
 D
ow

nl
oa

de
d

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n

29
 S

ep
te

m
be

r
20

21

royalsocietypublishing.org/journal/rsif
Research
Cite this article: Villegas P, Muñoz MA,
Bonachela JA. 2020 Evolution in the Debian

GNU/Linux software network: analogies and

differences with gene regulatory networks.

J. R. Soc. Interface 17: 20190845.
http://dx.doi.org/10.1098/rsif.2019.0845
Received: 11 December 2019

Accepted: 21 January 2020
Subject Category:
Life Sciences–Physics interface

Subject Areas:
evolution, biocomplexity, computational

biology

Keywords:
evolving networks, network resilience,

information transmission
Author for correspondence:
Juan A. Bonachela

e-mail: juan.bonachela@rutgers.edu
Electronic supplementary material is available

online at https://doi.org/10.6084/m9.figshare.

c.4840281.

© 2020 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original
author and source are credited.
Evolution in the Debian GNU/Linux
software network: analogies and
differences with gene regulatory networks

Pablo Villegas1,2, Miguel A. Muñoz1 and Juan A. Bonachela3,4

1Departamento de Electromagnetismo y Física de la Materia, Instituto Carlos I de Física Teórica y Computacional,
Universidad de Granada, 18071 Granada, Spain
2Istituto dei Sistemi Complessi, CNR, via dei Taurini 19, 00185 Rome, Italy
3Marine Population Modeling Group, Department of Mathematics and Statistics, University of Strathclyde,
Glasgow G1 1XH, UK
4Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, NJ 08901, USA

JAB, 0000-0002-3316-8120

Biological networks exhibit intricate architectures deemed to be crucial for
their functionality. In particular, gene regulatory networks, which play a
key role in information processing in the cell, display non-trivial architec-
tural features such as scale-free degree distributions, high modularity and
low average distance between connected genes. Such networks result from
complex evolutionary and adaptive processes difficult to track down
empirically. On the other hand, there exists detailed information on the
developmental (or evolutionary) stages of open-software networks that
result from self-organized growth across versions. Here, we study the evol-
ution of the Debian GNU/Linux software network, focusing on the changes
of key structural and statistical features over time. Our results show that
evolution has led to a network structure in which the out-degree distribution
is scale-free and the in-degree distribution is a stretched exponential.
In addition, while modularity, directionality of information flow, and
average distance between elements grew, vulnerability decreased over
time. These features resemble closely those currently shown by gene regulat-
ory networks, suggesting the existence of common adaptive pathways for
the architectural design of information-processing networks. Differences
in other hierarchical aspects point to system-specific solutions to similar
evolutionary challenges.
1. Introduction
Understanding the collective properties stemming from the interactions of a
large number of units such as genes, proteins or metabolites is of paramount
importance in biology [1–3]. Theoretical work focusing on the changes over
time of self-organizing networks can provide key information about these natu-
ral systems. Particularly, network theory provides us with a highly insightful
systems-level perspective to extremely complicated biological problems,
which has helped advance knowledge in fields such as neuroscience [4], ecol-
ogy [5] and epidemiology [6], to name a few [7]. The study of information
processing in living systems has greatly benefited from this network perspec-
tive, complementing parallel endeavours for the analysis of single pathways,
and providing a much richer understanding of collective phenomena emerging
from a large number of basic inter-related units [8,9].

More specifically, analyses of gene-regulatory, protein–protein and metabolic
networks have led to dramatic advances in systems biology [10,11]. Indeed, an
important step forward in the understanding of cell regulatory mechanisms was
the discovery of the scale-free degree distribution of such networks [11]. Most
networks within the cell show other non-trivial structural features such as a

http://crossmark.crossref.org/dialog/?doi=10.1098/rsif.2019.0845&domain=pdf&date_stamp=2020-02-12
mailto:juan.bonachela@rutgers.edu
https://doi.org/10.6084/m9.figshare.c.4840281
https://doi.org/10.6084/m9.figshare.c.4840281
http://orcid.org/
http://orcid.org/0000-0002-3316-8120
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

B
uz

z
R

ex

486
738

1126
1852

2664
4305

8747
15657

18601

22926

28743

36688

42981

49280
no. packages

B
o H

am
m

Sl
in

k

Po
ta

to

W
oo

dy

Sa
rg

e E
tc

h L
en

ny Sq
ue

ez
e

W
he

ez
y Je
ss

ie

St
re

tc
h

ldso

ncurses

less

libc5

xlib

gnuplot

octave

Figure 1. Left: sketch showing the official code-name and the total number of packages of all stable Debian releases (releases named after characters from the
movie Toy Story©); circle sizes are proportional to the number of packages in each distribution. Right: sample of the dependencies network for the first release,
where different colours indicate package moduli in the network (which we do not specify here); inset: subgraph showing specific dependencies between some well-
known packages from this distribution.

royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

17:20190845

2

 D
ow

nl
oa

de
d

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n

29
 S

ep
te

m
be

r
20

21

small-world property (arising from an small average path
length, or distance between any two elements), a highly
modular structure, and an extraordinary responsiveness to
environmental cues, aswell as dynamical and structural robust-
ness [11]. In particular, gene regulatory networks (GRNs)—
which display mutual regulatory interactions between
genes—have been identified as directed networks that exhibit
a scale-free distribution for the number of regulated genes
(called ‘out degree’ due to the direction of information flow)
but an exponential distribution for the number of controlling
genes (in degree). In addition, cellular states can be identified
as attractors of the dynamics of genetic regulatory systems,
which allows the latter to bemodelled—at least in first approxi-
mation—as random Boolean networks [12–15]. In such a
simplified approach, mutual regulatory interactions, described
as direct links between genes/nodes, involve arbitrary random
Boolean functions whose inputs are the on/off states encoding
the expression level of other genes. This type of binary set-up
has shed light on important conceptual problems such as the
emergence of diverse phenotypes from a unique genetic
network, the existence of transitions among them (e.g. cell
differentiation and reprogramming), and the emergence of
cycles in cell states. In this regard, two examples are the pre-
dicted expression patterns of the fly Drosophila melanogaster
[16] and the yeast cell cycle [17]. In either case, it seems clear
that GRNs involve some type of information transmission (or
flow) encoded in mutual regulatory interactions, determining
the cellular response to different stimuli or environmental
conditions [11,18]. The analysis and studyof interacting systems
with similar information flow can help understand the
particular structure and emergent properties of genetic systems.

One particular aspect of GRNs that remains elusive is
how such properties and functionality have emerged through
evolution. The main reason for this knowledge gap is that the
information currently available provides a limited picture
of the evolutionary path followed by biological networks.
Artificial, self-organized networks, on the other hand, can
offer an unrivaled level of detail regarding their different
‘evolutionary’ stages. In this respect, self-organized software
networks have been shown to constitute an excellent model
for the study of the evolution of biological networks [19–24].

Software networks are composed of packages, acting
as nodes and forming the basic unit of software. These are
inter-related due to the need for a package to reuse code of
other packages in order to work properly (the so-called depen-
dencies, i.e. package i needs other packages to be functional).
Similar to GRNs, the storage and transmission of information
through this network enables the proper functioning of the
operating system as a whole. Thus, it is pertinent to ask:
what can the characterization of the evolutionary history of a
software network reveal about the evolution and main
architectural features of GRNs?

