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Abstract

Here we study the emergence of chimera states, a recently reported phenomenon referring to the

coexistence of synchronized and unsynchronized dynamical units, in a population of Morris-Lecar

neurons which are coupled by both electrical and chemical synapses, constituting a hybrid synaptic

architecture, as in actual brain connectivity. This scheme consists of a nonlocal network where the

nearest neighbor neurons are coupled by electrical synapses, while the synapses from more distant

neurons are of the chemical type. We demonstrate that peculiar dynamical behaviors, including

chimera state and traveling wave, exist in such a hybrid coupled neural system, and analyze how the

relative abundance of chemical and electrical synapses affects the features of chimera and different

synchrony states (i.e. incoherent, traveling wave and coherent) and the regions in the space of

relevant parameters for their emergence. Additionally, we show that, when the relative population

of chemical synapses increases further, a new intriguing chaotic dynamical behavior appears above

the region for chimera states. This is characterized by the coexistence of two distinct synchronized

states with different amplitude, and an unsynchronized state, that we denote as a chaotic amplitude

chimera. We also discuss about the computational implications of such state.
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I. INTRODUCTION

Synchronization is widely considered to be essential for the proper functioning of a large

variety of natural and artificial systems, ranging from physical experiments to chemical re-

actions and physiological processes. Prominent examples include communication networks

[1, 2], coupled lasers [3–6], Josephson junctions [7, 8], oxidation and catalytic surface reac-

tions [9–11], power grids [12] as well as circadian oscillators [13, 14] and genetic oscillator

networks [15–17]. Apart from these, synchronization in neural systems has remained a very

popular research area during the last decades, because it is widely assumed to be a possible

underlying mechanism for various behavioral and cognitive functions, e.g., attention, infor-

mation processing, and neural control of movement [18–22]. Moreover, many findings from

both experimental and theoretical research suggest that neural synchronization might be re-

sponsible for pathological conditions in brain diseases (i.e., epilepsy and Parkinson), where

the synchronized oscillations are the significant difference between healthy and unhealthy

conditions [23–30]. Considering such important consequences, understanding the nature and

controllability of neuronal synchronization is a critical step in uncovering the bases of many

brain functions and diseases.

On the other hand, neural synchronization is not always desirable and ubiquitous in

the brain [31–34]. It has been found that healthy brain exhibits spontaneous asynchronous

activity as well as synchronous patterns [35]. Thus, asynchronous population activity is

not an harmful circumstance, it is rather beneficial to the brain. It helps for an efficient

information processing and making decision in an excellent way, and also carrying out other

vital tasks properly [36, 37]. In particular, the cortex operates in a highly asynchronous

state during waking and REM sleep [38]. The subthalamic nucleus, a specific location in

the basal ganglia, is another evidence of this inspection. It exhibits asynchronous electrical

activity in the beta frequency band as an indicator of movement preparation [39].

Recent experimental and clinical studies have shown that these two common states,

namely, synchronous and asynchronous activity, can coexist within the same neuronal cir-

cuitry at the same time [40, 41], and such a surprising state occurs, for instance, during

unihemispheric sleep, epileptic seizures and bump states [42–47]. In recent years, these ev-

idences have motivated researchers from neurophysics community to study such coexisting

states and relate them with physical phenomena observed in nonlinear dynamical systems.

In this context, a widely considered representative dynamical phenomenon is the chimera

state which was originally described as coexistence of coherent and incoherent system states
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in a network of coupled identical phase oscillators with nonlocal interactions [48, 49]. This

symmetry-breaking physical concept has attracted great attention in determining the bio-

logical mechanisms that give rise to coexisting coherent and incoherent population activity

in neural circuits. For instance, Omelchenko et al. have shown the emergence of chimera

and multichimera – which refers to multiple incoherent domains – states in nonlocal network

of electrically coupled Fitzhugh-Nagumo neurons [50]. To test robustness of their results, in

[51], authors further investigated chimera states in heterogeneous neuron population consid-

ering diversity of intrinsic excitability and coupling, and found that emergence of chimera

states is robust for small heterogeneity but, as the heterogeneity increases, multichimeras

transform into single chimera. In another work, Bera et al. explored chimera states in nonlo-

cal, global, and local networks of chemically coupled bursting type Hindmarsh-Rose neurons

