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Scale-free outbursts of activity are commonly observed in physical, geological, and

biological systems. The idea of self-organized criticality (SOC), introduced back in 1987

by Bak, Tang, and Wiesenfeld suggests that, under certain circumstances, natural

systems can seemingly self-tune to a critical state with its concomitant power-laws and

scaling. Theoretical progress allowed for a rationalization of how SOCworks by relating its

critical properties to those of a standard non-equilibrium second-order phase transition

that separates an active state in which dynamical activity reverberates indefinitely, from

an absorbing or quiescent state where activity eventually ceases. The basic mechanism

underlying SOC is the alternation of a slow driving process and fast dynamics with

dissipation, which generates a feedback loop that tunes the system to the critical point of

an absorbing-active continuous phase transition. Here, we briefly review these ideas as

well as a recent closely-related concept: self-organized bistability (SOB). In SOB, the

very same type of feedback operates in a system characterized by a discontinuous

phase transition, which has no critical point but instead presents bistability between

active and quiescent states. SOB also leads to scale-invariant avalanches of activity

but, in this case, with a different type of scaling and coexisting with anomalously large

outbursts. Moreover, SOB explains experiments with real sandpiles more closely than

SOC. We review similarities and differences between SOC and SOB by presenting and

analyzing them under a common theoretical framework, covering recent results as well

as possible future developments. We also discuss other related concepts for “imperfect”

self-organization such as “self-organized quasi-criticality” and “self-organized collective

oscillations,” of relevance in e.g., neuroscience, with the aim of providing an overview of

feedback mechanisms for self-organization to the edge of a phase transition.
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1. INTRODUCTION

The seminal work of Bak, Tang, and Wiesenfeld in which the
idea of “self-organized criticality” was first introduced [1], which
has been cited thousands of times in the scientific literature
and beyond, opened a whole research field and triggered a huge
avalanche of scientific excitement in Statistical physics. Fractals
[2] can be considered as precursors of these ideas, and scale-
free complex networks [3] successors in the timeline of waves of
scientific interest.

Bak and collaborators developed the groundbreaking idea that
scaling behavior is observed in Nature owing to self-organization
mechanisms that tune systems to the vicinity of critical points
[4]. Thus, self-organized criticality (SOC) helped shed light
onto why scale-invariant phenomena (both in space and time)
are so commonly observed in natural systems, in spite of the
fact that criticality, i.e., second-order phase transitions, with
their associated power-laws and scaling, occur only at singular
(critical) points of parameter spaces [1, 4, 5] (for pedagogical
reviews and detailed accounts of SOC, we refer to [6–12]).

The most succesful and archetypical examples of SOC are
sandpile toy models [1, 13–17]1. In sandpiles, “grains” —which
represent in an abstract way some token of “stress” or “energy”
[19]—are slowly added into a system (usually a lattice or another
type of network), and locally redistributed on a fast way whenever
an instability threshold is overcome. This redistribution triggers
avalanches of topplings, eventually dissipating some of these
grains at the system’s open boundaries. Upon iteration, these
dynamics result in the self-organization of the system to a critical
stationary state that exhibits power-law avalanche distributions
and obeys finite-size scaling [4, 6–9, 11, 20–23].

The observation of scale invariance and other features
characteristic of criticality without the need for parameter fine
tuning prompted an enormous interest in these simple models.
As a word of caution, let us remark that it was also soon
realized that sandpile models bear little resemblance with the
physics of actual sandpiles as experimentally analyzed in the
laboratory. In actual sandpiles, ingredients such as inertia,
gravity, and stickiness (typically absent in standard SOC models)
play important roles, and scale invariance is not easily observed
[8, 9, 11]. Empirical evidence of SOC is more easily found
in ricepiles or in superconductors [see [8] for an account on
experimental realizations as well as for other general aspects of
SOC]. Let us just highlight that compelling evidence of SOC has
been recently found in an ultracold atomic gas [24, 25]. This
discovery illustrates that, more than 30 years after its birth, SOC
is still a powerful, relevant and pervading concept.

On the theoretical side, a key ingredient of the mechanism
for self-organization in sandpiles is the fact that driving and
dynamics operate at two broadly separated timescales (i.e., slow-
fast dynamics) [4, 6, 7, 22]. An infinite separation of timescales
is usually achieved by driving the system only when all activity

1Alternative models and mechanisms such as for example, the celebrated Bak-
Sneppenmodel for punctuated evolution relying on “extremal dynamics” [18] were
also proposed to achieve scaling in a self-organized way, but we will not discuss
them here.

has stopped, but not during avalanches (“infinitely slow” or
“offline” driving); if this is not the case, a finite characteristic
(time/size) scale appears [22, 26, 27]. Similarly, conservative
dynamics in the bulk of the system are also key to SOC,
because bulk dissipation leads necessarily to the emergence
of characteristic spatio-temporal scales, thus preventing the
possibility of scale-invariance [22, 28–32]. We refer to [22] for a
more in depth theoretical discussion on the emergence of generic
scale invariance, conservation laws, and SOC.

A large variety of sandpile models, with diverse microscopic
rules, were investigated after the original proposal of Bak and
colleagues (see a compilation of prototypical SOC models in [33]
and [6–8]). The main additional ingredient was the introduction
of stochasticity in the redistribution rules, replacing the fully
deterministic updating rules of the original sandpile [13]. Given
the diversity of models, a compelling question emerged as to
whether there is universality in SOC (i.e., models/systems that
share the same scaling features) [34, 35]. From the computational
viewpoint it soon became clear that, in spite of preliminary
evidence, the original (deterministic) sandpile model of Bak,
Tang, and Wiesenfeld (BTW) does not obey clean scaling
behavior but rather some type of multiscaling or anomalous
scaling [36–39]. This anomaly stems from the breaking of
ergodicity [16], and the existence of many conservation laws
associated with the deterministic nature of its updating rules2. On
the other hand, sandpiles with some level of stochasticity (such as
the Manna model [13] or the Oslo ricepile model [14]) exhibit
standard and universal scaling behavior, even though large-scale
simulations and careful computational analyses were required to
reach such a conclusion (see e.g., [33, 40–43]).

Because criticality and universality are hallmarks of second-
order phase transitions, diverse attempts were made to map
the behavior emerging in SOC systems to that of standard
(continuous or second-order) phase transitions. In particular:

• A first proposal mapped sandpiles to the pinning-depinning
transition of interfaces moving in random media [44–48]. In
this approach, the height of the interface at a given location
corresponds to the number of times that such a site has toppled
in the sandpile. This successful mapping has profound physical
implications, as pinning-depinning transitions are also related
to the dynamics of magnetic domain walls in random media,
the Barkhausen effect, and 1/f noise, which had long been
studied and are known to display scale invariance [49–51].

• A second proposal, on which we focus here, connected
SOC with reaction-diffusion systems exhibiting absorbing-
active phase transitions [9, 33, 52–56]. The mapping was
proposed on general symmetry and conservation principles,
and afterward refined in an exact formal way [57].

