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Ecosystems display a complex spatial organization. Ecologists have long tried to characterize them
by looking at how different measures of biodiversity change across spatial scales. Ecological neutral
theory has provided simple predictions accounting for general empirical patterns in communities of
competing species. However, while neutral theory in well-mixed ecosystems is mathematically well
understood, spatial models still present several open problems, limiting the quantitative understand-
ing of spatial biodiversity. In this review, we discuss the state of the art in spatial neutral theory.
We emphasize the connection between spatial ecological models and the physics of non-equilibrium
phase transitions and how concepts developed in statistical physics translate in population dynam-
ics, and vice versa. We focus on non-trivial scaling laws arising at the critical dimension D = 2
of spatial neutral models, and their relevance for biological populations inhabiting two-dimensional
environments. We conclude by discussing models incorporating non-neutral effects in the form of
spatial and temporal disorder, and analyze how their predictions deviate from those of purely neutral
theories.

I. INTRODUCTION

Community ecology aims at shedding light on how
competing species assemble and coexist in their habi-
tats [1]. This has proven to be a formidable challenge.
A main reason is that ecological dynamics span a wide
range of spatial and temporal scales, from those typical
of individuals to those characterizing large populations
or communities. Ecologists have empirically character-
ized biodiversity at the different spatial scales; for exam-
ple, counting the average number of species hosted in a
given area – species area relationship (SAR) [2, 3]–, or
the distribution of their abundances – species abundance

distribution (SAD) [4, 5]. Often, the ecological forces de-
termining these patterns act at a given spatio-temporal
scale but can affect others as well. The inverse problem,
i.e. linking observed patterns with the causes originating
them at different scales, is arguably the central problem
in ecology [6].

This kind of problem sounds familiar to experts in sta-
tistical physics, where large-scale emergent behavior re-
sults from interactions among simple local units. Tools of
statistical physics are indeed very useful to make progress
on the aforementioned crucial issues in ecology. In par-
ticular, a natural approach to such complex problems
is to radically simplify them. To this aim, we consider
ecosystems made up of competing non-motile species,
such as trees, or having a motility range much smaller
than the typical linear size of the population, such as
communities of microorganisms. Further possible sim-
plifications are that all emergent phenomena originate
at the single-individual scale and, more drastically, that
differences among individuals, possibly belonging to dif-

ferent species, can be neglected. These assumptions con-
stitute the basis of the ecological neutral theory proposed
by Hubbell [7].
Ecological neutral theory [7] was built upon theoretical

ideas of Kimura’s neutral theory of population genetics
[8]. Both theories underscore the role of stochastic de-
mographic fluctuations in determining the fate of popula-
tions and completely neglect deterministic effects stem-
ming from fitness differences. The assumption of eco-
logical neutrality has elicited heated controversies, as it
hinted that classical ecological concepts, such as niches,
might play a marginal role in structuring communities
of competing species. Despite these contentions, neutral
theory had a considerable impact on ecological thinking,
owing to its ability to quantitatively predict non-trivial
patterns of biodiversity with simple models characterized
by very few adjustable parameters [9–11].
Spatially implicit neutral models describe well-mixed

communities of individuals subject to immigration from
a larger reservoir of species where diversity is maintained
via speciation. They can be solved analytically [12–16],
yielding analytical expressions for the SAD. Beside the
mathematical appeal, these exact solutions have been ex-
tremely helpful for fitting empirical data and therefore
testing neutral theory or, at least, promote it as a null-
model [17]. For more exhaustive surveys of ecological
neutral theory, we refer the reader to Hubbell’s book [7]
and the reviews [9–11].
The focus of this review is on spatially-explicit neutral

and near-neutral population models. Explicitly describ-
ing space is crucial to address the fundamental ecologi-
cal questions sketched at the beginning of the introduc-
tion. However, spatially-explicit models – that are often
variants of familiar models in non-equilibrium statistical
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physics [18] – are still poorly understood, especially if
compared with their well-mixed counterparts [19]. One
of the most studied neutral model is the voter model with

speciation, or multi-species voter model [20–22], which
generalizes the more common two-species voter model
[23]. The stepping-stone model [24–27] and the contact
process [23, 28, 29] are other examples of spatial models
that have been studied in both the physics and popula-
tion biology literature. We shall discuss how these analo-
gies can be used to advance our understanding of spatial
ecology and the main open problems. This review heav-
ily relies on extensive numerical computations of lattice
models based on previous works by the authors. This
might have biased the choice of some topics and we apol-
ogize if some relevant works are not properly discussed.
The review is organized as follows. In Sect. II we in-

troduce the multispecies voter model on a lattice and its
dual representation in terms of coalescing random walk-
ers. We then discuss its predictions of macroecological
patterns: the SAR, and the SAD. For the latter, we
compare two recent analytical approaches [30–32] with
novel computational results. We mainly discuss the two-
dimensional case due to its ecological relevance, but also
briefly present the one-dimensional case for comparison.
We conclude the section by presenting new results on
an important dynamical property: the distribution of
species persistence-times. In Sect. III we discuss other
neutral models, where, at variance with the voter model,
lattice sites are not necessarily occupied by exactly one
individual at all times. In particular, we consider the
stepping stone model, where each lattice site hosts a local
community of individuals. This generalization is relevant
for modeling microorganisms and their macroecological
patterns. We then consider a multispecies variant of the
contact process, where lattice sites can be either empty of
occupied by single individual. In Section IV we introduce
non-neutral effects on a simplified two-species competi-
tion model, where adjusting a single parameter one can
tune the departure from neutrality, here modeled as a
specific habitat preference. Physically, this habitat pref-
erence can be thought as a form of quenched disorder.
We discuss how this disorder generically favors species
coexistence using the language of statistical mechanics,
and also discuss other forms of disorder such as temporal
heterogeneity. Finally, Sect. V is devoted to perspectives
and conclusions.

II. VOTER MODEL WITH SPECIATION

A. Description of the model

A paradigmatic example of spatial neutral model is
the voter model with speciation, [20], which is is a multi-
species generalization of the voter model [23]. The latter
is a widely studied model that has been applied in di-
verse contexts, from population genetics to spatial con-
flicts [33], spreading of epidemic diseases [34], opinion

dynamics [35] and linguistics [36].
The voter model with speciation is defined on a lattice,

where each site hosts one individual belonging to some
species. At each discrete time step, a lattice site is chosen
at random and the residing individual is removed (death
event). Then, as illustrated Fig. 1, the dead individual
is replaced:

• With probability ν, by an individual of a new
species not present in the system (speciation event).
Notice that, because of speciation, the total number
of species is not fixed. In population genetics, this
type of event is interpreted as a mutation within
the same species [25, 37].

• With complementary probability (1 − ν), by a
new individual of an existing species (reproduction
event). In this case, the newborn belongs to the
same species of a parent individual chosen at ran-
dom in the neighborhood of the vacant site. In the
simplest case, the nearest-neighbors (NN) are cho-
sen with uniform probability. More generally, the
parent individual is selected according to a proba-
bility distribution P (~r) (the dispersal kernel) over
the neighbors within a distance ~r.

X

death event

speciation event reproduction event 

P=(1-ν)P=ν

FIG. 1: Examples of transitions in the 2D voter model with
speciation.

Most of this section will be devoted to the ecologically
relevant case where the system is a two-dimensional (2D)
square lattice, although we will briefly present some re-
sults in 1D for comparison.

B. Duality

The voter model with speciation is dual to a system
of coalescing random walkers with an annihilation rate
[20, 38, 39]. In this context, “duality” means that each
trajectory of one system can be mapped in one of the
other system having equal probability [38]. The dual
process is constructed as follows. We start by placing
on each lattice site a random walker. The dynamic of
the dual process proceeds backward in time. At each
discrete (backward) time step, with probability 1 − ν, a
randomly chosen walker is moved to a new site, where
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the dispersal kernel P (~r) here plays the role of the distri-
bution of possible displacements. If the site is occupied,
the two walkers coalesce, i.e. one of the two is removed
keeping trace of the coalescing partner. With comple-
mentary probability ν a randomly chosen random walker
is annihilated, i.e. removed from the system. This event
corresponds to a speciation event in the forward dynam-
ics. The whole tree of coalescing random walkers, before
annihilation, represents the entire genealogical tree of a
species up to the speciation event that originated it.

The standard forward in time evolution of the voter-
model with speciation and its dual dynamics are
sketched, for the one-dimensional case, in Fig. 2a and
2b, respectively.

X

1D voter model coalescing - annihilating walkers

ti
m

e

re
v

e
rse

 tim
e

2D voter model, NN 2D voter model, K=7

a) b)

c) d)

FIG. 2: a) Example of space-time dynamics of the 1D voter
model with speciation. b) Corresponding dual dynamics: co-
alescing and annihilating random walkers. c) Snapshot of a
configuration of the 2D voter model simulated with the dual
dynamics, with ν = 5 10−7 and nearest-neighbor (NN) disper-
sal. d) Same as c) but with a longer dispersal range (uniformly
distributed in a square of side K) with K = 7. Each color
labels a different species.

