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F́ısica Teórica y Computacional. Universidad de Granada. E-18071 Granada. Spain

E-mail: phurtado@onsager.ugr.es

Abstract. Controlling transport in quantum systems holds the key to many

promising quantum technologies. Here we review the power of symmetry as a resource

to manipulate quantum transport, and apply these ideas to engineer novel quantum

devices. Using tools from open quantum systems and large deviation theory, we show

that symmetry-mediated control of transport is enabled by a pair of twin dynamic

phase transitions in current statistics, accompanied by a coexistence of different

transport channels. By playing with the symmetry decomposition of the initial state,

one can modulate the importance of the different transport channels and hence control

the flowing current. Motivated by the problem of energy harvesting we illustrate

these ideas in open quantum networks, an analysis which leads to the design of

a symmetry-controlled quantum thermal switch. We review an experimental setup

recently proposed for symmetry-mediated quantum control in the lab based on a

linear array of atom-doped optical cavities, and the possibility of using transport as a

probe to uncover hidden symmetries, as recently demonstrated in molecular junctions,

is also discussed. Other symmetry-mediated control mechanisms are also described.

Overall, these results demonstrate the importance of symmetry not only as a organizing

principle in physics but also as a tool to control quantum systems.
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1. Introduction

The control of transport and dynamical response in quantum systems is nowadays of

fundamental technological interest [1, 2]. Such interest is fueled by the remarkable

advances of modern nanotechnologies and the possibility to manipulate with high

precision systems in the quantum realm, ranging from ultracold atoms to trapped ions or

molecular junctions, to mention just a few. The possibility to control transport at these

scales opens the door to the design of e.g. programmable molecular circuits [3, 4] and

molecular junctions [5,6], quantum machines [7–9], high-performance energy harvesting

devices [10–13], or quantum thermal switches and transistors [14–16].

Importantly, most devices of interest to prevailing quantum technologies are open

and subject to dissipative interactions with an environment. This dissipation has

been usually considered negative for the emerging quantum technologies as it destroys

quantum coherence, a key resource at the heart of this second quantum revolution.

However, in a recent series of breakthroughs [17–22], it has been shown that a careful

engineering of the dissipative interactions with the environment may favor the quantum

nature of the associated process. This idea has been recently used for instance in order

to devise optimal quantum control strategies [17], to implement universal quantum

computation [18], to drive the system to desired target states (maximally entangled,

matrix-product, etc.) [19–21], or to protect quantum states by prolonging their lifetime

[22].

In all cases, the natural framework to investigate the physics of systems in contact

with a decohering environment is the theory of open quantum systems [23–27]. This

set of techniques has been applied to a myriad of problems in diverse fields, including

quantum optics [28,29], atomic physics [30,31] and quantum information [32,33]. More

recently, the open quantum systems approach has been applied to the study of quantum

effects in biological systems [34–40] and quantum transport in condensed matter [41–44],

the latter being the focus of this paper. A complete characterization of transport in

open quantum systems requires the understanding of their current statistics, and this

is achieved by employing the tools of full counting statistics and large deviation theory

[45–63]. The central observable of this theory is the current large deviation function

(LDF), which measures the likelihood of different current fluctuations, typical or rare.

Large deviation functions are of fundamental importance in nonequilibrium statistical

mechanics, in addition to their practical relevance expressed above. Indeed LDFs play

in nonequilibrium physics a role equivalent to the equilibrium free energy and related

potentials, and govern the thermodynamics of currents out of equilibrium [64–78].

An important lesson of modern theoretical physics is the importance of symmetries

as a tool to uncover unifying principles and regularities in otherwise complex physical

situations [79, 80]. As we will see repeatedly in this paper, analyzing the consequences

of symmetries on quantum transport and dynamics allows to gain deep insights into

the physics of open systems, even though the associated dynamical problems are too

complex to be solved analytically. A prominent example of the importance and many
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uses of symmetry in physics is Noether’s theorem [81]†. Noether originally proved that in

classical systems every symmetry leads to a conserved quantity, though her result applies

also to quantum systems and it constitutes a key result in quantum field theory [83–85].

In this way, by analyzing the symmetries of a given (isolated) system one may deduce

the associated conservation laws, which in turn define the slowly-varying fields which

control the system long-time and large-scale relaxation. Interestingly, the situation

in open quantum systems is more complex, and the relation between symmetries and

conservation laws is not as clear-cut as for isolated systems where Noether’s theorem

applies, giving rise to a richer phenomenology [86–88]. For instance, it has been recently

shown [87] that open quantum systems described by a Lindblad-type master equation

may exhibit conservation laws which do not correspond to symmetries (as found also

in some classical integrable systems), even though every symmetry yields a conserved

quantity in these systems.

Another example of the importance of symmetries to obtain insights into complex

physics concerns the different fluctuation theorems derived for nonequilibrium systems

in the classical and quantum realm [8, 46, 78, 89–100]. These theorems, which

strongly constraint the probability distributions of fluctuations far from equilibrium,

are different expressions of the time-reversal symmetry of microscopic dynamics at the

mesoscopic, irreversible level. Remarkably, by demanding invariance of the optimal

paths responsible of a given fluctuation under additional symmetry transformations

(beyond time-reversibility), further fluctuation theorems can be obtained which remain

valid arbitrarily far from equilibrium [78,101–104]. A particular example is the recently

unveiled isometric fluctuation theorem for current statistics in diffusive transport

problems, which links the probability of different but isometric vector flux fluctuations

in a way that extends and generalizes the Gallavotti-Cohen relation in this context

[78]. At the quantum transport level, symmetry ideas have also proven useful in past

years. A first example is related to anomalous collective effects, as e.g. superradiance

(enhanced relaxation rate) [105, 106] and supertransfer (enhanced exciton transfer rate

and diffusion length) [107–110], which result from geometric symmetries in the system

Hamiltonian. Moreover, symmetries have been recently shown to constraint strongly

the reduced density matrix associated to nonequilibrium steady states in open quantum

systems [111], while violations of time-reversal symmetry lead to an enhancement of

quantum transport in continuous-time quantum walks [112]. Finally, optimal quantum

control schemes have been recently proposed using symmetry as a guiding principle [113].

All these results suggest that symmetry plays a relevant role in transport, both

at the classical and quantum level. Indeed, we will demonstrate here the power of

symmetry as a resource for quantum transport. In particular, the purpose of this

paper is to review recent advances in the use of symmetry ideas to control energy

transport and fluctuations in open quantum systems. With this aim in mind, we

introduce first the mathematical tools that we will need in our endeavor. In particular,

† An english translation of the original Noether’s paper can be found at [82].
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Section 2 is devoted to a brief but self-consistent introduction to the physics of open

quantum systems and their description in terms of master equations for the reduced

density matrix, including Redfield- and Lindblad-type master equations. The spectral

properties of the resulting Lindblad-Liouville evolution superoperator will be analyzed in

Section 3, with particular emphasis on the steady state behavior and the first relaxation

modes [87]. This will lead naturally to the question of the uniqueness of the steady

state. Building on Refs. [58, 86] (see also [114]), we will show how the presence of a

strong symmetry (to be defined below) in an otherwise dissipative quantum system

leads to a degenerate steady state with multiplicity linked to the symmetry spectrum.

Secion 4 then describes a few examples of driven spin chains [86] and ladders [115] where

symmetries and their effect on transport become apparent. To understand how and why

symmetry affects transport properties, including both average behavior and fluctuations,

we introduce in Section 5 the full counting statistics for the current and the associated

large deviation theory. Equipped with this tool, we next show in Section 6 that the

symmetry-induced steady-state degeneracy is nothing but a coexistence of different

transport channels stemming from a general first-order-type dynamic phase transition

(DPT) in current statistics [14]. This DPT shows off as a non-analyticity in the cumulant

generating function of the current or equivalently as a non-convex regime in the current

large deviation function, and separates two (fluctuating) transport phases characterized

by a maximal and minimal current, respectively. Moreover, the time-reversibility of

the microscopic dynamics results in the appearance of a twin DPT for rare, reversed

current fluctuations, such that the Gallavotti-Cohen fluctuation theorem holds across

the whole spectrum of current fluctuations. The symmetry-induced degenerate steady

state preserves part of the information of the initial state due to the lack of mixing

between the different symmetry sectors, and we show how this opens the door to a

complete control of transport properties (as e.g. the average current) by tailoring this

information via initial-state preparation techniques.

Motivated by the problem of energy harvesting in (natural and artificial)

photosynthetic complexes, and with the aim of validating our general results, we study

in Section 7 transport and current fluctuations in open quantum networks [14]. These

models exhibit exchange symmetries linked to their network topology, and therefore

are expected to display the phenomenology described above. This is confirmed in

detailed numerical analyses. Our results also suggest novel design strategies based on

symmetry ideas for quantum devices with controllable transport properties. Indeed,

using this approach we describe a novel design for a symmetry-controlled quantum

thermal switch, i.e. a quantum qubit device where the heat current can be completely

blocked, modulated or turned on by preparing the symmetry of the initial state. This

schematic idea is further developed in Section 8, where an experimental setup for

symmetry-enabled quantum control in the lab is described [15]. The setup consists

in a linear array of three optical cavities coupled to terminal reservoirs, with the central

cavity doped with two identical Λ-atoms driven by laser fields. This system is symmetric

under the exchange of the two atoms, and we describe how, by switching on and off one
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of the lasers, the photon current across the optical cavities can be controlled at will. This

symmetry-controlled atomic switch can be realized in current laboratory experiments,

and interestingly this device can be also used to store maximally-entangled states for long

periods of time due to its symmetry properties. The previous results show the power of

symmetry as a tool to control transport. Conversely, we can also use transport to probe

unknown symmetries of open quantum systems. This idea is explored in Section 9, where

we describe a dynamical method to detect hidden symmetries in molecular junctions by

analyzing the time evolution of the exciton current under a temperature gradient [116].

The detection scheme includes a probe acting on the molecular complex which serves

as a possible symmetry-breaking element. We explain the dynamical signatures of the

underlying symmetry in terms of the spectral properties of the evolution superoperator,

and show that these signatures remain robust in the presence of weak conformational

disorder and/or environmental noise. Finally we review in Section 10 other symmetry-

mediated mechanisms to control quantum transport, based either on weak symmetries

of the steady-state density matrix [111] or the violation of time-reversal symmetry to

enhance transport [112]. We end this paper offering a summary of these results and a

glance at future developments in Section 11.
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Figure 1. Sketch of a quantum system in contact with an environment. The system-

environment interaction typically gives rise to a nonequilibrium situation characterized

by a net heat current q flowing through the system.

2. Open quantum systems and master equations

We consider a general quantum system in contact with an environment, as the one

displayed in Figure 1. The Hilbert space HT of the total system can be decomposed

in the tensor product of the Hilbert spaces of the system H (which we assume of finite

dimension D†) and the environment HE, i.e. HT = H ⊗ HE. Note that now and

hereafter we avoid using the subscript S for the system quantities in order not to clutter

our notation (we instead use T for the total system and E for the environment). The

state of the total system is described at any time by a density matrix ρT (t), a unit

trace operator in the space B(HT ) of bounded operators acting on the Hilbert space

HT . The space B(HT ) is itself a Hilbert space once equipped with the Hilbert-Schmidt

inner product [24],

〈〈σ|ρ〉〉 = Tr(σ†ρ) , ∀σ, ρ ∈ B(HT ) , (1)

where Tr(ω) is the trace of the operator ω ∈ B(HT ). The dynamics of the joint

system and environment is determined by a time-independent hermitian Hamiltonian

† We make this assumption for the sake of simplicity, though later on we will generalize some of our

results to bosonic systems with infinite-dimensional Hilbert spaces and unbounded operators.
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HT ∈ B(HT ), with

HT = H ⊗ 1E + 1⊗HE + ηV , (2)

where H ∈ B(H) is the system Hamiltonian, HE ∈ B(HE) is the environment

Hamiltonian, 1a denotes the identity operator in the Ha subspace, and V ∈ B(HT )

describes the system-environment interaction. For the sake of clarity, we will not

make explicit from now on the identity operators in the Hamiltonian (2) whenever

clear from the context. The dimensionless parameter η above defines the interaction

strength, and will be assumed small below, leading to the so-called weak coupling

approximation [24, 117, 118]. Without loss of generality, the interaction term can be

written in a direct product, bilinear form as

V =
∑
l

Sl ⊗ El =
∑
l

S†l ⊗ E
†
l , (3)

with Sl ∈ B(H) and El ∈ B(HE) operators acting on the system and environment,

respectively. The second equality reflects the Hermitian character of the interaction

term (although the individual operators Sl and El need not be Hermitian, just V ) [118].

The environment can be any quantum system but for most applications it is useful to

consider thermal baths at fixed temperatures. In this case, if there are more than one

bath and their temperatures are different, then one should expect net currents flowing

through the system, even after reaching a steady state.

The time evolution of the total system is determined by the Liouville-von Neumann

equation [119]

ρ̇T (t) = −i [HT , ρT (t)] ≡ LTρT (t) , (4)

where the dot represents time derivative, [A,B] = AB − BA, and we fix our units so

~ = 1 throughout the paper. Moreover, LT ∈ B(B(HT )) defines the total Liouville

superoperator.

The system state at any time is captured by the reduced density matrix ρ(t)

obtained by tracing over the environment degrees of freedom,

ρ(t) = TrE (ρT (t)) =
∑
k

〈ek|ρT (t)|ek〉 , (5)

with {|ek〉, k ∈ [1, dim(HE)]} a suitable basis of the environment Hilbert space. To better

describe now the system evolution, it is most convenient to work in the interaction

(or Dirac) picture, where both the states and the operators carry part of the time

dependence (as opposed to the standard Schrödinger and Heisenberg pictures, where

either the states or the operators carry the whole time dependence, respectively [119]).

In the interaction picture operators carry the known part of the time dependence, and

evolve solely due to an additional interaction term. This is most useful when dealing

with the effect of perturbations on the known dynamics of an unperturbed system [24].

In our case, denoting as Õ(t) the interaction-picture representation of an arbitrary

operator O ∈ B(HT ), we have that

Õ(t) = ei(H+HE)tO e−i(H+HE)t , (6)
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where we did not make explicit the identity operators accompanying the system and

environment Hamiltonians, see Eq. (2) and the accompanying discussion. Taking now

the time derivative of ρ̃T (t), defined as in Eq. (6), the Liouville-von Neumann equation

(4) in the interaction picture reduces to

˙̃ρT (t) = −iη
[
Ṽ (t), ρ̃T (t)

]
. (7)

This equation can be formally integrated to yield

ρ̃T (t) = ρ̃T (0)− iη

∫ t

0

ds
[
Ṽ (s), ρ̃T (s)

]
, (8)

and introducing this result in the right-hand side (rhs) of Eq. (7) we obtain a Dyson-type

expansion

˙̃ρT (t) = − iη
[
Ṽ (t), ρ̃T (0)

]
− η2

∫ t

0

ds
[
Ṽ (t),

[
Ṽ (s), ρ̃T (s)

]]
= − iη

[
Ṽ (t), ρ̃T (0)

]
− η2

∫ t

0

ds
[
Ṽ (t),

[
Ṽ (s), ρ̃T (t)

]]
+O(η3) , (9)

where we have iterated the expansion to obtain the second equality. In the weak coupling

limit, η → 0, we can neglect higher-order terms in the coupling constant to obtain a

local-in-time master equation

˙̃ρT (t) = −iη
[
Ṽ (t), ρ̃T (0)

]
− η2

∫ t

0

ds
[
Ṽ (t),

[
Ṽ (s), ρ̃T (t)

]]
. (10)

The evolution equation for the system reduced density matrix can be obtained now by

tracing over the environment degrees of freedom, see Eq. (5), arriving at

˙̃ρ(t) = −iηTrE

[
Ṽ (t), ρ̃T (0)

]
− η2

∫ t

0

dsTrE

[
Ṽ (t),

[
Ṽ (s), ρ̃T (t)

]]
. (11)

Note that this is still not a closed evolution equation for ρ̃, as the rhs of the previous

equation still depends on the full density matrix ρ̃T .

In order to proceed, we now assume that initially the system and the environment

are uncorrelated, ρ̃T (0) = ρ̃(0)⊗ ρ̃E(0). Moreover, we also assume that the environment

is in a thermal state at the initial time, ρ̃E(0) = ρth ≡ exp(−HE/T )/Tr(exp(−HE/T )),

with T some temperature and Boltzmann’s constant kB = 1, so ρ̃T (0) = ρ̃(0) ⊗ ρth

[24, 117, 118]. In this case it is easy to see that TrE

[
Ṽ (t), ρ̃(0)⊗ ρth

]
= 0, so the first

term in the rhs of Eq. (11) disappears. Indeed, using the form (3) of the interaction

Hamiltonian,

TrE

[
Ṽ (t), ρ̃(0)⊗ ρth

]
=
∑
l

(
S̃l(t)ρ̃(0) TrE

(
Ẽl(t)ρth

)
− ρ̃(0)S̃l(t) TrE

(
ρthẼl(t)

))
= 0 ,

(12)

where we have used that 〈El〉 ≡ Tr(Elρth) = 0, which in turn implies that

TrE(Ẽl(t)ρth) = 0 = TrE(ρthẼl(t)) due to the cyclic property of the trace and the fact
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that [HE, ρth] = 0. The condition 〈El〉 = 0 does not need any extra assumption about

the system [118], because any Hamiltonian HT = H+HE +ηV with an interaction term

V =
∑

l Sl⊗El such that 〈El〉 6= 0 can be rewritten as HT = (H+η
∑

l〈El〉Sl)+HE+ηV ′,

with V ′ =
∑

l Sl ⊗ (El − 〈El〉) such that now TrE

[
Ṽ ′(t), ρ̃(0)⊗ ρth

]
= 0, the only

difference being a global shift in the system energy with no physical effect. We hence

assume without loss of generality an environment such that 〈El〉 = 0 ∀l. In this way,

Eq. (11) reduces to

˙̃ρ(t) = −η2

∫ t

0

dsTrE

[
Ṽ (t),

[
Ṽ (s), ρ̃T (t)

]]
. (13)

For arbitrary times we can always write ρ̃T (t) = ρ̃(t) ⊗ ρ̃E(t) + ρ̃corr(t), where ρ̃corr(t)

represents the entangled part of the total density matrix induced by the system-

environment interaction. Our next step consists in assuming a strong separation of

timescales between the system and the environment. In particular, we assume that the

environment correlation and relaxation timescales (τcorr and τrel, respectively) are much

faster than the typical time-scale τ0 for the system to change due to its interaction with

the environment [118]. This assumption is physically motivated in the weak coupling

limit η → 0, where the system evolution due to its interaction with the environment

slows down proportionally to η2, an observation made clear in the interaction picture,

see Eq. (13). In this way, the assumption τcorr � τ0 allows us to neglect the system-

bath correlations at any time, so we can write ρ̃T (t) = ρ̃(t)⊗ ρ̃E(t). Moreover, because

τrel � τ0 the environment relaxes to thermodynamic equilibrium before any appreciable

change in the system state happens, so effectively the system always interact with a

thermal environment, ρ̃E(t) = ρ̃th. Therefore, under this strong time-scales separation

hypothesis (well-motivated in the weak coupling limit [118]), we can always write

ρ̃T (t) = ρ̃(t)⊗ ρ̃th to obtain

˙̃ρ(t) = −η2

∫ t

0

dsTrE

[
Ṽ (t),

[
Ṽ (s), ρ̃(t)⊗ ρ̃th

]]
. (14)

This is a local-in-time, autonomous equation for the system evolution which is still

non-Markovian due to its dependence of the initial system preparation [24]. However,

the memory kernel in the time integral of Eq. (13) typically decays fast enough so the

system effectively forgets about this initial state and we can switch the upper limit in the

time integral to infinity. In this case, and changing variables in the integral, s→ t− s,
we obtain a Markovian quantum master equation known as Redfield equation [120]

˙̃ρ(t) = −η2

∫ ∞
0

dsTrE

[
Ṽ (t),

[
Ṽ (t− s), ρ̃(t)⊗ ρ̃th

]]
. (15)

The last equation does not yet warrant a completely positive evolution for the

system density matrix, so we still need one further approximation to obtain a generator

of a CPTP dynamical map: the secular or rotating wave approximation [117]. In order

to do so, we now perform a spectral decomposition of the system operators Sl ∈ B(H)
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entering the definition of the system-environment bilinear interaction in Eq. (3) in terms

of the eigenoperators of the superoperator [H, •] ∈ B(B(H)), which form a complete

basis of the Hilbert space of bounded operators B(H). In particular, we can now write

Sl =
∑
ν

Sl(ν) , (16)

where the eigenoperators Sl(ν) are defined via

[H,Sl(ν)] = −νSl(ν) , (17)

with ν the associated eigenvalue. Taking now the Hermitian conjugate, it is easy to see

that [
H,S†l (ν)

]
= νS†l (ν) . (18)

In the interaction picture, the system-environment interaction operator can be written

as Ṽ (t) = eit[H+HE ,•]V = eit(H+HE)V e−it(H+HE) and therefore

Ṽ (t) =
∑
l,ν

e−iνtSl(ν)⊗ Ẽl(t) =
∑
l,ν

e+iνtS†l (ν)⊗ Ẽ†l (t) , (19)

where we have used the hermiticity of V in the last equality. Note that Ṽ (t− s) can be

decomposed in similar terms. Expanding the commutators in Eq. (15) we trivially find

˙̃ρ(t) = −η2 TrE

{∫ ∞
0

dsṼ (t)Ṽ (t− s)ρ̃(t)⊗ ρ̃th −
∫ ∞

0

dsṼ (t)ρ̃(t)⊗ ρ̃thṼ (t− s)

−
∫ ∞

0

dsṼ (t− s)ρ̃(t)⊗ ρ̃thṼ (t) +

∫ ∞
0

dsρ̃(t)⊗ ρ̃thṼ (t− s)Ṽ (t)
}
, (20)

and applying the spectral decomposition (19) in terms of Sl(ν) for Ṽ (t− s) and S†k(ν
′)

for Ṽ (t) in the first and third term of the rhs of the previous equation (and the

complementary decomposition for the other two terms), we arrive after some algebra at

˙̃ρ(t) =
∑
ν,ν′

k,l

(
ei(ν′−ν)tΓkl(ν)

[
Sl(ν)ρ̃(t), S†k(ν

′)
]

+ ei(ν−ν′)tΓ∗lk(ν)
[
Sl(ν

′), ρ̃(t)S†k(ν)
])

,

(21)

where we have defined

Γkl(ν) ≡
∫ ∞

0

ds eiνs TrE

(
Ẽ†k(t)Ẽl(t− s)ρ̃th

)
=

∫ ∞
0

ds eiνs TrE

(
Ẽ†k(s)Elρ̃th

)
, (22)

with Ẽk(t) = eiHEtEke
−iHEt in the interaction picture. Note that we have used the

cyclic property of the trace and the commutator [HE, ρ̃th] = 0 for the second equality

above. In Eq. (21), all terms with |ν ′− ν| � η2 will oscillate rapidly around zero before

the system evolves appreciably due to its interaction with the environment (recall that

τ0 ∝ η−2, see above). Therefore in the weak coupling limit, where the strong time-

scales separation hypothesis holds, only the terms with ν = ν ′ contribute (secular or

rotating-wave approximation) and we find

˙̃ρ(t) =
∑
ν
k,l

(
Γkl(ν)

[
Sl(ν)ρ̃(t), S†k(ν)

]
+ Γ∗lk(ν)

[
Sl(ν), ρ̃(t)S†k(ν)

])
. (23)
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Decomposing now the coefficients Γkl(ν) into Hermitian and anti-Hermitian parts

[24,58,117], Γkl(ν) = 1
2
γkl(ν) + iπkl(ν), with πkl(ν) ≡ 1

2i
(Γkl(ν)− Γ∗lk(ν)) and†

γkl(ν) ≡ Γkl(ν) + Γ∗lk(ν) =

∫ ∞
−∞

ds eiνs TrE

(
Ẽ†k(s)Elρ̃th

)
, (24)

and going back to the original Schrödinger picture, we arrive at

ρ̇(t) = −i [H +HLs, ρ(t)] +D[ρ(t)] , (25)

with the dissipator superoperator D[•] ∈ B(B(H)) defined as

D[•] ≡
∑
ν
k,l

γkl(ν)

(
Sl(ν) • S†k(ν)− 1

2

{
•, S†k(ν)Sl(ν)

})
, (26)

with {A,B} = AB + BA the anti-commutator and HLs ≡
∑

ν,k,l πkl(ν)S†k(ν)Sl(ν) ∈
B(H) a Lamb shift Hamiltonian [24] which amounts to a renormalization of the system

energy levels due to its interaction with the environment. Note that [H,HLs] = 0, see

Eqs. (17)-(18) above. Eqs. (25)-(26) are the first standard form of the quantum master

equation.

