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Abstract

The interaction between synaptic and intrinsic dynamics can efficiently shape neuronal
input-output relationships in response to temporally structured spike trains. We use a
neuron model with subthreshold oscillations receiving inputs through a synapse with
short-term depression and facilitation to show that the combination of intrinsic
subthreshold and synaptic dynamics leads to channel-specific nontrivial responses and
recognition of specific temporal structures. We employ the Generalized
Integrate-and-Fire (GIF) model, which can be subjected to analytical characterization.
We map the temporal structure of spike input trains to the type of spike response, and
show how the emergence of nontrivial input-output preferences is modulated by intrinsic
and synaptic parameters in a synergistic manner. We demonstrate that these temporal
input discrimination properties are robust to noise and to variations in synaptic
strength, suggesting that they likely contribute to neuronal computation in biological
circuits. Furthermore, we also illustrate the presence of these input-output relationships
in conductance-based models.

Author summary

Neuronal subthreshold oscillations underlie key aspects of information processing in
single neuron and network dynamics. Dynamic synapses provide a channel-specific
temporal modulation of input information. We combine a neuron model that displays
subthreshold oscillations and a dynamic synapse to analytically assess their interplay in
processing trains of spike-mediated synaptic currents. Our results show that the
co-action of intrinsic and synaptic dynamics builds nontrivial input-output relationships,
which are resistant to noise and to changes in synaptic strength. The discrimination of a
precise temporal structure of the input signal is shaped as a function of the joint
interaction of intrinsic oscillations and synaptic dynamics. This interaction can result in
channel-specific recognition of precise temporal patterns, hence greatly expanding the
flexibility and complexity in information processing achievable by individual neurons
with respect to temporal discrimination mechanisms based on intrinsic neuronal
dynamics alone.
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Introduction

Neuronal subthreshold oscillations underlie key mechanisms of information
discrimination in single cells [1–4] while dynamic synapses provide channel-specific input
modulation [5–9]. Previous studies have shown that intrinsic neuronal properties, in
particular subthreshold oscillations, constitute a biophysical mechanism for the
emergence of nontrivial single-cell input-output preferences, e.g., preference towards
decelerating vs. accelerating input trains of the same total duration and constituent
interspike intervals (ISIs) [10,11]. It has also been shown that short-term synaptic
dynamics, in the form of short-term depression and/or short-term facilitation, can
provide a channel-specific mechanism for the enhancement of the postsynaptic effects of
temporally specific input sequences [8, 12], suggesting a functional role for the
multiplexing of information in neuronal circuits [13]. This adds to other tuning
properties of synaptic integration [14]. While intrinsic oscillations and synaptic
dynamics are typically studied independently, it is reasonable to hypothesize that their
interplay can lead to more selective and complex temporal input processing.

Here, we present an analytical study on the interaction between subthreshold
oscillations and short-term synaptic dynamics. We investigated whether and under
which conditions the combination of intrinsic subthreshold oscillations and short-term
synaptic dynamics synergistically enables the emergence of robust and channel-specific
selectivity of temporal structure in neuronal input-output transformations. We
calculated analytically the voltage trajectories and spike output of Generalized
Integrate-and-Fire (GIF) model neurons in response to temporally distinct trains of
input spikes delivered through a dynamic synapse. In particular, we considered triplets
of excitatory postsynaptic currents (EPSCs) in a range that covers intrinsic and
synaptic time scales, and analyzed the model output as intrinsic and synaptic
parameters were varied.

Our results show that intrinsic and synaptic dynamics interact in a complex manner
for the emergence of specific input-output transformations resulting from the temporal
discrimination of input trains. In particular, localized nontrivial preferences emerge
from intrinsic and synaptic dynamics with coincident temporal preferences, while more
complex and distributed selectivity can be observed for intrinsic and synaptic dynamics
with mismatched temporal preferences. Throughout our analysis, we discuss the
conditions for robustness of the observed input-output relationships, which we show
that appear also in conductance-based models. The analysis presented in this paper
generalizes and extends our previous computational study on the action of a depressing
synapse on a neuronal model with subthreshold oscillations in response to bursting
input [15]. The results described below show that combining synaptic facilitation and
depression with intrinsic subthreshold oscillations can result in selective and nontrivial
recognition of distinct input spike trains, hence constituting a channel-specific
mechanism for the emergence of selective neuronal responses.

This work is motivated by experimental evidence describing distinct short-term
synaptic dynamics in different afferents projecting to the same area and/or neuronal
population. Variability in short-term synaptic dynamics have been described in several
systems, including variability between thalamocortical connections to the visual and
somatosensory cortices [16,17], between visceral afferents from the brainstem to the
dorsal vagal complex [18], and between hindbrain afferents to the midbrain torus
semicircularis (analogous to the mammalian inferior colliculus) in the electrosensory
system in weakly electric fish [19]. In the case of distinct vestibular and visual pathways
to the cerebellum, variability in short-term synaptic dynamics have been demonstrated
at the single postsynaptic neuron level [20]. However, the functional consequences of the
variability in short-term synaptic dynamics, and of the interaction between synaptic
dynamics and intrinsic subthreshold oscillations, are still unexplored. Here, we advance
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specific hypotheses that link heterogeneous synaptic dynamics and subthreshold
oscillations to their distinct computational function in the framework of input-output
temporal pattern transformation of spiking activity. More generally, we discuss the
impact of single-channel/single-neuron temporal input discrimination in the context of
information processing based on heterogeneous elements.