To shed light onto this question, we focus here on the
Debian GNU/Linux operating system (Debian, hereon), for
which publicly available historical data exist. First, we charac-
terize the evolving structure of the network of dependencies
between software packages in the differentDebian distributions
released up to June 2019. Then, we explore the emergent prop-
erties of such networks and their role in the functionality of the
system. With this information, we finally scrutinize the simi-
larities and differences between the structure and emergent
properties of software networks and GRNs.
2. Debian networks
Debian is an open-source operating system that, in the last
25 years, has changed in a self-organized way through the col-
lective action of a myriad of developers. The history of Debian
shows many small intermediate steps but only 14 important
stable releases (evolutionary steps) that have progressively
altered its networked structure. This evolution has resulted
in a sustained growth generating an actual network of inter-
actions between thousands of packages, starting from a very
small initial release in its first version (figure 1). Such packages
must translate the information coming from other packages in
order to satisfy the so-called dependencies, i.e. pieces of soft-
ware required for the package to work. Thus, we can

2

1

5

2

3

4

15105

2.0

0.5

1.0

1.5

1 10210
10

1

1
cP

 (
k in

)
lo

g
P

 (
k ou

t)

1

10–2

10–4

10410310210

1412108
release number

a

b

rel. number

ex
po

ne
nt

s

kout

kin

·k
in

Ò

64

b = 0.5

b = 2

(a)

(b)

(c)

a ~ 2.1

Figure 2. (a) Cumulative degree distribution for outgoing dependencies for the first (orange) and last (black) releases in log–log scale. (b) Logarithm of the degree
distribution for in-degree for the same two releases, showing a half-normal distribution decay (β = 2) for the first version and a stretched exponential distribution
(β = 0.5) for the last one. (c) Exponents from the out-degree distribution of dependencies power law (blue) and the in-degree distribution stretched exponential
(red) for the first release to the most recent one. Inset: mean in-degree for all distributions.

royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

17:20190845

3

 D
ow

nl
oa

de
d

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n

29
 S

ep
te

m
be

r
20

21

represent each version of the operating system using a differ-
ent network for each of the different evolutionary stages.
Nodes represent packages and links join every node with the
packages it depends upon, thus forming a directed network
of dependencies [20]. Note that the specific interpretation of
the flow of information determines the direction of the links.
Flow in terms of dependencies imposes that directional links
start on a focal package and point to its dependencies (e.g.
[20]). Flow in terms of information transmission, like in
GRNs, is typically represented with opposite directional
links: because i depends on j, information flows from j to i.
Here, we use the latter convention to facilitate comparison
between the Debian networks and GRNs.

We have focused on the relationships between the binary
x86 packages included in Debian, for its first 14 (stable) distri-
butions (figure 1, left). Figure 1 (right panel) shows one
specific example of package inter-dependence extracted from
the very first distribution. In addition to dependencies reflect-
ing requirements, additional relationships between packages
reflect incompatibilities among them (i.e. ‘conflicts’) [25]. In
most cases, conflicts are used to avoid duplication in virtual
facilities of the system, as explained in the Debian Policy
Manual [26]. Most conflicts occur between potential candi-
dates to fulfil a requirement or function, grouped under the
term ‘virtual packages’. Such virtual facilities are supplied
by particular choices among many possibilities (e.g. both fire-
fox and konqueror provide the same service, www-browser).
Here, we resolve conflicts by averaging over the ensemble of
potential networks resulting from random choices for each
‘virtual package’ (see Methods), which allows us to focus
only on the network of mutual dependencies.
3. Results
Since the initial Buzz distribution, which included 486
packages, the total number of packages forming each Debian
stable version has grown exponentially (see figure 1 and elec-
tronic supplementary material, SI-1). Here, we scrutinize this
growth across releases (evolutionary steps), and analyse how
it translated into the emergent structural properties of the
associated Debian software networks.
3.1. Degree distributions
To characterize the changes in the structural properties of
Debian over time, we first analysed the in- and out-degree
distributions (averaged over realizations of the network
obtained after resolving conflicts). The former describes the
probability for a package to depend on kin packages, whereas
the latter describes the probability for a package to be a
requirement for kout packages. As shown in figure 2a and
2b (respectively), the cumulative out-degree distribution exhi-
bits a power law tail, P(kout) � k�aþ1

out , with characteristic
exponent α, and the in-degree distribution follows a stretched
exponential, P(kin)∼ exp (− (kin/τ)

β), with characteristic expo-
nent β (see Methods and electronic supplementary material,
SI-2, for fits and estimations of their likelihood). As shown
in figure 2c, the power law for the out-degree distribution
shows an exponent very close to α = 2 for all releases (red
points). The exponent of the stretched exponential for the
in-degree distributions (blue points) decays from β = 2 in
the early releases (normal distribution), to an approximately
stationary value β≈ 0.5 after the eighth release. The inset
of figure 2c shows that the mean in-degree connectivity,
〈kin〉, grows from 1.5 to an apparently stationary value
approximately 4.75, reached after the eighth release.
3.2. Emergence of a non-trivial modular structure
We also quantified computationally how modular is the struc-
ture of each release’s network, for which we used Newman’s
modularity index [7] (Q, see Methods). As figure 3a shows,
modularity grows continuously for the last six versions (i.e.
after the eighth release), from 0.5 to approximately 0.7 (orange
points).We further explored the possibility for suchmodularity
tobe anartefact of thedegree sequence of thenodes. To this end,
and although Newman’s modularity index already discounts
the random expectation for random networks, we constructed
null/random structure networks by randomizing the original
networks exchanging links between random nodes under cer-
tain rules. Specifically, for each original (conflict-resolved)
Debian network (D), we constructed a random copy (D0) in
which a random swapping processmaintained both the incom-
ing and the outgoing connectivity of each single node unaltered

http://www-browser

0.2
2 1412

1

0.008

0.002
0.004
0.006

15105

10864

0.7

m
od

ul
ar

ity
 in

de
x

(Q
)

av
er

ag
e

pa
th

 le
ng

th
 (

l G
)

s Q

0.6
8

6

4

2

0.5

0.4

0.3

release number

rel.

2 141210864
release number

Debian
randomized

1 15105
rel.

s l G

0

0.2

0.4

(a) (b)

Figure 3. (a) Modularity index (Q) for the different Debian releases (orange points) and the ensemble of random (swapped) networks (blue points). (b) Average
path length (lG) for Debian networks (orange points) and the ‘swapped’ networks (blue points). In both panels, insets show the standard deviation for the ‘swapped’
networks. Q and lG are averaged over 10

4 realizations.

royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

17:20190845

4

 D
ow

nl
oa

de
d

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n

29
 S

ep
te

m
be

r
20

21

(seeMethods). As illustrated by the blue points in figure 3a, the
randomized networks show a sustained decrease of their mod-
ularity index until the eighth distribution. The standard
deviation of the modularity index for the ‘swapped’ networks
shows a pronounced peak around such version as well (see
inset). Moreover, the randomization allowed us to calculate a
Z-score for Q to estimate the difference in modularity between
the Debian networks and their randomized counterparts (nor-
malized by the available diversity, i.e. standard deviation, of
the ensemble of possible networks; see Methods). This Z-score
shows a steep increase over time, i.e. the modularity of
Debian becomes progressively larger than that of its random-
network counterparts over time (see electronic supplementary
material, figure S4).