The coefficients γkl(ν) are positive semidefinite in all cases as they are the

Fourier transform of a positive function, the bath correlation function TrE

(
Ẽ†k(s)Elρ̃th

)
[24, 58, 117]. Therefore the matrix γ formed by these coefficients may be diagonalized

by an appropriate unitary transformation τ such that

τ γ τ † =

 d1(ν) 0 · · ·
0 d2(ν) · · ·
...

...
. . .

 , (27)

so di(ν) =
∑

kl τikγkl(ν)τ ∗il. This transformation allows now to write the master equation

(25)-(26) into Lindblad form

ρ̇(t) = −i [H +HLs, ρ(t)] +
∑
i,ν

(
Li(ν)ρ(t)L†i (ν)− 1

2

{
ρ(t), L†i (ν)Li(ν)

})
≡ Lρ(t) ,

(28)

with Li(ν) ∈ B(H) Lindblad operators acting on the system defined via

Li(ν) ≡
√
di(ν)

∑
l

τilSl(ν) . (29)

Eq. (28) defines the Lindblad-Liouville superoperator L. This superoperator generates

a completely positive and trace preserving (CPTP) map, and it is the most general

Markovian generator that preserves the physical requirements of the density matrix

[24,25].

† Note that both γkl(ν) and πkl(ν) are Hermitian.
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Lindblad (or rather Lindblad-Gorini-Kossakowski-Sudarshan) master equations

similar to (28) were originally derived and used in the realm of quantum optics

[25, 31, 121]. More recently it has been applied to a plethora to problems including

quantum effects in photosynthetic complexes [38,122–124], transport in one-dimensional

[125–128] and multi-dimensional quantum systems [42, 44, 115, 129], trapped ions [17]

and optomechanical systems [130], or quantum information and computation [18], to

mention just a few. The validity of this equation in a system with local coupling to the

environment was analitically and numerically analized in [117].
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3. Steady states, symmetries, and invariant subspaces

3.1. Some general properties of the spectrum of L

The main feature of Lindblad equation (28) is its dissipative character, a property

associated to the non-Hermiticity of the generator L and in stark contrast with the

coherent evolution induced by standard Hamiltonian dynamics. As a non-Hermitian

superoperator, L may not be diagonalizable. However, if diagonalizable, L will exhibit

in general distinct sets of right and left eigenoperators, and its eigenvalues will typically

come in complex conjugate pairs †. Let φk, φ̂k ∈ B(H) be right and left eigenoperators

of L, respectively, with (common) eigenvalue Λk ∈ C such that

Lφk = Λkφk , φ̂kL ≡ L†φ̂k = Λkφ̂k , (30)

with the adjoint generator L† defined as

L†ρ = i [H +HLs, ρ(t)] +
∑
i,ν

(
L†i (ν)ρ(t)Li(ν)− 1

2

{
ρ(t), Li(ν)L†i (ν)

})
, (31)

see Eq. (28). This is written in the Schrödinger picture, meaning that L is the generator

of the dynamics of states while L† is the generator of the dynamics of operators. The

set of right and left eigenoperators of L form a biorthogonal basis of B(H), such that

〈〈φ̂i|φj〉〉 = δi,j, with the Hilbert-Schmidt inner product 〈〈φ̂k|ρ(0)〉〉 = Tr
(
φ̂†kρ(0)

)
as

defined in Eq. (1). In this way, any arbitrary density matrix ρ(0) can be decomposed

into this basis, and its time evolution ρ(t) = exp(+tL)ρ(0) can be written as

ρ(t) =
∑
k

e+Λkt〈〈φ̂k|ρ(0)〉〉 φk . (32)

Since the Lindblad-Liouville superoperator is trace preserving, we conclude that all

its eigenvalues Λk must have a non-positive real part, Re(Λk) ≤ 0, with at least one

eigenvalue such that Re(Λk) = 0 [87, 88, 132]. Moreover, steady states now correspond

to the null fixed points of L, i.e. to the eigenmatrices corresponding to zero eigenvalue,

Lρst = 0. Note that we will be interested below in Lindblad operators Li describing

most common physical situations, namely (i) coupling to different reservoirs (of energy,

spin, etc.) which locally inject and extract excitations at constant rate, or (ii) the effect

of environmental dephasing noise which causes local decoherence and thus classical

behavior [24, 133]. In this way, Eq. (28) will describe all sorts of nonequilibrium

situations driven by external gradients and noise sources, giving rise in general to

non-zero currents flowing between the system and the baths. We will refer to these

fixed points of the dynamics as nonequilibrium steady states (NESS), and denote the

associated density matrix as ρNESS.

† The spectral analysis of the superoperator L is better understood in the Fock-Liouville space

associated to the operator Hilbert space B(H) [88, 116, 131]. In Fock-Liouville space, operators (and

density matrices in particular) can be mapped onto complex vectors of dimension D2, while the

Lindblad-Liouville superoperator L is mapped onto a complex D2 × D2 matrix (with D the finite

dimension of the system Hilbert space H).
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Figure 2. Sketch inspired by Fig. 1 of Ref. [87]. The black cross represents the steady-

states (eigenmatrices of the Lindblad-Liouville superoperator with zero eigenvalue),

blue crosses represent pure exponential decay (zero imaginary value but negative real

part), green crosses are oscillating coherences (zero real part and non-zero imaginary

part), and red crosses are general eigenvalues (non-zero real and imaginary parts) which

give rise to spiral relaxation. All eigenvalues with non-zero imaginary parts come in

complex conjugate pairs. ∆ is the energy gap between the steady-state and the first

non-zero eigenvalue, and it is inversely proportional to the relaxation time.

Calculating the steady states and dominant relaxation modes for a given Liouvillian

L is in general non-trivial, but the possible outcomes can be phenomenologically

understood by a closer look at its spectrum [87, 88], see Fig. 2. Indeed, it is clear

from Eq. (32) that for long times only eigenmatrices of L corresponding to eigenvalues

with zero real part will be present. All eigenoperators with Re(Λk) < 0 will suffer

an exponential decay with time, vanishing at the steady state. This decay might be

purely exponential for Im(Λk) = 0 or rather an exponentially damped oscillatory mode

for Im(Λk) 6= 0, also known as spiral relaxation [87]. There is also the possibility of

eigenvalues with Re(Λk) = 0 but Im(Λk) 6= 0 (oscillating coherences). These eigenvalues

correspond to states that are robust under the dissipative character of the Liouvillian,

but never reach a stationary state with no time evolution. The variety of possible

eigenvalues is represented in Figure 2 (see Ref. [87] for discussion and examples). Note

that the slowest relaxation time-scale of the system of interest is proportional to the

inverse of the spectral gap ∆ between the steady-states and the first eigenvalue with

non-zero real part.

3.2. Symmetry and degenerate steady states

As described above, for long times all relaxation modes decay and only the steady

state remains. Interestingly, the uniqueness of this steady state is not guaranteed a
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priori [134], and Evan’s theorem [132, 135–139] specifies the conditions under which a

given Lindblad generator exhibits a unique stationary point. Roughly speaking, the

steady state will be unique iff the set of operators spanned by the system Hamiltonian

H and all Lindblad operators, Li and L†i , generates when added and/or multiplied the

complete algebra of operators defining the system†.
Our purpose in this section is to review the effects of symmetry in the steady state

properties of open quantum systems described by master equations like Eq. (28), though

we will extend our discussion below to treat also symmetries in more general settings. In

particular, we say that a system exhibits a symmetry iff there exists a unitary operator

U ∈ B(H) such that

[U,H] = 0 = [U, Sl] ∀l , (33)

where recall that H ∈ B(H) is the system Hamiltonian, see Eq. (2), and Sl ∈ B(H)

are the system operators defining the system-environment interaction V =
∑

l Sl ⊗ El.
Note that for Lindblad-type master equations (28), the previous definition extends to

the Lindblad operators Li ∈ B(H), see Eq. (29), which also commute with the unitary

operator U . We stress that this is the case termed strong symmetry in the language of

Refs. [58, 86], though our definition here is somewhat broader to discuss below the role

of symmetry in more general master equations as e.g. the Redfield equation (15).

The commutation relations (33) immediately imply that both the Hamiltonian H

and U share a common eigenbasis. Let’s denote as |ψ(k)
α 〉 and uα the eigenvectors and

eigenvalues of U , respectively, with α ∈ [1, nU ] and k ∈ [1, dα]. Here nU is the number

of distinct eigenvalues of U , with 1 ≤ nU ≤ D, and dα is the dimension of the subspace

corresponding to eigenvalue uα, such that
∑nU

α=1 dα = D. In this way

U |ψ(k)
α 〉 = uα|ψ(k)

α 〉 = eiΩα |ψ(k)
α 〉 , (34)

where in the last equality we have used that U is unitary (U−1 = U †) so its eigenvalues

are pure phases eiΩα , with Ωα ∈ R.

The system Hilbert space H can be now decomposed in terms of the spectrum of

U ,

H =

nU⊕
α=1

Hα , with Hα =
{
|ψ(k)
α 〉, k ∈ [1, dα]

}
. (35)

The previous spectral decomposition can be extended to the operator Hilbert space. In

order to do so, we first define a superoperator U ∈ B(B(H)) associated to the adjoint

representation of the unitary operator U in B(H),

Uρ ≡ UρU † ∀ρ ∈ B(H) . (36)

† An additional technical requirement for Evan’s proof is that the steady-state density matrix is full

rank. Note however that there are no known examples when the conditions on the Hamiltonian and

Lindblad operators mentioned above hold but the associated steady-state density matrix does not have

full rank.



CONTENTS 17

The spectrum of U then follows as

U|ψ(n)
α 〉〈ψ

(m)
β | = ei(Ωα−Ωβ)|ψ(n)

α 〉〈ψ
(m)
β | , (α, β = 1, . . . , nU) , (37)

and the adjoint space B(H) can be now decomposed as B(H) =
⊕nU

α=1

⊕nU
β=1 Bαβ, where

the symmetry subspaces Bαβ are defined as

Bαβ =
{
|ψ(n)
α 〉〈ψ

(m)
β | : n ∈ [1, dα] ,m ∈ [1, dβ]

}
, (38)

each having a dimension dαβ ≡ dαdβ.

The existence of a symmetry operator U with the properties (33) then implies the

following two simple but important results, namely [14,58,86]

(i) The flow induced by the Lindblad-Liouville superoperator L leaves invariant the

subspaces Bαβ, i.e. LBαβ ⊆ Bαβ, so L can be block-decomposed into n2
U invariant

subspaces.

(ii) We have at least nU different (nonequilibrium) steady states or null fixed points of

the generator L, one for each diagonal subspace Bαα, so these steady states can be

labelled by the symmetry index α ∈ [1, nU ].

To prove the first result we need to introduce now the right and left adjoint

superoperators Ul,r ∈ B(B(H)) associated to the unitary operator U . These are defined

via

Ulρ = Uρ ; Urρ = ρU † ∀ρ ∈ B(H) , (39)

and note that [Ul,Ur] = 0. Clearly, the subspaces Bαβ are the joint eigenspaces of both

Ul and Ur, since

Ul|ψ(n)
α 〉〈ψ

(m)
β | = eiΩα|ψ(n)

α 〉〈ψ
(m)
β | , Ur|ψ(n)

α 〉〈ψ
(m)
β | = e−iΩβ |ψ(n)

α 〉〈ψ
(m)
β | . (40)

Now, from the commutation relations (33) and the definition of the Lindblad-Liouville

superoperator (28), it follows that

[Ul,L] = 0 = [Ur,L] , (41)

so for any ραβ ∈ Bαβ we find that Lραβ is still an eigenoperator of both Ul,r, i.e.

Lραβ ∈ Bαβ, and hence the Lindblad-Liouville evolution superoperator leaves invariant

the different symmetry subspaces. This proves result (i) above.

Next, we note that normalized (physical) density matrices (i.e. with unit trace)

can only live in diagonal subspaces Bαα due to the orthogonality between the different

Hα. This immediately leads to at least nU distinct NESSs (i.e. nU different transport

channels), one for each Bαα with α ∈ [1, nU ], which can be labeled according to

the symmetry eigenvalues. In particular for any normalized initial density matrix

ρα(0) ∈ Bαα, with Tr (ρα(0)) = 1, we have

ρNESS
α ≡ lim

t→∞
e+tLρα(0) ∈ Bαα , (42)
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and a continuum of possible linear combinations of these NESSs. It is important

to notice that the nU different ρNESS
α can be further degenerated according to Evans

theorem [132, 135–139], as e.g. in the presence of other symmetries which allow to

further block-decompose the evolution superoperator, though we will assume here for

simplicity that ρNESS
α are unique for each α. As an interesting corollary, note that

the dynamical generator L will leave invariant one-dimensional symmetry eigenspaces

|ψα〉〈ψα|, mapping them onto themselves. This defines decoherence-free, dark states

which remain pure even in the presence of enviromental noise, leading to important

applications in e.g. quantum computing to protect quantum states from relaxation

[18, 20, 86, 87, 140]. We will illustrate below the use of dark states to control quantum

transport in arbitrary nonequilibrium settings.

We now turn our attention to the effect of symmetries, defined as in Eq. (33), on

the steady state structure of more general Markovian quantum master equations, as e.g.

the Redfield equation (15), which in the simpler Dirac (interaction) picture reads

˙̃ρ(t) = −η2

∫ ∞
0

dsTrE

[
Ṽ (t),

[
Ṽ (t− s), ρ̃(t)⊗ ρ̃th

]]
≡ L̃R(t)ρ̃(t) . (43)

The last equality defines the Redfield superoperator in the interaction picture, L̃R(t),

which we will show next also leaves invariant the symmetry subspaces Bαβ and hence

exhibits at least nU different steady states, as in the Lindblad case. As before,

the strategy in order to proceed consists in demonstrating that, for any ρ̃αβ(t) =

eiHtραβe−iHt ∈ Bαβ, the operator resulting from the application of the dynamical

generator of interest to the original state, L̃R(t)ρ̃αβ(t), remains in the same subspace

Bαβ. Note that ρ̃αβ(t) ∈ Bαβ ⇔ ραβ ∈ Bαβ due to the commutator [U,H] = 0, see

Eq. (33). We hence apply the right and left adjoint symmetry superoperators Ul,r on

L̃R(t)ρ̃αβ(t). Starting with Ul, we find

UlL̃R(t)ρ̃αβ(t) = − η2

∫ ∞
0

dsTrE

(
U ⊗ 1E

[
Ṽ (t),

[
Ṽ (t− s), ρ̃αβ(t)⊗ ρ̃th

]])
= − η2

∫ ∞
0

dsTrE

[
Ṽ (t),

[
Ṽ (t− s), Uρ̃αβ(t)⊗ ρ̃th

]]
= L̃R(t)Urρ̃αβ(t) ,

while for Ur the calculation is equivalent. Therefore [Ul,LR] = 0 = [Ur,LR], and this

guarantees that ∀ρ̃αβ(t) ∈ Bαβ ⇒ L̃R(t)ρ̃αβ(t) ⊆ Bαβ.

Another interesting issue that we will not treat here in detail concerns the relation

between symmetries and conservation laws in open quantum system. This connection,

though present, is non-trivial and far less direct than in closed quantum systems subject

to coherent dynamics, where it is fully characterized by Noether’s theorem [81,82]. This

problem has been recently addressed for Lindblad-type master equations by Albert

and Jiang in Ref. [87]. In brief, they show that Noether’s theorem does not fully

apply for the dissipative (non-unitary) dynamics generated by the Lindblad-Liouville

superoperator L. In particular, and among other peculiarities, they demonstrate that

open quantum systems of Lindblad-type may exhibit conservation laws which do not
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correspond to (strong) symmetries as defined in Eq. (33)†. Noether’s theorem states

that in a closed quantum system under unitary dynamics with Hamiltonian H, any

unitary symmetry U = eiΩ ∈ B(H) with Hermitian generator Ω = Ω† ∈ B(H) has a

corresponding conservation law for the expectation value of this physical observable,

〈Ω̇〉 = 0, with 〈Ω〉 = Tr(Ωρ), or equivalently: [U,H] = 0 ⇔ ˙〈Ω〉 = 0. As shown

in Ref. [87], for Lindblad open quantum systems the equivalent proposition holds in

general just in one direction, namely: [U,H] = 0 = [U,Li] ∀i⇒ ˙〈Ω〉 = 0.

In summary, we have shown in this section that master equations of Lindblad- and

Redfield-form can exhibit different invariant subspaces as a consequence of the inner

symmetries of the system of interest. Due to Evans theorem [132], for finite systems

each invariant subspace should contain at least one steady-state, which corresponds to

zero eigenvalues of the Liouvillian spectrum [87,116]. Note however that calculating the

number of eigenvalues (and their associated eigenmatrices) for arbitrary systems can be

a highly nontrivial task. Some difficulties are:

• In order to calculate the null eigenvalues of the Liouvillian one has to diagonalise a

non-hermitian D2 ×D2 complex matrix, with D the dimension of the pure-states

Hilbert space. This is typically a very hard problem for relevant system sizes.

• Not all eigenfunctions associated to the zero eigenvalue of the Liouvillian correspond

to physical steady states, as some may have zero trace [86,116]. Indeed, it is possible

to find eigenmatrices of the Liouvillian corresponding to eigenvalue 0 that belong

to non-diagonal invariant subspaces Bαβ with α 6= β, see Eq. (40). Naturally non-

physical (traceless) fixed points can be still linearly combined with a real density

matrix, therefore changing the physical properties of the resulting steady state.

• By diagonalisation one obtains a basis of the zero-eigenvalue subspace of the

Liouvillian. The different pairs of biorthogonal left and right eigenmatrices obtained

in this way do not necessarily correspond to orthogonal steady-states and the

physical (unit trace) and non-physical (zero trace) fixed points are mixed. Because

of this reason, it is difficult to know how many different physical steady-states

exist in a system even after the diagonalisation. To recover the physical states one

should apply a Gram-Schmidt orthonormalization procedure within the resulting

subspace, a computationally-expensive procedure for high dimension.

We will discuss in Sections 5 and 6 below a complementary approach to the effect of

symmetries on the dynamics of open quantum systems, based on full counting statistics,

which simplifies this analysis in most cases. Before that, however, we review some

particular examples of open quantum systems with symmetries.

† Note however that these conservation laws can be linked in most cases [87] to weak symmetries in

the language of Refs. [58, 86]
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4. Examples of dissipative spin systems with symmetries

In this section we describe two different examples of open quantum systems which exhibit

strong symmetries in the sense of the previous section. In particular, we will analyze in

some detail a driven spin chain based on the Heisenberg XXZ model, and a spin ladder

structure.

4.1. Driven spin chains

Our aim here is to provide a simple example of a driven dissipative open quantum

system exhibiting multiple steady states as a result of a symmetry in the sense of

§3.2. A first example, already proposed and analyzed in Ref. [86], is a finite open

anisotropic Heisenberg XXZ spin 1/2 chain. Note that the study of of this model also

sheds light on the long-standing problem of normal and anomalous energy transport in

one-dimensionas systems [44,126,127,129].

The XXZ Heisenberg chain is described by the Hamiltonian

HXXZ =
L−1∑
i=1

σxi σ
x
i+1 + σyi σ

y
i+1 + ∆ σzi σ

z
i+1, (44)

where σx,y,zi are the standard Pauli matrices acting on site i ∈ [1, L], defined on a

Hilbert space H = (C2)⊗L of dimension 2L, and ∆ is a dimensionless coupling constant.

In addition, the system is driven out of equilibrium by two (magnetic) reservoirs acting

on the two ends of the chain. We model these reservoirs by a pair of Lindblad non-local

jump operators [86]

Lnl
1 =

√
Γ (1− µ)σ+

1 σ
−
L ,

Lnl
2 =

√
Γ (1 + µ)σ−1 σ

+
L . (45)

Here σ±i ≡ (σxi ± iσyi )/2 are the spin flip operators on site i, and Γ > 0 and

µ ∈ [0, 1] measure the strength of the reservoir coupling and the nonequilibrium driving.