[52], and found that chimera also occurs in population of such model neurons in the presence

of chemical synapses at network interactions. In a recent work, we have demonstrated that

populations of Morris-Lecar type model neurons also exhibit chimeric behavior with fine

tuning of biophysically relevant parameters, i.e. excitability, synaptic strength and network

connectivity [53]. Apart from these works, presence of chimera state and its variants (e.g.

amplitude chimera, breathing chimera and traveling chimera) have been shown in popula-

tions of other types of model neurons which are widely used in theoretical studies of neural

circuits [44, 54, 55]. These findings from modeling studies support the idea that emergence

of chimera state can indeed be observable in actual neural circuits at the levels of cognitive

and functional organizations [56].

In this work, we go a step further in the study and understanding of the appearance

of chimera states in neural circuits by introducing another biologically relevant condition,

that is the existence of a hybrid synaptic architecture for interneuronal communication. As

is well-known from experimental findings, two main types of synapses, namely electrical

and chemical ones, take part in synaptic transmission and neuron-to-neuron communication

[57]. At an electrical synapse, intercellular channels build a physical connection between

cells, called gap junctions, and the signal transmission occurs through these channels di-

rectly from one neuron to another bidirectionally. However, information transfer across a

chemical synapse take place unidirectionally from pre- to postsynaptic cell with complex

biophysical mechanisms driving the dynamics of excitatory or inhibitory neurotransmitter

particles released from presynaptic side which move across the synaptic cleft and activate

receptor proteins on the postsynaptic neuron [58]. There have been a large number of works
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revealing the presence of electrical synapses in different regions of the brain, such as the

inferior olive [59], locus coeruleus [60], hypothalamus [61] and spinal cord [62]. On the other

hand, chemical synapses are also common through the nervous system [63], and they are

extensively found in different regions of cortex, hippocampus and olfactory bulb [64–66].

Nevertheless, under the light of recent reports, it is now known that electrical and chemical

synapses coexist in mammalian brain structures. Principal findings from neuroimaging and

electrophysiological studies have showed that both forms of transmission can be simultane-

ously found at the same functional neural circuit, including retina [67], neocortex [68] and

spinal cord [69].

So far, generic chimera studies concerning neuron populations have considered network

connectivity formed with either solely electrical or chemical synapses. Exceptionally, there

only recently appeared a few studies investigating effect of their coexistence on the emer-

gence of chimeric behaviors in networks of networks. In such studies, neurons communicate

with each other via one synapse type within a given network and via another type across

different networks. For instance, Hizanidis et al. studied chimera states in modular neural

networks and showed that chimera-like states spontaneously emerge with a suitable tuning of

electrical and chemical coupling strengths within populations and across them, respectively

[70]. On the other hand, Majhi et al. recently analyzed the chimera states in a two-layer

neural network where connections between neurons are established via electrical synapses in

one layer and chemical ones across the other target layer, and demonstrated that the emer-

gence of chimera states depends significantly on coupling strengths of chemical synapses but

poorly on the electrical ones [71]. However, these modeling approaches are not sufficient to

address aforementioned biological reality, since hybrid synaptic connectivity is considered

with lack of physiological findings. In the literature, to our knowledge, no attempts have

been made to examine population behavior under consideration of hybridness associated

with the connectivity in the same neural medium, except only one recent study carried out

to assess the emergence of chimera state in a local community [72]. Although it is evaluated

to be more reasonable to consider such a hybrid connectivity, this study has concentrated on

only preliminary biophysical relevance, considering just locally electrical synapses as well as

nonlocal chemical connections and Hindmarsh-Rose polynomial neuron model as in above

mentioned previous works. Thus, it is worth looking at this subject from a wider perspective.

In order to analyze in deep the role of coexisting chemical and electrical synapse populations

for the emergence of chimera state, and to ensure more relevant and realistic assumptions,
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we here consider a modeling strategy for comprehensibility, such that chemical synapses are

more common within the same neural circuitry and synapses from nearest neighbor neurons

are of electrical type, whereas farther ones are of chemical type in a nonlocal network. Our

main contribution in this work is to analyze emergence of chimera state in more physiolog-

ical Morris-Lecar neuron populations coupled by abundant hybrid connections. We show

that chemical synapses are essential for chimera-like behaviors whereas electrical ones are

surprisingly a key component for emergence of new intriguing behavior in hybrid coupled

network, namely chaotic amplitude chimera.

