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The inverse stochastic resonance (ISR) phenomenon consists in an unexpected depression in the
response of a system under external noise, e.g., as observed in the behavior of the mean-firing rate
in some pacemaker neurons in the presence of moderate values of noise. A possible requirement for
such behavior is the existence of a bistable regime in the behavior of these neurons. We here explore
theoretically the possible emergence of this behavior in a general bistable system, and conclude on
conditions the potential function which drives the dynamics must accomplish. We show that such
an intriguing, and apparently widely observed, phenomenon ensues in the case of an asymmetric
potential function when the high activity minimum state of the system is metastable with the
largest basin of attraction and the low activity state is the global minimum with a smaller basin
of attraction. We discuss on the relevance of such a picture to understand the ISR features and to
predict its general appearance in other natural systems that share the requirements described here.
Finally, we report another intriguing non-standard stochastic resonance in our system, which occurs
in the absence of any weak signal input into the system and whose emergence can be explained,
with the ISR, within our theoretical framework in this paper in terms of the shape of the potential
function.

I. INTRODUCTION

Noise is ubiquitous in the real world, which has been
a topic of significant interest in the field of science and
engineering applications. Much effort have been devoted
to understanding the source of noise and the emergence
mechanisms of noise induced phenomena as well as their
role in systems and devices. While noise was first con-
sidered to be something that should be filtered out or
reduced, it is now widely accepted that noise can have a
constructive role and enrich the stochastic dynamics of
nonlinear systems [1–3]. A prominent example of this is
stochastic resonance (SR) phenomenon in which the sig-
nal to noise ratio in a nonlinear system under the action
of a weak input signal is maximized for a proper amount
(not too small nor too large) of noise [4–8]. Under SR,
a plot of the system response versus the ambient noise
is bell shaped, indicating that the correlation between
the weak signal and response is maximal around a mod-
erate level of noise. A detailed dynamical analysis has
revealed that the existence of SR in natural systems is
due to the presence of kind of bistability on their driving
dynamics characterized, for instance, by the existence of
a potential function driving the dynamics with two min-
ima separated by a finite energy barrier. This barrier
can be overpassed – thus inducing jumps of the activity
among the two minima – thanks to a strong driving force
or an efficiently high level of noise. SR then occurs when,
for very weak signals unable to jump, an optimal amount
of noise induces jumps that are thus correlated with the
weak signal [9].

The presence of such conditions of bistability during
the activity of actual neurons has been widely depicted

[10–12]. For instance, the pacemaker activity of the squid
giant axon shows a pattern of switching on–off activity
which depends on several features of a noisy input cur-
rent and its fluctuations [11]. In this case, the authors
illustrate a kind of bistability in which noise induces dif-
ferent types of neuron behavior, including repetitive fir-
ing, emergence of bursting and, even more intriguing, the
complete quietness of neural activity. Following these in-
teresting findings, a series of theoretical studies reported
a new intriguing noise induced phenomenon in neural sys-
tems, in which a minimum – possibly zero – occurs in the
average spiking activity of single neuron models for an
optimal amount of noise [13–19]. Such a noise induced
behavior has also recently been found in neuronal popu-
lations in biophysical realistic models with different net-
work coupling schemes [20]. Following this, a double in-
verse stochastic resonance with two distinct minima has
been reported in the response of a Hodgkin-Huxley model
neuron that receives synaptic inputs subject to different
types of short-term synaptic plasticity [21]. Since the de-
pendence of the neuronal system response on the noise is
the opposite to that in the SR mechanism, by analogy,
this phenomenon has been named “inverse stochastic res-
onance” (ISR). These previous studies have stated that
co-existence of a stable resting equilibrium and a stable
spiking limit cycle during the model neuron dynamics is
the key factor for the emergence of interesting noise in-
duced effects. These theoretical findings have been com-
plemented with the first experimental evidence for ISR in
an in vitro preperation of cerebral purkinje cells [22]. The
authors show in this work that ISR allows the Purkinje
cells to operate in different functional regimes depend-
ing on the variance of the neuronal noise: the all-or-none
toggle or the linear filter mode in cerebral information
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processing. Furthermore, ISR might also play a critical
role in computational mechanisms that require reduced
firing activity without chemical inhibitory neuromodula-
tion or, alternatively, when other computational mecha-
nisms require on-off bursts of activity. On the other hand,
apart from neural systems, a recent experimental study
reported the existence of ISR in nematic liquid crystals
(NLC) [23]. This work shows that a proper arrangement
of colored noise intensity and its correlation time con-
stant induces ISR in an ac-driven electroconvection in
NLC.