We also measured how the average path length (lG) chan-
ged across the different Debian releases. Figure 3b shows a
small increase in lG for the original networks (orange
points) constrained in (1.75–3.8). This growth slows down
after version 8. For the ‘swapped’ networks (blue points), lG
shows a steep increase that jumps to a considerably higher
value (approx. 8.75) around the sixth version, and remains
at that level afterwards. This gap approximately coincides
with a pronounced peak for its standard deviation in the
ensemble of randomized networks (see inset). The Z-score
for the average path length grows monotonically, showing
two growth regimes before and after the eighth release (see
electronic supplementary material, figure S4). As the size of
the network increases, the distance that information needs
to travel between any two packages in Debian becomes
larger on average, but grows much more slowly than that
for the randomized counterparts. Moreover, Debian grew
accordingly to the expectation for a typical small-world net-
work (i.e. proportionally to the logarithm of the number of
elements; see electronic supplementary material, figure S5),
with different trends before and after the eighth release.
3.3. Evolving hierarchy
To further analyse the evolution of the network structure, we
explored how diverse aspects of the hierarchy of the Debian
networks changed with time. Due to the multi-faceted char-
acter of hierarchy, there is no single definition or observable
to measure [27], and hence we monitored three different indi-
cators: (a) the level of ‘stratification’ or re-use of software in
the network; (b) the directionality of the information flow;
and (c) the level of reciprocal dependence between packages
(see Methods).

To measure the stratification/re-use of software in the
network, we introduced three categories for packages [28]:
(i) packages with no dependencies (‘sources’ or information
containers); (ii) packages that depend on other packages and,
at the same time, some packages depend on them (‘pass-
through’ nodes); and (iii) packages that no other package
depends upon (‘sinks’). In this way, each network is decom-
posed into three distinct hierarchical levels or strata. We
monitored the fraction of packages within each of these hier-
archical categories across the different releases. As shown in
figure 4a, ‘source’ packages only represent a small fraction of
any given network, whereas the proportion of ‘sinks’ decreases
progressively from a remarkable 0.8 value observed for the first
distributions. At the same time, the number of ‘pass-through’
nodes increases, indicating that most sinks moved to this
category (i.e. packages tend to be re-used).

To quantify the directionality of information flow, we
measured the so-called flow index, χ [29]. In a nutshell,
χ quantifies the fraction of links pointing from lower to
higher hierarchical levels, i.e. fraction of links that are aligned
with an inherent directionality. Avalue of χ close to 1 indicates
that there is an overall directional flow such that a large
fraction of links point from higher to lower hierarchical
levels. As figure 4b shows, Debian overall exhibits high direc-
tionality (i.e. low 1− χ values). Although, for earlier releases,
the fraction of links pointing in the direction of the flow
decreases discontinuously, the trend inverts after the eighth
release, and 1− χ shows a steep decrease (i.e. increase of
directionality) over the following versions of Debian.

To quantify the reciprocal dependence between packages,
we measured a classic hierarchy index, the Krackhardt hierar-
chy score, KHS [30]. Here, we represented 1−KHS, which
indicates the fraction of pairs that show mutual or reciprocal
dependence (i.e. package i can be reached from package j and
the other way around). Figure 4c shows a monotonic decrease
for 1−KHS, representing a loss of symmetrically linked pairs
in the network across releases.

sink
middle
sources

(a) (b) (c)

1412108
release number

fr
ac

tio
n

64

0.8

0

0.2

0.4

0.6

2 1412108
release number

642 1412108
release number

1
–

K
H

S

1
–

c

64

10–210–2

10–4

10–3

10–3

2

Figure 4. (a) Evolution of the three main hierarchical categories defined in the network: ‘sinks’, ‘pass-through nodes’ and ‘sources’. Observe that the ‘sources’ of
information, i.e. nodes that do not depend on any node, constitute a small fraction of the network. However, ‘sinks’, situated in the lowest point of the hierarchy, are
disappearing over time. (b) Flow index (represented as 1− χ to allow for the semi-log plot), showing an initial discontinuous decrease followed by a monotonic
increase after the eighth version. (c) Reciprocal of the Krackhardt hierarchy score, 1− KHS, which decreases monotonically for all the Debian releases. Altogether
points to a dynamic change of the various aspects of hierarchy for the network.

2 4 6 8 10 12 14
release number

10−3

10−2

vu
ln

er
ab

ili
ty

1 10 102 103 104

no. damaged packages (d)

1

10−2

10−4

10−6

10−8

P
 (

d)

t = 2

t = 1.55
Bo
Etch
Stretch

Figure 5. Vulnerability index for the different Debian distributions obtained after
104 ‘damage’ experiments, showing an overall decrease of vulnerability. Inset:
scale-free avalanches of damage after an attack to one random node of the net-
work for three representative releases (averaged over possible initial seeds and
networks in the ensemble). Lines are guides to the eye for the slopes indicated
by the exponents (dashed-dotted red line for τ = 2, and black line for τ = 1.55).
Vertical lines represent the total number of packages in each distribution, which is
indicative of upper cutoffs. Error bars are smaller than the symbols.

102

105

102

103

104

105104

no. packages

in
fo

rm
at

io
n

co
nt

en
t (

si
ze

, i
nM

b)

103

s2

s

Figure 6. Total number of packages measured as a function of the system
size for each Debian release. After the initial, approximately linear growth, a
slowing down can be appreciated as general trend. Lines are guides to the
eye showing a linear growth (black) and a quadratic growth (red).

royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

17:20190845

5

 D
ow

nl
oa

de
d

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n

29
 S

ep
te

m
be

r
20

21

In summary, the three measures altogether show that the
hierarchy of the Debian networks has changed over time,
strengthening the overall directionality of the flow and keep-
ing a low reciprocal dependence, while increasing the re-use
of software.

3.4. Evolution of robustness
One plausible expectation for the development of any
operating system is that the ability of its associated network
to retain functionality should increase over versions in spite
of damages, i.e. it is expected to enhance its robustness. To
explore this possibility, we perturbed each Debian network
by removing at random one package (i.e. we made a package
unusable), and followed the consequent cascade of failures by
removing nodes depending upon removed packages, which
ultimately affects a certain fraction of the whole network.
We called this fraction of affected nodes ‘vulnerability’.
More precisely, we defined vulnerability as the fraction of
affected packages averaged over initial damage ‘seeds’ and
network ensemble. Figure 5 shows that the vulnerability
index decreases across versions, and exhibits a slow-down
for this trend after a peak around the eighth to ninth
distributions.

We also analysed the full probability distribution for the
number of packages affected by each cascade of failures (or
avalanches size, using the jargon from damage spreading
analyses [31]). This avalanche-size distribution shows a
power-law tail with an exponent that decreases over time
(from an initial τ = 2 to τ = 1.55 for the last distribution;
inset of figure 5).

3.5. Network information content
We also studied the relationship between the total size
(measured in megabytes) of the different packages, as a
proxy for the total amount of information contained in the
Debian network. In particular, we analysed the evolution of
the sum of the sizes of all packages for each potential net-
work as a function of the number of packages (figure 6).
As happens with other properties, the information content
grows monotonically across time, but it changes its slope
around the eighth distribution, moving from a linear to a
superlinear trend (i.e. the information content of the network
grows faster than the number of packages).