The rest of the paper is organized as follows: In the next section, we introduce the

neural population model, that is a set of N = 1000 spiking Morris-Lecar neurons which are

electrically and excitatory-chemically coupled in a nonlocal network, and the method used to

characterize chimeric behavior, i.e. mean firing frequency. In the results section, we will first

investigate how critical is the role that the relative number of each synapse type can play

for the emergence of chimera state with given synaptic strengths. It is obvious that among

different system features affecting the possible emergence of chimeric behaviors, synaptic

coupling strength is one of the most significant factors in interneuronal communication since

it dramatically affects the dynamics of the population. Consequently, as a next step, we will

explore the influence of coupling strengths on the appearance of chimera-like states with a

controlled variation for electrical and chemical synapses. After that, we also analyze the

emergent intriguing chaotic behavior caused by the presence of hybrid synaptic interactions.

Finally, our main findings and analysis are summarized in the conclusion section.

II. MODELS AND METHODS

Lets consider a network of coupled neurons placed in the nodes of a ring as it is depicted

in Fig. 1. The dynamics of the membrane potential of each neuron in the network is modeled

using the two-variable Morris-Lecar equations [73–76]:

C
dVi

dt
= I0 + gCam

∞
i (ECa − Vi) + gKwi(EK − Vi) + gL(EL − Vi) + Isyni (1)

dwi

dt
= φ(w∞

i − wi) cosh

(

Vi − βw

2γw

)

(2)

m∞
i (Vi) = 0.5

[

1 + tanh

(

Vi − βm

γm

)]

(3)

w∞
i (Vi) = 0.5

[

1 + tanh

(

Vi − βw

γw

)]

, (4)
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Figure 1: Figure shows the scheme of nonlocal hybrid connectivity used in the present study. In

the plotted example there are 13 neurons in the network in the form of a ring where each one is

connected to R = 2 neighbors via electrical synapses (red solid lines) and to S = 3 neighbors via

chemical connections (blue dashed lines).

where i = 1, 2, . . . , N denotes the neuron index. Vi and wi represent the membrane potential

and activation dynamics of potassium channels for neuron i, respectively. I0 is a constant bias

current externally applied to all neurons in the network, which is fixed to I0 = 10µA/cm2

providing regularly spiking individual cells in the population. The parameters w∞
i and m∞

i

are the steady-state functions of activated potassium and calcium channels, respectively. The

constants gCa = 1mS/cm2, gK = 2mS/cm2 and gL = 0.5mS/cm2 are maximal conductance

values for calcium, potassium and leak channels, respectively. Accordingly, ECa = 100mV,

EK = −70mV and EL = −50mV represent the corresponding ionic equilibrium potentials.

Other system parameters are set as C = 1µF/cm2 (the cell membrane capacitance), φ = 1/3,

βm = −1mV, γm = 15mV, βw = 10mV and γw = 14.5mV.

In Eq. (1), Isyni denotes the total synaptic current received by neuron i from its neighbors

in the ring. In order to connect neurons, we consider here a hybrid coupling scheme with

electrical and chemical synapses incorporated into a nonlocal network as shown in Fig. 1.

More precisely, we consider that each neuron in such networked ring is electrically connected

with its 2R nearest neighbors neurons in the ring and excitatory chemically coupled with 2S

more distant neurons. This strategy results in totally 2(R+ S) connections for each neuron

coupled electrically to R and chemically to S neighbors in both directions as illustrated in

Fig. 1. Then, the total synaptic current a neuron is receiving from its neighbors can be

written as Isyni = IEi + ICi with

IEi =
1

2R

j=i+R
∑

j=i−R

ge(Vj − Vi) (5)
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ICi =

j=i+R+S, j 6=i+R
∑

j=i−R−S, j 6=i−R

gc yj (6)

where ge is the electrical coupling strength and gc is the maximum postsynaptic current which

can be generated at the synapse by activating all synaptic resources. When a spike arrives

at a chemical synapse j at time t, there is an instantaneous release of a fraction uj = 0.9 of

neurotransmitter resources that then becomes active to transmit the spike. Active resources,

namely yj(t), then deactivate over a time on the order of a few milliseconds, characterized

by the time constant τin. We fixed it as τin = 10ms for whole subsequent study, which

is within the physiological range for excitatory synapses [77–79]. Using standard synaptic

transmission modeling [80, 81], we assume that the dynamical behavior of the fraction of

active neurotransmitter resources yj(t) is governed by the following dynamics:

dyj
dt

= −
yj
τin

+ ujδ(t− tAP
j ) (7)

where the delta function refers to the arrival time of a spike at synapse j at t = tAP
j , which

is defined by the upward crossing of the membrane potential past a threshold of 10mV .