These non-local jump operators incoherently transfer excitations from the first to the

last site of the chain and viceversa. Note that this model can be interpreted as a

spin ring where exciton hopping is fully coherent between bulk bonds, i.e. bonds

(1, 2), (2, 3) . . . , (L− 1, L), while it is fully dissipative (and possibly asymmetric for the

particular case µ 6= 0) on one bond (L, 1), see Fig. 3. This driven dissipative quantum

chain hence evolves in time according to a general Lindblad equation ρ̇(t) = Lρ(t), with

the coherent part of the Lindblad dynamics defined by the XXZ Hamiltonian (44) and

dissipators defined by the above non-local jump operators (45).

In order to investigate the possible symmetries of this model, let us now define

an operator P that exchanges site i with L − i + 1 for all i. In particular, using the

computational basis (defined by the eigenvectors of σzi ) |s1, . . . , sL〉, with si ∈ {0, 1}, we

can write

P =
∑

(s1,...,sL)∈{0,1}L
|s1, s2, . . . , sL〉〈sL, sL−1, . . . , s1| (46)
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Figure 3. Sketch of the XXZ spin chain described in the text for the particular case

of L = 6 sites. Single bonds represent coherent hopping betwen bulk sites. The double

bond represents fully incoherent (and possibly asymmetric) hopping between sites 1

and L.

Combining this operator with spins flips in all the sites we obtain a unitary operator

S ≡ P
L∏
i=1

σxi , (47)

which can be interpreted as a parity operator. It is now straightforward to prove that

S defines a symmetry of this XXZ chain. In particular, following the definition of a

symmetry in §3.2, see Eq. (33), we find that[
S,HXXZ

]
=
[
S, Lnl

1

]
=
[
S, Lnl

2

]
= 0 . (48)

The unitary operator S has two eigenvalues s1 = 1 and s2 = −1. In this way, as

explained in §3.2, the presence of this symmetry gives rise to four different invariant

subspaces in the sense of Eq. (38). These subspaces can be labeled by the eigenvalues

of S as B+1,+1, B+1,−1, B−1,+1, and B−1,−1, and recall that only the two diagonal

eigenspaces can hold physical steady states as all the elements of B+1,−1 and B−1,+1

have zero trace (though they can contribute as components of a real, unit trace density

matrix).

Interestingly, the spin chain here described has another symmetry given by the

magnetization operator Sz = eiφM , with M =
∑L

j=1 σ
z
j and φ ∈ R, which reflects the

conservation of the system total magnetization M [86]. Therefore, for each eigenvalue

sz ∈ (−L,−L+ 2, . . . , L− 2, L) of the magnetization operator, we have two distinct

NESS depending on the eigenvalue of the symmetry S. The specific case of zero

magnetization (sz = 0) and L even is worth analisying with more detail, due to its

relevance for transport problems [86]. In this case one can define two orthogonal steady

states ρNESS
± , defined by sz = 0 and either s1 = +1 or s2 = −1, from which any general

steady state of the system can be paramereterized using a real constant u ∈ [0, 1],

ρNESS = uρNESS

+ + (1− u)ρNESS

− , ρNESS

+ ∈ B+1,+1, ρNESS

− ∈ B−1,−1 (49)
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Figure 4. Fig. 2 from Ref. [86]. Numerical magnetization profiles for different values

of ∆ = 1/2, 1, 2 in the {+1,+1} subspace, top row (blue), respectively, comparing

different chain sizes (see legends). Results for the {−1,−1} subspace are displayed in

the lower row (purple).

A natural question concerns the net effect of the spin chain symmetries on its

transport properties. To further investigate this issue, Buča and Prosen [86] resort to

numerical simulations of the XXZ spin chain, as the steady state Lindblad problem does

not admit a closed solution in terms of matrix product operators. In particular, they use

both exact diagonalization numerical techniques for moderate chain sizes (L ∈ [4, 10])

and the method of quantum trajectories for L ∈ [12, 16]. Their numerical study focuses

on three different anisotropies, ∆ = 1/2, 1, 2, for which previous studies have found

transport to be ballistic [41], anomalous [141] and diffusive [142], respectively. Moreover,

the reservoir parameters are fixed to Γ = 1 and µ = 0.2 so the transport problem

remains close to the linear-response regime. Fig. 4 shows the chain magnetization profiles

numerically obtained for different sizes L, for the two distinct steady states ρNESS
+ and

ρNESS
− in the symmetry subspaces {+1,+1} and {−1,−1}. Though the magnetization

profiles exhibit a clear dependence on the symmetry sector for small and moderate

chain sizes, a general trend towards convergence to the same average profiles as L

increases is observed. A similar convergence is found for the average current traversing

the system [86], suggesting that the spin chain transport properties might not depend

strongly on the symmetry sector in the thermodynamic limit.

Buča and Prosen [86] also study the spectral properties of the Lindbladian for the

case ∆ = 2. Figure 5 shows a complex map of the leading eigenvalues, to be compared
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Figure 5. Fig. 4 from Ref. [86]. Complex plane representation of the eigenvalues {Λi}
of the Lindbladian L of the XXZ dissipative spin chain, for coupling constant ∆ = 2

and three different chain sizes, L = 6 (left), L = 8 (middle), and L = 10 (right), see

also Fig. 2 above. Eigenvalues color depend on the symmetry subspace to which they

are associated: {+1,+1} (red) and {−1,−1} (purple).

with the sketch of Fig. 2 above. In particular, they observe as expected the emergence

of purely exponential relaxation modes as well as spiral relaxation modes, together with

the expected steady state null eigenvalue. Interestingly, they find that in the {+1,+1}
symmetry sector the spectral gap quickly decays to zero as L increases, while a more

complex, seemingly non-monotonic behavior is observed for the spectral gap in the

{−1,−1} sector.

4.2. Spin ladders

Spin lattices are a natural generalization of 1d chains, and as such they are often

used to study quantum transport in multi-dimensional systems [42, 44, 115, 129]. More

specifically, spin lattices can be realized in the laboratory [143, 144], and experiments

show how lattice dimension deeply affects transport, both for bosons and fermions [144].

The simplest two-dimensional lattice, a ladder, was studied by Žnidarič in [115]. In

particular, this work studies a nonintegrable spin ladder with XX-type interactions along

the ladder legs, and XXZ-type coupling along the rungs. Interestingly, this spin ladder

system is shown to exhibit a number of symmetries and invariant subspaces [115], some of

them capable of supporting ballistic magnetization transport, while diffusive transport is

found in complementary subspaces. This coexistence of ballistic and diffusive transport

channels can be rationalized in terms of the symmetries of the spin ladder, as described

in previous section, constituting an important example of the effect of symmetry on

transport properties.

The model studied, represented in Fig. 6, consists in a two-rungs ladder of length

L. The total number of spins is 2L and we label them as (i, j) with i = 1, 2 being the leg

index (y-position) and j = 1, . . . , L the rung index (x-position). The ladder Hamiltonian

corresponds to two spin-1/2 chains with XX-type nearest neighbor coupling along the

two chains (or legs) and interchain (rung) coupling of the XXZ-type. In particular

HLd =
2∑
i=1

L−1∑
j=1

(
σxi,jσ

x
i,j+1 + σyi,jσ

y
i,j+1

)
+ J

L∑
j=1

(
σx1,jσ

x
2,j + σy1,jσ

y
2,j + ∆ σz1,jσ

z
2,j

)
, (50)
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Figure 6. Quantum ladder of length L with driving baths at its boundaries.

where J and ∆ are two coupling constants, and σx,y,zi,j represent the different Pauli

matrices acting on site (i, j).

Interestingly, this Hamiltonian exhibits several symmetries. As in the spin chain

case, the total magnetization along the z-axis, defined now as M =
∑

i=1,2

∑L
j=1 σ

z
i,j,

is conserved, so the unitary magnetization operator Sz = eiφM defines a continuous

symmetry (φ ∈ R). Moreover, due to the ladder topology there are two further

symmetries described by an operator P1 exchanging the sites (i, j) and (i, L + 1 − j)

for each chain i = 1, 2, together with an operator P2 that exchanges the two chains. In

terms of the computational basis

P1 =
2∑
i=1

∑
(s1,...,sL)∈{0,1}L

|i; s1, s2, . . . , sL〉〈i; sL, sL−1, . . . , s1|

P2 =
∑

(s1,...,sL)∈{0,1}L
|1; s1, s2, . . . , sL〉〈2; s1, s2, . . . , sL| (51)

Furthermore, in the zero magnetisation manifold there is an additional spin-flip

symmetry given by the operator T =
∑L

j=1 σ
x
1,jσ

x
2,j, and there are also symmetries

associated to the XX interaction along the legs.

In order to analyse the effect of these symmetries and the resulting invariant

subspaces, it is useful to change the notation to the so-called rung eigenbasis [115].

On one rung the eigenbasis corresponds to the Bell basis (singlet and triplet states)

|S〉 =
1√
2

(|01〉 − |10〉)

|T 〉 =
1√
2

(|01〉+ |10〉) (52)

|O〉 = |00〉
|I〉 = |11〉,

where the first number (0 or 1) in the ket denotes the state on the upper leg (i = 1),

while the second 0 or 1 corresponds to the lower leg (i = 2). Using this new basis,

it is easy to enumerate some of the simplest invariant subspaces of the spin ladder
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Figure 7. Data from Ref. [115]. Scaled current as a function of the spin ladder size

for non-local jump operators with ∆ = 0 (left panel) and local jump operators with

∆ = 0 and γ = 0.2 (right panel). Flat behaviour indicates ballistic transport. Note

that (z1 − zL) is a measure of the external gradient, with zi ≡ Tr (ρNESSσzi ).

(see [115] for a complete description). Note that, despite possesing a broad set of

invariant subspaces, the model of interest is nonintegrable. To asses the transport

properties of this model, one may couple the spin ladder with reservoirs so as to study

the emerging nonequilibrium steady state, with particular focus on the spin current, a

token for transport properties. The coupling to reservoirs is done via Lindblad jump

operators that inject/remove excitations to/from the spin ladder. A possibility consists

in choosing non-local jump operators of the form

Lnl
1 = |ITS . . . ST 〉〈STS . . . ST |

Lnl
2 = |IST . . . ST 〉〈TST . . . TS| (53)

Lnl
3 = |STS . . . ST 〉〈STS . . . SI|

Lnl
4 = |TST . . . TS〉〈TS . . . T I|.

Here the idea is to inject/remove one I-excitation at the boundaries of the spin ladder,

while preserving at the same time the invariant subspace defined by the union of the

zero and one I-excitation subspaces. Indeed, the jump operators Lnl
1,2 above inject

one I-excitation, while Lnl
3,4 remove one I. Not surprisingly, the driven dissipative

spin ladder so-defined presents a (strong) symmetry in the sense of §3 under the

exchange of the two spin chains that form the ladder. This symmetry hence gives

rises to multiple nonequilibrium steady-steates as previously demonstrated, each one

with different transport properties. In particular, by choosing the initial state of the

spin ladder to be of the form |STST . . .〉, one can show that transport exhibits ballistic

behaviour [115]. Indeed, by numerically diagonalising the ladder Lindbladian up to

L = 30 sites and measuring the spin current J , it is found that the current is independent

of the system size, as expected for ballistic behaviour, see left panel in Fig. 7.

Alternatively, one may define a local coupling to external reservoirs to study the

system transport properties. We now choose a local coupling based on 8 jump operators
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of the form

Llc
1,2 =

√
1± γ1,1 σ

±
1,1

Llc
3,4 =

√
1± γ1,L σ

±
1,L (54)

Llc
5,6 =

√
1± γ2,1 σ

±
2,1

Llc
7,8 =

√
1± γ2,L σ

±
2,L,

where the driving parameters γi,j induce a non-zero magnetization at the given ladder

boundary site. In particular, we consider below a symmetric driving around the

zero-magnetization manifold, with −γ1,1 = −γ2,1 = γ1,L = γ2,L ≡ γ and γ = 0.2

(see Ref. [115] for other cases). The boundary driving so-defined breaks the chain-

exchange symmetry [115], and hence does not preserve any of the ballistic invariant

subspaces, leading to a unique nonequilibrium steady state. Furthermore, the transport

properties of the system in the new steady state change appreciably, and the system

becomes diffusive. This can be demonstrated by numerically diagonalising the resulting

Lindbladian up to L = 100. The fitting of the data shows a diffusive (∼ 1/L) scaling

of the current with the system size, see right panel in Fig. 7. We note here that more

complicated ladders have been studied in Ref. [42], and a general theory explaining the

different transport properties of these subspaces and extending these results to general

multidimensional lattices can be found at [44].

We have described in some detail two different examples of open quantum systems

exhibiting symmetries. To better understand how symmetries affect the dynamics of

open quantum systems and their transport properties, we now present a complementary

approach based on full counting statistics (or large deviation theory), which simplifies

the analysis in most cases and offers valuable insights on the role of symmetry in

transport.
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Figure 8. Sketch of the interaction between an open system and n different baths.

5. Full counting statistics of currents for quantum master equations

5.1. Current-resolved master equation

We have already seen how symmetries lead to multiple invariant subspaces and

degenerate steady states in general open quantum systems governed by a master

equation of the form ρ̇(t) = Lρ(t), with L a Liouville-like evolution superoperator,

see e.g. Eq. (28). Master equations like this can be formally solved to yield

ρ(t) = etLρ(0) ≡ W(t)ρ(0) , (55)

which defines the full propagator W(t) ∈ B(B(H)). Our next aim is to understand how

symmetry affects the thermodynamics of currents in open systems. Currents generically

appear in open quantum systems in response to any driving mechanism pushing the

system out of equilibrium, as e.g. an external gradient due to contact with several

reservoirs at different temperature and/or chemical potentials. These currents thus

play a key role as tokens of nonequilibrium physics, and the distribution of current

fluctuations has recently emerged as a central object of investigation, with the associated

current large deviation function (LDF) [45] acting as a marginal of the nonequilibrium

analog of thermodynamic potential.

To investigate the thermodynamics of currents, we first need a framework capable of

dealing with arbitrary current fluctuations. This theory is based on the current-resolved

quantum master equation obtained from the unraveling of the Liouvillian superoperator

L [145] in Eq. (55), an approach related to the input-output formalism [25] and

connected to matrix product states [54, 146]. In particular, we focus now on a D-

dimensional system connected to n different baths (possibly at varying temperatures

and/or chemical potentials, thus leading to net currents), see Fig. 8. Each bath interacts

with the system via different incoherent Lindblad channels which induce quantum jumps
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associated to the exchange of quanta of different nature (like e.g. photon or exciton

emission and absorption) [25, 26]. We are interested in analyzing the statistics of the

net current of quanta between the system and one of these baths. We can always split

the Liouvillian L into three well-defined superoperators with respect to their action

regarding the selected incoherent channel, namely

L = L0 + L+1 + L−1 , (56)

where the subscripts 0,±1 refer to the change of quanta in the system induced by the

corresponding superoperator through the selected channel. We now define a trajectory

χ of duration t as the set of pairs (ti, si), with i ∈ [1,m] and 0 ≤ t1 ≤ t2 ≤ . . . ≤ tm ≤ t,

which label the times ti at which a quantum jump of magnitude si = ±1 happens with

the designated reservoir, out of a total of m quantum jumps, i.e.

χ = {t1, s1; t2, s2; . . . ; tm, sm} , 0 ≤ t1 ≤ t2 ≤ . . . ≤ tm ≤ t . (57)

Associated to a trajectory, we now introduce a completely positive superoperatorWχ(t)

defined as

Wχ(t) ≡ Π0(t− tm)LsmΠ0(tm − tm−1) · · · Ls2Π0(t2 − t1)Ls1Π0(t1) , (58)

where we have defined the current-free propagator Π0(t) ≡ exp(tL0). The full

propagator of the quantum master equation for the system can be now written as

W(t) = etL =

∫
DχWχ(t) , (59)

where the integral over trajectories represents the following sum∫
Dχ ≡

∞∑
m=0

∑
s1...sm=±1

∫ t

0

dtm

∫ tm

0

dtm−1 · · ·
∫ t2

0

dt1 . (60)

Clearly, the superoperator Wχ(t) describes the (unnormalized) evolution of our open

quantum system conditioned on a particular trajectory χ. Indeed, using Eqs. (55) and

(59),

ρ(t) =W(t)ρ(0) =

∫
DχWχ(t)ρ(0) , (61)

and this allows us to define ρχ(t) ≡ Wχ(t)ρ(0), the system density matrix at time t

conditioned on a particular trajectory χ. The probability of such a quantum trajectory

is then given by Tr ρχ(t), and we can now use this picture to investigate the current

statistics through the selected reservoir. For that we first define the current or net flow

of quanta associated to a trajectory χ as

Qχ ≡
m∑
k=1

sk, (62)



CONTENTS 29

and define XQ(t) ≡ {χ : Qχ = Q} as the set of all trajectories of duration t with a fixed

extensive current Q. The current-resolved density matrix at time t can be now defined

as

ρQ(t) ≡
∑
χ∈XQ

ρχ(t) =

∫
Dχ δQ,QχWχ(t)ρ(0) , (63)

with the integral over trajectories defined as in (60), and with δQ,Qχ the Kronecker

delta-function. The probability of observing an arbitrary current fluctuation Q during

a time t through the selected reservoir is then given as Pt(Q) = Tr (ρQ(t)). From the

Dyson-type expansion of the trajectory superoperator Wχ, it is then easy to see that

ρQ(t) obeys a current-resolved master equation of the form

ρ̇Q(t) = L0ρQ(t) + L+1ρQ−1(t) + L−1ρQ+1(t) , (64)

which defines a hierarchy of coupled equations for the current-resolved density

matrix. This hierarchy of equations is more easily solved by Laplace-transforming

ρQ, or equivalently by working with the cumulant generating function of the current

distribution. For that, we now define

ρλ(t) ≡
+∞∑

Q=−∞

ρQ(t)e−λQ , (65)

where the parameter λ is known as counting field conjugated to the current [46, 73, 77,

147,148]. This unnormalized density matrix evolves according to

ρ̇λ(t) = L0ρλ(t) + e−λL+1ρλ(t) + e+λL−1ρλ(t) ≡ Lλρλ(t) , (66)

which is a closed evolution equation for ρλ(t) which defines the deformed or tilted

superoperator Lλ = L0 + e−λL+1 + e+λL−1 whose spectral properties control the

thermodynamics of currents in the system [14]. In particular, note that if Pt(Q) =

Tr ρQ(t) is the probability of observing a current fluctuation Q after a time t, then the

trace

Zλ(t) ≡ Tr(ρλ(t)) =
+∞∑

Q=−∞

Pt(Q)e−λQ , (67)

is nothing but the moment generating function of the current probability distribution.

5.2. Large deviations statistics

For long times, this probability measure obeys a large deviation principle (LDP) of the

form [45]

Pt(Q) � exp[+tG(Q/t)], (68)

where the symbol ”�” means asymptotic logarithmic equality, i.e.

lim
t→∞

1

t
ln Pt(Q) = G(q) , q =

Q

t
, (69)
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and G(q) ≤ 0 defines the current large deviation function (LDF). This key function

measures the exponential rate at which the distribution of the time-averaged current

peaks around its ensemble average value 〈q〉. As a consequence, G(〈q〉) = 0. The

emergence of a LDP in the long time limit relies in several assumptions, including

a non-zero spectral gap and finite correlations times (for a rigorous mathematical

derivation see Ref. [45], Appendix B). Large deviation functions as the one described

here for the current play a fundamental role in nonequilibrium physics, as they generalize

the concept of thermodynamic potentials to the realm of nonequilibrium phenomena,

where no bottom-up approach exists yet connecting microscopic dynamics with

macroscopic properties. Moreover, the LDFs controlling the statistics of macroscopic

fluctuations in many classical and quantum systems have been shown to exhibit non-

analyticities reminiscent of standard critical behavior, accompanied by emergent order

and symmetry-breaking phenomena in the optimal trajectories responsible for a given

fluctuation [48, 54, 66, 67, 75, 77, 149–158]. In addition, the emergence of coherent

structures associated to rare fluctuations implies in turn that these extreme events are

far more probable than previously anticipated, a finding of broad implications. These

arguments make the investigation of current statistics in open quantum systems a key

issue.

The current moment generating function Zλ(t) also exhibits large deviation scaling

for long enough times [45],

Zλ(t) � exp[+tµ(λ)] , (70)

where µ(λ) defines a new large deviation function related to the current LDF G(q) via

Legendre transform

µ(λ) = max
q

[G(q)− λq] = G(qλ)− λqλ , (71)

with qλ the current associated to a given λ. The function µ(λ) can be seen as the

conjugate potential to G(q), a relation equivalent to the free energy being the Legendre

transform of the internal energy in thermodynamics. The scaling (70) and the Legendre

transform (71) can be easily derived by combining Eqs. (67)-(68) above. The new

LDF µ(λ) corresponds to the cumulant generating function of the current distribution.

Indeed,

〈qk〉c =
∂kµ(λ)

∂λk

∣∣∣
λ=0

= lim
t→∞

1

t

∂k lnZλ(t)

∂λk

∣∣∣∣
λ=0

, (72)

with 〈qk〉c the kth-order current cumulant [45], which correspond to the central moments

of the current distribution up to k = 3.
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6. Symmetry and thermodynamics of currents

In the previous section we have derived with some detail the current-resolved master

equation for ρQ and its (Laplace) dual for ρλ. This approach has allowed us to formulate

with precision the problem of current statistics in open quantum systems evolving in

time according to a general quantum master equation, with the only premise that it can

be unraveled in terms of the emission and/or absorption of quanta through a selected

incoherent channel.

We now focus on understanding the effect of symmetries on the statistics of the

current to a particular reservoir for the case of generic quantum master equations in the

Lindblad form

ρ̇(t) = −i[H, ρ] +
∑
i

(
LiρL

†
i −

1

2

{
L†iLi, ρ

})
, (73)

though our results can be easily extended to more general settings. For this family of

systems, the λ-resolved master equation for the unnormalized density matrix ρλ(t) reads

ρ̇λ(t) = −i[H, ρλ]+e−λL1ρλL1
†+e+λL2ρλL2

†+
∑
j 6=1,2

LjρλL
†
j−

1

2

∑
j

{L†jLj, ρλ} ≡ Lλρλ(t) .

(74)

Without loss of generality we assume that L1 and L2 are respectively the Lindblad jump

operators responsible of the injection and extraction of quanta through the reservoir of

interest†. As described above, this evolution defines a deformed (or tilted) superoperator

Lλ which no longer preserves the trace, ρ̇λ(t) = Lλρλ(t). For completeness, the

identification with the general unraveling (66) of the master equation corresponds to

L+1 • = L1 • L†1 ,
L−1 • = L2 • L†2 , (75)

L0 • = − i[H, •] +
∑
i 6=1,2

Li • L†i −
1

2

∑
i

{
L†iLi, •

}
.

