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Abstract. The macroscopic fluctuating theory developed during the last 30
years is applied to generic systems described by continuum fields φ(x, t) that
evolve by a Langevin equation that locally either conserves or does not con-
serve the field. This paper aims to review well-known basic concepts and results
from a pedagogical point of view by following a general framework in a practical
and self-consistent way. From the probability of a path, we study the general
properties of the system’s stationary state. In particular, we focus on the study
of the quasipotential that defines the stationary distribution at the small noise
limit. To discriminate between equilibrium and non-equilibrium stationary states,
the system’s adjoint dynamics are defined as the system’s time-reversal Markov
process. The equilibrium is then defined as the unique stationary state that is
dynamically time-reversible, and therefore its adjoint dynamics are equal to those
of the original one. This property is confronted with the macroscopic reversibil-
ity that occurs when the most probable path to create a fluctuation from the
stationary state is equal to the time-reversed path that relaxes it. The lack of
this symmetry implies a nonequilibrium stationary state; however, the converse
is not true. Finally, we extensively study the two-body correlations at the sta-
tionary state. We derive some generic properties at various situations, including
a discussion about the equivalence of ensembles in nonequilibrium systems.

Keywords: macroscopic fluctuation theory, stationary states, fluctuation phe-
nomena, large deviations in nonequilibrium systems
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1. Introduction

Nonequilibrium stationary states appear when external agents or boundary conditions
drive a system otherwise in equilibrium out of this state by continuously pumping and
extracting particles and energy, or simply when a microscopic dynamic breaks some
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spatial symmetry that imposes long-range correlations between their components. In
fact, one should recognize that nonequilibrium stationary states are ubiquitous in nature.
In contrast, equilibrium states are very scarce and difficult to observe. It is curious that
for equilibrium states, we have the thermodynamics and the Boltzmann–Gibbs ensemble
theories that permit us to understand and predict the system’s macroscopic and meso-
scopic (fluctuating) behavior with great success. However, there are no similar general
theories for systems at nonequilibrium stationary states. Therefore, it is hard to obtain
a general result, derive any prediction from being checked by experiments (numerical
or not), or reproduce some observations. After more than two centuries of research,
we have just a few (but very relevant from a practical point of view) phenomenologi-
cal macroscopic relations, such as the Navier–Stokes equation or Fourier law, that are
used to describe the behavior of a given fluid or the heat transport, respectively [1].
These depend on constitutive parameters that are obtained by experiments. Moreover,
they are based on the assumption that some equilibrium thermodynamic relations apply
locally in the system assuming in some sense that the system is not far from equilibrium
[2]. Finally, these nonequilibrium descriptions do not include any mesoscopic behavior,
and when needed, it is added by hand by taking again as a reference the fluctuations
at equilibrium [3]. There has been a lot of effort in recent decades to connect micro-
scopic models with these phenomenological equations [4]. This strategy is fundamental
to unveiling the properties of the free parameters (viscosity, thermal conductivity, etc)
and the range of such relations’ applicability. Nevertheless, this connection has been only
partially resolved by the rigorous derivation of hydrodynamic (macroscopic) equations
starting from a Boltzmann equation as the microscopic description [5].

From a more fundamental side, in the last 40 years there have been several rele-
vant achievements for systems in nonequilibrium stationary states in understanding the
general structure of their stationary attractor in the phase space and the definitions
of the invariant measures on it [6]. This Boltzmann-like strategy has permitted us, for
instance, to introduce the Sinai–Ruelle–Bowen measures as typical for these systems [7]
or to derive the fluctuation theorem [8]. However, from a practical level, we are still far
from an instrumental nonequilibrium ensemble theory.

Despite all the efforts mentioned, there are more potential advances for a complete
theory of nonequilibrium stationary states by obtaining a deeper understanding of con-
crete models and systems. There are many techniques, theoretical approaches and/or
computer simulations that permit some insight into particular nonequilibrium models in
physics, ecology, biophysics etc. Each of the studies presents different characterizations
of their nonequilibrium stationary state. Moreover, a set of observables are measured
that are assumed to be the optimal ones to describe the particular phenomena. In our
opinion, the main problem at present is to find a common theoretical framework flexible
enough to permit us to apply it to different situations. This would permit us to compare
different approaches, results, or ideas to find the essential properties that characterize
nonequilibrium stationary states.

Graham and co-workers took this direction by studying the stationary distribution of
a generic white-noise stochastic Langevin equation with finite degrees of freedom in the
small noise limit [9]. They found integrability conditions for the quasipotential existence
that are the nonequilibrium version of the free energy functionals in thermodynamics.
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Moreover, they analyzed some explicit examples with two degrees of freedom [10] and
methods of dealing with stationary states with several attractors [11]. Our paper contains
a translation of some of their results. We encourage the reader to look at their seminal
work for a deeper understanding of some concepts that we touch lightly on in the spirit
of this paper.

In the same line of thought, a promising effort has been made by Bertini et al
[12] during recent years to develop a mesoscopic theory for diffusive systems that they
call macroscopic fluctuating theory (MFT). MFT is based on three main assumptions:
first, the existence of a well-defined hydrodynamic (macroscopic) description of the
system; second, that the fluctuating behavior of the macroscopic variables follows a
large deviation principle; and third, that the fundamental principle (as they call it) is a
generalized detailed balance condition that connects the way the system relaxes from a
fluctuation to how it was created. All these assumptions are based on previous rigorous
results in such one-dimensional microscopic stochastic nonequilibrium models as the
boundary-driven symmetric simple exclusion process, the weakly asymmetric exclusion
process or the Kipnis–Marchioro–Presutti model (KMP) (see for instance the review by
Bertini et al [13]). From this solid starting point, MFT intends to obtain the stationary
state’s general properties in an earnest attempt to understand the behavior of diffusive
systems from a theoretical perspective globally. In practice, one may say that MFT is
the application of Graham’s work to diffusive systems with infinite degrees of freedom
or, in other words, systems described by Langevin equations for fields.