These observations compelled us to develop a general
theory, which is presented in this paper, to explain the
emergence of ISR in nature. Our model considers the
existence of two local minima separated by an energy
barrier for a potential function driving the activity of
a natural system, one corresponding to a low activity
state, or Down state, and the other corresponding to a
high activity state, that is the Up state. In addition, we
assume that the low activity state is the global minimum
of the dynamics but it has a narrower basin of attraction.
On the other hand, the high activity state is a metastable
state but with a large basin of attraction. Note that these
requirements in our model impede in practice to observe
ISR in pure bistable systems with the two minima having
their basins of attraction with the same depth and size. It
thus follows that ISR can only appear in natural systems
with metastable states.

II. MODEL AND METHOD

Consider, for simplicity, a one dimensional dynamical
system whose activity or state is described by a variable
x(t) (representing neural population activity, cell mem-
brane voltage, chemical ion concentration, etc) which fol-
lows the dynamics

dx

dt
= −∂ϕ(x)

∂x
(1)

where the potential function is given, for instance, by

ϕ(x) = a arctan [b (x+ x0)] + c (x+ x0)
2

+ d (x+ x0) ,
(2)

which is a particular case of a class of familiar models for
chemical kinetics [24–26]. This, which yields

dx

dt
= − ab

1 + b2 (x+ x0)
2 − 2c (x+ x0)− d, (3)

produces, for the indicated set of parameter values, the
shape asymmetry of the local minima depicted in figure
1. This potential function depicts two locally stable min-
ima separated by a local maximum xm, being x1 the low
activity one or Down state, and x2 being the high activ-
ity state or Up state, in such a way that x1 < xm < x2.
We use this particular potential since it is easy to tune
between different shapes for it by changing the value of a
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Figure 1. (a) Bistable potential ϕ(x) with asymmetric basin
of attractions defined in equation (2). Parameters are a =
3.367, b = 2, c = 0.5, d = −3.357, and x0 = −2. (b) The same
potential ϕ(x, c) for c ∈ (0.3, 1) depicting transitions of the
stability of the local minima as a function of the parameter c.
Lines here correspond to c = 0.35 (purple), c = 0.5 (red, the
case illustrated in panel A corresponding to an asymmetric
bistable potential) and c = 0.8 (black).

few parameters, as it is depicted in figure 1(b), including
the case of symmetric bistable potentials and asymmetric
ones.

We are going to consider in the following the behavior
of this system under the action of a source of noise, i.e.,
the unidimensional Langevin equation:

dx

dt
= −∂ϕ(x)

∂x
+ η(t). (4)

We assume here that the noise has the form of an additive
Gaussian term, η(t) with zero mean, 〈η(t)〉 = 0, and
autocorrelation, 〈η(t)η(t′)〉 = 2Dδ(t− t′).

A. Limit of small noise

Let us first consider the behavior of the system under
the action of a small noise. In addition, we assume a non-
bistable potential with two minima of different depth, one
being the global minimum of the dynamics and the other
a metastable state. First, in the absence of noise, after
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averaging over a number of trials with random initial
conditions x0 ∈ (a, b), one has in the steady state that

〈x〉 = x1 p (x0 < xm) + x2 p (x0 > xm) . (5)

Here, p(x0) = (b− a)
−1 is the uniform distribution of

random initial conditions. It then follows that

p (x0 < xm) =
xm − a
b− a , p (x0 > xm) =

b− xm
b− a . (6)

Consider next the system in the presence of a weak noise,
in such a way that, if its state at a given time is in the
basin of attraction of the metastable state (Up state), it
has a probability of escape during a time interval dt equal
to pe = dt/ 〈te〉 . The denominator here is the average
escape time from that local minimum, i.e., the inverse of
the Kramer’s escape rate probability,

rK,2 =
1

2π
[ϕ′′ (x2) |ϕ′′ (xm)|]1/2 exp (−∆ϕ2/D) , (7)

from the high activity x2 to the low activity x1 values of
the minimum. ∆ϕ2 ≡ ϕ (xm) − ϕ (x2) is the potential
barrier the state of the system has to overpass (see for
instance [27]) to escape from the metastable state. Sim-
ilarly, if the state of the system is around the low value
minimum x1 it can jump to the high-value minimum x2
with rate probability

rK,1 =
1

2π
[ϕ′′ (x1) |ϕ′′ (xm)|]1/2 exp (−∆ϕ1/D) , (8)

where ∆ϕ1 ≡ ϕ (xm) − ϕ (x1) is the potential barrier
that the state of the system has to overpass now starting
around the minimum x1. The expressions (7) and (8)
are only valid when noise fluctuations are small so that
∆ϕ� D [27].