These two apparently disparate approaches were found to be
fully equivalent to each other, first using heuristic and numeric
arguments [58–60] and then with more rigorous analyses [61].

2Let us remark that there exist very powerful theoretical tools for deterministic
(Abelian) sandpiles [20, 21], a theoretical endeavor complementary to the type of
analyses for stochastic sandpiles discussed here.
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In order to scrutinize how SOC behavior is related to standard
phase transitions, the notion of “fixed-energy sandpiles” (FESs)
was introduced, an idea similar in spirit to an early suggestion by
Tang and Bak [19, 62]. The key idea was to “regularize” sandpiles
by switching off both slow driving and boundary dissipation,
with the total number of sandgrains in the system thus becoming
fixed, i.e., a conserved quantity, suitable to be considered a
control parameter [9, 52–54, 63]. Thus, the state of a FES is
described by two quantities: the total number of sandgrains in
the system (control parameter) and the total number of sites
that are above the threshold of instability (order parameter). The
latter is based on the fact that, in a sandpile, sandgrains can
be either “active” if they happen to be above threshold (ready
to topple and be redistributed), or “inactive” otherwise. Inactive
grains can, however, contribute to future activations. Using a
more general and abstract language, “energy” hereon refers to
the mean accumulated stress (e.g., total number of sandgrains
per site on the sandpile) while “activity” describes the number
of sandgrains above the instability threshold.

Not surprisingly, FESs exhibit two distinct phases depending
on the value of their energy E: either they are in an “active”
phase with ceaseless redistribution of activity for sufficiently large
values of E, or they are in an absorbing or quiescent phase in
which all activity ceases and the dynamics are frozen [64–66] (see
Figure 1, left panel). Thus, there exists a continuous absorbing-
to-active phase transition at a critical energy value Ec. Let us note
that the existence of such a phase transition in FESs has only
recently been demonstrated mathematically [67, 68].

This observation allowed for a rationalization of SOC as a
dynamical feedback mechanism that tunes the system to the
edge of an absorbing-to-active phase transition through (slow)
driving and (fast) bulk dynamics, occurring at infinitely separated
timescales with boundary dissipation [9, 33, 53, 54, 69–71]. In
other words, the steady state reached spontaneously by the SOC
dynamics is characterized by an average steady-state energy ESOC

such that ESOC = Ec. As a consequence, the scaling features of
SOC systems can be inferred from those of their corresponding
fixed-energy counterparts using the powerful set of theoretical
tools available for standard non-equilibrium phase transition.

Non-equilibrium phase transitions into absorbing states have
long been studied, and it is well-established that most of them
share the same type of universal behavior, belonging to the so-
called “directed percolation” (DP) universality class [64–66, 72].
As in some DP systems, in FESs there is not one but many
absorbing states. Any configuration with vanishing activity and
arbitrary values of the energy is absorbing [73]. However, in FESs
there is an additional conservation law that might be relevant for
universality issues (see below).

To help clarify this and other issues, here we use the
formalism of Langevin equations to review classic and state-
of-the-art theoretical aspects of SOC. This formalism follows
the philosophy of the extremely successful approach of Landau
and Ginzburg to equilibrium phase transitions and critical
points [74–76], as well as its extension to dynamical problems
(as reviewed by [77]). For each case, we will present the
simplest (Langevin) equation, including the main symmetries,
conservation laws, and stochastic effects present in the system,

and neglecting irrelevant terms [74–76]. This approach places
the focus on universal scaling features, leaving aside unimportant
microscopic details. Thus, such Langevin equations constitute
an ideal starting point for further theoretical analyses (such as
renormalization group calculations and other field theoretical
approaches) and even for numerical studies. After presenting and
discussing the theory of SOC, we move on to discussing related
theories of self-organization to the edge of a phase transition.
We next describe the theory for the self-organization to the edge
of a discontinuous phase transition with bistability, and finally
we discuss theories for “imperfect self-organization” either to a
continuous or to a discontinuous transition. The latter can be
of more relevance than the original self-organization theories to
describe real-world situations.

2. THEORY OF SELF-ORGANIZED
CRITICALITY (SOC)

Let us start by discussing the simplest possible SOC system
[78]. For a macroscopic (mean-field) description of a sandpile,
two relevant variables are needed: the overall energy E (which
represents the total density of sandgrains in sandpiles and is
conserved in the bulk), and the overall activity ρ (i.e., the density
of sites which are above threshold). To analyze the possible
connection between sandpiles and standard non-equilibrium
phase transitions at a mean-field level, let us consider the simplest
possible equation describing a continuous absorbing-active phase
transition for the overall density ρ:

ρ̇(t) = aρ(t)− bρ2(t) (1)

where a and b > 0 are constants, and the fine-tuning of a controls
the behavior of the system. This equation exhibits an absorbing
phase with vanishing activity (ρ = 0) below the critical point,
i.e., for a < ac = 0, and an active phase with steady-state density
ρ = a/b 6= 0 for a > ac = 0.

To establish the connection with SOC, let us start by linking
the equation above with FESs. To that end, it is required an
additional conserved energy (or energy density) E such that it
fosters the creation of activity (i.e., increases a in Equation 1).
Thus, in first approximation we can write:

ρ̇(t) = (a+ ωE)ρ(t)− bρ2(t) (2)

where ω > 0 is simply a proportionality constant. Observe that,
since E is a conserved quantity (i.e. Ė = 0), it can be used as a
control parameter keeping a fixed. In particular, the critical point
lies now at Ec = −a/ω. Equation (2) constitutes the mean-field
description of fixed energy sandpiles: a dynamical equation for
the overall activity, ρ(t), whose steady state is determined by the
control parameter, the energy density E in the system.

On the other hand, in the SOC version of sandpiles E becomes
a dynamical variable E(t), which increases by external driving
(at an arbitrarily small rate h) and decreases owing to activity-
dependent dissipation (at a rate ǫρ). This can be summarized by
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the equation:

Ė(t) = h− ǫρ(t). (3)

In the double limit h, ǫ → 0+ (infinitely separated timescales),
or if h/ǫ → 0 (energy conservation), the steady-state solution of
the system represented by Equations (2) and (3) is ρ = h/ǫ →
0+ and ESOC = (bh/ǫ − a)/ω → Ec (see Figure 1, left). In
other words, the system self-organizes to the critical point of a
standard absorbing-active phase transition, i.e., the critical state
is a dynamical attractor of the system [19].