Methods

Neuron Model

The use of an analytically tractable model to assess the interaction between intrinsic
subthreshold oscillations and dynamic synapses provides rigorous theoretical predictions
regarding the synergistic temporal co-action of synaptic and intrinsic dynamics. We
considered the Generalized Integrate-and-Fire (GIF) neuron as a minimal and
analytically tractable model that exhibits subthreshold damped oscillations [21–23].
The GIF model is defined as

C
dV (t)

dt
= −gV (t)− gwW (t) + Isyn(t) (1)

τw
dW (t)

dt
= V (t)−W (t)

where V represents the membrane potential deviation from the leak reversal potential
and W is a gating variable characterizing the membrane dynamics, which results from
the linearization of voltage-gated ionic currents [21, 24]. C is the membrane capacitance,
g is the effective leak conductance, and gw and τw are the effective ionic conductance
and time constant associated with the W variable, which corresponds to the activation
of a restorative intrinsic current Iw = gwW (t). Isyn represents the synaptic current
resulting from action potential generation in presynaptic neurons. The parameter values
of the canonical GIF model that we considered for most of our results are reported in
Table 1. The model can be rewritten as:

dV (t)

dt
= −αV (t)− βW (t) + εIsyn(t) (2)

dW (t)

dt
= γV (t)− γW (t)

where α = g/C and β = gw/C control the effective leak and the coupling between V
and W , respectively, ε = 1/C, and γ = 1/τw. If V > Vth a spike is generated and V is
reset to Vreset and kept there for a refractory time trefr.

The analysis for the conductance-based paradigm discussed below uses the model
and parameters described in [25].

Synapse Model

Incoming synaptic inputs are mediated by an excitatory synapse with short-term
depression and facilitation, described according to the Tsodyks-Markram (TM)
model [6, 26]:
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Description Parameter symbol and value
membrane capacitance C=1 nF
leak conductance g=0.1 µS
conductance associated with the w variable gw=0.4 µS
time constant of the w variable τw=10 ms
threshold voltage Vthr = 5 mV
reset voltage Vreset = -1 mV
refractory period trefr=3 ms

Table 1. Parameter descriptions and canonical values used throughout this study,
unless otherwise stated. The values of these parameters correspond to an intrinsic
subthreshold oscillation period of 31.4 ms.

dx
dt = 1−x−y

τrec
− U(tn)x(tn)δ(t− tn)

dy
dt = −y

τin
+ U(tn)x(tn)δ(t− tn)

dU
dt = (U−U)

τfac
+ U [1− U(tn)]δ(t− tn)

(3)

where x(t) represents the fraction of recovered neurotransmitters, y(t) the fraction of
active neurotransmitters, U(t) the fraction of released neurotransmitters after the arrival
of an action potential, and tn is the timing of the most recent synaptic event. In this
description, x(tn) and U(tn) are the values of the corresponding variables immediately
before the arrival of the most recent synaptic event at tn, and U is the fraction of
released neurotransmitters at rest. Within this model, the corresponding synaptic
current is considered to be proportional to the fraction of active neurotransmitters, i.e.,
Isyn(t) = Asyny(t), where Asyn represents the maximal synaptic strength.

Results

Analytical solution of the Generalized Integrate-and-Fire (GIF)
neuron with dynamic synapses

In the absence of synaptic inputs, the subthreshold dynamics described by equations (2)
is a two-dimensional linear system, whose trajectory from a general initial condition
(V0,W0) can be expressed as a function of its complex conjugate eigenvalues

λ1,2 = −µ± iω, where µ = α+γ
2 and ω =

√
4βγ−(γ−α)2

2 . The parameter µ determines
the membrane time constant, while the parameter ω is the oscillation frequency (in
rad/ms), related to the intrinsic period of oscillations T = 2π

ω [11].
In the following we consider a synaptic input to the GIF neuron model in the general

form of Isyn(t) = Îne
−(t−tn)/τ that, as we will see later, has the form of the synaptic

current derived from the TM model. With this input, equations (2) constitute a
nonhomogeneous differential system, whose solution can be found with the method of
undetermined coefficients. That is, we wrote a candidate solution to equations (2) in
the form of a sum of an exponential function and the general solution of the
corresponding homogeneous system with undetermined coefficients, i.e., we assume for
t > tn the solution:

V (t) = a1Isyn(t) + a2e
−µ(t−tn) cos[ω(t− tn)] + a3e

−µ(t−tn) sin[ω(t− tn)]

W (t) = b1Isyn(t) + b2e
−µ(t−tn) cos[ω(t− tn)] + b3e

−µ(t−tn) sin[ω(t− tn)]
(4)

4/25

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 6, 2019. ; https://doi.org/10.1101/727735doi: bioRxiv preprint 

https://doi.org/10.1101/727735


and found the coefficients ai and bi that solve (2), resulting in the following values:

a1 = f(τ)ε

a2 = V− − f(τ)εÎn

a3 = V−(γ2−µγ)−W−(γ2−2µγ+µ2+ω2)+(γ2+µ2−2µγ+ω2)g(τ)εÎn−(γ2−µγ)f(τ)εÎn
γω

b1 = g(τ)ε

b2 = W− − g(τ)εÎn

b3 = V−γ
2−W−(γ2−µγ)+(γ2−µγ)g(τ)εÎn−γ2f(τ)εÎn

γω

(5)

where V− = V (t−n ), W− = W (t−n ) (t−n referring to the time just before the input at tn),
and

f(τ) =
γτ2 − τ

(αγ + βγ)τ2 − (α+ γ)τ + 1
(6)

g(τ) =
γτ2

(αγ + βγ)τ2 − (α+ γ)τ + 1
. (7)

If V (tisp) > Vth a spike is generated and V is reset to Vreset and kept there for a
refractory time trefr, during which the dynamical variables evolve as

V (t) = Vreset

W (t) = Vreset + (Ŵ − Vreset)e−γ(t−t
i
sp)

(8)

where

Ŵ = W (tisp) = b1Isyn(tisp) + e−µ(t
i
sp−tn){b2 cos[ω(tisp − tn)] + b3 sin[ω(tisp − tn)]}. (9)

The last term in equation (8) was obtained after integration of the second equation
of the system (2) with V = Vreset. The above result can be easily generalized for a train
of input spikes in the form Isyn(t) =

∑
n Îne

−(t−tn)/τΘ(t− tn).
Note that f(τ) and g(τ) scale the synaptic components as a function of τ in such a

way that for τ → 0 (corresponding to infinitely fast synapses) they tend to 0. Hence, in
that limit, the terms multiplied by f(τ) and g(τ) would vanish.