Consider now that, at given time t, the state of the
system has a probability p(xt < xm) ≡ αt to be around
the minimum at x1, and a probability p(xt > xm) ≡ βt to
be around the minimum at x2, with αt+βt = 1∀t. Then,
it follows that α0 = p(x0 < xm) and β0 = p(x0 > xm).
One may now assume that both αt and βt evolve in time
according to the equations dαt

dt = rK,2βt − rK,1αt and
dβt

dt = rK,1αt − rK,2βt due to possible escapes from one
minimum to the other and vice versa. Then, one can
easily solve the previous system of equations to obtain

αt = [rK,2 − (rK,2 − λα0)e−λt]/λ
βt = [rK,1 − (rK,1 − λβ0)e−λt]/λ

(9)

where λ = rK,1 + rK,2. We may compute the mean state
or activity of the system at each time t, which is approx-
imately

〈x〉t ≈ x1αt + x2βt. (10)

At t = 0, one has that 〈x〉0 ≈ x1α0 + x2β0, which coin-
cides with (5). On the other hand, the steady state of
(9) is α∞ =

rK,2

rK,1+rK,2
= p(x∞ < xm), β∞ =

rK,1

rK,1+rK,2
=

p(x∞ > xm) which are the probability of the system to
be in a state around the minimum x1 and x2 respectively
in the steady state.

B. The limit of high noise

Alternatively, in the presence of a noise high enough to
overpass the potential barrier, we can perform a different
derivation to compute the mean activity of the system in
the steady sate. Starting with the Langevin description
(4), x(t) is a random variable with probability distribu-
tion P (x, t) that obeys the Fokker-Planck equation [28]

dP (x, t)

dt
= − ∂

∂x
A(x)P (x, t) +D

∂2

∂x2
P (x, t). (11)

with A(x) = −∂ϕ(x)∂x . The steady-state solution P∞(x) =
limt→∞ P (x, t) to this equilibrium is known to be [28]

P∞(x) = Ne−ϕ(x)/D, (12)

where N = [
∫
e−ϕ(x)/Ddx]−1 is a normalization factor.

We can then compute the average of 〈x〉 using such prob-
ability distribution and write it as a function of the po-
tential parameters and the noise level D, that is,

〈x〉 =

∫
R
xP∞(x) =

∫
R x e

−ϕ(x)/Ddx∫
R e
−ϕ(x)/Ddx

. (13)

III. RESULTS

A. Inverse stochastic resonance

Within the above model one may easily understand
the shape and features of the ISR curves previously re-
ported in the literature. Figure 2 shows the level of agree-
ment with the ISR curves computed in simulations of the
Langevin equation (4) for different values of the poten-
tial parameter c (open circles), compared with the value
of 〈x〉 computed with the low-noise Kramer’s approxima-
tion from equation (2) and depicted in panel (a) (solid
lines). The high-noise equilibrium theory using expres-
sion (13) is shown in panel (b) (solid lines) also com-
pared with simulations of the Langevin equation (open
circles). This shows that the Kramer’s escape theory
reproduces very well the behavior of the ISR curve for
low noise while fails for large noise. The agreement for
very low noise is due to the fact that in this case the
noise fluctuations cannot overpass the potential barrier
in finite time, so that the observed mean activity at zero
noise is just the result of an initial condition effect, and
it can be computed through the probabilities that the
state of the system initially falls in any of the basin of
attractions of each minimum. That is, the zero noise
mean activity can be computed through the expression
(5). Note that, in this case the asymmetry between min-
ima in the potential function is what induces the zero
noise level of the ISR curve to be higher or lower. In
fact, if the basin of attraction of the low activity min-
imum is too narrow, then p (x0 < xm) � p (x0 > xm)
and therefore 〈x〉 ≈ x2. On the other hand, if the high-
activity minimum has a very narrow basin of attraction,



4

1

2

3

4

5

0.01 0.1 1 10

(a)

1

2

3

4

5

0.01 0.1 1 10

(b)

