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Abstract
Hard particle systems are among themost successful, inspiring and prolificmodels of physics.
They contain the essential ingredients to understand a large class of complex phenomena,
from phase transitions to glassy dynamics, jamming, or the physics of liquid crystals and
granular materials, to mention just a few. Aswe discuss in this paper, their study also provides
crucial insights on the problem of transport out of equilibrium. A main tool in this endeavour
are computer simulations of hard particles. Here we review some of our work in this direc-
tion, focusing on the hard disks fluid as a model system. In this quest we will address, using
extensive numerical simulations, some of the key open problems in the physics of transport,
ranging from local equilibrium and Fourier’s law to the transition to convective flow in the
presence of gravity, the efficiency of boundary dissipation, or the universality of anomalous
transport in low dimensions. In particular, we probe numerically the macroscopic local equi-
librium hypothesis, which allows to measure the fluid’s equation of state in nonequilibrium
simulations, uncovering along the way subtle nonlocal corrections to local equilibrium and a
remarkable bulk-boundary decoupling phenomenon in fluids out of equilibrium. We further
show that the the hydrodynamic profiles that a system develops when driven out of equilib-
rium by an arbitrary temperature gradient obey universal scaling laws, a result that allows
the determination of transport coefficients with unprecedented precission and proves that
Fourier’s law remains valid in highly nonlinear regimes. Switching on a gravity field against
the temperature gradient, we investigate numerically the transition to convective flow. We
uncover a surprising two-step transition scenario with two different critical thresholds for the
hot bath temperature, a first one where convection kicks but gravity hinders heat transport,
and a second critical temperature where a percolation transition of streamlines connecting the
hot and cold baths triggers efficient convective heat transport. We also address numerically
the efficiency of boundary heat baths to dissipate the energy provided by a bulk drivingmech-
anism. As a bonus track, we depart from the hard disks model to study anomalous transport in
a related hard-particle system, the 1d diatomic hard-point gas. We show unambiguously that
the universality conjectured for anomalous transport in 1d breaks down for this model, call-
ing into question recent theoretical predictions and offering a new perspective on anomalous
transport in low dimensions. Our results show how carefully-crafted numerical simulations
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of simple hard particle systems can lead to unexpected discoveries in the physics of transport,
paving the way to further advances in nonequilibrium physics.

Keywords Nonequilibrium statistical physics · Fourier’s law · Local equilibrium ·
Convection · Anomalous transport · Molecular dynamics

1 Introduction

Understanding the physics of systems driven out of equilibrium remains as a main challenge
of theoretical physics. In contrast with equilibrium statistical physics, there is yet no general
bottom-up approach capable of predicting nonequilibrium macroscopic behavior in terms of
microscopic physics [1–3], a direct result of the key role of dynamics out of equilibrium,
even for nonequilibrium steady states [4,5]. This is a major drawback in our ability to control
and engineer many natural and artificial systems which typically function out of equilibrium.
A key feature of most nonequilibrium systems is transport, i.e. the appearance of nonzero
currents of locally-conserved observables (as e.g. mass, momentum or energy) in response to
external or internal driving mechanisms. Discerning how microscopic dynamics determines
the long-time averages and fluctuations of these currents is naturally a central question in
nonequilibrium statistical physics [3–5]. This problem has proven to be challenging, and
up to now only few exactly solvable cases (mainly for simplified stochastic lattice models
[4,5]) are fully understood. Nonequilibrium thermodynamics teaches us that, at least close
to equilibrium, the steady-state currents typical of nonequilibrium transport are proportional
to the thermodynamic forces of the problem, given in terms of the gradients of the different
hydrodynamic fields [6]. This is the case e.g. of Fourier’s law of heat conduction, which
establishes the proportionality between the heat current and the local temperature gradient
in a material, with the proportionality factor defining the heat conductivity κ , a key material
property. Itâs going to be 200 years since Fourier stated this seminal law [7], but its rigorous
microscopic understanding still poses a formidable problem [8].

Given the daunting difficulty of studying the dynamical (transport) properties of systems
with many degrees of freedom, it seems mandatory to formulate simplified models of reality
that, while capturing the fundamental ingredients of real systems, are more easily tractable.
Universality arguments suggest that the emergent transport properties are not sensitive to
microscopic details, but only to global features such as dimensionality, symmetries, conser-
vation laws, range of forces, etc. One of the simplest ways to simulate microscopically a
fluid consists in modelling its constituent particles as impenetrable bodies undergoing bal-
listic motion in between elastic collisions with neighboring particles. Such oversimplied
description picks up however the essential ingredient underlying the physics of a large class
of fluids, namely the strong, short-distance repulsion between neighboring molecules. This
short-range repulsion dominates the local and global emerging structures in the fluid, as well
as the nature of interparticle correlations [9,10]. In this way, hard-particle models and their
relatives capture the physics of a large class of complex phenomena, ranging from phase
transitions or heat flow to metastability, glassy dynamics, jamming, or the physics of liquid
crystals and granular materials, to mention just a few [8–31], hence defining one of the most
successful, inspiring and prolific models of physics.

At the theoretical level, hard-particle models offer also many advantages. For instance, the
homogeneity of the interaction potential [9,32,33] leads to a density-temperature separability
in their thermodynamic and transport properties (e.g. equation of state, transport coefficients,
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etc.) which simplifies considerably their analysis. Moreover, the low- and moderate-density
transport properties of hard-particle systems are directly comparable with predictions from
kinetic theory (either Boltzmann-type equations for low-density or ring-kinetic theory for
higher densities) [19,34]. Hard-particlemodels are also useful as reference systems for pertur-
bative theories of interacting particle systems [9,35,36], an idea already contained in Van der
Waals equation of state. However, the real power of hard particle models is the possibility of
studying efficiently their large-scale emergent properties in detailed computer simulations.
These numerical experiments allow us to obtain valuable information on problems which
would be intractable in other way, providing at the same time crucial insights to understand
the complex nonequilibrium behavior of many-body systems. There exist an extensive lit-
erature on efficient event-driven molecular dynamics algorithms for hard-particle models
[37,38], which open the door to massive, long-time simulations with large numbers of parti-
cles which are usually unfeasible for more realistic models. This last feature turns out to be
crucial for the purposes of this paper, as the phenomenology that we will address typically
requires excellent statistics to pick up weak but crucial signals in a sea of noisy fluctuations.

Despite the many recent advances in the understanding of nonequilibrium physics in
general and transport phenomena in particular, there remain a large set of open, pressing
problems that need to be addressed to further progress in these fields. These problems include,
but are not restricted to, the following questions:

• Is macroscopic local equilibrium a robust property far from equilibrium? Can we use it
to measure with precision equilibrium properties in nonequilibrium simulations?

• Can we measure corrections to local equilibrium in fluids at the fluctuating level? What
is the nature of these corrections and what do they tell us about nonequilibrium behavior,
in particular non-locality?

• Are there universal scaling features in the inhomogeneous structures and hydrodynamic
profiles that a many-body system develops when driven out of equilibrium? If so, can we
use these universal features to characterize transport in these systems?

• What is the nature of the Rayleigh–Bénard convection instability at the microscopic
level? What type of order parameter captures best the convection transition?

• How is heat transport in a fluid affected by the transition to convective flow? Are there
different heat conduction regimes?

• Can boundary heat baths dissipate effectively the energy input of a bulk driving mecha-
nism? Can this competition lead to a well-defined nonequilibrium steady state?

• What is the nature and microscopic origin of the transport anomaly in low-dimensional
materials? Can we use scaling methods to characterize this anomaly?

• Moreover, is the heat transport anomaly of 1d momentum-conserving fluids and crystals
universal? Can we determine with precission the anomaly exponent?

Thepurpose of this paper is to address these and related important questions in nonequilibrium
physics using detailed numerical simulations of hard particle systems as a main tool, together
with a recently introduced scaling approach to transport that offers unprecedented precission
in the determination of key transport observables [33,39].

We structure this paper as follows. In Sect. 2 we introduce the hard disks model, paying
special attention to some details of the simulations as e.g. the definition of stochastic thermal
walls, range of parameters used, measurements of local and global observables, as well as
error analysis. Section 3 summarizes a number of important yet basic known properties of
hard disks, some of which will be useful in the course of our simulations and data analysis.
These include equilibrium results in terms of the (unknown) exact equation of state, the effect
of a gravitational field on the equilibrium physics of hard disks, as well as hard disks hydrody-
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namics (Navier–Stokes equations) and the associated transport coefficients. We then proceed
in Sect. 4 to test our numerical simulations in a thermodynamic equilibrium situation. In
particular we measure pressure and density profiles under varying graviational fields to test
data against the hydrostatic formulas. In Sect. 5 we give our first step into the nonequilibrium
physics of hard disks by driving the system with a boundary temperature gradient in the
absence of gravity. Our goal in this section is to probe numerically the macroscopic local
thermodynamic equilibrium (MLTE) hypothesis, which plays an important role in physics,
being at the heart of many successful mesoscopic theories, from the classical hydrodynamics
or nonequilibrium thermodynamics to recent macroscopic fluctuation theory. In particular,
we show that MLTE is a property much stronger than previously anticipated, even under
important finite-size effects. This allows us to measure the hard disks equation of state in
nonequilibrium simulations with an excellent accuracy comparable to the best equilibrium
simulations, uncovering along the way subtle nonlocal corrections to local equilibrium and
a remarkable bulk-boundary decoupling phenomenon in fluids out of equilibrium. In Sect. 6
we further show that the the hydrodynamic profiles that hard disks fluid develops when driven
out of equilibrium by an arbitrary temperature gradient obey universal scaling laws, a result
that allows the determination of transport coefficients with unprecedented precission and
proves that Fourier’s law remains valid in strongly nonlinear transport regimes. In particular,
this scaling method allows us to measure the marginal anomaly of the heat conductivity pre-
dicted for hard disks. In Sect. 7 we investigate numerically the transition to convective flow
in hard disks by switching on a gravity field g opposite to the temperature gradient direction.
We uncover a surprising two-step convection transition scenario with two different critical
temperatures. When the hot bath temperature reaches the first critical point, convection kicks
in (as shown by a structured velocity fields) but gravity results in hindered heat transport as
compared to the gravity-free case. It is at the second (higher) critical temperature that a perco-
lation transition of streamlines connecting the hot and cold baths triggers efficient convective
heat transport. We also show here numerically the existence of universal master curves for
hydrodynamic fields in convective flow, at least for large values of the hot bath temperature.
Section 8 is devoted to an important and pervasive question in nonequilibrium physics: can
bulk forcing be balanced by a boundary dissipationmechanism?We answer affirmatively this
question using simulations of hard disks with Gaussian (deterministic) boundary thermostats
and a constant bulk driving field. In Sect. 9 we depart from the hard disks model to study
anomalous transport in a related hard-particle system, the 1d diatomic hard-point gas. In par-
ticular, we show that the universality conjectured for anomalous transport in 1d breaks down
for this model, calling into question recent renormalization-group and mode-coupling pre-
dictions and offering a new perspective on anomalous transport in low dimensions. Finally,
a summary of the main results of this paper, including a discussion on their implications and
possible avenues of future research, is provided is Sect. 10. The appendices contain technical
details that, for the sake of clarity, we have omitted in the main text.

We note that the results presented in this review paper have been discussed in more detail
in other works by these authors, see Refs. [32,33,39–41].

2 The Hard Disks Model

As already discussed, hard disks systems and their relatives capture the physics of a large
class of complex phenomena [8–31], providing also key insights on the problem of heat
conduction out of equilibrium, a main theme in this work.
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In particular, in this work we will be interested in a two-dimensional system of N hard
disks moving in a square box of unit side L = 1, see Fig. 1, possibly under the action of
a constant external field g = (0,−g) (which of course includes the gravity-free case for
g = 0). Each disk has unit mass (m = 1) and a radius � chosen so that the global areal
density or packing fraction η ≡ Nπ�2/L2 is fixed, i.e. � = [ηL2/(Nπ)]1/2. This will allow
us to perform detailed finite-size analysis as N → ∞ at constant η and fixed temperature
gradient. The disks dynamics consists in two distinct parts, namely free flight and collisions.
The equations of motion during the free flight intervals in between collisions are simply given
by Newton’s second law, dvi/dt = g, with trivial solution

ri (t) = ri (0) + vi (0)t + 1

2
gt2 , vi (t) = vi (0) + gt , (1)

where ri (0) and vi (0) are the values of the i th-disk position and velocity, respectively, right
after its last collision event. Disks collisions can be of three different types, namely (i)
elastic collisions with another disk, (ii) elastic collisions with reflecting boundaries (if any),
and (iii) collisions with stochastic walls simulating boundary thermal baths. In case (i) two
disks collide when their relative distance equals 2�. Linear momentum and kinetic energy
are conserved in the collision, and we assume that the velocity component perpendicular
to the vector joining the disks’ centers is unaltered during the collision. In this way we
neglect any internal rotational degrees of freedom for the disks. In case (ii), when the disk
collides elastically with a boundary wall, it gets perfectly reflected, e.g. for a wall along the
x-direction the collision implies that vx → −vx and vy → vy , being v = (vx , vy) the disk
velocity vector. Finally, when a disk collides with a stochastic thermal wall in case (iii), its
new velocity is randomly drawn from a Maxwellian distribution P(x,y)

0,L (vx,y) defined by the
wall temperature T0,L . For a stochastic wall along e.g. the y-direction we have

P(x)
0,L(vx ) = 1

√
2πkBT0,L

exp

(
− v2x

2kBT0,L

)
,

P(y)
0,L(vy) = |vy |√

2πkBT0,L
exp

(

− v2y

2kBT0,L

)

, (2)

with the additional constraint that the y-component of the velocity changes sign (kB is
Boltzmann’s constant). The above random process simulates in a highly efficient manner the
flow of energy in and out of the system from an infinite, equilibrium reservoir at the chosen
temperature. Note also that for any non-zero temperature gradient �T ≡ |TL − T0|/L we
expect a net heat current flowing from the hot reservoir to the cold one, as given by Fourier’s
law [8]. We note that, in addition to reflecting or thermal boundaries, we will consider
when necessary periodic boundary conditions along any of the directions. Furthermore, when
investigating the efficiency of boundary dissipation in Sect. 7, we will introduce a new type of
boundary bath, the deterministicGaussian bath [41], capable of thermalizing the systemwhile
maintaining the time-reversibility of the deterministic microscopic dynamics, see Fig. 1.

As for the parameters used in the simulations reported in this paper, we will consider
systems with N ∈ [957, 8838] hard disks so as to analyze in detail finite-size effects and the
thermodynamic (N → ∞) limit of the transport phenomena of interest. Global packing frac-
tions in the broad range η ∈ [0.05, 0.725] will be investigated, comprising from dilute gases
to dense solid-like behavior. Moreover, when studying the effect of temperature gradients,
we will consider boundary temperatures T0 ∈ [2, 20] and TL = 1. We will also study the
effect of gravity on transport by using external field values g = 5, 10 and 15, together with
the gravity–free case g = 0. Computer simulations of hard disks systems have numerous
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Fig. 1 Schematic view of the different hard disks systems simulated in this paper under varying driving
protocols and boundary conditions. Left panel: hard disks fluid in contact with stochastic thermal walls at
different temperatures T0,L along the x-direction and periodic boundary conditions along the y-direction
in the absence of gravity. Central panel: hard disks under a gravity field of strength g in the y-direction
in contact with hot (cold) stochastic thermal wall at the bottom (top) of the simulation box, and subject to
reflecting boundary conditions along the x-direction. Right panel: hard disks system in contact with Gaussian
thermostats in the x-direction. The disks in the bulk are accelerated in the periodic y-direction by a driving
field E , while disks at the shaded lateral boxes act as deterministic thermal baths, keeping constant their total
kinetic energies for all times. Disks centers collide elastically with walls (represented as thick black lines)

advantages. The disks microscopic dynamics is simple enough and can be implemented algo-
rithmically with high efficiency and with arbitrary precision (see for instance [37,42,43]).
Moreover, its purely kinetic structure makes possible to fix one of the system external param-
eters (T0, TL , g) by just applying a time rescaling without affecting the system dynamics. In
other words, if we rescale time, t = αt ′, disks velocities are rescaled in turn by v = v′/α so,
reparametrizing the temperature of the thermal baths as T ′

0,L = α2T0,L and the gravity field

as g′ = α2g, one can prove that the dynamical evolution of a system of disks with parameters
(T0, TL , g) is indistinguishable from that of a system with parameters (T ′

0, T
′
L , g′). In this

way one can arbitrarily choose α = 1/
√
T 1 in order to fix to 1 the temperature of one of the

thermal baths. This trick reduces the number of external control parameter to just (T0, g),
together with the global packing fraction η. In order to obtain the behavior of any observable
for arbitrary values of TL one just should apply the inverse time rescaling to the dynamical
variables defining the observable of interest.

Next we discuss some details of the simulations. Initially the disks are placed regularly
on the box with an initial velocity vector of random orientation and modulus

√
T0 + TL . We

then evolve the system during 103 −5×104 collisions per particle (depending on the system
size; note that our time unit was set to one collision per particle on average) to guarantee that
the correct steady state has been reached. Only then we begin measurements of the different
observables of interest every 100 collisions per particle, for a total time of 107 collisions per
particle, thus collecting a total of M ∼ 105 data for averaging each observable. We use a
3σ -convention for the errorbars, so observables have typical errors of 3σ/

√
M 	 0.01σ that

suffices to analyze in detail the emerging behavior. Small corrections (∼ 0.1%) due to the
spatial discretization of local measurements are explicitly taken into account and subtracted
(see Appendix A in Ref. [32] for a brief description of this technical issue).