To quantitatively determine the population activity behavior and characterize the exis-

tence of chimera states, in the following we will monitor the behavior of the mean firing

frequency of all neurons in the ring, which is defined as fi = Fi/∆T for any given parameter

set. Here, Fi is the number of spikes fired by neuron i within a period of time ∆T computed

after a sufficient transient time. The initial conditions for Eqs. (1-7) are randomly selected

with uniform probability within fixed intervals of (−40mV, 30mV) for Vi, (0, 0.4) for wi

and (0, 1) for yi. Numerical integration of our system is performed using the fourth-order

Runge-Kutta algorithm with a fixed time step of 10µs.

III. RESULTS

In the following, we systematically investigate the emergent dynamical behaviors, espe-

cially chimera-like states, in hybrid coupled spiking neural populations as described in the

previous section. As a first step, we begin by demonstrating the appearance of several dis-

tinct population behaviors when the chemical connection density S is varied for a particular

fixed number of electrical connections (that we set to R = 100) with maximal conduc-

tances for electrical and chemical synaptic current being, respectively, ge = 10−7mS/cm2

and gc = 10−2mS/cm2. The corresponding obtained results are illustrated in Fig. 2 where
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Figure 2: Emergence of different dynamical behaviors in a hybrid coupled neural population as

described in Fig. 1 with variation of the number S of chemical connections with a fixed number of

electrical connections R. Each row shows spatiotemporal activity patterns, snapshots of membrane

potentials, mean firing frequency profiles, and periodic orbits with instantaneous positions of two

neighboring neurons in the networked ring (marked with red and green arrows) and one distant

neuron (marked with blue arrow) on V −w phase plane, respectively. Number of chemical connec-

tions are set as S = 5 (A), S = 125 (B), S = 250 (C) and S = 350 (D). Other system parameters

are fixed as gc = 10−2 mS/cm2, ge = 10−7 mS/cm2 and R = 100.

panels in each column, from top to bottom, show spatiotemporal patterns, snapshots of

membrane potentials, mean firing frequencies, and periodic orbits with instantaneous posi-

tions (marked with colored arrows) of selected three neurons projected on V -w phase plane,

respectively.

By visual inspection of the spatiotemporal patterns and membrane potential snapshots,

it is obvious that hybrid coupled population exhibits four different dynamical behaviors

as S increases. First one is the incoherent state where neurons fire independently. Each

neuron evolves with regard to its initial position in parameter space without waiting any

response from neighboring neurons. Second behavior is the intriguing activity pattern of

traveling wave, which consists of spatially coherent oscillations that propagate progressively
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across the population. This type of activity widely occurs in different oscillatory brain

states and under different sensory conditions, and is associated with transmission of neural

information across different functional brain regions, for example, during propagation of

theta and alpha band rhythms [82] and spread of epileptic seizures [83]. Next, third one is

the intriguing population behavior of chimera state. This state describes the occurrence of

synchronous and asynchronous electrical activity in the same functional healthy or diseased

brain regions [84]. Finally, the fourth population behavior corresponds to a coherent state

where neurons fire in a synchronous and phase-locked manner. This last behavior is widely

assumed to be a critical mechanism for various vital functions of nervous system, such as

information processing and transmission [85, 86], movement control [87] and many other

different cognitive or behavioral tasks [88].

To quantitatively characterize these different behaviors, we compute mean firing frequen-

cies of individual neurons in the population as shown in third panels of each column in Fig.

2. We observe that all neurons, for a given population state, fire at a constant frequency,

except for chimera state which has a characteristic bell-shaped mean firing frequency profile

indicating the coexistence of two different subpopulations, coherent and incoherent, within

the same network. It is also worth to note that mean firing frequency of the hybrid coupled

population increases with S regardless of the existing dynamical state in which the system

operate.