Duality is a very useful property to understand the
physics of the voter model. For example, it immediately
stems from duality that the ν → 0 limit is fundamentally
different in D ≤ 2 and D > 2. As a matter of fact, in
D ≤ 2 the random walk is recurrent, meaning that the
probability of two randomly chosen individuals to belong
to the same species approaches one as ν → 0. In other
words, in the absence of speciation, one has monodomi-
nance of one species in the long term. The same property
does not hold in D > 2, where random walkers are not
recurrent and, in an infinite system, multiple species co-
exist on the long term even in the limit ν → 0. Interest-
ingly, the ecologically most relevant case, D = 2, is the
critical dimension of this model. We shall see that this
fact is a source of non-trivial behaviors of ecologically

relevant quantities.
Duality is also an extremely powerful tool for computa-

tional analyses [21, 22]. If one is interested in the static,
long-term, properties of the voter model with speciation,
it is numerically much more efficient to simulate the dual
dynamics than the forward one. In a dual simulation, af-
ter all walkers coalesced or were annihilated, species can
be assigned to the start site of each walker, obtaining a
stationary configuration of the voter model. Beside com-
putational speed, this approach has also the advantage
of eliminating finite-size effects induced by the bound-
ary conditions, as the coalescing random walkers can be
simulated in a virtually infinite system. For illustrative
purposes, in Fig. 2c and 2d we show two configurations
of the 2D voter model obtained with the dual dynamics
for two different dispersal kernels.

C. β−diversity

The first ecological pattern we consider is the β-
diversity, which is a measure of how the species com-
position in an ecosystem varies with the distance. We
define the β-diversity as the probability F (~r), that two
randomly chosen individuals at a distance ~r are con-
specific, i.e. belong to the same species. We remark
that, although this is the natural definition in this con-
text, other definitions have been used in the ecologi-
cal literature [40]. Mathematically, F (~r) can be ex-
pressed in terms of the two-point correlation function
Gsi,sj (~r) = 〈nsi(~x)nsj (~x + ~r)〉, where nsi(~x) denotes the
number of individuals of species si at location ~x

F (~r) =

∑

iGsi,si(~r)
∑

i,j Gsi,sj (~r)
, (1)

where the sums extend over all species in the ecosystem
[11]. Eq. (1) can be used to estimate the β-diversity as
the ratio between the couples of conspecific over the total
number of couples in a sample.
Let us now study the evolution equation of F (~r, t) for

the voter model with speciation and NN dispersal. Al-
though we shall focus on the 2D case, it is useful to
present the general calculation in D dimensions. Fol-
lowing [11, 41, 42] we write

F (~r, t+ 1) =

(

1− 2

N

)

F (~r, t) + (2)

+
1− ν

DN

D
∑

k=1

[F (~r + ~ek, t) + F (~r − ~ek, t)] .

The first term in the r.h.s. of Eq. (3) represents the
fact that F does not change if two generic individuals at
distance ~r are not removed in a given time step and there-
fore survive. The second term represents the events in
which one of the two individuals dies (with prob. 2/N),
no speciation occurs (with prob. 1−ν) and the dead indi-
vidual is replaced by a conspecific from the 2D neighbor
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sites. Taking the continuous limit N → ∞ with the lat-
tice spacing a→ 0, the speciation probability ν → 0, and
a finite value of κ2 = 2Dν/a2, one obtains at stationarity
the differential equation

1

rD−1

d

dr
rD−1 dF

dr
− κ2F (r) + cδD(r) = 0 (3)

where δD is the D−dimensional Dirac delta, and because
of isotropy the β-diversity F (r) is now function of r = |~r|
only. The solution of Eq.(3) is [11]

F (r) = c
κD−2

(2π)D/2
(κr)(2−D)/2K(2−D)/2(κr) , (4)

where Kz is the modified Bessel function of the second
kind of order z and the constant c is fixed by the condi-
tion

∫

r<a
dDrF (~r) = 1. We recall that Eq. (4) is a con-

tinuous expression, valid for distances much larger than
the lattice spacing [41]. Although we derived Eq. (4) for
NN dispersal, the same results hold for a general dis-
persal kernel for distances larger than the kernel range,
provided that the kernel range is finite.
For D = 2, Eq. (4) implies that F (r) ∝ K0(κr), which

is characterized by a slow logarithmic decay, ∼ − ln(rκ),
up to distances of order 1/κ ∼ 1/

√
ν, followed by a faster,

exponential falloff. Remarkably, the β-diversity empiri-
cally measured in several tropical forests in Central and
South America is consistent with a logarithmic decay for
large distances [43]. We remark that this logarithmic de-
cay is the signature that D = 2 is the critical dimension
for the voter model. In contrast, in D = 1, Eq. (4) be-
comes F (r) ∝ √

rκK1/2(κr) ∼ exp(−rκ). We mention
for later convenience that, in D = 1 with NN disper-
sal, Eq. (3) can be solved without using the continuous
approximation, giving [42]

F (r) = exp(−α(ν)r) , with α(ν) = ln
[

(1−ν)

(1−
√

(ν(2−ν))

]

,

(5)

where α(ν) ≈
√

(2ν) for ν → 0.
Although the β-diversity decays exponentially on

scales 1/κ ∼ 1/
√
ν both in 1D and 2D, there are impor-

tant differences. Because 2D is the critical dimension, a
large biodiversity (i.e. a large average number of species)
can be sustained by very low values of the speciation rate
ν. This implies that in 2D there are many species living
on scales much smaller than 1/κ, where the correlations
decay logarithmically. Conversely, in 1D to maintain bio-
diversity one needs a large value of ν, so that 1/κ is the
only characteristic scale and there is no additional struc-
ture on scales smaller than 1/κ. This crucial point will
be further elucidated in the rest of the section, where we
will discuss other observables in 2D (subsections IID and
II E) and compare them with their 1D counterparts.

D. Species-Area Relationships

We now focus on the SAR, defined as the average num-
ber of species, S of a given taxonomic level occupying a

given area of size A. SARs are widely studied as a mea-
sure of spatial biodiversity and quantify how larger habi-
tats support more species than smaller ones [3]. Empiri-
cal measures of SARs at multiple scales often reveal three
different regimes [2, 3, 7]. At small areas, the number of
species increases rather steeply, nearly linearly, with the
sampled areas. A similar steep increase is observed at
very large, continental scales. Instead, at intermediate
scales, a slower, sublinear growth is often found. Such
a growth is well approximated by a power law S ∼ Az,
z < 1, over a wide range of taxa [44], though a logarith-
mic behavior S ≈ C lnA has also been proposed. An
extensive meta-study by Drakare et al. [45] reconsidered
a large body of SAR studies from the literature, revealing
that the power law provides a better fit in about half of
the cases. This study also observed that the exponent z
correlates positively with the body size of the considered
group of species, so that small microorganisms typically
display very shallow SAR curves as compared with larger
organisms (see also [46] and Sect. III A).
Simulations of the (dual) voter model with speciation

yields SARs qualitatively similar to those obtained from
field data, see Fig. 3a. In the voter model, the steep ini-
tial regime is mostly determined by the dispersal range
K. For areas significantly larger than K2, a sublinear
growth is observed (see Fig. 3b. In this regime, the
growth becomes progressively more shallow as the speci-
ation rate ν is decreased. For larger scales, the logarith-
mic slope of the SAR curves become steeper again. The
area at which this final crossover occurs increases as ν is
decreased.
An interesting question is whether the sublinear

growth regime in the voter model can be characterized by
a power-law S ∼ Az and, in this case, what is the value of
the exponent z as a function of ν. To address this ques-
tion, we begin by reviewing a classic estimate of z by
Durrett and Levin [20] relying on duality (see Sect. II B).
The speciation rate ν sets a time scale 1/ν which also
corresponds to a characteristic length scale ξ = 1/

√
ν

because of the diffusive behavior of random walkers in
the dual model. Walkers with an initial separation much
larger than ξ are likely to be annihilated before coales-
cence occurs. This observation alone explains the linear
scaling of S(A) for areas A≫ ξ2 = ν−1. At these scales,
species are uncorrelated, as can also be inferred from the
analysis of the β-diversity in the previous section. For a
system of coalescing random walkers in 2D, the density
of occupied sites ρ(t) decays asymptotically as [47, 48]

ρ(t) ∼ ln t

πt
. (6)