Before ending this section some words on measurements are mandatory. In order to char-
acterize the spatial structures of the different nonequilibrium steady states we will encounter
in the course of this work, we will perform local measurements of different observables of
interest. For that, we will divide the unit box into either nc × nc (virtual) square cells of side
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� = 1/nc for measurements of two-dimensional structure, or rather into nc rows of width
� = 1/nc along the gradient direction for measurements of one-dimensional profiles. In
particular, we will use nc = 30 for 2d maps, while nc = 15 or 30 will be used for 1d profiles,
see below. In what follows we discuss with some detail the 2d case, the 1d case being equiv-
alent. A given cell is characterized by a pair of integer indexes (n, l), with n, l = 1, . . . , nc.
We will be interested in hydrodynamic magnitudes at a givenmacroscopic point (x, y), with
x, y ∈ [0, L = 1], that correspond to averages of some microscopic observable at cell (n, l),
with x = (n − 1/2)/nc and y = (l − 1/2)/nc. In this way we use the center of each cell as
the macroscopic position of the hydrodynamic fields. Let a(r , v) be a microscopic observ-
able depending on a set of particle positions ri and velocities vi . This observable can be for
instance the kinetic energy of a particle, a(ri , vi ) = v2i /2, or the local potential energy of
a particle, a(ri , vi ) = gri,y where ri = (ri,x , ri,y). The extensive value of a(r , v) on cell
(n, l) at time t is given by

A(n, l; t) =
∑

i :ri (t)∈B(n,l)

a(ri (t), vi (t)) (3)

where B(n, l) is the spatial domain associated to cell (n, l). The previous sum involves a
number N (n, l; t) = ∑

i :ri (t)∈B(n,l) 1 of particles at cell (n, l) at time t . We perform M
measurements of A(n, l; tk) at equispaced times tk , k ∈ [1, M], during the system evolution
at the stationary state. The (intensive) average per particle is now given by

〈a(n, l)〉M =
∑M

k=1 A(n, l; tk)
∑M

k=1 N (n, l; tk)
(4)

Note that, when compared with the average of A(n, l; t)/N (n, l; t) over time, the previous
averaging method exhibits a better convergence to the limiting M → ∞ ensemble value,
yielding also smaller fluctuations for the same M . For the error analysis, we assume that the
set {A(tk)}Mk=1 of M measurements of a given (local or global) observable is decorrelated in
time so that the law of large numbers applies. In this case we expect for the average value of
A in the large-M limit

〈A〉M 	 〈A〉∞ + σ(A; M) ξ (5)

where ξ is a Gaussian random variable with zero mean and unit variance, and

〈A〉M = 1

M

M∑

k=1

A(tk) , σ (A; M) = 1

M

√√√√
M∑

k=1

[A(tk) − 〈A〉M ]2 (6)

In this work our estimate for the asymptotic ensemble average will be 〈A〉∞ = 〈A〉M ±
3σ(A; M), so 99.7% of the data are within the errorbars shown in the analysis below.

3 A Crash Course on Hard Disks

As argued above, the hard disks system can be considered as a paradigm in many-body
physics. Despite having extremely simple dynamics, essentially ballistic motion in between
elastic collisions with neighboring disks, the hard disks fluid displays a landscape of highly
nontrivial properties as a result of intricate collective effects among its individual constituents.
For instance, hard disks exhibit an intriguing double phase transition [16] as a function of
the packing fraction, a two-step melting transition which has been clarified only recently in
extensive computer simulations [44], with a first-order transition from the liquid phase to a
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hexatic phase, followed by a continuos hexatic-solid transition. Moreover, hard disks also
exhibit the important and universal long-time tails in correlation functions [38,45]whichwere
first discovered by Alder and Wainwright for hard spheres [18] and characterize relaxation
in most fluids. However it is worth noting that, despite the interest of the hard disks model,
relevant equilibrium information as e.g. its exact equation of state (EoS) has not yet been
derived analytically in the context of the equilibrium statistical physics [9].

In this section we briefly review a few known basic properties of hard disks, some of
which will be useful in the course of our simulations and data analysis below. We start with
some equilibrium properties. The canonical partition function for a two-dimensional system
of N disks with mass m and radius � enclosed in a square box of side L at a temperature T
is given by

Z(N , S, T ) = 1

h2N N ! (2πmkBT )N Zc(N , S) , (7)

where h and kB are Planck’s and Boltzmann’s constants, respectively (that will be set to 1
below by an appropriate choice of units), S = L2 is the box surface and Zc is the configu-
rational partition function that, for hard disks, doesn’t depend on temperature. Zc(N , S) is
not known in general but can be connected with the equation of state. Indeed, the hard disks
EoS has been extensively studied numerically, and excellent analytical approximations have
been obtained from these extensive computer simulations [9,46]. In particular, the hard disks
EoS takes the general form

PS = NkBT H(ρ) , (8)

with P the local pressure and ρ the local packing fraction or areal density.1 In this way all the
complex structure of the EoS (which includes the aforementioned double phase transition)
is mapped onto the unknown function H(ρ). A simple and well-known phenomenological
form for H(ρ) was proposed by Henderson [47],

H(ρ) = 1 + ρ2/8

(1 − ρ)2
, (9)

that fits well simulation data for a broad regime of areal densities in the interval ρ ∈ [0, 0.5],
see also [46]. To connect the EoS with Zc, we just note that

P = kBT
∂ ln Zc

∂S
⇒ NH(ρ) = −ρ

∂ ln Zc

∂ρ
(10)

If we assume a scaling (large deviation) form Zc 	 exp[N fc(ρ)] for large enough N , as
expected from extensivity, with fc(ρ) some function of the packing fraction, we obtain

fc(ρ) = fc(ρ
∗) −

∫ ρ

ρ∗
dφ

H(φ)

φ
, (11)

where ρ∗ is some arbitrary packing fraction.We further expect that in the low density, ρ → 0
limit the hard disk system will behave as an ideal gas. In such limit PS = NkBT and hence
fc(0) = ln S − ln ρ = ln(π�2N/ρ) − ln ρ, so substituting ρ∗ = 0 above we get

fc(ρ) = 1

N
ln Zc = ln

(
π�2N

ρ

)
−
∫ ρ

0
dφ

H(φ) − 1

φ
. (12)

1 For an homogeneous, equilibrium system both P and ρ are constant, with ρ = η ≡ Nπ�2/S the global
packing fraction.
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Therefore the hard disk partition function can be written for N large as Z 	 exp[N f (ρ)],
with

f (ρ) = ln
T

ρ
−
∫ ρ

0
dφ

H(φ) − 1

φ
+ C , (13)

where C is the constant

C = ln

(
2mkBeπ2�2

h2

)
. (14)

We can nowcompute all thermodynamicmagnitudes of interest fromEq. (13), e.g. the entropy
is given by

s

kB
= f (ρ) + 1 , (15)

while the specific heats at constant pressure and volume are, respectively,

cP
kB

= 1 + H(ρ)2

H(ρ) + ρH ′(ρ)
, cV = kB , (16)

with H ′(ρ) = dH(ρ)/dρ. The coefficients of thermal expansion at constant pressure (αP )
and isothermal compressibility (κT ) are in turn

αP = 1

T

H(ρ)

H(ρ) + ρH ′(ρ)
, κT = π�2

kBTρ

1

H(ρ) + ρH ′(ρ)
, (17)

In the course of this paper we will measure the function H(ρ) in extensive nonequilibrium
molecular dynamics simulations, see below.

We will be also interested below in the physics of a hard disks fluid under the action of
a gravitational field, e.g. in order to study the transition to convective flow and the Bénard
problem. It is therefore useful to review the equilibrium properties of hard disks in the
presence of an external potential, to e.g. derive the hydrostatic formula. With this idea in
mind we now assume the presence of an external, position-dependent field U (r) acting on
the particles in 2d . This field thus modifies the Hamiltonian of the hard disks model with an
additional term

Hext =
N∑

i=1

U (ri ) , (18)

where ri is the position of the ith-disk. It is now convenient toworkwithin the grand-canonical
ensemble in order to obtain the equilibrium properties of the fluid under this external field.
Moreover, the calculation is simplified if we consider a slowly-varying external field [48], i.e.
a fieldU (r) = Ũ (r/L)with L themacroscopic linear size of the box and Ũ a smooth function
inR2.We can define now a local cell with a volume that growswith L2 around a given position
x. When L → ∞ the particles of the bulk of the box only see an external constant field of
value Ũ (x) and then Hext = NŨ (x). In this way the local thermodynamic properties of the
system can be computed using the grand-canonical ensemble just substituting the chemical
potential μ → μ − Ũ (x) [48]. For instance, the EoS can be written in a parametric form

P = kBT a
[
T , μ − Ũ (x)

]
,

ρ̃ = kBT
d

dμ
a
[
T , μ − Ũ (x)

]
,

where ρ̃ is the local particle density, a = a(T , μ) = limS→∞ S−1 logZ, and Z is the grand-
canonical partition function. Parameter μ can be now eliminated by applying the gradient
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to the pressure and using the definition of ρ̃, leading to the well-known hydrostatic formula
[48]

∇P = −ρ̃(x)∇Ũ , (19)

which relates the pressure gradient in the presence of an external field with the associated
particle density profile. It is interesting to note that the argument developed here is rather
general and not restricted to a hard disks system.

Next we focus on the hard disks fluid hydrodynamics as described by the Navier–Stokes
equations. This set of equations describes the local spatiotemporal dynamics of amacroscopic
fluid [49] starting from the following assumptions: (1) local conservation of particle density,
linear momentum and energy, (2) macroscopic local equilibrium, and (3) some local constitu-
tive relations (Fourier’s law, Newton relation) linking the currents of the different conserved
quantities with the gradients of the hydrodynamic fields. While the first point holds true for
any conservative fluid, the other two hypotheses, though reasonable, are strong statements on
the nonequilibrium physics of the hard disks fluid that need further support. We will devote
part of this paper to describe strong numerical evidences supporting these two hypotheses for
hard disks and other hard-particle systems. The macroscopic hydrodynamic fields are then
the local mass density, ρ̃(x, t), the local velocity components, ui (x, t) , i = 1, . . . , d , and
the local temperature, T (x, t), and their time evolution obeys

∂t ρ̃ +
∑

i

∂i (ρ̃ui ) = 0 ,

∂t ui +
∑

j

u j∂ j ui = 1

ρ̃

∑

j

∂ jτi j + gi ,

ρ̃c̃v

(

∂t T +
∑

i

ui∂i T

)

= −T
∂P

∂T

∣∣∣∣
ρ̃

∑

i

∂i ui +
∑

i j

τ ′
i j∂i u j +

∑

i j

∂i
(
κi j∂ j T

)
, (20)

where τi j is the stress tensor, gi is the component of the external field acting along direction i ∈
[1, d], P is the pressure and κi j is the thermal conductivity matrix. For so-called Newtonian
fluids we can further write

τi j = −Pδi j + τ ′
i j ,

τ ′
i j = ν

(
∂i u j + ∂ j ui

)+ ν′δi j
∑

k

∂kuk . (21)

Moreover, the local equilibrium property implies that the equilibrium EoS can be used to
relate locally the hydrodynamic fields, i.e. P = P(ρ̃, T ). In addition, different thermody-
namic and transport coefficients need to be known, i.e. the equilibrium mass specific heat at
constant volume c̃v = c̃v(ρ̃, T ), the thermal conductivity κ = κ(ρ̃, T ), the shear viscosity
ν = ν(ρ̃, T ) and the second viscosity ν′ = ν′(ρ̃, T ). The above equations, together with
appropriate boundary conditions for the hydrodynamic fields, give a complete description of
the time evolution of a fluid at the macroscopic level.

For hard disks cv = kB and the EoS has a well-defined temperature dependence, see
Eq. (8), so we can write

∂P

∂T

∣∣∣∣
ρ̃

= P

T
. (22)

Moreover, we can simply relate the areal and mass densities noting that ρ = Nπ�2/L2

while ρ̃ = Nm/L2, so ρ̃ = mρ/π�2 where m is the mass of one disk and � its radius. The
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density-temperature separability of the hard disks EoS, a scaling property stemming from
the homogeneity of the hard disks interparticle potential (see Ref. [32]), is also inherited by
the different transport coefficients. This leads to a simple

√
T temperature dependence for

these transport coefficients, namely

ν =
√
kBm

�

√
T E(ρ) ,

ν′ =
√
kBm

�

√
T E ′(ρ) ,

κ =
√
k3B

�
√
m

√
T k(ρ) . (23)

We will be interested below in stationary, time-independent solutions to the Navier–Stokes
equations for two-dimensional hard disks both in the absence of external fields, gi = 0 ∀i ,
or in the presence of gravity, gi = −gδi,2. The resulting equations in this case read

∂1(ρu1) + ∂2(ρu2) = 0 (24)

ρ (u1∂1u1 + u2∂2u1) = −∂1Q + π�∂1

[√
T
(
2E∂1u1 + E ′(∂1u1 + ∂2u2)

)]

+π�∂2

[√
T E (∂1u2 + ∂2u1)

]
(25)

ρ (u1∂1u2 + u2∂2u2) = −∂2Q + π�∂2

[√
T
(
2E∂2u2 + E ′(∂1u1 + ∂2u2)

)]

+π�∂1

[√
T E (∂1u2 + ∂2u1)

]
− ρg (26)

ρ (u1∂1T + u2∂2T ) = −Q(∂1u1 + ∂2u2) + 2π�
√
T E

(
(∂1u1)

2 + (∂2u2)
2)

+π�
√
T E ′ (∂1u1 + ∂2u2)

2

+π�
√
T E (∂1u2 + ∂2u1)

2

+π�
[
∂1

(√
T k∂1T

)
+ ∂2

(√
T k∂2T

)]
(27)

where we have defined the reduced pressure, Q ≡ π�2P , and we note that E , E ′ and k are
functions of ρ. Note also that the following mapping has been used to simplify the previos
equations

kBT → T , mg → g ,
√
mu1,2 → u1,2 . (28)

With this mapping the EoS can be simply written as

Q = Tq(ρ) = TρH(ρ) (29)

Observe that we use in all equations above the areal density ρ instead of the mass density
ρ̃, though both choices are equally valid. Interestingly, the Navier–Stokes equations for hard
disks simplify substantially when considering non-convective stationary solutions. In this
case the hydrodynamic fields can be written as

ρ = ρ(y) , u1 = u2 = 0 , T = T (y) , (30)

and are the solutions of the following set of simplified equations

dQ

dy
= −gρ , (31)
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√
T k(ρ)

dT

dy
= −J , (32)

Q = T q(ρ) , (33)

together with the constraints imposed by boundary conditions and the conservation of the
total mass,

T (0) = T0 , T (1) = TL , η =
∫ 1

0
ρ(y) dy (34)

where T0,L , g and η (the global packing fraction) are control parameters for the problem at
hand. Note that the heat current J in Eq. (32) is a constant determined as a function of the
external parameters.

To end this section, we note that exact expressions for the hard disks transport coefficients
have not been derived so far. However, approximate expressions can be derived within the
Enskog approximation of kinetic theory. In particular, Gass obtained the following expres-
sions for the shear viscosity ν, the bulk viscosity ζ and the thermal conductivity κ using
Enskog theory [34]

ν(ρ, T ) =
√
kBm

�

√
T E(ρ) , with E(ρ) = 0.255√

πχ(ρ)

[
1 + 2ρχ(ρ) + 3.4197ρ2χ(ρ)2

]

ζ(ρ, T ) =
√
kBm

�

√
T EB(ρ) , with EB(ρ) = 1.2734ρ2χ(ρ)

κ(ρ, T ) =
√
k3B

�
√
m

√
T k(ρ) , with k(ρ) = 1.029

χ(ρ)

[
1 + 3ρχ(ρ) + 3.4874ρ2χ(ρ)2

]

(35)

where the function χ(ρ) is defined as follows

χ(ρ) ≡ H(ρ) − 1

2ρ
(36)

and the second viscosity is ν′ = ζ − ν.

4 Equilibrium First: Some Simulation Results

Before addressing the numerical characterization of transport in hard disks and the associated
nonequilibrium steady states, we want to test our numerical simulations in a thermodynamic
equilibrium situation. As described in Sect. 3, for a hard disks system in equilibrium at
temperature T and possibly under a gravitational field g, the (local) pressure and density are
related by the equation of state and the hydrostatic formula, i.e.

Q(y) = Tρ(y) H(ρ(y)) (37)
dQ(y)

dy
= −gρ(y) (38)

where Q(y) = P(y)π�2 is the reduced pressure at height y, already introduced in Sect.
3, and we recall that the disks mass is taken as m = 1. These equations, together with the
appropriate boundary conditions, determine the behavior of Q and ρ as a function of y.
Of course, the exact expression for H(ρ) in hard disks is unknown, although Henderson’s
formula H(ρ) = (1 + ρ2/8)/(1 − ρ)2 is known to be an excellent approximation in the
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range ρ ∈ [0, 0.5], with a relative error below 1% in this regime [32,47]. Using Henderson’s
EoS to solve the above equations we obtain

Q(y) = Tρ
1 + ρ(y)2/8

[1 − ρ(y)]2 (39)

y = − 1

g

[
log ρ(y) − 7

8
log(1 − ρ(y)) + 7

8(1 − ρ(y))
+ 9

8(1 − ρ(y))2
+ C

]
(40)

where the constantC is fixed by giving the density at a particular height, (y0, ρ0). The purpose
of this brief section is to test numerical results in equilibrium for varying external fields g
against these predictions.

For that we measured the stationary density and pressure profiles along the y-direction for
N = 957 hard disks at a global packing fraction η = Nπ�2/L2 = 0.2 in equilibrium with
temperature T0 = TL = 1 at the top and bottom stochastic thermal walls, and with reflecting
walls along the x-direction, see central panel in Fig. 1. In the simulations, the local areal
density ρ(n, l) at cel (n, l) is computed as follows, see Sect. 2,

ρ(n, l) = N (n, l)π�2

�2 (41)

where N (n, l) is the average number of disks with its center within cell (n, l) at the stationary
state, � is the disk radius, and � = 1/nc is the linear size of the cell (in this case we take
nc = 30 virtual rows so � = 1/30). This definition for ρ(n, l), though very efficient from
a computational point of view, leads to systematic deviations of the areal density near the
system boundaries due to surface exclusion around the walls. Therefore, in order to minimize
these spurious effects, we exclude from our analysis data from both boundary cells and their
neighboring cells, i.e. two cell layers besides the boundaries. Moreover, to obtain density
and pressure profiles from the two-dimensional data grid, we average the results measured
for all cells at each constant height (i.e. at constant cell index l).

In order to measure the reduced pressure field Q(x, y) = π�2P(x, y), we use the virial
theorem [1]. Appendix A discusses the derivation of the virial pressure in the case of hard
disks. For any non-zero gravitational field, the equilibrium fluid will develop a non-trivial
spatial structure for both density and pressure, see Eqs. (39)–(40). Hence, assuming that the
conditions to derive the hydrostatic formula hold, see Sect. 3, we can use the hard-disks virial
formula locally for the pressure, see Appendix A. In this case

Q(x, y) = T (x, y)ρ(x, y) + π�2

2�2τcol

〈
∑

col(x,y)

vi j · ri j
〉

, (42)

where ρ(x, y) is the local packing fraction, T (x, y) is the temperature field which in this
equilibrium case is just uniform, T (x, y) = T0 = TL = 1, and the sum is taken over all
collisions occurring during a time interval τcol in a cell centered at a macroscopic position
(x, y). Moreover, vi j = vi − v j is the relative velocity of the colliding pair (i, j), ri j is
the vector connecting the particles centers at collision, with ri j = 2�, and angular brackets
represent an ensemble average. We will show below that, when driven out of equilibrium by
a boundary temperature gradient, the resulting nonequilibrium steady state obeys with high
accuracy the macroscopic local equilibrium property described in Sect. 3. This implies in
particular that the local virial expression for the pressure, Eq. (42), yields correct values even
far from equilibrium, consistent with other measurements as e.g. the pressure exerted by the
fluid on the walls. More on this issue in Sect. 5 below.
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Fig. 2 Equilibrium behavior of hard disks for T0 = TL = 1, global packing fraction η = 0.2, and varying
gravitational fields g. a Equation of State (EoS): The measured reduced pressure Q(y)/T versus ρ(y) for
g = 0 (red big dot), g = 5 (blue dots), g = 10 (green dots) and g = 15 (black dots). b Density profile along
the y-direction for different values of g. cVirial pressure profile for varying g. Dashed lines are the predictions
using the hydrostatic formula and the Henderson’s EoS for H(ρ), Eqs. (39)–(40) (Color figure online)

Figure 2 shows the results obtained for η = 0.2, T0 = TL = 1 and varying values for g, as
well as a comparison with predictions based on Henderson’s formula. In particular, Fig. 2a
shows the measured values of Q(y)/T as a function of the local average density ρ(y) for all
different g’s. All data collapse onto a universal curve ρ H(ρ) defined by the hard disks EoS,
see Eq. (8), and this scaling curve agrees with high accuracy with Henderson’s prediction
in the range of local packing fractions explored, see dashed line in Fig. 2a. This agreement
confirms the validity of the hypothesis behind the hydrostatic formula, even for the small
cell size we use for local measurements in these simulations. This is probably due to the
strong chaoticity of disks dynamics, which makes spatial and temporal correlations to decay
fast enough. On the other hand, Fig. 2b, c show the measured reduced pressure and density
profiles, respectively, for different values of the external field g. In all cases the measured
profiles follow closely the hydrostatic formulas obtainedwith theHenderson EoS, confirming
again the empirical validity of this approximation in the density range explored. Overall, these
equilibrium results and their successful comparison with theoretical predictions validate our
numerical simulations.