Between synaptic events, the system (3) that describes the synaptic dynamics is
linear and can be easily integrated to obtain

x(t) = 1 + [τrec(x̂n−1)+τin(1−x̂n−ŷn)]
τrec−τin e−(t−tn)/τrec + τin

τrec−τin ŷne
−(t−tn)/τin

y(t) = ŷne
−(t−tn)/τin

U(t) = U + (Ûn − U)e−(t−tn)/τfac

(10)

where x̂n = x(tn),ŷn = y(tn) and Ûn = U(tn). Note that the exponential time
dependency of y(t) guarantees that the synaptic current within this model (which is
proportional to y(t)) meets the functional dependency required above to obtain a
general solutions to the GIF neuron model. Moreover, from the system of equations
(10), we can derive recursive relations as in [6, 26] to obtain values of x̂n+1, ŷn+1, Ûn+1

in terms of x̂n, ŷn, Ûn. Thus, if we denote ISI=tn+1 − tn from (10) one obtains for
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t = t−n+1 ≈ tn+1

x(t−n+1) = 1 + [τrec(x̂n−1)+τin(1−x̂n−ŷn)]
τrec−τin e−ISI/τrec + τin

τrec−τin ŷne
−ISI/τin

y(t−n+1) = ŷne
−ISI/τin

U(t−n+1) = U + (Ûn − U)e−ISI/τfac .

(11)

On the other hand, using the original system (3), one obtains

x̂n+1 = x(tn+1) = x(t−n+1)− U(t−n+1)x(t−n+1) = [1− U(t−n+1)]x(t−n+1)

ŷn+1 = y(tn+1) = y(t−n+1) + U(t−n+1)x(t−n+1)

Ûn+1 = U(tn+1) = U(t−n+1) + U [1− U(t−n+1)] = U + (1− U)U(t−n+1).

(12)

Finally, by substituting (11) into (12), one obtains the recursive relations:

Ûn+1 = 2U − U2 + (1− U)(Ûn − U)e−ISI/τfac

ŷn+1 = ŷne
−ISI/τin

+ [U + (Ûn − U)e−ISI/τfac ][1 +
[τrec(x̂n − 1) + τin(1− x̂n − ŷn)]

τrec − τin
e−ISI/τrec

+
τin

τrec − τin
ŷne
−ISI/τin ] (13)

x̂n+1 = [1− U − (Ûn − U)e−ISI/τfac ][1 +
[τrec(x̂n − 1) + τin(1− x̂n − ŷn)]

τrec − τin
e−ISI/τrec

+
τin

τrec − τin
ŷne
−ISI/τin ].

Without loss of generality, initial conditions are set to full availability of
neurotransmitters, which corresponds to Û1 = 2U − U2, ŷ1 = U and x̂1 = 1− U . Initial
conditions for the neuronal variables are set to the stable point (V0,W0)=(0,0). These
formulas enable one to compute theoretically the current after each input
(tn < t < tn+1) of a presynaptic spike train as In(t) = Asynŷne

−(t−tn)/τin with ŷn
obtained from (13).

Finally, we can use these recursive relations to compute analytically the voltage time
series of the GIF neuron when it receives a train of inputs, for both subthreshold and
spiking responses. This can be done by setting τ = τin and În = Asynŷn in the general
expression for the synaptic current which we used to derive the general solution of the
GIF neuron model (see above), i.e., Isyn(t) = Îne

−(t−tn)/τ for an input at t = tn.
Simulations validated that the analytical solution matched exactly the numerical
integration of the model. For the analysis discussed below, we will call ε · În effective
postsynaptic potential at the time of the n presynaptic spike.

Nontrivial input-output relationships

The combined action of dynamic synapses and intrinsic neuronal subthreshold
oscillations results in a wide variety of input-output transformations from the
discrimination of the temporal structure of input trains. To illustrate this, in this paper
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Fig 1. Examples of nontrivial temporal structure discrimination of input
signals arising from the combination of intrinsic and synaptic properties. In
the top panel, ISI2 is shorter than ISI1 and yet no response is generated. In the bottom
panel, ISI2 is longer than ISI1 and a response spike is generated after the last spike in
the input train. Note that the two input triplets are composed of the same ISIs but in
reversed order.

we focus on nontrivial input-output relationships, such as those characterized by a spike
output in response to a decelerating input train and to silence, i.e., a purely
subthreshold response, to the corresponding accelerating input train, i.e., to an
accelerating input train with the same total duration and constituent ISIs. An
integrator neuron without the combined action of its intrinsic oscillations and the
dynamic synapse would tend to respond to an accelerating input train and remain silent
to a decelerating input. We consider nontrivial responses those cases in which the
opposite occurs, and thus the neuron “recognizes” a specific temporal structure in the
input pattern. The concept of temporal structure discrimination and nontrivial
input-output relationships arising from the combination of intrinsic and synaptic
properties is illustrated in Fig. 1. This concept can be generalized in the context of the
recognition of any sequence built with a specific temporal structure in the spike train.

For simplicity, in our analysis we will consider input trains composed of three action
potentials (triplets) whose temporal structure can be characterized by the first and
second interspike intervals (labeled as ISI1 and ISI2, respectively). This choice allows a
detailed study of the input-output relationships, which can be conveniently visualized in
input-output temporal preference maps as described below (Fig. 4).