Observe that the key to the SOC mechanism lies on the
feedback created by the dynamics of the control parameter E
(see Figure 1). Its dynamics strongly depend on the system
state/phase: if activity vanishes, ρ = 0 and Ė = h, leading to an
increase in E that shifts the system toward its supercritical phase.
If, on the other hand, ρ > 0, since ǫ ≫ h, then Ė ≈ −ǫρ and E
decreases, pushing the system toward the subcritical phase. This
feedback loop necessarily drives the system to the vicinity of the
critical point, and exactly to the critical point if the separation of
timescales is infinite, as shown above. In more general terms: the
existence of a control mechanism that acts differentially on each
phase—i.e., at each side of the phase transition—creates a feedback
loop that self-organizes the system to the very edge of the transition
[9, 26, 33] (see [79] for a discussion of this general idea in the
context of control theory).

In order to go beyond this simple mean-field description,
we need to extend the theory to make it spatially explicit
and stochastic, i.e., shift from mean-field theory to stochastic
field theory [75, 76]. The simplest possible equation describing
absorbing phase transitions is the so-called Reggeon field theory
(or DP theory), which can be written as the following Langevin
equation [66, 80, 81]:

∂tρ(Ex, t) = aρ(Ex, t)− bρ2(Ex, t)+ D∇2ρ(Ex, t)+ σ
√

ρ(Ex, t)η(Ex, t)
(4)

where ρ(Ex, t) is the activity field, a and b > 0 are constants, andD
and σ are the diffusion and noise constants, respectively. η(Ex, t)
is a zero-mean Gaussian noise with 〈η(Ex, t)η( Ex′, t)〉 = δ(Ex −
Ex′)δ(t − t′) which, together with the prefactor

√

ρ(Ex, t), accounts
for demographic fluctuations in particle numbers. Importantly,
the noise term vanishes in the absorbing state ρ(Ex, t) = 0.

In analogy with the mean-field approach, we now use the
equation above to represent FESs, for which we need to add
another equation for the (conserved) energy coupled linearly
with the activity [9, 53, 54]:

∂tρ(Ex, t) = (a+ ωE(Ex, t))ρ − bρ2 + D∇2ρ + σ
√

ρ(Ex, t)η(Ex, t)
∂tE(Ex, t) = ∇2ρ(Ex, t)

(5)
where E(Ex, t) is the energy field. Some dependencies on (Ex, t) have
been omitted for the sake of simplicity. Note that the equation
for the energy is diffusive, describing the redistribution of energy
among neighboring locations with no loss in the presence of
activity. Thus, the system-averaged energy per site (i.e., the spatial
integral of the energy field divided by the system volume) E is
constant in FESs and can be taken as a control parameter. As in

the case of the mean-field theory, Equation (5) exhibit a phase
transition at a particular value of the average energy density: for
E > Ec there are continuous ongoing redistributions of activity
and energy, while for E < Ec the system eventually falls into the
absorbing state ρ(Ex, t) = 0 (see e.g., [82]). The set of equations
for FESs, Equation (5), was proposed on phenomenological
grounds [53, 54] (see also [83]) and later derived from a discrete
reaction-diffusion model with many absorbing states and a local
conservation law [56]. Only recently has it been derived in a
rigorous way from the microscopic rules of a stochastic (fixed-
energy) sandpile [57].

Equation (5) can be integrated “a la SOC,” e.g., by adding
at the initial time and after each avalanche a discrete amount
of energy and activity (“infinitely slow” or “offline” driving),
and considering open boundary conditions (i.e., allowing for
boundary dissipation). The resulting self-organized system
converges to the critical point of Equation (5). Alternatively, a
continuous version can be achieved by including in Equation (5)
an explicit (“online”) driving and a dissipation term:

∂tρ(Ex, t) = (a+ ωE(Ex, t))ρ − bρ2 + D∇2ρ + σ
√

ρ(Ex, t)η(Ex, t),
∂tE(Ex, t) = ∇2ρ(Ex, t)− ǫρ(Ex, t)+ h(Ex, t).

(6)
Note that the small driving h(Ex, t) could also be added to the
activity in order to avoid the absorbing state (in which the
dynamics stop). Otherwise, a small seed of activity needs to be
added to slightly perturb the system every time the absorbing
state is reached. Note that this “online” methods are slightly
different from the “offline” driving since the average energy field
changes during avalanches and not only between them.

As in the mean-field theory, this system of equations
converges to Equation (5) in the limit h/ǫ → 0 (Figure 2, upper-
left panel). Although the equivalence of Equation (5) at criticality
and its SOC counterpart Equation (6) is very challenging to prove
analytically, it has been consistently demonstrated by means of
extensive computational analyses [33]. Such numerical analyses
are possible owing to an exact algorithm to integrate this type of
Langevin equations with multiplicative (square-root) noise [82]3.
Figures 2–4 (upper-left panels) show results from the numerical
integration of these equations. In particular, Figure 3 (upper-left)
shows the probability distribution to find the system in a state
with average energy density E in the SOC version of the dynamics.
This distribution becomes progressively more peaked around Ec
as the system is enlarged (since dissipation and driving become
arbitrarily small as the system size is increased), converging to a
Dirac delta function at E = Ec in the infinite-system-size limit.

Some aspects of this mapping have generated long-lasting
controversies in the past:

• The first one regards the conclusion of the above theory
that the value to which the self-organization mechanism
leads the system, ESOC, coincides with the critical point of
the standard phase transition in the FES model, Ec. This

3Details of the algorithm, a description of an improvement over the original
formulation [84], and a code for its implementation can be found in Github:
https://github.com/pvillamartin/Dornic_et_al_integration_class.
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FIGURE 1 | Mean-field (MF) pictures of SOC and SOB. Sketch of the nullclines associated with the two dynamical mean-field equations defining self-organized

criticality [SOC, (Left)] and self-organized bistability [SOB, (Right)]. In both cases, the nullcline for the second (feedback) equation is plotted for three different values

of the ratio h/ǫ. (Left) In the case of SOC, nullclines intersect at a stable fixed point, which becomes closer and closer to the critical point as the limit of infinite

separation of timescales h/ǫ → 0 is approached (see gray arrow). (Right) In the case of SOB, for sufficiently low values of h/ǫ the intersection between nullclines

occurs on the so-called spinodal line (dashed dark line). Points located in the spinodal line are unstable, and the system presents a stable, fixed-amplitude limit cycle

sketched by the cyan trajectory.