The next natural step is hence to investigate numerically the nonequilibrium steady states
that the hard disks fluid displays when driven by a temperature gradient, both with or without
gravity. This is the purpose of next sections. We start by considering a driven hard disks fluid
in the absence of gravity, where the typical nonequilibrium steady state is described by the
paradigmatic Fourier’s law of heat transport.We leave the effect of gravity on nonequilibrium
transport for later sections,wherewewill characterize numerically the transition to convective
flow and the emergence of spatiotemporal roll structures.

5 ProbingMacroscopic Local Equilibrium

Our first step into the nonequilibrium physics of hard disks will consists in driving the system
with a boundary temperature gradient in the absence of gravity, so g = 0 in this and next
section (later on inSect. 7wewill switchongravity to study convectiveflow).To stress the lack
of gravity effects in this section, we will consider a hard disks system subject to a temperature
gradient along the x-direction imposed by stochastic thermal walls at different temperatures
T0 �= TL = 1 located at x = 0 and x = L , respectively, together with periodic boundary
conditions along the y-direction to minimize (unavoidable) boundary effects, see Fig. 3.
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Fig. 3 Snapshot of a typical configuration with N = 7838 hard disks at global packing fraction η = 0.5,
subject to a strong temperature gradient (T0 = 10, TL = 1) along the x-direction, and with periodic boundary
conditions along the y-direction. In these simulations there is no gravity, so g = 0, see below. Colors represent
kinetic energy as described in the bar legend (Color figure online)

In this situation, given the initial state and after a safe relaxation time, the hard disks
system will reach a nonequilibrium steady state (NESS) characterized by a net heat current
flowing from the hot to the cold reservoir, and an inhomogeneous spatial structure for the
temperature and density hydrodynamic fields. This structure can be obtained by solving the
(simplified) Navier–Stokes equations for this problem, see Sect. 3, if exact (or approximate)
expressions for the transport coefficients in terms of the hydrodynamic fields are known. In
contrast with equilibrium, the microscopic probability measure associated to such a NESS
(or mNESS hereafter) will be typically a complex object, often defined on a fractal support
dubbed strange attractor in literature. Moreover, as oppossed to equilibrium, this microscopic
probability measure is usually very sensitive to microscopic details such as the modeling of
boundary reservoirs (e.g. stochastic vs deterministic) [50–58], and the connection between
the mNESS and a nonequilibrium analog of thermodynamic potentials is far from clear
nowadays.

On the other hand, it is well-known that essentially different mNESSs (resulting from
e.g. different modelings of boundary baths) describe equally well what seems to be the same
macroscopic NESS (or MNESS in short) [28,59]. This macroscopic NESS is defined in
terms of a few macroscopically smooth hydrodynamic fields, solution of the aforementioned
Navier–Stokes equations for this problem, see Eqs. (24)–(27) for the particular case of hard
disks. A cornerstone for this sort of nonequilibrium ensemble equivalence, which can be
formally stated via the chaotic hypothesis of Gallavotti and Cohen [55–58], is the notion
of local thermodynamic equilibrium (LTE) [50,60]. This refers to the fact that an interact-
ing nonequilibrium system reaches locally an equilibrium-like state defined by e.g. a local
temperature, density and velocity (the first two related locally via standard thermodynamic
relations), which are roughly constant across molecular scales but change smoothly at much
larger macroscopic scales, where their evolution is governed by hydrodynamic equations.
LTE plays an important role in physics, being at the heart of many successful theories, from
the classical hydrodynamics [61,62] or nonequilibrium thermodynamics [6] to recent macro-
scopic fluctuation theory (MFT) [4,5,27,63–66]. Despite this success, LTE is not capable of
explaining some intriguing nonequilibrium phenomenology. In particular, this is the case for
one of the main hallmarks of nonequilibrium behavior, i.e. the nonlocal character of the large
deviation functions controlling the statistics of fluctuations out of equilibrium [67]. Such
nonlocality, which contrasts with equilibrium phenomenology, emerges from tiny O(N−1)
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Fig. 4 a Temperature profiles along the gradient direction for N = 8838, η = 0.5 and varying T0 ∈ [2, 20].
Lines are nonlinear fits of the form T (x)α = ax + b [73]. Shaded (light grey) areas correspond to boundary
layers (the first two cell columns adjacent to each wall) where the wall defect alters measurements. b Finite-
size corrections as described by δTN (x) ≡ TNmax (x) − TNmin (x), with Nmax = 8838 and Nmin = 1456, for
different gradients. c Density profiles for the same conditions than panel a. d Thermal boundary resistance,
see main text, as a function of N−1/2 for different values of T0, together with linear fits. e Finite-size effects
in density profiles, as captured by δρN (x), localize near the thermal walls

corrections to LTE which spread over macroscopic regions of size O(N ), being N the num-
ber of particles in the system of interest [68–71]. This shows that LTE is a subtle property:
while corrections to LTE vanish locally in the N → ∞ limit, they have a fundamental
impact on nonequilibrium large deviation functions in the form of nonlocality, which in turn
gives rise to the ubiquitous long-range correlations which characterize nonequilibrium fluids
[5,62,72].

In this section wewant to probe the local equilibrium property in the hard disks fluid under
a temperature gradient in the absence of gravity. In order to characterize the inhomogeneous
nonequilibrium steady state in the fluid, we divide the system into nc = 15 virtual cells of
linear size � = 1/15 along the (gradient) x-direction. We measure locally, following the
method explaind in Sect. 3, a number of relevant observables including the local average
kinetic energy, packing fraction, virial pressure, etc., as well as the energy current flowing
through the thermal baths and the pressure exerted on the walls. This last observable will
be compared with the bulk-averaged virial pressure to further guarantee the validity of our
measurements. Moreover, the local temperature is defined via equipartition theorem from the
average kinetic energy per particle in each local cell.

Figure 4a, c shows the temperature and density profiles, T (x) and ρ(x) respectively,
measured for the largest system size N = 8838, a moderate global packing fraction η = 0.5,
and varying gradients �T . The resulting profiles are typically nonlinear, as expected from
Fourier’s law with a temperature- and density-dependent heat conductivity (see e.g. Eq. (35)
in the Enskog approximation). Note that similar profiles are obtained for different N , η and
�T . As an interesting side comment, note that temperature profiles in Fig. 4a can be fitted
with high accuracy by the phenomenological law

T (x)α = ax + b (43)

with α an empirical exponent characterizing the apparent nonlinearity. This simple law has
been deduced for some two-dimensional Hamiltonian and stochastic models of heat transport
[73], though its microscopic validity for the hard disks fluid is unclear. Note that, in our case,
the fitted exponent α exhibits a pronounced dependence on N and �T (not shown), with
α ∈ [0.681, 0.715] and no coherent asymptotic behavior, a trait of the strong finite size
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Fig. 5 Left panel: Finite-size analysis of wall reduced pressure Qw for different temperature gradients. The
measured Qw (filled circle) decays linearly with N−1 for each T0. Solid lines are linear fits to the data, and the
extrapolation to N → ∞ is shown as open circles (open circle). The measured bulk-averaged virial reduced
pressure Qv is also shown for T0 = 10 (open square), as well as its N → ∞ extrapolation. Right panel: Values
of Qw and Qv extrapolated to N → ∞ as a function of �T = T0 − TL for η = 0.5, together with cubic
fit to the data. The light blue squared symbol (filled square) at �T = 0 represents the equilibrium pressure
predicted by the Henderson 77 EoS, see Eq. (9). The inset shows virial reduced pressure profiles for different
N , η = 0.5 and �T = 10. These profiles are constant in the bulk but exhibit strong boundary corrections due
to the presence of the walls (Color figure online)

corrections affecting the hydrodynamic profiles. These corrections are captured for instance
by the finite-size excess density and temperature profiles, defined as

δ fN (x) ≡ fNmax(x) − fNmin(x) , (44)

with f ≡ ρ, T , and Nmax = 8838 and Nmin = 1456 the maximum and minimum number of
particles used in these simulations. Figure 4b, d show both δTN (x) and δρN (x), respectively,
measured for different temperature gradients. These observables pinpoint the importance of
finite-size corrections in this setting, particularly near the boundaries and most evident for
density profiles. In this respect, note that the thermal walls act as defect lines disrupting the
local structure of the surrounding fluid, a perturbation that spreads for a finite penetration
length toward the bulk fluid. This defines two boundary layers where finite size effects and
boundary corrections sum up, see e.g. shaded areas in Fig. 4b, e, and the inset to the right
panel in Fig. 5 below.

In addition, the boundary disturbance gives rise to a thermal resistance or temperature
gap between the profile extrapolated to the walls, T (x = 0, L), and the associated bath
temperature T0,L . This thermal resistance is a well-known finite-size effect described in
literature [74]. We analyze the system size dependence of this thermal gap, γ0,L(�T , N ) ≡
|T0,L − T (x = 0, L)|, in Fig. 4d, finding that

γ0,L(�T , N ) ∼ N−1/2 ∀�T . (45)

This shows that boundary thermal gaps for hard disks in 2d disappear according to a power law
in the thermodynamic limit when approached at constant packing fraction η and temperature
gradient �T . Equivalently to what was done in the equilibrium simulations of Sect. 4, and
in order to minimize boundary corrections, we hence proceed to eliminate from our analysis
below the boundary layers by removing from themeasured profiles the two cells immediately
adjacent to each wall, i.e. cells i = 1, 2 and 14, 15 (see shaded areas in Fig. 4) [75].

We next focus on the reduced pressure Q ≡ π�2P (with P the pressure), that we measure
using two different methods. First we measure the reduced pressure exerted by the fluid
on the thermal walls, Qw(N ), in terms of the average momentum exchanged between the
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colliding particles and the thermal wall per unit length and unit time.2 As done in Sect. 4,
we also measure the local virial reduced pressure Qv(x; N ) using the definition of Eq. (42)
for each virtual column of the fluid. This method yields pressure profiles which are constant
across the bulk of the fluid but exhibit clear structure at the boundary layers, see inset in right
panel of Fig. 5. This is of course expected because of the local anisotropy induced by the
nearby walls. A sound definition of the fluid’s pressure is then obtained by averaging in the
bulk the virial pressure profiles. Both the wall and bulk-averaged virial pressures exhibit mild
finite-size corrections which scale linearly with N−1 for each �T , see left panel and right
inset in Fig. 5, converging to a well-defined value in the N → ∞ limit. In all cases (both for
finite N and in the N → ∞ limit) the measured wall and virial values agree to a high degree
of accuracy ∀�T , see right panel in Fig. 5. The asymptotic N → ∞ data are consistent with
a cubic polynomial dependence of pressure on �T , see right panel in Fig. 5, an empirical
law which is in turn compatible with the equilibrium (�T = 0) pressure predicted by the
improved Henderson EoS [9,76]

Q̄H77(ρ) = 1 + ρ2/8

(1 − ρ)2
− 0.043

ρ4

(1 − ρ)3
. (46)

This is just the original Henderson equation of state, see Eq. (9) above, corrected with some
weak higher-order term to improve empirical accuracy against moderate-density data [9,76].
We hence can conclude that both wall and virial definitions of pressure are compatible with
each other in arbitrary quiescent nonequilibrium steady states (and compatible with limiting
equilibrium predictions), suggesting already a sort of local mechanical equilibrium in the
nonequilibrium fluid.

Macroscopic LTE [75] implies that, locally in a nonequilibrium steady state, the density
and temperature fields should be related via the equilibrium equation of state,

Q = ρT Q̄(ρ, T ) , (47)

where Q̄(ρ, T ) is the so-called compressibility factor [9]. In order to probe this property, we
plot in the left panel of Fig. 6 values for Q̄ ≡ Q/[T (x)ρ(x)]measured out of equilibrium, as
a function of ρ(x) and T (x). Note that each nonequilibrium simulation, for fixed (�T , η, N ),
covers a fraction of the EoS surface, thus improving the sampling when compared to equi-
librium simulations, which yield a single point on this surface. As shown in Sect. 3, hard
disks exhibit density-temperature separability, meaning that temperature scales out of all
thermodynamic relations [9,33], so the associated Q̄ depends exclusively on density. In this
way we expect a complete collapse for the projection of the EoS surface on the Q̄ −ρ plane,
as we indeed observe, see left panel in Fig. 6.

Another interesting property concerns the finite-size corrections to the measured EoS.
Strikingly, although density and temperature profiles, aswell as pressures, all depend strongly
on N , see Figs. 4 and 5, the measured Q̄N as a function of the local density exhibits no finite
size corrections at all. This is better shown in the right panel of Fig. 6, where a total of 2530
data points for different N ∈ [1456, 8838], η ∈ [0.05, 0.65] and T0 ∈ [2, 20] are shown.
This lack of finite-zise corrections for the EoS strongly suggests a compelling structural
decoupling between the bulk fluid, which behavesmacroscopically and thus obeys locally the
thermodynamic EoS, and the boundary layers near the thermalwalls, which sumup all sorts of
artificial finite-size andboundary corrections to renormalize the effective boundary conditions

2 Note that this method would have proven useless in the equilibrium simulations of Sect. 4 (except for
g = 0), as the fluid pressure under a gavitational field exhibits a nontrivial spatial structure, as dictated by the
barometric formulas (39)–(40).
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Fig. 6 Left panel: Compressibility factor Q̄ ≡ Q/[T (x)ρ(x)] as a function of T (x) and ρ(x) measured for
N = 2900 hard disks and different global packing fractions η and boundary temperatures T0. Right panel: Q̄
vs ρ(x) measured for η = 0.5, N ∈ [1456, 8838] and T0 ∈ [2, 20], as well as for η ∈ [0.05, 0.65], N = 2900
and T0 = 10, 20, summing up a total of 2530 data points. For comparison, data from previous equilibrium
simulations in literature are shown, together with the Henderson 77 EoS approximation (solid line). The inset
shows a detailed comparison of a running average of our data with equilibrium results after subtracting the
leading Henderson 77 behavior

on the remaining bulk. This remarkable bulk-boundary decoupling phenomenon is evenmore
surprising at the light of the long range correlations generically present in nonequilibrium
fluids [5,62,72], offering a tantalizing computationalmethod to obtainmacroscopic properties
of nonequilibrium fluids without resorting to unreliable finite-size scaling extrapolations
[33,39]. We will show in next section how this bulk-boundary decoupling phenomenon
allows to obtain some universal master curves which characterize transport in the hard disk
fluid, as well as to characterize the macroscopic conductivity functional and its marginal
anomaly in 2d [33].

For comparison, the right panel of Fig. 6 also includes several data sets from a number
extensive equilibrium simulations carried with different methods during the last 60 years
[44,77–82], as well as the improved Henderson EoS prediction, see Eq. (46) above, which is
reasonably accurate in the fluid phase. The inset in this figure shows a detailed comparison of
a running average of our extesive data and the equilibrium simulations in literature, once the
leading Henderson’77 behavior [76] has been subtracted. The excellent agreement (to within
1% relative error) confirms the validity and robustness of the macroscopic LTE property
and the bulk-boundary decoupling phenomenon here described. Note also that the accuracy
of our data for the EoS is surprising taking into account that local cells have at most 500
particles, and many fewer in the typical case. We again trace back this robust self-averaging
behavior to the strong chaotic behavior of the hard disks system, see Sect. 4 above.

We also stress that some of our data sets for high enough global packing fractions include
points across andbeyond the controversial liquid-hexatic-solid double phase transition regime
[44,77]. In fact, we find in our simulations that for η � 0.6 a coexistence between a fluid
phase near the hot wall and a solid-like phase near the cold one is established, very much
in the spirit of the stationary Stefan problem [83]. Figure 7 shows a typical configuration in
this nonequilibrium coexistence regime with two color codings. The right one represents the
local hexatic order parameter ψ6 [44,77], with

ψ6 ≡ 1

Nb

Nb∑

k=1

eiφk (48)
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Fig. 7 Snapshot of a typical dense configuration of N = 7838 hard disks under a temperature gradient.
In particular the global packing fraction here is η = 0.7, and the left and right boundary temperatures are
T0 = 10 and TL = 1, respectively. The figure displays the same configuration with two different color codes,
representing respectively the the kinetic energy (left) and local hexatic order ψ6 (right), see definition in the
main text. Inhomogeneous fluid and solid phases coexist for such high η under a temperature gradient, with a
rough interface separating both regions (Color figure online)

where Nb is the number of nearest neighbors of a given disk and φk is the angle of the bond
connecting the reference disk with its k-neighbor, relative to an arbitrary direction (x̂ in our
particular case). Interestinglyψ6 picks the local hexatic order of the symmetry-broken phase,
offering an valuable method to characterize the interface between the inhomogeneous fluid
and solid phases. This coexistence appears in the presence of a strong temperature gradient
and an associated heat current, as captured by the second color code which represents kinetic
energy in the left panel of Fig. 7. This interesting nonequilibrium fluid/solid coexistence can
be confronted against recent theoretical predictions [83–86].

