generates a set of diverse solutions that are then evaluated to
integrate the other criteria (average freshness, service level, tardiness). To come up with a
single solution of interest for the decision maker among those generated by the GVNS, we
used score intervals and a possibility degree approach allowing the DM to rank the set of
alternatives solutions based on his/her preferences. The combination of GVNS and the
possibility degree approach is tested on a full example that allows to assess the impact of
criteria preferences on the solutions ranking.

Future work will be devoted to further explore the use of GVNS like methods as
candidate solutions generators and to study how to address environmental features in the
model like congestion of the routes and/or reducing CO2 emissions.
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Appendix A. The General Variable Neighborhood Search GVNS

In this appendix we describe both the initial solution generation and the neighbour-
hood structures implemented in GVNS.

Appendix A.1. Initial Solution Generation

Solution construction refers to the creation of a set of routes for the vehicles by selecting
nodes (customers), and inserting them in routes already created or in a new route. The two
famous types of solution construction used for VRP are the sequential construction and the
parallel construction. The first feasible solution is found by the insertion heuristic called I1.

Insertion heuristic I1 belongs to the sequential construction heuristics described by
Solomon in [38]. It’s based on expanding the current initialized route by inserting unrouted
customers. The main idea is described in Figure A1, where a customer k is inserted between
i and j.

Figure A1. Insertion heuristic.
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The insertion heuristic I1 initialize the route with a ‘seed’ customer, which is either
the farthest from the depot or the one with the lowest allowed starting service time. In our
approach, we initialize the route with the farthest customer. Afterwards, two criteria
C1(i, u, j) and C2(i, u, j) are used to insert at each iteration an unrouted customer u into
the current route, between a pair of adjacent customers i and j. Let (i0, i1, i2, . . . , im) be the
current route where i0 = im = depot. For each unrouted customer u, we compute its best
feasible insertion position in the route as follows:

C1(i(u), u, j(u)) = min
P=1...m

C1(ip−1, u, ip)

In the literature the criterion C1 is calculated based on the extra travel time, and the
extra euclidean distance resulted after the insertion of customer u.

C1(i, u, j) = α1C11(i, u, j) + α2C12(i, u, j)

where

α1 + α2 = 1, α1 ≥ 0 α2 ≥ 0

C11(i, u, j) = DST
iu + DST

uj − µDST
ij′

C12(i, u, j) = bju − bj′

DST
iu , DST

uj , and DST
ij′ are, respectively, the distances between customers i u, u j, and i j.

bju denotes the new starting service time at customer j, and bj′ is the starting service time
at j before inserting u. The distance savings are regulated by the Parameter µ. Following
that, the best node u∗ to insert in the route is chosen based on the second criteria as the one
for which

C2(i(u∗), u∗, j(u∗)) = Maxu{C2(i(u), u, j(u)}|
u is unrouted and the route is feasible

Unless all unrouted customers are inserted, the algorithm initiates a new route when
no more feasible insertions are found.

The criterion C2 is computed as follows:

C2(i, u, j) = λd0u − C1(i, u, j), λ ≥ 0

where λ is a parameter used to specify how much the best insertion position for an unrouted
customer is affected by the distance from the depot d0u. On the other hand defines how
much the best place depends on the extra distance and the time needed to visit the customer
by the current vehicle.

Appendix A.2. The Neighbourhood Structures

The choice of neighbourhood structures and the order in which we explore them is
of crucial importance. Indeed, local search methods sequentially accept solutions that
improve the objective function value. Thus, the solution quality depends heavily on initial
solutions and the neighbourhood structure NS. The NS can be based on several moves
(operators). The following terms are employed: inter-route, and intra-route.

Intra-route operator make moves within one route in order to reduce the travel cost,
while inter-route operator make moves between two separate routes.

We used in our approaches four neighbourhood structures corresponding to moves
presented in Figure A2, in the following order: GENI, CROSS, 2-OPT, RELOCATE. This
order is based on cardinality, which implies moving from relatively poor to richer neigh-
bourhood structures [39].
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Figure A2. Description of the basic move operators.

We note that generally in the literature, the neighbourhood structures NS used in the
shaking phase are different from the NS in the local search. However, we choose to use the
same neighbourhood structures in both phases.

• Relocate: In this operator the customer visit is moved from a route to another.
• GENI: Is a variant of the relocate operator which consists of placing a customer two

customer nodes on the closest destination path, even though they are not consecutive.
• CROSS: The key concept behind cross exchange is to remove two edges (k, k + 1) and

(i− 1, i) from the first route, and remove (l, l + 1) and (j− 1, j) from the second route.
Then, by adding the edges (i− 1, j),(j− 1, i), (k, l + 1) , and (l, k + 1) the segments
i− k and j− l are swapped.