〈x
〉

D

c=0.5
c=0.6
c=0.7
c=0.8
c=0.9

〈x
〉

D

c=0.5
c=0.6
c=0.7
c=0.8
c=0.9

Figure 2. (a) ISR curves obtained in simulations (open circles)
compared with the theory for low noise based in our Kramer’s
type theory (solid lines), for different values of the potential
function parameter c. (b) ISR curves obtained in simulations
(open circles) compared with the equilibrium theory for high
noise (solid lines), also for different values of the potential
function parameter c. Other model parameters as in figure 1.

then p (x0 < xm)� p (x0 > xm) and therefore 〈x〉 ≈ x1,
which will impede the appearance of ISR, since there is
not a raising of the ISR curve toward a higher value for
very low noise.

When the noise increases but still remaining small,
then there is a non-zero probability, according with the
Kramer’s theory, that the state of the system being ini-
tially in the basin of attraction of the high-activity min-
imum could overpass the potential barrier due to noise
fluctuations and fall into the basin of attraction of the
low activity minimum. In this case, to reproduce the
lowering of the level of 〈x〉 for such noise levels, it is also
important that the low-activity minimum is deeper than
the high-activity one, in such a way that, for the same
level of noise fluctuations, is easy for the state of the sys-
tem to overpass the potential barrier from the high to the
low activity minimum and harder the opposite. In such
conditions, system states being initially around x2 could
be trapped around x1 and, therefore, the 〈x〉 decreases
as simulations of ISR depict. Note that for this small

non-zero level of noise fluctuations, the behavior of 〈x〉
is mainly determined by the rate probabilities for escap-
ing from the potential minima, and it can be computed
through expression (10). In this case, the asymmetry of
the potential with reference to the depth of the minima is
what determines the behavior of 〈x〉 as a function of the
fluctuations intensity. In fact, such asymmetry implies
that rK,2 � rK,1 and therefore αt � βt, which makes
〈x〉 to reach a minimum value, that is, the minimum of
the ISR curve.

For increasing values of the noise level, the expression
(10) can approximately explain the rising of 〈x〉 from the
minimum of the ISR curves since the probability to be
trapped in the low-activity minimum decreases. This oc-
curs due to the fact that escapes from such low-activity
minimum to the high-activity one can also occur, so both
rK,1and rK,2 increase and therefore βt also increases and
become comparable with αt. However, for large values of
noise such tendency fails. This is because the non-validity
of the Kramer’s theory which is based on the assumption
of non-negligible small current probability through the
potential barrier between the two minima, and for large
noise such current probability is negligible due to large
size stochastic jumps (∆ϕ � D). In such a case, we
can consider that the system quickly reaches an equilib-
rium condition where the state of the system is randomly
exploring its entire phase space. We then need to com-
pute the steady-state probability P∞(x) to evaluate 〈x〉
using the expression (13). Figure 2(b) clearly illustrates
that such equilibrium theory can exactly reproduce the
shape of the ISR curves for large noise values and any
value of the potential parameter c. However, the equilib-
rium theory incorrectly predicts, for low noise values the
lower value for the mean activity of the system 〈x〉 ≈ x1.
The reason is that such minimum x1 corresponds to the
global minimum of the dynamics and in steady-state con-
ditions the system is in equilibrium around such mini-
mum. However, the equilibrium theory does not account
for the possibility that, for small noise and for some initial
conditions, the state of the system can be trapped dur-
ing a long time (that increases as the noise fluctuations
decrease) around the metastable high-activity minimum,
which is the responsible for the rising of 〈x〉 for small
noise in the ISR curve in simulations.

One can account for both theoretical results – that is
the small noise and high noise previous theories – as-
suming that there is a validity crossover between both
theories. Therefore, one can assume for all levels of noise
that the mean activity of the the system is given by

〈x〉 = 〈x〉L[1− ξ(D)] + ξ(D)〈x〉H (14)

where the labels L and H indicate, respectively, the
theories for low and high noise, and ξ(D) = 1

2 +
1
2 tanh[10(D −D0)]. This is function of noise such that,
for D > D0, ξ(D) ≈ 1 indicating that the high noise
theory becomes the important one while for D < D0,
ξ(D) ≈ 0 so that the low-noise theory is the important
one. Figure 3 depicts the behavior of 〈x〉 as a function of
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Figure 3. Emerge of ISR in an asymmetric non bistable po-
tential. Lines corresponds to the theory in this paper and
open circles correspond to simulations of the Langevin equa-
tion (4) for several values of the parameter c controlling the
deep and asymmetry of the potential function ϕ(x). In all
cases D0 = 0.15. Other model parameters as in figure 1.