In close analogy with our discussion in §3.2, the existence of a symmetry U obeying

the commutation relations (33) implies that the adjoint right and left symmetry

superoperators Ul,r, defined in Eq. (39), and the tilted superoperator Lλ all commute

[Ul,Lλ] = 0 = [Ur,Lλ] , (76)

so there exists a complete biorthogonal basis of common right (ωαβν(λ)) and left

(ω̂αβν(λ)) eigenfunctions in B(H) for these three superoperators, linking eigenvalues

† This formalism can be easily generalized to study the statistics of currents to K different reservoirs.

In the general case the counting field would be a vector λ = (λ1, . . . , λK) of dimension K, and the

deformed superoperator Lλ should include a term eλk for the injecting k-channel and a term e−λk for

the extracting k-channel, with k ∈ [1,K] [14].
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of Lλ to particular symmetry eigenspaces. In particular,

Ulωαβν(λ) = eiΩαωαβν(λ) , ω̂αβν(λ)Ul = eiΩαω̂αβν(λ) ,

Urωαβν(λ) = e−iΩβωαβν(λ) , ω̂αβν(λ)Ur = e−iΩβ ω̂αβν(λ) , (77)

Lλωαβν(λ) = µν(λ)ωαβν(λ) , ω̂αβν(λ)Lλ = µν(λ)ω̂αβν(λ) .

Note that, due to orthogonality of symmetry eigenspaces, Tr(ωαβν(λ)) ∝ δαβ, and

we introduce the normalization Tr(ωααν(λ)) = 1 for simplicity. The solution to Eq.

(74) can be formally written as ρλ(t) = exp(+tLλ)ρ(0), so a spectral decomposition

of the initial density matrix ρ(0) in terms of the common biorthogonal basis, ρ(0) =∑
α,β,ν〈〈ω̂αβν(λ)|ρ0〉〉ωαβν(λ), allows us to write

Zλ(t) =
∑
αν

e+tµν(λ)〈〈ω̂ααν(λ)|ρ(0)〉〉 . (78)

For long times

Zλ(t)
t→∞−−−→ e+tµ

(α0)
0 (λ)〈〈ω̂α0α00(λ)|ρ(0)〉〉 , (79)

where µ
(α0)
0 (λ) is the eigenvalue of Lλ with largest real part and symmetry index α0

among all symmetry diagonal eigenspaces Bαα with nonzero projection on the initial

ρ(0). In this way, comparing this expression with Eq. (70), we realize that this eigenvalue

is nothing but the Legendre transform of the current LDF,

µ(λ) ≡ µ
(α0)
0 (λ) . (80)

Note that the projection 〈〈ω̂α0α00(λ)|ρ(0)〉〉 in Eq. (79) above just amounts to a

subleading O(t−1) correction to the LDF µ(λ) which disappears in the t→∞ limit.

Some comments are now in order. Interestingly, the long time limit in Eq. (79)

selects a particular symmetry sector α0 among all symmetry subspaces present in the

initial state ρ(0), effectively breaking at the fluctuating level the original symmetry of

our open quantum system. Note that we assume here the symmetry subspace α0 to

be unique in order not to clutter our notation; this is however unimportant for our

conclusions below. The resulting picture is that, if starting from a state ρ(0) we

happen to observe a current fluctuation of magnitude q, the transport channel (or

symmetry sector) overwhelmingly responsible of this current fluctuation will be α0(λ),

with λ = λ(q) the conjugate counting field to the observed current. As we show next,

distinct symmetry eigenspaces may dominate different fluctuation regimes, separated

by first-order-type dynamic phase transitions. Note that different types of spontaneous

symmetry breaking scenarios at the fluctuating level have been recently reported in

classical diffusive systems [64–67,77,78,149,153,156,157].

6.1. Effects of symmetry on the average current

The previous discussion already hints at how to control both the statistics of the current

and the average transport properties of an arbitrary open quantum system. Indeed, this

can be accomplished by playing with the symmetry decomposition of the initial state
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ρ(0), which in turn controls the amplitude of the scaling in Eq. (79) (see Ref. [159] for

a discussion of this amplitude in a classical context). The previous idea is most evident

by studying the average current, defined as

〈q〉 = lim
t→∞

1

t
∂λ lnZλ(t)|λ=0 , (81)

see also the generic cumulant expressions (72) above. The λ-derivative in the previous

equation can be made explicit now by recalling that Zλ(t) = Tr ρλ(t) and noting that

ρλ(t) = exp(+tLλ)ρ(0), leading to

〈q〉 = lim
t→∞

Tr
(
(∂λLλ)ρλ(t)

)
Tr ρλ(t)

∣∣∣∣∣
λ=0

, (82)

where the new superoperator ∂λLλ is defined via

(∂λLλ)σ = e+λL2σL2
† − e−λL1σL1

† , ∀σ ∈ B(H) ,

as derived from the definition of Lλ in Eq. (74) above. If we now restrict the initial

density matrix to a particular (diagonal) symmetry subspace, ρ(0) ∈ Bαα, we have that

limt→∞ ρλ(t)|λ=0 = ρNESS
α , which is normalized, Tr(ρNESS

α ) = 1, and therefore

〈qα〉 = −∂λµ(α)
0 (λ)|λ=0 = Tr

(
L2ρ

NESS

α L†2
)
− Tr

(
L1ρ

NESS

α L†1
)
. (83)

On the other hand, for a general ρ(0) ∈ B(H) we may use in Eq. (82) the following

spectral decomposition

ρλ(t) =
∑
αβν

e+tµν(λ)〈〈ω̂αβν(λ)|ρ(0)〉〉ωαβν(λ) . (84)

Moreover, similarly to Lλ, the new superoperator ∂λLλ also leaves invariant the

symmetry subspaces because it commutes with both Ul,r, i.e. (∂λLλ)Bαβ ⊂ Bαβ, so

Tr((∂λLλ)σ) = 0 for any σ ∈ Bαβ with α 6= β, and hence, using the previous spectral

decomposition,

Tr
(
(∂λLλ)ρλ(t)

)
=
∑
αν

e+tµν(λ)〈〈ω̂ααν(λ)|ρ(0)〉〉Tr
(
(∂λLλ)ωααν(λ)

)
. (85)

Using this expression in Eq. (82) above and noting that for λ = 0 the largest eigenvalue

of Lλ within each symmetry eigenspace Bαα is necessarily 0, with associated normalized

right eigenfunction ωαα0(λ = 0) = ρNESS
α and dual ρ̂NESS

α , we hence obtain

〈q〉 =

∑
α〈qα〉〈〈ρ̂NESS

α |ρ(0)〉〉∑
α〈〈ρ̂NESS

α |ρ(0)〉〉
, (86)

with 〈qα〉 the average current of the NESS ρNESS
α ∈ Bαα, see Eq. (83). This is nothing but

a weighted average of the currents of the different NESSs or transport channels, with

weights proportional to the projection of the initial density matrix on each symmetry
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sector. In this way, Eq. (86) opens the door to the symmetry-based controllability of

quantum currents in general open quantum systems. Indeed, nonequilibrium steady

states ρNESS
α with different α will typically have different average currents 〈qα〉, so the

manipulation of the projections 〈〈ρ̂NESS
α |ρ(0)〉〉 by adequately preparing the symmetry

of the initial state will lead to symmetry-controlled transport properties. We will show

below several examples of this control mechanism.

6.2. Symmetry-induced dynamic phase transitions

We next demonstrate that, remarkably, the existence of a symmetry under

nonequilibrium conditions also implies non-analyticities in the LDF µ(λ) which can

be interpreted as dynamical phase transitions, or phase transitions at the trajectory

level, separating regimes where the original symmetry is spontaneously broken in

different ways. Interestingly, this dynamical symmetry-breaking scenario is exclusive

of nonequilibrium physics, disappearing in equilibrium.

To show this explicitly, we first note that for |λ| � 1 the leading eigenvalue of Lλ
with symmetry index α can be expanded as

µ
(α)
0 (λ) ≈ µ

(α)
0 (0) + λ∂λµ

(α)
0 (λ)|λ=0 = −λ〈qα〉 , (87)

where we have used in the second equality the definition (83) of the average current for

NESS ρNESS
α . This shows that, as expected, µ

(α)
0 (λ) hits the origin for λ = 0, with a local

slope corresponding to 〈qα〉. Now, the Legendre transform of the current LDF is given

by

µ(λ) = max
α

[µ
(α)
0 (λ)] , (88)

the maximum taken over the symmetry eigenspaces with nonzero overlap with ρ(0).

Therefore, depending on the sign of λ, see Eq. (87), µ(λ) will correspond to different

symmetry sectors α as dictated by their average current 〈qα〉. In particular, we find

that

µ(λ) =
|λ|�1


+|λ|〈qαmax〉 for λ . 0

−|λ|〈qαmin
〉 for λ & 0

, (89)

where αmax (αmin) denotes the symmetry eigenspace with maximal (minimal) average

current 〈qαmax〉 (〈qαmin
〉) among those with nonzero overlap with ρ(0). The previous

argument proves that the LDF µ(λ) must exhibit a kink (i.e. a discontinuity in its first

derivative) at λ = 0 whenever a symmetry U exists. This kink will be characterized by

a finite jump in the dynamic order parameter q(λ) ≡ −µ′(λ) at λ = 0 of magnitude

∆q = 〈qαmax〉 − 〈qαmin
〉, a behavior reminiscent of first order phase transitions [48].

Next we explore the consequences of another (inherent) symmetry, microscopic

time reversibility, on the thermodynamics of currents in the presence of a symmetry

U . Indeed, the reversible character of the microscopic coherent dynamics [160] leaves a

footprint in the dissipative dynamics of open quantum systems in the form of a local
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Figure 9. Sketch of the twin dynamic phase transitions in the current

statistics of an open quantum system with a symmetry U , as appears for the

current cumulant generating function µ(λ) (left), and the associated current

large deviation function G(q) (right). Notice the twin kinks at λ = 0, ε in

µ(λ) and the corresponding non-convex regimes for q ∈ [〈qαmin〉, 〈qαmax〉] and

q ∈ [−〈qαmax〉,−〈qαmin〉] in G(q).

detailed balance condition for the Lindblad-Liouville dynamical superoperator L. In

brief, this condition states that L is equal to its time-reversal dynamical map, suitably

defined in terms of a time-reversal (anti-linear and anti-unitary) superoperator [100,161].

If this detailed balance condition for L holds [99,100,162], it is now well-understood that

the system of interest will obey the Gallavotti-Cohen fluctuation theorem for currents,

which links the probability of an arbitrary current fluctuation with its time-reversal

event [78,89,91,92,96,97], namely

lim
t→∞

1

t
ln

Pt(qt)

Pt(−qt)
= G(q)−G(−q) = εq , (90)

where ε is a constant related to the rate of entropy production in the system [163].

Equivalently, this fluctuation theorem can be stated as

µ(λ) = µ(ε− λ) (91)

for the Legendre transform of the current LDF. This time-reversal symmetry relation for

the current LDF and its dual µ(λ) has a direct impact of their analyticity properties. In

particular, the Gallavotti-Cohen relation (91) implies that the symmetry-induced kink

in µ(λ) observed at λ = 0, see Eq. (89), is reproduced at λ = ε, where a twin dynamic

phase transition emerges, see left panel in Fig. 9. By inverse Legendre transforming

µ(λ) we obtain the convex envelope of the current LDF [45], Gce(q), i.e.

Gce(q) = max
λ

[µ(λ) + qλ] , (92)

The twin kinks in µ(λ) correspond to two different current intervals,

|q| ∈ [|〈qαmin
〉|, |〈qαmax〉|] , (93)
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related by time-reversibility (or q ↔ −q), where Gce(q) is affine, meaning that the real

Gce(q) in this current regime can be either affine asGce(q) or non-convex†, see right panel

in Fig. 9. This typically corresponds to a multimodal current distribution Pt(Q = qt),

reflecting the coexistence of multiple transport channels, each one associated with a

different NESS in our open quantum system with a symmetry U [86]. This coexistence

is again reminiscent of the phenomenology of first-order phase transitions, but now at

the dynamical level.

Remarkably, the original symmetry of the system is broken at the fluctuating level,

where the quantum system selects a symmetry sector that maximally facilitates a given

current fluctuation (other symmetry sectors are still present in the dynamics, but only

one dominates the given current fluctuation, see Eqs. (79)-(80) and related discussion).

In particular, the statistics during a current fluctuation with |q| > |〈qαmax〉| is dominated

by the symmetry eigenspace with maximal current (αmax), whereas for |q| < |〈qαmin
〉| the

minimal current eigenspace (αmin) prevails. This regimes are termed maximal/minimal

current phases in Fig. 9. The previous symmetry-breaking scenario is best captured by

the effective density matrix

ρeff
λ ≡ lim

t→∞

ρλ(t)

Tr (ρλ(t))
= ωα0α00(λ) , (94)

with α0 = αmax (αmin) for |λ − ε
2
| > ε

2
(|λ − ε

2
| < ε

2
). This normalized density matrix

represents the typical state of the system during a current fluctuation with conjugated

parameter λ, and its structure and properties typically change acutely from one current

phase to the other, see §7 and Fig. 12 below for a detailed example in quantum spin

networks.

To end this section we want to discuss several features associated to the twin

dynamic phase transitions (tDPTs) discussed above. First, these tDPTs are fragile

against environmental decoherence, as this noisy interaction typically destroys existing

internal symmetries in the system of interest. For instance, the local noise operator in

some cases does not commute with the symmetry operator and the multiplicity of steady-

states (and the associated tDPTs) is lost. However, the existence of invariant subspaces

in the noise-free case remains important even under environmental decoherence, as e.g.

it crucially affects the short-time behavior of the system (see §9 below for a detailed

discussion). In this way symmetry signatures can be found even if there is decoherence.

Furthermore, certain systems can be engineered to preserve the symmetries even in a

noisy environment [19, 164–166]. Note also that similar dynamical phase transitions

have been recently reported in literature [167, 168], whose origin can be traced back to

the presence of an underlying symmetry.

In addition, and interestingly, the previous twin dynamic phase transitions in

current statistics only happen out of equilibrium, disappearing in equilibrium (i.e. in the

absence of boundary driving). In the latter case, the average currents for the multiple

steady states are zero in all cases as expected, 〈qα〉 = 0 ∀α, so no symmetry-induced

† Note that this cannot be directly inferred from µ(λ) [45].
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kink appears in µ(λ) at λ = 0 in equilibrium†. Moreover, an expansion for |λ| � 1 of

the leading eigenvalues yields to first order

µ
(α)
0 (λ) ≈ λ2

2
(∂2
λµ

(α)
0 (λ))|λ=0 =

λ2

2
σ2
α ,

where σ2
α is the variance of the current distribution in each steady state, so for

equilibrium systems the overall current statistics is dominated by the symmetry

eigenspace with maximal variance among those present in the initial ρ(0). Therefore

it is still possible to control the statistics of current fluctuations in equilibrium by an

adequate preparation of ρ(0), though G(q) is convex around 〈q〉 = 0 and no dynamic

phase transitions are expected (provided there is no other singular mechanism at play,

see our previous footnote).

To end this section, note also that this approach to symmetry based on full counting

statistics simplifies considerably the study of multiple steady states in comparison to

diagonalizing the full Liouvillian. Some advantages are:

• It is no longer necessary to compute the full spectrum of the Liouvillian to conclude

that there are different steady-states with varying currents. We only need to

calculate the eigenvalue with the largest real part of the modified Liouvillian Lλ
(66) around λ = 0.

• The eigenfunctions are not necessary to evaluate the maximum and minimum

currents and their moments, as this information can be inferred from the large

deviation function µ(λ), see Eq. (72). The orthonormalization process described

at the end of Section §3 to obtain the physical steady-states is no longer necessary.

† The LDF µ(λ) in equilibrium might still exhibit a (symmetric) kink at λ = 0 due to some other

singular behavior of current fluctuations in the dominant symmetry subspace in equilibrium, as e.g.

a symmetric double-hump G(q). This potential kink would be however unrelated to the underlying

symmetry of the open quantum system.
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7. Transport and fluctuations in qubit networks

In this section we apply what we have learned previously to study energy transport in

a particular example of broad interest, open quantum networks; see Refs. [11, 14].

In recent years, several experiments have shown strong indications of coherent

transport at room temperature in a number of photosynthetic network complexes

[169–172], as e.g. the Fenna-Matthews-Olson complex of green sulfur bacteria (see Ref.

[37] for a comprehensive review). In these complexes energy is transported with a very

high efficiency from the antenna, where photons are absorbed, through a heterogeneous

chromophore network to the reaction center, where the photosynthetic reaction takes

place. These networks can be considered as open systems due to their interaction with

incoming light and the vibrational degrees of freedom of the surrounding medium, and

recent experiments have reported strong coherences and oscillations in this transport

process whose quantum interpretation and potential role in photosynthesis are still under

intense debate [123,124,173,174].

In any case, these experimental results have motivated an intense study of transport

in quantum networks, both in the transient regime [11,38,43,122,175] and at the steady

state [14, 39, 123, 124, 176]. The focus now is not only to understand transport across

natural chromophore networks, but also to design specific network architectures for

optimal transport [177], engineer noise sources to enhance transport efficiency [178],

or even to create artificial light-harvesting quantum antennae using genetic engineering

techniques for enhanced exciton transport [179]. Further recent advances also include the

study of the interplay between complex network structure and quantum dynamics [180],

as well as the development of quantum photonic networks using tools from chiral

quantum optics [181]. Motivated by these transport problems, we now proceed to study

the thermodynamics of currents in homogeneous open quantum networks. These are

simplified models of quantum transport which have proven extremely useful in the past

to understand e.g. the functional role of noise and dephasing in enhancing coherent

energy transfer [34, 182,183].

7.1. Model and current statistics

Fig. 10.a depicts an example of the model of interest. It consists in a fully-connected

network of N spins or two-level systems (qubits) with dipole-dipole interaction of equal

strengths and homogeneous on-site energies. The system Hamiltonian is

Hnet = h

N∑
i=1

σ+
i σ
−
i + J

N∑
i,j=1
j<i

(
σ+
i σ
−
j + σ−i σ

+
j

)
, (95)

where σ±i = σxi ± iσyi are the raising (+) and lowering (−) operators acting on spin i,

with σx,y the corresponding spin-1/2 Pauli matrices,

σx =

(
0 1

1 0

)
, σy =

(
0 −i

i 0

)
, (96)
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Figure 10. (a) Fully-connected network of 6 qubits (spheres) in contact with

two thermal baths (boxes) and possibly subject to dephasing noise (wavy

arrows). Symmetries in this case correspond to permutations of pairs of bulk

qubits (i.e. qubits not connected to the external baths). (b) Sketch of a

symmetry-controlled quantum thermal switch. Manipulating the symmetry

of the pair of bulk qubits in this case enables full control of the energy current

between the baths. See also Ref. [14].

h is the on-site energy, and J represents the coupling strength between the different

spins. We will focus on N even for simplicity, though similar results hold for odd N .

To model the interaction with an energy source and a reaction center, we couple the

quantum network at (arbitrary) qubits 1 and N to two bosonic heat baths working at

different temperatures. We refer to the sites connected to the baths as terminal spins,

while the remaining sites constitute the bulk, see Fig. 10.a. The reservoirs locally pump

and extract excitations in the system in an incoherent way, triggering the nonequilibrium

dissipative dynamics of the quantum network complex. The dynamics of the system is

then given by a Lindblad master equation (73) with Lindblad operators

L1 =
√
a1σ

+
1 , L2 =

√
b1σ
−
1 ,

L3 =
√
aNσ

+
N , L4 =

√
bNσ

−
N , (97)

where the coefficients ai represent the pumping rate of quanta to the system due to the

action of the corresponding bath at qubit i = 1, N , while the coefficients bi represent

the corresponding rate of quanta absorption. Whenever a1bN 6= aNb1, a temperature

gradient sets in that drives the system out of equilibrium, with an associated net exciton

current in the steady state. This external nonequilibrium drive can be quantified by

ε = ln[a1bN/(aNb1)].

Note that the Hamiltonian (95) is related with that of the Lipkin-Meshkov-Glick

model introduced in the 60’s to describe phase transitions in nuclei [184–186]. This

model can be solved exactly in the purely coherent, closed case using Bethe equations

[187–189], though an analytical solution in the presence of an environment is still

lacking. Moreover, similar open spin models with dipole-dipole interactions have been

recently studied to analyze quantum Fourier’s law and energy transfer in quantum

networks [127,190].
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Figure 11. Left: Large deviation function µ(λ;N) of a fully-connected open quantum

network of N spins with Hamiltonian (95). The curves for N = 2, 4, 6 (open symbols)

are calculated by direct diagonalization of the full deformed superoperator Lnet
λ . The

remaining lines are obtained after a symmetry-induced dimensional reduction of the

system Hilbert space, see Section §7.2 below. The parameters of the simulation are:

a1 = b2 = 1, b1 = a2 = 1, and J = h = 1. The vertical dashed lines signal the

critical points λ = 0, ε. While no N -dependence is observed for 0 < λ < ε, a rapid

increase with size appears outside this interval, suggesting the emergence of two kinks

in µ(λ;N) at λ = 0, ε. Right: Dependence of µ(λ;N) with the system size N for

different fixed λ. A clear N−1/2 scaling for large enough N is evident in all cases. This

allows us to infer the thermodynamic limit of the finite-size LDF µ(λ;N), see Fig. 13

below.

Interestingly, this model exhibits not just one but many symmetries in the sense

of Section §3.2, as there are a number of independent unitary operators that fulfill the

condition defined in Eq. (33). In particular, any permutation operator πij ∈ B(H)

corresponding to the exchange of two bulk spins i, j ∈ [2, N − 1] leaves invariant the

system and hence commutes with all the elements of the Liouvillian for this model,

[πij, H] = 0 = [πij, Lm] (∀m). Therefore, following our general discussion above, this

leads to a myriad of possible nonequilibrium steady states that depend on the symmetry

sectors populated by the initial state of bulk spins.

As described in Section §6, these multiple symmetries have also an effect on the

current flowing through the system and its fluctuations. In particular, we expect twin

dynamic phase transitions in the current statistics, which should appear as a pair of

kinks in the cumulant generating function µ(λ) (associated to the current large-deviation

function G(q) via Legendre transform) at λ = 0 and λ = ε = ln[a1bN/(aNb1)]. For

completeness, we recall that the LDF µ(λ) is nothing but the eigenvalue with largest

real part of the deformed Liouvillian Lnet
λ , with

Lnet
λ ρλ ≡ −i

[
Hnet, ρλ

]
+ e−λL1ρλL

†
1 + eλL2ρλL

†
2 +

∑
m=3,4

L†mρλLm −
1

2

4∑
m=1

{
LmL

†
m, ρλ

}
.