In this paper, we extend (in a nonrigorous way) all these seminal works to more gen-
eral nonequilibrium systems. To do this, we assume as a starting point that our system is
defined at the mesoscopic level by a one-component continuum Langevin equation with
conserved or nonconserved dynamics and with a local white-noise field that is uncor-
related in time. This set-up allows us to apply many of the MFT concepts to general
systems. In section 2, we define the starting equations, some notations and a set of basic
definitions and relations. Section 3 is devoted to studying the stationary probability
distribution in the small noise limit given by a field’s functional, called quasipotential .
We use the path probability to obtain a Hamilton–Jacobi partial differential equation
for the quasipotential. It can be formally solved using the method of characteristics that
give us the effective dynamic equations describing the most probable path to create a
given fluctuation. This permits us to find some general properties for the quasipotential.
In section 4, we introduce the macroscopic reversibility property that is defined when
paths to create a fluctuation and the time-reversed deterministic path to relax it coin-
cide. We argue that a macroscopic reversible system has a quasipotential with existing
and continuous first and second functional field derivatives. Nevertheless, this property
is not enough to guarantee that the system stationary state is an equilibrium state.
In section 5, we introduce the fundamental principle that defines the system’s adjoint
dynamics when the time is reversed from a generalized detailed balance condition on
paths. Typically the adjoint dynamics are different from the original ones, reflecting the
fact that there exists some dissipation that can be related to the existence of nonzero
entropy production (see for instance [14]). In this context, the equilibrium is the station-
ary state of the system when both dynamics coincide. This is consistent with Onsager’s
idea that the microscopic reversibility extends to the mesoscopic level for systems at
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equilibrium. In section 5, we study the spatial correlations at the stationary state. We
obtain the general set of closed equations to study them for the conserved and noncon-
served cases. We apply them to some well-known situations to make explicit the power
of this theoretical scheme. Moreover, we build the conditions in which conserved and
nonconserved situations develop the same quasipotential around the stationary state.
This is an attempt to build nonequilibrium dynamical ensembles.

We are convinced that this MFT generalization, although introducing no new
paradigms in our basic knowledge of this problem, establishes a theoretical frame-
work that could be useful to many researchers in different fields where these continuous
Langevin models are used.

2. Langevin description of mesoscopic systems

We assume that our system, at a hydrodynamic level of description, is completely defined
by a unique scalar field φD(x, t) ∈ IR where x ∈ Λ ⊂ IRd, d is the spatial dimension and
t is the time. In this paper, we restrict ourselves to this case for the sake of simplicity, but
one can straightforwardly generalize all the results below to systems described by vector
fields. The field evolution is the solution of a nonlinear partial differential equation. Along
with this work, we consider two separate families of dynamics: the reaction dynamics
(RD) that do not conserve the field locally, and the diffusion dynamics (DD) where the
field is locally conserved under the evolution:

∂tφD(x, t) = F [φD ;x, t] (RD case) ∂φD(x, t) +∇ ·G[φD ;x, t] = 0 (DD case) (1)

where F and G are given local functionals of φ(x, t), ∇φ(x, t), etc. Our set of equations
are solved typically for given boundary conditions (φD(x, t) = f(x), x ∈ ∂Λ, ∀ t) and
an initial state (φD(x, 0) = φ0(x), x ∈ Λ). This determines (hopefully) the solution
φD(x, t), which is also called the deterministic or classical solution. The stationary state
φ∗(x) = limt→∞ φD(x, t) is the stationary solution of the hydrodynamic equation:

F [φ∗ ; x] = 0 (RDcase) or ∇ ·G[φ∗ ;x] = 0 (DD case). (2)

We assume for simplicity that φ∗ is unique (in all cases). The stationary state is char-
acterized by the model parameters and the boundary conditions, if any. In a DD with
periodic boundary conditions, the initial configuration fixes the system’s average density
field. The dynamics conserve it and, therefore, it is a parameter that also determines
the stationary state. It is also considered that the dynamics are dynamically stable in
the sense that all the eigenvalues for the linearized dynamics have a nonzero and neg-
ative real part. More precisely, let us expand the hydrodynamic equation around the
stationary state: φ(x, t) = φ∗(x) + ε(x, t). We then obtain

∂tε(x, t) =

∫
Λ

dy A(x, y)ε(y) +O(ε2) (3)

where

A(x, y) =
δF [φ ;x]

δφ(y)

∣∣∣∣
φ=φ∗

(RDcase) or A(x, y) =
δ∇G[φ ;x]

δφ(y)

∣∣∣∣
φ=φ∗

(DDcase). (4)
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Then, we assume that all the eigenvalues λ of the operator A, which are solutions of
the equation det(A− IIλ) = 0, are such that Re(λ) < 0. This property guarantees that
the stationary state is linearly stable under small perturbations. This is the class of
stationary states we are going to study in this paper. Obviously, there are many other
stationary states, but they are out of this paper’s scope.

The mesoscopic description is built from the hydrodynamics of the system by
assuming that the system dynamics are given by a Langevin equation with white noise:

• Reaction dynamics (RD): the mesoscopic state of the system is described by the
local field φ(x, t) that evolves by:

∂tφ(x, t) = F [φ ;x, t] + h[φ ;x, t]ξ(x, t). (5)

• Diffusion dynamics (DD): the state of the system is completely described by the local
field φ(x, t) and the local current j(x, t). Their evolution is given by the continuity
equation:

∂tφ(x, t) +∇ · j(x, t) = 0 (6)

where the current j is chosen to be of the form:

jα(x, t) = Gα[φ ;x, t] +

d∑
β=1

σα,β [φ ;x, t]ψβ(x, t) α = 1, . . . , d. (7)

Here, G and σ are given local functionals of φ(x, t).
In both cases the boundary conditions and the initial state are the ones given for

φD. ξ(x, t) and ψα(x, t) are uncorrelated Gaussian random variables:

〈ξ(x, t)〉 = 0

〈ξ(x, t)ξ(x′, t′)〉 = 1

Ω
δ(x− x′)δ(t− t′)

〈ψα(x, t)〉 = 0

〈ψα(x, t)ψβ(x
′, t′)〉 = 1

Ω
δα,βδ(x− x′)δ(t− t′).