For a more clear understanding of the above-mentioned emergent behaviors, we also per-

form a phase plane analysis (for each one of the illustrated cases) of the activity trajectories

of three particular neurons from the population, which are selected as two neighbors i = 1, 2

in the networked ring and a distant neuron i = 200. This is depicted in the bottom panels of

each column of Fig. 2 where it is seen that these three neurons move on a single orbit in inco-

herent, traveling wave, chimera state and coherent states, respectively when S is increased.

One can easily distinguish these states by following the trajectories of each cell (marked

with arrows) in V -w phase plane. Although the phase plane behavior of three neurons in

the traveling wave and chimera state seems to be similar, we observe that, in the chimera

state, the phase profile of neighboring neurons from coherent group differs from that of the

distant one belonging to the incoherent group, in such a way that coherent and incoherent

group trajectories move on two different periodic orbits. We see more distinct periodic or-

bits in the phase plane when additional different neurons from incoherent subpopulation are

considered (not shown for simplicity). This is a clear indicator for the presence of coherent
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Figure 3: Each panel shows phase diagrams spanned by parameters R and S for different electrical

coupling strengths, fixed as ge = 10−7 mS/cm2 (A), ge = 10−6 mS/cm2 (B) and ge = 10−5 mS/cm2

(C). Regions for different dynamic behavior are given by the following color codes, Black: Inco-

herent state, Red: Traveling wave, Yellow: Chimera state and Blue: Coherent state. Chemical

coupling strength is set to gc = 10−2 mS/cm2.

and incoherent subgroups having different mean firing rates within the same population.

The above results clearly demonstrate that just tuning the single system parameter S (the

relative abundance of chemical synapses) can induce the appearance of non-trivial dynamical

behaviors in the system, i.e. traveling wave and chimera states. In the following, we analyze

in deep how such dynamical states can emerge in the considered hybrid coupling scheme as a

function of other system parameters. Firstly, we analyze hybrid coupled population behavior

on (R, S) plane for three different ge values as depicted in Fig. 3, which provides us a broader

perspective and confirmation of robustness for these observed intriguing dynamical states.

When ge is small (see Fig. 3A), we observe all above-mentioned population behavior types

on (R, S) plane with large regions for incoherent, traveling wave and chimera states, and

with a very narrow region for coherent state. This is mainly due to the small effect of the

electrical synaptic current to induce synchronization of neuron activities in the population

since we have ge ≪ 1mS/cm2. However, even in this case, the situation is far to be ge-

independent since the transition lines between different types of dynamical behavior show

a non-trivial inverse relationship between R and S, which is a clear mark of the presence of

some electrical synapse mediated current effect.

For larger values of ge, one can also see that these regions are significantly modulated (see

Fig. 3B and C) where incoherent and chimera state regions get smaller while the coherent

state region enlarges dramatically in the (R, S) space as ge increases. However, the overall

shape of the region for the emergence of traveling waves does not change very much although

it shifts towards lower R values. At low ge, it is obvious that both connection densities
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Figure 4: Emergent dynamical behaviors in a hybrid coupled population as a function of electrical

synapse features (R and ge) for different levels of chemical connection density S. Considering a

fixed coupling strength for chemical synapses (gc = 10−2 mS/cm2), analysis have been performed

for S = 5 (A), S = 100 (B), S = 150 (C), S = 200 (D), S = 250 (E) and S = 300 (F). Note that

each population state is represented with different color codes being Black: Incoherent state, Red:

Traveling wave, Yellow: Chimera state and Blue: Coherent state.

R and S are jointly responsible for the emergence of traveling wave and chimera states.

But increasing electrical coupling strength apparently disrupts this balance and behavioral

variety can be obtained with only very few electrical connections (low R) depending on

the number of chemical synapses S. On the other hand, these results reveal that electrical

synapses in hybrid coupled population are in favor of establishing coherent and incoherent

states while chemical synapses promote all emergent behaviors except coherent state. This

can be inferred by following behavioral maps on R-axes (S-axes) for S = 0 (R = 0) as

depicted in Fig. 3A, B and C.