We focus on a range of synaptic intensities that are insufficient to elicit a
postsynaptic spike in response to a single isolated EPSC, but do result in a postsynaptic
spike in response to a doublet of incoming EPSCs with appropriate ISI, i.e., either a
short ISI or an ISI sufficiently close to the period of subthreshold oscillations or to the
period of optimal synaptic facilitation. Figure 2 displays the trajectories of intrinsic and
synaptic variables from system (2-3) in nontrivial responses to representative input
triplets. These examples illustrate a case where a decelerating input triplet elicits a
spike response after the third EPSC, while an accelerating input triplet with the same
total duration and constituent ISIs only elicits a subthreshold response. Note that x
recovers with time constant τrec to model recovery from depression. U slowly decays
with time constant τfac between neurotransmitter release events to account for
facilitation dynamics. The amount of neurotransmitters released in response to a
presynaptic event is given by the product x · U , which interacts with the state of the
neuron to determine the postsynaptic response.
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Fig 2. Trajectories of voltage and synaptic variables in response to
representative input triplets. Left column, nontrivial response in the form of a
spike after receiving a decelerating input triplet (ISI2 >ISI1). Right column, nontrivial
silence after receiving an accelerating input triplet (ISI2 <ISI1). Model parameters are
specified in Table 1. Synaptic parameters are: Asyn = 6.3nA, U = 0.5, τrec = 14ms,
τfac = 60ms, τin = 2ms. Input ISIs are ISI1 = 12ms, ISI2 = 31ms for the decelerating
triplet and ISI1 = 31ms, ISI2 = 12ms for the accelerating triplet. Red tics indicate
EPSC arrival times. Dashed lines indicate the spiking threshold Vthr = 5mV .

In the synaptic model considered here, the synaptic efficacy in response to a given
input spike depends on the history of previous stimulation in a complex manner;
however, the steady-state synaptic efficacy in response to a train of presynaptic spikes
with constant ISI can be easily computed (see [27] and S1 Appendix) as:

Î∞ = Asyn
U∞(1− exp(−ISI/τrec))

1− (1− U∞) exp(−ISI/τrec)
(14)

where Î∞ is the steady-state value of În in the limit of τin → 0 and

U∞ =
U

1− (1− U) exp(−ISI/τfac)
. (15)

The interaction of synaptic depression and facilitation results in a non-monotonic
profile of synaptic efficacies as a function of the input period (Fig. 3), with a peak at
the input period that corresponds to maximal synaptic efficacy, which we define as the
input period of optimal synaptic facilitation (triangles in Fig. 3).

In the next sections, we will describe the selective and nontrivial input-output
transformations that result from the interplay of intrinsic and synaptic preferences in
these three representative cases, and compare them with the corresponding
transformations performed by the same GIF neuron but with incoming spike trains
delivered through a static synapse.

Temporal discrimination maps

Using the analytical solution reported above, we can easily calculate the response of the
neuron to different input triplets (ISI1,ISI2) delivered through the dynamic synapse.
The use of spike triplets facilitates the representation of the neuron response to multiple
input temporal structures in what we call temporal discrimination maps (see Fig. 4). In
this map bidimensional representation, the x-axis corresponds to ISI1 and the y-axis to
ISI2 duration. The color code indicates when and how spikes are produced in response
to the incoming input triplet with a specific temporal structure. In these maps,
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Fig 3. EPSC amplitude as a function of input ISI in the steady-state
approximation. The EPSC amplitude as a function of input ISI is shown for three
illustrative parameter sets in the steady-state approximation, that is, in response to an
infinite train of input spikes with constant ISI. Triangles show peak values and
diamonds indicate the points where the EPSC amplitude has fallen to 90% of the peak
value for each parameter set. The blue and the black curves have been rescaled to
exhibit the same peak value as the magenta curve to facilitate comparison.

nontrivial input-output responses can be readily identified, as well as the overall
dependence of the synaptic parameters in shaping the temporal structure discrimination.

Each row in Fig. 4 illustrates three representative cases of distinct intrinsic and
synaptic co-action building up the neuronal response as a function of different synaptic
strength Asyn, from a low to a moderate-high value (cf. left, middle and right panels).
The top row shows temporal discrimination maps for coincident intrinsic and synaptic
preferences. The middle row displays the maps for incommensurate intrinsic and
synaptic preference. Finally, the last row shows the maps for a static synapse.
Nontrivial preferences are only observed for strong enough synapses. Note the regions in
these maps that correspond to the neuron’s response only after the third EPSC (dark
blue), and how the location and size of these regions is shaped by the parameters of the
dynamic synapse.

Middle and right maps of Fig. 4A,B provide an explanation for the nontrivial
response to decelerating and acelerating triplets in the illustrative example shown in
Figs. 1 and 2. If ISIs (with subindex s indicating the shortest ISI of the triplet) is
sufficiently close to half the period of the subthreshold oscillations (the anti-preferred
intrinsic ISI, indicated by a red arrow), decelerating triplets (ISIs,ISIl) often elicit a
spike response after the third EPSC, with the corresponding accelerating triplet
(ISIl,ISIs) eliciting only subthreshold responses. This can occur if ISIl is close to the
period of the subthreshold oscillations (the preferred intrinsic ISI, indicated by a green
rightward arrow), close to the preferred synaptic ISI as determined by the steady-state
approximation and indicated by a rightward blue arrow, e.g., Fig. 4B, right panel,
region indicated as (iii), or in a broader range of input ISIs sufficiently longer than the
anti-preferred intrinsic ISI (Fig. 4A, right panel). Nontrivial input-output relations are
also present in the maps that correspond to the effect of a static synapse on a neuron
with subthreshold oscillations (Fig. 4C, middle and right panels). However, they are
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Fig 4. Input-output temporal preference maps. Spike responses to input triplets
as a function of the first and second interspike intervals for several representative cases.
Arrows indicate the preferred intrinsic ISI, equal to the period of intrinsic oscillations
(green); the anti-preferred intrinsic ISI, equal to half the period of the intrinsic
oscillations (red); and the preferred synaptic ISI according to the steady-state
approximation (blue). A: coincident intrinsic and synaptic preference. B:
incommensurate intrinsic and synaptic preference. C: static synapse. The white and
black circles in panel A, middle, indicate the input triplets illustrated in Fig. 2, left and
right panels respectively. In panel A and B maps τin = 2ms. The dashed magenta
rectangle and the letter labels in the rightmost map in panel B refer to the explanation
of Fig. 5.

more common and shapeable in the maps that correspond to dynamic synapses, as well
as more robust to changes in input strength and noise, as we will demonstrate in
subsection “Robustness of nontrivial input-output relationships to changes in input
strength and noise”. The isolation and modulation of these regions depend on the
specific parameters of the synaptic channel.