0.75

lin
ks

Q

3.5

0.50

103 104

103 104

103 104

size
103 104

103 104

103

105

103

104

E. coli

S. cerevisiae

M. tuberculosis

P. aeruginosa

B. subtilis

Nannochloropsis

104

size

0.75

1.00

1.25

1.50

1.75

s1.25

2.00

ex
po

ne
nt

s
l G

1.5

10–3

10–2

10–3

2.0

2.5

3.0

0.50

0.55

0.60

0.65

0.70

1
–

K
H

S

1
–

c

(a) (b)

(c) (d)

(e) (f)

a
b

Figure 7. Comparison between Debian and GRNs for different properties dependent on size (horizontal axis for all panels). (a) Total number of links versus system
size, with Debian networks represented by grey circles and GRNs by symbols. (b) Exponents associated with the scale-free (α) and stretched exponential (β) degree
distributions mentioned in the previous sections. (c) Newman modularity index (Q) for Debian networks (grey circles) and GRNs (symbols). (d) Average path length
versus system size for Debian networks (grey circles) and GRNs (symbols). (e) One minus the flow index, 1− χ, for different Debian releases and GRNs as a function
of the system size. (f) One minus the Krackhardt hierarchy score, 1− KHS.

royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

17:20190845

6

 D
ow

nl
oa

de
d

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n

29
 S

ep
te

m
be

r
20

21

3.6. Results for gene-regulatory networks
We analysed GRNs from publicly available datasets for
E. coli, M. tuberculosis, B. subtilis, P. aeruginosa and S. cerevisiae
[32–35]. Below, we summarize our main findings, and refer
the reader to electronic supplementary material, SI-4 and
SI-5, for a comprehensive presentation of all these results.

GRNs are very sparse networks, with mean incoming
connectivity around 1.5–3.5 in most of the cases [15]. They
show a total number of links for a given total number of
nodes similar to that of the Debian networks (figure 7a
were coloured nodes of diverse shapes correspond to
GRNs). The distribution for the in-degree—the number of
regulatory interactions in which a given gene intervenes—
has been reported to be exponential [11], whereas the
distribution for the out-degree—the number of interactions
controlling the expression of a given gene—is scale free
[11]. Our own analyses reveal that the out-degree
distribution decays as a power law, P(kout) � k�a

out, with
characteristic exponent α∈ (1.5− 2) [10,36,37], and the in-
degree distribution follows a stretched exponential, P(kin)∼
exp (− (kin/τ)

β), with characteristic exponent β∈ (0.5− 1.5)
(see electronic supplementary material, SI-4). These values
are similar to those shown by the Debian networks, given
their respective network sizes (figure 7b). For the analysed
GRNs, Newman’s modularity index Q is in the interval
(0.55–0.8), and the average path length lG in (2.0–3.5)

104

102

10–2 10–1

104

102

1

10–3
10–4

1 106 1 102 104

105104103

104

s2

plasmids

eukaryotes

prokaryotes

viruses

s

no. genes

ge
no

m
e

si
ze

 (
M

bp
)

102

1
10

Figure 8. Genome size as a function of the total number of genes (in log–
log scale) for multiple microbial organisms (data from the NCBI database
[39]). Observe the linear scaling associated with prokaryotes and viruses
(red and blue points, respectively) as well as plasmids (lower inset, violet
points). On the other hand, data for eukaryotes depart from this linear
relationship, becoming steeper to an approximately quadratic scaling
(orange dots, enlarged in the upper inset). Lines are guides to the eye.

royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

17:20190845

7

 D
ow

nl
oa

de
d

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n

29
 S

ep
te

m
be

r
20

21

(figure 7c,d), values that are lower than those of the Debian
networks. On the other hand, GRNs show a very prominent
hierarchical structure: more than 85% of the nodes are ‘sinks’,
i.e. they do not control other genes [28,38], there is a very
strong directionality of the information flow (i.e. very small
1− χ value), and the fraction of reciprocally expressed
genes, 1−KHS, is very low (figure 7e,f). As these panels
show, GRNs show a range of values for the directionality of
information flow that is wider than that shown by the
Debian networks, and both systems share similarly small
fractions of information-unit pairs with a reciprocal depen-
dence for a given network size; furthermore, the values for
the different GRNs seem to follow the functional dependence
between this fraction and network size shown by Debian.

Moreover, it is possible to quantify ‘damage avalanches’ in
GRNs. Gene knock-out experiments silence individual genes
and monitor the cascade of genes that are affected by such a
network-state change. The knock-out of a single gene is able
to generate ‘avalanches’ or cascades of ‘failures’ whose sizes
follow a power-law distribution with an exponent τ = 3/2
(see electronic supplementary material, figure S8).

We also explored how the information content of GRNs
(defined as the amount of DNA per haploid nucleus in the
genome, also called C-value) correlates with the number of
genes in their genome for various organisms for which infor-
mation was publicly available [39]. A positive correlation
between the total number of genes and the genome size has
been known for a long time to hold for many living organ-
isms [39], from prokaryotes to eukaryotes and plasmids, as
well as viruses. As illustrated in figure 8, our results confirm
this positive correlation. Moreover, the figure shows that
viruses, plasmids and prokaryotes share the same linear
trend (i.e. the genome size of the organisms is not affected
by organismal complexity). For eukaryotic cells, however,
information content grows faster than the number of genes
(i.e. the GRN contains much more DNA per gene than
expected from the number of genes). This phenomenon has
been called the ‘C-paradox’ or, more recently, ‘C-value
enigma’ [40], and has been explained as caused by the exist-
ence of non-coding DNA in eukaryotes [41], i.e. DNA
segments that do not encode protein sequences but are
believed to be important for control and regulation.
4. Discussion
Tracking the evolution of Debian software networks offers an
excellent opportunity to shed light and make conjectures
on how information-processing biological networks could
have possibly evolved. Here, we explored the emergent
architectural features of Debian networks achieved through
their evolutionary dynamics. In particular, we showed that
Debian networks are quite sparse, and show a scale-free struc-
ture for the out-degree distribution (representing the number
of dependent packages) and a stretched-exponential in-
degree distribution (representing the number of processing
packages). In addition, the comparison of the releases with
the ensemble of randomized networks allowed us to conclude
that progressively more modular structures emerge from (and
play an important role in) the development of software net-
works, and that this is not a simple artefact of the particular
degree distribution of the networks. The increase of the modu-
lar structure of the networks for the different releases is
especially significant because it suggests an effective increase
of their robustness, that is, in the ability to recover from mal-
functioning or damaged packages [20]. Moreover, the small
average path length and its change over versions reveal that
the typical distance for information transmission between
any two packages remained short regardless of the growing
network or their actual degree (i.e. small-world effects).

In addition, the evolutionary trend for the three hierarch-
ical categories identified here points to an increase in the re-
use of code as new software was developed, which may have
resulted from seeking a more efficient package use. As a con-
sequence, Debian is becoming progressively more ‘entangled’
[42]. The reuse of code (or software) to optimize the develop-
ment of the operating system is, nonetheless, concerted with
an effective and robust transfer of information, which is
appreciable in the fact that the measures of hierarchy that
refer to information flow show high directionality and low
reciprocal dependencies. The potential for information flow
improvement is compatible with the behaviour observed for
lG, as well as the power-law distribution observed for the cas-
cade of failures originated from individual-package deletion.
For the latter, an exponent τ = 3/2 (approximately what we
observed for the last releases) is commonly interpreted as
underlying critical unbiased branching process dynamics
[31,43,44], and is observed in many other contexts in biologi-
cal systems [31]. However, our results stem from structural
effects, without requiring critical dynamics to explain them.
Moreover, while the network has become more entangled the
‘vulnerability’ of the system has decreased across releases. All
together suggests that Debian has evolved towards a robust
state in which code reuse is concomitant with an increase of
the modularity of the network and a decrease of the risk of a
collapse of the entire system [20]. Although the increase in
modularity in spite of the increase in the number of pass-
through packages may seem surprising, it is understandable
if this reutilization of resources seems to be done ‘within
moduli’ and thus preserving modular structure.