FIGURE 2 | Sketch of the different types of self-organization mechanisms discussed here. The four panels illustrate, respectively, the mechanisms for self-organization

to a continuous phase transition with criticality (left panels) and to a discontinuous transition (right panels), for both the “perfect” conserved case (top panels) and the

“approximated” or “imperfect” non-conserved case (bottom panels). In all cases the steady-state average activity is plotted as a function of the control parameter (the

average “energy” or “stress”). The SOC and SOB mechanisms change dynamically the control parameter to a precise value (either Ec or EM, respectively), meaning

that the system becomes perfectly self-organized to the edge of a phase transition (either a continuous one for SOC or discontinuous one for SOB) in the

thermodynamic limit. On the other hand, their corresponding “imperfect” or non-conserved counterparts—that we call “self-organized quasi-criticality” (SOqC) and

“self-organized collective oscillations” (SOCO)—give rise to broad distributions of possible energy values, even in the thermodynamic limit, typically around the edge of

the transition point (shown as an area enclosed by dashed lines). The thin arrows in the upper panels illustrate the fact that dissipation and driving rates are very small

(h → 0, ǫ → 0 with h/ǫ → 0), while the thick ones indicate that such a strict limit is not taken, but still (h≪ ǫ).

was questioned by using a possible counterexample [85]. In
particular, for the original BTW deterministic sandpile model
in some particular types of lattices is was shown that ESOCc 6=

Ec (for example, for a square lattice ESOC = 2.1252... [85] but
the analytical prediction is Ec = 2.125 [86], i.e., there is a
deviation in the fourth decimal digit). This result, criticized
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FIGURE 3 | Distribution of average energy density E at the stationary state in the different types of self-organization mechanisms for finite system sizes. In the case of

SOC and SOB (upper panels), the (unimodal) distribution of energy values becomes progressively more peaked at the transition point as the system size is enlarged,

converging as N → ∞ to perfect self-organization to the transition point (either a critical point Ec for SOC, or the Maxwell point EM for SOB). In the absence of a

conservation law, i.e., in the presence of non-vanishing dissipation term (bottom panels), the distribution remains broad even in the N → ∞ limit, reflecting the

presence of excursions of E to both sides of the transition: both in SOqC and in SOCO, the system continuously shifts between the active and absorbing regimes,

even in the limit of infinitely-large system sizes. In the case of SOqC, the distribution is broad and bimodal. In the case of SOCO, the broad distribution results from the

presence of ongoing oscillations from one phase to the other. In all cases, we simulated the corresponding Langevin equations as described in the text [e.g., Equation

(5) with updating rules (11) for SOC, etc.]. For the conserved cases, ǫ = 0, while for non-conserved ones we employed the “offline” charge rules described by

Equation (11). See Table A1 for a list of all parameter values.

in [87, 88], stems from the previously-mentioned lack of
ergodicity of deterministic sandpiles, and it does not apply
to standard stochastic (ergodic) sandpiles, where the equality
ESOCc = Ec has been consistently verified numerically to
hold (see e.g., [33]).

• The second one concerns the universality class of stochastic
SOC models. The numerical values of the exponents are close
to those of DP, which led some researchers to claim that
SOC models (and FES theory) are in the directed percolation
class [89–91]. However, the following observations support
the existence of a universality class per se, the so-called C-DP
(conserved directed percolation) orManna class (see e.g., [82]):

1. In Equation (5) there is an additional equation with respect
to the DP theory that includes a conservation law. The latter
constitutes a relevant perturbation in the renormalization
group sense at the DP fixed point [54].

2. There is a mapping from SOC to interfaces moving in
random media, whose universality is different from DP
(as known from numerical as well as from analytical
renormalization group approaches; see [58–61] and
references therein).

3. Numerical estimates of critical exponent values for this
class with one- and two-dimensional systems are distinct
from those of DP [33, 35, 41, 43, 56, 92]. Recent large-
scale numerical analyses (of the one-dimensional Oslo
sandpile [14]) closed the debate even on more firm bases
by confirming the discrepancy with the DP scaling and
conjecturing rational values for some of the exponents
[42]. As a side note, let us highlight that obtaining critical
exponents numerically in SOC is challenging because
there is a very slow decay from initial conditions in the
background or energy field, which makes observing true
asymptotic behavior necessitate large system sizes and long
computer simulations [91]. Indeed, in the stationary state
of SOC and FES, as first pointed out in [91] (see also [93–
95]) the energy field is “hyper-uniform” (i.e., the standard
deviation of field values in a region of size N decays
faster than

√
N [42, 96]). Given the critical slow decay of

correlations, a convenient strategy to observe numerically
clean exponents consists in preparing initial conditions
that preserve hyperuniformity (or naturally obtained from
the system’s dynamics) [42]. Another powerful strategy to
discriminate between DP and C-DP consists in perturbing
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FIGURE 4 | Avalanche size distributions for the four different types of self-organization mechanisms in two dimensional lattices. For the cases of SOC and SOB (upper

panels) the distribution can be fitted by a power law in an exact way in the thermodynamic limit, while it is truncated—in a scale-invariant way—in finite systems. For

SOC, the distributions show scaling that belongs to the C-DP or Manna class. In the case of SOB, power-laws are also obtained, and show mean-field exponents

(including logarithmic corrections to scaling as the upper critical dimension is 2, see main text); also, note the bump at the end of the distribution, due to “king” events,

effect that can be made more apparent by increasing the value of b in the Langevin equation (i.e., making the jump at the discontinuity of the phase transition more

abrupt). For the cases of imperfect self-organization (i.e., non-conserved) either SOqC or SOCO (lower panels), the distributions can be fitted by power-laws only in an

approximate way. This is a consequence of the fact that, in these cases, the control parameter does not settle to a precise (critical) value but keeps hovering around

the edge of the transition even in the thermodynamic limit. Parameter values are as in Table A1, except for SOB, for which b was reduced to b = −0.7 to avoid

excessively large “king” events.

the system introducing walls or anisotropy, because systems
in the DP class and in the C-DP class respond very
differently to these perturbations [43]. Finally, not only
critical exponents but also some correlators have been
shown to be different in DP and C-DP with remarkable
numerical accuracy [35, 60].

Another important point is the lingering (and frustrating) lack of
a working renormalization group approach to study analytically
the large-scale behavior of the C-DP field theory (Equation 5).
Thorough attempts to renormalize the theory have been made in
the literature (see e.g., [54, 97–99]), but a sound solution to this
problem has yet to be found.

Notwithstanding, as already mentioned the C-DP universality
class can be exactly mapped into the pinning-depinning
transition of linear interfaces moving in a random media [61],
also called the quenched-Edwards-Wilkinson class [100]. This
mapping enables an additional route to understanding the
scaling features of SOC systems, providing us with an excellent
workbench to check for consistency in computational results.
Moreover, given that a working (functional) renormalization
group solution exists for the interfaces in random media
[100–103], this connection could be used as an inspiration

for theoreticians to tackle the renormalization problem of
Equation (5).

In summary, there exists a full stochastic theory of SOC
that explains how a mechanism relying on slow driving and
dissipation—operating at infinitely separated timescales—is able
to self-organize a system to the edge of a non-equilibrium
continuous phase transition. At the critical point of this
absorbing state transition, marginal propagation of activity in
the form of scale-free outbursts occurs. From a more technical
point of view, such a critical point is in the C-DP or Manna
class, equivalent to the quenched-Edwards-Wilkinson class, and
different from DP. Some theories, however, suggest that noise
could be optimized to help the system reach the self-organized
steady state even in the absence of perfect timescale separation, a
phenomenon called “Steady State Stochastic Resonance” [104].