To favor a mechanistic understanding of how intrinsic and synaptic dynamics
interact to shape the neuronal input-output temporal response, it is instructive to assess
how the membrane potential and the effective postsynaptic potential covary for a range
of input ISIs. To this end, we plot in Fig. 5A the distance to threshold Vthr − V against
the effective postsynaptic potential (ε · Î3 = ε · Asyn · x̂3 · Û3) for an illustrative range of
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Fig 5. Input-output temporal preferences are shaped by the interaction of
intrinsic and synaptic dynamics. The distance to the spike threshold Vthr − V is
plotted against the effective postsynaptic potential (ε · Î3 = ε · Asyn · x̂3 · Û3) at the time
of the third input spike for an illustrative range of (ISI1,ISI2), which corresponds to the
magenta rectangle in Fig. 4B, right panel. In Panels A and B, the dashed rectangle
indicates the region that is shown at a larger scale in the following panel. Yellow, purple
and gray regions correspond to areas (i), (ii) and (iii) in Fig. 4B, right panel,
respectively. Red dashed isolines represent ISI1 duration, while black dotted isolines
represent ISI2 duration.

(ISI1,ISI2). This range corresponds to the magenta rectangle in Fig. 4B, right panel.
The three (ISI1,ISI2) disjoint regions shown in yellow, purple and gray correspond to
the regions with a spike response to the third EPSC indicated as (i), (ii) and (iii) in
Fig. 4B, right panel, respectively.

Depending on the current state of the subthreshold dynamics and on the effective
postsynaptic potential resulting from the synaptic dynamics, we observe in Fig. 5
different trade-offs that give rise to the temporal discrimination. The contribution of
synaptic dynamics is especially conspicuous for long values of ISI2, where intrinsic
oscillations have nearly completely waned; conversely, synaptic dynamics exert a mostly
modulatory role for shorter values of ISI2, where the neuronal response is dominated by
the faster intrinsic dynamics. The yellow region in Fig. 5A corresponds to a short
distance to the firing threshold. The spike response here is due to the non-instantaneous
kinetics of the synaptic pulse resulting from the second EPSC. This type of response is
also observed in a similar range of (ISI1,ISI2) for the GIF model with a static synapse
(Fig. 4C). The purple region corresponds to a larger distance to the threshold. Here, the
input-output preference is mainly due to the resonant dynamics provided by the
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restorative current Iw. The synaptic dynamics modulate the extent of this region; in
particular, it extends the spike response to longer values of ISI2 as synaptic facilitation
keeps increasing during the repolarization phase following the depolarization peak.
However, it is also present in a similar (ISI1,ISI2) range for the GIF neuron with static
synapse (Fig. 4C). Finally, the gray region is of particular interest, since it clearly
emerges as a qualitatively novel phenomenon from the interaction of intrinsic and
synaptic dynamics. It is located in an area of strong synaptic facilitation; however, it
does not correspond to the peak of synaptic facilitation, but occurs for slightly longer
values of ISI2, which correspond to a more favorable phase of the intrinsic subthreshold
oscillation.

Similar results to those shown in the maps of Fig. 4 were obtained with a GIF
neuron with slower intrinsic oscillations (intrinsic period equal 50 ms) and the same µ/ω
ratio (Fig. 6). However, in this case we did not observe a region of nontrivial preference
corresponding to the preferred synaptic ISI at 31.4 ms, probably because of its
proximity to the anti-preferred intrinsic ISI (25 ms, Fig. 6A). Conversely, in the case of
an integrate-and-fire (IF) neuron with a purely passive subthreshold dynamics,
short-term synaptic dynamics modulated input-output relationships but did not result
in nontrivial relationships of the kind we focus on here (i.e., one spike response to a
decelerating triplet after the third EPSC, silence to the corresponding accelerating
triplet of the same total duration and constituent ISIs) (Fig. S1). This highlights the
key role played by intrinsic suppression of postsynaptic responses for anti-preferred
input ISIs due to intrinsic subthreshold oscillations in the emergence of this kind of
nontrivial preference. Note, however, that nontrivial two spike responses can also be
observed in the IF model (two spike response to a decelerating triplet, with only one
spike in response to the corresponding accelerating triplet), even when inputs are
delivered through a static synapse, due to after-spike refractoriness. The location of
these nontrivial two spike responses along the ISI2 axis is modulated by the properties
of the dynamic synapse (Fig S1, middle column).

The maps show that the combined effect of the dynamic synapse and the intrinsic
oscillations shapes the discrimination of the temporal structure of the input. It is
important to emphasize not only the presence of nontrivial preferences in the form of a
spike response to decelerating input, but also the silent regions with no response to
either accelerating or decelerating input trains. The synergistic action of intrinsic and
synaptic properties can lead to the formation of a preference for a very specific temporal
structure in the input.

Robustness of nontrivial input-output relationships to changes
in input strength and noise

The interaction of subthreshold oscillations and dynamic synapses not only results in
broader regions of the input space (ISI1,ISI2) where nontrivial input-output preferences
are observed, but also in nontrivial preferences which are more robust to parameter
changes or noise than what observed with static synapses.