noise level D as given by the expression (14). This shows
good agreement between the full theory (solid lines) and
simulations of the Langevin equation (4) for different val-
ues of the potential parameter c. The figure also clearly
depicts that only for c > 0.5 ISR emerges. This corre-
sponds to situations in which the system is not bistable
and the low activity minimum becomes the global mini-
mum of the dynamics with the high activity one becom-
ing a metastable state. For c ≤ 0.5, the ISR behavior
is lost since the global minimum is the high activity one
while the low activity minimum becomes a metastable
state in such a way that, for any value of the noise, the
probability of the state of system to be around such min-
imum is very low and, therefore, 〈x〉 becomes large for
all values of D.

B. Non-standard stochastic resonance or noise
induced activity amplification

Our theory also predicts a non-standard stochastic res-
onance (NSSR) in our system , that is, the mean activity
〈x〉 may present a maximum as a function of noise level
even in the absence of a weak signal in the right-hand side
of equation (4). The only requirement for this is to have
dynamics (4), as before, with a potential function with
two minima, but now with the low-activity one being the
metastable state and with the larger basin of attraction
and the high activity one being the global minimum of
the dynamics with a narrower basin of attraction, as de-
picted in figure 4(a). The resulting behavior of 〈x〉 as a
function of noise parameter D is depicted in figure 4(b),
where a maximum in the mean activity is observed at
intermediate values of the noise parameter. This is quite
similar to the typical stochastic resonance curves widely
reported in the literature. Note, however, that the mech-
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Figure 4. Emergence of noise induced activity amplifica-
tion or non-standard stochastic resonance. (a) This shows
the asymmetric potential ϕ(x) with two minima with dif-
ferent depth and size of the basin of attraction for each
minimum. Here, the low activity minimum is a metastable
sate with a large basin of attraction, and the high activ-
ity one is the global minimun of the dynamics and has a
small basin of attraction. Potential function parameters are
a = 4.367, b = −1.28, c = 0.327, d = 2.79 and x0 = −5.78.
(b) Behavior of the 〈x〉 as a function of the noise parameter
D, for the case of the potential function illustrated in panel
A. The graph depicts an amplification of the observed mean
activity for intermediate values of the noise parameter, which
resembles stochastic resonance. In this case D0 = 0.15. The
solid line corresponds to our theory and data points (open
circles) to simulations of the Langevin equation (4).

anism responsible for this behavior differs from that of
the typical SR behavior, where there is enhancement of
the correlation between the activity of a nonlinear system
and a weak external input (see for instance [9]).

IV. FINAL DISCUSSION

In this paper, we present a simple and general theory
to explain the emergence of ISR in a variety of natural
situations. Our theory predicts that ISR will occur in
any natural system whose dynamics can be interpreted
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as following from some potential function with two min-
ima, one of them being metastable (the one correspond-
ing to the higher activity) and the other being the global
minimum (i.e., corresponding to the lowest activity). In
addition, a requirement for the appearance of ISR is that
the high activity minimum must have the larger basin of
attraction while the low activity one must be the global
minimum of the dynamics. We predict that any natu-
ral system that meets these requirements is a potential
candidate in which ISR should perhaps be observed.

The theory presented here also predicts the existence
of a non-standard stochastic resonance phenomenon if
the global minimum of the dynamics corresponds to the
higher activity one whereas the local or metastable mini-
mum corresponds to the lower activity one. The resulting
stochastic resonance is a non-standard one in the sense
that the dynamics does not need a weak signal input to
induce a maximum in the average activity of the system.
In fact the observed maximum in the average activity
does not indicate here a correlation between system in-
put and output response. Thus, it can be considered
as an activity amplification phenomenon induced by a

proper arrangement of the noise. We predict that this
type of non standard SR can emerge in any biological or
other natural system that meets the basic requirements
as explained above.

Summing up, due to the simplicity and the generality
of the theory presented here, our study, firstly, can be eas-
ily extended to include other types of noise, e.g. colored
noise, to analyze their influence on ISR features and, sec-
ondly, it can be useful to further explore the possible im-
plications that both ISR or non-standard SR could have
in the behavior of many different natural and physical
systems.
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