(8)

Observe that, for the sake of simplicity, the correlation matrix for the ψα noise is chosen
to be proportional to the identity. Ω > 0 is the parameter that controls the time and
spatial separation between the mesoscopic and hydrodynamic descriptions. It is assumed
that Ω is large enough. This is the so-called weak noise limit [9] under which we study
the properties of the stationary state in this paper. Observe that the macroscopic case is
recovered in the strict limit Ω→∞. This is why we refer to it as MFT . We see from the
Langevin equations (??) that the noise seems to be just a perturbation of the determin-
istic evolution in this limit. However, we will see that the stationary state’s statistics
follows a large deviation principle that is characterized by a functional of the fields
called quasipotential . This object, related to the thermodynamic free energy for systems
at equilibrium, contains the relevant information of any stationary state. Its study will
permit us to see how the structures of many observables change dramatically concerning
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the equilibrium case, even if we are very near to it. In particular, even in the simplest
cases, we will see that a nonequilibrium stationary state is related to the existence of
long-range correlations and nonlocal and/or singular probability distributions.

The presence of the random variables ξ or ψα implies that probabilities characterize
the system evolution. At this point, it could be interesting to the reader to consult some
classical books about stochastic phenomena for systems that mainly have a finite number
of degrees of freedom. Here, the general basic properties of these Langevin equations and
many applications to simple illustrative cases can be found [15]. In particular, we are
interested in the probability that the system follows a given evolution path φ in a time
interval. From the Langevin equations, we can explicitly construct such a probability
that contains most of the system’s interesting physics.

An arbitrary path is defined by the set: {φ} [t0, t1] = (φ(x, t), x ∈ Λ, t ∈ [t0, t1]). The
probability of this path is just the sum over all sets of random variables that recreate
the path multiplied by their probability. For the RD case the path probability is given
by:

P [{φ} [t0, t1]] = cte

∫
Dξ exp

[
−Ω

2

∫ ∞

−∞
dt

∫
Λ

dx ξ(x, t)2
]
·

∏
t∈[t0,t1]

∏
x∈Λ

δ (∂tφ(x, t)− F [φ ;x, t]− h[φ ; x, t]ξ(x, t)) (9)

where the constant is found by the normalization of P . We use the integral representation
of Dirac’s delta to write

P [{φ} [t0, t1]] = cte

∫
Dπ exp

[
−Ω

∫ t1

t0

dt

∫
Λ

dx π(x, t) (∂tφ(x, t)− F [φ ;x, t])

]
·

∫
Dξ exp

[[
−Ω

∫ t1

t0

dt

∫
Λ

dx

(
1

2
ξ(x, t)2 − π(x, t)h[φ ;x, t]ξ(x, t)

)]
.

(10)

In this way we can explicitly perform the Gaussian integral over the noise variables and
obtain

P [{φ} [t0, t1]] = cte

∫
Dπ exp

[
−Ω

∫ t1

t0

dt

[∫
Λ

dx π(x, t)∂tφ(x, t)−H[φ(t), π(t)]

]]
(11)

where

H[φ, π] =

∫
Λ

dx π(x)

[
F [φ ;x] +

1

2
π(x)h[φ ;x]2

]
. (12)

We could explicitly perform the integral over π, but let us keep this expression for later
use.

For the DD case, first we have to give the path probability for the variables that
define the state of the system (φ, j):

https://doi.org/10.1088/1742-5468/abdc19 7
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P [{φ, j} [t0, t1]] = cte

∫
Dψ exp

[
−Ω

2

∑
α

∫ ∞

−∞
dt

∫
Λ

dxψα(x, t)
2

]
·

∏
t∈[t0,t1]

∏
x∈Λ

[
δ (∂tφ(x, t) +∇ · j(x, t))

×
∏
α

δ

(
jα(x, t)−Gα[φ ;x, t]−

∑
β

σαβ [φ ;x, t]ψβ(x, t)

)]

= cte exp

[
−Ω

2

∫ t1

t0

dt

∫
Λ

dx (j(x, t)−G[φ ;x, t])·

χ−1[φ ;x, t] (j(x, t)−G[φ ;x, t])

]
·

∏
t∈[t0,t1]

∏
x∈Λ

δ (∂tφ(x, t) +∇ · j(x, t)) (13)

where χ[φ ;x, t] is a symmetric invertible matrix with components

χα,β [φ ;x, t] =
d∑

γ=1

σα,γ [φ ;x, t]σβ,γ[φ ;x, t]. (14)

From this expression we can deduce the path probability for φ:

P [{φ} [t0, t1]] =
∫

DjP [{φ, j} [t0, t1]]. (15)

Again, we introduce the Dirac delta representation; we take π(x, t) = 0 ∀x ∈ ∂Λ and we
integrate over the j’s. After this, we obtain the same expression as equation (11) with

H[φ, π] =

∫
Λ

dx∇π(x) ·
[
G[φ ;x] +

1

2
χ[φ ;x]∇π(x)

]
. (16)

We are ready to study the stationary distribution at the small noise limit (Ω→∞).

3. Stationary state and quasipotential

We assume that the system evolves toward a unique stationary probability distribution
P st[φ] from almost any initial condition. This stationary distribution could be computed
by using the path probability (11) or as the solution of the Fokker–Planck equation (see
appendix A) such that ∂tP st[φ] = 0. Let us focus on the first strategy because, as we will
see, it includes a least-action variational principle that in a more general context is very
important in order to select the absolute minimal solution when there are multiple local
minimizers of the action (multiple solutions of the stationary Fokker–Planck equation).