To estimate the degree of robustness of the nontrivial preferences to changes in the
maximal synaptic strength Asyn, we performed a series of calculations to determine the
“depth” of nontrivial preferences along the direction determined by the maximal synaptic
strength Asyn. For each value of (ISIs,ISIl), with ISIs <ISIl, which resulted in a
nontrivial preference for a given model and Asyn value, we gradually increased Asyn up
to the point where the input-output transformation ceased to be nontrivial (for example,
because both the decelerating and the accelerating triplet would result in a single action
potential in response to the third EPSC). We defined Asyn,H as the highest maximal
synaptic strength where a nontrivial preference is observed, such that Asyn,H + ∆Asyn
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Fig 6. Input-output temporal preference maps for a neuron with slower
intrinsic oscillations. As in Fig. 4, for a neuron with slower intrinsic oscillations with
period 50 ms. Parameters as in Fig. 4, but g=0.0257 µS and gw=0.1717 µS.

would result in a trivial preference (with ∆Asyn
indicating the resolution of the analysis,

set to 0.001 nA). Analogously, we gradually decreased Asyn to the point where the
input-output transformation ceased to be nontrivial (for example, because neither the
decelerating nor the accelerating triplet would result in any action potential), and
defined Asyn,L as the lowest maximal synaptic strength where a nontrivial preference is
observed, also determined with resolution ∆Asyn

.
Then, we defined the percentual depth of nontrivial preference for each value of

(ISIs,ISIl) that results in a nontrivial preference for a given model and Asyn as
(Asyn,H −Asyn,L)/Asyn. The percentual depth of nontrivial preference for the three
models of dynamic synapses introduced in Fig. 3 and a model of static synapse are
shown in Fig. 7.

For coincident intrinsic and synaptic preferences (Fig. 7A), nontrivial preferences are
observed for a broad region of the input space (ISIs,ISIl), with ISIl close to the period
of the intrinsic subthreshold oscillations and the optimal synaptic facilitation (which are
equal by construction for this parameter set). For incommensurate intrinsic and
synaptic preferences (Fig. 7B), an additional region of nontrivial preferences is observed
for longer ISIl, close to the period of optimal synaptic facilitation (equal to 50 ms
according to the steady-state approximation for this parameter set). The depth of
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Fig 7. Depth of nontrivial preference relationships for several
representative parameter sets. A: coincident intrinsic and synaptic preference. B:
incommensurate intrinsic and synaptic preference. C: incommensurate intrinsic and
synaptic preference, slow time constants. D: static synapse.

nontrivial preferences can reach values of 8% or 9% for these two models, and can
increase above 35% if longer time constants for synaptic depression and facilitation are
considered (Fig. 7C). Conversely, for the GIF neuron with a static synapse, only a few
points in the input space (ISIs,ISIl) correspond to nontrivial preferences (Fig. 7D), and
these are very shallow in the Asyn direction, reaching a maximum depth of only 4.5%.

We also assessed the robustness to noise of the combined action of dynamic synapses
and intrinsic subthreshold oscillations in shaping the recognition of specific temporal
structure in the input signals. We included Gaussian noise as an additive term in
equation 2 as η = Anoise · N (0, 1), being Anoise a scale factor for the amplitude noise,
and simulated 100 independent realizations for each input triplet (ISI1,ISI2) with a
0.005ms time step. Movies S2 to S10 show probabilistic temporal preference maps in the
presence of different noise levels. For each input triplet and noise level, the color code
from the deterministic temporal preference maps was used if the corresponding output
was observed in at least 80% of the simulations, otherwise it was indicated in gray. Note
that the nontrivial input-output relationships are preserved for low (corresponding to
oscillation amplitudes in response to the noise alone up to 0.15 mV) and moderate levels
of noise (up to 0.27 mV), and are only destroyed for a high noise level (up to 0.70 mV).
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Generalization of the synergistic phenomena in a
conductance-based model

To test the generalization of the results discussed for the GIF model in a more
biophysical description, we have used a Hodgkin-Huxley type formalism proposed to
model subthreshold oscillations of inferior olive (IO) neurons [25] and a current
modeling synaptic input through a dynamic synapse model. The single-compartment
cell model consists of five voltage-dependent ionic currents – a sodium current (INa), a
persistent sodium current, (INap), a potassium delayed rectifier current (IKd), a slow
inactivating potassium current (IKs) and a hyperpolarizing potassium current (Ih) –
and a leakage current (Il). The neuron model generates characteristic subthreshold
oscillations and spiking activity in the amplitude and frequency ranges observed in the
living IO cells, which implies slower dynamics than the GIF model discussed above. A
detailed description of the model, its parameters and behavior can be found in [25].

We have previously used this neuron model to study the interplay between
subthreshold oscillations and a dynamic synapse with a depressing mechanism in
response to bursting input [15]. In this section, the synaptic input arriving at the
conductance-based neuron is described by combining the Destexhe et al. model for
synaptic conductances [28] and the Tsodyks-Markram’s description of dynamic synapse
currents with both depression and facilitation [6, 26]. Thus, we preserve all relevant
short-term depression and facilitation features observed in the Tsodyks-Markram model
while providing the dynamic synaptic conductance description required by a
conductance-based model. For a detailed discussion on this topic, see [15].