To end this section, some words on microscopic local thermodynamic equilibrium are in
order. Indeed, the macroscopic notion of LTE that we have just confirmed in simulations does
not carry over to microscopic scales. The local statistics associated to a fluid’s mNESS is
typicallymore complicated than the LTE localGibbsmeasure, containing small (but intricate)
corrections which are essential for transport to happen. In order to detect these corrections,
and pursuing the analogy with stochastic lattice gases [60,68–71], we also studied the n-th
order central moments mn(u) ≡ 〈(u − 〈u〉)n〉 of a global observable, the total energy per
particle u of the hard disks fluid, with

u ≡ 1

N

N∑

i=1

1

2
mv2i . (49)

Figure 8a–c show the measuredmn(u), n = 1, 2, 3, as a function of temperature gradient�T
for global packing fraction η = 0.5 and different N , together with the N → ∞ extrapolation
of the measured data and the LTE estimates for energy moments, mn(u)le (see Appendix C
of Ref. [32] for a detailed derivation of these LTE expressions). Interestingly, we observe
that while the average energy does indeed follow the LTE behavior, 〈u〉 ∼ 〈u〉le, energy fluc-
tuations (as captured e.g. by the second central moment m2(u) in Fig. 8b) exhibit increasing
deviations from the LTE estimate. Remarkably, the excess energy fluctuations exhibit a linear
scaling with the squared gradient,
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Fig. 8 Panels a–c show the scaled central moments of the total energy of the hard disks fluid, mn(u) ≡
〈(u − 〈u〉)n〉, with u ≡ N−1∑N

i=1 mv2i /2, as a function of temperature gradient �T for a global packing
fraction η = 0.5 and varying N . Filled symbols correspond to the N → ∞ limit of our data (filled circle) and
after assuming LTE (filled square). d The excess energy variance (as compared to LTE) scales linearly with
�T 2 with a slope ≈ 1/40

δm2(u) ≡ N [m2(u) − m2(u)le] ≈ + 1

40
�T 2 , (50)

see Fig. 8d, a result strongly reminiscent of the behavior observed in schematic models like
the Kipnis-Marchioro-Presutti (KMP) model of heat transport or the symmetric exclusion
process (SEP) [68–71], where δm2(u) = ±�T 2/12. In this way, energy fluctuations for
hard disks are enhanced with respect to LTE, δm2(u) > 0, as happens for the KMP model
and contrary to the observation for SEP [68–71], although the excess amplitude is roughly
three times smaller for disks. We also mention that a similar study (not shown, see [32]) of
the global velocity moments, vn ≡ 〈N−1∑N

i=1 |vi |n〉, shows no deviations from the LTE
prediction for these observables. The reason why energy fluctuations do pick up corrections
to LTE while velocity fluctuations exhibit LTE behavior lies in the nonlocal character of
energy fluctuations. Indeed, while v2 includes only a sum of local factors, m2(u) includes
nonlocal contributions of the form 〈v2i v2j 〉, i �= j , summed over the whole system. In this

way small O(N−1) corrections to LTE extending over large O(N ) regions give rise to weak
long-range correlations in the system which, when summed over macroscopic regions, yield
a net contribution to energy fluctuations, which thus depart from the LTE expectation [68–
71]. The observed breakdown of LTE at the energy fluctuation level is hence a reflection
of the nonlocality of the underlying large deviation function governing fluctuations in the
nonequilibrium fluid. This result is, to our knowledge, the first evidence of a nonlocal large
deviation function in a realistic model fluid.

123



Simulations of Transport in Hard Particle Systems 495

6 Scaling in Fourier’s Law

A main feature of a typical nonequilibrium steady state is the nontrivial, inhomogeneous
spatial structure that the systemof interest develops in response to the nonequilibriumdriving,
see e.g. Fig. 4 above. This structure, readily measurable in experiments or simulations,
corresponds to the solution of the associated Navier–Stokes equations, see Sect. 3, and carries
information on the governing nonequilibrium macroscopic laws (e.g. Fourier’s law) which
emerge from the myriad of interacting microscopic constituents. A key goal of statistical
physics is therefore to understand general properties of these spatial structures, consubstantial
to nonequilibrium behavior. With this idea in mind, in this section we derive a set of simple
yet general scaling laws for a broad class of d-dimensional fluids driven far from equilibrium
by a temperature gradient in the absence of gravity [33], and we test them in hard disks
simulations. In particular, we will show that the fluid’s density and temperature profiles
follow from two master curves, independent of the driving force and the system parameters,
after a simple linear scaling of space in terms of the flowing heat current.

This result is based on two hypotheses on the macroscopic behavior of the nonequilibrium
fluid. The first one is macroscopic LTE, a property that as we have demonstrated in the
previous section holds robustly for the hard disks fluid arbitrarily far from equilibrium. In
fact we used this property in Sect. 5 to provide an accurate estimate of the hard disks EoS, see
Fig. 6. The second hypothesis concerns the macroscopic transport properties of the fluid, that
should be described by Fourier’s law. In particular this law states that the steady-state heat
current J in a driven system is proportional to the applied boundary temperature gradient
[8,21–26,39,74,87–90], i.e.

J = −κ(ρ, T )
dT (x)

dx
, x ∈ [0, 1] , (51)

whereκ(ρ, T ) is the thermal conductivity, thatmaydepend in general on the local temperature
T (x) and on the local packing fraction ρ(x). Fourier’s law (51) is usually expected to hold for
macroscopic systems in the limit of small temperature gradients, while higher-order (Burnett)
corrections in the gradient are typically conjectured for stronger driving [9]. However, our
results belowwill prove that, at least for quiescent heat transfer, these corrections are absorbed
into a nonlinear conductivity functional, extending the validity of Fourier’s law deep into the
strongly nonlinear regime.

Interestingly, the assumption of macroscopic LTE allows us now to write Fourier’s law
in terms only of the density field. To do so, we need the EoS to be invertible in the (ρ, T )-
range of interest, an assumption which holds valid for most fluids away from a critical
point. In this case, inverting the EoS Q = q(ρ, T ) yields T = fQ(ρ), with fQ(ρ) an
uniparametric curve such that q[ρ, fQ(ρ)] = Q. Similarly, the heat conductivity follows as
κ(ρ, T ) = κ[ρ, fQ(ρ)] ≡ kQ(ρ), defining another uniparametric function kQ(ρ). In this
way, Fourier’s law (51) can be rewritten as

J = G ′
Q(ρ)

dρ

dx
= dGQ(ρ)

dx
, (52)

where G ′
Q(ρ) ≡ −kQ(ρ) f ′

Q(ρ) and ′ denotes derivative with respect to the argument. Note
that to write the transport problem in terms of the density field ρ(x), we also need to provide
boundary conditions for the latter. These boundary conditions, ρ(0) = ρ0 and ρ(1) = ρL ,
can be inferred from the constraints
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T0
TL

= fQ(ρ0)

fQ(ρL)
, η =

∫ 1

0
ρ(x)dx =

∫ ρL

ρ0

ρ G ′
Q(ρ)dρ

GQ(ρL) − GQ(ρ0)
. (53)

These equations, togetherwithEq. (52), completely define themacroscopic transport problem
in terms of ρ(x). The reduced pressure and the heat current can be now obtained as Q =
q(ρ0, T0) and J = [GQ(ρL)−GQ(ρ0)]. A striking consequence of our simple macroscopic
hypotheses can be now directly deduced from Eq. (52). Indeed, as both J and Q are state-
dependent constants in the absence of gravity, Eq. (52) immediately implies thatGQ[ρ(x)] =
J x + ζ , i.e. GQ[ρ(x)] is a linear function of position, with slope J and ζ = GQ(ρ0) an
arbitrary constant, or equivalently3

ρ(x) = G−1
Q (J x + ζ ) . (54)

Therefore, we conclude that there exists a single master surface ρ̄Q(z) ≡ G−1
Q (z) in z − Q

space from which any steady state density profile follows after a linear spatial scaling x =
(z−ζ )/J . Furthermore, this scaling behavior is immediately inherited by temperature profiles
via the local EoS, which yields another master surface T̄Q(z) = fQ[G−1

Q (z)]. These simple
yet general scaling laws completely characterize heat flow in the system of interest, and are
independent of the global packing fraction η or the nonequilibrium driving defined by the
baths temperatures T0 and TL , depending exclusively on the uniparametric functions fQ(ρ)

and kQ(ρ) controlling the system macroscopic behavior. Remarkably, Eq. (54) also implies
that any measured steady density and temperature profiles can be collapsed onto the master
surfaces ρ̄Q(z) and T̄Q(z), respectively, by scaling space by the associated current J and
shifting the resulting profile an arbitrary constant ζ . This suggests a simple scaling method
to obtain the master curves in simulations and experiments that we exploit below.

For hard disks systems, as well as for any other system with homogeneous interparticle
potential V (r) ∝ r−n , both the EoS and the heat conductivity exhibit a well-known density-
temperature separability [33,91], a property that simplifies the form of the general scaling
laws derived above. In this case the EoS takes the separable form Q = T q(ρ), with q(ρ)

a typically unknown function (for which accurate approximations exist in the case of hard
disks, see e.g. Henderson formulas, Eqs. (9) or (46) [9,92]). The conductivity also takes
the separable form κ(ρ, T ) = √

T k(ρ), where again k(ρ) is generally unknown (though a
reasonably good approximation is obtained fromEnskog kinetic theory [34,93], see Eq. (35)).
It is then easy to show that, in this simpler case, the master surfaces ρ̄Q(z) and T̄Q(z) boil
down to a pair of universal curves. In particular, for hard disks

GQ(ρ) = Q3/2G(ρ) , with G ′(ρ) ≡ k(ρ)q(ρ)−5/2q ′(ρ) , (55)

so all density profiles scale as ρ(x) = G−1(ψx + ζ ), with ψ ≡ J/Q3/2 the reduced current
and ζ = G(ρ0). This defines a master curve ρ̄(z) = G−1(z) from which all density profiles
follow after scaling space as x = (z− ζ )/ψ , irrespective of the driving gradient or the global
density.Moreover, temperature profiles scale now as T (x)/Q = q[ρ(x)]−1, defining another
master curve T̄ (z) = q[ρ̄(z)]−1. Note that similar scaling laws hold for any d-dimensional
fluid with homogeneous interactions (including hard hyperspheres) [33].

Of course, the scaling functions ρ̄(z) and T̄ (z) are unknown because we lack exact expres-
sions for the density dependence of both the hard disks EoS and conductivity. However, we
can obtain these master curves from the simulation data presented in Sect. 5, see Fig. 4,

3 Note that we assume here thatGQ(ρ) has a well-defined inverseG−1
Q (z). This assumption seems reasonable

as steady density profiles are typically well behaved.
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Fig. 9 a Bulk density profiles for
N = 2900 hard disks, T0 = 20
and varying η ∈ [0.15, 0.65], as a
function of ψx = J x/Q3/2. By
shifting each curve an amount ζ ,
a perfect collapse is obtained
which reconstructs the master
curve ρ̄(z). b Measured reduced
currents ψ and shifts ζ as a
function of �T for different N
and global packing fraction
η = 0.5. Finite size effects are
apparent for both magnitudes
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Fig. 10 a Collapse of scaled bulk density profiles measured for N ∈ [1456, 8838] and different sets of
conditions (see legend) for a total of more than 4000 data points. b Widely different bulk density profiles
measured for different conditions collapse onto different parts of the same master curve. c, d Collapse of bulk
temperature profiles for the same conditions that the top panel. Note that the shifts ζ obtained from the density
scaling yield a perfect scaling for temperature profiles

using the previous scaling scheme. To do so, we first proceed to eliminate from the measured
hydrodynamic profiles the boundary layers described in Sect. 5, where finite size effects and
boundary corrections concentrate. In particular, we remove from the profiles the two cells
immediately adjacent to each wall (see shaded areas in Fig. 4a, d. The bulk density profiles
ρ(x) so obtained are then scaled using the reduced current ψ = J/Q3/2 in each case, that
we calculate by measuring the finite-size heat current J and reduced pressure Q, and shifted
by a constant ζ to achieve a maximum overlap among all scaled profiles. Figure 9a shows
an example of this scaling procedure for density profiles (see also [94] for a multimedia
explanation of the scaling procedure).

Using this scaling method we were able to collapse onto a single master curve ρ̄(z) a large
amount of data for density profilesmeasured for different sizes N , boundary gradients�T and
global densities η, see Fig. 10a. Moreover, using the same shifts ζ obtained from the collapse
of density profiles, the rescaled temperature profiles also collapsed onto another master curve
T̄ (z), see Fig. 10c. Strikingly, while the measured J , Q, ψ and ζ all depend appreciably on
N for each �T and η (see the inset Fig. 10b), the collapsed data show no appreciable finite-
size corections, defining two master curves as predicted by the macroscopic theory. Such
remarkable collapse hence implies that the measured bulk hydrodynamic profiles are those
of a macroscopic hard disks fluid obeying Fourier’s law and subject to some renormalized,
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effective boundary conditions set by the boundary layers, which sum up all sorts of finite-
size effects and boundary corrections. This is another instance of the striking bulk-boundary
decoupling phenomenon already described in Sect. 5. It implies a fine structural self-tuning
of the fluid, which goes beyond the mere presence of boundary layers, and is even more
surprising at the light of the long range correlations present in nonequilibrium fluids [72,95].
This bulk-boundary decoupling phenomenon is likely to appear in other complex systems
driven out of equilibrium by different boundary reservoirs, and offers a tantalizing scaling
method to avoid unreliable finite-size scaling extrapolations. In fact, a standard finite-size
scaling analysis of our data, aimed at obtaining first the asymptotic (N → ∞) observables
ρ∞(x), J∞ and Q∞ for each �T and η to perform then the scaling collapse, fails badly as
none of these observables follow a well-defined asymptotic behavior.

It is interesting to note also that the excellent scaling behavior of our data strongly sug-
gests that, quite remarkably, Fourier’s law (51) remains empirically valid even under strong
temperature gradients, extending its range of validity deep into the highly nonlinear regime.
This means in particular that the higher order (Burnett) corrections conjectured for strong
driving are in this case absorbed into the nonlinear conductivity κ(ρ, T ) in Eq. (51).4 The
combination of our scaling analysis and the bulk-boundary decoupling phenomenon here
described hence allows to obtain clean properties of macroscopic nonequilibrium fluids from
finite-size numerical simulations or experiments. The two master curves in Fig. 10 have full
predictive power, as we can deduce from them and the scaling formulas in Eqs. (52)–(54) the
density and temperature profiles of a macroscopic hard disk system for any set of parameters
T0, TL and η.

Our determination of the master curves in Fig. 10 is so detailed that it allows for a precise
measurement of the hard disks heat conductivity over a broad range of packing fractions.
In fact, by multiplying Fourier’s law (51) by Q−3/2 and recalling the separable form of the
conductivity, κ(ρ, T ) = √

T k(ρ), one can easily show that

k(ρ) = 1
√
T̄ (z)|T̄ ′(z)|

= J√
T (x)|T ′(x)| , (56)

with ρ = ρ̄(z). We hence performed discrete derivatives of the measured master curve T̄ (z)
(see Fig. 10c) for each of the different sets of parameters�T , η and N , identifying each value
of [

√
T̄ (z)T̄ ′(z)]−1 with the associated ρ = ρ̄(z). Figure 11a shows the so obtained k(ρ),

which exhibits weak but apparent deviations from the Gass prediction [34] based on Enskog
kinetic theory, as already reported in previous simulations [93,98]. In addition, a veryweakbut
systematic

√
ln N -dependence of k(ρ) is observed, seeFig. 11b. This observation confirms for

the first time (to our knowledge) and with high accuracy the marginally,∼ √
ln N anomalous

heat conductivity predicted for hard disks as a result of the long time tails in two dimensions
[17–19]. This result demonstrates that the scaling method here presented, together with the
bulk-boundary decoupling phenomenon, allows one to investigate transport numerically in
a more rigorous way, getting rid of artificial finite-size effects in simulations related with the
presence of boundaries, which result in systematic errors in heat conductivity measurements,
while keeping physically relevant bulk finite-size information.

We now turn our attention to the effect of gravity on transport and the subsequent transition
to convective flow observed in hard disks [40].

4 Note however that, for more complex flow situations, as e.g. acceleration-driven Poiseuille flow, Burnett
corrections seem to play a key role [96,97].
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Fig. 11 a Density dependence of the heat conductivity as obtained from the rescaled temperature profiles
T̄ (z) ≡ T (z)/Q for different η ∈ [0.05, 0.8], T0 ∈ [2, 20] and N ∈ [1456, 8838]. A well-defined deviation
from Gass result kE(ρ) based on Enskog kinetic theory (full line) is found [34,93]. Moreover, a systematic
dependence with system size N is also observed, see inset b for η = 0.5, which scales as

√
ln(N ) for large

enough N . This observation confirms the marginal anomaly expected for the heat conductivity in 2d hard
disks [17–19]

7 Role of Gravity and Transition to Convective Flow

In this section we will switch on the gravity field to explore its role on heat transport in the
hard disks fluid. In particular, we will focus on the Bénard problem, which consists in a fluid
that is heated from below in the presence of gravity. In this setting, it is empirically observed
that a critical value for the temperature gradient exists beyond which convective flow kicks
in, while the fluid develops roll structures spanning the whole system. This is the well-
known Rayleigh–Bénard instability, that was first observed experimentally by Bénard and
then interpreted theoretically by Rayleigh [99–101]. It is a purely nonequilibrium problem
that includes a transition from a conducting to a convective state characterized by a nonzero,
structured hydrodynamic velocity field [40].

This is by no means the first study of convective flow in hard particle systems. Indeed,
the Bénard problem for hard disks fluids has been studied in the past using computer sim-
ulations, see e.g. [102–108]. In particular, Mareschal and coworkers observed numerically
the transition to convective flow in systems of hard disks, though the large velocity fluctua-
tions prevented the accurate determination of local magnitudes [102–104,106]. Nevertheless
these works managed to measure some hydrodynamics profiles, which exhibited a reason-
able agreement with predictions based on the numerical solution of Navier–Stokes equations.
Rapaport [105,107] also studied convection in hard disks, demonstrating the strong influence
of both boundary conditions and initial states on the convective stationary properties of the
hard disk fluid. Finally, let us also mention the work of Risso and Cordero [108] where the
onset of the hard-disks convection transition was investigated in detail.

Here we want to characterize the steady state transport properties of the hard disks fluid
across the Rayleigh–Bénard instability, and its dependence on the different external param-
eters, namely the magnitude of the gravity field g and the temperature gradient, controlled
by the boundary temperature T0. For that we will explore both global observables and local
magnitudes. The former include for instance the kinetic energy per particle, heat current, pres-
sure, etc. while the latter will allow us to access the nontrivial spatial structures developed
by the hydrodynamic fields beyond the convective instability point: velocity and temperature
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Fig. 12 Left: Rayleigh number Ra in the Enskog approximation as a function of the global density for T0 = 5,
TL = 1 and g = 5 (blue curve), g = 10 (green curve) and g = 15 (black curve). Dashed orange line is
the critical Rayleigh number Rac = 27π4/4 	 657.51 obtained using Boussinesq approximation on the
Navier–Stokes equations [109]. Right: Rayleigh number as a function fo T0 for a fixed value of η = 0.2 for
the same values of g on the left panel (Color figure online)

fields, streamline structures, etc. Moreover, to study the Bénard problem, we consider now
a hard disks system with stochastic thermal walls (see Sect. 2) along the y-direction, the
same of the external gravity field, with a temperature T0(TL) at the bottom (top) wall, such
that T0 > TL so as to favor the instability. We will fix in particular TL = 1 without loss of
generality, see discussion in Sect. 2. In addition, to avoid problems associated to the location
of roll structures beyond the critical Bénard gradient, we also consider reflecting boundary
walls along the x-direction (as opposed to the periodic boundary conditions orthogonal to
the gradient directions of the previous sections Sects. 5 and 6).