The characteristic logarithmic coarsening of clusters ob-
served in the 2D voter model without speciation can be
related to the logarithm appearing in Eq. (6) [49]. As-
suming ν ≪ 1, the annihilation rate at time t in an area
ξ × ξ can be approximated as the annihilation rate per
walker ν times the number of walkers in the absence of
annihilations ξ2ρ(t). Integrating over time, we find that
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FIG. 3: Species Area Relationships (SAR) and their scaling
behavior in the voter model with speciation. a) Number of
species S as a function of the sampled area A for different
speciation rates as in the caption. The triphasic shape is
evident for larger speciations rates. Simulations from [22]
were performed with a square dispersal kernel, i.e. P (~r) is a
uniform distribution on a square of side K centered on the
empty site, with K = 7. b) Local slopes, d lnS/d lnA for the
curves shown in panel a. c) Dependence of the exponent z on
ν as obtained from the local slopes for both the square kernel
with K = 7 and NN dispersal. The exponent is estimated
at the inflection point of the SADs, i.e. at the minimum of
the local slopes. Also shown is the prediction of Eq.(8) (black
solid line) where the black triangles correspond to the values
provided in [20]. d) Plot of 1/z vs ln(ν) of the same data of
panel c to highlight the logarithmic behavior of Eq. (9)

the total number of annihilations, i.e. the total number
of species, is [39]

S(ξ2) ≈ νξ2
∫ 1/ν=ξ2

t0

dt ρ(t) =
ln2(ξ2)− ln2(t0)

2π
≈

≈ 2

π
(ln ξ)

2
, (7)

where t0 is the time at which the asymptotic expression
(6) starts to be valid. The upper temporal cut-off is set to
1/ν (with 1/ν = ξ2) because the number of killing events
occurring after a time ∼ 1/ν is bounded by the number
of walkers in the system, which is ξ2ρ(1/ν) ∼ ln ξ [39].
Finally, combining Eq. (7), the fact that S(1) = 1 and
matching a power law behavior S = Az in the range of
scales from A = 1 to A = ξ2, one finds [20]

z =
ln [S (A)]

ln (A)
=

2 ln[ln(1/
√
ν)] + ln(2/π)

ln(1/ν)
. (8)

Also in this case, the logarithmic dependence of the ex-
ponent z on ν derives from the fact that D = 2 is the
critical dimension for the voter model.
More recent results disputed the validity of Eq. (8).

Scaling arguments hinted that z should approach a fi-
nite value z ≈ 0.2 in the limit of vanishing ν (see [42]
and Sec. II E 1), while numerical simulations suggested

a power law dependence, z ∼ ν0.15 [21]. Finally, further
numerical simulations, based on the dual representation
of the voter model with speciation (see Sect. II B) and
spanning a very wide range of speciation rates from 10−3

to 10−11 confirmed the logarithmic behavior predicted
by Eq. (8) [22]. The exponents measured in such simula-
tions, shown in Fig. 3c, are well fitted by a phenomeno-
logical expression of the form

z =
1

q +m ln(ν)
(9)

which is consistent with Eq. (8) up to order ln ln ν, see
also Fig. 3d. However, fitted values of the prefactors q
and m are not consistent with Eq. (8). This discrepancy
is probably due to pre-asymptotic effects as well as to the
approximation of assuming a power-law range between
A = 1 and A = ln(1/ν).

Let us briefly discuss the role of the dispersal ker-
nel. As illustrated in Figs. 3c and 3d, a comparison
between NN dispersal and a square dispersal kernel of
range K = 7 demonstrates that the exponent z depends
to some extent on the dispersal kernel. However, numer-
ical evidence [21, 22] suggests that when the dispersal
kernel range is large enough (approximately K ≥ 5) the
exponents are very weakly dependent on K. Moreover,
SARs obtained with different values of K can be rescaled
onto a universal function of A and ν via the transforma-
tion S = f(A, ν,K) = Kχφ(A/Kχ, ν) with a fitted value
of χ ≈ 1.97. To the best of our knowledge, a formal
derivation of this scaling law and of the exponent χ is
currently an open problem.

The non-trivial area dependence of the SAR results is a
special feature of the critical dimension D = 2. To high-
light this point, we now discuss the D = 1 case as com-
parison. This case is also relevant to describe quasi one-
dimensional ecosystems, such as river basins [50]. For
simplicity, we limit ourselves to the case of NN dispersal.

To the best of our knowledge, also in D = 1, an ex-
act expression for the average number of species, S(L),
in a segment of length L is unknown. Nevertheless,
it is possible to provide a lower and upper bound for
S(L). In D = 1, the density of walkers behaves as
ρ(t) ∼ 1/

√
t, to be contrasted with eq. (6) valid in the

2D case. Dimensional arguments then suggest that the
average number of species must a function of L

√
ν only,

i.e. S(L; ν) = Ψ(L
√
ν). Computational results (Fig. 4a

and inset) support well this simple argument. As shown
in the figure, the non-trivial power-law regime character-
istic of 2D SARs is absent in D = 1. Indeed, the function
Ψ is linear for large arguments, with a coefficient around
1.2 and it is nearly constant for L

√
ν ≪ 1.

We can derive an upper bound to S(L) using that, in
D = 1, individuals are organized in Ns(L; ν) segments of
conspecific individuals, so that S ≤ Ns, with the equality
holding if no species is present in more than one segment.
We compute Ns from the probability Pi−1,i ≡ F (|i− j|),
with F (r) given by Eq. (5), that two sites i and j are
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FIG. 4: Species Area Relationshipt for the voter model inD =
1. a) Average number of species S versus the system size L
for different ν as labeled. Inset: same curves plotted vs L

√
ν,

notice the excellent collapse. b) SAR for ν = 10−5 compared
with the theoretical upper (10) and lower (11) bounds.

occupied by conspecific individuals [51]

S ≤ Ns = L−
L−1
∑

i=1

Pi−1,i = L− (L− 1)F (1) =

= L− (L− 1)e−α(ν) , (10)

which for ν → 0 can be approximated as Ns ≈ 1 +√
2ν(L− 1).
The lower bound follows from Jensen’s inequality (see

also [51]) applied to the frequency of species represented
by the individual in site i ∈ [0, L−1], here denoted ni(L),
which yields

S =
∑

i

〈

1

ni(L)

〉

≥
∑

i

1

〈ni(L)〉
, (11)

where 〈ni〉 =
∑

j Pi,j and Pi,j = F (|i− j|) is again given

by Eq. (5) and can be easily summed numerically.
In Fig. 4b we compare the numerically obtained SAR

with the upper (10) and lower (11) bounds. Notice that
the upper bound is very close to the actual SAR, implying
that most species are organized in single segments.

E. Species-Abundance Distributions

We now discuss Species-Abundance Distributions
(SADs), P (n;A), that measure the relative abundance of
species in a given area A. More precisely, denoting S(A)
the total number of species sampled in an area A, each
composed by ni (i = 1, . . . , S(A)) individuals, P (n;A)dn
is the probability that a randomly picked species has an
abundance between n and n+ dn. While the expression
of P (n;A) for well-mixed neutral models is known [14],
computing it for spatially explicit models, such as the
voter model with speciation, has proven to be a rather
hard problem. We first discuss in section II E 1 an ap-
proach based on standard finite-size scaling, and under-
line its limitations. In Sec. II E 2, we discuss how this
approach can be generalized at the critical dimension,
present numerical results, and discuss a recent attempt

to compute P (n;A) exploiting duality. Although we fo-
cus ond comparing the scaling theory with results from
the voter model with speciation, we remark that the the-
oretical approach presented in this section is more general
and can be applied to a vast class of models at the critical
dimension.

1. Power-law scaling relation

In the voter model with speciation, the SAD is not
only a function of the system size A, but also of the
speciation rate ν. Although we are mainly interested
in 2D, it is instructive to consider the general case in
which A = LD, where L is the linear size of the sample.
Following [11, 42], we assume a standard scaling form for
the SAD

P (n;A, ν) = n−βΨ(nνα, AνD/2) (12)

where the exponents α and β remain unspecified for the
time being, whereas the exponent D/2 stems from the
diffusive nature of neutral models ν ∼ t−1 ∼ L−2 ∼
A−2/D. Note that in models with long-range, non-
diffusive dispersal [52] the scaling form might differ.
Equation (12) describes a power-law dependence of P
on n, holding up to a scale determined by the scaling
function Ψ, that depends on dimensionless combinations
of the population size n, the speciation rate ν, and the
system size A. To the best of our knowledge, there is no
available analytical prediction for the exponent β. The
exponent α can be estimated in the dual formulation of
the voter model with speciation, where the population
size n is the number of coalescences that occur before
an annihilation (see Sec. II B). This implies that α is
the same exponent characterizing the temporal decay of
the density of coalescing random walkers, ρ(t) ∼ t−α.
However, ρ(t) decays as ρ(t) ∼ t−min(1,D/2) for D 6= 2
and ρ(t) ∼ log(t)/t in D = 2, see eq. (6) and [48, 53].
Consequently, one should expect the power-law scaling
of Eq. (12) to hold in D = 1 and D ≥ 3, but not at the
critical dimension D = 2, where logarithmic corrections
should appear.