The conductance-based model has richer dynamics shaping the subthreshold
oscillations than the GIF model. This endows the IO neuron model with sustained
intrinsic subthreshold oscillations in the absence of synaptic input (σ = 1.5 and
Iinj = 0.345µA/cm2), unlike the GIF model. Furthermore, the additional time scales of
the conductance model participate in shaping the synergistic interaction with the
dynamic synapse in the processing of the temporal structure of the input. Figure 8
illustrates that the conductance-based model is able to produce equivalent nontrivial
responses to input triplets as the ones produced by the GIF model (cf. Fig 2). In these
simulations, we took special care to reproduce in both cases the phase of the
subhreshold oscillation when the first spike arrived. Left upper panel in Fig 8 illustrates
that a decelarating input triplet evokes a spike response after the last action potential
arriving through the dynamic synapse. It is important to emphasize that the third spike
does not generate a spike response by itself. Right upper panel shows the absence of a
spike response when the same triplet is reversed. Lower panels show the evolution of the
variables shaping the synaptic dynamics. The interpretation of the nontrivial
input-output relationships is the same as the one provided for the GIF model.

Discussion

Intrinsic and synaptic dynamics interact to shape input-output relationships in
individual neurons. In this paper, we analyzed the interaction of intrinsic subthreshold
oscillations and dynamic synapses with depression and facilitation. We derived an
analytical solution for the GIF model in response to inputs delivered through dynamic
synapses. Using this solution, we investigated how the combination of intrinsic
oscillations and of the input modulation by a dynamic synapse gives rise to preferred
and anti-preferred input-output relationships. These temporal preferences do not
require fine-tuning of synaptic strength, they are robust to noise, and they are
shapeable by the properties of the dynamic synapse in a channel-specific manner. For
simplicity, we focused our analysis in the context of input triplets, but our methodology
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Fig 8. Nontrivial response of a conductance-based model to decelerating
and accelerating input triplets. This figure is equivalent to Fig. 2 for the GIF
neuron model. Time constants for the dynamic synapse model were adapted to the
slower dynamics of the conductance-based model: U = 0.51, τrec = 66.5ms,
τfac = 211.0ms. Consequently, input ISIs were also longer: ISI1 = 91ms and
ISI2 = 228ms for the decelerating triplet, and ISI1 = 228ms and ISI2 = 91ms for the
accelerating triplet. Results are equivalent as those reported in Fig. 2 for the GIF model.

can be readily generalized to more complex input spike trains.
From the reported results, we conclude that the interaction of intrinsic and synaptic

properties can enable the implementation of robust channel-specific input discrimination
mechanisms for the emergence of selective neuronal responses. These mechanisms are
likely to be relevant for decoding temporally precise spiking patterns in vivo given the
experimental evidence for target-specific synaptic dynamics [29] and tuning of synaptic
integration [14]. Recent experimental results have also associated synaptic diversity
with the processing of temporally precise multisensory information at the level of
individual cells [20].

Single-channel/single-neuron temporal input discrimination can be a
computationally economic and metabolically efficient mechanism of contextual
information processing with high sensitivity to the precise temporal structure of spiking
activity in heterogeneous networks. The intrinsic dynamics of a single neuron can result
in very distinct responses to spike input trains depending on the specific properties of
the synaptic channel through which they are delivered.

Our model results provide testable hypotheses regarding the presence of nontrivial
input-output preferences that can be addressed in experiments with dynamic clamp in
living neurons. In this type of experiments, several alternatives are possible with the
implementation of artificial dynamic synapses and intrinsic conductances which allow
the exploration of the influence of the corresponding synaptic dynamics and intrinsic or
induced subthreshold oscillations on neuronal responses. Alternatively, a pattern-clamp
approach [30,31] with paired recordings can be used to reveal input-output preferences
implemented by existing biological dynamic synapses through evoking patterned spike
trains on the presynaptic neuron while recording from a postsynaptic neuron with
subthreshold oscillations.

16/25

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 6, 2019. ; https://doi.org/10.1101/727735doi: bioRxiv preprint 

https://doi.org/10.1101/727735


The temporal discrimination discussed in this paper arises from the combination of
synaptic and intrinsic mechanisms. Beyond the context of precise temporal
discrimination, this combination can also result in novel phenomena for information
processing based on different types of resonance mechanisms such as phase [32] and
stochastic resonance [33,34], including the recently reported inverse stochastic
resonance [35–37]. For instance, the discussed modulation mechanisms can give rise to
new resonant relationships, which can be relevant in the context of cell recruitment
during brain rhythms in health and disease, and also for temporally precise sensory
recognition (e.g., visual or auditory) in noisy environments.

Our theoretical results were obtained for a simplified model that enabled analytical
treatment, but we also observed the same temporal discrimination mechanism in a
conductance-based model. We expect these phenomena to occur also in more
biophysically realistic multicompartmental models displaying subthreshold oscillations,
particularly in those that are used to relate subthreshold activity to function, e.g., [38],
and, most importantly, in living animals. More complex theoretical descriptions for
intrinsic subthreshold dynamics, such as those discussed in [32,39,40], are likely to
result in richer input-output relationships when combined with dynamic synapses. In
this paper we focused on single neuron dynamics, but related phenomena can also be
analyzed at the network level in addition to the activity shaped by dynamic
synapses [12,41,42]. The discussed results also point in the direction of non-exclusive
neurocentric views of learning [43] based on the interaction between intrinsic and
synaptic dynamics.

Our work has specific relevance in the context of recent studies on the effect of
precise spiking coding mechanisms on learning processes in olivo-cerebellar
circuits [44,45], where precise timing requirements are related to both function and
learning capabilities. In particular, inferior olive neurons, whose subthreshold
oscillations are related to motor coordination [46], receive synaptic inputs that modulate
their oscillatory activity [47]. Specifically, IO neurons are the target of synapses from
the deep cerebellar nuclei which are heterogeneous and often exhibit short-term
synaptic dynamics [48].