In order to proceed, we first have to choose the range of external parameters (global density
η, hot bath temperature T0 and field strength g)where the phenomenology of interest emerges.
To study theRayleigh–Bénard instability, it seems reasonable to focus on theRayleighnumber
(Ra), an adimensional magnitudewhose value changes abruptly between convective and non-
convective flow states. The Rayleigh number is defined as the ratio of the typical timescales
for diffusive and convective thermal transport, and can be written as

Ra = g�T L3

ν̃κ̃
, (57)

where �T = T0 − TL > 0 measures the external gradient (recall we choose TL = 1),
ν̃ = ν/ρ̃ is the kinematic viscosity with ρ̃ = mρ/π�2 the mass density, κ̃ = κ/ρ̃CP ,
and CP = cp/m is the specific heat capacity per unit mass. For hard disks, linearizing
the Navier–Stokes equations under the Boussinesq approximation [109], one arrives to a
critical Rayleigh number Rac = 27π4/4 	 657.51 above which convection kicks in for
the stress free boundary condition case. To have some intuition on the range of parameters
of interest, we computed Ra using the Henderson EoS approximation (9) and the Enskog
transport coefficients for hard disks, Eq. (35), which work pretty well for low and moderate
densities, see Fig. 12. The left panel in this figure shows the behavior of Ra as a function
of the global density for T0 = 5 and different values of the gravity field, namely g = 5,
10 and 15. In all cases, the maximum of Ra(η) appears for low densities and it is above
the critical Rayleigh number Rac. It therefore seems convenient to fix the global density
to η = 0.2 in our simulations below. In order to gain some insight on the value of the
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critical boundary temperature T0 separating non-convective and convective regimes, we plot
in the right panel of Fig. 12 Ra as a function of T0 for a fixed global density η = 0.2.
From these plots we obtain the following critical temperatures as a function of g, namely
T c
0 (g = 5) = 1.6205, T c

0 (g = 10) = 1.2233 and T c
0 (g = 15) = 1.1376, indicating that

convection appears for lower temperatures aswe increase g. In thisway, our simulations below
will focus on the following bottomwall temperatures across the Rayleigh–Bénard instability,
T0 = 1, 1.2, 1.4, 1.6, 1.8, 2.0, 2.2, 2.4, 2.6, 2.8, 3, 4, . . . , 19, 20, with g = 0, 5, 10 and 15,
and η = 0.2 as mentioned above. Finally, we choose a relatively small number of particles,
N = 957, in order to have a fast system evolution so as to gather a large amount of data
to perform averages. We expect that the bulk-boundary decoupling phenomenon reported in
previous sections (which enforces themacroscopic laws in the bulk of afinite-sizedfluid under
renormalized boundary conditions) will allow us to obtain reliable macroscopic properties
of the hard disks fluid in the convective regime, even for such a small N . In this section we
will perform local measurements of some hydrodynamic fields by dividing the unit box into
nc ×nc (virtual) square cells of side� = 1/nc, see Sect. 2. In particular, we will use nc = 30
so the measured 2d maps will contain 900 local data points.

To obtain an overview of the fluid behavior, we start by measuring several global observ-
ables as e.g. the kinetic energy per particle (ec) and its variance, the hydrodynamic kinetic
energy (eu), or the heat current (J ). Other magnitudes were also measured (as e.g. average
potential energy, reduced pressure, etc.) but are not show here, see Ref. [40] for a more
detailed analysis. In particular, we are interested in monitoring the effect of the transition
to convective flow on these global observables, and whether this transition is accompanied
by an abrupt or non-analytical change in their functional behavior. The kinetic energy per
particle for a given disks configuration is given by

ec({pi (t)}) = 1

N

N∑

i=1

pi (t)2

2m
, (58)

where we recall that pi (t) is the linear momentum vector of the i-th disk. We have measured
its ensemble average 〈ec〉 (or simply ec for notation simplicity) and its second central moment
m(ec, 2) ≡ 〈e2c 〉 − 〈ec〉2 as steady-state time averages using the ergodic theorem. Figure 13a
shows that 〈ec〉 grows monotonically with T0 in a smooth nonlinear way, with an amplitude
that increases with g. In this way, for any fixed non-zero external gradient, increasing the
external field leads to a positive variation of the fluid kinetic energy, exerting a net work on the
system. Interestingly, this is a purely nonequilibrium effect which contrast with equilibrium
(T0 = TL = 1) phenomenology, where variations of g do not affect 〈ec〉. Moreover for
large enough gradients, T0 > 15, the kinetic energy exhibits an asymptotic linear behavior
〈ec〉 ≈ 1

3T0, with a slope mostly independent of g, even though the associated temperature
profiles are highly nonlinear. The scaled variance of the kinetic energyper particle, Nm(ec, 2),
exhibits a similar behavior as a function of T0, see Fig. 13b,with a global smooth but nonlinear
functional form depending on g with linear asymptotics. Note also that, in both cases, there
is no trace of any abrupt and/or singular behavior in the data reflecting the putative transition
from non-convective to convective flow occurring as T0 is varied.

The relative fluctuations of the kinetic energy per particle, as measured bym(ec, 2)/〈ec〉2,
exhibit a much more interesting behavior with T0, see Fig. 14a. In the presence of gravity,
i.e. for any g > 0, the relative kinetic energy fluctuations display a clear minimum at a
nontrivial value of T0. This contrasts starkly with the equilibrium case g = 0, see Fig. 14a,
for which the relative fluctuations grow monotonically with T0. In order to estimate the
minimum location for each g > 0, we fit a generic 9th-degree polynomial to the data (see
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Fig. 13 a Average kinetic energy per particle, 〈ec〉, as a function of T0 = 1, 1.2, . . . , 20 for g = 0 (red
dots, bottom curve), g = 5 (blue dots), g = 10 (green dots) and g = 15 (black dots, top curve). Note that
errorbars are included in this plot and are smaller that the point size in all cases. Dashed lines show the tangent
behavior of the curves at T0 = 1 and the asymptotic linear behavior for large T0 values. The legends display
the measured slopes in each case. b Scaled variance of the kinetic energy per particle, Nm(ec, 2), as a function
of T0. Errorbars are also included (Color figure online)
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Fig. 14 a Relative variancem(ec, 2)/〈ec〉2 for the kinetic energy per particle. Dashed curves are phenomeno-
logical fits to the data, that allow to compute the temperature associated to the minimum relative variance.
These minima are located at T c

0 = 2.2, 3.3 and 4.6 for g = 5, 10 and 15, respectively (see solid vertical
lines). Dashed vertical lines correspond to the predicted values within Enskog approximation for the trans-
port coefficients. b Average hydrodynamic kinetic energy, 〈eu〉, see definition in Eq. (60), as a function of
T0 = 1, 1.2, . . . , 20 for g = 5 (blue dots), g = 10 (green dots) and g = 15 (black dots). The curves are
polynomial fits to the points (see text). Error bars are included. The dashed vertical lines locate the critical
temperatures obtained from the fitted hydrodynamic kinetic energy, and the agreement with the minimum
temperatures on panel a is remarkable (Color figure online)

dashed curves in Fig. 14a) and look for the temperature where its first derivative vanishes for
each g. In this way we estimate that the minima appear at temperatures T c

0 = 2.2, 3.3 and 4.6
for g = 5, 10 and 15, respectively (solid vertical lines in Fig. 14a). One can argue that such
nontrivialminima signal a threshold temperature for each g separating different regimes in the
fluid. In fact, we will see below that these temperatures of minimum relative kinetic energy
variance correspond to the critical temperatures defining the transition to convective flow
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for each g. Note however that these threshold temperatures are markedly different from the
critical temperature predictions based on Enskog theory (dashed vertical lines in Fig. 14a).
The reason for this discrepancy lies in the Boussinesq approximation used to derive the
Rayleigh critical temperatures within Enskog theory, which assumes the underlying fluid
to be incompressible. Our numerical analysis shows instead that the hard disks fluid in this
parameter regime behaves as a compressible fluid (as demonstrated e.g. by the non-trivial
density profiles), explaining the discrepancy.

We next focus on the hydrodynamic kinetic energy, another global observable. It is defined
as the kinetic energy associated to the coarse-grained velocity field. We hence need to define
first the average velocity at a given spatial cell (n, l), with n, l ∈ [1, nc] (see Sect. 2)

u(n, l; M) = 1

N (n, l)M

M∑

k=1

∑

i :r(i,tk )∈B(n,l)

vi (tk) , with N (n, l) = 1

M

M∑

k=1

∑

i :r(i,tk )∈B(n,l)

1 , (59)

with M the total number of steady-state measurements at equispaced times tk , k ∈ [1, M],
at the spatial domain B(n, l) associated to cell (n, l). We also recall that N (n, l; t) is just the
number of particles at cell (n, l) at time t , see the definition of local averages introduced in
Eq. (4) of Sect. 2. The hydrodynamic kinetic energy is now defined as

eu(M) = 1

2NC

∑

(n,l)

ρ(n, l)

ρ
u(n, l; M)2 , (60)

where ρ(n, l) is the mean packing fraction at cell (n, l), NC = n2c is the total number of
(virtual) cells in which we divide the system box (NC = 900 in our case), and the M-
dependence in the argument indicates that the hydrodynamic kinetic energy is computed
after a large but finite number of measurements M . In general, we expect u(n, l; M) ≈ 0
∀(n, l) for non-convective states in the fluid (T0 < T c

0 ), while clearly one should expect
u(n, l; M) �= 0 once convection kicks in (T0 > T c

0 ), due to the development of spatially
structured velocity fields (rolls) associated to the Rayleigh–Bénard instability. In this way
the hydrodynamic kinetic energy eu(M) will work as an order parameter for the convection
transition. Figure 14b shows the measured eu as a function of the hot boundary temperature
T0 for different values of g > 0. A first observation is that the measured numerical values for
eu are about three orders of magnitude smaller than the total kinetic energy ec, see Fig. 13a.
This is due to the hydrodynamic separation of scales, which makes the numerical analysis of
the convective structures very hard. Indeed, the error analysis is particularly delicate for such
a noisy data, and care is needed to extract the relevant behavior.5 As shown in Fig. 14b, the
behavior of eu(T0) is compatible with an order parameter, as argued above. In particular, we
observe that the average hydrodynamic kinetic energy is very close to zero for low values of
T0, and at some nontrivial temperature which depends on g it starts growing in a continuous
manner. To estimate this critical temperature, we fit a piecewise-defined polynomial to the
data

efitu (T0) =
{
0 for T < T c

0 ,

(T − T c
0 )2(a0 + a1T 2

0 + · · · a7T 8
0 ) for T ≥ T c

0 ,

in the range T0 ∈ [2.6, 12], T0 ∈ [4, 13] and T0 ∈ [5, 16] for g = 5, 10 and 15, respectively,
where the fitting parameters are T c

0 and the ai -coefficients, see dashed curves in Fig. 14b. We
choose a leading (T −T c

0 )2 scaling as aminimal assumption in order to demand both continu-
ity and zero first-derivative at the transition point T c

0 . The values of the critical temperatures

5 We refer the reader to Ref. [40] for a detailed analysis of error propagation and correction in this case.
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Fig. 15 a Average reduced heat current at the bottom thermal bath, J�m1/2, as a function of T0 for g = 0
(red dots), 5 (blue dots), 10 (green dots) and 15 (black dots). The current measured in the opposite wall has
the same magnitude and different sign, see main text. The dashed curves are fits to the data. Note that ∀g the

heat current grows asymptotically as J ∝ T 3/2
0 for large enough T0. b The two different critical temperatures

obtained from our simulations, as a function of the gravity strength g. Black dots correspond to the values
of T0 at which the heat current of a system with fixed g equals the one with g = 0. Red dots are the critical
temperatures obtained by fitting the hydrodynamic kinetic energy (the order parameter for the transition to
convective flow) in Fig. 14b. Similar critical temperatures are obtained from the minima of the relative kinetic
energy variance, see Fig. 14a (Color figure online)

so obtained are T c
0 = 2.1, 3.4 and T c

0 = 4.3 for g = 5, 10 and 15, respectively, see dashed
vertical lines in Fig. 14b. These critical temperatures, which change only slightly when vary-
ing the polynomial degree or the fitting ranges, are fully consistent with the temperatures
of minimum relative fluctuations for the kinetic energy, see Fig. 14a. We therefore conclude
that these critical temperatures signal the onset of convection for the different values of g in
the hard disks fluid.

We briefly mention that we also measured the reduced pressure Q(y) = P(y)π�2 at
the top and bottom thermal walls (not shown [40]) in terms of the momentum flux during
hard disks collisions. Interestingly, our results show that the equilibrium barometric formula
Q(0) − Q(1) = gNπ�2 holds with precission in all cases, even though the fluid is out of
equilibrium due to the temperature gradient and despite the non-trivial dependence of the
pressure profile with T0. Moreover, we observe that this property is independent of the state
of the fluid, either convective or non-convective.

In order to characterize the transport properties of the fluid, we also measured the aver-
age heat current J flowing through the fluid. In particular, we compute the energy current
traversing each of the boundary thermal baths in terms of the momentum exchange during
hard disks collisions. A first observation is that J (0) = −J (1) so no energy accumulation
happens in the system. This is of course expected due to the lack of any energy dissipation
mechanism in the bulk of the fluid. Figure 15a shows the measured J as a function of the hot
wall temperature T0 for g = 0, 5, 10 and 15. In all cases the heat current exhibits a smooth and
nonlinear dependence on T0, implying that the fluid’s thermal conductivity is not constant
and depends on the local temperature field, provided that Fourier’s law applies (a conjecture
that we have empirically demonstrated in the absence of gravity, see Sect. 5). Moreover, for
large enough values of T0, the heat current scales as J ∼ T 3/2

0 independently of g, though the
amplitude does depend on gravity. On the other hand, for intermediate values of T0 a remark-
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able phenomenon appears which helps to understand the complex role of gravity in transport.
In particular, note that all curves J (T0; g) with fixed g > 0 intersect the curve J (T0; g = 0)
at a non-trivial temperature Tc,2(g), see Fig. 15a. This temperature separates two different
regimes for any fixed g > 0: (i) a regime 1 < T0 < Tc,2(g) where gravity hinders heat trans-
port (i.e. the heat current is smaller when gravity is present, J (T0; g �= 0) < J (T0; g = 0)),
and (ii) another regime T0 > Tc,2(g) where instead gravity promotes heat transport, i.e.
J (T0; g �= 0) > J (T0; g = 0). We call the first regime gravity-suppressed transport regime,
while the latter is termed gravity-enhanced transport regime. Figure 15b shows the measured
values for Tc,2 as a function of g, as well as the critical temperatures Tc(g) obtained from the
convection order parameter (the hydrodynamic kinetic energy displayed on Fig. 14b). The
two sets of critical temperatures are clearly different, with Tc,2(g) > Tc(g) ∀g > 0. This
shows that convection not always enhances heat transfer. In particular, for each g there is
a temperature range Tc(g) < T0 < Tc,2(g) within the gravity-suppressed transport regime
where convection has already kicked in (as reflected by a structured velocity field) but still is
not efficient enough to improve the transfer of energy with respect to the gravity-free (g = 0)
case.We call this region Tc(g) < T0 < Tc,2(g) semi-convective regime, to distinguish it from
the fully-convective regime appearing for T0 > Tc,2(g).

To better understand the physical differences between the semi- and fully-convective
regimes, we now analyze the spatial structure of the average hydrodynamic velocity field.
Figure 16 shows this vector field, see definition in Eq. (59), as measured for five different
hot bath temperatures T0 and three values of g > 0. Note that the magnitude of local
hydrodynamic velocity vector is typically very small comparedwith the averagemean particle
velocity (e.g. 0.11 vs 3 for g = 10 and T0 = 20), a result of the hydrodynamic separation
of scales which difficults the numerical analysis of convective structures. The values of T0
shown in Fig. 16 for each g have been chosen so that the first one is below Tc(g), the second
is between Tc(g) and Tc,2(g), and the rest are beyond Tc,2(g). While disorder dominates
configurations below Tc(g) (first row in Fig. 16), for temperatures between Tc(g) and Tc,2(g)
some incipient local order seems to emerge though fluctuations still dominate, paving the
way to fully-developed convective rolls for large enough T0. Note that rolls for g = 5
(bottom-left panel in Fig. 16) are noisier than the ones observed for g = 10 or g = 15, in
particular near the hot thermal bath. The onset of convection can be better understood by
looking at the streamline distribution associated with the measured hydrodynamic velocity
fields. For a given velocity field, we define a streamline starting at some initial point as
the trajectory whose tangent at any point corresponds to the given fixed vector field. That
is, let u(x, y) = (u1(x, y), u2(x, y)) be a fixed vector field and (x0, y0) an arbitrary initial
point. Then, the streamline associated to this point is the solution of the following differential
equation

dy

dx
= u2(x, y)

u1(x, y)
, (61)

or in parametric form

dx

ds
= u1(x(s), y(s)) ,

dy

ds
= u2(x(s), y(s)) , (62)

with initial condition at (x0, y0). Numerical solutions to this problem can be simply found
using e.g. a standard Runge–Kutta integrator [110]. Note that in our case the velocity vector
field is defined over a discrete (30 × 30) grid, so in order to reconstruct the vector field at
arbitrary points as needed by the streamline numerical integrator we perform linear interpo-
lations from neighboring grid sites. Streamlines end whenever the underlying velocity vector
field breaks the continuity of a trajectory. This can be detected by a simple stop condition in
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Fig. 16 Average hydrodynamic velocity field for hard disks measured across the Rayleigh–Bénard instability.
Left column: g = 5 and T0 = 1.4, T0 = 2.6, T0 = 4, T0 = 10 and T0 = 20, from top to bottom. Central
column: g = 10 and T0 = 1.8, T0 = 4, T0 = 6, T0 = 15 and T0 = 20, from top to bottom. Right column:
g = 15 and T0 = 2, T0 = 6, T0 = 8, T0 = 15 and T0 = 20, from top to bottom. Note the typical roll
structured associated to the Rayleigh–Bénard instability, most apparent for the largest values of T0
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Fig. 17 Top row: Samples of 102 streamlines (red lines) obtained from the average hydrodynamic velocity
field (displayed as greyscale arrows) for g = 10 and, from left to right, T0 = 1.8, 4, 6, 10 and 20. Streamlines
grow considerably in length and increasingly follow the underlying roll structure as we cross the Rayleigh–
Bénard instability. Bottom row: The corresponding probability distribution of streamline lengths measured in
each case for 104 random initial points. Solid lines are fits to the data (see text). Note the change of scale in
the abcisa from left to right (Color figure online)

the above integration scheme: a streamline ends whenever the condition u(n + 1) · u(n) < 0
is satisfied, where u(n) = [u1(x(sn), y(sn)), u2(x(sn), y(sn))] is the velocity vector in the
n-th step of the integration scheme.6 For any given average hydrodynamic velocity vector
field we hence generate 104 streamlines with random initial points uniformly distributed in
the simulation box, and we compute the statistics of streamline path lengths. Note that the
streamline length is a direct measure of the range of coherent motion observed in a fluid with
a given average velocity field. The top row in Fig. 17 shows a small sample of 102 streamlines
obtained for g = 10 and different temperatures selected to show the typical behavior at each
relevant region.