The main idea to define the stationary distribution from the path probability is to
use the fact that the probability of going from a given starting state to another final
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state in a time interval is just the sum of all the probabilities of every path that connects
both states. Therefore, the stationary probability of being at state η is the probability
of being at the stationary state φ∗ times the probability of going from φ∗ to η in an
infinite time interval:

Pst[η] = Pst[φ
∗]

∫
DφP [{φ}[−∞, 0]]

∏
x∈Λ

[δ(φ(x, 0)− η(x))δ(φ(x,−∞)− φ(x)∗)] (17)

where P [{φ}[t0, t1]] is given by equation (11) and H are obtained from equations (12) or
(16) for the RD or DD case, respectively. Except for some elementary models, we do not
know how to obtain explicit expressions for P st[φ]. However, we can use the fact that
the noise intensity is very small to simplify the problem significantly. When Ω→∞ the
stationary probability distribution is of the form:

Pst[η] � exp [−ΩV0[η]] (18)

where V 0[η] is the so-called quasipotential . Observe that in the strict limit Ω→∞ we
should obtain the stationary deterministic solution (2). In other words:

Pst[η] =
∏
x∈Λ

δ(η(x)− φ∗(x)). (19)

This implies that φ∗(x) is the absolute minimum of the quasipotential:

δV0[φ
∗]

δφ∗(x)
= 0 ∀ x ∈ Λ. (20)

When Ω→∞ the integrals in equation (17) are dominated by the path (φ, π) that
minimizes the argument of the exponential. This implies:

V0[η] = V0[φ
∗] + inf

φ,π

{∫ 0

−∞
dt

[∫
Λ

dx π(x, t)∂tφ(x, t)−H[φ(t), π(t)]

]}
(21)

with H given by equations (12) and (16) for the RD and DD systems, respectively.
Moreover, φ(x,−∞) = φ∗(x) and φ(x, 0) = η(x). π(x,−∞) = 0 and H[φ∗, 0] = 0 by con-
struction. This equation is just the Hamilton variational principle with H being the
Hamiltonian [16]. Therefore, the fields (π̄(x, t), φ̄(x, t)) that minimize the right-hand
side of equation (21) are solutions of the Hamilton equations:

∂tφ̄(x, t) =
δH
[
φ̄(t), π̄(t)

]
δπ̄(x, t)

∂tπ̄(x, t) = −δH
[
φ̄(t), π̄(t)

]
δφ̄(x, t)

(22)

with the above boundary conditions. Observe that H[φ̄(t), π̄(t)] = 0 because the Hamil-
tonian is constant along any trajectory and it is zero at the initial condition. Therefore,
equation (21) can be rewritten

V0[η] = V0[φ
∗] +

∫ 0

−∞
dt

∫
Λ

dx π̄(x, t)∂tφ̄(x, t). (23)

https://doi.org/10.1088/1742-5468/abdc19 9

https://doi.org/10.1088/1742-5468/abdc19


J.S
tat.

M
ech.

(2021)
024001

Notes about the macroscopic fluctuating theory

At this point we stress some general issues:

• We can use the path probability to compute the probability to observe a given
value of the space and time averages of fields or their functions in a time interval.
For sufficiently large times, we can use the large deviation principle to obtain the
probability of observing this averaged value and also some relations that are a kind
of generalized Green–Kubo formula for systems at nonequilibrium stationary states.
This is a very intense research domain that intends to obtain the general properties
of these systems by studying such distributions by theoretical approximations and
computer simulations (see appendix B).

• We could also use the stationary Fokker–Planck equation, ∂tP st[φ] = 0 (see
appendix A) to perform a Ω−1 expansion on it assuming equation (18). At the lowest
order of this expansion we obtain the Hamilton–Jacobi equation:

H

[
φ̄,

δV0

[
φ̄
]

δφ̄

]
= 0 (24)

with H given by equations (12) and (16) for the RD and DD systems, respec-
tively. The equation can be solved by the method of characteristics, which implies
at the end to solve the same Hamilton equation (22) (see appendix C). That is,
π̄(x, t) = δV0[φ̄]/δφ̄(x, t) ∀ x, t and, in particular, δV 0[φ

∗]/δφ∗(x) = 0 when t→−∞
as expected.

• We can study equation (22) near the initial condition (φ∗, 0). The linear approxima-
tion is

∂tε(x, t) =

∫
Λ

dy [A(x, y)ε(y, t) +B(x, y)π(x, t)]

∂tπ(x, t) = −
∫
Λ

dy A(y, x)π(y, t)

(25)

where ε(x, t) = φ̄(x, t)− φ∗(x), A(x, y) = δ2H[φ, π]/δπ(x)δφ(y)|φ=φ∗,π=0. The
Lyapunov exponents, λ, of this set of linearized equations are solutions of:

det(A+ λII) det(−A+ λII) = 0. (26)

We know that A is a negative defined matrix (see equation (4)) for the RD and
DD cases. Therefore, the possible Lyapunov values appear in pairs (−λ,λ), typical
of a Hamiltonian flow. We can define stable and unstable manifolds crossing the
stationary point P ∗ :(φ∗, 0). All the trajectories that are the solution of equation (22)
starting from the stationary point pertain to the unstable manifold, M u. This is
important from a practical (numerical) point of view if we want to solve the equations
of motion: whenever we choose an initial condition P ∗, we will stay there forever.
Therefore, the right strategy is to reconstruct the unstable manifold around P ∗ and
then take points P 0 of Mu as initial conditions for solving the equations of motion
(see for instance [17]).
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• The evolution equation (22) are nonlinear and it could be that for a given η there
exist, for instance, a couple of pairs I1 :(η, π1) and I2 :(η, π2) pertaining to the unsta-
ble manifold. Therefore, both evolve to the stationary state (φ∗, 0) as t→−∞ and
the quasipotential is:

V0[η] = V0[φ
∗] + min[A[η ; c1],A[η ; c2]], A[η ; c] =

∫
c

π dφ (27)

where c1 and c2 are the paths described by the Hamiltonian trajectories connect-
ing the stationary state with I1 and I2 respectively. For the values ηd such that
A[ηd ; c1] = A[ηd ; c2] there are two different associated πd values depending on how
we approach ηd from c1 or c2. Therefore, the quasipotential V 0 has a discontinuous
first derivative at ηd. This phenomenon is called Lagrangian transition and it appears
only in systems at nonequilibrium stationary states [9, 18].