While we focused on the interaction between intrinsic subthreshold oscillations and
short-term synaptic dynamics, previous modelling work suggested that subthreshold
oscillations can also have profound effects on the dynamics of long-term plastic changes
such as those induced by spike-timing dependent plasticity (STDP) rules [49]. This
phenomenon, together with the recent observation of multiple and channel-specific
forms of synaptic plasticity in hippocampal and neocortical circuits [50,51], suggests
that the interaction of intrinsic and synaptic short-term dynamics and long-term
plasticity with post- and pre-synaptic specificity will be an important topic for future
experimental research. This picture is complicated by the presence of heterosynaptic
plasticity [52–54], further highlighting the important role of computational models for
summarizing disparate experimental evidence and providing formal frameworks towards
mechanistic explanations of these phenomena and of the computational role they play in
living animals.

An influential theoretical framework proposes that neuronal microcircuits
continuously process incoming information in a context-dependent manner across
multiple time-scales for flexible and efficient resolution of behavioral demands [55–61], a
phenomenon thought to arise from the interaction of intrinsic and synaptic dynamical
processes [62–66]. By exposing the temporally precise information processing
capabilities afforded by the combination of two key dynamical components of neuronal
networks, intrinsic subthreshold oscillations and short-term synaptic dynamics, this
work constitutes a step towards a mechanistic understanding of transient and
context-dependent information processing in neuronal microcircuits.
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Supporting Information

S1 Appendix

To derive equations (14) and (15) we have to focus on the system of equations (11), (12)
and (13) of the paper. Lets consider τin � 1 in the second and third equations of the
system (13). We obtain then:

ŷn+1 = [U + (Ûn − U)e−ISI/τfac ][1 +
[τrec(x̂n − 1)]

τrec
e−ISI/τrec ]

and

x̂n+1 = [1− U − (Ûn − U)e−ISI/τfac ][1 +
[τrec(x̂n − 1)]

τrec
e−ISI/τrec ].

Using here that U(t−n+1) = U + (Ûn − U)e−ISI/τfac (see last equation of the system
(11)) one obtains

ŷn+1 = U(t−n+1)[1 + (x̂n − 1)e−ISI/τrec ]

and
x̂n+1 = [1− U(t−n+1)][1 + (x̂n − 1)e−ISI/τrec ].

Lets consider now steady state conditions (n→∞) in the last equations and define
U∞ ≡ limn→∞ U(t−n+1). Then, one obtains:

ŷ∞ = U∞[1 + (x̂∞ − 1)e−ISI/τrec ] (16)

and
x̂∞ = [1− U∞][1 + (x̂∞ − 1)e−ISI/τrec ].

Solving the last equation one obtain:

x̂∞ =
(1− U∞)(1− e−ISI/τrec)
1− (1− U∞)e−ISI/τrec

and therefore

x̂∞ − 1 ==
−U∞

1− (1− U∞)e−ISI/τrec
.

Substituting this last expression in (16) one finally obtains

ŷ∞ =
U∞[1− e−ISI/τrec ]

1− (1− U∞)e−ISI/τrec

that is, equation (14) in the paper, since Î∞ = Asynŷ∞.
On the other hand, from the last equation of (11) and the last equation of (12) using

the definition of U∞ one obtains

U∞ = U + (1− U)U∞e
−ISI/τfac

which finally solving for U∞ gives equation (15) in the paper, that is:

U∞ =
U

1− (1− U)e−ISI/τfac
.
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S1 Figure

S1 Figure. Input-output temporal preference maps for an IF neuron with
purely passive intrinsic dynamics. Maps as in Fig. 4, for an IF neuron.
Parameters as in Fig. 4, but gw=0. Blue arrows on panel A and B indicate the preferred
synaptic ISI according to the steady-state approximation.

S1 Movie

Robustness to noise of the input-output temporal preference map in the
left panel of Fig. 4A. Each frame in the movie corresponds to the discussed map for
increasing values of Anoise, from 0 (no noise) to 12.5. Each frame in this movie was
generated averaging 100 independent simulations with a statistical threshold of 80%.
When an output was observed in at least 80% of the simulations for an input triplet, the
corresponding point was plotted with the same color code as in the maps shown in Fig.
4: cyan for an output spike in response to the second EPSC in the input triplet; blue for
a spike in response to the third EPSC; and green when the neuron generated a spike in
response to both, second and third, EPSCs. When the number of observations for a
triplet was below the statistical threshold, the corresponding point in the map was
plotted in gray. White indicates no spike response.
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S2 Movie

Robustness to noise of the input-output temporal preference map in the
middle panel of Fig. 4A. Color codes as explained in S1 Movie.

S3 Movie

Robustness to noise of the input-output temporal preference map in the
right panel of Fig. 4A. Color codes as explained in S1 Movie.

S4 Movie

Robustness to noise of the input-output temporal preference map in the
left panel of Fig. 4B. Color codes as explained in S1 Movie.

S5 Movie

Robustness to noise of the input-output temporal preference map in the
middle panel of Fig. 4B. Color codes as explained in S1 Movie.

S6 Movie

Robustness to noise of the input-output temporal preference map in the
right panel of Fig. 4B. Color codes as explained in S1 Movie.

S7 Movie

Robustness to noise of the input-output temporal preference map in the
left panel of Fig. 4C. Color codes as explained in S1 Movie.

S8 Movie

Robustness to noise of the input-output temporal preference map in the
middle panel of Fig. 4C. Color codes as explained in S1 Movie.

S9 Movie

Robustness to noise of the input-output temporal preference map in the
right panel of Fig. 4C. Color codes as explained in S1 Movie.
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53. Costa RPP, Mizusaki BE, Sjöström PJ, van Rossum MC. Functional
consequences of pre- and postsynaptic expression of synaptic plasticity.
Philosophical transactions of the Royal Society of London Series B, Biological
sciences. 2017;372(1715).

54. Keck T, Toyoizumi T, Chen L, Doiron B, Feldman DE, Fox K, et al. Integrating
Hebbian and homeostatic plasticity: the current state of the field and future
research directions. Philosophical transactions of the Royal Society of London
Series B, Biological sciences. 2017;372(1715).
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