3. THEORY OF SELF-ORGANIZED
BISTABILITY (SOB)

SOC describes the self-organization of a system to the edge of a
continuous (or second-order) phase transition. Thus, one could
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wonder whether there exists a similar mechanism for the self-
organization of a system to the edge of a discontinuous (or
first order) phase transition, with a region of bistability between
active and absorbing phases. This idea, recently scrutinized, has
led to the concept of “self-organized bistability (SOB)” [105]
(see also [106]).

Let us start, once again, by considering the minimal form
of a discontinuous absorbing-to-active transition in the simplest
possible mean-field terms:

ρ̇(t) = aρ − bρ2 − ρ3 (7)

where now b < 0 and c > 0. Indeed, as illustrated in Figure 1

(right panel), the stationary solution of Equation (7) exhibits a
regime of bistability between an absorbing and an active state.
Coupling this dynamical equation to one for an energy field as
in SOC, Ė = h − ǫρ, introduces a feedback loop that leads the
system to exhibit a limit cycle (the loop in Figure 1). Indeed,
the nullcline of this second equation is ρ = h/ǫ which, for
small h/ǫ, intersects the other nullcline at an unstable point, thus
leading to the creation of a limit cycle [105, 107]. Therefore,
a mechanism identical to that of SOC is able to self-organize
a mean-field system that exhibits a discontinuous transition to
generating periodic bursts of activity.

In order to go beyond this mean-field picture, a simple
modification of the theory above leads to the following set of
Langevin equations describing self-organization to the edge of a
discontinuous transition in spatially extended systems [105]:

∂tρ(Ex, t) = (a+ ωE(Ex, t))ρ − bρ2 − cρ3 + D∇2ρ

+ σ
√

ρ(Ex, t)η(Ex, t)
∂tE(Ex, t) = ∇2ρ(Ex, t)

(8)

where all the terms are as in Equation (5) except the coefficient of
the quadratic term, negative here (i.e., b < 0), and the additional
cubic term (with coefficient c > 0), which needs to be added to
preserve stability.

Numerical integration of Equation (8) can be performed
using the same integration scheme as with SOC. The system
can be initialized with either low or high homogeneous values
of the density, ρ, which enables the system to reach different
homogeneous steady states (provided that |b| is larger than a
certain (tricritical) value4), thus confirming explicitly that the
fixed-energy equations above exhibit a full region of bistability
with hysteresis on two-dimensional lattices [105]. In addition,
within the bistable region there exists a Maxwell point (E = EM
at which both phases are equally stable) that defines the edge
of phase coexistence. The latter is computationally verified by
considering as initial condition half a system in the active state
and the other half in the absorbing state; right at E = EM , the flat
interface separating these two halves does not move on average
(i.e., none of the two phases is more stable than the other).

4Let us remark that, for relatively small (in absolute value) b, the transition
becomes continuous even if the mean-field approximation predicts a
discontinuous one. As discussed in [108], fluctuation effects typically soften
the discontinuity, shrink bistability regions, and can even alter the order of the
phase transition, leading to noise-induced criticality.

The mechanism enabling self-organization to the edge of
bistability (SOB) is constructed, as in SOC, by adding slow
(“offline”) driving and boundary dissipation to the previous
equations. In particular, the system is set into an absorbing state
and is locally perturbed to trigger avalanches of activity, which
are eventually dissipated at the system boundaries. By iterating
this process, the system self-organizes to values of E close to
EM (converging exactly to EM in the thermodynamic limit).
Alternatively, again as in the SOC case, we can obtain a similar
behavior by considering “online” driving and dissipation, i.e., by
replacing the second equation in (8) with:

∂tE(Ex, t) = ∇2ρ(Ex, t)− ǫρ(Ex, t)+ h(Ex, t) (9)

in the limit h/ǫ → 0 (see Figure 2, upper-right panel).
Remarkably, avalanches of broadly different scales with

signatures of scale invariance also emerge in SOB, in spite of the
lack of a critical point [105]. However, the avalanche size and
duration probability distributions are different from their SOC
counterparts in two important ways:

• The probability distributions for both avalanche size and
duration are bimodal: small avalanches coexist with extremely
large ones that span the whole system. These latter
“anomalous” outbursts of activity, which are also called
“king” (or “dragon king”) avalanches in the literature [105,
109], occur in an almost periodic way. They represent
waves of activity that propagate almost deterministically (i.e.,
ballistically) starting from a localized seed, and span through
most of the system until they are dissipated at the open
boundaries, leaving the system depleted of “energy.” Let us also
emphasize that such system-wide episodes are reminiscent of
what happens in the mean-field counterpart, in which activity
cyclically “waxes and wanes” the system.

• Smaller standard avalanches have sizes and durations
distributed as power laws with exponents τ = 3/2 (size, see
Figure 4 upper-right panel) and α = 2 (duration). These
values coincide with those of the mean-field branching
process, which is also equivalent to compact directed
percolation and the voter model [64–66, 72, 110]. This type of
scaling emerges because the system becomes self-organized to
the Maxwell point EM (see Figure 3, upper-right panel), where
the two phases are equally stable (or “neutral” [111, 112]). In
this way, clusters of active sites in a non-active environment
are equally likely to expand or shrink through fluctuations;
this marginality is tantamount to criticality and generates scale
invariance. In this sense, the system behaves as an effective
voter model (or compact directed percolation) with two
symmetric states in which none of them is favored. Indeed,
the voter model exhibits a critical point for the propagation
of activity with the mean-field behavior mentioned above. In
two dimensions, upper critical dimension for these systems,
logarithmic corrections to scaling appear [66, 113].

As discussed in detail in [105], the larger the value of |b|—
which defines the jump or discontinuity at the phase transition—
the stronger the weight and frequency of anomalous avalanches.
Thus, for relatively small jumps, clean scaling can be observed
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for many decades (as in Figure 4, upper-right panel), while for
large values of |b| the statistics are more prominently dominated
by large anomalous avalanches. In the latter case, larger system
sizes are needed to observe clearly the power-law scaling of
standard avalanches.

For the sake of completeness, let us mention that it is also
possible to construct sandpile models with SOB phenomenology
[105]. The key difference with respect to standard SOC
sandpiles is the presence of a “facilitation” mechanism such
that activity (i.e., sites above threshold) amplifies in a non-
linear way the creation of additional activity. This type of
facilitation mechanism is well-known to be at the origin of
discontinuous transitions, leading to bistability (see e.g., [108]).
The phenomenology of sandpiles with facilitation coincides
remarkably well with what we just described for SOB; in
particular, they exhibit scale-free avalanches with mean-field
exponents together with king avalanches [105]. Moreover,
in experimental results for real-life sandpiles [114] small
avalanches coexist with much larger ones, the global energy
experiences large excursions, and the empirically determined
avalanche distributions are remarkably similar to those of
SOB. Furthermore, it seems that inertia in the dynamics of
real sandgrains plays a role similar to facilitation. All these
observations together suggest that SOB is potentially a more
adequate theory to describe real sandpiles than SOC. Similarly,
SOB could also be at the origin of the “self-organized avalanche
oscillator” found in microfracture experiments [115]. Finally,
in the context of neurodynamics, models of neuronal activity
regulated by the level of synaptic resources—very similar in
essence to SOB—can reproduce scale-free avalanches coexisting
with anomalous large waves of activity in agreement with
empirical observations [116] (see next sections for more details
on neural dynamics).