(98)
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Figure 12. Real part of the N = 6 normalized right eigenmatrix ωα0α00(λ) associated

with the eigenvalue of Lλ with largest real part, for (a) λ = −0.4 and (b) λ = 0.2.

Panels (a.1)-(b.1) and (a.2)-(b.2) show respectively the (i, j)-antisymmetrized and -

symmetrized eigenmatrices, with (i, j) an arbitrary pair of bulk qubits. For λ < 0

(and λ > ε) the leading eigenmatrix is completely symmetric, while for 0 < λ < ε it is

pair-antisymmetric. System parameters as in Fig. 11.

To test our predictions in this particular model, we diagonalized numerically the

superoperator Lnet
λ in Fock-Liouville space for N = 2, 4, 6 and a particular set of

parameters (J = h = 1 and a1 = b2 = 1, b1 = a2 = 1 so ε ≈ 1.39), focusing on its

leading eigenvalue µ(λ;N) and the associated right eigenmatrix. Note that the Hilbert

space of interest grows exponentially with the system size (Lnet
λ is a 4N × 4N matrix in

this representation), so direct numerical evaluation of its leading spectral properties is

only possible for these relatively small system sizes. However we will explain below how

symmetry can be used to simplify the problem and reach much larger system sizes. In

the meantime, Fig. 11 displays the measured LDF µ(λ;N) for different values of the

network size. Remarkably this function does not depend on N for 0 < λ < ε, while it

grows steeply with N outside this interval. This behavior strongly suggests the presence

of two kinks in µ(λ;N) at λ = 0 and λ = ε, as expected.

The qualitative change of behavior at λ = 0 and λ = ε is better understood at

the configurational level, i.e. by studying the eigenmatrix associated to the leading

eigenvalue. This is shown in Fig. 12, which displays the real part of the leading right

eigenmatrix ρλ = ωα0α00(λ) –the one associated to the leading eigenvalue µ(λ;N)– in

the computational basis (|n〉 ≡ ⊗Ni=1|ni〉 ∈ H, with |ni〉 = |0〉 or |1〉) for N = 6 and

two different values of λ, one for λ < 0 (Fig. 12.a) and another for 0 < λ < ε (Fig.

12.b). Clearly, the leading eigenmatrices are structurally very different across the kink

at λ = 0. This qualitative difference is confirmed by studying their symmetry properties

under permutations πij of bulk spins, i, j ∈ [2, N − 1]. In particular, for λ < 0 (as well

as for λ > ε) the measured eigenmatrix is completely symmetric under any permutation
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of bulk qubits,

ρλ = πij ρλ , (99)

see Figs. 12.a.1-2. On the other hand, in the regime 0 < λ < ε the resulting eigenmatrix

is instead antisymmetric by pairs. This means that non-overlapping pairs of bulk qubits

are in antisymmetric, singlet state, so

ρλ = −πij ρλ , (100)

see Figs. 12.b.1-2. Interestingly this pair-antisymmetric regime is degenerate for N > 4,

as the Nb ≡ N − 2 bulk qubits can be partitioned by pairs in different ways, though

this degeneracy does not affect the results.

The previous observations confirm the presence of a pair of twin dynamic phase

transitions happening at λ = (0, ε), where the symmetry of the original system is broken

at the fluctuating level†. For large enough current fluctuations such that λ < 0 or λ > ε

(equivalently |λ− ε
2
| > ε

2
), the open quantum system of interest is expected to select the

symmetry subspace with maximal current among all symmetry subspaces present in the

system initial state, see the discussion in Section §6.2. For the open quantum network

here studied, this maximum current manifold corresponds to the totally symmetric

subspace, a sort of bosonic transport regime which can be easily understood at a heuristic

level. Indeed, it is sufficient to note that a totally symmetric bulk can absorb a maximal

number of excitations from the terminal qubit, hence leaving it free to receive further

excitations from the reservoir, maximizing in this way the exciton current across the

system. On the other hand, the minimal current symmetry subspace dominating current

statistics for 0 < λ < ε is antisymmetric by pairs. This pair-fermionic transport regime

can be again easily rationalized by noting that pairs of bulk qubits in singlet state are

dark states of the dynamics (decoherence-free subspaces): such states remain frozen

in time, decoupling from the rest of the system, and hence cannot accept excitations

from the terminal qubits effectively reducing the size of bulk and thus leading to a

minimal current. In fact, this observation explains why µ(λ;N) does not depend on N

for 0 < λ < ε: all bulk spins are paired in singlet states, resulting in an system with an

effective size of 2 spins, the number of terminal qubits, independently from N .

The previous argument is an example of the severe dimensional reduction induced

by symmetry in a particular fluctuation regime (0 < λ < ε). We now extend this idea to

the bosonic transport regime |λ− ε
2
| > ε

2
, a procedure that allows us to investigate the

thermodynamics of currents in networks of size much larger than previously anticipated.

7.2. Dimensional reduction and finite-size scaling of current fluctuations

In this section we exploit the totally symmetric nature of the maximal current

phase, |λ − ε
2
| > ε

2
, to drastically reduce the dimension of the Hilbert space in this

region. Moreover, we explicitly demonstrate the dimensional reduction associated to

† Note that equivalent results have been numerically checked also for N = 4, and are expected to hold

for arbitrary even N .
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the emergence of dark states in the pair-antisymmetric phase. In this way, for a

network of N qubits, the dimension of the spectral problem drops from an exponential

O(2N) to a linear scaling O(N), and we use this effect to explore current statistics in

networks of size much larger than anticipated. We mention that a similar dimensional

reduction was already described in previous studies of the related Lipkin-Meshkov-Glick

model [184–186,188,189].

We start by noting that a completely symmetric state of bulk qubits is univocally

described by the total number of excitations in the bulk. In this way, an arbitrary state

of the quantum network with a totally symmetric bulk can be thus written as

|K;n1, nN〉 =
1√(
Nb

K

) ∑
n2...nN−1=0,1

|n〉 δ
(
K −

N−1∑
i=2

ni

)
(101)

where Nb ≡ N − 2 is the number of bulk qubits, |n〉 ≡ ⊗Ni=1|ni〉 ∈ H, with |ni〉 = |0〉
or |1〉, and K ∈ [0, Nb] is the total number of excitations in the bulk in this symmetric

state. The combinatorial number
(
Nb

K

)
in the normalization constant counts the number

of ways of distributing K excitations among Nb bulk qubits. The strategy here will

consist in proving that the Hamiltonian of the open quantum network with a completely

symmetric bulk can be fully written in terms of the low-dimensional basis formed by

vectors (101), thus radically reducing the complexity of the problem.

The dichotomy between bulk and terminal qubits allows to decompose now the

qubit network Hamiltonian (95) as Hnet = Hnet
0 +Hnet

b +Hnet
I , where

Hnet
0 ≡ h

N∑
i=1

σ+
i σ
−
i , Hnet

b ≡ J
N−2∑
i=2

N−1∑
j=i+1

∆ij , (102)

with the definition ∆ij ≡ (σ+
i σ
−
j + σ−i σ

+
j ), and

Hnet
I = J

[
(σ+

1 + σ+
N)∆− + (σ−1 + σ−N)∆+ + ∆1N

]
, (103)

where we further define ∆± ≡
∑N−1

i=2 σ±i . Trivially, the on-site contribution to

the Hamiltonian (Hnet
0 ) is diagonal in the basis defined by the states (101), i.e.

Hnet
0 |K;n1, nN〉 = h(K + n1 + nN)|K;n1, nN〉, so we can write

Hnet
0 = h

Nb∑
K=0

n1,nN=0,1

(K + n1 + nN)|K;n1, nN〉〈K;n1, nN | (104)

For the bulk self-interaction part Hnet
b , first note that the operators ∆ij simply exchange

the states of qubits i and j whenever they are different, yielding zero otherwise, i.e.

∆ij|n〉 = δni,1−nj |n〉ij, where |n〉ij is the state resulting from exchanging ni ↔ nj in

|n〉. Using this, one can easily show that Hnet
b is also diagonal in the basis defined by

|K;n1, nN〉, namely

Hnet
b = J

Nb∑
K=0

n1,nN=0,1

K(Nb −K)|K;n1, nN〉〈K;n1, nN | , (105)
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where the prefactor counts the number of distinct computational basis bulk states that

we can form with K |1〉’s and (Nb − K) |0〉’s. It is now straightforward to show that

the operators ∆± defined above move the state |K;n1, nN〉 to |K ± 1;n1, nN〉, with a

prefactor that counts the number of ways of distributing the pertinent excitations among

(Nb − 1) bulk sites and takes into account the different normalizations. In particular,

∆±|K;n1, nN〉 = D±K |K ± 1;n1, nN〉, with

D±K =
√

(K + 1− k±)(Nb −K + k±) , (106)

with k± ≡ (1∓ 1)/2, so we may write

∆± =

Nb−(1−k±)∑
K=k±

n1,nN=0,1

D±K |K ± 1;n1, nN〉〈K;n1, nN | . (107)

In this way the Hamiltonian (95) of the open quantum network with a completely

symmetric bulk can be fully written in terms of the low-dimensional basis formed by

vectors (101). Moreover, as the Lindblad operators in the network master equation only

act on the terminal spins, the dimension of the problem in this totally symmetric regime

drops from the original 2N to a much lower dimension 4(N − 1), which scales linearly

with the number of qubits.

For completeness, we show now explicitly that the spectral problem associated to

the deformed Lindblad superoperator for a network of size N with a pair of bulk qubits

in antisymmetric state is equivalent to that of a network with N−2 qubits. This results

from the frozen dynamics of the antisymmetric qubit pair, which forms a dark state

which effectively decouples them from the rest of the system. We hence consider our

network with N qubits, such that the pair formed by the (otherwise arbitrary) bulk

qubits a and b is in an antisymmetric state. The initial density matrix can thus be

written in a direct product form, ρ− ≡ |−〉〈−|ab ⊗ ρN−2, where |−〉 = 1√
2
(|10〉 − |01〉) is

the singlet state, and ρN−2 is an arbitrary reduced density matrix for the remaining

N − 2 qubits. We next decompose the Hamiltonian (95) in three natural parts,

H = Hab +HN−2 +Hint with

Hab = h(σ+
a σ
−
a + σ+

b σ
−
b ) + J∆ab , (108)

Hint = J
[
(σ+

a + σ+
b )

N∑
k=1
k 6=a,b

σ−k + (σ−a + σ−b )
N∑
k=1
k 6=a,b

σ+
k

]
,

and HN−2 the standard Hamiltonian (95) for N−2 qubits (excluding qubits a and b). It

is now easy to show that the terms Hab and Hint commute with any pair-antisymmetric

density matrix of the form ρ−, i.e. [Hab, ρ−] = 0 = [Hint, ρ−], so

ρ̇− = − i[H, ρ−] + L(λ)
1 ρ− + LNρ− ≡ L(N)

λ ρ−

= |−〉〈−|ab ⊗
(
− i[HN−2, ρN−2] + L(λ)

1 ρN−2 + LNρN−2

)
(109)

= |−〉〈−|ab ⊗
(
L(N−2)
λ ρN−2

)
= |−〉〈−|ab ⊗ ρ̇N−2 ,
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Figure 13. Left: Current statistics for the open quantum network in the

thermodynamic limit (N → ∞) as captured by µ(λ), see Eq. (110) and

Fig. 11. A first-order-type twin dynamic phase transition happening at

λ = (0, ε) is apparent, signaled by twin kinks in µ(λ) (thin vertical dashed

lines) separating the maximal and minimal current phases of the fluctuation

phase diagram (shaded areas). Note that the current distribution obeys the

Gallavotti-Cohen fluctuation theorem, µ(λ) = µ(ε−λ). Dashed thick lines show

µ(λ) measured for small networks (N = 2, 4, 6) with dephasing noise (γ = 0.5),

which breaks the permutation symmetry and hence destroys the twin dynamic

phase transitions. Curves have been shifted downward for clarity (recall that

µ(0) = 0 in all cases). Right: Asymptotic current LDF G(q) obtained from the

numerical inverse Legendre transform of µ(λ) in the left panel. Dashed curves

sketch the non-convex regimes of G(q) for which µ(λ) offers no information.

Gallavotti-Cohen symmetry, G(q)−G(−q) = εq, is again clearly satisfied.

where L(λ)
1 and LN can be defined from Eq. (73) above. Interestingly, using this method

in a recursive manner it can be proved that the eigenvalue problem for any open quantum

network of arbitrary size with a pair-antisymmetric bulk (i.e. with non-overlapping pairs

of bulk qubits in singlet state) can be reduced to the case N = 2, 3, depending on N

being even or odd.

The drastic dimensional reduction just demonstrated can be now used to compute

from the resulting simplified spectral problem the cumulant generating function of the

current LDF, µ(λ;N), for quantum networks of size N ≤ 40, see lines in left panel of

Fig. 11. These curves clearly exhibit convergence toward some well-defined, limiting

behavior as N → ∞, allowing us to characterize in detail the finite-size corrections in

current statistics. Indeed, for each fixed value of the conjugate parameter λ, the data

strongly suggest the following finite-size scaling behavior

µ(λ;N) = µ(λ) +
a(λ)√
N
, (110)

with a(λ) some amplitude, see right panel in Fig. 11. Note that a(λ) = 0 for 0 < λ < ε,

as the current statistics in the minimal current phase does not depend on N . The
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Figure 14. Current as a function of the counting field λ for the open quantum

network. Note the discontinuous jump in q(λ) at the twin DPTs, λ = 0, ε.

previous scaling law yields an estimate of the current LDF µ(λ) for the open quantum

network in the thermodynamic (N →∞) limit. This limiting behavior is shown is Fig.

13, left panel, where the presence two clear kinks at λ = (0, ε) is apparent. Notice

that the estimated µ(λ), as well as all finite-size LDFs in left panel of Fig. 11, obey

the Gallavotti-Cohen fluctuation theorem µ(λ) = µ(ε−λ), which results from the time-

reversibility of microscopic dynamics [78,89,91,92,96,97,99,100,162]. In order to obtain

a direct estimate of the current LDF G(q) in the N → ∞ limit, we also performed

numerically the inverse Legendre transform of µ(λ), see right panel in Fig. 13. As

expected two different current regimes emerge, |q| ∈ [|〈qαmin
〉|, |〈qαmax〉|], related to the

kinks in µ(λ), where G(q) is non-convex (or at least affine, see footnote in §6.2). This

corresponds to a multimodal current distribution which results from the coexistence of

different transport channels classified by symmetry. For completeness, Fig. 14 shows

the relation between the current q and the counting field λ as obtained in the numerical

inverse Legendre transform.

7.3. Symmetry-controlled transport

The presence of different invariant subspaces in quantum networks can be used to control

the excitonic current through the network via initial state preparation, see Eq. (86) in

§6.1 and related discussion. For this particular case, we note that a network with

a totally-symmetric bulk has maximal current for a given network size and hence, by

preparing pairs of bulk spins in antisymmetric states (which effectively decouple playing

no role in the system dynamics), it is possible to reduce this current. This effect is

illustrated in the left panel of Fig. 15, where we plot the average current flowing through

a fully-connected qubit network as a function of the system size for different values of

the ratio φ of spins that are initially in a totally symmetric state. In particular, the
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initial state ρ(0) is prepared in a direct product configuration such that an even number

(1 − φ)N of bulk qubits are initialized in antisymmetric, singlet states by pairs, while

the complementary set of bulk qubits are initially in a totally symmetric state. As

expected from our previous argument, for a fixed ratio φ the current increases with the

network size and saturates for large values of N . In this way, by tuning the initialization

parameter φ we can control the average current for each N , though the range of currents

that we can access in this case is limited.

However, a simple modification of the network Hamiltonian allows us now to gain

full control of the heat current traversing the quantum system. In particular, by

removing the interaction between the terminal qubits, it is possible to block completely

the exciton current which flows from the hot to the cold reservoir by initializing the

bulk qubits in a pair-antisymmetric state. The simplest case illustrating this idea is

a network of N = 4 qubits connected as in Fig. 10.b, see also the inset of the right

panel of Fig. 15. Indeed, for this particular network topology, if we start from a pure

initial state such that the two bulk qubits form a singlet (totally-antisymmetric) state,

this singlet forms a dark state of the dynamics, see §7.2. Due to the lack of connection

of the terminal qubits in this topology, this dark state disconnects the hot reservoir

from the cold one, hence effectively blocking any exciton flow in the system. In order

to use this effect to control the current, we now initialize the system in a mixed state

ρ(0) = ϕρ+ + (1 − ϕ)ρ−, with ϕ ∈ [0, 1] a fixed parameter and ρα ∈ Bαα arbitrary

density matrices, with α = + (α = −) for the diagonal subspace of B(H) totally-

symmetric (totally-antisymmetric) with respect to permutations of the two bulk spins†.
In this case, one can easily show that the flowing current is just 〈q〉 = ϕ〈q+〉, with

〈q+〉 the average current of the totally symmetric NESS ρNESS
αmax

, see Eq. (86). Of course

this is so because 〈q−〉 = 0 due to the dynamical decoupling between terminal qubits

produced by the frozen, dark state of the antisymmetric bulk. The right panel in Fig.

15 shows this current as a function of ϕ for different values of the exciton pumping

rate a1 at the first reservoir, demonstrating that the combination of a simple network

topology (see inset) with our symmetry results leads to a symmetry-controlled quantum

thermal switch, where the exciton current flowing between hot and cold reservoirs can be

completely blocked, modulated or turned on by just tuning the symmetry of the initial

state. Moreover, a nonlinear control of the heat current can be obtained by introducing

a weighted interaction between terminal qubits. We will discuss in Section §8 below

an experimental realization of this symmetry-controlled quantum switch using a pair of

cold Λ-atoms in an optical cavity, see also Ref. [15].

† Note that this particular choice for the initial state assumes for simplicity that the projections of the

initial density matrix on the non-diagonal subspaces Bαβ (with α 6= β) is zero. Allowing for non-zero

projections on these non-diagonal subspaces would allow for further transport control.
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Figure 15. Left: Average current 〈q〉φ(N) as a function of the network size for a

system with an even number (1− φ)N of bulk qubits initialized in pair-antisymmetric

states. The current is an increasing function of both N and φ, demonstrating

symmetry-controlled transport. System parameters are a1 = b2 = 1, b1 = a2 =

1, and J = h = 1, as in Fig. 11. The inset shows an example of the topology of

the fully-connected quantum network. Right: For the four-qubit quantum thermal

switch sketched in the inset, we plot the average current 〈q〉(ϕ) as a function of ϕ, the

projection of the initial density matrix on the subspace of B(H) corresponding to a

totally symmetric bulk, for different excitation pumping rates a1 (the other parameters

as above). This shows how the heat current between hot and cold reservoirs can be

completely blocked, modulated, or turned on by preparing the symmetry of the initial

state.

7.4. Role of dephasing noise

To continue our discussion of open quantum networks we note that, as explained in

Section §6.2, the presence of the symmetry-induced twin dynamic phase transitions in

the current statistics is fragile against environmental decoherence. In particular, any

finite amount of dephasing noise in the system can violate the network permutation

symmetry, thus leading to a unique steady-state according to our discussion in §6.2.

This results in a smooth current LDF with no kinks and hence no dynamic phase

transition. The interaction with a dephasing environment, that reduces the quantum

coherent character of the system at hand, has been probed very important for the energy

transfer in different nonequilibrium quantum networks, where noise-enhanced transport

has been recently reported [123,124].

We briefly analyze this idea now in quantum networks by including a dephasing

channel that reduces the coherent character of the transport in the system [14, 25].

This dephasing channel is modelled by adding a new set of Lindblad operators to the

deformed Liouville-Lindblad superoperator (98) of the form

Ldeph
j =

√
γσ+

j σ
−
j , (111)

with j running over all the spins in the network, and γ being the dephasing parameter.

Since the dephasing operators act locally on each qubit, it is straightforward to prove
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Figure 16. Left panel: Sketch of the system studied in Ref [167]. The box represents

the harmonic oscillator that acts as a bath on the first spin of the network. Right

panel: Figure 2 from Ref. [167], LDF µ(λ), corresponding to the Legendre transform

of the current LDF, as a function of the counting field λ for the three-spin network of

left panel, and for different average number of excitations in the bath n̄. Note the two

kinks that appear in µ(λ) which reflect the twin dynamic phase transitions expected for

current statistics in this model due to the presence of a symmetry under the exchange

of spins 2 and 3.

that the symmetry operator πij of bulk spins does not commute with all Lindblad

operators as
[
πij, L

deph
i

]
6= 0 as well as

[
πij, L

deph
j

]
6= 0. This breaks the symmetry-

induced multiplicity of steady states, see §3.2 above, with the new evolution equation

now mixing the original symmetry eigenspaces. In the absence of any other symmetries,

and provided that Evans theorem holds [132], one can then show that the system

eventually forgets the information on the initial state, converging to a unique NESS.

This violation of the permutation symmetry also implies immediately the disappearance

of the twin dynamic phase transitions. This is shown in Fig. 13, where the LDF µ(λ)

is plotted for γ = 0.5 and different sizes (N = 2, 4). It is clear that µ(λ) is smooth and

analytic for all values of λ and that the dynamic phase transition vanishes whenever the

system is subject to dynamical noise.