2. Generalized scaling relation

In order to allow for logarithmic corrections, Zillio et

al. [30] proposed the generalized scaling relation

P (n;A) = g(A)Ψ(n/f(A)) . (13)

The dependence on ν was omitted as the above scaling
law was applied to observational data for which the spe-
ciation rate is unknown and assumed to be fixed. The
key aspect of Eq. (13) is that f and g, are general func-
tions and not necessarily power-laws as in conventional
scaling, allowing for the possibility to include logarithms
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or other functional dependencies. The scaling function
Ψ(x) is still assumed to be a power law

Ψ(x) ∼ x−∆ (14)

for small values of x, where ∆ is an exponent to be de-
termined. Thus, also Eq. (13) postulates a power-law de-
pendence on n, but with a more general cut-off for large
areas. After specifying the functions f and g, Eq. 13 can
be tested by plotting P (n;A)/g(A) versus x = n/f(A)
for a set of different areas and assessing the quality of the
data collapse onto a single curve, Ψ(x).
To determine the functions f and g, we impose that

P (n;A) has to be normalized,
∫∞
n0
dn g(A) Ψ(n/f(A)) =

1, and that its average value has to be 〈n〉 =
∫∞
1 dn n g(A) Ψ(n/f(A)). Substituting the scaling form
(14) into these two equations, it is possible to derive con-
ditions that the functions f and g must obey, depending
on the value of ∆. In particular, the case ∆ = 1 is
marginal and needs to be treated with care (other values
∆ 6= 1 are analyzed in the Appendix). Approaching such
a limit as ∆ = 1− ǫ with ǫ≪ 1, Eq.(14) becomes

Ψ(x) = x−1+ǫ ∼ 1

x

[

exp(ǫ) ln(x)
]

∼ 1

x
[1 + ǫ ln(x)] (15)

up to first order in ǫ. At the same order in ǫ, the two con-
ditions for P (n;A) become 1 ∼ g(A)f(A) ln(f(A))[1 +
ǫ
2 ln(f(A))] and 〈n〉 ∼ g(A)f(A)2, respectively, from
which we finally obtain

f(A) = 〈n〉 ln〈n〉
[

1 +
ǫ

2
ln〈n〉

]

g(A) =
1

〈n〉 ln2〈n〉
[

1 + ǫ
2 ln〈n〉

]2 (16)

up to first order in ǫ. Notice that both functions f and
g include logarithmic corrections. By means of a similar
calculation, one can estimate the k-th moment 〈nk〉, and
verify that all the moment ratios 〈nk〉/〈nk−1〉 scale in the
same way, up to a multiplicative constant

〈nk〉
〈nk−1〉 =

∫

dn nk P (n;A)
∫

dn nk−1 P (n;A)
∝ f(A) k ≥ 1 . (17)

revealing a highly anomalous scaling.
Zillio et al. [30], showed that this scaling form provides

a much better collapse of empirical data from the Barro
Colorado tropical forest than a power-law scaling relation
such as Eq. (12). This supports the idea that ∆ is close
to its marginal value 1 in tropical forests.
We tested computationally whether Eqs. (13) and (16)

provide a good collapse of SADs obtained from the voter
model with speciation and whether the relationship be-
tween the moments, Eq.(17), holds. In simulations, an
additional parameter is the speciation rate ν. As dis-
cussed above, ν appears in scaling relationships via the
dimensionless combination AνD/2, that in 2D equals Aν.
Thus, although Eqs. (13) and (16) do not include speci-
ation explicitly, we expect these relationships to hold if
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FIG. 5: SAD and data collapse. Results are presented for
different linear system sizes and different speciation rates ν,
keeping the product Aν = 200 constant. a) SADs for different
linear sizes from L = 400 to L = 2500. b) Collapse of SADs
by means of Eqs.(13) and (16). The fitted parameter in the
functions f and g is ǫ = 0.08. c) Naive collapse without
logarithmic corrections, where deviation for perfect collapse
are evident. d) Collapse with the scaling form of Eqs.(13) and
(16), but setting ǫ = 0. Also in this case the discrepancy is
evident.

Aν is kept constant. We therefore performed computa-
tional analyses fixing Aν = 200, although the conclusions
are robust against this choice. Results are summarized
in Figure 5 which shows plots of the SAD, for systems
with different linear size, L and different speciation rates
ν (with L2ν = Aν = 200). Observe in Fig. 5a that
the smaller the size (or the larger the speciation rate)
the smaller the maximal abundance. Figure 5b show the
data collapse as given by Eqs. (13) and (16), where 〈n〉
is the average number of individuals measured in each
area A and ǫ is a free parameter that we fitted obtain-
ing ǫ = 0.08 and a remarkable collapse of the different
curves. The small value of ǫ, is consistent with the as-
sumed small deviation from ∆ = 1. A similar collapse
for Aν = 20 leads to an even smaller value ǫ ≈ 0.069 (not
shown). We verified that either removing all logarithmic
corrections (thus plotting results as a function of 〈n〉) or
simply fixing ǫ = 0 in Eq. (13) and (16) leads to less
convincing collapses, as shown in Fig. 5c and 5d, respec-
tively. Clearly, these deviations can pass unnoticed in
the presence of statistical fluctuations. Probably, this is
the reason why in [54] a simple scaling law was claimed
to hold for the 2D voter model with speciation. Finally,
we also verified that moment ratios scale as f(A), as pre-
dicted by Eq.(17) and illustrated in Fig.6.
In summary, a non-standard scaling form, including

logarithmic corrections, provides an excellent collapse
both for empirical data and for numerical simulations of
the 2D voter model. We remark that the scaling theory
is phenomenological, and the small parameter ǫ control-
ling the importance of logarithmic corrections is, at this
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FIG. 6: Moment ratios for different values of k. As predicted
by Eq.(17), in the case ∆ ≈ 1 all moment ratios 〈nk〉/〈nk−1〉
scale in the same way with f(A) up to a multiplicative con-
stant. As in Fig. 5, the fitted value is ǫ = 0.08.

level, a non-universal free parameter. These results are in
sharp contrast with the one-dimensional case, where log-
arithmic corrections are not expected. Indeed, Fig. (7)
shows that the naive scaling form P (n;A)〈n〉 vs. n/〈n〉
(derived in Appendix A for the case ∆ 6= 1) yields a
perfect collapse for SADs in one-dimensional systems.
It is interesting to remark that the data collapsed in

[30] were obtained from tropical forests of different areas
A. It is reasonable to assume that the speciation rate ν
do not vary much among these forests. Therefore, the
product Aν is not fixed, as in our computational analy-
ses. A possible explanation is that, although the collapse
achieved in this way is not perfect, the deviations from
perfect scaling are too small to be appreciated in obser-
vational data due to the limited sample size. We have
verified in simulations (not shown) that keeping ν con-
stant (rather than Aν constant) small deviations from
perfect collapse are observed.

10-5

10-4

10-3

10-2

10-1

100

100 101 102 103

P
(n

;L
)

n

a)

L=200
L=400
L=800

L=1200
L=1600
L=2000

10-4

10-3

10-2

10-1

100

101

10-2 10-1 100 101

P
(n

;L
)<

n>

n/<n>

b)

FIG. 7: Species Abundance Distribution (SAD) in the D = 1
voter model with speciation. a) SAD P (n;L) vs n at vary-
ing the system size L as labelled with Aν = 40 constant.
b) Collapse of curved in (a) obtained withe rescaling SAD
P (n;L)〈n〉 vs n/〈n〉.

We conclude this section mentioning that a heuristic
expression for the SAD has been recently derived for the
voter model with speciation following a completely dif-

ferent approach [31, 32]. Let us define P (x, t) as the dis-
tribution of the number of individual of a given species
at time t. If we approximate x as a continuous quantity,
we can heuristically write a Fokker-Planck equation for
the evolution of P (x, t)

∂tP (x, t) = ν∂x[xP (x, t)] + ∂2x[I(x)P (x, t)] (18)

where the first term in the right hand side is the negative
drift due to speciation, and the second is the fluctuation
in population size, where I(x) is the average number of
interfaces of a species of size x. The crucial underlying
approximation is to neglect fluctuations of I(x), which
is appropriate if the distribution of the number of inter-
faces at fixed value of x is a very peaked function. In
this simple framework, all the dependence on the spatial
dimension of the voter model is recap into the function
I(x). The steady-state solution of Eq. (18) is

Pst(x) =
e−ν

∫
dx x

I(x)

I(x)
. (19)

From duality considerations [31, 32], the average number
of interfaces must scale in 2D as I(x) = x/(1 + c lnx)
where c is a non-universal constant. Notice how the ex-
pression of I(x) includes familiar logarithmic terms and
that the constant c plays the role of the exponent ǫ
in the scaling theory. Substituting this expression into
Eq. (19) leads to an explicit expression for the SAD,
which obeys a scaling law with logarithmic corrections
similar to Eq. (16), though not identical. A more de-
tailed comparison between this result and the previous
scaling form is an interesting issue, but beyond the scope
of this review.