• For the RD and DD cases, there is a family of Langevin equations with a priori
known stationary solutions. For instance, the Langevin equation such that:

F [φ; x] = −1

2
h[φ; x]2

δV [φ]

δφ(x)
(RD case)

G[φ; x] = −1

2
χ[φ;x]∇δV [φ]

δφ(x)
(DDcase)

(28)

has the quasipotential V 0[φ] = V [φ] for any functionals h[φ ;x], χ[φ ;x] and V [φ]
such that they meet the conditions of stability (4) and behavior at the boundaries
δV [φ]/δφ(x) = 0∀x ∈ ∂Λ. These particular cases are relevant because they permit
us to build Langevin equations with an a priori given stationary state.

• The quasipotential has a relevant dynamic property: it is a Lyapunov functional for
φD(t) and φ̄(−t). That is, it can be proven (see, for instance, [12]) that if

S[φ] = V0[φ]− V0[φ
∗] (29)

then

dS[φD(t)]

dt
� 0 and

dS[φ̄(−t)]

dt
� 0 (30)

where φD(t) = {φD(x, t), x ∈ Λ} and φ̄(t) = {φ̄(x, t), x ∈ Λ} are the solutions of
equations (1) and (22) respectively. Moreover,

lim
t→∞

dS[φD(t)]

dt
= 0 and lim

t→∞

dS[φ̄(−t)]

dt
= 0. (31)

In other words, the time evolution of the deterministic dynamics φD(t) and the
solutions of the so-called deterministic adjoint dynamics φ̄(−t) tend to minimize the
quasipotential at all times. Let us prove these properties for the RD case. From the
definition of S we write:

dS[φ(t)]

dt
=

∫
Λ

dx
δV0[φ(t)]

δφ(x, t)
∂tφ(x, t). (32)
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We know that ∂tφD(x, t) = F [φD
; x, t] and ∂tφ̄(x,−t) = −F [φ̄; x,−t]−

h[φ̄ ;x,−t]2π(x,−t). Therefore:

dS[φD(t)]

dt
=

∫
Λ

dx
δV0[φD(t)]

δφD(x, t)
F [φD ;x, t]

dS[φ̄(−t)]

dt
=

∫
Λ

dx
δV0[φ̄(−t)]

δφ̄(x,−t)

(
−F [φ̄; x,−t]− h[φ̄ ;x,−t]2π(x,−t)

)
.

(33)

We now use the Hamilton–Jacobi equation (24) and we obtain the desired result:

dS[φD(t)]

dt
= −1

2

∫
Λ

dxh[φD ;x, t]
2

(
δV0[φD(t)]

δφD(x, t)

)2

� 0

dS[φ̄(−t)]

dt
= −1

2

∫
Λ

dxh[φ̄ ;x,−t]2π(x,−t)2 � 0. (34)

Finally, the unique state in which such derivatives are equal to zero is the stationary
state φ∗. Therefore, S is a positive defined functional that decreases monotonously
with time until it reaches the stationary state. One can perform a very similar
computation for the DD case.

• Some different DD models may have the same quasipotential. Let us assume a
model with G[φ ;x] and χ[φ ; x] having a stationary state φ∗ and a quasipoten-
tial V 0[φ]. Then, any other model with Ḡ[φ;x] = G[φ; x] + S[x] and χ[φ ;x] with
∇S(x) = 0 ∀x ∈ Λ has a stationary state φ̄∗ = φ∗ and a quasipotential V̄ 0[φ] = V0[φ].
This does not imply that they are describing the same physical situation. For
instance, their currents Ḡ and G are different. Therefore, we can conclude with this
example that the quasipotential does not always contain all the relevant information
about the system stationary state.

It is difficult to explicitly obtain V 0[φ] from the above definitions. To our knowledge,
it has been obtained explicitly only in a few one-dimensional models; for instance, the
boundary-driven symmetric exclusion process (SSEP) and the KMP [19, 20]. In both
cases, it is found that V 0 presents a nonlocal structure built through an auxiliary field
that is a solution of a nonlinear second-order differential equation that includes the
boundary conditions. These results illuminate the complex mathematical structure of
nonequilibrium stationary states. Finally, let us mention some serious efforts to define
perturbative schemes around some known exact stationary state (see, for instance, [21]).

4. Macroscopic reversibility

We have exposed the way to compute the quasipotential V 0 from the Langevin equation
that defines the system mesoscopic dynamics. At this point, it seems that there is no
formal distinction between a system being in equilibrium or a nonequilibrium station-
ary state. In any case, we have to build V 0 from our Hamilton variational principle.
From this perspective, some fundamental questions arise: how can we know whether a
system is in equilibrium or a nonequilibrium stationary state? We already commented
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above on the possibility that V 0 had some nonanalyticities in its domain of definition.
This contrasts with the regular behavior we know from the equilibrium ensemble when
looking at the corresponding free energy functional. Is, therefore, a systematic nonana-
lytic behavior the main difference between equilibrium and a nonequilibrium stationary
state? Are there any other differences between the two cases? We could try to create a
catalog of V 0’s by observing the different mathematical properties that can arise from
the equations we explicitly obtained. Then, we could argue which ones are compatible
with an equilibrium state or not. This mathematical approach could be possible, but
we think that trying to characterize equilibrium or nonequilibrium via the structural
form of V 0 is not the correct approach. From a physical point of view, there is a clear
cut between the two cases, and therefore, the mathematical peculiarities of V 0 are a
consequence of it. Therefore we should find an a priori property to determine whether
or not our system is in an equilibrium state. The key notion here is the behavior of our
system under a time-reversal operation. That will clarify most of the above questions
and comments.