The streamline length distribution changes appreciably its nature as we move from the
non-convective to the fully-convective regime, see bottom panels in Fig. 17. As expected, the
length distribution in the non-convective regime T0 < Tc(g = 10) = 3.4 is strongly peaked
at small length values (∼ 0.1), see Fig. 17a. Interestingly, the measured distributions in this
regime are well fitted by a gamma distribution for all values of g, namely

P(l;α, β) = lα−1

βα�(α)
e−l/β , (63)

with α and β fitting parameters. The fitted curve for g = 10 is indeed shown as a red line in
Fig. 17a, and the agreement with data is excellent. As we increase the hot bath temperature
beyond the first critical temperature Tc(g), the streamline length distribution widens but
mantains its gamma-shaped form, see Fig. 17b. However, as we move to T0 > Tc,2(g =
10) = 5 the length distribution changes radically to an extended structure with some peaks
which spreads over a broad lengths interval, see see Fig. 17c–e, losing the gamma-shaped
form. This change coincides with the development of clear roll patterns in the streamlines
structure. Moreover, a collection of well-defined localized channels emerge associated to the
roll pattern which concentrate most long streamlines. For the largest boundary temperature,
T0 = 20, the distribution peaks at large values of the streamline length (∼ 2), and exhibits a

6 Similar integration techniques to obtain streamlines from discrete vector fields are routinely used in imaging
processing, see for instance Refs. [111,112] for some other technicalities.
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Fig. 18 Average streamline length 〈l〉 as a function of T0 for g = 5 (left panel), g = 10 (central panel), and
g = 15 (right panel). In all cases 〈l〉 increases from 0 at low values of T0 and saturates at 〈l〉 ≈ 2 for large
enough T0. The labels in the central (g = 10) panel correspond to temperatures T0 = 1.8 (a), T0 = 4 (b),
T0 = 6 (c), T0 = 10 (d) and T0 = 20 (e), i.e. the same temperatures of the streamlines snapshops and length
distributions displayed in Fig. 17. The vertical dashed lines in each panel correspond to Tc(g) and Tc,2(g) in
each case, see Fig. 15b

sharp cutoff around l ∼ 3, see Fig. 17e, which corresponds to closed streamlines of (maximal)
length7 approximately equal to the perimeter of a rectangle of sides 1 × 1/2.

The average streamline length 〈l〉 is a good proxy for the change of behavior observed
above. Figure 18 shows 〈l〉 as a function of T0 for different values of g > 0, together with
the first and second critical temperatures in each case, Tc(g) and Tc,2(g), respectively. The
first critical temperature Tc(g), associated with the onset of structure in the hydrodynamic
velocity field (see Fig. 14b and related discussion), also signals the temperature where the
streamline average length starts growing. For large enough values of T0 � 10, 〈l〉 saturates at
a constant value of around 2 corresponding to the large rolls observed in Fig. 17d, e. On the
other hand, the average streamline length takes a nontrivial, nonzero value at T0 = Tc,2(g),
which signals the temperature where convective heat transport becomes efficient.

To better understand the physical origin of the transition to efficient convective transport,
we recall that the average streamline length 〈l〉 is a measure of the range of coherent motion
in the fluid. Now, the fraction pr of spatial cells where coherent motion happens can be
identified with the fraction of hydrodynamic velocity vectors whose modulus is larger than
its standard deviation, i.e.

pr = N (a)
C

NC
, (64)

with N (a)
C ≤ NC the number of active spatial cells. This means that motion in the given

cell is significant against the naturally-ocurring fluctuations. The fraction pr of active cells
where coherent motion happens grows with T0, but also the typical lengthscale of coherent
motion as given by 〈l〉. In this way we can visualize one of this active patches as a disk or
circular region of coherent motion of typical size 〈l〉. Figure 19 plots pr (T0) as a function
of 〈l〉(T0) for all measured values of T0 and g, and a striking collapse of curves is observed,
specially in the range of moderate values of 〈l〉 where the transition to efficient convective
transport happens. Indeed, one can check that, remarkably, 〈l〉(T0 = Tc,2(g)) ≈ 0.6 ∀g > 0,
or equivalently pr (T0 = Tc,2(g)) ≈ 0.68 according to the scaling observed in Fig. 19.
Such critical fraction of active cells (where coherent motion happens) corresponds very

7 Note that Fig. 17d is compatible with the existence of streamlines with length 3 < l < 6, in apparent
contradiction with the maximal length reported here. These very long streamlines correspond to spiraling
trajectories around rolls, which do not close on themselves. Such spurious structures (that appear due to the
discreteness of the underlying velocity vector field and do not affect our discussion here) can be substracted
and disappear for larger T0 [40].
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Fig. 19 Fraction pr (T0) of spatial cells where coherent motion happens (defined as the ratio of vectors whose
modulus are larger than its standard deviation) as a function of the average streamline length 〈l〉(T0) for
g = 5 (blue dots), g = 10 (green dots), and g = 15 (black dots). Notice the striking collapse observed
for all curves, specially in the range of 〈l〉 where the transition to efficient convective transport happens. In
particular 〈l〉(T0 = Tc,2(g)) ≈ 0.6 in all cases, which corresponds to pr (T0 = Tc,2(g)) ≈ 0.68, very close
to the critical covered area fraction φc ≈ 0.676 for two-dimensional continuous percolation of overlapping
randomly-placed disks of radius 〈l〉 [113] (Color figure online)

closely to the critical covered area fraction for two-dimensional continuous percolation of
overlapping randomly-placed disks of radius 〈l〉 (namely φc ≈ 0.676 [113]). This strongly
suggests that efficient convective heat transport (i.e. heat currents above the g = 0 limit)
only happens when a percolating, macroscopically connected cluster of regions of coherent
transport appears connecting the hot reservoir at the bottom with the cold bath at the top.
These results hence support a two-steps picture for the transition to convective flow. As the
hot bath temperature is increased, the fluid reaches a first critical temperature Tc(g) where
the hydrodynamic velocity field develops incipient structure and coherent local motions kick
in. Such coherent, convection-like motions are however local and disconnected, leading to
unefficient heat transport. As the hot boundary temperature keeps increasing, the density and
size of such active, coherent regions increase, leading eventually to a continuous percolation
transition at a second critical temperature Tc,2(g) > Tc(g) where a spanning cluster of
active patches emerges connecting the hot and cold reservoirs and thus leading to efficient
heat transport. A natural question concerns the dependence of the semi-convective regime
T0 ∈ [Tc(g), Tc,2(g)] on the system size, a problem that we cannot address at this point.
This would imply the existence of intermediate solutions to the Navier–Stokes equations,
different from the well-known regular convective ones. The chances are that the two-step
picture for the convection transition, that can be tested in laboratory experiments, survives
in the thermodynamic limit, i.e. as N → ∞.

To end this section, and in the spirit of Sect. 6, we want to test whether hydrodynamic
profiles in convective flow exhibit some type of scaling into an universal master curve. To do
so, we focus again on the average hydrodynamic velocity field, and leave other hydrodynamic
observables for an extended analysis [40]. Figure 20 shows the x- and y-components of the
average hydrodynamic velocity vector field, u(x, y) = (u1(x, y), u2(x, y)), measured for
g = 10 and the values of T0 already reported in Fig. 17. We observe how for T0 > Tc(g)
a well-defined spatial structure for each velocity component emerges, a pattern compatible
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Fig. 20 Average hydrodynamic velocity field components u1 and u2 (top and bottom rows, respectively)
measured for g = 10 and, from left to right, T0 = 1.8, 4, 6, 10 and 20. A velocity vector field structure
compatible with convective rolls is clearly observed for large enough values of T0, see also Fig. 16

with the convective rolls observed in Figs. 16 and 17 that gets sharper as T0 increases. In
order to search for common scaling forms, we substract from each component of the velocity
field its spatial average ū1,2, and scale the resulting field by its local standard deviation σ1,2,
with

σ1,2 =
⎡

⎣ 1

NC

∑

(x,y)

(u1,2(x, y) − ū1,2)
2

⎤

⎦

1/2

, ū1,2 = 1

NC

∑

(x,y)

u1,2(x, y) , (65)

where NC is the number of discrete spatial cells and the sum runs over all (x, y)-cells. In this
way, we define the components of the rescaled hydrodynamic velocity field as

u(s)
1,2(x, y) = u1,2(x, y) − ū1,2

σ1,2
. (66)

Figure 21 shows the superposition of four different scaled velocity fields for large values of
T0 and gravity field values g = 5, 10 and 15. The collapse of the scaled profiles is excellent
in all cases, and one can show numerically that there is no systematic T0-dependence on the
scaled configurations [40]. Moreover, a similar scaling analysis can be performed for other
hydrodynamic fields [40]. These data collapses hence demonstrate the existence of universal
master curves for hydrodynamic fields in convective flow, at least in the asymptotic large-T0
regime.

8 Efficiency of Boundary Dissipation

In this section we use hard disks as a model systemwhere to study an important and pervasive
question in nonequilibrium physics: can bulk forcing be balanced by a boundary dissipation
mechanism? [41] Historically, bulk dissipation has been often assumed to investigate steady
states in driven, nonequilibrium systems. This is the case ofDrude’s theory of electric conduc-
tion [114], for instance, where three different actors interplay, namely (i) a constant external
force accelerating particles along a given (periodic or infinite) direction, (ii) a thermal bath
which absorbs excess energy and leads the system to a steady state, and (iii) a number of
random scatterers (or impurities) to trigger chaotic particle dynamics. Under these circum-
stances a steady state with a net current of particles flowing in the direction of the external
field is achieved, due to the balance between the energy input by the external field and the
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Fig. 21 Components u(s)
1 (x, y) (top row) and u(s)

2 (x, y) (bottom row) of the rescaled hydrodynamic velocity
field for large enough values of T0 and g = 5 (left column), g = 10 (central column), and g = 15 (right
column). Different colors are used for T0 = 17, 18, 19 and 20. Note the excellent collapse found in all cases,
demonstrating the existence of universal master curves in the asymptotic, large-T0 convective regime

energy dissipated by the thermal bath. This is of course expected as both the external forcing
and the thermostat are bulk mechanisms, a result that has been confirmed in simulations
[114]. A natural question, motivated by realistic applications, is thus whether a boundary
thermostating mechanism in the absence of bulk impurities will be capable of driving the
system to a well-defined steady state. The answer is not clear as the external field tends to
align particle trajectories, and dissipation in this case is a boundary effect competing with
bulk driving. Simulations of Poseuille flow in a weak-flow regime [115–117] suggest that a
well-defined steady state exists when boundary thermostats (balancing a bulk driving) inter-
act strongly with the system via long-range forces. But the question remains as to whether
boundary thermostats with short-range interactions can be efficient enough to balance a bulk
driving. Note that efficiency of a thermostat in this context means that the reservoir is capable
of absorbing enough energy to prevent an indefinite growth of energy in the driven system.

To answer this question, we perform simulations of hard disks driven by an external
constant field and in contact with boundary Gaussian thermostats [41], see Fig. 22a. As
before, the model consists in N hard disks of radius � confined in a two-dimensional unit box
(i.e. with side L = 1), and initially located on a triangular lattice structure. The simulation
box is divided in three different sectors, namely a central bulk region of width 1 − 2α
subject to periodic boundary conditions along the y-direction, and two equal lateral stripes
of width α = 1/4 that correspond to the boundary baths. The actual numbers of disks
placed in the bulk and bath regions are controlled by the corresponding number densities,
ρbulk and ρbath, respectively. For the simulations in this section we choose to work with
N = 4937 disks and densities ρbulk = 0.4 and ρbath = 0.5, which corresponds to Nbulk =
2301 disks in the central sector and Nbath = 1318 particles in each bath. We work at a
moderate global packing fraction η = Nπ�2/L2 ≈ 0.447 which corresponds to disks radius
� ≈ 5.37 × 10−3 for N = 4937 disks. The disks dynamics depends on the sector they
are located at, see Fig. 22a. Disks in the bulk interact via elastic collisions upon contact,
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Fig. 22 a Snapshot of a typical configuration of the hard disks system in contact with Gaussian thermostats.
The disks in the bulk (white area) are accelerated in the y-direction by a driving field E , which together
with the periodic boundaries in this direction result in a net current of particles in the steady state. Disks at
the grey boxes act as deterministic thermal baths, keeping constant their total kinetic energies for all times
(as corresponds to temperatures T1 and T2). Disks collide elastically with each other, and their centers may
also collide elastically with walls (represented as thick black lines). b Probability density function �(p) for
the relative particle current p(t) = J (t)/〈J 〉, with 〈J 〉 the average current, measured at the steady state for
different external fields E . m2(E) is the measured variance of the relative current p(t). The solid line is a
normal distribution with zero mean and variance one

and they are also subject to a uniform acceleration of magnitude E in the y-direction. This
external field, together with the periodic boundaries along this direction in the bulk, favor
the appearance of a net particle current. On the other hand, disks in the bath stripes move
at constant velocity in between collisions, unaffected by the (bulk) external field. Moreover,
when the center of a disk hits any of the walls that define the region in which it is contained,
it is elastically reflected. In this way we keep disks confined at their respective sectors.
Note that interactions between bulk and bath particles only happen via collisions across
the walls. To avoid the bath disks having a net motion along the y-direction induced by
the interaction with bulk disks, we further introduce in each bath stripe four equidistant
walls along the x-direction, see Fig. 22a. The Gaussian thermostats work by keeping the
total kinetic energy K1,2 constant in each bath stripe, K1,2 = NbathT1,2, with T1,2 the bath
temperatures. This is achieved by the following prescription: when a bath disk collides with a
bulk disk, the kinetic energy increment � (positive or negative) that the bath particle suffers
is immediately shared with all other bath particles by rescaling their velocities by a factor
(1 + �/K1,2)

−1/2. This mechanism hence mantains constant the bath total kinetic energy.
This thermostating mechanism is fundamentaly different from the stochastic thermal walls
used in previous sections. The idea behind the Gaussian thermostat is to provide a heat bath
mechanism capable of thermalizing a particle system while preserving the time reversibility
of the particles microscopic dynamics. This has proven important e.g. to study in computer
simulations the emergence of macroscopic irreversibility from time-reversible microscopic
dynamics [29,50,55–58]. In order to relax the initial state and homogeinize the fluid,we let the
system evolve during 100N collisions in the absence of external field, E = 0.We then switch
on the external field in the bulk, measuring the observables of interest every N collisions
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Fig. 23 Time evolution of the kinetic energy per particle K (a) and the particle current J (b) for different
values of the driving field E . After a short relaxation transient, both observables reach an apparently constant
value, fluctuating around it in a stable way, a behavior compatible with the existence of a well-defined steady
state

during 105 N collisions. Our simulations include data for driving fields E ∈ [10−4, 5] and
equal bath temperatures T1 = T2 = 1.

Figure 23 shows the typical time evolutions of both the kinetic energy per particle and
the average particle current along the field direction, for different values of E . These are
observables are defined as

K (t) = 1

2N

Nbulk∑

i=1

vi (t)2 , J (t) = 1

N

Nbulk∑

i=1

vy,i (t) , (67)

respectively. After some short initial transient, both observables reach an apparently constant
value, fluctuating around it in a stable way, a behavior compatible with the existence of a
well-defined steady state of constant average kinetic energy and particle current. Figure 24a
shows the measured steady-state average kinetic energy and particle current, 〈K 〉 and 〈J 〉
respectively, as a function of the field intensity E . This shows that the hard disks system
response to the external electric field is in general nonlinear. In particular, the average kinetic
energy per particle grows quadratically with E , 〈K 〉 ∝ E2, for large enough fields. On the
other hand, the average particle current increases linearly with E . In particular, for small
enough E we observe Ohm’s law of electrical conduction with a pretty large electrical
conductivity, namely 〈J 〉 ≈ 1.7E , see also the inset to Fig. 24a. In this way, our data support
a picture where the interaction of the fluid with the boundary heat baths is strong enough to
effectively disorder bulk particles, despite the field tendency to align their trajectories. We
also studied the internal kinetic energy KI = K − J 2/2, i.e. the kinetic energy per particle
once the kinetic energy associated to the center-of-mass motion along the y-direction has
been subtracted, finding again a quadratic dependence with the driving field E , see Fig. 24a.

We have also studied the statistics of fluctuations of both the current J (t) and the kinetic
energy K (t) around its stationary average value. In particular, Fig. 22b shows the measured
probability density function �(p) for the relative particle current, p(t) = J (t)/〈J 〉. For
small values of the driving field, E ≤ 1, the measured distribution is compatible with a
Gaussian distribution with an average value 1 and a variance m2(E) that depends on the
electric field. However, weak but systematic deviations from Gaussian statistics are observed
for larger electric fields. Moreover, Fig. 24b shows the measured variancem2(E) for both the
relative current J (t)/J and the relative kinetic energy K (t)/K obtained for different values
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Fig. 24 a Average kinetic energy per particle 〈K 〉 and average particle current 〈J 〉 measured in the steady
state in the bulk sector. Lines are (linear or quadratic) polynomial fits to the data, and their legends include
the errors of the fitted coefficients. The internal kinetic energy per particle, KI = K − J2/2, is also shown.
Error bars are present in all cases. The inset shows the forward discrete derivative of 〈J 〉(E), which takes an
approximately constant value ≈ 1.7 for E � 1, compatible with Ohm’s law of electrical conduction in this
regime. b Measured variance m2(E) of the relative particle current J (t)/〈J 〉 and the relative kinetic energy
K (t)/〈K 〉 as a function of the electric field intensity E . The dashed line is guide to the eye showing the power
law behavior ∼ E−1.7 of the particle current variance

of E . Interestingly, whilem2(E) for the kinetic energy depends only weakly on E , saturating
at a constant value for E ≤ 1, the fluctuations of the relative current grow as a power-law as
E → 0, i.e. m2(E) ∼ J−1.7 in the range E ∈ [10−3, 1]. This means in particular that for
E � 1 a large fraction of particles are able to move against the external driving, i.e. in the
−E direction. This behavior is however strongly suppressed as the field increases and, for
E > 1 most of the particles move along the field.

Our results in this section hence prove how short-ranged boundary thermostats can balance
a bulk driving mechanism in the absence of additional disordering effects, leading to an inter-
esting nonequilibrium steady state characterized by stable values of different macroscopic
observables, as well as a well-defined statistics.