F. Species persistence-times

So far, we have considered neutral predictions of static
ecological observables. However, neutral theory can also
be used to predict time-dependent properties. A chief
example is the distribution of survival times. The sur-
vival time τ (also called ”persistence time”) within a ge-
ographic region is defined as the time occurring between
the speciation event originating a given species and its
local extinction [15]. Recent empirical work on north-
american birds and herbaceous plants revealed that the
probability of observing a persistence time τ decays as
as power laws P (τ) ∼ τ−1.83 and P (τ) ∼ τ−1.78 respec-
tively, with area-dependent exponential cut-offs [55, 56].
In the voter model with speciation, the survival prob-

ability as a function of time can be computed analyti-
cally. Also in this case, the calculation relies on duality
[47, 48, 57]. In 2D and in the limit of vanishing ν one
obtains

P (τ) ∼ ln τ

τ2
(20)
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while standard power-law scaling P (τ) ∼ τ−1/2 is ex-
pected in 1D. For non-negligible values of ν, these scal-
ing forms are cut-off by a ν-dependent exponential factor
exp(−ντ) in either dimension. Also in this case, diffu-
sive scaling relates the characteristic time scale 1/ν with
a length scale ξ via ξ ∼ √

ν. This explains the afore-
mentioned area-dependent cut-offs observed in empirical
data [55].

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

100 101 102 103 104 105 106

(a)

P
(τ

)

τ

ν=10-2

ν=10-3

ν=10-4

ν=10-5

10-1

100

100 101 102 103 104 105 106

(c)

P
(τ

)τ
1.

9

τ

10-2

10-1

100

(b)P
(τ

)τ
2 /lo

g(
τ)

FIG. 8: Species persistence times. (a) Probability distribution
function of species persistence times for different values of
the speciation rate ν as in label. (b) and (c) show the pdf
rescaled with the logarithmic correction, P (τ )τ 2/ ln τ , and
with a power law, P (τ )τ 1.9, respectively.

Species persistence times in simulations of the 2D voter
model with speciation are shown in Fig. 8a. Panels (b)
and (c) show compensated plots of the simulation results.
The simulations support the prediction of eq. (20) (panel
b), and also illustrate that a power law with an exponent
close to 2 (1.9 in this case) provides a good approximation
of the scaling predicted by Eq. (20) in a broad range of
scales (panel c), consistently with the empirical findings
in [55, 56].

III. OTHER NEUTRAL MODELS

In the voter model with speciation, the habitat is sat-
urated and each site is always occupied by an individual.
In this section, we study neutral spatial models where the
number of individuals that can inhabit a site is varied.
We consider three variants: the stepping-stone model
with speciation, where each site can host many individ-
uals but the landscape remains saturated; the contact
process with speciation, where occupancy is limited to a
maximum of one individual per site, but sites can also be
empty; and the O’Dwyer-Green model, where occupancy
is unbounded.

A. Stepping-Stone Model with speciation

In the voter model, each lattice site hosts a single in-
dividual. This assumption is appropriate for big sessile
species, such as trees, where each individual occupies a
well-defined area and exploits its local resources. On the

other side of the spectrum, microorganisms, such as small
eukaryotes or bacteria, are often present in very large
numbers on tiny spatial scales, where all individuals share
the same resources. For these species, it is more appro-
priate to think of the habitat as subdivided into small
patches, connected by migration and each hosting a large
number of individuals directly competing with each other
[58]. To model such ecological cases, in this section we
consider the stepping-stone model [25, 26] with specia-
tion, which generalizes the voter model with speciation
to the case in which each site hosts a fixed number M of
individuals.

Similar to the voter model with speciation, at each
time step an individual is randomly chosen and killed.
With probability ν, it is replaced by an individual of a
novel species. With complementary probability (1 − ν),
a reproduction event occurs. The parent of the new in-
dividual is selected with probability (1 − µ) among the
survivingM−1 individuals present at the same site, and
with probability µ among the M individuals in a ran-
domly chosen neighboring patch (according to a proba-
bility distribution on the neighbors P (~r), similar to the
case of the voter model). The particular case of M = 1
reduces to the voter model with speciation up to a time
rescaling t → µt. Like the voter model, the stepping-
stone model admits a dual representation in terms of co-
alescing random walkers with annihilation, which can be
exploited for efficient numerical simulations. The main
difference with respect to the dual of the voter model is
that, in the dual stepping-stone model, at each step a
random walker can either move to another site or stay
in the site of origin. Coalescence can happen in both
circumstances, corresponding to reproduction of an indi-
vidual from neighboring sites or from the same site. For
full details on the implementation we refer to [27].

As revealed by numerical simulations of the stepping-
stone model based on the dual representation, SARs are
qualitatively similar to those of the voter model, although
the exponents z are, in general, smaller than in the voter
model [27]. In particular, the exponent depends not only
on ν, but also on the combination of parameters Mµ,
which determines the regimes of the model. ForMµ≪ 1,
each local site is likely to contain only one species. In this
limit, each site behaves as one individual up to a time
rescaling, so that one should expect the same exponents
as in the voter model with speciation. In the opposite
limitMµ≫ 1, there is a large diversity of species at each
site. An analytical argument suggests that, in this latter
limit, the exponent should be a factor two smaller than
in the former limit [27]. Let us study the limit Mµ ≫ 1
in the dual representation. Since random walkers in the
same site have a low probability of coalescence, they will
wander for a long time before coalescing. Therefore, we
can assume that, asymptotically, they will behave as in
the well-mixed case. This implies that their density in
an area smaller or equal than ξ2 approximately decays
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according to the mean-field formula

ρ(t) ∼ 1

t
. (21)

Observe that in this case the characteristic length is ξ =
√

µ/ν, as random walks diffuse with probability µ at each
time step. Proceeding as in Eq. (7), the average number
of species in an area ξ2 can be estimated as

S(ξ2) ∼ νMξ2
∫ µ/ν=ξ2

t0

dt

t
=Mµ ln

[

ξ2

t0

]

. (22)

To compute z, we also need an estimate for S(1), that
in this case is not trivially equal to one. As the popula-
tion is assumed to be well-mixed in an area equal to ξ2 or
smaller, the composition of a single site can be thought
as a sample ofM individuals from this well-mixed popu-
lation. The probability distribution of the abundance in
such a sample is given by Ewens’ sampling formula [59].
Substituting its expression yields

S(1) =

M−1
∑

j=0

Mµ

Mµ+ j
≈Mµ ln(1 + µ−1) . (23)

Combining Eqs. (22) and (23) and assuming a power law
in the range from A = 1 to A = ξ2, we find an exponent

z ∼ ln(ξ2)

ln ln(ξ2)
=

ln ln(ν/µ)

ln(ν/µ)
(24)

which, to the leading order, is a factor 2 smaller than
the corresponding estimate for the voter model (8). The
decrease of the exponent z with the combination of pa-
rameters Mµ is confirmed in numerical simulation, see
Fig. 9, although the asymptotic reduction is less than
the factor two predicted by the approximate estimate of
eq. (24).
Summarizing, the stepping-stone model at large local

community size M yields smaller values of the species-
area exponent z than the voter model [27]. This fact
is consistent with the ecological observation that micro-
bial communities, characterized by very large local com-
munity sizes, typically display very shallow species-area
relations, and that in general there seems to be a pos-
itive correlation between the exponent z and the body
size of a taxonomic group [46]. In the stepping-stone
model, a decrease in the SAR exponent is observed in
the regimeMµ≫ 1 where each site hosts a large number
of species and therefore provides a buffer for biodiversity
[27]. This interpretation is also consistent with the “cos-
mopolitan” nature of many microbial species, i.e. the
fact that relatively small communities of microbes host a
biological diversity comparable with that observed in the
whole planet [58, 60]. This feature has sometimes been
explained invoking the fact that microbes have the pos-
sibility of long-range dispersal [60]. However, numerical
simulations show that, in the voter-model with specia-
tion, long-range dispersal leads to steeper, rather than
shallower SARs [52].
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FIG. 9: Species-area exponents for the Stepping Stone Model
at fixed ν = 10−6, different local population size M and dis-
persal rate µ, with NN dispersal. The numerical estimate of
the exponent z in the voter model for NN-dispersal and the
same value of the speciation rate is shown for comparison.