• 2-OPT: Replace two of the tour’s edges with two additional edges, and iterates until
no further change is necessary.

Appendix B. A Possibility Degree Based Approach to Rank Solutions

This appendix summarizes the main aspects of the approach proposed in [30], which
departs from a decision matrix like

c1 c2 . . . cn

A1 x11 x12 . . . x1n
A2 x21 x22 . . . x2n
Am xm1 xm2 . . . xmn

where A1, A2, . . . , Am are the alternative solutions from which decision makers have to se-
lect, and c1, c2, . . . , cn are the set of criteria for which alternative performance are evaluated.
xij is the value of alternative Ai under the criterion cj.

One way to sort the alternatives is to first combine their performance values using an
aggregation function in order to have a score, and second to sort them using such scores.

A basic aggregation function is the weighted aggregation, where in simple terms,
the decision maker provides a set of weights W = {w1, w2, . . . , wn} and then the score of an
alternative Ai is calculated as ∑m

j=1 wj × xij with ∑m
j=1 wj = 1. If criteria ci is more relevant

than cj for the decision maker, then wi ≥ wj.
Let us suppose we have just three criteria and the given preference order is c2, c1, c3.

Then we need to define w2 ≥ w1 ≥ w3 with w1 + w2 + w3 = 1. As the reader may notice,
there are infinite values for wi that verifies both conditions and every possible set of values
will give a different score for the alternative.

So instead of assigning a single score value, the proposed approach calculates an
interval of the potential scores that an alternative can attain.

The main steps are detailed below.
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Appendix B.1. Decision Matrix Normalization

Before applying an aggregation function, the decision matrix needs to be normalized
so it becomes dimensionless and all of its elements are comparable. While there are different
normalization techniques, the following method is adopted here: For benefit criteria:

nij =
xij√
m

∑
i=1

x2
ij

i = 1, . . . , m, j = 1, . . . , n

For cost criteria:

nij = 1−
xij√
m

∑
i=1

x2
ij

i = 1, . . . , m, j = 1, . . . , n

Appendix B.2. Intervals Calculations

Let us assume that the DM express his/her preferences using an ordinal relation
among criteria denoted as c1 �p c2 �p . . . �p cn. The symbol �p is to be read as “at least
as preferred to”. This implies that the weights are ordered as w1 ≥ w2 ≥ w3 . . . ≥ wm.

All the potential scores that an alternative Ai can attain are included in the interval
denoted as Ii = [Li, Ui] with Li, Ui are, respectively, the minimum, and the maximum
scores obtained through solving two simple linear programming problems

Li = MIN
m

∑
j=1

wj × xij

Ui = MAX
m

∑
j=1

wj × xij

s.t. for both problems

w1 ≥ w2 ≥ w3 ≥ . . . ≥ wm
m

∑
j=1

wj = 1

wi ∈ [0, 1]

Appendix B.3. Reference Interval and Interval’s Comparison

At this point, every alternative Ai has an associated interval Ii = [Li, Ui].
Next a reference alternative A∗ and its corresponding interval I∗ = [L∗, U∗] are

identified. Such alternative A∗ is the one with the greatest lower bound ∀ i, L∗ ≥ Li, thus
there is no solution that always scores better than A∗.

Then, every alternative Ai is compared against A∗ using a possibility function that
calculates the possibility degree of an alternative being better than another using their
corresponding intervals.

Let X = [xl , xr], Y = [yl , yr] be two non-negative interval numbers with xl , xr, yl , yr ∈
R+

0 . The possibility degree of X being greater than Y namely P(X ≥ Y), proposed in [40] is
defined as follows:

1. if X ∩Y = ∅

P(X ≥ Y) =
{

0 xr ≤ yl
1 xl ≥ yr



Electronics 2021, 10, 2018 20 of 21

2. if X ∩Y 6= ∅

P(X ≥ Y) =

∫ xr
yl

f (p)dp∫ xr
yl

f (p)dp +
∫ yr

xl
f (p)dp

where f (z) is the prescribed attitude function. In this paper, we assume that the decision
maker have a neutral attitude where f (z) = c. Then, the corresponding possibility degree
can be expressed as follows: P(X ≥ Y) = xr−yl

xr−xl+yr−yl

Appendix B.4. Ranking of Alternatives

Now, for every alternative Ai the value P(Ai ≥ A∗) is calculated. Then, the alterna-
tives are sorted based on such possibility degree values.
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