Interestingly, many of the structural properties discussed
above seem to have changed their trend at a particular
moment of the Debian evolutionary path. For example, the
exponents of the in- and out-degree distributions, average in-
degree, average path length and modularity (of the swapped
versions) all reach a stationary value around version 8. This
points to an evolutionary steady state (or, at least, stasis) for

royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

17:20190845

8

 D
ow

nl
oa

de
d

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n

29
 S

ep
te

m
be

r
20

21

the network structure. At this particular version, we also
observed an acceleration in the increase of modularity of the
original networks and their total size, and a deceleration in
the growth of the network (number of packages) and vulner-
ability of the network. Finally, also at this version, we
observed high peaks of variability in different quantities (e.g.
Q, lG). These peaks indicate a large variability in the ensemble
of randomized networks, which reveals some type of dramatic
structural reorganization (transition) of the network ensemble.
Wewere unable to track down any specific event/change in the
development history of Debian that could explain solely all this
phenomenology, although some important changeswere intro-
duced in the versions around and at the eighth release. From a
historical point of view, the eighth release saw dramatic design
changes that were meant to make the distribution more user-
friendly, and more focused by reducing the broad spectrum
of architectures covered by the operating system. This release
introduced the 64-bit architecture, and a more modular instal-
lation system (debian-installer) that included a tool to retrieve
all dependencies for a specific package upon installation [25].
At the same time, Ubuntu (a distribution which aimed to
improve the ease of the installation and use of Linux without
compromising in robustness) was born, built on Debian’s
architecture and infrastructure. This distribution became very
popular and its development led to a more professional/less
hobbyist approach from developers, many of which created
andmaintained packages for both distributions. This feedback
between Debian and Ubuntu (and change of mindset) may
have also been important for the improvement in robustness
that we report here. Thus, not only technical aspects but also
environmental and sociological aspects have contributed to
the evolution of Debian.

4.1. Analogies and differences between Debian and
gene-regulatory networks

On the basis of a reductionist position, the central dogma of
molecular biology states that each isolated gene—i.e. the
basic unit of heredity—is transcribed into RNA. The latter, in
turn, is usually translated into a protein, which can regulate
the expression of other genes, usually inter-related with other
proteins, thus forming a complex network of regulatory inter-
actions [45]. This entails causal relationships and the transfer of
sequential information between such genes. Therefore, genetic
expression is an essential biological process that can be rep-
resented in terms of GRNs [37]. Based on causal topological
relations and the transfer of sequential information, we pro-
pose that the software networks of Debian constitute a useful
analogy to understand some aspects of GRNs.Many of the fea-
tures described here forDebian networks are similarly found in
real GRNs.

The role of software packages in Debian networks is played
by genes in GRNs, while the role of software dependencies is
played by genetic regulatory dependencies or interactions.
Both are typically sparse networks, with a similar structure
reflected in their degree distributions: a scale-free structure
for the out-degree distribution and a stretched-exponential
in-degree distribution, a high level of modularity, and similar
(small) values for the average path length indicating small-
world effects. These similarities suggest the existence of
some common underlying generative mechanisms for both
types of networks, maybe focused on the common goal of
information transmission.
GRNs showahierarchical structure,which has been hypoth-
esized to confer an effective and robust way to transfer
information and coordinate diverse processes [28,46], fostering
the flow of information and providing effective responsiveness
to external stimuli [38,47]. Differently from Debian, however,
the number of pass-through information units in GRNs is very
reduced, showing a more pyramidal hierarchical structure.
This is a key difference between the two systems. Although an
advantagewhen it comes to the development of new individual
packages, reuse of code should a prioridecrease its robustness, as
it facilitates the spread of damage. The suggestion that the reuse
of code in Debian is kept within modules allows the operating
system to grow with the advantages of both the efficiency of
code reuse and modularity. Thus, both systems seem to have
found ways to develop robustness, Debian aiming at a cost-
efficient design principle [28]. Nonetheless, both Debian and
GRNs show a similar behaviour for ‘damage avalanches’, as
the latter also show a power law distribution for avalanche
size with an exponent close to 3/2 (see above) [31,44].

Remarkably, the Debian software networks show a cross-
over from linear to superlinear behaviour (figure 6) similar to
that of the so-called ‘C-value paradox’ for GRNs (figure 8).
For the latter, this change of slope is now known to result
from the existence of non-codingDNAsequences. The function-
ality and role of such non-coding DNA, however, has not been
fully elucidated and its utility or futility are still under discus-
sion, even if it seems clear that it is important for gene
regulation [48,49]. However, it is important to stress that some
studies have revealed the tendency of the genomic size to
increase evolutionarily because mutation sometimes duplicates
parts of the genome (i.e. by means of non-adaptive processes
without, in principle, any functional meaning). Some of these
duplicated genes were removed by natural selection (purging
non-beneficial sequences) while some others resulted in novel
substrates for the evolution of further complexity and function-
alities, possibly including a role in regulatory functions [50].
Interestingly, looking into the structure of individual Debian
packages, we found extra pieces of information that are present
in each package beyond the essential information required to
work. In particular, handbooks or extra control information
encapsulated in particular control files, which contain meta-
information such as the needed dependencies, as well as
mechanisms designed to avoid errors during unpacking and
installation processes. Such information ensures a proper trans-
mission of information during the installation process, i.e.
ensures that packages are really functional in thewholenetwork
[51]. This forms for software the equivalent of non-codingpieces
ofDNA inGRNs. In this analogy, at least one of the roles of non-
coding pieces is the monitoring and minimization of gene dis-
ruption during the transcriptional process. We hypothesize
that control files and extra information comprise and ensure
the resilience of the network, minimizing risks in the trans-
mission of the information of the system. The increased
growth of the amount of information in the highly complex net-
works of the last releases points to an increasing relevance of
control files as an effective strategy in order tominimize the dis-
ruption during information processing. This could allow for an
emergent optimized structure for the flow of information
throughout the network. Although all these hypotheses can
help understand the function and evolution of non-coding
DNA, further work is needed to clarify the role and changes
of control files over releases, as well as the evolution of the
internal structure of software packages.

royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

17:20190845

9

 D
ow

nl
oa

de
d

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n

29
 S

ep
te

m
be

r
20

21

5. Conclusion
As shown here, in many aspects Debian networks are able to
recreate the emergent properties observed in real GRNs
[19,20,28]. In both synthetic and real biological networks,
common solutions emerge to the general problem of designing
circuitry that optimizes storage, information processing (of
both internal and external stimuli), and robustness. Debian
has evolved towards a stable scale-free out-degree
distribution that is also shown by GRNs. In Debian, this prop-
erty emerges from a network that grows by adding packages
that are not necessarily needed by others but that require
using key existing ones. For GRNs, this would mean that the
genome grows by adding new genes that are controlled by
key, existing genes, opening thus new regulatory pathways.
In fact, empirical evidence from analysis of E. coli and yeast
GRNs reveals that duplication of target genes has contributed
far more to the growth of their GRNs than duplication of
transcription factors (e.g. [52]). The exponential in-degree
distribution in Debian resulted from a self-regulated limitation
as to how much of the existing network is reutilized by new
packages, i.e. there is a finite, well-defined mean number of
dependencies per package. For GRNs, this self-regulation is
convenient as it reduces the vulnerability of the network.
The evolution of Debian has increased its robustness through
a reduced average path length and increased modularity,
which could be a key reason why current GRNs, also showing
low lG and high Q, have been selected for. The two types of
networks, however, have found different strategies to increase
their robustness. Whereas the growth of the Debian network
has required a within-moduli reuse of packages, GRNs have
a pyramidal hierarchy that could have resulted from adding
new genes that introduce functional redundancy (as opposed
to re-using existing ones), which considerably reduces the
vulnerability of the network.