7.5. A three-spin network with collective dissipation

To end this section, we note that in Ref. [167] a specific three-spin network as the

one displayed in the left panel of Fig. 16 has been studied. The proposed model,

which exhibits a symmetry opening the door to transport control, can in principle

be engineered in hybrid electro/opto-mechanical settings, which makes this model

particularly interesting for practical purposes. The specific spin Hamiltonian for this

system corresponds to a spin-1/2 ring under the effect of two magnetic fields α and

β [167]

H3-spins = α
3∑
i=1

σix − β
3∑
i=1

σzi + (σx1σ
x
2 + σx2σ

x
3 + σx1σ

x
3 +H.c.) , (112)
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with β � α. Additionally, spin 1 interacts with a harmonic oscillator that acts

as a reservoir, see left panel in Fig. 16. In fact, the motion of spin 1 due to

this harmonic coupling can be adiabatically eliminated [167], leading to an effective

dissipative dynamics for the three-spin network described by a Lindblad master equation

(73) with jump operators

L1 =
√

Γ (n̄+ 1) σ−1 ,

L2 =
√

Γn̄ σ+
1 ,

being Γ the coupling strength between spin 1 and the oscillator bath, and n̄ the average

number of excitations in the reservoir. In Ref. [167] this system was reported to exhibit

coexistence of two dynamical phases with different activity levels, and the symmetry

perspective adopted in this paper easily explains this remarkable behavior, as this spin

network clearly exhibits a symmetry under the exchange of spins 2 and 3. Indeed, one

can define an unitary operator π = exp [i(|2〉〈3|+ |3〉〈2|)] associated to this exchange

symmetry, and this operator fulfils [π,H] = [π, L1] = [π, L2] = 0, hence defining a

symmetry of the dynamics. As described in previous sections, the presence of this

symmetry leads to a pair of twin dynamic phase transitions which appear as a non-

analytic (kink) behavior of its LDF µ(λ), see Eq. (80). This is exactly what was

measured in Ref. [167], see right panel in Fig. 16, were the LDF µ(λ) is displayed for

different average number of excitations in the bath n̄, and the emergence of twin kinks

is apparent in all cases. The experimental verification of these results seems feasible

in hybrid electro/opto-mechanical settings where this system can be prepared, and it

would further support the use of symmetry as a resource to control quantum transport.
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8. An atomic switch controlled by symmetry

We have seen in previous sections how symmetry can be harnessed to control energy

transport in generic nonequilibrium open quantum systems. In particular, we have

proposed in Section §7.3 a schematic model of symmetry-controlled quantum thermal

switch, i.e. a system capable of modulating at will the exciton current flowing from a

hot to a cold reservoir via initial state preparation. In this section we explore further

this idea and review an experimental setup proposed in Ref. [15] where such symmetry-

enabled control of transport can be realized in detail.

The idea is simple and based on a recent proposal to use macroscopic jumps for

robust entangled-state preparation [166, 191]. In particular the setup consists in three

optical cavities coupled in linear topology, as sketched in Fig. 17. Due to cavity leakage,

there is a coherent hopping of photons between neighboring cavities. The two cavities at

the edges are locally coupled to thermal baths at different temperatures, T1 6= T3. This

coupling drives the system out of equilibrium, so in the long time limit the system is

expected to reach a nonequilibrium steady state characterized by a net photon current

flowing through the cavity array, related to the external gradient imposed by the thermal

reserviors [123,127,192–194]. In addition, the central cavity is doped with two identical

Λ-atoms that are externaly driven by a laser. We assume that the laser and the cavity

act equally on both atoms, so all coupling constants (described below) are the same for

both atoms.

As shown in [166, 191], the internal state of the two atoms can switch between

symmetric and antisymmetric manifolds due to the laser interaction. When the atoms

are in the antisymmetric (maximally-entangled) state they form a dark state and the

cavity photons do not interact with them. As we will show below, this effect allows to

control deterministically the photon current up to four orders of magnitude [15].

Figure 17. Sketch of an atomic optical switch controlled by symmetry. It is composed

by three different optical cavities coupled in a linear topology. The terminal cavities

interact locally with thermal baths at temperatures T1 6= T3 which drive the linear

cavity array out of equilibrium, while the middle cavity is doped with two identical

atoms that act as a symmetry-controlled switch for transport.
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8.1. Master equation for the laser-controlled cavity-atom system

We start by describing the dynamics of the cavity-atom array. The system evolution is

described by a master equation of Lindblad-type

ρ̇(t) = −i
[
HSW, ρ

]
+

4∑
k=1

Lat
k ρ+

∑
b=1,3

(
Lth
b,+ + Lth

b,−
)
ρ (113)

whereHSW is the system Hamiltonian, while Lat
k and Lth

b,± are dissipators† which describe

the interactions of the system with the different incoherent channels. In particular, there

are four incoherent channels Lat
k , k ∈ [1, 4], related to the spontaneous decay of atomic

states, and two incoherent channels Lth
b,± for each thermal bath (b = 1, 3) which describe

photon pumping (+) and extraction (−) at the corresponding terminal cavity.

The Hamiltonian of the full system, once in the interaction picture and using the

rotating wave approximation described in Section §2, can be decomposed as

HSW = Hhop +Hctrl , (114)

where Hhop describes the coherent hopping of photons between coupled cavities due to

leakage effects, while Hctrl describes the interaction of the atoms in the central cavity

with the control laser fields. The hopping Hamiltonian reads

Hhop = J
(
a†1a2 + a†2a3 +H.c.

)
, (115)

where J is the hopping coupling constant between neighboring cavities, ak (a†k) are the

destruction (creation) bosonic operators acting on cavity k = 1, 2, 3 (with k = 2

indicating the central, atom-doped cavity), and H.c. stands for Hermitian conjugate.

To better understand the atom-laser interaction in the central cavity, Hctrl, we show

in the left panel of Fig. 18 the typical energy level diagram of a Λ-atom in the presence

of laser (light) fields. The transition between states |0〉 ↔ |2〉 is coupled to the cavity

photon field with a coupling strength g. On the other hand, the transitions |2〉 ↔ |1〉
and |0〉 ↔ |1〉 are driven by laser fields with Rabi frequency ΩL and ΩM , respectively.

Finally, the spontaneous (incoherent) decay from level |2〉 has a total rate Γ = Γ0 + Γ1

(with Γ0 and Γ1 the rates for the spontaneous decays |2〉 ; |0〉 and |2〉 ; |1〉), and

there is also a laser detuning ∆. The resulting control Hamiltonian reads

Hctrl =
2∑
i=1

(
ΩL

2
|1〉i〈2|i +

ΩM

2
|0〉i〈1|i +H.c.

)
+

2∑
i=1

g
(
|0〉i〈2|ia†2 +H.c.

)
+ ∆|2〉i〈2|i ,

(116)

where the sum over i = 1, 2 refers to the two atoms in the central cavity.

In the particular limit where the excited atomic states are far off-resonant

ΩM < g,Γ,ΩL << ∆ , (117)

† Note that in this case the Hamiltonian H and the total Liouvillian L are not bounded as they involve

bosonic operators.
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Figure 18. Left: Energy level diagram of each of the three-level Λ-atoms. Right:

Simplified energy level diagram of the resulting four-level system after the adiabatic

elimination of the fast excited states. Straight (wavy) arrows represent coherent

(incoherent) transitions. For simplicity, this panel shows only incoherent transitions

mixing the symmetric manifold (|11〉, |s〉, |00〉) and the antisymmetric one (|a〉). Other

incoherent transitions are present as it is clear from direct inspection of Eqs. (119)

and (120). See Refs. [15, 166,191] for a more detailed explanation.

it can be shown that these excited states with population in level |2〉 evolve much faster

than any other state in the atom [166,191], meaning that the state |2〉 can be adiabatically

eliminated and the two-atoms system can be described by a vector in a 4-dimensional

spece (i.e. as a four-level system), as shown in the right panel of Fig 18. In particular,

since the interaction of both atoms with the laser fields is the same, it is most convenient

to work in the Bell basis of the joint Hilbert space. This basis naturally splits into two

orthogonal subspaces, one fully symmetric including the state |s〉 = 1√
2

(|01〉+ |10〉) as

well as |00〉 and |11〉, and another antisymmetric subspace consisting in a singlet state

|a〉 = 1√
2

(|01〉 − |10〉). The atoms-laser (control) Hamiltonian hence becomes†

Hctrl =
ΩM√

2

(
|00〉〈s|+ |s〉〈11|+H.c.

)
+ g′

(
|00〉〈s|a†2 + |s〉〈11|a†2 +H.c.

)
− ∆′

(
|00〉〈00| − |11〉〈11|

)
, (118)

with ∆′ = −g2

∆
a†2a2 −

Ω2
L

4∆
and g′ = − ΩLg√

2∆
.

Interestingly, the transition between the symmetric and antisymmetric manifolds

of the two-atoms system occur as a result of two different incoherent decay channels

with jump operators‡ [15, 166,191]

Lat
1 =

√
Γ′0

(
|00〉〈a| − |a〉〈11|

)
, Lat

2 =

√
Γ′1
2

(
|s〉〈a|+ |a〉〈s|

)
, (119)

† For a detailed presentation of the adiabatic elimination technique, we refer the interested reader to

Ref. [191] and references therein.
‡ Recall that a dissipator L acts of an arbitrary density matrix ρ as Lρ ≡ LρL† − 1

2

{
L†L, ρ

}
, where

L are the associated jump operators.
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while there exists another two decay channels which do not mix the symmetric and

antisymmetric manifolds, namely [15,166,191]

Lat
3 =

√
Γ′0

(
|00〉〈s|+ |s〉〈11|

)
, Lat

4 =

√
Γ′1
2

(
|a〉〈a|+ |s〉〈s|+ 2|11〉〈11|

)
. (120)

The effective rates appearing in the previous equations for the spontaneous decay

between the symmetric and antisymmetric manifolds are

Γ′` =
Ω2
LΓ`

4∆2
, (121)

see also Fig. 18 (right). Remarkably, these effective rates are in all cases proportional to

Ω2
L, with ΩL the Rabi frequency of one of the lasers, so mixing between the symmetric

and antisymmetric atomic subspaces is only possible whenever ΩL 6= 0. Hence, switching

on and off the laser with Rabi frequency ΩL enables us to externally manipulate the

mixing between the symmetric and antisymmetric manifolds and therefore control the

transport properties of the atom-cavity array, as explained below.

Finally, the coupling of the terminal optical cavities (b = 1, 3) to the different

thermal baths is captured by the following Lindblad operators

Lth
1,− =

√
Γth(〈n1〉+ 1)a1, Lth

1,+ =
√

Γth〈n1〉a†1
Lth

3,− =
√

Γth(〈n3〉+ 1)a3, Lth
3,+ =

√
Γth〈n3〉a†3, (122)

with Γth the coupling constant between the terminal cavities and the corresponding

thermal bath, and 〈nb〉 is the average excitation number at the cavity resonance

frequency ω in each bosonic bath, 〈nb〉 = [exp( ω
kBTb

)− 1]−1 with b = 1, 3.

8.2. Photon current statistics and laser control

Interestingly, the laser-controlled atom-cavity array described in the previous section

exhibits a symmetry in the language of Section §3.2 above. Indeed, it can be easily

proved that the following operator π, acting on the atoms Hilbert space and defined in

the Bell basis as

π ≡ |00〉〈00|+ |s〉〈s|+ |11〉〈11| − |a〉〈a| , (123)

commutes with all the elements entering the system dynamics, Eq. (113), whenever

ΩL = 0, see also Eq. (121). Note that the physical effect of the operator π is to

exchange the state of the two atoms, i.e. π|α〉 = |α〉 for |α〉 = |00〉, |11〉, |s〉 while

π|a〉 = −|a〉.
In particular one can easily check that, for arbitrary values of the lasers Rabi

frequencies, the commutators obey

[π,H] =
[
π, Lat

k

]
=
[
π, Lth

b,±
]

= 0 ∀k = 3, 4, ∀b = 1, 3 , (124)

while [
π, Lat

1

]
=

√
2Γ0

Γ1

Lat
2 6= 0 ,

[
π, Lat

2

]
=

√
Γ1

2Γ0

Lat
1 6= 0 . (125)
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Figure 19. Cumulant generating function of the photon current distribution, µ(λ)

(left), and current large deviation function, G(q) (right) for the laser-controlled atom-

cavity array. In both panels the red line represents the corresponding function

when the control lasers are off (ΩR = ΩL = 0), while blue lines correspond to

control lasers on (ΩR = 0.005g, ΩL = g). The remaining parameters are fixed to:

∆ = 75g, Γ0 = Γ1, Γ = Γ0 + Γ1 = g, J = 10−3g, 〈n1〉 = 0.005, 〈n2〉 = 10−6. The

dashed red line in the right panel signals the non-convex (or at least affine) region in

the current LDF associated to the kink in µ(λ), see also Section §6.2. No information

on G(q) can be derived from µ(λ) in this current interval. See also Fig. 2 in Ref. [15].

Therefore the operator π is not in general a symmetry of the laser-controlled atom-cavity

array. However, by switching off laser L we in fact fix ΩL = 0, meaning that Γ′0,1 = 0,

see Eq. (121), and hence Lat
k = 0 ∀k ∈ [1, 4]. In this case all commutators (124)–(125)

vanish, turning π into a symmetry.

As explained in previous sections, the presence of a symmetry leads to the

appearance of multiple steady state, corresponding to different transport channels

associated to each one of the different symmetry sectors present in the initial state.

Furthermore, the symmetry induces a pair of twin dynamic phase transitions in the

current statistics, which show up as two kinks in the cumulant generating function of

the current distribution, µ(λ), or equivalently as a pair of non-convex (or at least affine)

regions in the current large deviation function G(q), see Section §6.2. These effects can

be readily tested in the laser-controlled atom-cavity array. Fig. 19 shows both µ(λ)

(left) and G(q) (right) obtained for the atom-cavity array both under the effect of laser

control (blue lines) and when the lasers are switched off (red line). The LDF µ(λ) has

been numerically calculated as the eigenvalue with highest real part of the deformed or

tilted Lindbladian Lλ corresponding to the system dynamics (113), which in this case

reads

Lλρ = −i [H, ρ] +
4∑

k=1

Lat
k ρ+

(
Lth

1,+ + Lth
1,−
)
ρ+

(
L̃th

3,+(λ) + L̃th
3,−(λ)

)
ρ, (126)

where we have defined L̃th
3,±(λ) ≡ e∓λLth

3,±ρL
th†
3,± − 1

2

{
Lth†

3,±L
th
3,±, ρ

}
, see Eq. (74) and §6.

On the other hand, the LDF G(q) is calculated by numerically Legendre-transforming
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µ(λ) following the inverse of Eq. (71). As clearly shown in Fig. 19, the photon current

statistics is strongly affected by the presence of the lasers, and their absence leads to

a distinct non-analyticity in µ(λ) and a non-convex G(q), as expected. Note also that,

interestingly, switching on the control lasers strongly suppresses current fluctuations, as

reflected in as much narrower G(q), see right panel in Fig. 19.

The presence of a symmetry and the associated coexistence of multiple transport

channels also enable the direct control of the photon current through the atom-cavity

array, see the general results of Section §6.1. The control range for the average current is

determined by the typical currents in the maximal and minimal current phases, i.e. the

maximum and minimum currents in the system, see Section §6.1 and our discussion on

the symmetry-controled thermal switch in Section §7.3. These currents can be obtained

from the cumulant generating function as

〈q〉max = − lim
λ→0−

∂λµ(λ) , 〈q〉min = − lim
λ→0+

∂λµ(λ) , (127)

see Eq. (83) in §6.1 and Fig. 9 (left) above.

To control effectively photon transport in the system one would start an experiment

with the control lasers on, a situation in which the atom-cavity array exhibits a unique

steady state. As demonstrated in [166,191], in this state the central atom-doped cavity

exhibits a random telegraph, blinking fluorescence signal between bright and dark

periods (i.e. periods of intense fluorescence interrupted by intervals with no emitted

photons at all). Such blinking is associated to the quantum incoherent jumps between

the symmetric (bright) and antisymmetric (dark) manifolds of the two-atoms system, a

mixing enabled by the presence of the laser fields. Now, switching off the laser control

field with Rabi frequency ΩL during a dark (bright) period leaves the two-atoms system

entrained into the antisymmetric (symmetric) subspace, since these manifolds do not

mix in the absence of the control laser field, and this allows us to control at will the

photon current flowing through the atom-cavity array by turning off the control laser at

the right moment. In this way the current can be modulated between 〈q〉max in bright

periods and 〈q〉min during dark intervals.

The control capacity depends on the hopping coupling constant J between

neighboring optical cavities. In the large-J limit, photons can hop between coupled

cavities easily and the effect of the interaction with the atoms doping the central cavity is

weak. On the other hand, for the small values of J typical of realistic (i.e. experimentally

relevant) conditions, the control capacity increases steeply and the ratio between the

maximum and minimum photon current, 〈q〉max/〈q〉min, can grow up to four orders of

magnitude. This is shown in Fig. 20 for the same parameters as in Fig. 19.

In summary, we have shown in this section how a simple diatomic system trapped

inside an optical cavity and subject to two laser fields can be harnessed to control

photon transport (and hence energy flow) across a linear array of optical cavities under

a temperature gradient. This control mechanism relies on the symmetry of atomic states

and how it is affected by the driving laser fields, and is a experimentally-feasible example

of the symmetry-controlled quantum thermal switch proposed in Section §7.3.
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Figure 20. Ratio between the maximum and minimum currents, associated

respectively to the symmetric and antisymmetric subspaces of the two-atoms system

when the control laser is off (ΩL = 0), as a function of the hopping coupling constant

J between neighboring optical cavities. All other parameters are as in Fig. 19. See

also Fig. 3 (left) in Ref. [15].

9. Signatures of molecular symmetries at the dynamical level

We have seen in previous sections how the presence of a symmetry-breaking element (as

e.g. decohering noise) in an otherwise symmetric open quantum system strongly affects

its transport properties. In particular, while a symmetric open quantum system exhibits

multiple, coexisting steady states and a twin dynamic phase transition in its transport

properties, whenever the original symmetry is externally broken these exotic effects

disappear and standard behavior is recovered, i.e. a unique steady state with a well-

defined current. This simple observation leads to the possibility of detecting inherent

molecular symmetries by studying the change in transport properties under the action

of a localized external probe (a Büttiker probe [195]) which acts as a symmetry-breaking

perturbation [196] on the molecular dynamics, as recently proposed by Thingna et al in

Ref. [116].

We now discuss this possibility in detail using a simple toy model, a four-site

molecular system as the one depicted in Fig. 21. Later on we will also discuss briefly

the application of this molecular-symmetry detection method to the more realistic case

of a benzene molecule, see Fig. 24 below.

9.1. Detecting symmetries in a four-site toy molecule

The first system is represented in Fig 21, and it consists in 4 two-level atomic sites

interacting among them according to the sketched geometry and connected to two

excitonic reservoirs as depicted. We will assume hereafter that the temperature at
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Figure 21. Sketch of the 4-site toy model used to study the detection of molecular

symmetries with the help of a Büttiker probe. The different atomic sites (spheres)

interact with their nearest neighbors (links), and possibly with an external probe

(depicted here as a cone). In addition the system is connected to two excitonic

reservoirs (cubes) working at different temperatures. Two probe configurations, one

acting on site 1 (left) and another on site 2 (right), are depicted. Note that the second

configuration breaks the internal molecular symmetry under the exchange of sites 2

and 4, hence affecting molecular transport properties. Sketch inspired by Fig. 1 of

Ref. [116].

the reservoirs is such that at most one excitation can populate the system at any time.

In this single-excitation limit, the system of interest can exhibit up to five different

states, denoted here as {|1〉, |2〉, |3〉, |4〉, |g〉}, where |n〉 represents the state with the

excitation at site n ∈ [1, 4], while |g〉 is the ground state corresponding to the absence

of excitations in the molecular complex. Excitations can coherently hop from one site

to a neighboring site, so the associated 4-site Hamiltonian reads

H4s = ε
4∑

n=1

|n〉〈n|+ J
(
|1〉〈2|+ |2〉〈3|+ |3〉〈4|+ |4〉〈1|+H.c.

)
, (128)

with ε the on-site energy and J the hopping coupling constant. Hamiltonians like this

one are typically used within the Hückel theory of molecular orbitals to model atomic

sites with nearest neighbour interactions [197], and have already been used with success

to model realistic systems as e.g. the benzene molecule [198].

In addition to the coherent dynamics generated by the previous Hamiltonian, the

system is driven out of equilibrium by the action of two incoherent baths at different

temperatures. The dynamics of the system in the absence of external probe is then

given by a Lindblad-type master equation (73) with jump operators of the form

L1 = |g〉〈1| , L2 = |1〉〈g| ,
L3 = |g〉〈3| , L4 = |3〉〈g| . (129)

Here L1 and L2 describe the extraction and pumping of a single excitation at site 1,
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respectively, while L3 and L4 act similarly on site 3†. Each of these jump operators act

with a fixed rate Γk, k ∈ [1, 4], see below, and these rates control the overall temperature

gradient.

For the probe we choose a standard Büttiker description [195]. In this approach,

the action of the probe is modelled by a Redfield-like term in the master equation

[24, 116, 120]. In particular, the system-probe interaction Hamiltonian from which the

Redfield term derives (see Section §2 above) is assumed to have a direct product form

HSP = S ⊗ Y , with S an operator acting on the Hilbert space of the system and Y

acting on the probe space. In what follows we will particularize to a probe acting on

the first site (S = S1 ≡ |1〉〈1|) or the second one (S = S2 ≡ |2〉〈2|), see Fig. 21, though

the results can be trivially extended to any other site‡. The dynamics of the probe itself

is determined by the probe Hamiltonian, which we will choose to be that of a set of

harmonic oscillators, HP =
∑

k

p2k
2mk

+ mk(ωkxk)
2. Moreover, the interaction with the

system will be given by the collective position operator Y = −
∑

k ckxk, being ck the

strength of the coupling of oscillator k with the system.

The reduced dynamics of the 4-site system is then given by a master equation of

the form

ρ̇ = − i
[
H4s, ρ

]
+

4∑
k=1

Γk

(
LkρL

†
k −

1

2

{
L†kLk, ρ

})
+

∫ ∞
0

dt
(

[S(t), ρ S(t)]C(t) +H.c.
)

≡ LLRρ , (130)

which defines the Lindblad-Redfield Liouvillian LLR for this monitored molecular

system. Here S(t) = eiH4stSe−iH4st, and the probe information is encapsulated in the

time-correlator C(t) = TrP
[
Y (t)Y e−βHP

]
, with Y (t) = eiHP tY e−iHP t and β the inverse

probe temperature. For a harmonic probe as the one described above, all parameters are

determined by its spectral density. In Ref. [116] an ohmic density with a Lorentz-Drude

cutoff frequency ωD and dissipation strength γ is used

ζ(ω) = π
∞∑
k=1

c2
k

2mkωk
δ (ω − ωk) =

γω

1 + (ω/ωD)2 , (131)

allowing to write down explicitly the correlator C(t), namely

C(t) =
1

π

∫ ∞
0

dw ζ(ω)

[
coth

(
βω

2

)
cos (ωt)− i sin (ωt)

]
. (132)

Importantly, this Büttiker probe does not pump or extract excitations (or energy)

into the system [195], but is still capable of breaking the symmetry of the molecular

† The validity and range of applicability of Lindblad-type equations with local jump operators has

been analytically and numerically studied in detail, see e.g. Refs [117,129]. We note in particular that

a generic assumption of weak internal system interactions is needed in order for this coupling to remain

local.
‡ Note that the local coupling of a probe with a molecular structure is experimentally feasible, see e.g.