4. THEORIES FOR IMPERFECT
SELF-ORGANIZATION

The theories of SOC and SOB rely heavily onto conservative
(bulk) dynamics as well as onto infinite separation of timescales
between driving and (boundary) dissipation. These ingredients,
as we have extensively discussed, are essential to achieving a
precise and exact self-organization to either a critical point (SOC)
or to the point of phase coexistence (SOB). On the other hand,
there is a large variety of natural phenomena that exhibit scale
invariance (at least approximately) and in which some form of
(bulk) dissipation is inevitably present and/or timescales are not
perfectly separated. As an illustrative example, let us discuss
the case of neuronal dynamics in the cerebral cortex. Seminal
experiments revealed that the dynamics of actual neural networks
are bursty, and that critical-like scale-free avalanches of activity
can be measured experimentally under generic experimental
conditions [117]. It has been argued that such a critical-like
state induces important functional advantages for information
processing and transmission in the cortex [118–125] (for a recent
review, see [126]). This caught the attention of physicists, who
readily tried to describe neural networks in terms of SOC [127–
131]. However, neurons are “leaky,” as there is no conserved

quantity in their dynamics (for instance, the membrane voltage
decays spontaneously to some baseline level in the absence of
inputs). Moreover, timescales in the brain are not infinitely
fast/slow. Therefore, the scaling behavior of cortical networks
observed empirically cannot be exactly ascribed neither to SOC
[132] nor SOB [107]. In order to understand this type of scaling,
a more general theory that does not rely on infinite separation of
timescales and conservation laws is needed.

Alternative mechanisms for alleged self-organization to
criticality in the absence of conservation have long been studied
[22]. Indeed, some of the archetype models of self-organized
criticality (other than sandpiles) are non-conserved. Prominent
examples are earthquakemodels [133, 134] and forest-firemodels
[135–137]. These are non-trivial models with a rich and complex
phenomenology showing power-laws and scaling for at least
some decades. However, the lack of theoretical arguments as
solid as the ones discussed above for conserving systems led to a
long-standing controversy regarding the existence of true generic
scale-invariance in these non-conserving systems. It is not our
scope here to review this controversy, but let us just to summarize
the main conclusion: none of the studied self-organizing non-
conserved models is truly critical but, instead, they exhibit some
sort of “approximate” or “relaxed” criticality [see e.g., [138–144],
as well as [33] for further discussions and references].

In what follows, we use our unified theoretical framework
to briefly introduce and discuss versions of SOC and SOB,
respectively, in which the strict conditions of conservation and
infinite separation of timescales are relaxed.

4.1. Theory of Self-Organized Quasi
Criticality (SOqC)
To provide non-conserved systems alleged to be SOC with a
general theoretical background, some of us proposed a modified
version of the SOC theory, Equation (5), that includes explicitly a
non-vanishing energy-dissipation term:

∂tρ(Ex, t) = (a+ ωE(Ex, t))ρ − bρ2 + D∇2ρ + σ
√

ρ(Ex, t)η(Ex, t)
∂tE(Ex, t) = ∇2ρ(Ex, t)− ǫρ(Ex, t),

(10)
that is, Equation (6) with h = 0, and where now ǫ > 0 is not
necessarily small and does not vanish in the large-system-size
limit. This equation can be complemented with the following
“offline” updating rule, inspired in the charging mechanism in
models of forest fires and earthquakes [33]: every time the system
reaches the absorbing state, a small “seed” of activity is placed at
a randomly chosen site, and the energy of all sites is increased:

ρ(Ex0, 0) → h

E(Ex, 0) → E(Ex, 0)+ γ (Emax − E) (11)

where γ is an external driving, Emax the maximum allowed
energy in the system, E the system average energy density, and Ex0
a random position in the lattice. Note that this “offline” updating
rule has been used for the ǫ 6= 0 cases in Figures 3, 4. These
modifications with respect to the SOC case lead to the following
results [33]:
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• First, the leakage (i.e., dissipative) term prevents the existence
of a true self-sustained active phase. This can be easily seen
by integrating formally the second equation and plugging the
result into the first one, thus generating a non-Markovian term
−ǫρ(Ex, t)

∫ t
0 dt

′ρ(Ex, t′), which is characteristic of dynamical
percolation [73, 145–147]. This makes it impossible to have a
steady state with ρ(Ex) 6= 0 in the long-time limit. Moreover,
Equation (11) exhibit a transition at some value of the initial
energy, Ep > Ec, that separates a spreading phase (in which
local perturbations of activity can propagate by percolating
transiently through the systemwithout reaching a steady state)
from a non-spreading phase where perturbations cannot span
the whole system.

• As a consequence of the previous argument, scaling features in
this type of models are related to dynamical percolation when
using “offline” driving, rather than to C-DP [33]. In other
words, bulk dissipation (i.e., breaking the bulk-conservation
law) is a relevant perturbation in the renormalization group
sense [146]. See Appendix for further details.

• An analytical and computational study of Equation (10)
revealed that, in this case, increasing E through the addition
of energy like in sandpiles shifts progressively the systems into
the dynamical-percolating phase beyond its critical point Ep
[33]. If an avalanche occurs, the associated strong dissipation
depletes the system of energy, thus pushing it deep into the
non-percolating phase. Therefore, the system does not self-
organize exactly to the edge of a phase transition as in the
conserved cases above but, instead, it keeps hovering around
it, with excursions of finite amplitude to both sides of the
(dynamical percolation) transition point, Ep (see Figures 2, 3,
lower-left panels). In other words, the average energy does not
self-tune to a critical value but keeps on alternating between
subcritical and supercritical values, even for infinitely large
systems. Numerical results reveal that this sweeping though
the phase transition point might suffice to induce approximate
or “dirty” scaling behavior, but not strict “bona fide” scale
invariance [33, 148, 149].