B. Contact Process with speciation

In the voter model, every dead individual is instantly
replaced by a newborn, leading to a constantly saturated
environment. The implicit underlying assumption is that
the birth rate is infinite, so that death events are the
rate-limiting steps. Such assumption constitutes a good
approximation in resource-rich ecosystems. In less rich
ecosystems, where the birth rate is finite, the environ-
ment is not always saturated and empty gaps can exist
[61].
To explore this latter case, we study here the contact

process with speciation, which is the multi-species vari-
ant of the well-known contact process [18, 28, 29, 38, 62].
As usual, we consider the model on a 2D square lattice.
Sites of the lattice can be occupied by individuals belong-
ing to different species or empty. The model is defined in
continuous time; each individual dies at a rate d and re-
produces at a rate b. In case of a death, the site is simply
left vacant. A reproduction event is considered successful
only if the individual has at least one vacant neighboring
site. In such a case, one of the vacant neighboring sites is
chosen at random. With probability ν, the site is occu-
pied by an individual of a new species (speciation event);
with complementary probability, (1− ν), the newborn is
of the same species as the parent.
As in the standard contact process [38, 62], the param-

eter determining the asymptotic density of occupied sites
ρ is the dimensionless birth-to-death ratio η = b/d. For
η < ηc ≈ 1.649 the absorbing state in which all sites are
empty is stable. A non-equilibrium phase transition at
η = ηc separates this region from a stable active phase
(η > ηc) characterized by a non-vanishing value of ρ that
depends on η [28, 29]. For η → ∞ one has ρ→ 1 and the
model is equivalent to the voter model with speciation
[18].
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FIG. 10: (top) Snapshots of configurations of the contact pro-
cess with speciation at different values of the birth-to-death
rate ratio η and ν = 10−4. In each panel, each color repre-
sents a different species. (bottom) SARs at different values
of the birth-to-death rate η (shown in the figure legend) and
ν = 10−5. (inset) Red dots: estimated exponent z as a func-
tion of ν for the contact process with speciation at η = 1.68.
Red dashed line is a linear fit; black dashed line is the cor-
responding fit for the voter model with speciation for com-
parison. We have chosen a NN dispersal kernel in all panels.

The CP is a self-dual model. Therefore, duality cannot
be exploited in numerical simulations as in the case of the
voter model. Forward simulations show that the SAR
and the corresponding exponents are remarkably similar
to the voter model with speciation even at small values of
η, corresponding to very fragmented ecosystems as shown
in Fig. 10. For values of η very close to ηc (but within
the active phase) and small values of ν, SAR exponents
tend to be smaller than in the voter model, see inset of
Fig. 10.

In principle, in a very fragmented ecosystem it would
not make sense to sample empty areas, or areas with very
few individuals. With this idea in mind, an alternative
to the standard definition of SAR used so far is to weigh
the sample of a given area with its number of individuals,
i.e. of occupied sites. Adopting this definition one finds
qualitatively different SARs for small values of η [27]. In
particular, these SARs do not seem to be characterized
by a clear power-law range. We refer the reader to Ref.
[27] for a broader discussion of this issue.

C. O’Dwyer-Green model

We have seen that finding exact results for neutral spa-
tial models constitutes a formidable problem, and even
in the simple case of the voter model only asymptotic
results are known.
To make progress in this direction, O’Dwyer and Green

proposed a spatial neutral model in which individuals do
not compete, i.e. the site occupancy is not bounded [63].
In their model, each individual can reproduce at a rate b,
giving rise to a newborn located according to a dispersal
distribution, die at a rate d, or speciate at a rate ν, giv-
ing rise to a newborn of a new species. The model was
studied at the critical point b+ν = d. The lack of interac-
tion considerably simplifies the mathematical treatment:
the model can be mapped into a field theory from which
the authors of [63] obtained an analytical expression for
the species-area law and the dependence of z on ν. In
particular, the solution was derived by writing an equa-
tion for the distribution of a generic species, which was
solved by imposing detailed balance. However, Grilli and
coworkers [64] pointed out a flaw in this procedure. In
this model all species are transient, as the birth rate of
each species is always smaller than the death rate because
of speciation. This implies that all species eventually go
extinct, so that the detailed balance (i.e. equilibrium)
assumption is not valid.
An often overlooked aspect of the O’Dwyer and Green

model is the lack of a carrying capacity. Although well-
mixed neutral models commonly do not have a carrying
capacity (beside that of the entire ecosystem), a local
carrying capacity, i.e. a maximum occupancy of each
lattice site, is a standard ingredient in spatial neutral
theory, shared by all models we discussed so far. In the
O’Dwyer and Green model, since the dynamics of the en-
tire ecosystem is a critical branching process, the popu-
lation at each site undergoes huge fluctuations. This fact
implies as a drawback that numerically simulating the
steady-state of the model and sampling its configurations
is extremely difficult. While the authors of [64] clearly
pointed out that the detailed balance solution leads to
several inconsistencies and is therefore not valid, to the
best of our knowledge there have been no attempt of com-
paring this solution with numerical simulations to see if
detailed balance can provide a reasonable approximation
of the dynamics in some particular regimes or limits.
Currently, the research of spatial neutral models that

can be solved analytically is still open [65]. In this di-
rection, although this review focuses on lattice models,
we mention a recent phenomenological attempt based on
a spatial Fokker-Planck equation where both space and
population sizes are continuous variables [66].

IV. NEAR-NEUTRAL MODELS

In the previous sections, we focused on neutral eco-
logical models. However, in real ecosystems the neutral
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assumption is (at best) a crude approximation. It is thus
interesting to examine some of the main effects of non-
neutral forces, also because many biodiversity patterns
that are well predicted by neutral models are also found
in richer, non-neutral models [67–69]. A main difficulty
in comparing neutral and non-neutral models is the large
number of possible ecological effects (and corresponding
parameters) that typically enter the latter. In this sec-
tion, with the aim of understanding basic non-neutral
effects in a simple setting, we present a minimal model
introduced in [70], where one can continuously move from
a neutral to a non-neutral scenario by varying a single pa-
rameter, tuning the amount of spatial disorder. We then
discuss generalizations to other types of spatio-temporal
disorder.

A. Habitat-preference model

We consider a variant of the voter model where differ-
ent sites are preferred habitats for each one of the com-
peting species. For the sake of simplicity, we limit our-
selves to the case of two species A and B with NA and
NB individuals, respectively. We assume habitat satura-
tion, so that the total population is N = NA +NB = L2

where the system is a square lattice of size L with pe-
riodic boundary conditions. Individuals of type A and
B can also migrate to the system from an infinite reser-
voir where they are equally represented. Each lattice site
can be of type a or b, i.e. being a preferred habitat for
colonization by species A or B, respectively. After colo-
nization, mortality and dispersal do not depend on being
on a preference site. Ecologically, this means that the
fitness advantage belongs to the seeds and not to the in-
dividuals themselves (see [71] for a different choice). The
a vs b character of each site is chosen randomly at the
beginning and it remains fixed over time – quenched dis-
order. To maintain the model globally symmetric, we
assume equal proportions of a and b sites and that in-
tensity of the two biases (a favoring A and b favoring
B) are identical. The dynamics proceeds as follows. At
each discrete time step, a lattice site is randomly chosen
with uniform probability and the residing individual is
killed. The individual is replaced either by an immigrant
from the reservoir (with probability µ) or by an offspring
of an individual residing in one of the four neighboring
sites (with probability (1 − µ)). In both cases, the col-
onization probability is biased by an additional factor γ
for the individuals that have preference for the empty
site. In formulas, the probability of colonization of a site
x = {a, b} by an individual X = {A,B} (Y = {B,A})
having (not having) preference for that site is

W x
X(nX , nY ) = (1− µ) (1+γ)nX

(1+γ)nX+nY
+ µ 1+γ

2+γ

W x
Y (nX , nY ) = (1− µ) nY

(1+γ)nX+nY
+ µ 1

2+γ ,

(25)

respectively, where nX (nY ) denotes the number of in-
dividuals of species X = {A,B} (Y = {B,A}) in the

neighborhood of the considered site. Similar models have
been proposed also in the context of heterogeneous catal-
ysis [72] and social dynamics [73]. For γ = 0 and µ = 0,
the standard (neutral) voter model with two species is
recovered. For γ = 0 but µ 6= 0, it corresponds to the
noisy voter model [74, 75].
Also in this model, the results can depend on the choice

of the dispersal kernel P (r). Here we focus on the NN
dispersal and global dispersal (GD), i.e. a mean-field ver-
sion of (25). The GD case can be thought as a variant of
the two islands model [76] of population genetics, where
each island host N/2 individuals and is favorable to one
of the two species. In the mean-field version, the state of
the system is univocally determined by the numbers of
individuals NAa and NBb residing on their island of pref-
erence. The numbers of individuals outside their island of
preference are NBa = N/2−NAa and NAb = N/2−NBb.
The dynamics is then fully specified by the probabilities
per elementary steps that NXx (with X = {A,B} and
x = {a, b}) increases or decreases by a unit:

WNXx→NXx+1 =

(

1

2
− NXx

N

)

W x
X(NA, NB)

WNXx→NXx−1 =
NXx

N
W x

Y (NA, NB) (26)

where W x
Y and W x

X are given by eqs. (25) with nX and
nY replaced by NX = NXx+NXy and NY = NY y+NY x,
respectively.