9 Bonus Track: Scaling Insights on Anomalous Transport in 1d

The microscopic understanding of Fourier’s law of heat conduction [7] remains as one of the
most important and challenging open problems in nonequilibrium statistical physics, with
no rigorous mathematical derivation to date [8,74,87,118–120]. Since the discovery of fat
tails in the time-correlation functions of fluids [17–19,62], it has been clear that Fourier’s law
in low dimensions (d < 3) is typically anomalous, with a size-dependent heat conductivity
transport coefficient κL(ρ, T ), though the nature of the anomaly remains puzzling. In two
dimensions (2d) the anomaly is expected to be marginal, giving rise to a very weak, loga-
rithmic divergence of the heat conductivity with the system size L [19]. We have already
offered clear numerical evidences of this weak anomaly in our simulations of heat transport
for hard disks in the absence of gravity [33], see Sect. 6 and inset in Fig. 11. For one-
dimensional (1d) systems with momentum conservation the anomaly is expected to lead
to a stronger power-law divergence, κL (ρ, T ) ∝ Lα , and the conventional wisdom is that
the anomaly exponent α is universal and belongs in the Lévy/Kardar–Parisi–Zhang univer-
sality class [8,74,87,119,120], an idea supported by renormalization-group arguments [25]
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and mode-coupling approximations [121], and reinforced by recent related breakthroughs
from nonlinear fluctuating hydrodynamics [122–126]. The understanding of this anomaly
has attracted a lot of attention in recent years [8,17–19,25,26,33,74,87,119–148], not only
because it is expected to shed light on the key ingredients behind Fourier’s law at a funda-
mental level, but also because of its technological relevance in low-dimensional real-world
materials [120,127–138].

In this section we depart from the hard disks model, the main focus of this paper, to study
anomalous transport in a related 1d hard-particle model using the novel scaling method
already presented in Sect. 6 [39]. Previous attempts to characterize the transport anomaly in
1d have been mostly based on linear response theory, and hence were critically-dependent
on a large system-size limit which is in fact never attained [146]. In comparison, the scaling
method used here [39] takes full advantage of the nonlinear character of the heat conduction
problem in a natural way, allowing to disentangle the crucial bulk size scaling from the
artificial boundary finite-size corrections [39]. Our model in this section is the archetypical
1d diatomic hard-point gas in a temperature gradient [22–24,149–156],which is characterized
by themass ratioμ ≡ M/m > 1 between neighboring particles. It is a 1d Hamiltonianmodel
fluid consisting in N hard-point particles with alternating masses,m = 1 and M = μm > 1,
moving ballistically in a line of length L in between elastic collisions with neighboring
particles.8 In the spirit of previous sections, see e.g. Sects. 2–7, the fluid is coupled to two
stochastic thermal walls at the boundaries, x = 0, L , which reflect particles upon collision
with a velocity modulus randomly drawn from aMaxwellian distribution defined by the wall
temperature T0,L [8,74,87,119], see Eq. (2) above. For T0 �= TL , the boundary gradient drives
the system to an inhomogeneous nonequilibrium steady state characterized by nonlinear
number density and temperature profiles, ρ(x) and T (x) respectively [8,74,87,119,120].
Such nonlinearity is a clear indication of the nontrivial dependence of the heat conductivity
on ρ(x) and T (x).

In order to characterize the steady-state hydrodynamic profiles, we performed a large
number of event-driven simulations of the 1d diatomic gas for a broad set of boundary
reservoir temperatures T0 = 2, 5, 10, 20 (with fixed TL = 1), global number densities
η ≡ N/L = 0.5, 1, 2, 3, different mass ratios μ = 1.3, 1.618, 2.2, 3, 5, 10, 30, 100, and
numbers of particles N = 101, 317, 1001, 3163, 10001, reaching up to N = 105 + 1 in
some cases. We measured locally different relevant magnitudes including the local kinetic
energy, number density, virial pressure and energy current density, as well as the energy
current flowing through the thermal baths at x = 0, L and the pressure exerted on these
fixed walls in terms of momentum exchange. As observed for hard disks in 2d , see Sect.
6, the observables measured at the walls (pressure and current) agree in all cases with their
bulk counterparts, which are constant across the system. For local measurements we divided
the fluid into 30 virtual cells, a constant number independent of other system parameters.
Time in simulations was measured in units of t0 = √

M/(2TLη2), the mean free time of a
heavy particle at temperature TL , and time averages were performed taking into account the
relaxation and correlation timescales of the 1d fluid, which grow strongly with N (see Ref.
[39] for details). Statistical errors are computed in all cases at 99.7% (i.e. 3σ ) confidence
level, and error bars are shown if larger than plotted symbols.

Figure 25 shows the temperature and density profiles measured for μ = 3 and varying T0,
η and N . Note that similar hydrodynamic profiles are obtained for all other μ’s (not shown).
These profiles are clearly nonlinear, as expected for a heat conductivity κL(ρ, T ) that depends

8 Note that the mass difference between neighbors is needed in order for the model to be ergodic. Equal-mass
hard particles in 1d just exchange velocities upon collision, leading to non-ergodic particle dynamics (e.g. the
initial set of velocities is conserved by the dynamics).
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Fig. 25 Temperature (left) and density (right) profiles measured for (from top to bottom) T0 = 2, 5, 10, 20
and varying η and N , for a mass ratio μ = 3. Similar hydrodynamic profiles are obtained for all other μ’s

on the local density and temperature, and exhibit strong finite-size effects. Our first goal is to
test the macroscopic local thermodynamic equilibrium (MLTE) property directly from these
data, as we already did for hard disks, see Sect. 5. MLTE conjectures that the stationary
density and temperature fields are coupled locally via the equilibrium equation of state (EoS)
[32], which for this model is simply the ideal gas EoS,

P = ρ(x)T (x) .

In order to test MLTE, we hence take the density and temperature profiles of Fig. 25 and
plot in Fig. 26a the local reduced temperature, T (x)/P , with P the finite-size pressure
measured in each simulation (not shown [39]), as a function of the associated local density
ρ(x). Remarkably, all data comprising 2400 points from 80 different simulations for widely
different systems sizes, temperature gradients and global densities, collapse onto a single
curve which follows with high precision the expected ideal-gas behavior 1/ρ, see solid line
in Fig. 26a and inset therein. Note that, interestingly, the excellent data collapse is maintained
also for data points within the boundary layers near the thermal walls. Similar excellent
collapses are observed for all mass ratios μ studied here. This confirms the robustness of the
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Fig. 26 a Testing macroscopic local thermodynamic equilibrium (MLTE). Measured local reduced tempera-
ture, T (x)/P , plotted as a function of the associated local densityρ(x) forμ = 3 and∀ T0, η, N , corresponding
to all profiles displayed in Fig. 25. This plot sums up to 2400 data points from 80 different simulations. An
excellent data collapse is obtained which follows with high precision the expected ideal-gas behavior 1/ρ,
plotted as a thin line. Inset: Scaling plot of ρ(x)T (x)/P vs ρ(x) for the same conditions. These data show that
macroscopic local equilibrium is a very robust property, even in the presence of strong finite-size corrections
on the hydrodynamic profiles, see Fig. 25. b Density dependence of heat conductivity as captured by k(ρ),
see Eq. (69) below. Light gray points show the curves obtained for μ = 3 before scaling data by L−α along
the y-axis, while dark color curves show the scaled curves for each μ. A power-law behavior is apparent in
all cases. Dashed lines are power-law fits to the data, see Table 1

MLTE property far from equilibrium [32], even in the presence of both anomalous transport
(see below) and important finite size effects.

We expect that, when driven out of equilibrium by a boundary temperature gradient, the 1d
diatomic hard-point fluid will sustain a non-vanishing heat current J given by an anomalous
version of Fourier’s law [39]

J = −κL(ρ, T )
dT (x)

dx
, x ∈ [0, L] , (68)

with κL(ρ, T ) a well-defined local conductivity functional which may depend on L . Due to
the homogeneity of the interaction potential, the heat conductivity of the 1d diatomic hard-
point gas exhibits a well-known density-temperature separability [33]. Moreover, standard
dimensional analysis arguments show that κ ∝ √

T /m [33], see also Sect. 3, and the known
dimensional anomaly for transport implies in turn that κ ∝ Lα at leading order, so

κL(ρ, T ) = Lα
√
T /m k(ρ) , (69)

with k(ρ) a function solely dependent on density. Note that this ansatz discards possible
subleading corrections in L . Equations (68) and (69) are not Fourier’s law in the usual sense,
as the latter implies a size-independent κ , while the conductivity in this case grows with
the system size as Lα , with α the anomaly exponent. Indeed, our aim now is to test the
validity of Eqs. (68), (69) and measure the anomaly exponent with the simple yet powerful
scaling technique already employed in Sect. 6 [33,39]. In particular, using the EoS to write
T (x) = P/ρ(x) and Eq. (69), we can rewrite Eq. (68) as

J
√
m

P3/2 L−α = G ′(ρ)
dρ

dx
= dG(ρ)

dx
, (70)
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where we have defined a new function G ′(ρ) ≡ k(ρ)ρ−5/2 (recall that ′ denotes derivative
with respect to the argument). This equation describes themacroscopic heat transport problem
in terms of the density field ρ(x), once its boundary conditions ρ(x = 0, L) = ρ0,L have
been specified. As for hard disks, see Sect. 6, these boundary conditions can be inferred from
the constraints

T0
TL

= ρL

ρ0
, η = 1

L

∫ L

0
ρ(x)dx =

∫ ρL

ρ0

ρ G ′(ρ)dρ

G(ρL) − G(ρ0)
. (71)

Note that the externally controlled parameters in the problem are the temperatures of the
boundary reservoirs, T0 and TL , and the global number density η. The pressure and the heat
current can be now obtained as P = T0 ρ0 and J = P3/2[G(ρL) − G(ρ0)]/(L1−α

√
m).

Now, since both J and P are state-dependent constants, Eq. (70) immediately implies that
G[ρ(x)] = ψL−αx+ζ withψ ≡ J

√
m/P3/2 the reduced current and ζ = G(ρ0) a constant,

i.e. G[ρ(x)] is a linear function of position x ∈ [0, L]. Equivalently,

ρ(x) = F

(
ψ

Lα
x + ζ

)
, (72)

wherewe assume thatG(ρ) has awell-defined inverse F(z) ≡ G−1(z), as otherwise expected
from the regular behavior of the measured stationary density profiles, see e.g. Fig. 25. There-
fore, according to Eq. (72), there exists a single universal master curve F(z) from which
any steady state density profile follows after a linear spatial scaling x = Lα(z − ζ )/ψ .
This scaling behavior is automatically transferred to temperature profiles via the local EoS
P = ρ(x)T (x), so

T (x)

P
= 1

F

(
ψ

Lα
x + ζ

) . (73)

These scaling laws are independent of the global density η or the nonequilibrium driving
defined by the baths temperatures T0 and TL , depending exclusively on the function k(ρ)

controlling the fluid’s heat conductivity. Alternatively, Eq. (72) implies that any measured
steady density profile can be collapsed onto the universal master curve F(z) by scaling space
by the scaled reduced current L−α J

√
m/P3/2, with J and P measured in each case, and

shifting the resulting profile an arbitrary constant ζ (similarly for temperature profiles). The
resulting collapse is expected to be very sensitive to the anomaly exponentα, and this suggests
a simple scaling procedure to measure both α and the universal master curve in simulations.
Furthermore, the empirical confirmation of the collapse would immediately imply that the
1d diatomic hard-point gas obeys the anomalous version of Fourier’s law, Eqs. (68) and (69)
[39].

We hence proceed now to analyze the 1d fluid’s scaling behavior. Note that, as for hard
disks, the boundary thermal walls act as defects (akin to fixed, infinite-mass particles) which
disrupt the structure of the surrounding fluid, defining two boundary layers where finite-size
corrections pile up. To avoid these spurious corrections in scaling collapses, we neglect data
from these boundary layers (up to 7 cells adjacent to each wall), focusing the analysis on
the remaining bulk profiles ρ(x) and T (x). For a given exponent value α, each bulk density
profile ρ(x) is then plotted as a function of L−αψx , with ψ = J

√
m/P3/2 measured in each

case, and shifted by a constant ζ to achieve an optimal collapse among all scaled profiles,
see Fig. 27a. The vector of optimal shifts ζ 0 for fixed α and μ is obtained by minimizing
a standard collapse metric D(ζ ;α,μ) for the density profiles [39,157], which measures the
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Fig. 27 Scaling procedure and data collapse. a Density profiles for μ = 3 ∀N , T0, η as a function of L−αψx
with α = 0.297, before (light gray) and after (dark red) the shifts ζ . Inset: Same as before, but for the reduced
temperature profiles. Note that the shifts are those obtained fromdensity profiles. In both cases the data collapse
is excellent. b Optimal collapse of density and reduced temperature profiles for μ = 3 and three different
exponents α = 0, 0.297, and 1/3. The superior collapse for α = 0.297 is apparent. The abscisa for α = 0 has
been divided by a factor 10 for the sake of clarity(Color figure online)

relative average distance among all pairs of overlapping curves, and the same shifts are
used to collapse reduced temperature profiles, T (x)/P . The resulting data collapses are very
sensitive to α, see Fig. 27b, so the the true anomaly exponent α can be measured with high
precision for each mass ratio μ by minimizing D(α, μ) ≡ D(ζ 0;α,μ) as a function of α.
In fact, the distance function D(α, μ) has a pronounced minimum in α for each μ, see inset
in Fig. 28a, whose width and depth allow to estimate the exponent error [39,157].

Figure 28a shows the measured anomaly exponent (and its error) as a function of the
mass ratio μ. Interestingly, the measured exponent turns out to be non-universal, depending
non-monotonously on the mass ratio, α = α(μ), see also Table 1, growing first from small
values at low μ to a maximum α ≈ 0.3 < 1/3 for μ = 2.2, and decaying afterwards to an
asymptotic value α ≈ 1/4 for large μ. Figure 28b shows the master curves obtained from
density and reduced temperature bulk profiles for different mass ratios by using the measured
α’s, and in all cases the resulting collapses are striking, confirming that anomalous Fourier’s
law (68)–(69) rules heat conduction in this 1d model. This unambiguous result hence calls
into question the prevailing conjecture that the anomaly in 1d heat transport is universal
[25,119,121–126,139].

An alternative, very popular method tomeasure the heat conductivity of a 1d fluid consists
in setting the fluid with N particles and density η = N/L under a small temperature gradient,
with fixed wall temperatures T0,L , and then increasing N at constant density [74,87,119].
For large enough N the overall temperature gradient is small enough so one can approximate
Fourier’s law as

J = −κL (ρ, T )
dT

dx
≈ +κ̃

�T

L
, (74)

with �T = T0 − TL , J the measured current and L = N/η. In this way, the estimated
heat conductivity can be obtained as κ̃ ≈ J L/�T . This effective conductivity is expected
to diverge as N γ for large enough values of N , though there is no way of knowing a priori
which value of N is large enough. What it’s typically found however in actual, cutting-edge
simulations is an effective anomaly exponent γ̃ (N ) which exhibits itself persistent finite-
size corrections [155]. This approximate method completely neglects the nonlinear density

123



520 P. I. Hurtado, P. L. Garrido

(a) (b)

Fig. 28 Breakdown of universality and master curves in anomalous Fourier’s law. a Mass ratio dependence
of the anomaly exponent measured from scaling (©). The non-monotonous behavior of α(μ) clearly signals
the breakdown of universality for anomalous Fourier’s law in 1d. The exponent measured from the power-law
fit for k(ρ) is also shown (�), being fully compatible with α in each case. The line is a guide to the eye.
Inset: The collapse metric D(α, μ) as a function of α exhibits a deep and narrow minimum for each μ (note
the logarithmic scale in z-axis), offering a precise measurement of the anomaly exponent and its error. b
Collapse of density profiles for each μ obtained by using the measured α in each case. The master curves
have been shifted vertically for better comparison. In all cases, the data collapse is excellent. The lines are
theoretical predictions, see main text. Inset: Collapse of reduced temperature profiles for the same conditions,
and theoretical curves. In all cases, each curve for fixed μ contains 1280 points measured in 80 different
simulations for varying N , T0 and η. The abscisas for the μ = 1.3 data have been divided by 4 to better
visualize the results

Table 1 Measured anomaly
exponents α and their error for
different mass ratios μ, see
Fig. 28

μ α β a

1.3 0.108 (9) 0.109 (1) 11.105 (8)

1.618 0.242 (23) 0.2408 (18) 2.307 (3)

2.2 0.308 (5) 0.3068 (11) 1.1765 (9)

3 0.297 (6) 0.2964 (11) 1.1633 (9)

5 0.266 (11) 0.2641 (12) 1.2622 (12)

10 0.260 (14) 0.2632 (19) 0.9874 (14)

30 0.258 (18) 0.257 (1) 0.5942 (12)

100 0.265 (22) 0.2648 (23) 0.3095 (5)

Also shown are the fitted exponent and amplitude of the power-law den-
sity dependence of the conductivity, k(ρ) = aρβ , see Fig. 26b. Notice
that in all cases β = α within error bars, as predicted

and temperature dependence of the heat conductivity, and by construction it can only yield
meaningful results in the limit N → ∞. It is therefore no surprise that the effective anomaly
exponent derived within this approach for finite N varies slowly with the system size, as in
fact the very definition of κ̃ above (and hence γ ) is correct only asymptotically. A natural
question is hence whether the new anomaly exponent α(μ) measured with the novel scaling
method described above exhibits similar finite-size corrections. A first clue that this is not the
case is that, for N ∈ [102 + 1, 104 + 1], a slight change in the anomaly exponent measured
with our scaling method completely destroys the observed collapse, see Fig. 27b, while the
effective anomaly exponent measured with standard methods varies widely with N in the
same N -range, e.g. γ̃ (N ) ∈ [0.25, 0.5], see Fig. 3b in Ref. [155]. In any case, in order to test
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Fig. 29 aCollapsemetric D(α, μ) forμ = 3 as a function of α when considering all data, N ∈ [102+1, 104+
1], T0 ∈ [2, 20], η ∈ [0.5, 3] (full line), and when N is restricted to small N ∈ [102+1, 103+1] (dashed line)
or large N ∈ [103 + 1, 104 + 1] (dot-dashed line). Note the logarithmic scale in the vertical axis. The points
and the errorbars below represent the estimated value of the anomaly exponent α in each case. The values
obtained from the N -restricted sets are fully compatible between them and with the previous result using the
combined sets, all points lying well within the errorbars. Note that the large-N distance curve is slightly wider
than the small-N curve due to the somewhat larger uncertainties accompanying data for large N , as expected
from the strong growth of relaxation and correlation times with N [39]. b Collapse of density profiles for
μ = 2.2 (top) and μ = 3 (bottom) obtained by using the measured anomaly exponent α in each case, see
Table 1. Small points correspond to the scaling collapse obtained for N ∈ [102 + 1, 104 + 1], T0 ∈ [2, 20],
and η ∈ [0.5, 3], while bigger points correspond to additional results obtained from massive simulations for
larger system sizes, namely N = 31623 (©) and N = 105 + 1 (�), with T0 = 20 and η ∈ [0.5, 3]. The line
stands for the theoretical prediction, and the master curve for μ = 2.2 has been shifted vertically for better
comparison

quantitatively this idea, we divided our original data into two different subsets, one for small
N ∈ [102+1, 103+1] and another one for large N ∈ [103+1, 104+1]. In this way both data
subsets have the same amount of points, thus avoiding possible sampling issues. Next, we
perform our scaling analysis on both subsets and obtain the collapse distance metric D(α, μ)

as a function of α in each case. In both cases, small N vs large N , this function exhibits a
pronounced minimum in α for each μ, and these minima identify the anomaly exponent as
measured in each subset. Figure 29a shows the results of this analysis for mass ratio μ = 3,
and the conclusion is clearcut: the anomaly exponents measured from the small-N and large-
N subsets are fully compatible between them and with our previous measurement based on
all N ∈ [102 + 1, 104 + 1], so no significant, systematic variation of the anomaly exponent
with the system size is found beyond the stringent errorbars of our measurements. We found
similar results for all other μ’s.