From a macroscopic point of view, a system (RD or DD) has two deterministic well-
defined dynamics: (I) the deterministic evolution equation (1) for which the solution
φD(t) is the most probable path that the system follows when it relax from an arbitrary
η initial condition to the stationary state φ∗, and (II) the deterministic adjoint dynamics
φ̄(t) that is the solution of the Hamiltonian equations of motion (22) and represents the
most probable path that follows a fluctuation from the stationary state φ∗ to η. We
could agree that φD(t) and barφ(−t) should differ for a system in a nonequilibrium
stationary state because the external mechanisms or boundary conditions that create
such a state are, by definition, sensitive to the time arrow. Therefore, this property
seems to be relevant to discerning between equilibrium and nonequilibrium stationary
states. Let us explore it further by defining the concept of macroscopic time reversibility
and seeing what the consequences are for a system that has it.

• Definition: a system is called macroscopically time-reversible when φD(x, t) =
φ̄(x,−t). In other words, the most probable path to create a fluctuation is just the
time reversed one to relax the fluctuation using the deterministic dynamic equation.

Let us first see the consequences of a system being macroscopically time-reversible.

4.1. RD case

Macroscopic time-reversibility implies in this case that

φ̄(x, t) = φD(x,−t) ⇒ ∂tφ̄(x, t) = −F
[
φ̄;x, t

]
. (35)

At the same time φ̄ is solution of equation (24):

∂tφ̄(x, t) = F
[
φ̄ ;x, t

]
+ h
[
φ̄; x, t

]2
π [x, t]

∂tπ(x, t) = −
∫
Λ

dy π(y, t)

[
δF
[
φ̄ ; y, t

]
δφ̄(x, t)

+
1

2

δh
[
φ̄ ; y, t

]2
δφ̄(x, t)

π(y, t)

]
.

(36)
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Equating the first equation from (36) with equation (35), we obtain

∂tφ̄(x, t) = F
[
φ̄; x, t

]
+ h
[
φ̄ ;x, t

]2
π(x, t) = −F

[
φ̄ ;x, t

]
⇒ π(x, t) = −2F

[
φ̄ ;x, t

]
h
[
φ̄ ;x, t

]2 . (37)

The π(x, t) obtained is also a solution of the second equation of motion in (36). After
its substitution we obtain:∫

Λ

dy F [φ; y]

(
δ

δφ(y)

[
F [φ;x]

h[φ; x]2

]
− δ

δφ(x)

[
F [φ; y]

h[φ; y]2

])
= 0. (38)

This is a necessary condition for our system defined by F and h to be macroscopically
time-reversible.

We also obtain properties of the associated quasipotential V 0 for these systems if we
use the fact that π(x, t) = δV0[φ̄]/δφ̄(x, t). Therefore,

δV0[φ]

δφ(x)
= −2F [φ; x]

h[φ; x]2
(39)

∫
Λ

dy F [φ; y]

(
δ2V0[φ]

δφ(x)δφ(y)
− δ2V0[φ]

δφ(y)δφ(x)

)
= 0. (40)

Let us make some remarks:

• For macroscopically time-reversible systems, the first functional derivative of V 0 is
always a local functional (whenever F [φ ;x] is local) independently of the structure of
V 0. Moreover, if the system has some boundary conditions then F [φ ; x] = 0 ∀x ∈ ∂Λ.

• When

D[φ; x, y] ≡ δ

δφ(y)

(
F [φ;x]

h[φ; x]2

)
(41)

is symmetric: D[φ ; x, y] = D[φ ; y, x], then condition (38) is fulfilled and the system
is macroscopically time-reversible. In this case V 0 is continuous, with continuous
first and second functional derivatives. Moreover, V 0[φ] can be obtained directly by
integrating equation (39). Let us reiterate here that in this paper we are considering
situations with one unique stationary state. In the case of several stationary states
the theory should be generalized when constructing V 0 (see, for instance, [9]), and one
may find some nonanalytic behavior on V 0 even in equilibrium when, for instance,
there are coexisting phases.

• When D[φ ;x, y] �= D[φ ; y, x], the condition given by equation (38) typically fails (in
any case one should check that the integral is not zero for any field). Therefore,
the system is not macroscopically time-reversible and, as we will see below, it has a
nonequilibrium stationary state.

• RD dynamics are built from a twice differential V [φ] functional, a noise intensity
h (see equation (28)) and with boundary conditions (if any) such that F [φ ; x] =
0 ∀x ∈ ∂Λ is macroscopically time-reversible and V 0[φ] = V [φ]. Typical examples of
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these potentials are those of the form:

V0[φ] =

∫
Λ

dx v[φ; x] (42)

with v[φ ;x] having the property

δ2v[φ; x]

δφ(v)δφ(z)
=

δ2v[φ; x]

δφ(z)δφ(v)
∀ v, z ∈ Λ. (43)

Then,

F [φ; x] = −1

2
h[φ; x]2

∫
Λ

dy
δv[φ; y]

δφ(x)
. (44)

For instance, if we choose the Ginzburg–Landau form:

v[φ; x] =
1

2
(∇φ)2 + w(φ(x)) (45)

with w(λ) just any one-dimensional function, we find

F [φ; x] =
1

2
h[φ; x]2

(
Δφ(x)− dv(λ)

dλ

∣∣∣∣
λ=φ(x)

)
. (46)

The corresponding Langevin dynamics are the well-known Hohenberg–Halpering
model A [22].