This mechanism, accounting generically for non-conservative
self-organized systems, has been termed “self-organized quasi-
criticality” (SOqC) [33]5. Several remarks are in order:

• In systems in which driving does not occur “offline” (i.e.,
at an arbitrarily slow timescale, where both the activity and
the energy are perturbed only between avalanches) one needs
to include explicitly a continuous “online” driving term in
Equation (10), so that the second equation becomes ∂tE(Ex, t) =
∇2ρ(Ex, t) − ǫρ(Ex, t) + h, where h is the (arbitrarily large)
charging or driving rate; alternatively:

∂tE(Ex, t) = ∇2ρ(Ex, t)− ǫρ(Ex, t)+ h(Emax − E) (12)

if there is a maximum possible level of charging given by
Emax. These alternative charging mechanisms may change the

5The concept on “weak criticality,” proposed more recently, bears strong
resemblance to SOqC [149]; see also the slightly different definition of quasi-critical
employed in [150].

previously described phenomenology. The “online” driving
parameters can be fine-tuned to effectively compensate for
dissipation, and a steady state with ρ 6= 0 can be achieved.
In this case the system phenomenology is controlled by
the C-DP transition even if the system does not become
truly critical (it just hovers around the critical point, Ec);
energy is conserved on average, and an approximated or
“dirty” C-DP-like behavior emerges. However, dynamical
percolation dominates for sufficiently large systems if “offline”
charge is used because, during avalanches, energy can only
be dissipated, i.e. bulk conservation is not present during
the dynamics. The system will always deplete the available
energy until falling again into the absorbing state, when
the system is charged to restart the dynamics (see Figure 4,
lower-left panel).

• It is important to underline that, in spite of its name
reminiscent of SOC, SOqC does not describe true “self-
organization” to a unique dynamical state. The ratio
between dissipation and driving constants h/ǫ (and also
Emax) determines the system state, thus acting as a true
control parameter. If dissipation dominates strongly, the
system is subcritical (a case sometimes called “self-organized
subcriticality”). If driving is strong, then the system becomes
supercritical (“self-organized supercriticality”) [33, 132].
Finally, for a broad range of intermediate situations, the
system hovers around a critical point (“self-organized
quasi criticality”). Thus, unlike the SOC case, the choice of
parameters (and not only system size) can determine the
“cleanliness” of the observed scaling behavior.

For more detailed explanations of all this phenomenology we
refer to [33, 132] and, for applications in neuroscience, to
[151–161].

4.2. Theory of Self-Organized Collective
Oscillations (SOCO)
To close the loop, we now discuss self-organization in the case
of non-conservative systems exhibiting a discontinuous phase
transition (see Figures 2–4, lower-right panels).

A theory for this case can be written combining the activity
equation in Equation (8) with a second equation analogous to
Equation (12) for the non-conserved energy (“online” driving
and dissipation). Alternatively, the “online” driving component
can be replaced by the (“offline”) rule in Equation (11) to “charge”
between avalanches. However, in order to make the presentation
more appealing, we will instead discuss the recently introduced
Landau-Ginzburg theory for cortical dynamics in the presence
of synaptic resources [162], which fits perfectly our purposes
here. The theory is defined by the following set of equations
(considered on e.g., a two-dimensional lattice [162]):

∂tρ(Ex, t) = (a+ ωE(Ex, t))ρ − bρ2 − cρ3

+D∇2ρ + σ
√

ρ(Ex, t)η(Ex, t)
∂tE(Ex, t) = ∇2ρ(Ex, t)− ǫEρ + h(Emax − E)

(13)

with b < 0 and c > 0. In the context of neural dynamics, ρ(Ex, t)
represents the density of neuronal activity in a coarse-grained
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region of the cortex, while the energy field represents the level
of synaptic resources at a given location (with Emax its maximum
level at any given location). These equations are similar to those
for SOB (Equation 8), but note the presence of a dissipative term
in the second equation (similar to, but different from, that in
the SOqC theory, Equation 10), as well as a driving term (as in
Equation 12) that “charges” the energy field. The diffusion term
in the second equation could be safely removed as it is irrelevant
in this case [107], and was actually absent/omitted in the original
neural-dynamic model [162].

As commented for SOqC, because the dynamics are not
conserved, the system is not really “self-organized” to a unique
type of behavior [162]. Indeed, the free parameter Emax becomes
a control parameter, regulating the system output:

• If Emax is exceedingly small, the system “self-organizes” into an
absorbing configuration with no activity.

• If Emax is sufficiently large, the system “self-organizes” into
a homogeneous active state where individual sites alternate
between the active and the inactive state; the latter occurs in
an incoherent or “asynchronous” way, thus keeping an overall
fixed stationary density of activity.

• In the more interesting case between the two regimes above,
there is an intermediate phase in which quasi-oscillatory
dynamics emerge. This regime is described by waves of activity
traveling through the system, generating co-activation ofmany
units within a relatively small time window [we refer to [162]
for more details and videos of these rich dynamics]. These
events bear strong resemblance with the system-spanning
avalanches—or anomalous waves—described in SOB.

By fine-tuning Emax, it is possible to find a critical point that
separates the phase of global oscillations (“synchronous phase”)
from the active phase in which units do not oscillate in unison
(“asynchronous phase”). In other words, these systems exhibit a
synchronization phase transition [162].

Finally, let us remark that, in the limit in which the driving
and dissipation parameters ǫ and h converge to 0 (keeping
the usual separation of timescales), the system approaches true
self-organization. Not surprisingly, in this limit one recovers
all the phenomenology of SOB, including scale-free avalanches
coexisting with anomalously large waves of activity [107].

SUMMARY AND DISCUSSION

More than three decades after the creation of the concept
of self-organized criticality, SOC continues to attract interest
of theoretical and applied scientists. The original prototypical
models such as sandpiles rely on a rather general type of
feedback mechanism that, acting differentially at both sides
of the phase transition, allows for the self-organization to the
edge of the transition. As profusely discussed here, such a
feedback mechanism depends crucially on a large separation
of timescales between a slow driving and the intrinsic fast
dynamics, conserved in the bulk. Note that the feedback
mechanism is “just” a way to reach the neighborhood of a
phase transition, but it is the intrinsic dynamics that determines

the universality class that the system belongs to. Thus, there
is no “self-organized universality class,” but instead phase
transitions that belong to specific universality classes (BTW,
C-DP...) and that may be reached through the described self-
organization mechanism.

Although other mechanisms for self-organization to criticality
that do not depend on such a type of feedback were originally
proposed (e.g., extremal dynamics [18]), in this mini-review
paper we have focused instead on this feedback mechanism to
provide the reader with a concise and systematic overview of field
theoretical or, equivalently, Langevin approaches to SOC. This
formalism—in the spirit of Landau-Ginzburg and Hohenberg-
Halperin—constitutes, in our opinion, an excellent framework
to underline the generality of the discussed phenomenology,
stressing the key aspects and neglecting as much as possible
specific model-dependent details.

Thus, we reviewed the Langevin approach to SOC and
described how and why the system self-organizes to the edge
of a standard (non-equilibrium) continuous phase transition
separating an active from an absorbing phase. In the limit
of an infinite separation of timescales and conservative bulk
dynamics, the systems self-organizes perfectly to the phase
transition, i.e., to criticality. On the other hand, when some
of these stringent conditions are relaxed (i.e., if the separation
of timescales is not perfect and/or the system is not perfectly
conservative), then there is instead approximate or “imperfect”
self-organization to the vicinity of the transition point, with the
system’s control parameter hovering around it and excursions
into both the subcritical and the supercritical phases (SOqC).
Forest-fire and earthquake models—as well as models of neural
dynamics—can much better be ascribed to SOqC than to actual
SOC. It is, however, important to underline that tuning the
parameters associated with driving and dissipation is required
for the system to self-organize either to the subcritical or the
supercritical regimes. Thus, SOqC systems do not really self-
organize to the vicinity of a transition in a strict sense, but
rather there are broad ranges of parameter values for which
the system hovers around criticality and exhibits approximate
scale invariance.