To gain more insight into the dependence of hybrid coupled population behavior on elec-

trical synapses, we jointly scan a wide interval for electrical coupling strength ge and connec-

tion number R in parameter space for different chemical connection densities S. Obtained

results are illustrated in Fig. 4. In the presence of very small number of chemical synapses

(see Fig. 4A for S = 5), we observe only incoherent and coherent population behaviors for

lower and higher electrical interaction intensities, respectively. Note that here, interaction

intensity refers to the combined effect of both R and ge. Figure 4A also generalizes the

behavior depicted on Fig. 3 for low S values as a function of R, implying that electrical
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Figure 5: Joint effect of chemical coupling strength gc and electrical connection density R on neural

population dynamical behavior. We fix electrical coupling strength as ge = 10−6 mS/cm2 and use

different chemical connection densities set as S = 5 (A), S = 100 (B), S = 200 (C) and S = 300

(D). In addition to the previous reported dynamical behavior, new emergent dynamical phases as a

chaotic amplitude chimera state (green region) and a coherent bursting state (dark blue) are shown.

To visualize how system behavior is in these new phases, in panel D (top-right corner) are marked

four representative examples, including coherent spiking, chaotic amplitude chimera and coherent

bursting states for R = 190, which are further illustrated in Fig. 6 to visualize the behavioral

transition among these new behavioral states. Chemical coupling values for circle, asterisk, cross

and square markers are set to gc = 0.02mS/cm2, gc = 0.03mS/cm2, gc = 0.045mS/cm2 and

gc = 0.09mS/cm2 , respectively.

synapses are not so important in producing traveling wave and chimera state when S is very

low. However, increasing the number of chemical synapses in the population reveals rich

behavioral variety on (R, ge) parameter space. For instance, in addition to incoherent and

coherent states, traveling wave and chimera state start to appear in population behavior

when S is increased to 100 (see Fig. 4B). Interestingly, a further increase of S results in

disappearance of incoherent state region, and chimera state and traveling wave extend over

that region of the parameter space (Fig. 4C). Then, chimera state starts to be the predomi-

nant dynamical behavior while traveling wave fades away with further increase of S (see Fig.

4D, E and F for increasing values of S). It is worth to note that, despite the influence of

S in modulating the regions for incoherent, traveling wave and chimera states in parameter

space, the region for occurrence of coherent state does not change very much with increased

number of chemical synapses.

So far, we have extensively explored dynamical states of hybrid coupled population and

determined conditions for the emergence of peculiar traveling wave and chimera behaviors

on parameter spaces of (R, S) and (R, ge). After carefully inspecting these two-parameter

behavioral maps, it can be obviously concluded that (i) chemical synapse number S plays

the critical role for emergence of the observed behavioral variety continuously influenced by

the presence of the electrical connections in the hybrid coupled population; (ii) this variety
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can occur only with the presence of relatively weak electrical coupling.

In order to further understand the effect of the chemical connectivity and to corroborate

the robustness of the intriguing emergent dynamical states in the hybrid coupled system,

we now continue to investigate how global population behavior might change in the param-

eter space (R, gc) for a moderate electrical coupling strength ge = 10−6mS/cm2 and for

distinct values of S. Obtained results are depicted in Fig. 5. Our analysis show that for

small S, chemical interactions induce variety of collective dynamical behavior in the neuron

population only when gc gets higher values, depending on the given value of the electrical

connection density R (see Fig. 5A). It is evident that coherent behavior prevails in most

regions of (R, gc) parameter space and, traveling wave and chimera state only occur at high

chemical coupling strengths for small S. Increasing S results in enlargement of the regions

for traveling wave and chimera state and also shrinkage of the regions for incoherent and

coherent states on (R, gc) parameter space. On the other hand, we also observe that two

new types of complex behavior start to emerge in population dynamics with the increase in

S. One is a non-standard chimera state where two different groups of neurons are oscillating

coherently with different amplitudes coexisting with an incoherent group of neurons in the

same population (see Fig. 6). Here, we call this stable state as chaotic amplitude chimera

and it occurs at green region in Fig. 5B, C and D. Other behavior is a coherent bursting

state (dark blue regions in Fig. 5C and D) where all the neurons in the population exhibit

synchronized burst activity instead of regular spiking. These new findings indicate that co-

operative effect of electrical and chemical synapses enriches population dynamics inducing

new emergent intriguing behaviors, i.e. chaotic amplitude chimera and coherent bursting

state, that are not present in populations coupled by only one synapse type.