B. Extinction times

In the absence of immigration (µ = 0) and for finite
populations N < ∞, persistent coexistence of the two
species is not possible: demographic stochasticity even-
tually drives one of the species to extinction (the absorb-
ing state) with the fixation (in the jargon of population
genetics) of the other species. In this case, information
on the system can be obtained by studying the dynam-
ics toward extinction [71]. Of particular interest is the
average extinction time, 〈Text〉, and its dependence on
system properties, such as the deviation from neutrality
and the population size.
In the neutral case (γ = 0), as discussed, the system re-

covers the voter model with NN dispersal and the Moran
model [37] in the version with global dispersal. In this
limit, the extinction time is set by the population size. In
particular, for large N we have 〈Text〉 ∼ N lnN for NN-
dispersal [77] and 〈Text〉 ∼ N for global dispersal [37, 78].
To inquire the effect of habitat preferences we performed
simulations of the model (25) with an initial condition
NA = NB = N/2 until the extinction of one of the two
species.
Figure 11 shows the average extinction time, measured

in generations, i.e. N elementary steps of eqs. (25), as a
function of the population size N for different values of
γ. For γ = 0 we observe the N lnN behavior expected in
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FIG. 11: Extinction times for the model with NN dispersal
without immigration (ν = 0). Mean extinction time 〈Text〉
as a function of N for different values of γ as in label. The
blue curve approximating the neutral γ = 0 data points corre-
sponds to the neutral expectation 〈Text〉 ∝ N lnN , the black
curves over the symbols for γ 6= 0 correspond to exponential
fits of the form 〈Text〉 ∝ exp(C(γ)N). The inset shows (sym-
bols) C(γ) vs γ, while the black solid line display the best
fit C(γ) = Aγβ with β ≈ 1.63. The average extinction time
is obtained by an annealed average, i.e. by randomizing the
preference sites at each realization. Each point represents an
average over 103 realizations.

the neutral case. Habitat preference (γ > 0) leads to a
dramatic increase of the average extinction time, which
becomes exponential in N

〈Text〉 ∝ exp(C(γ)N) , (27)

for large enough N . The dependence of the constant
C(γ) on γ, shown in the inset, is well-fitted by a power-
law with exponent ≈ 1.63. The mean-field version of
the model presents similar qualitative features with the
only difference that 〈Text〉 ∝ N for γ = 0 and with some
differences in the γ dependence of C(γ), as shown in [70].

The exponential dependence of the average extinction
times on N indicates that habitat preference has a stabi-
lizing impact on the population dynamics. Indeed, when
N is large enough, the two species coexist on any real-
istic time scale. The stabilizing effect of habitat prefer-
ence reflects also in the probability of fixation Pfix, i.e.
the probability that a species, say A, gets fixated when
initially present as a fraction x = NA/N of the popu-
lation. In the neutral case, standard computation [78]
shows that Pfix(x) = x. As shown in [70], when γ is
increased, Pfix(x) develops a much steeper dependence
on x and quickly reaches values ≈ 1/2 even for small x,
provided that γ is large enough. In other words, the sta-
bilization due to habitat preference tends to compensate
any initial disproportion between the population of the
two species.

C. Coexistence

In the presence of immigration (µ > 0), a locally ex-
tinct species can recolonize, leading to a dynamical coex-
istence between the two species. However, if the typical
recolonization time 1/µ is large compared to the average
extinction time 〈Text〉, such recovery from extinction is
slow and unlikely. Therefore, most of the time the ecosys-
tem is dominated by one of the two species. Therefore,
the distribution of the population size of any of the two
species, P (X) (X = A,B) is peaked at 0 and at the popu-
lation size N , corresponding to dominance of either of the
two species. We denote this regime as monodominance,
see Fig. 12a. In the opposite limit 〈Text〉 ≫ 1/µ, tempo-
rary extinctions are very unlikely and the distribution is
peaked at NA = NB = N/2 leading to pure coexistence

of the two species (Fig. 12c). For intermediate values of
µ, temporary extinctions are still possible though the re-
plenishment due to immigration will tend to equilibrate
the two populations. In this case of mixed coexistence,
the distribution is characterized by three local maxima
at NX = 0, N/2, N (Fig. 12b).
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FIG. 12: Different regimes of coexistence for the case with NN
dispersal and immigration for the model with habitat prefer-
ence. Top panels show the stationary distribution P (NA) for
γ = 0.3 and (a) N = 50 with µ = 10−3, (b) N = 300 with
µ = 2 × 10−3, and (c) N = 100 with µ = 10−3, correspond-
ing to a typical distribution in the cases of monodominance,
mixed regime and pure coexistence, see text. Bottom pan-
els show how the three regimes partition the N, µ-parameter
space for different values of γ: (d) γ = 0 corresponding to the
neutral case, (e) γ = 0.3 and (f) γ = 1. The three points in (e)
correspond to the distributions displayed in the top panels, as
labelled by the color coding.

Figs. 12d,e,f show the three regimes of coexistence in
the N − µ parameter space for the model with NN-
dispersal for different habitat preference strength γ (in-
creasing from left to right). In the mean-field model, we
find the same qualitative features, except that for γ = 0
the mixed regime is absent, so that one has a direct tran-
sition from monodominance to pure coexistence [70].
The main emerging feature is that increasing habitat

preference expands the region of parameter space corre-
sponding to mixed coexistence at the expenses of mon-
odominance. Surprisingly, the pure coexistence regime
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seems to be insensitive to the degree of habitat prefer-
ence. In particular, the critical line µc(N) separating it
from the mixed regime seems to be the same that sep-
arates coexistence from monodominance in the neutral
model (γ = 0) with global dispersal, which is given by
the expression µc(N) = 2/(2 + N). This result can be
obtained in the following way. For γ = 0, the transition
rates (26) can be expressed in terms of the rates for NA

to increase/decrease by one

WNA→NA±1 =
N
2 ±

(

N
2 −NA

)

N
× (28)

×
[

(1− µ)
N
2 ∓

(

N
2 −NA

)

N
+
µ

2

]

.

Then, the equilibrium distribution P (NA) can be com-
puted imposing the detailed-balance condition

P (NA + 1)

P (NA)
=

WNA→NA+1

WNA→NA−1
, (29)

which must hold at stationarity since the process is one
dimensional [79]. To determine µc(N) for the transition
from monodominance to coexistence, it is sufficient to
determine whether, for small NA, P (NA) is an increas-
ing or a decreasing function. Using (29) with (28) and
imposing P (NA + 1) > P (NA) one obtains, after some
algebra, the inequality [(2+N)µ− 2](N − 2NA− 1) > 0,
which is verified whenever µ > 2/(2 + N). Notice that,
in the case of global dispersal, the distribution is uniform
along this line, i.e. for µ = µc one finds P (NA) = 1/N .

D. Generalizations of the habitat-preference model

To gain physical insight into the different regimes
shown in Fig. 12, a variant of the habitat preference
model was introduced and analyzed for the global dis-
persal case in [80]. By considering the first two terms of
a system-size expansion of the master equation, results in
the infinite-size limit and finite-size corrections were de-
rived. In the infinite-size limit, i.e. neglecting the effect
of fluctuations, the introduction of a non-vanishing local
preference generates a deterministic force, which can be
described as an effective potential V (δ) for the relative
difference of densities δ = (NA −NB)/N . This potential
has a minimum at the coexistence state, δ = 0, corre-
sponding to a maximum in the probability distribution
at NA = NB = N/2. In other words, species coexistence
emerges for infinitely large sizes. On the other hand,
for finite systems, when fluctuations are considered, the
only possible true steady states are the absorbing states
δ = ±1, where the effective potential V (δ) is singular.
The minimum at δ is separated from the negative singu-
larities by two potential barriers. As strength of the local
preference and/or N increase, the basin of attraction of
the coexistence state becomes larger and deeper and the
two symmetric barriers become closer to the absorbing

states and higher. Consequently the time needed to es-
cape the coexistence state becomes much longer, there-
fore unaccessible in computer simulations. Thus, three
different regimes can thus be identified: the absorbing,
intermediate (quasi-active) and active phase (much as in
Fig. 12). In the absorbing phase, symmetry is broken
and one of the two species reaches extinction with cer-
tainty. This regime is equivalent to the monodominance
regime in Fig. 12. The active phase is characterized by
a coexistence of both species, and survives fluctuations
only in the infinite-size limit. This corresponds to the
coexistence phase of Fig. 12. Finally, the intermediate
state is a mixture of the two previous ones: the absorbing
states and the coexistence state are locally stable, thus,
the system is tri-stable, and the steady state depends on
the initial conditions. This is the mixed state of Fig. 12.
These results provide a nice analytical example of how
noise can effectively change the shape of a deterministic
potential. Still, the presence of absorbing states – with
the associated singularities in the steady state distribu-
tion – prevent true phase transitions from occurring: the
only possible steady state for any finite system is an ab-
sorbing one. Only in the infinite-size limit, noise vanishes
and the coexistence state becomes truly stable [80].
Another study scrutinized the case in which there are

local habitat preference only at some specific locations in
space, while all other sites are neutral [81]. An interest-
ing example which has been analyzed in details is that of
a square lattice where only the left (resp. right) bound-
ary has a preference for species A (resp. B), ([81], see
also [82, 83]). The conclusion is that even mild biases at
a small fraction of locations induce robust and durable
species coexistence, also in regions arbitrarily far apart
from the biased locations. As carefully discussed in [81]
this result stems from the long-range nature of the under-
lying critical bulk dynamics of the neutral voter model,
and is robust to the introduction of non-symmetrical bi-
ases –i.e. stronger for one of the species– except for the
fact that the state of coexistence is no longer symmetric.
These conclusions have a number of potentially impor-
tant consequences, for example, in conservation ecology
as it suggests that constructing local “sanctuaries” for
different competing species can result in global increase
of stability of their populations, and thus an enhance-
ment of biodiversity, even in regions arbitrarily distant
from the protected zones [81].