To further test for possible subtle finite-size corrections on α(μ), we simulated steady-
state heat transport in the diatomic hard-point fluid for N = 31623 and N = 105 + 1, i.e.
one order of magnitud beyond our previous simulations. The scale of these simulations is so
large that we had to restrict the region of parameter space explored. In particular, we perform
simulations for these large-N values, global densities η = 0.5, 1, 2, 3, a strong temperature
gradient defined by T0 = 20 and TL = 1, and two intermediate mass ratios μ = 3 and
μ = 2.2 for which relaxation (and correlation) time scales are slightly shorter (note that
for both small and large μ the fluid’s relaxation and correlation times increase drastically
[158,159]). Figure 29b shows the collapse of density profiles forμ = 2.2 andμ = 3 obtained
by using the measured anomaly exponent α(μ) in each case, namely α(μ = 2.2) = 0.308
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and α(μ = 3) = 0.297, see Table 1, once the new data for N = 31623 and N = 105+1 have
been added. In all cases the excellent collapse of all data across three orders of magnitude in
N strongly confirms the validity of the measured (non-universal) exponents in the large-N
limit. Similar excellent collapses are also obtained for temperature profiles. Note that if a
different anomaly exponent is used in the previous scaling plots (e.g. α = 1/3) no good
collapse is obtained, as observed in e.g. Fig. 27b above, even if we restrict the plot to the
largest values of N . These observations thus discard the possibility of a running anomaly
exponent (at least within our stringent precision limits), demonstrating the robustness of the
measured anomaly exponent α.

To end this section, we investigate the density dependence of the heat conductivity
κL(ρ, T ) = Lα

√
T /m k(ρ), see Eq. (69). Interestingly, the dynamics of the 1d hard-point

fluid can be shown to remain invariant under the rescaling of different observables (e.g.
temperature, velocities, space, mass, etc.) [74]. Such invariance can be then used to prove
rigorously that κL(ρ, T ) = √

T /m f (N , μ), with f some adimensional function of N and
μ. This in turn implies, via dimensional analysis, that necessarily k(ρ) = a(μ) ρα , with a(μ)

some μ-dependent amplitude. This is fully confirmed in local measurements of the density
dependence of the heat conductivity, see Fig. 25b. In fact one can easily show from Eq. (69)
that

k [ρ(x)] = J
√
m√

T (x)|T ′(x)| L−α ,

so for each set (N , T0, η) and fixed μ we performed discrete derivatives of bulk temperature
profile to evaluate T ′(x) and plotted the previous expression,with J the heat currentmeasured
in each case, as a functionof the associatedρ(x). Figure 25b shows the curves k(ρ) so obtained
for different μ, which display the best collapse when the measured exponent α(μ) is used.
Interestingly the resulting scaling functions, though somewhat noisy due to discretization
effects, exhibit a clear power-law behavior, k(ρ) = aρβ , and the fitted exponent is fully
compatible in all cases with the measured anomaly exponent, β = α(μ), see Fig. 28a above
and Table 1. This shows that the density dependence of the heat conductivity in the 1d
diatomic hard-point gas does reflect the transport anomaly.

The above observation that k(ρ) = aρα opens now the door to a full solution of the
macroscopic heat transport problem for this model, written in terms of the external control
parameters, namely T0, TL , η and L , together with α and a. In fact, recalling that G ′(ρ) =
k(ρ)ρ−5/2, we obtain that G(ρ) = ν∗(1 − ρα−3/2), with ν∗ ≡ a/( 32 − α) and where we
have chosen an arbitrary constant such that F(0) = 1 = G−1(0). The universal master curve
hence reads

F(z) =
(
1 − z

ν∗
) 2

2α−3
. (75)

This prediction is compared with the measured master curves in Fig. 28b, and the agreement
is excellent for all mass ratios μ. Eq. (75) implies in turn that density profiles can be written
as

ρ(x) =
[(

P

T0

)α− 3
2 − ψ

ν∗ L
−αx

] 2
2α−3

, (76)

see also Eq. (72), while temperature profiles simply follow from T (x) = P/ρ(x), namely

T (x) =
[
T

3
2−α

0 − J
√
m

ν∗Pα
L−αx

] 2
3−2α

. (77)
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The calculation is completed by expressing the heat current J and the pressure P in terms
of the external parameters by using Eq. (71) above. This yields

P = η

(
1
2 − α

3
2 − α

) (
T 3/2−α
0 − T 3/2−α

L

T 1/2−α
0 − T 1/2−α

L

)

, (78)

J = aηα
( 1
2 − α

)α

L1−α
√
m
( 3
2 − α

)1+α

(T 3/2−α
0 − T 3/2−α

L )1+α

(T 1/2−α
0 − T 1/2−α

L )α
. (79)

The last equation for the current can be rewritten as J = ηαLα−1m−1/2T 3/2
L hα(T0/TL), with

hα(z) ≡ a

( 1
2 − α

)α

( 3
2 − α

)1+α

(
z3/2−α − 1

)1+α

(
z1/2−α − 1

)α . (80)

These detailed predictions are fully confirmed by simulations data (not shown [39]). As a
self-consistent check, note that in the equilibrium limit T0 → TL both the pressure and the
heat current converge to their expected value, namely P = ηTL and J = 0.

Some comments are now in order. The excellent collapse of our data confirms that anoma-
lous Fourier’s law (68) holds in this model with a well-defined (albeit size-dependent)
conductivity functional κL(ρ, T ) = a(ρL)α

√
T /m. This is true even for finite N (as small

asO(102)!) and under large temperature gradients, extending the range of validity of anoma-
lous Fourier’s law deep into the nonlinear regime and evidencing the absence of higher-order
(Burnett-like) corrections in 1d [33]. Moreover, we provide strong evidences supporting the
breakdown of universality in anomalous Fourier’s law for 1d momentum-conserving systems
[160] by showing with high accuracy that the anomaly exponent α for the heat conductivity
of the 1d diatomic hard-point fluid depends on the mass ratio μ between neighboring parti-
cles. This clear-cut observation calls into question the universality picture for heat transport
based on renormalization-group and mode-coupling calculations [25,121]. This universality
breakdown here reported may hint at the possible existence of hidden slowly-evolving fields
in the diatomic hard-point gas other than the standard hydrodynamic ones. Remarkably,
such intriguing behavior has been already observed in the nonequilibrium response of this
1d model to a shock wave excitation [26,144], and suggests that an alternative fluctuating
hydrodynamics description (including the additional slow fields, as in granular fluids [161])
may be needed to understand anomalous transport in this model. It has been recently sug-
gested [126] that the existence of further slowly-evolving fields may give rise to an discrete
(Fibonacci) family of anomaly exponents that can coexist in different regions of parameter
space for a given model [126], changing from one value to another as a control parameter is
varied, a behavior reminiscent of our results.

10 Discussion and Outlook

In this work we have reviewed some recent results on key open problems in the physics of
transport, using both extensive numerical simulations of hard particle systems and a novel
scaling method. These problems range from local equilibrium and Fourier’s law to the tran-
sition to convective flow in the presence of gravity, the efficiency of boundary dissipation
against bulk driving, or the universality of anomalous transport in low dimensions. As usual in
science, our results lead also to new interesting questions, opening avenues of future research
that we briefly discuss below.
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Our first step into the nonequilibrium realm has consisted in probing numerically the local
thermodynamic equilibrium (LTE) hypothesis in a nonequilibrium hard disks fluid. We have
found that macroscopic LTE is a very robust property, arbitrarily far from equilibrium and
even under strong finite-size effects. This is due to a remarkable bulk-boundary structural
decoupling by which all sorts of finite-size and boundary corrections are renormalized into
effective boundary conditions for the bulk fluid, which in turn obeys the macroscopic laws.
We have used these properties to measure with high accuracy the hard-disks equation of
state in nonequilibrium simulations, obtaining excellent results even across the fluid-hexatic-
solid transition regime. In particular, we have found an interesting nonequilibrium fluid/solid
coexistence under a strong temperature gradient, a Stefan-like phenomenon which can be
confronted with recent theoretical predictions [83–86] and calls for further investigation.
Indeed, hints of the double phase transition in hard disks can be observed in the transport
properties of the nonequilibrium fluid [32], a behavior that deserves further exploration. In
addition, weak but clear violations of microscopic or statistical LTE have been observed in
the fluctuations of the total energy, which strongly suggest that the nonequilibrium potential
governing the driven fluidâs macroscopic behavior is intrinsically nonlocal. This suggests
to investigate more in depth the large deviation statistics of relevant observables (currents,
densities, etc.) in hard disks, using two new powerful tools that have appeared in recent years,
namely macroscopic fluctuation theory (MFT) [5] and advanced simulation techniques for
rare (large-deviation) events [63,162–165]. Note that the MFT approach needs a general,
nonlinear formulation of fluctuating hydrodynamics for systems with several conservation
laws, as recently obtained for stochastic lattice gases [166].

We have also explored the scaling properties of the inhomogeneous hydrodynamic profiles
that a fluid develops in the steady state when driven out of equilibrium by a temperature
gradient, showing that they obey strikingly simple scaling laws. For the hard disks fluid this
implies that both density and temperature profiles in the steady state follow from two master
curves, independent of the driving force and the system parameters, after a simple linear
scaling of space in terms of the flowing heat current. Extensive simulations of hard disks have
confirmed these scaling laws even under strong temperature gradients, implying that Fourier’s
law remains valid even in highly nonlinear regimes, with putative (Burnett-like) corrections
absorbed into a nonlinear conductivity functional. This scaling method also offers a precise
technique to determine transport coefficients from nonequilibrium simulations, and we have
used it to confirm and characterize empirically the marginal anomaly of the heat conductivity
predicted for hard disks. Similar, albeit more complex, scaling laws are expected to hold
in sheared fluids and combined-flow situations, a property that can be used to characterize
transport in driven fluids with unprecedented accuracy using nonequilibrium simulations.

By switching on a gravity field g opposite to the direction of the temperature gradient,
we also explored numerically, from a microscopic point of view, the transition to convective
flow in hard disks. We found that the hydrodynamic kinetic energy eu(M) defines a proper
order parameter for the convection transition: it grows steeply but continuously from zero
to some nontrivial value at a critical hot bath temperature where the hydrodynamic velocity
field develops structure. This critical temperature, which turns out to be consistent with the
temperature of minimum relative kinetic energy fluctuations, signals the onset of convection
for the different values of g in the hard disks fluid. Interestingly we find that, even when
convection kicks in, gravity can result in hindered heat transport as compared to the gravity-
free case. It is at the second (higher) critical temperature that a percolation transition of
streamlines connecting the hot and cold baths triggers efficient convective heat transport.
This remarkable connection with percolation theory thus uncovers an interesting two-steps
scenario for the convection instability, with two different convective transport regimes: (i)
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a semi-convective regime where coherent local motions emerge but within disconnected
patches, leading to inefficient heat transport, and (ii) a fully-convective regime where a
continuous percolation transition of active patches connecting the hot and cold reservoirs
leads to efficient heat transport. The question remains as to whether the semi-convective
regime, found here in finite-size simulations, survives in the thermodynamic N → ∞ limit.
In addition, and in the spirit of the scaling laws already derived for Fourier’s heat transport,
we have demonstrated the existence of universal master curves for hydrodynamic fields in
convective flow. It would be interesting to extend this scaling picture, which has been shown
to hold asymptotically in the limit of large hot bath temperatures, to intermediate temperature
regimes.

We also address numerically the efficiency of boundary heat baths to dissipate the energy
provided by a bulk driving mechanism. This a classical problem in nonequilibrium statistical
physics with no clear answer, as the external field tends to align particle trajectories and
dissipation in this particular case is a boundary effect competing with bulk driving. To answer
this question, we carried out simulations of hard disks driven by an external constant field and
in contact with boundary Gaussian heat baths, that provide a (deterministic) thermostatting
mechanism capable of thermalizing a particle system while preserving the time reversibility
of microscopic dynamics. We found that, although the response of the hard disks fluid to the
external electric field is in general nonlinear, for small enough driving Ohm’s law of electrical
conduction is recovered, and the observed behavior is compatible with the existence of awell-
defined steady state of constant average kinetic energy and particle current.

Finally, we have departed from the hard disks model to study the universality of anoma-
lous transport in 1d systems. For that, we studied numerically the diatomic hard-point
gas, a paradigmatic model of anomalous heat conduction widely investigated in literature
[22–24,149–156]. Using an anomalous variant of the scaling method already employed to
characterize Fourier’s law in hard disks, we were able to measure with unprecedented precis-
sion the anomaly exponent α that characterizes superdiffusive heat transport in 1d , see Sect.
9. We find that the measured anomaly exponent depends unambiguously on the mass ratio
between neighboring particles that characterizes the diatomic hard-point gas, demonstrat-
ing the breakdown of universality in anomalous Fourier’s law for 1d momentum-conserving
systems [39]. This calls into question the universality picture for heat transport, and hints
at the possible existence of hidden slowly-evolving fields in the diatomic hard-point gas
other than the standard hydrodynamic ones. Moreover, the excellent collapses found for our
hydrodynamic data confirm that anomalous Fourier’s law holds in this model arbitrarily far
from equilibrium, with a well-defined (albeit size-dependent) conductivity functional. The
question remains as to how to reconcile the local nature of Fourier’s law with the nonlocal
Lα-term in the conductivity κL(ρ, T ). Our data suggest that this could be achieved in a
nonlinear fluctuating hydrodynamics description of the problem derived via an anomalous,
non-diffusive hydrodynamic scaling of microscopic spatiotemporal variables, x → x/L1−α

and t → t/L2−3α . Finally, it would be interesting to apply the scaling method here employed
to other paradigmatic models of heat transport in low dimensions, as e.g. the Fermi-Pasta-
Ulam-Tsingou model of anharmonic oscillators and the hard-square or -shoulder potentials
[8,74,87,119], where the reported universality breakdown can be further studied. The role
of conservative noise [167,168] as a smoothing mechanism to get rid of non-hydrodynamic,
hidden slow fields should be also investigated.

As a final remark and overall conclusion of this review paper, we want to stress how
carefully-crafted numerical simulations of simple hard particle systems, together with a
detailed analysis of the resulting data, open the door to unexpected discoveries in the physics
of transport, paving the way to further advances in nonequilibrium physics.
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Appendix A: Virial Pressure for Hard Disks

In this Appendix we use the virial theorem to obtain the pressure field P(x, y) for a system
of hard disks. We thus consider a square spatial region of side L where N interacting disks
of mass m evolve. The virial theorem states

〈
N∑

i=1

ri · Fi

〉

= −2〈Ec〉 (A1)

where ri is the vector position of particle i , Fi is the total force acting on particle i , Ec is the
system kinetic energy and 〈·〉 stands for an equilibrium ensemble average. Just as a reminder,
a simple proof of the virial theorem can be given in terms of the ergodic hypothesis, namely

〈
N∑

i=1

ri · Fi

〉

= lim
τ→∞

1

τ

∫ τ

0
dt

N∑

i=1

ri (t) · Fi (t) = lim
τ→∞

m

τ

∫ τ

0
dt

N∑

i=1

ri (t) · d
2ri (t)
dt2

= − lim
τ→∞

m

τ

∫ τ

0
dt

N∑

i=1

(
dri
dt

)2

= −2〈Ec〉 , (A2)

where integration byparts has beenused in the second line of the previous equation, neglecting
boundary terms. The force Fi (t) acting over particle i at time t can be written as the sum
of two terms, an internal force due to its interaction with all other particles and an external
component resulting from the effect of boundaries, i.e.

Fi =
∑

j �=i

Fi j + Fext
i (A3)

Assuming that the external force only acts at the system boundaries and its direction is
perpendicular to the box sides with constant magnitude F , we have

〈
N∑

i=1

ri · Fext
i

〉

= (xL − x0 − yL + y0) F̃ = −2L F̃ = −2SP (A4)

where x0,L and y0,L are the coordinates of the box sides, F̃ is the average total force applied
on each side, S = L2, and we have introduced the mechanical pressure P ≡ F̃/L . Note that
the average force F̃ will be constant for systems in mechanical equilibrium. On the other
hand, the interparticle force contribution can be written as

〈
N∑

i=1

ri ·
∑

j �=i

Fi j

〉

= 1

2

∑

i, j

〈(ri − r j ) · Fi j 〉 =
∑

〈i, j〉
〈ri j · Fi j 〉 (A5)

where we have used Newton’s third law, Fi j = −F j i , we defined ri j = ri − r j , and 〈i, j〉
is the set of all different pairs of particles. For hard disks interactions only happen when a
pair of particles collide at contact. Assuming that the collision occurs in a infinitesimal time
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interval 2ε, we can write Fi j as the variation of the linear momentum on such time interval,
i.e.

Fi j (tn) 	 1

2ε

[
pi (tn + ε) − pi (tn − ε)

]
(A6)

where tn is the collision time. Due to the elastic character of the collision, the disks’ linear
momentum components along the vector connecting their centers are exchanged, so ri j ·
pi (tn − ε) = ri j · p j (tn + ε) and therefore

ri j · Fi j = 1

2ε

(
ri j · pi (tn + ε) − ri j · pi (tn − ε)

) = 1

2ε
ri j · pi j (A7)

where pi j = pi (tn + ε) − p j (tn + ε). In this way, we can finally write, see Eq. (A5),

〈
N∑

i=1

ri ·
∑

j �=i

Fi j

〉

= lim
τ→∞

1

τ

∑

n:tn∈[0,τ ]
ri j · pi j (A8)

where the sum is over all the pair collisions occurring in the time interval [0, τ ]. The virial
theorem for hard disks can be hence written as

− 2SP + lim
τ→∞

1

τ

∑

n:tn∈[0,τ ]
ri j · pi j = −2NT (A9)

where we have used that in equilibrium 〈Ec〉 = NT , with T the system temperature. Finally
the virial pressure for hard disks can be expressed as

P = ρT

π�2
+ lim

τ→∞
1

2Sτ

∑

n:tn∈[0,τ ]
ri j · pi j (A10)

where ρ = Nπ�2/S and we recall that � is the disk radius.
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