The studyof similarities anddifferences betweenDebian and
GRNs has helped here understand better the evolution of the
latter. Conversely, it might be of interest to consider borrowing
and implementing some features and strategies from real
GRNs for the development of operating systems. In future
work, we plan to develop amathematicalmodel of growing net-
works aimed at accounting for these common architectural
features between software and GRNs, which can help identify
the origin and nature of the divergences between them. More-
over, we plan to extend this study to other Linux distributions
and other software ecosystems (e.g. Python Package Index
or R-CRAN), with the aim to unveil key commonalities and
differences that help us understand the different evolutio-
nary solutions to common developmental challenges. Similar
to the present study, such an analysis can contribute to our
understanding of the evolutionary processes that current
self-organized biological networks have undergone or will
undergo in the future.
6. Methods
6.1. Debian networks
The Debian GNU/Linux networks are composed of software
packages (units of software), which can depend on other packages
(the so-called dependencies) and/or exhibit conflicts with other
packages. A dependence implies a direct link (from package A to
package B) that means that package B should be installed first to
be able to install A (and, consequently, information flows from B
to A). For conflicts, the link means that package A cannot be
installed if package B is present (i.e. installed) in the system.

Conflicts are mostly used to avoid duplicities that can ensue
from the different options for the same requirement or function-
ality (grouped in the so-called ‘virtual packages’), as well as to
select between previous versions of different packages, as
explained in the Debian Policy Manual [26]. Conflicts between
virtual facilities can be solved by considering particular choices
among the various possibilities. Thus, in order to build Debian
potential networks excluding duplication of the so-called virtual
packages, here we selected randomly a particular choice of
each possible real package providing such functionality, and
obtained averages over choices (specifically, over 104 realizations
for every distribution), hence exploring the whole ensemble of
networks for each release. As a result of solving such conflicts,
these Debian potential networks indicate the requirements (or
dependency network) between the different packages.

6.2. Statistical analysis
We performed curve fits for the cumulative degree distribu-
tions for dependencies, employing a Levenberg–Marquardt
algorithm [53]. For cases compatibles with power laws, we
used cumulative distributions for this curve-fitting; in other
words, if the expectation is a degree distribution of the form
P(k)∼ k−α, we studied instead its cumulative version
(cP(k) ¼ P(K � k) ¼ Ð K

kmin
P(k) dk � cP(k) � K�aþ1). On the other

hand, when the expectation was a stretched exponential (e.g.
in-degree distribution), that is P(k) � exp (� (k=t)b), we instead
curve-fitted its transformation logP(k) � �(k=t)b.

In order to compare modularity and another properties
across releases (see below), we also computed the Z-score with
respect to random networks, with random realizations respecting
the degree sequence of the network (i.e. the number of in- and
out-neighbours for each package). The Z-score of an observable
in the network is defined as the difference between the observa-
ble and the mean, weighted by standard deviation of the
randomization: z = (x− μ)/σ.

6.3. Network swapping
Given the original degree sequence of a Debian network (D), the
randomization of the Debian potential networks is performed by
making modifications on a copy (D0). Such modifications are
no more than a swapping process that maintains both the in-
degree and the out-degree connectivity. The swap of the links
is performed as follows:

(i) Select randomly a packageA and one of its dependencies a.
(ii) Select randomly a different package B and one of its

dependencies b with the conditions: (i) A cannot depend
on b and (ii) B cannot depend on a.

(iii) Swap both links, i.e. A depends on b and B depends on a.
(iv) Iterate this process a large number of times until the net-

work becomes fully randomized, i.e. until the observable
in the randomized network reaches a stationary state.

Once this process has been completed, the result is a random-
ized version of the focal Debian network/release that can be
used to measure all the desired structural features, with the con-
fidence that the networks are comparable. Here, we used an
ensemble of over 104 realizations for every release.

6.4. Network structural features
To measure of the modularity index Q in the different releases of
Debian we used a heuristic method, the Louvain method [54] on
directed networks [55], based on modularity optimization.

royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

17:20190845

10

 D
ow

nl
oa

de
d

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n

29
 S

ep
te

m
be

r
20

21

The modularity index is defined as [7]

Q ¼ 1
m

X
i, j

Aij �
dini d

out
j

m

" #
d(ci, c j), (6:1)

where Aij is the adjacency matrix, m is the number of edges, dini
(respect. douti) stands for the in-degree (out-degree) of the node
i and ci is the community to which vertex i belongs. The Louvain
method provided in this case an excellent accuracy due to the
relatively large size of the last Debian releases.

On the other hand, the average path length on the graph (lG,
i.e. the number of steps along the shortest paths for all possible
pairs of network nodes) is defined as

lG ¼ 1
m � (m� 1)

�
X
i=j

d(ni, n j), (6:2)

where m is the number of links and d(ni, nj) is the shortest
distance between nodes i and j. Here, we measured lG using
the igraph R package [56].

To quantify hierarchy, we used three different indicators. First,
we measured the number of sinks, sources and pass-through
packages, which provides an indication of hierarchical level and
re-use of packages in the network. In addition, we measured an
index that focuses on the directionality of the information flow in
the network [29], the so-called flow index χ, which measures the
fraction of links pointing from lower to higher hierarchical levels,
i.e. aligned with the inherent directionality. Computing χ requires
the determination a priori of a hierarchical ordering of all nodes in
the network for which one can use the algorithm developed by
Dominguez-Garcia et al. [29]. The index takes the value χ = 1 in
the limit of perfect feedforwardness (perfect directionality or hier-
archical organization), and χ = 1/2 in the absence of a well-
defined directionality (e.g. for a random directed network). For
convenience when using a semi-logarithmic plot, we represented
in our figures 1− χ instead. Lastly, we measured a version of the
classical hierarchy index that quantifies the level of mutual depen-
dencies. The Krackhardt hierarchy score KHS is defined as the
fraction of (unordered) node pairs (i, j) such that node i is reachable
fromnode j but node j is not reachable fromnode i or vice versa [30]:

KHS ¼ 1� V
N(N � 1)

, (6:3)

whereV is the numberof symmetrically linkedpairs andN(N− 1) is
the total number of pairs in the network. Here, we instead rep-
resented 1−KHS, which indicates the fraction of pairs that show
mutual dependencies.
Data accessibility. Code and data used for the analysis of the Debian
GNU/Linux and gene regulatory networks is downloadable from
https://github.com/pvgongora/Debian.

Authors’ contributions. J.A.B. and M.A.M. conceived the project. P.V. per-
formed the numerical simulations and prepared the figures. P.V.,
J.A.B. and M.A.M. wrote and reviewed the manuscript.

Competing interests. We declare we have no competing interests.

Funding. We acknowledge Spanish-MINECO grant no. FIS2017-84256-
P (FEDER funds) for financial support, as well as the Consejería de
Conocimiento, Investigación y Universidad, Junta de Andalucía
and European Regional Development Fund (ERDF), ref. SOMM17/
6105/UGR.