E. Temporally-dependent habitat preferences

We have seen that spatial quenched disorder gener-
ically fosters species coexistence. Another important
question is what happens when the preference for a
species are time-dependent, i.e. if neutrality is temporar-
ily broken in favor of one of the coexisting species, while
the ecosystem remains neutral on average. This ques-
tion has a long tradition in ecology. Several theoretical
studies have looked at the impact of environmental fluc-
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tuations on population growth and ecosystem stability
[71, 84]. On one hand, environmental stochasticity en-
hances fluctuations and extinction rates, that can have a
destabilizing effect on the ecological community. On the
other hand, it can also foster stability, as the temporal
alternance of species can effectively reduce the strength
of interspecific competition.

Similarly to the case of spatial disorder, one can de-
sign quasi-neutral models where habitat-preferences for
different species are time-dependent, i.e. where in each
time window there is a preference for a randomly chosen
species. Different works have recently analyzed this type
of models, showing that time-dependent habitat prefer-
ence greatly improves predictions of empirical ecological
patterns with respect to purely neutral theories [31, 85–
87]. In particular, it has been claimed that these models
provides more realistic estimates of dynamical quanti-
ties, such as average species persistence times and dis-
tributions of species turnover [88], compared with their
neutral counterparts.

F. Models with density dependence

In ecology, one speaks of density-dependence or Allee
effect when the fitness of an individual depends on the
abundance of the species it belongs to. The underly-
ing mechanisms can be very diverse, from cooperative
defense/feeding to spreading of parasites among conspe-
cific. An interesting scenario is that of negative density-
dependence, i.e. when individuals belonging to more
abundant species have lower fitness. It is established
that, in well mixed systems, negative density-dependence
significantly favors species coexistence [89]. Versions
of the voter model implementing a negative density-
dependence have been studied in the literature [90, 91].
In these models, the reproduction probability of an indi-
vidual depends on the number of conspecific individuals
in a given local neighborhood. Strictly speaking, these
models are not neutral: the neutral hypothesis is defined
at the level of individuals [7], and here individuals be-
longing to species of different abundance do not have the
same fitness. However, these models, as the other mod-
els considered in this Section, are still symmetric, since
all species are treated on equal footing. Interesting phe-
nomena like the possibility of spontaneous breakdown of
such a symmetry –thus leading to asymmetric species
coexistence– have been recently uncovered at the mean
field level [92].

V. PERSPECTIVES AND CONCLUSIONS

The range of ecological problems discussed in this re-
view is by no means exhaustive, and we believe there are
many directions that still need to be explored or fully
understood.

A prominent example is the role of different speciation
mechanisms on spatial biodiversity. In the models dis-
cussed in this review, speciation events involve a single
individual (point speciation mode, in the language of evo-
lutionary ecology). This assumption is convenient from
the modeling perspective, but leads to fitted values of
the speciation rate that are incompatible with indepen-
dent estimates [93]. This assumption also tends to gen-
erate too many young species which last for a short time
and overweights rare species. To address these issues,
recently, another mechanism called protracted speciation

has been proposed in the context of neutral models [94].
In protracted speciation, the speciation event does not
occur at a single generation, but is a gradual event lasting
for some generations. Introducing protracted speciation
partially solves some of the aforementioned problems [94].
In real ecosystems, even more speciation mechanisms are
at play [95]. For example, in parapatric speciation, two
spatially-separated population of the same species can
diverge and give rise to two different species. This would
correspond to a speciation event involving a group of in-
dividuals rather than a single one. The role of different
speciation modes in maintaining biodiversity and in pat-
terning the spatial organization of species is still under
discussion and modeling results can provide very useful
contributions to this debate.

As mentioned in the Introduction, ecological neutral
theory elicited a heated debate which is far from being
solved as, in many cases, non-neutral models based on the
concept of niche and neutral models yield similar fits of
biodiversity patterns [67, 68, 96]. In recent years a new
view on this debate has been emerging. In Chase and
Leibold’s words: “niche and neutral models are in reality
two ends of a continuum with the truth most likely in
the middle” [97]. Indeed, the ecological forces underly-
ing niche and neutral models are not mutually exclusive,
and demographic stochasticity plays an important role
also in non-neutral settings. However, it has been dif-
ficult to clarify the importance of different neutral and
non-neutral mechanisms, as most non-neutral model are
characterized by a large number of parameters. Some
progress in this direction has been obtained in simpli-
fied settings which, similarly to the model presented in
Sect. IV, allow for a controlled departure from neutral-
ity. For instance, Haegeman and Loreau [98] added the
main ingredients of neutral theory, demographic stochas-
ticity and immigration, to a Lotka-Volterra competition
model. Similar problems have been studied in Refs. [99–
101]. An interesting future direction would be to study
similar models in a spatial context.

In many ecological communities, in particular of mi-
crobial organisms, ecological and evolutionary timescales
are not separated. Eco-evolutionary models describing
both processes are becoming more and more important
[102]. Neutral theory has provided a simple framework
to describe patterns in these communities, for example in
gut microbiota [103]. These systems call for new theoret-
ical efforts and new observables, such as generalizations
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of the β-diversity taking into account genetic differences
among individuals [104].
We have seen throughout this review how some observ-

ables measured by ecologists corresponds to well known
quantities in statistical physics: for instance, the β-
diversity is closely related with a two-point correlation
function. Other observables, such as SARs and SADs, are
less common in statistical physics. A potentially fruitful
future direction is to consider other observables which
are common in statistical mechanics, such as multi-point
correlation functions, and measure them in ecosystems.
In this direction, it is very interesting the study of species
clustering in [105] based on the theory of continuum per-
colation.
In summary, we presented an overview of different

stochastic spatial models in population ecology. We have
seen that even very simple models are a source of chal-
lenging problems in statistical physics. In particular,
because of speciation, each species is bound to extinc-
tion and is therefore ultimately transient. This feature
is in contrast with traditional classical spin system de-
fined on a lattice where, even when in out-of-equilibrium
conditions, the number of spin components is fixed from
the beginning. Further, ecosystems are typically two-
dimensional and, due to the underlying diffusive behav-
ior, D = 2 is the critical dimension for these models.
We have shown that this fact often leads to logarithmic
corrections to scaling laws, which have been difficult to
analyze both analytically and numerically. Despite these
difficulties, remarkable progress has been made in recent
years. We believe that cross-fertilization between statisti-
cal physics and ecology will be more and more important
in the future to deepen our quantitative understanding
of how ecosystems are organized.

Appendix: General scaling relationships

In this brief Appendix, we discuss general condition
imposed on the functions f and g by the properties of the
function Ψ, depending on the exponent ∆, see eq.(13), eq.
(14) and [30]. Let us write the normalization condition

for P (n;A)

∑

n

P (n;A) ≈ g(A)f(A)

∫ Λ

n0/f(A)

dx x−∆ = 1. (30)

The infrared cutoff Λ is related to the fact that the func-
tion ψ(x) is a power-law for small x only and rapidly
decays for larger arguments, see e.g. Fig. 5. The inte-
gral is singular for small x and ∆ > 1 and thus

1 ∼ g(A)f(A)f(A)∆−1 = g(A)f(A)∆ . (31)

On the other hand, if ∆ < 1, the integral is weakly de-
pendent on f(A), so that

1 ∼ g(A)f(A) . (32)
Similarly, the first moment of Ψ is

〈n〉 ∼ g(A)f2(A)f(A)∆−1 = g(A)f(A)∆+1 (33)

if 1 < ∆ < 2 and

〈n〉 ∼ g(A)f2(A) (34)

for ∆ > 2. Combining the expressions above, different
regimes emerge as a function of ∆: if ∆ < 1, f(A) =
〈n〉, while for 1 < ∆ < 2, f(A) = 〈n〉1/(2−∆), while
no specific prediction for f(A) can be made in the case
∆ ≥ 2. In particular, for ∆ < 1 one has a simple scaling
form f(A) = 〈n〉 and g(A) = 1/〈n〉 which applies, for
example, to the 1D case as described in the main text.
The marginal case ∆ = 1 is treated in detail in Sec. II E.
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