Ref. [199].
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complex by interferring with its coherent dynamics. Moreover, Büttiker probes are

experimentally feasible and hence realistic from a practical point of view. The derivation

of the evolution equation (130) assumes a weak coupling between the molecular system

and both the probe and the baths, as well as Markovian or memory-less dynamics in the

baths and the probe. In addition, we have assumed that baths dynamics is fast so it does

not affect their incoherent interactions with the molecular system. We stress that we do

not apply this assumption to the probe dynamics, so we can study the interplay between

the probe dynamics and the molecule transport properties, an interaction relevant in

laboratory conditions.

This minimal molecular model may exhibit a symmetry in the language of Section

§3 due to the existence of a unitary operator π = exp[i (|2〉〈4|+ |4〉〈2|)] obeying[
π,H4s

]
= [π, Li] = 0 (∀i) . (133)

The argument in this exponential operator acts by exchanging the states of atomic sites

2 and 4, see Fig. 21. Now, when the Büttiker probe acts on site 1 (Fig. 21.a), we have

that S = S1 ≡ |1〉〈1| so the symmetry operator does commute with the probe operator,

[π, S] = 0, and hence the monitored molecular complex is expected to exhibit multiple

nonequilibrium steady states and different invariant subspaces (as well as a pair of twin

dynamic phase transitions in its current statistics, as described previously). On the

other hand, if the probe is acting on site 2 (Fig. 21.b) we have that [π, S2] 6= 0 so the

probe-molecule interaction breaks the molecular internal symmetry, thus leading to a

unique steady state. This fact can be then engineered to study the symmetry of the

molecular system by analyzing its steady state and/or transient transport properties as

a function of the initial state of the molecule and the probe location.

A first possibility consists in detecting underlying molecular symmetries by studying

the molecule’s stationary excitonic current as a function of the initial state ρ(0).

We have demonstrated that, whenever a symmetry is present, the average current

can be modulated by controlling the projection of the initial density matrix on the

maximal/minimal current subspaces. For our particular 4-site example, we may choose

for the initial state

ρ(0) = ρ+ cos2 θ + ρ− sin2 θ (134)

where ρ± = 1
2

[(|2〉〈2|+ |4〉〈4|)± (|2〉〈4|+ |4〉〈2|)] is symmetric (+) or antisymmetric (−)

under the exchange 2 ↔ 4, and θ is a mixing angle that allows to control at will the

initial overlap with the different symmetry sectors. One can then easily show that, when

the probe acts on site 1 (symmetric case), the current varies continuously as a function

of θ, being maximal for θ = 0◦, 180◦ (i.e. for ρ(0) = ρ+) and reaching 0 for θ = 90◦

(where ρ(0) = ρ−). On the other hand, when the probe acts on site 2 (broken symmetry

case), the steady state is unique and the average excitonic current does not depend on

the mixing angle θ. This dramatic variation of the molecule steady transport properties

with the probe position is hence the smoking gun of an underlying molecular symmetry.

Unfortunately, perfectly symmetric molecules are rarely feasible and realistic

modelling calls for the addition of a small quenched disorder in the on-site energies.
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Figure 22. Time evolution of the excitonic current across the four-level molecular

system initialized in a totally symmetric state ρ+ (left) or in an antisymmetric state

ρ− (right), see Eq. (134). Red lines correspond to the probe acting on site 1 (molecular

structure invariant under exchanges of sites 2 and 4) while blue lines correspond to

the probe acting on site 2 (broken 2 ↔ 4 exchange symmetry), see Fig. 21. While

red and blue lines overlap almost completely in the left panel (symmetric initial

condition ρ+; the overlap is so good that the two lines cannot be distinguished and

only the top –blue– curve is apparent), a clear difference in their time dependence

appears for antisymmetric initial conditions ρ− (right panel). System parameters are

ε = −142.2 meV, J = −9.35 meV. Baths parameters are: TL = 330 K, TR = 270 K,

and probe parameters are fixed to T = 300 K,Γ = 196,GHz, γ = 19.6 GHz, ω0 =

78.55 THz, ωD = 1.96 THz. See also Ref. [116].

This conformational disorder adds up to the unavoidable environmental noise and other

decoherence sources, from which it is difficult to isolate a typical molecule. Both noise

sources (either environmental decoherence and/or conformational disorder), despite

being weak, violate in principle the molecular symmetries, leading in all cases to a unique

steady state in the long time limit and hence blurring the steady state signatures of the

underlying (quasi-)symmetries.

As pointed out in Ref. [116], this weak violation suggests to search for dynamical

signatures of molecular symmetries, due to the expected separation of timescales

between the different noise sources and the molecular symmetries. In particular, both

noise sources discussed above are typically weak and hence affect the system dynamics at

long times, while the underlying molecular symmetries are expected to affect dynamics

on much shorter timescales. Ref. [200] describes a theory of metastability discussing the

properties of Lindbladians when such separation of timescales is present.

But how does symmetry show up at the dynamical level? Let us focus first on

molecule dynamics in the absence of configurational and environmental noise. Fig. 22

represents the exciton current flowing through our 4-site molecular system as a function

of time when the system is initialized in a symmetric state ρ+ (left panel) or in an

antisymmetric state ρ− (right panel). In both cases, the red lines represent the current

time evolution when the probe is located at site 1 (symmetric case, see Fig. 21.a)
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Figure 23. Spectrum of the Lindblad-Redfield Liouvillian of Eq. 130 with the probe

acting on site 1 (red crosses, see Fig. 21.a) and site 2 (blue circles, see Fig. 21.b).

When the probe is acting on site 1 the system remains symmetric and there are two

degenerate zero eigenvalues. When the probe is acting on site 2 the symmetry is

broken, degeneracy disappears and there is a gap ∆ between the zero eigenvalue and

the first decay mode. See also Ref. [116].

while blue lines correspond to the probe interferring with the molecule at site 2 (broken

symmetry case, see Fig. 21.b). For the totally symmetric initial state (left panel) there

are clearly no dynamical signatures of molecular symmetries in the current evolution.

Indeed the current dynamics does not depend on the underlying molecular symmetries

in this case, as red and blue lines mostly overlap. On the other hand, a clear-cut

dynamical signature of the underlying molecular symmetry emerges for antisymmetric

initial condition (right panel in Fig. 22): the excitonic current is blocked when the

symmetry is present (probe at site 1), but it increases steadily when the probe (now at

site 2) breaks the molecule’s internal symmetry. In this way, initializing the molecule in

a dark state for bulk sites and monitoring the current time evolution when the probe is

located at different sites provides a clear-cut method to detect underlying symmetries

dynamically.

To better understand the dynamical clues of the underlying molecular symmetry,

we use now the spectral approach introduced in Section §3.1, and define φk, φ̂k ∈ B(H)

as the right and left eigenoperators of the Lindblad-Redfield Liouvillian LLR defined in

Eq. (130), respectively, with (common) eigenvalue Λk ∈ C. In particular

LLRφk = Λkφk , φ̂kLLR = Λkφ̂k , (135)

and any arbitrary density matrix ρ(0) can be spectrally decomposed using this

biorthogonal basis of B(H). In this way, we may write the time-evolved molecule’s

density matrix, ρ(t) = exp(+tLLR)ρ(0), as

ρ(t) =
∑
k

e+Λkt〈〈φ̂k|ρ(0)〉〉 φk , (136)
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with the Hilbert-Schmidt inner product 〈〈φ̂k|ρ(0)〉〉 = Tr(φ̂†kρ(0)).

The previous expression makes manifest that the system time evolution depends

on two important factors, namely the spectrum of LLR and the projections of the initial

state ρ(0) on the different eigenspaces of LLR. Fig. 23 shows the spectrum of LLR for

the 4-site toy molecule of interest when the probe acts on either site 1 (×) or 2 (©),

see also Fig. 21. This eigenspectrum is a particular instance of the general spectral

structure discussed in Section 3.1, see Fig. 2 there and the ensuing discussion. When

the probe acts on site 1, the molecule symmetry is preserved and there are two different

steady states, both with Λk = 0, one for each symmetry subspace (i.e. one symmetric

and another antisymmetric under the exchange of atomic sites 2 and 4). Initializing

the molecule in a dark bulk state, ρ(0) = ρ−, then constraints the system into the

antisymmetric steady state, which has zero current (red line in right panel of Fig. 22).

On the other hand, when the probe acts on site 2 the molecular symmetry is broken,

and one of the zero eigenvalues becomes a decay mode, defining a spectral gap ∆ < 0

(see zoom in right panel of Fig. 23). Interestingly, the (now unique) steady state is

mostly symmetrical (i.e. its overlap with ρ+ is high), while the decay mode is mostly

antisymmetric. In this way, initializing the molecule in state ρ(0) = ρ− when the probe

acts on site 2 we expect an exponential increase of the current at short times of the

form ∼ exp(+|∆|t), see Eq. (136) above and blue line in Fig. 22 (right), so τR = |∆|−1

defines the timescale to detect dynamically the transport effects of the probe-induced

molecular symmetry breaking. This timescale (and hence the spectral gap ∆) can

be easily determined by following the short-time current evolution. Finally, when the

molecular system is initialized in a symmetric state, ρ(0) = ρ+, the current will converge

quickly to its steady state value (note the timescale difference between left and right

panels in Fig. 22), irrespective of the position of the probe since in both cases (probe

at site 1 or 2) the initial state is very close to the final steady state. This explains the

observation of Fig. 22 (left).

In many experiments thermal (canonical) initial conditions for the density matrix

are employed, ρ(0) = Z−1 exp(−βH4s), with Z the associated partition function. Such

initial condition strongly overlaps with the symmetric density matrx ρ+, and hence we

expect a similar behavior of the exciton current as a function of time when the molecule is

initialized in such thermal state, see left panel in Fig. 22, namely no dynamical signature

of the internal molecule’s symmetry in the current evolution for this particular initial

condition. We also mention that the interplay between the relaxation timescale τR and

the probe characteristic timescales can be also studied in detail, see [116].

The previous dynamical signatures of molecular symmetries are robust even in the

presence of weak conformational disorder and/or environmental noise. Indeed, if both

noise sources are much weaker than the probe action (i.e. δ � γ, with δ the generic

noise strength and γ the probe-molecule coupling constant, see Eq. (131) above), then

one expects their effect on the spectrum of LLR to be negligible at first order so the

previous discussion remains valid in this case. This should remain true at least for

intermediate times, since the timescale for dissipation to become relevant, τdis ∼ δ−1, is
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Figure 24. Four level system used in Ref. [116] to study symmetry breaking. Left:

System without probe. Right: System with a local probe acting on site |2〉.

such that τR � τdis.

9.2. A more realistic example: the benzene molecule

Next we focus on the dynamical detection of symmetries in more complex molecules.

In particular, we briefly describe now the method described above as applied to the

para-benzene molecule, a system with 6 different atomic sites (see Fig. 24). The Huckel

Hamiltonian for this molecule reads now

H6s = ε
6∑

n=1

|n〉〈n|+ J
∑
〈n,m〉

|n〉〈m| , (137)

where the second sum runs over all pairs of nearest neighbors according to the interaction

topology depicted in Fig. 24, and the different parameters ε and J have the same

meaning as in Eq. (128). Moreover, two (terminal) sites are weakly connected to

thermal baths as in the case of the 4-site toy model.

In the absence of a probe, the open para-benzene molecular ring exhibits a

symmetry corresponding to the following unitary operator

π = exp
[
i(|2〉〈6|+ |6〉〈2|)⊗ (|3〉〈5|+ |5〉〈3|)

]
, (138)

which corresponds to exchanging molecular sites 2 ↔ 6 and 3 ↔ 5, or equivalently a

180o rotation around the axis connecting the terminal atomic sites interacting with the

baths (see Fig. 24). This symmetry thus leads to multiple, coexisting steady states.

For this particular case, three different steady states emerge, {ρk, k = 1, 2, 3}. The first

two steady states are pure states and contain no information on the molecule’s coupling

to the reservoirs. These two pure steady states can be written as ρk = |ψk〉〈ψk|, with

k = 1, 2, such that

|ψ1〉 =
1

2

(
|5〉+ |6〉 − |2〉 − |3〉

)
, (139)

|ψ2〉 =
1

2

(
|3〉+ |6〉 − |2〉 − |5〉

)
. (140)
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The remaining steady state ρ3 is non-trivial and contains nonequilibrium information

associated to the coupling with thermal baths at different temperatures.

The presence of a probe interacting with the molecular ring breaks its internal

symmetry and hence the degeneracy of the steady state. In particular, it can be

shown [116] that the two pure steady states become decay modes in the presence of

a probe, while the (nontrivial) nonequilibrium steady state remains (all three slightly

perturbed when compared to the probe-free case [196]). Interestingly, and in contrast

with the 4-site toy molecule discussed in the previous section, we may now break the

molecule symmetry in different ways, i.e. with probes in different configurations, and

the resulting decay modes reflect this richness, opening the door to the dynamical

identification of all possible molecular symmetries.

For the para-bencene ring, when the probe acts on a single bulk atomic site (see

left panel in Fig. 24), it can be shown [116] that the two former pure steady states,

ρ1,2 become decay modes with complex conjugate eigenvalues. As discussed in previous

section, this gives rise to a exponential-like relaxation of the current as a function of

time, with a characteristic time scale defined by the real part of these eigenvalues (which

is the same for both).

The second possibility consists in introducing a double (non-local) probe, as

depicted in the right panel of Fig. 24. In this case one can demonstrate that the

former steady states ρ1,2 become again decay modes [116], but now with different

real eigenvalues Λ2 < Λ1 < 0. Both eigenvalues, being close enough to the steady

state, define different timescales τ1,2 = |Λ1,2|−1 which show up in the relaxation to the

(unique) steady state. Indeed, demanding the initial state to be antisymmetric under the

exchange of sites 2 and 5 (an state equivalent to ρ1) and following the time evolution of

the excitonic current, we find a double exponential relaxation with distinct timescales τ1

and τ2. The amplitudes of both exponentials have opposite sign, and hence the current

exhibits a peak as a function of time which is the signature of the two unstable symmetry-

related steady states. This shows how, by using a combination of probe configurations

(local and non-local), we can detect the number of different steady states by measuring

the current multi-exponential relaxation at long enough times. More details on this

technique can be found in Ref. [116].
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10. Other symmetry-mediated control mechanisms

In this section we briefly review other approaches to control transport in open quantum

systems using symmetry as a tool. These approaches are different from our control

theory above in that the symmetries used as a resource to manipulate quantum

transport are different from the strong symmetries that we introduce in §3.2. In

particular, we will review next how (weak) symmetries of the steady-state density matrix

strongly constraint the transport properties of the system of interest [111]. These weak

symmetries can then be used to switch on or off currents in the system, even under

large boundary gradients, by suitably adjusting the boundary pumping of excitations.

We will study these effects in a particular model already discussed above, an open 1d

XXZ spin chain. In a second section we will also study how quantum transport can be

enhanced by breaking another symmetry inherent to the evolution of quantum systems,

namely time-reversal symmetry [112]. We will demonstrate this effect in a model of

chiral quantum walk, relevant in the study of transport phenomena when magnetic

fields are applied [112].

10.1. Manipulating transport in interacting qubit systems using weak symmetries of the

density matrix

As in previous sections, we are interested here in studying transport in open quantum

systems evolving in time according to a Lindblad-type master equation ρ̇ = Lρ, with L
the associated Lindbladian, see e.g. Eq. (73). In particular, and following Ref. [111],

we want to explore in this section the effect of weak symmetries [86] on the Lindblad

dynamics, and the constraints that these weak symmetries impose on the resulting

nonequilibrium steady state (NESS). We say that a system exhibits a weak symmetry

iff there exists a unitary operator U ∈ B(H) such that

L(UρU †) = U(Lρ)U † , ∀ρ ∈ B(H) . (141)

The presence of such a weak symmetry ensures that the steady-state solution ρNESS to

the Lindblad equation, defined by the condition LρNESS = 0, remains invariant under

the weak symmetry operator U , i.e.

ρNESS = UρNESSU † . (142)

Note that, provided Evans theorem holds [132], this steady state is unique despite the

existence of a weak symmetry. Indeed, strong symmetries of the dynamics as those

defined in Eq. (33) are also weak symmetriers, but the reverse statement is not true in

general. The existence of a weak symmetry also implies that the steady-state expectation

value of any physical observable of interest η ∈ B(H), defined as 〈η〉 = Tr(ηρNESS), obeys

the following relation [111]

〈η〉 = 〈U †ηU〉 , (143)
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where we have used the cyclic property of the trace. In particular, if the observable

η changes sign under the action of the symmetry operator U , so U †ηU = −η, the

previous relation forces 〈η〉 = 0. On the other hand, if η remains invariant under U ,

so U †ηU = η, the above symmetry relation does not constraint the expectation value

〈η〉. In this way, for a given quantum Hamiltonian, one can engineer the Lindblad

jump operators driving the system out of equilibrium to build up weak symmetries

of the full Lindbladian capable of switching off desired currents. This transport

manipulation method is markedly different from the symmetry-based tools described in

previous sections, for which the existence of multiple steady states or transport channels

dynamically coexisting due to the existence of a strong symmetry was pivotal.

In what follows we describe a specific example of this symmetry-mediated

mechanism for transport control. In particular, we will be interested again in a 1d

XXZ Heisenberg spin chain, a relevant model in the study of energy transport in one-

dimensional systems [44,126,127,129]. This model is described by the Hamiltonian

HXXZ =
L−1∑
i=1

(
σxi σ

x
i+1 + σyi σ

y
i+1 + ∆ σzi σ

z
i+1

)
≡

L−1∑
i=1

hi,i+1 , (144)

with ∆ a dimensionless constant and σx,y,zi the standard Pauli operators acting on site i.

In order to demonstrate the effect of a weak symmetry on the dynamics, we now drive

this spin chain out of equilibrium by coupling it to two baths acting at the ends of the

chain. The left bath is then defined by the following jump operators [111]

L1 =
√
A (σy1 − iσz1) , (145)

L2 =
√
α (σz1 + iσx1 ) , (146)

while the right baths is represented by

L3 = (σyL + iσzL) , (147)

L4 =
√
Aα (σzL + iσxL) , (148)

where A 6= 1 and 0 ≤ α ≤ 1 are two different constants which characterize the

strength of the pumping/extraction of excitations at both ends. For this type of reservoir

coupling, the system exhibits weak symmetries as defined above for the extreme cases

α = 0, 1 [111]. Indeed, for the case α = 0 the operator Ωx = (σx)⊗L satisfies the relation

L
(
ΩxρΩ†x

)
= ΩxL (ρ) Ω†x. (149)

The presence of this symmetry ensures that the solution to the equation L (ρNESS) = 0

is invariant under the effect of Ωx

ρNESS

(α=0) = Ωxρ
NESS

(α=0)Ω
†
x , ∀ρ ∈ B(H). (150)

On the other hand, when α = 1 both the system dynamics and the steady state remain

invariant under a more complicated symmetry operator [111]

ρNESS

(α=1) = ΩxUrotRρ
NESS

(α=1)RU
†
rotΩ

†
x. (151)
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Figure 25. Fig. 3.a from Ref. [111]. Average spin (solid line) and energy (dashed

line) currents for the XXZ spin chain as a function of parameter α. Note that the spin

current is switched off for α = 0, while for α = 1 the energy current goes to 0.

Here R is the right-left reflection operator, such that R (S1 ⊗ S2 ⊗ · · · ⊗ SL) =

(SL ⊗ SL−1 ⊗ · · · ⊗ S1)R, and Urot is a rotation in the XY plane such that Urotσ
x
i U
†
rot =

σyi and Urotσ
y
i U
†
rot = −σxi . In any case, and despite the existence of these weak

symmetries for particular values of α, this system presents a unique fixed point of the

dynamics because of the completeness of the algebra generated by the set of operators

{H,Li} i = 1, . . . , 4 (see Ref. [201] for a detailed discussion about the uniqueness of

steady states in the XXZ chain).

Bearing in mind the previous weak symmetries, we turn our attention to the system

transport properties. These are fully characterized by the spin and energy current

operators, defined respectively as

JSi,j ≡ 2
(
σxi σ

y
j − σ

y
jσ

x
i

)
, (152)

and

JEi ≡ −σzi JSi−1,i+1 + ∆
(
JSi−1,iσ

z
i+1 + σzi−1J

S
i,i+1

)
. (153)

These operators can be obtained starting from the continuity equations d
dt
σzi = JSi−1,i −

JSi,i+1 and d
dt
hi,i+1 = JEi − JEi+1, with hi,i+1 the energy of bond (i, i + 1), see Eq. (144).

It is straightforward to prove that in the steady state the currents across all bonds

are equal and hence we can define the general current operators as JS ≡ JSL,L−1 and

JE ≡ JEL . Next we study their steady state expectation value for the extreme cases

α = 0, 1 for which different weak symmetries emerge [111]. In particular, when α = 0 it

is found that

〈JS〉(α = 0) = Tr
(
ρNESS

(α=0)J
S
)

= −Tr
(
Ωxρ

NESS

(α=0)Ω
†
xJ

S
)

= −〈JS〉(α = 0) = 0 (154)

〈JE〉(α = 0) = Tr
(
ρNESS

(α=0)J
E
)

= Tr
(
Ωxρ

NESS

(α=0)Ω
†
xJ

E
)

= 〈JE〉(α = 0) . (155)

This means that for α = 0 the weak symmetry constraints the average value of the

spin current to zero, switching it off, while there is no restriction on the energy current.
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On the other hand, when α = 1 one finds the opposite situation [111], leading to

〈JE〉(α = 1) = 0 and no restriction for 〈JS〉(α = 1). There are hence two symmetry-

controlled regimes, one were the spin current is zero but not the energy flux, and

another regime with zero energy current and non-zero spin flow. For arbitrary values

of the control parameter (0 < α < 1), the energy and spin currents can be calculated

by solving numerically the Lindblad master equation for the steady state L (ρNESS) = 0

and calculating the expected values of the operators given by Eqs. (152) and (153), see

Ref. [111] for details. The measured values of the currents are shown in Fig. 25, where a

smooth crossover between the two extremal transport regimes is apparent. This shows

how weak symmetries of the density matrix can be engineered to control transport in

open quantum systems.

10.2. Breaking time-reversal symmetry to enhance quantum transport

In Refs. [112, 160] a different approach for the use of symmetry (and its breaking)

for quantum transport control is presented. In this case the symmetry broken is not

represented by a weak or strong symmetry in Buča’s and Prosen’s terminology [86].