4.2. DD case

A DD system is macroscopically time-reversible when the most probable path is a
solution of the Hamilton equation (24):

∂tφ̄(x, t) = −∇ ·G
[
φ̄ ;x, t

]
−∇

(
χ
[
φ̄ ;x, t

]
∇π(x, t)

)
∂tπ(x, t) = −

∫
Λ

dy∇π(y, t) ·
[
δG
[
φ̄; y, t

]
δφ̄(x, t)

+
1

2

δχ
[
φ̄ ; y, t

]
δφ̄(x, t)

∇π(y, t)

] (47)

with φ̄(x,−∞) = φ(x)∗ and π(x,−∞) = 0 also solutions of the time-reversed determin-
istic equation:

∂φ̄(x, t) = ∇ ·G
[
φ̄; x, t

]
. (48)

Therefore, and similarly to the RD case, we obtain two necessary conditions over G
and χ

Ḡ[φ; x] ≡ G[φ; x]− S(x) = −1

2
χ · ∇δV0[φ]

δφ(x)
, ∇ · S[x] = 0 (49)

where V 0 is independent of S(x), as we commented above, and∫
Λ

dy
∑
γ

Dγ[φ; y]

[(
∂y,γ

δ

δφ(y)

)
Dα[φ;x]−

(
∂x,α

δ

δφ(x)

)
Dγ[φ; y]

]
= 0 ∀ α (50)
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where

Dα

[
φ̄; x
]
=
∑
β

χ−1
αβ

[
φ̄ ;x
]
Ḡβ

[
φ̄ ;x
]
. (51)

These equations are very similar to the ones we obtained for the RD case (see
equations (37) and (38)) and most of the comments there apply here:

• The conditions about macroscopic time reversibility are defined on Ḡ[φ; x]. There-
fore, G[φ ; x] + S(x) with ∇S(x) = 0 is macroscopically time-reversible whenever
G[φ ;x] is. Therefore, we may always build DD models with arbitrary net current
that are macroscopically time-reversible.

• For macroscopically time-reversible systems, ∇δV 0/δφ(x) is always a local functional
(whenever G[φ ; x] is local) independently of the structure of V 0.

• Whenever

E[φ;x, y ;α, γ] =

(
∂x,α

δ

δφ(x)

)
Dγ[φ; y] (52)

is symmetric: E[φ ;x, y ;α, γ] = E[φ ; y, x; γ,α], then condition (50) is met and the
system is macroscopically time-reversible. Moreover, V 0 can be found by integrating
equation (49).

• The DD dynamics that are built from a twice differential V [φ] functional, a noise
intensity χ (see equation (28)) and with the appropriate boundary conditions:
G[φ ;x] = 0∀x ∈ ∂Λ is macroscopically time-reversible. In particular, if we choose
V 0[φ] of the form (42) with v[φ ;x] given by equation (45), we obtain:

Gα[φ;x] =
1

2

d∑
β=1

χαβ [φ; x]∂β

(
Δφ(x)− dv(λ)

dλ

∣∣∣∣
λ=φ(x)

)
. (53)

This expression corresponds to the Hohenberg–Halpering model B [22].

5. Fundamental principle: adjoint dynamics

Bertini and co-workers defined the adjoint dynamics by extending the large deviation
properties of several microscopic stochastic models to diffusive mesoscopic systems [13].
In fact, they generalized Einstein’s proposal regarding fluctuations of systems at equilib-
rium. He connected the probability of having a fluctuation with the minimum reversible
work necessary to create it. Their idea is to assume that the probability of any path from
an initial stationary state following the system dynamics is equal to the probability of
the time-reversed path followed by the adjoint dynamics . They call this property the fun-
damental principle, and it defines the adjoint dynamics as just the dynamics associated
with the time-reversed system. Moreover, they assumed that the adjoint dynamics thus
defined follow a mesoscopic equation similar in structure to the original ones. This per-
mitted them to obtain the equations of motion for the fields under the adjoint dynamics’
action. Therefore, they could compare both sets of equations of motion to look for prop-
erties due to time symmetries. In fact, they saw that this important concept contains
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the essential ingredients to discriminate between systems in nonequilibrium stationary
states and systems in equilibrium. We follow these proposals by Bertini and co-workers
[13] by assuming that the fundamental principle is valid to our models. Thus, we can
obtain the adjoint dynamics for the RD and DD cases.

5.1. RD adjoint dynamics

Let us define the joint probability of a given path from t0 to t1 knowing that φ[t0] is
chosen from the stationary distribution:

P ({φ}[t0, t1]|φ[t0]) = Pst[φ[t0]]P [{φ}[t0, t1]]. (54)

Let us fix a path {φ}[t0, t1] and its time-reversed image: {φ̃}[−t1,−t0] where φ̃(x, t) =
φ(x,−t). The fundamental principle states that

P ({φ}[t0, t1]|φ[t0]) = P ∗
({

φ̃
}
[−t1,−t0]|φ̃[−t1]

)
(55)

where P ∗ is the probability of a path for the adjoint dynamics. We assume now that
Ω→∞ and using equations (11), (12) and (18) we obtain

P ({φ}[t0, t1]|φ[t0]) � exp [−ΩR[{φ}[t0, t1]]] (56)

where

R[{φ}[t0, t1]] = V0[φ(t0)] + inf
π

∫ t1

t0

dt

[∫
Λ

dx π(x, t)∂tφ(x, t)−H[φ(t), π(t)]

]

= V0[φ(t0)] +

∫ t1

t0

dt

∫
Λ

dx

(
∂tφ(x, t)− F [φ; x, t]

2h[φ; x, t]

)2

. (57)