Acknowledgements. We thank E. Estrada, P. Moretti and J. M. Martín for
very useful comments. We are also grateful to two anonymous
reviewers, whose comments and suggestions have greatly improved
this paper.
References
1. Benner SA, Sismour AM. 2005 Synthetic biology.
Nat. Rev. Gen. 6, 533–543. (doi:10.1038/nrg1637)

2. Purnick PE, Weiss R. 2009 The second wave of
synthetic biology: from modules to systems. Nat.
Rev. Mol. Cell Biol. 10, 410–422. (doi:10.1038/
nrm2698)

3. Khalil AS, Collins JJ. 2010 Synthetic biology:
applications come of age. Nat. Rev. Gen. 11,
367–379. (doi:10.1038/nrg2775)

4. Hagmann P et al. 2008 Mapping the structural core
of human cerebral cortex. PLoS Biol. 6, e159.
(doi:10.1371/journal.pbio.0060159)

5. Sole RV, Montoya M. 2001 Complexity and fragility
in ecological networks. Proc. R. Soc. Lond. B 268,
2039–2045. (doi:10.1098/rspb.2001.1767)

6. Pastor-Satorras R, Vespignani A. 2001 Epidemic
spreading in scale-free networks. Phys. Rev. Lett.
86, 3200. (doi:10.1103/PhysRevLett.86.3200)

7. Newman ME. 2003 The structure and function of
complex networks. SIAM Rev. 45, 167–256. (doi:10.
1137/S003614450342480)

8. Kitano H. 2002 Systems biology: a brief overview.
Science 295, 1662–1664. (doi:10.1126/science.
1069492)

9. Alon U. 2006 An introduction to systems biology:
design principles of biological circuits. London, UK:
CRC Press.

10. Jeong H, Tombor B, Albert R, Oltvai Z,
Barabasi A. 2000 The large-scale organization of
metabolic networks. Nature 407, 651–654. (doi:10.
1038/35036627)

11. Barabasi A-L, Oltvai ZN. 2004 Network
biology: understanding the cell’s functional
organization. Nat. Rev. Gen. 5, 101–113. (doi:10.
1038/nrg1272)

12. Kauffman S. 1969 Metabolic stability and epigenesis
in randomly constructed genetic nets. J. Theor. Biol.
22, 437–467. (doi:10.1016/0022-5193(69)90015-0)

13. Kauffman SA. 1993 The origins of order: self-
organization and selection in evolution. New York,
NY: Oxford University Press.

14. Gros C. 2011 Random Boolean networks.
Berlin, Germany: Springer.

15. Villegas P, Ruiz-Franco J, Hidalgo J, Muñoz MA.
2016 Intrinsic noise and deviations from criticality in
boolean gene-regulatory networks. Sci. Rep. 6,
34743. (doi:10.1038/srep34743)

16. Albert R, Othmer HG. 2003 The topology of the
regulatory interactions predicts the expression
pattern of the segment polarity genes in Drosophila
melanogaster. J. Theor. Biol. 223, 1–18. (doi:10.
1016/S0022-5193(03)00035-3)

17. Li F, Long T, Lu Y, Ouyang Q, Tang C. 2004 The yeast
cell-cycle network is robustly designed. Proc. Natl
Acad. Sci. USA 101, 4781–4786. (doi:10.1073/pnas.
0305937101)

18. Tkačik G, Callan CG, Bialek W. 2008 Information
flow and optimization in transcriptional regulation.
Proc. Natl Acad. Sci. USA 105, 12 265–12 270.
(doi:10.1073/pnas.0806077105)

19. Fortuna MA, Melián CJ. 2007 Do scale-free
regulatory networks allow more expression than
random ones? J. Theor. Biol. 247, 331–336. (doi:10.
1016/j.jtbi.2007.03.017)

20. Fortuna MA, Bonachela JA, Levin SA. 2011 Evolution
of a modular software network. Proc. Natl Acad. Sci.
USA 108, 19 985–19 989. (doi:10.1073/pnas.
1115960108)

21. Valverde S. 2005 Logarithmic growth dynamics in
software networks. Europhys. Lett. 72, 858. (doi:10.
1209/epl/i2005-10314-9)

22. Pang TY, Maslov S. 2013 Universal distribution of
component frequencies in biological and
technological systems. Proc. Natl Acad. Sci. USA 110,
6235–6239. (doi:10.1073/pnas.1217795110)

23. Keil P et al. 2018 Macroecological and
macroevolutionary patterns emerge in the
universe of GNU/Linux operating systems.
Ecography 41, 1788–1800. (doi:10.1111/
ecog.03424)

24. Valverde S. 2015 Punctuated equilibrium in the
large-scale evolution of programming languages.
J. R. Soc. Interface 12, 20150249. (doi:10.1098/rsif.
2015.0249)

25. Hertzog R, Mas R. 2014 The Debian Administrator’s
Handbook, Debian Wheezy from Discovery to
Mastery.

https://github.com/pvgongora/Debian
https://github.com/pvgongora/Debian
http://dx.doi.org/10.1038/nrg1637
http://dx.doi.org/10.1038/nrm2698
http://dx.doi.org/10.1038/nrm2698
http://dx.doi.org/10.1038/nrg2775
http://dx.doi.org/10.1371/journal.pbio.0060159
http://dx.doi.org/10.1098/rspb.2001.1767
http://dx.doi.org/10.1103/PhysRevLett.86.3200
http://dx.doi.org/10.1137/S003614450342480
http://dx.doi.org/10.1137/S003614450342480
http://dx.doi.org/10.1126/science.1069492
http://dx.doi.org/10.1126/science.1069492
http://dx.doi.org/10.1038/35036627
http://dx.doi.org/10.1038/35036627
http://dx.doi.org/10.1038/nrg1272
http://dx.doi.org/10.1038/nrg1272
http://dx.doi.org/10.1016/0022-5193(69)90015-0
http://dx.doi.org/10.1038/srep34743
http://dx.doi.org/10.1016/S0022-5193(03)00035-3
http://dx.doi.org/10.1016/S0022-5193(03)00035-3
http://dx.doi.org/10.1073/pnas.0305937101
http://dx.doi.org/10.1073/pnas.0305937101
http://dx.doi.org/10.1073/pnas.0806077105
http://dx.doi.org/10.1016/j.jtbi.2007.03.017
http://dx.doi.org/10.1016/j.jtbi.2007.03.017
http://dx.doi.org/10.1073/pnas.1115960108
http://dx.doi.org/10.1073/pnas.1115960108
http://dx.doi.org/10.1209/epl/i2005-10314-9
http://dx.doi.org/10.1209/epl/i2005-10314-9
http://dx.doi.org/10.1073/pnas.1217795110
http://dx.doi.org/10.1111/ecog.03424
http://dx.doi.org/10.1111/ecog.03424
http://dx.doi.org/10.1098/rsif.2015.0249
http://dx.doi.org/10.1098/rsif.2015.0249

royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

17:20190845

11

 D
ow

nl
oa

de
d

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n

29
 S

ep
te

m
be

r
20

21

26. Jackson I et al. 2017 Debian policy manual. See
http://www.debian.org/doc/manuals/debian-policy
v4.1.1.1.

27. Corominas-Murtra B, Goñi J, Rodríguez-Caso C. 2013
On the origins of hierarchy in complex networks.
Proc. Natl Acad. Sci. USA 110, 13 316–13 321.
(doi:10.1073/pnas.1300832110)

28. Yan K-K, Fang G, Bhardwaj N, Alexander RP,
Gerstein M. 2010 Comparing genomes to computer
operating systems in terms of the topology and
evolution of their regulatory control networks. Proc.
Natl Acad. Sci. USA 107, 9186–9191. (doi:10.1073/
pnas.0914771107)

29. Domínguez-García V, Pigolotti S, Munoz MA. 2014
Inherent directionality explains the lack of feedback
loops in empirical networks. Sci. Rep. 4, 7497.
(doi:10.1038/srep07497)

30. Krackhardt D. 1994 Graph theoretical dimensions of
informal organizations. In Computational
organizational theory (eds K Carley, M Prietula), pp.
89–111. Hillsdale, NJ: Lawrence Erlbaum Associates.