We also reviewed the recently proposed concept of SOB,
explaining how a feedback mechanism similar to that of SOC
may operate to self-organize a system to the edge of a first-
order, discontinuous, phase transition. As for SOC, in the
limit of infinite separation of timescales and conservative bulk
dynamics, the self-organization to the transition is exact. Unlike
for SOC, however, small avalanches coexist with anomalously
large ones. Furthermore, avalanches belong to the voter model
universality class, which results from the existence of bistability
(i.e., two equivalent states as in the voter model class) at the
self-organized Maxwell point. We also defined an “imperfect”
self-organization mechanism for a family of systems exhibiting
a discontinuous phase transition. As in SOqC, there is not “true”
self-organization. Instead, the non-conserved equivalent of SOB
shows a broad range of parameter values for which the system
exhibits collective oscillations, alternating between regimes of
high activity and quiescent ones (hence the name “self-organized
collective oscillations,” SOCO).
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All the mechanisms discussed above lead to the self-
organization to the vicinity of a non-equilibrium absorbing-
active phase transition. Nevertheless, similar mechanisms have
also been described in other contexts, such as self-organization
to the edge of a synchronization phase transition in the context
of models of neuronal dynamics [163–165]. This mechanism
is similar in spirit to those above, operating differentially in
the two alternative phases; in particular, the synaptic strengths
(which play the role of “energy variable”) tend to be reinforced
when the system is in the asynchronous phase and weakened
when it is exceedingly synchronous (which is achieved by a
synaptic plasticity mechanism such as “spike-time dependent
plasticity” [166]), thus, leading the system to the edge of a
synchronization phase transition in a self-organized way. The
concept of “imperfect self-organization” can also potentially
shed some light on other biological systems where controversy
remains as to whether they show critical behavior, such as the
emergence of marginal orientational order in flocks of birds
and insect swarms [126, 167–170], as well as on other ordering
transitions emerging in the lively research field on active matter
[171]. In fact, the concepts discussed here can be re-interpreted in
terms of homeostatic mechanisms allowing systems (e.g., brain),
organisms, or collectives to self-regulate to an operational regime
that is close to optimal.

It is indeed in the realm of living systems, where self-
organization and optimization are habitual, where we
foreshadow SOC will find some of its most exciting future
challenges. Although during the last decades the idea of SOC has
been widely and successfully used to conceptualize the dynamical
behavior of natural systems, there exist many biological systems
that appear to display critical properties [126] and, therefore, are
susceptible to being studied from the SOC viewpoint. The theory
of SOC, along with its current generalizations, are a powerful
tool to conceptually understand these and other phenomena. For
example, as already discussed here, SOC, SOqC, as well as SOB,
have been argued to play a relevant role in neuronal dynamics
(see e.g., the review paper by Kinouchi et al. in this same special
issue and [132, 172]); a Langevin approach as the one presented
here could potentially help develop a renormalization-group
approach to describe the scale-invariant behavior of brain
activity [107, 162]. In addition, evolutionary processes can
be seen as the driving force that allows biological systems to

self-organize to an optimal critical-like point [18]. Concepts
such as “self-evolved criticality” [173, 174] could thus be used to
explain the evolutionary pathway of specific organisms and/or
the emergence of specific traits, or adaptive responses to short-
or long-term perturbations. The latter would provide important
insight on the resilience of key biological systems, as it could
help assess whether the self-organizing mechanisms present in
a focal system are robust enough for it to cope with the rapid
environmental changes occurring in the anthropocene.

In summary, we have reviewed within a common and
unified framework different types of mechanisms for the self-
organization to the the vicinity of phase transitions. We
hope that this work help clarify the—sometimes confusing
or contradictory—literature on the subject, and contribute to
pave the road for new and exciting developments in physics,
but also other disciplines. This could be especially important
in biology, where the idea that living systems can obtain
important functional advantages by operating at the edge of two
alternative/complementary types of phases/states has attracted a
great deal of attention and excitement [126, 170].
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APPENDICES

TABLE WITH PARAMETER VALUES

TABLE A1 | Parameters used in the numerical simulations for Figures 1, 2.

Parameter SOC SOqC SOB SOCO

a −1.00 −1.00 −1.00 −1.00

b 1.00 1.00 −1.50 −1.50

c − − 1.50 1.50

ω 1.00 1.00 1.00 1.00

h 1.00 0.10 1.00 1.00

γ 0.00 0.10 0.00 0.02

ǫ 0.00 0.10 0.00 0.10

Emax − 1.50 − 1.30

D 1.00 1.00 1.00 1.00

DE 1.00 0.10 1.00 1.00

σ 1.00 1.00 1.00 1.00

Dashes indicate that the corresponding parameter is not present in the model.

C-DP APPROXIMATE SCALING IN SOqC

Although the case of the SOqC has been argued to be belong,
in general, to the dynamical percolation universality class, it is
possible to select parameter values such that avalanches present
a scaling controlled, at least transiently (i.e. for small sizes and
durations) by C-DP (see Figure A1, and [33] for more details).
For instance, in the case of “offline” driving, if the driving is not
strong enough as to bringing the system above the critical point
for spreading, the averaged energy E hovers around the C-DP
critical point Ec, as shown in [33]. Actually, there is a value of the
charge rate, γs, that allows the system to enter into the spreading
phase leading to dynamical-percolation type of scaling. Similarly,
“online” driving can effectively compensate for dissipation so that
an steady state can be reached: as discussed in the main text,
this state can be either sub-critical, supercritical, or near critical,
depending on the relative strengths of driving and dissipation.
In the near-critical case the critical-like features are expected to
be controlled by the C-DP point due to the dynamic “online”
addition of energy, which perturbs the dynamical-percolation
(dissipative) behavior.

FIGURE A1 | Simulations of the SOqC theory may exhibit scaling similar to that of C-DP. (Left) The probability distribution of the average energy is peaked around Ec,

but it is much more sprread that the SOC case, owing to oscillations around the critical point. (Right) Distributions of avalanche sizes in this case. The C-DP exponent

is shown for comparison. Although a change in trend can be seen around s ∼ 104, larger sizes are required in order to clearly see the exponent corresponding

asymptotic scaling (controlled by dynamical percolation, as discussed in the main text). Parameter values are: a = 0.423, b = ω = 1, D = DE = 0.25, σ =
√
2,

γ = 0.1, h = 1.0, ǫ = 0.1, Emax = 1.1, L = 256.
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