To better illustrate the dynamical features of the chaotic amplitude chimera and coherent

bursting state, we analyze spatiotemporal evolution of the hybrid coupled neural population

for four different representative space points marked on (R, gc) plane in Fig. 5D. Our obser-

vations are shown in Fig. 6 that also includes the time evaluation of the membrane potentials

of randomly selected three neurons from different behavioral subpopulations (bottom pan-

els). It is seen that hybrid coupled population exhibits fully synchronized coherent spiking

behavior for the case of gc = 0.02mS/cm2 (see top panel of Fig. 6A). In this case, the

membrane potentials of sample neurons also exhibit a steady-oscillatory spiking behavior as

a single cell (bottom panel of Fig. 6A). Then, an increase in gc to 0.03mS/cm2 (top panel

of Fig. 6B) induces the emergence of the chaotic amplitude chimera in which neurons in
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Figure 6: Representative neural population behaviors are illustrated with respective spatiotemporal

patterns (in top panels) corresponding to circle (A), asterisk (B), cross (C) and square (D) markers

in Fig. 5D, respectively. Bottom panels show time series of three neurons randomly selected from

different behavioral subgroups, if there are any. System parameters are set as gc = 0.02mS/cm2

(A), gc = 0.03mS/cm2 (B), gc = 0.045mS/cm2 (C) and gc = 0.09mS/cm2 (D). Number of

electrical synapses is fixed as R = 190.

the population move on three different basins of attraction, that form two different coher-

ent subpopulations oscillating with different amplitude, and one incoherent subpopulation.

This complex population behavior is also confirmed by monitoring the time evolution of

the membrane potentials of three cells chosen from each subpopulation (bottom panel of

Fig. 6B). To check the persistence of this interesting behavior, we further increased gc and

observed that the number of neurons in coherent subpopulation oscillating with large am-

plitude decreases, while the subpopulation size for the one with small amplitude oscillating

and the incoherent group increase (see top panel of Fig. 6C). Finally, a further increase in gc

to 0.09mS/cm2 (Fig. 6D), there appears a dramatic change in population behavior with the

emergence of a fully synchronized bursting type of neural activity with a number of small

amplitude oscillations within the burst separated by a single large amplitude oscillation

between bursts.

Finally, to provide a better understanding and quantitative analysis of the dynamical

features of chaotic amplitude chimera state, we illustrate in Fig. 7 different distinguishable

views of its behavioral evolution. The figure shows that neural population splits into three

domains in such state where different behaviors coexist: small amplitude, large amplitude

and incoherent oscillations. We plot spatiotemporal evolution of the hybrid coupled popula-

tion in Fig. 7A and give a snapshot of the system in Fig. 7B. With a careful inspection, one
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can see that there are actually three different basins of attraction. This can be clearly under-

stood by the phase plane analysis of selected three neurons within different subpopulations.

To do this, we randomly choose a representative neuron from each behavioral group which is

pointed with red, green and black arrows, and plot corresponding time series on V -w plane

in Fig. 7C. It is clearly depicted that there are two different periodic orbits forming distinct

coherent behaviors and one unstable periodic orbit resulting in incoherent behavior. In fact,

this unstable periodic orbit has a chaotic nature that should be discerned from incoherent

state of standard chimeras characterized as in Fig. 2A where each neuron in the incoherent

population follows a non-chaotic stable periodic orbit trajectory. This is also confirmed with

the corresponding Poincare maps of the dynamical behavior of the three previous represen-

tative neurons illustrated in Fig. 7D. This clearly shows two distinct coherent behaviors of

neurons represented by red and black points plotted in the phase plane corresponding to the

low and large amplitude population oscillations and a cloud of points for the chaotic green

trajectory. The magnification box makes chaotic behavior of incoherent group more clear.