What is studied now is the effect of breaking the time-reversal symmetry (TRS) of the

Hamiltonian. In particular, Zimborás and collaborators [112] demonstrate this effect

in a model of continuous-time quantum walk broadly used in literature to investigate

optimal transport.

A continuous quantum walk in a graph is defined by the Hamiltonian

HQW =
∑
n,m

Jn,m (|n〉〈m|+ |m〉〈n|) , (156)

where the summation runs over all the sites n,m that are connected in the graph,

and the weights Jn,m defining the adjacency matrix are real-valued. This Hamiltonian

exhibits time-reversal symmetry in the sense that the site-to-site transfer probability,

i.e. the probability Pn→m(t) = 〈m|ρ(t)|m〉 to occupy site m at time t with initial

condition ρ(0) = |n〉〈n|, remains invariant under the transformation t → −t, i.e.

Pn→m(t) = Pn→m(−t). Time-reversal symmetry is a well known feature of quantum

walks [202,203], and difficults the design of quantum systems with directional control of

transport. This problem has been addressed by different means, e.g. by increasing the

Hilbert space of the walker [204]. We note that directional quantum walks have several

applications in quantum information science [205,206].

A way to break the time-reversal symmetry of a continuous quantum walk without

increasing the Hilbert space of the system is to introduce a phase at each edge of

the graph [112]. This results in a continuous-time chiral quantum walk (CQW) with

Hamiltonian

HCQW =
∑
n,m

Jn,m
(
eiθn,m |n〉〈m|+ e−iθn,m|m〉〈n|

)
, (157)

where θn,m is the phase corresponding to the transition between sites n and m. In

the general case, each link can have a different phase, though this multiplicity is not
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Figure 26. Figure (1) from Ref. [112]. Left: Example of directional switch. The red

line represents the only connection with a non-vanishing phase. A single excitation

is initially placed at site I (blue) and its transport can be enhanced/supressed in the

direction of site T (purple) by the introduction of this phase. Right: Probability of

finding the excitation at site T as a function of time for different values of θ. Solid lines

represent purely coherent evolution while dashed lines correspond to an open-system

with an incoherent channel Lk = |T 〉〈s| between site T and the previous one s. Results

are mostly independent of the system length.

necessary for time-revesal symmetry breaking and a single phase θ can already alter

the behavior of the site-to-site transfer probability under the transformation t → −t
(see [112] for a detailed discussion).

The task in hand is to transfer a single-excitation between two specific sites of

a graph, that we denote here as I and T . The excitation is placed initially at site

I and it travels through the network with a dynamics which mix coherent quantum

evolution given by the Hamiltonian (157) and incoherent stochastic jumps between

different quantum states. All together, the CQW dynamics is described by a Lindblad

equation

ρ̇(t) = Lρ(t) = −i
[
HCQW , ρ

]
+
∑
k

LkρL
†
k −

1

2

{
L†kLk, ρ

}
, (158)

with Lindblad operators Lk, and the probability of finding the excitation at the outgoing

site T at time t is given by PT (t) = 〈T |ρ(t)|T 〉 with initial condition ρ(0) = |I〉〈I|.
The CQW can be used to create a quantum switch between two edges of a ladder,

see Fig. 26. The task to be performed in this case is to transfer one excitation from an

initial site I to a target site T with the maximum possible efficiency. This is done by

introducing a phase θ between the two first sites of each leg of the ladder, see Fig. 26.

Without the phase, the two legs are indistinguishable and the probability of finding the

excitation in one of them is equal than the other one for all times. The introduction of

a phase θ changes this situation, promoting transport along one leg.

The efficiency of this directional switch is studied from both the closed- and open-

system perspectives. In Fig. 26 the probability PT (t) of finding the excitation at site

T is displayed as a function of time. In the purely coherent evolution (solid lines) we

appreciate an oscillatory behaviour. The height of the first maximum can be modulated
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Figure 27. Figure (2.a) from Ref. [112]. Left: Sketch of the zig-zag chain that

allows the enhancement of energy transfer by time-reversal symmetry breaking. Red

links represent the edges with non-vanishing phase. Right: Probability of finding

the excitation at site T as a function of time for different phases. Solid lines represent

purely coherent evolution while dashed lines correspond to open system dynamics with

an incoherent channel between site T and the previous site.

by choosing a specific value of θ. In particular, this maximum can be enhanced by 134%

or supressed by 91% compared to the maximum in the time-symmetric case (θ = 0)

by changing θ. In the open quantum framework the outgoing site T is incoherently

connected to the previous site, resulting in a different, saturating time-dependence for

the transfer probability (dashed lines in Fig. 26). In this case the figure of merit is just

the population of site T at long times. By introducing an optimal phase θ this can be

enhanced up to an 81.4% with respect to the θ = 0 case [112]. Note that the dynamics

of this system for any θ 6= 0 is time-irreversible as PT (t) 6= PT (−t) ∀t > 0.

Chiral quantum walks can be also useful to enhance the transport in one dimension.

Figure 27 shows a zig-zag chain design also studied in Ref. [112] with this purpose.

This design exploits the directional switching effect in order to enhance the quantum

transport in a quasi-one dimensional system. In order to break the time-reversal

symmetry, one phase is added to one of the connections of each triangle. The transport

properties of the zig-zag chain are presented in Fig. 27, see also [112]. In this case

there is only one possible target site, and the purpose is not to redirect the excitation

in a specific direction, but to accelerate the energy transfer. To measure the speed of

energy transfer Ref. [112] defines the half-arrival time, τ1/2, as the first time when the

occupancy probability of the target reaches one half. One can also define the transport

speed, v1/2, as the inverse of τ1/2. The occupancy probabilities of the target site as a

function of time are displayed in Fig. 27 for different values of the phase θ. Under

purely coherent dynamics this probability presents again an oscillatory behaviour. In

contrast with the previous case of the directional switch, in this case the time when the

first maximum occurs depends on the value of the phase θ. This time can be minimised

by choosing θ = −π/2, and the height of the maximum is also optimal for this value of

the phase. When the incoherent trapping is included, the half arrival time is reduced

from a non-chiral value τ1/2(θ = 0) = 38.1 to τ1/2(θ = π/2) = 5.2 in the chiral case.

This represents a 633% enhancement of the transport speed [112].



CONTENTS 72

Remarkably, transport enhancement in chiral quantum walks has been experimen-

tally studied in Ref. [160] using room-temperature liquid-state nuclear magnetic res-

onance (NRM) on a three qubit system. The simplest graph with the possibility of

time-reversal symmetry breaking is a fully connected graph of three qubits. In the sin-

gle excitation picture the system Hilbert space has dimension three, defined by the basis

{|1〉, |2〉, |3〉}. The evolution used to study the effect of time-reversal symmetry breaking

is discrete and based in two-qubit gates of the form

Ui,j(α, θ) = exp

(
θ (−i cos (α)Si,j + sin (α)Ai,j)

2

)
. (159)

This operator is a combination of two different unitaries, one that preserves time-

symmetry Si,j = σxi σ
x
j + σyi σ

y
j and another one Ai,j = σxi σ

y
j − σyi σ

x
j that is time-

antisymmetric, with σx,yi the standard x, y-Pauli matrices acting on qubit i. In this

way, parameter α ∈ [0, 2π) is a time-symmetry parameter leading to a completely time-

symmetric dynamics only for α = π.

An evolution like the one given by Si,j is naturally found in many quantum systems.

The antisymmetric evolution Ai,j is much more complicated to perform [160]. Luckily,

the two-site gate (159) can be decomposed as

Ui,j(α, θ) = Rz
j (α)Ui,j(0, θ)R

z†
j (α), (160)

involving only symmetric unitaries combined with a local z-rotation Rz
j (α) = e−i(α/2)σzj .

The simplest unitary evolution that allows time-reversal symmetry breaking is

U (α, θ) = U1,2U2,3U3,1U3,1U2,3U1,2 . (161)

This is a palindromic circuit, meaning that it is composed for a series of gates that is the

same from right to left than from left to right. Non-palindromic circuits are trivially non

time symmetric and therefore they do not allow for time-reversal symmetry breaking.

The circuit designed to perform this evolution is sketched in Fig 28 [160].

The experiment was performed using Nuclear Magnetic Resonance (NRM) in a

molecular system of 13C-labeled trichloroethylene dissolved in deuterated chloroform

[160]. The molecule structure is displayed in Fig. 28. The 3-qubit network is formed

by the spins of the two 13C and the 1H atoms, and they are labeled as C1, C2, and

H. The experiment used gradient ascent pulse engineering (GRAPE) pulses of different

lengths to implement the two-body interactions [207]. The run time of the circuit is

26 ms, much smaller than the decoherence time. The experiment was performed for

α = 0, π
2
, π, 3π

2
, and θ was chosen to span [−π, π] in π/18 steps. Each experiment

was performed 37 times. The results of the experiment, together with the theoretical

prediction can be seen in Fig 29. In particular, for the time-reversal symmetric case

(α = 0), the maximum achievable probability of transporting the excitation is below

0.6. Moreover, in this case the probability PT is independent of the sign of θ. The same

behaviour is observed for α = π. For the case of maximal time-asymmetry (α = π/2)
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Figure 28. Figs. 1.b-c and 2.a from Ref. [160]. Left: Quantum circuit representing

the discrete evolution of the 3-qubit system. Lines connecting two qubits correspond

to gates U(0, θ). The left blank box corresponds to the z-rotation Rz(α), and the right

box corresponds to its adjoint. Right: Trichloroethylene molecule. Two 13C atoms (in

black) and one 1H atom (green) form the 3-qubit system of the experiment.

Figure 29. Fig. 1.a from Ref. [160]. State transfer probability |〈3|U(α, θ)|1〉|2. Solid

lines are theoretical predictions while dots represent experimental measures.

the transfer probability can go well beyond 0.6, approaching 1. The average error of the

experimental data compared to the theoretical prediction is about 6.0%. This error is

mainly due to decoherence and imperfection of the GRAPE pulses.

In summary, these results show how time-reversal symmetry breaking can be used

to enhance or suppress quantum transport.
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11. Summary and conclusions

In this paper we have shown how to harness symmetry to control energy transport

and fluctuations in quantum systems interacting with an environment. The natural

framework to develop this program is the theory of open quantum systems and its

extension to deal with the rare-event statistics. Consequently, we have introduced with

some detail in the initial sections of this paper both the quantum master equation

and the quantum jumps formalism, together with a brief description of full counting

statistics for the current and the associated large deviation theory. Building on the

ideas of Refs. [86–88], we have studied how the interplay between dissipative processes

and an underlying symmetry drives the quantum system of interest to a degenerate

steady state which preserves part of the information of the initial state due to the lack

of mixing between the different symmetry sectors. This opens the door to a complete

control of transport properties (both the average current and its statistics) by tailoring

this information via initial-state preparation techniques. We have reviewed two different

examples involving both spin chains [86] and ladders [115] where these symmetries and

their effect on transport properties become apparent.

Interestingly, the degeneracy of the nonequilibrium steady state in the presence

of a symmetry reflects a dynamical coexistence of different transport channels in the

quantum system, each with a well defined and different current. We demonstrate that

such coexistence stems from a general first-order-type dynamic phase transition (DPT)

in the statistics of current fluctuations. This DPT, which appears as a non-analyticity in

the cumulant generating function of the current or equivalently as a non-convex regime

in the current large deviation function, separates two (fluctuating) transport phases

characterized by a maximal and minimal current, respectively. Moreover, the time-

reversibility of the microscopic dynamics results in the appearance of a twin DPT for

rare, reversed current fluctuations.

The previous results apply to general open quantum systems, provided that the

few hypotheses leading to a description in terms of quantum master equations remain

valid. With the aim of validating our results, and motivated by the problem of

energy harvesting in (natural and artificial) photosynthetic complexes, we have studied

transport and current fluctuations in open quantum networks. These models, which

play an important role in many active areas of research†, exhibit different exchange

symmetries associated with their network topology, and as such are expected to display

the general phenomenology unveiled in previous sections, something that we confirm in

detailed numerical analyses. Furthermore, our symmetry-based approach to transport in

quantum networks suggests design strategies to build quantum devices with controllable

transport properties. In particular, based on our analysis of quantum networks, we

introduce the concept of a symmetry-controlled quantum thermal switch: this is a

† These range from e.g. the understanding of quantum effects in photosynthesis to the functional role

of dephasing in quantum transport or the interplay between network topology and quantum dynamics,

to mention just a few.
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quantum qubit device with network architecture that, when coupled to heat reservoirs at

different temperatures, is capable of modulating at will the heat current flowing from the

hot to the cold bath by just playing with the initial state symmetry. This is essentially

different from other transport control setups that have been recently introduced, e.g. by

coupling lattice vibrons to internal states of trapped ions in crystal [128]. Finally, the

symmetry-induced coexistence of two dynamical phases with different activity levels in

a three-spin network model with collective dissipation has been reviewed with some

detail [167], as this system can in principle be engineered in hybrid electro/opto-

mechanical settings.

Furthermore, the recent possibility of creating coherent cavity networks with

arbitrary connectivity [208] has opened the door to new potential experimental

realizations of these symmetry-based quantum control ideas. Advancing along these

lines, and based on our schematic model of symmetry-controlled switch, we describe

a detailed experimental setup introduced in [15] where symmetry-enabled quantum

control can be realized in the lab. The system consists in three optical cavities coupled

as a linear array, with both terminal cavities coupled in turn to reservoirs at different

temperatures, and a central cavity doped with two identical Λ-atoms externally driven

by laser fields. Note that an exchange of the two atoms leaves the system invariant and

hence constitutes a symmetry in the language of previous sections. Under well-defined

conditions, the excited states of both Λ-atoms can be adiabatically eliminated, and the

two-atoms complex behaves as a four level system with symmetric and antisymmetric

manifolds. The mixing between these two manifolds is controlled by the external laser

field, so switching off the laser at the right moment leaves the diatomic system entrained

in one of the symmetry subspaces, enabling the control of the photon current across the

optical cavities. This phenomenon is fully confirmed in numerical investigations of the

current statistics in this atomic switch, and the chances are that it can be realized in

laboratory experiments using current technologies. Interestingly, the proposed device

can be used also as a quantum memory to store maximally-entangled states [116], since

the state of the two-atom system (in particular whether the system is in a dark state)

can be measured without interferring with its dynamics by just monitoring the current

flowing to the thermal baths.

The previous discussion revolves around the use of symmetry to control quantum

transport. However, in an interesting U-turn, it is also possible to use transport as an

indicator of hidden symmetries, and Section 9 describes such an application to molecular

systems. In particular, we describe a dynamical method first introduced in [116] to

detect molecular symmetries by analyzing the time evolution of the exciton current

in molecules coupled to external reservoirs which impose a gradient. To detect the

different symmetries, one needs to introduce a probe acting on the molecule and explore

the dependence of the current evolution with the probe position and the symmetry of

the initial state. The probe serves as a possible symmetry-breaking element, depending

on its location in the molecular complex. Signatures of molecular symmetries are found

in particular when initializing the molecule in an antisymmetric state and moving the
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probe from a symmetry-preserving site to a symmetry-breaking site: the exciton current

is blocked in the former case by the dark state formed, while it increases steadily in

time when the probe breaks the underlying molecular symmetry. These dynamical

signatures of symmetry remain robust even in the presence of conformational disorder

and environmental noise, provided that both noise sources are weaker than the molecule-

probe interaction.

To end this review, we describe with some detail other symmetry-based mechanisms

to control quantum transport. These methods differ from the control mechanisms

described previously in that the symmetries used as a resource to manipulate quantum

transport are different from the strong symmetries introduced in §3.2. In particular, we

review a method described in [111] to manipulate spin and energy currents in driven

spin chains using weak symmetries of the steady-state density matrix. We also describe

the enhancement of quantum transport that emerges when time-reversal symmetry is

broken, as may happen in chiral quantum walks [112].

In summary, we have analyzed the impact of symmetry in the transport properties

of dissipative quantum systems, and how this interplay can be used to control or

characterize the systems of interest. We expect the symmetry-based toolbox here

described will trigger further advances in dissipative state engineering and dissipative

quantum computation [17–22].
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Appendix: Glossary

Glossary of most used terms:

• H: Hilbert space

• D ≡ dim(H): dimension of Hilbert space

• |ψ〉 ∈ H: state vector of a system

• 〈ψ|ϕ〉: inner product, |ψ〉, |ϕ〉 ∈ H
• B(H) space of linear bounded operators acting on the Hilbert space H
• H ∈ B(H): Hamiltonian

• ρ ∈ B(H): density matrix

• 〈〈σ|ρ〉〉 = Tr(σ†ρ): Hilbert-Schmidt inner product, σ, ρ ∈ B(H)

• 1: identity matrix

• L ∈ B(B(H)): generic Liouville-type superoperator (including Lindblad, Redfield,

etc. superoperators) that determines the time evolution of a density matrix.

• [A,B] = AB −BA commutator

• {A,B} = AB +BA anticommutator

• TrA: trace over the subspace A.

• Õ(t) = eiHtO e−iHt: operator in the interaction (Dirac) picture, O ∈ B(H)

• η: system-environment interaction strength

• V =
∑

l Sl ⊗ El ∈ B(HT ): system-environment interaction operator

• Sl ∈ B(H): interaction operator acting on the system

• El ∈ B(H)E: interaction operator acting on the environment

• ρth: thermal density matrix

• Li ∈ B(H): Lindblad operators

• D ∈ B(B(H)): dissipator superoperator

• HXXZ Hamiltonian of the XXZ-chain model.

• HLd Hamiltonian of the XX-XXZ ladder model.

• Λk: eigenvalues of Lindblad superoperator L.

• φk: Right eigenmatrix of L
• φ̂k: Left eigenmatrix of L
• U ∈ B(H): symmetry operator, such that [U,H] = 0 = [U, Sl] ∀l
• Ul,r ∈ B(B(H)): right and left adjoint superoperators associated to the unitary

operator U

• ρNESS
α : nonequilibrium steady-state (NESS) density matrix with symmetry index α

• ∆: spectral gap in the spectrum of L
• W(t) ∈ B(B(H)): full propagator to time t associated to master equation
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• χ: quantum jumps trajectory

• Π0(t) ∈ B(B(H)): current-free propagator

• Wχ(t) ∈ B(B(H)): unnormalized propagator conditioned on trajectory χ

• Qχ: total current (or total number of quanta interchanged between the system and

the selected incoherent channel) conditioned on trajectory χ

• XQ(t) = {χ : Qχ = Q}: set of all trajectories of duration t with a fixed extensive

current Q

• ρQ(t): current-resolved density-matrix, or reduced density matrix in the space of Q

quanta interchanged with an incoherent channel

• ρλ(t) =
∑∞

Q=−∞ ρQ(t)e−λQ: Laplace transform of current-resolved density matrix

• λ: counting field conjugated to the current

• Pt(Q) = Tr ρQ(t): probability of observing a total current Q after a time t

• Zλ(t) = Tr ρλ(t): moment generating function of the current probability

distribution

• q = Q/t: time-averaged current

• 〈q〉: average current

• G(q): current large deviation function (LDF)

• µ(λ): large deviation function associated to the counting field λ. Scaled cumulant

generating function of the current distribution. Also Legendre transform of the

current LDF, µ(λ) = maxq[G(q)− λq]
• Lλ: deformed or tilted Lindblad superoperator defining the evolution of ρλ(t)

• ωαβν(λ) ∈ B(H): common right eigenfunction of Lλ and Ul,r
• ω̂αβν(λ) ∈ B(H): common left eigenfunction of Lλ and Ul,r
• Ωα: eigenphases of Ul,r
• µν(λ): eigenvalue of Lλ associated to eigenfunction ωαβν(λ)

• µα0
0 (λ): is the eigenvalue of Lλ with largest real part and symmetry index α0 among

all symmetry diagonal eigenspaces with nonzero projection on the initial state ρ(0)

• 〈qα〉: average current for NESS ρNESS
α

• Hnet: Hamiltonian of the open quantum network model

• σx,y,z: Pauli matrices

• σ±: raising and lowering operators

• Ldeph
j : Lindblad operator associated to environment-induced dephasing

• HSW Hamiltonian of the atomic-switch model.

• ΩL,M : Rabi frequencies of laser fields

• H4s: Hückel Hamiltonian for the 4-site toy molecule

• H6s: Hückel Hamiltonian for benzene molecule

• LLR: Redfield-Lindblad Liouvillian superoperator for the molecule+probe system



CONTENTS 79

• C(t): time-correlator describing the probe dynamics in the Redfield approach

• ωD: Lorentz-Drude cutoff frequency
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[31] C. Cohen-Tannoudji and D. Guèry-Odelin. Advances in Atomic Physics. An overview. World

Scientific Publishing, 2011.

[32] H.J. Briegel and G. de las Cuevas. Projective simulation for artificial intelligence. Sci. Rep.,

2:400, 2012.

[33] M. Schuld, I. Sinayskiy, and F. Petruccione. The quest for a quantum neural network. Quantum

Inf. Process., 13:2567, 2014.

[34] M. Plenio and S. Huelga. Dephasing-assisted transport: quantum networks and biomolecules.

New J. Phys., 10:113019, 2008.

[35] J. Cai, G.G. Guerreschi, and H.J. Briegel. Quantum control and entanglement in a chemical

compass. Phys. Rev. Lett., 104(22):220502, 2010.

[36] J. Cai, S. Popescu, and H.J. Briegel. Dynamic entanglement in oscillating molecules and potential

biological implications. Phys. Rev. E, 82(2):021921, 2010.

[37] G. D. Scholes, G. R. Fleming, A. Olaya-Castro, and R. van Grondelle. Lessons from nature about

solar light harvesting. Nature Chemistry, 3:763, 2011.

[38] M. Mohseni, P. Rebentrost, S. Lloyd, and A. Aspuru-Guzik. Environment-assisted quantum

walks in photosynthetic energy transfer. J. Chem. Phys., 129(17):174106, 2008.

[39] K.M. Pelzer, T. Can, S.K. Gray, D.K. Morr, and Gregory S. Engel. Coherent transport and energy

flow patterns in photosynthesis under incoherent excitation. J. Phys. Chem. B, 118:2693, 2014.

[40] F. Levi, S. Mostarda, F. Rao, and F. Mintert. Quantum mechanics of excitation transport in

photosynthetic complexes: a key issues review. Rep. Prog. Phys., 78:082001, 2015.

[41] T. Prosen. Open xxz spin chain: Nonequilibrium steady state and a strict bound on ballistic

transport. Phys. Rev. Lett., 106:217206, 2011.
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