31. Muñoz MA. 2018 Colloquium: criticality and
dynamical scaling in living systems. Rev. Mod. Phys.
90, 031001. (doi:10.1103/RevModPhys.90.031001)

32. Gama-Castro S et al. 2015 Regulondb version 9.0: high-
level integration of gene regulation, coexpression,
motif clustering and beyond. Nucleic Acids Res. 44,
D133–D143. (doi:10.1093/nar/gkv1156)

33. Albergante L, Blow JJ, Newman TJ. 2014 Buffered
qualitative stability explains the robustness and
evolvability of transcriptional networks. Elife 3,
e02863. (doi:10.7554/eLife.02863)

34. Arrieta-Ortiz ML et al. 2015 An experimentally
supported model of the Bacillus subtilis
global transcriptional regulatory network.
Mol. Syst. Biol. 11, 839. (doi:10.15252/msb.
20156236)
35. Ma S, Kemmeren P, Gresham D, Statnikov A. 2014
De-novo learning of genome-scale regulatory
networks in S. cerevisiae. PLoS ONE 9, e106479.
(doi:10.1371/journal.pone.0106479)

36. Aldana M, Balleza E, Kauffman S, Resendiz O. 2007
Robustness and evolvability in genetic regulatory
networks. J. Theor. Biol. 245, 433–448. (doi:10.
1016/j.jtbi.2006.10.027)

37. Buchanan M. 2010 Networks in cell biology.
Cambridge, UK: Cambridge University Press.

38. Ravasz E, Somera AL, Mongru DA, Oltvai ZN. 2002
Hierarchical organization of modularity in metabolic
networks. Science 297, 1551–1555. (doi:10.1126/
science.1073374)

39. Geer LY et al. 2009 The NCBI biosystems database.
Nucleic Acids Res. 38, D492–D496. (doi:10.1093/
nar/gkp858)

40. Gregory TR. 2001 Coincidence, coevolution, or
causation? DNA content, cell size, and the C-value
enigma. Biol. Rev. 76, 65–101. (doi:10.1017/
S1464793100005595)

41. Ohno S. 1972 So much ‘junk’ DNA in our genome.
In Brookhaven Symp. Biol. 23, 366–370.

42. Donetti L, Neri F, Munoz MA. 2006 Optimal network
topologies: expanders, cages, Ramanujan graphs,
entangled networks and all that. J. Stat. Mech.
Theory Exp. 2006, P08007. (doi:10.1088/1742-5468/
2006/08/P08007)

43. di Santo S, Villegas P, Burioni R, Muñoz MA. 2017
Simple unified view of branching process statistics:
random walks in balanced logarithmic potentials.
Phys. Rev. E 95, 032115. (doi:10.1103/PhysRevE.95.
032115)

44. Rämö P, Kesseli J, Yli-Harja O. 2006 Perturbation
avalanches and criticality in gene regulatory
networks. J. Theor. Biol. 242, 164–170. (doi:10.
1016/j.jtbi.2006.02.011)
45. Crick F. 1970 Central dogma of molecular biology.
Nature 227, 561–563. (doi:10.1038/227561a0)

46. Wagner GP, Pavlicev M, Cheverud JM. 2007 The
road to modularity. Nat. Rev. Gen. 8, 921–931.
(doi:10.1038/nrg2267)

47. Babu MM, Luscombe NM, Aravind L, Gerstein M,
Teichmann SA. 2004 Structure and evolution of
transcriptional regulatory networks. Curr. Opin. Struct.
Biol. 14, 283–291. (doi:10.1016/j.sbi.2004.05.004)

48. Carey N. 2015 Junk DNA: a journey through the dark
matter of the genome. New York, NY: Columbia
University Press.

49. Mercer TR, Dinger ME, Mattick JS. 2009 Long non-
coding RNAs: insights into functions. Nat. Rev. Gen.
10, 155–159. (doi:10.1038/nrg2521)

50. Lynch M, Conery JS. 2003 The origins of genome
complexity. Science 302, 1401–1404. (doi:10.1126/
science.1089370)

51. Krafft MF. 2005 The Debian system: concepts and
techniques. San Francisco, CA: No Starch Press.

52. Teichmann SA, Babu MM. 2004 Gene regulatory
network growth by duplication. Nat. Genet. 36,
492–496. (doi:10.1038/ng1340)

53. Moré JJ. 1978 The Levenberg-Marquardt algorithm:
implementation and theory. In Numerical analysis
(ed. GA Watson). Lecture Notes in Mathematics, vol.
630, pp. 105–116. Berlin, Germany: Springer.

54. Blondel VD, Guillaume J-L, Lambiotte R, Lefebvre E.
2008 Fast unfolding of communities in large
networks. J. Stat. Mech. Theory Exp. 2008, P10008.
(doi:10.1088/1742-5468/2008/10/P10008)

55. Dugué N, Perez A. 2015 Directed Louvain:
maximizing modularity in directed networks.
PhD thesis, Université d’Orléans.

56. Csardi G, Nepusz T. 2006 The igraph software
package for complex network research.
InterJournal Complex Systems CX.18:1695, 1–9.

http://www.debian.org/doc/manuals/debian-policy
http://www.debian.org/doc/manuals/debian-policy
http://dx.doi.org/10.1073/pnas.1300832110
http://dx.doi.org/10.1073/pnas.0914771107
http://dx.doi.org/10.1073/pnas.0914771107
http://dx.doi.org/10.1038/srep07497
http://dx.doi.org/10.1103/RevModPhys.90.031001
http://dx.doi.org/10.1093/nar/gkv1156
http://dx.doi.org/10.7554/eLife.02863
http://dx.doi.org/10.15252/msb.20156236
http://dx.doi.org/10.15252/msb.20156236
http://dx.doi.org/10.1371/journal.pone.0106479
http://dx.doi.org/10.1016/j.jtbi.2006.10.027
http://dx.doi.org/10.1016/j.jtbi.2006.10.027
http://dx.doi.org/10.1126/science.1073374
http://dx.doi.org/10.1126/science.1073374
http://dx.doi.org/10.1093/nar/gkp858
http://dx.doi.org/10.1093/nar/gkp858
http://dx.doi.org/10.1017/S1464793100005595
http://dx.doi.org/10.1017/S1464793100005595
http://dx.doi.org/10.1088/1742-5468/2006/08/P08007
http://dx.doi.org/10.1088/1742-5468/2006/08/P08007
http://dx.doi.org/10.1103/PhysRevE.95.032115
http://dx.doi.org/10.1103/PhysRevE.95.032115
http://dx.doi.org/10.1016/j.jtbi.2006.02.011
http://dx.doi.org/10.1016/j.jtbi.2006.02.011
http://dx.doi.org/10.1038/227561a0
http://dx.doi.org/10.1038/nrg2267
http://dx.doi.org/10.1016/j.sbi.2004.05.004
http://dx.doi.org/10.1038/nrg2521
http://dx.doi.org/10.1126/science.1089370
http://dx.doi.org/10.1126/science.1089370
http://dx.doi.org/10.1038/ng1340
http://dx.doi.org/10.1088/1742-5468/2008/10/P10008

	Evolution in the Debian GNU/Linux software network: analogies and differences with gene regulatory networks
	Introduction
	Debian networks
	Results
	Degree distributions
	Emergence of a non-trivial modular structure
	Evolving hierarchy
	Evolution of robustness
	Network information content
	Results for gene-regulatory networks

	Discussion
	Analogies and differences between Debian and gene-regulatory networks

	Conclusion
	Methods
	Debian networks
	Statistical analysis
	Network swapping
	Network structural features
	Data accessibility
	Authors' contributions
	Competing interests
	Funding

	Acknowledgements
	References