IV. DISCUSSION

Chimera state is a recently discovered dynamical system behavior which has attracted

an increasing interest, and which is characterized by the coexistence of synchronization and

desynchronization within a population of identical dynamical elements. This interesting

phenomenon has been studied in a wide range of natural and artificial systems, as well as in

neuron populations. For the later one, taking into account that the architecture of coupling

is a crucial factor for its emergence [51, 89], most neural chimera works have focused on

networks consisting of either only electrical or only chemical synapses. Although neural
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Figure 7: Illustration of a chaotic amplitude chimera. Panels (A) and (B) show spatiotemporal

pattern and snapshot of neuron population. Red, green and black arrows in panel (B) show 100th,

300th and 500th neurons, respectively. Panels (C) and (D) depict phase plane analysis and Poincare

maps (with an enlarged view of the chaotic region) of corresponding neurons. System parameters

are set as S = 100, R = 200, ge = 10−6 mS/cm2 and gc = 10−1 mS/cm2.
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chimera emergence has recently been investigated with different hybrid coupling schemes

[70–72], such studies are very preliminary and make too simplistic assumptions that pro-

vide inadequate results when confronted with actual physiological conditions. With the

motivation to provide a deeper understanding for the emergence of chimera states in actual

neural systems, we here present a comprehensive analysis of how such intriguing dynamical

behavior can emerge in a neural system including hybrid synaptic coupling.

We have first reported the occurrence of chimera-like behaviors in a population of Morris-

Lecar neurons, which are coupled by electrical and chemical synapses in a regular network

constituting a hybrid coupling scheme. We have explored how dynamical behavior of system

changes as a function of the different features of the hybrid connectivity. In particular, we

concentrated our analysis on the role of the connection type densities and coupling strengths

of electrical and chemical synapses on emergent behavior. It is shown that hybrid coupled

populations exhibit variety of dynamical behaviors as a function of electrical and chemical

synapse densities in the network. Our findings reveal that chemical synapses, compared to

electrical ones, play more significant roles in determining richness of dynamical behavior of

the population. Despite this, we also observed that such behavioral variety can only occur

in the presence of relatively weak electrical connections. In fact, when electrical coupling

strength increases, population exhibits more synchronized behavior as well as the probabil-

ity to see chimera-like behaviors dramatically decreases. On the other hand, evaluating the

effect of chemical coupling strength on population behavior, we found a different trend when

the chemical synapse density increases further. In cases of large chemical synaptic strength,

the neural population exhibits a new behavior that we have called chaotic amplitude chimera

state which has not been reported before. We also observed a pronounced change in mem-

brane potentials of Morris-Lecar neurons for highly intense chemical interaction within hy-

brid coupled population in such a way that the coherent regular spiking behavior changes to

a coherent bursting state. Since pure chemically connected Morris-Lecar neuron population

exhibits incoherent, traveling wave, chimera and coherent (spiking) states, we conclude that

presence of electrical connections gives rise the emergence of these new intriguing dynamical

states.

Understanding the underlying mechanisms of cognitive processes in actual brains is crucial

for appropriate design of the artificially intelligent systems. There are many experimental

and theoretical findings that have shown the relation between observed dynamical states in

this paper and various cognitive processes [90–94]. For instance, synchronization is widely
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assumed to be a essential mechanism for selective attention [19] and memory processes

[95]. Also, it has been shown that traveling waves are closely associated with cognitive pro-

cesses, ranging from long-term memory consolidation to processing of dynamic visual stimuli

[96, 97]. On the other hand, as chimera state is a recently discovered population behavior, the

knowledge of its current role in cognitive processing is still lacking. However, chimera state

can naturally appear in brain which satisfies the minimal requirements for its emergence. A

well-known example is the unihemispheric sleep activity observed in some marine mammals

where their half brain exhibits coherent electrical activity while the other half is incoherent

[98, 99]. In terms of cognition, chimera state may represent pattern recognition, episodic and

spatial memory, similarly to the localized patterns of excitation or “bump states” which can

also be interpreted as one of dynamical attractors of the working memory [100, 101]. More-

over, one can associate chimeric behavior with event-related synchronization, task switching

or multitasking functional states applied in artificially-intelligent systems [102, 103].

Neural chimera studies may also provide different insights for the understanding of patho-

logical conditions, particularly seizure-related, originating from impairment of balance be-

tween synchronous and asynchronous activity. Given the diversity of emergent states re-

ported in our work and the knowledge of the critical conditions for formation and disso-

lution of chimera states, this knowledge can be useful for an appropriate design of cure

strategies of those diseases. For the future studies to investigate chimera state, hybrid cou-

pling concept can be extended to networks including synaptic plasticity with combination

of excitatory/inhibitory synapses and gap junctions, and perhaps with different network

topologies, i.e. scale-free, small-world and multilayered networks.
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