Then, the fundamental principle implies, in this limit,

V0[φ[t0]] +
1

2

∫ t1

t0

dt

∫
Λ

dx

(
∂tφ(x, t)− F [φ; x, t]

h[φ; x, t]

)2

= V0[φ[t1]] +
1

2

∫ t1

t0

dt

∫
Λ

dx

(
∂tφ(x, t) + F ∗[φ; x, t]

h∗[φ;x, t]

)2

(58)

for any path {φ}[t0, t1], where we have assumed that the adjoint dynamics are defined
by the Langevin equation:

∂tφ̃(x, t) = F ∗[φ̃; x, t] + h∗[φ̃; x, t]ξ(x, t) (59)

with ξ being uncorrelated white noise.
Let us show that equation (58) defines the mathematical form of the F ∗ and h∗

functionals. Let us assume that V 0 is differentiable along the path chosen. Then,

V0[φ[t1]]− V0[φ[t0]] =

∫ t1

t0

dt ∂tV0[φ[t]] =

∫ t1

t0

dt

∫
Λ

dx
δV0[φ[t]]

δφ(x, t)
∂tφ(x, t). (60)
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Therefore, equation (58) can be written:∫ t1

t0

dt

∫
Λ

dx

{
1

2

(
1

h[φ; x, t]2
− 1

h∗[φ; x, t]2

)
(∂tφ(x, t))

2

−
(
F ∗[φ;x, t]

h∗[φ; x, t]2
+

F [φ;x, t]

h[φ; x, t]2
+

δV0[φ[t]]

δφ(x, t)

)
∂tφ(x, t)

− F ∗[φ; x, t]

2h∗[φ; x, t]2
+

F [φ;x, t]2

2h[φ; x, t]2

}
= 0 (61)

for any path and any time interval. Then, we can fix a time t and change paths such that
they have arbitrary values for ∂tφ(x, t). Therefore, the coefficients of the time derivatives
should be equal to zero. Thus:

(∂tφ(x, t))
2 :h∗[φ; x, t] = h[φ; x, t]

(∂tφ(x, t))
1 :F ∗[φ;x, t] = −F [φ; x, t]− h[φ; x, t]2

δV0[φ]

δφ(x, t)

(∂tφ(x, t))
0 :

∫
Λ

dx
F ∗[φ; x, t]2 − F [φ;x, t]2

h[φ; x, t]2
= 0

(62)

The first equation indicates that the adjoint dynamics have the same noise intensity as
the direct dynamics. The second one shows that its deterministic part is different and
depends on the quasipotential. Finally, it can be easily shown that the last equation is
just the Hamilton–Jacobi equation (24).

5.2. DD adjoint dynamics

In this case the fundamental principle should be applied to path probabilities for the
variables that define the state of the system: (φ, j):

P ({φ, j} [t0, t1] |φ [t0]) = P ∗
({

φ̃, j̃
}
[−t1,−t0] |φ̃ [−t1]

)
(63)

where

P ({φ, j}[t0, t1]|φ[t0]) = Pst[φ[t0]]P [{φ, j}[t0, t1]]. (64)

P [{φ, j}[t0, t1]] is defined in equation (13) and the fields associated to the time-reversed

path are such: φ̃(x, t) = φ(x,−t), j̃(x, t) = −j(x,−t). Again, when Ω→∞ we obtain

V [φ(t1)]−V [φ(t0)]=
1

2

∫ t1

t0

dt

∫
Λ

dx
[
(j(x, t)−G[φ; x, t]) · χ−1[φ; x, t] (j(x, t)−G[φ; x, t])

− (j(x, t) +G∗[φ; x, t]) · χ∗−1[φ; x, t] (j(x, t) +G∗[φ;x, t])
]

(65)

where we have assumed that the adjoint dynamics are defined by the Langevin equation

∂tφ̃(x, t) +∇ · j̃(x, t) = 0 (66)
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with the constitutive equation:

j̃α(x, t) = G∗
α

[
φ̃ ;x, t

]
+

d∑
β=1

σ∗
α,β

[
φ̃; x, t

]
ψβ(x, t) α = 1, . . . , d (67)

and

χ∗
α,β

[
φ̃ ;x, t

]
=

d∑
γ=1

σ∗
α,γ

[
φ̃; x, t

]
σ∗
β,γ

[
φ̃ ;x, t

]
. (68)

Relation (65) should hold for any path and, therefore, for any value of j(x, t) at any
time. Then,

(j(x, t))2 :χ∗ [φ; x, t] = χ [φ; x, t]

(j(x, t))1 :G∗ [φ; x, t] = −G [φ; x, t]− χ [φ;x, t]∇ δV0 [φ]

δφ(x, t)

(j(x, t))0 :H

[
φ,

δV0 [φ]

δφ(x, t)

]
= 0

(69)

where H[φ, π] is given by equation (16).
There are two observations to be made:

• By construction, the quasipotential associated to the adjoint dynamics is the same
as that for the original one: V 0[φ].

• The equation of motion for the deterministic part of the adjoint dynamics
(equation (59) for RD or equation (67) for DD without the noise term) is equal to
the time-reversed equation of motion that defines the most probable path to create a
fluctuation (equation (22)). Therefore: φ̃D(x, t) = φ̄(x,−t). That is, the deterministic
path that is followed by the adjoint dynamics to relax an initial configuration φ0 to
the stationary state φ∗ is just the time-reversed most probable path that goes from
the stationary state φ∗ to φ0 by the normal deterministic dynamics.

5.3. Equilibrium vs nonequilibrium

We know that the definition of the equilibrium concept is a very subtle issue. Neverthe-
less, we could probably agree that at the macroscopic level, equilibrium is a state where
the macroscopic properties of a system do not change in time and where there is no flux
of any type across it. Moreover, at the mesoscopic level, we could use Gibbs’s definition
of equilibrium: the state where the probability density function for a configuration is a
time-independent solution of Liouville’s equation. The definition of equilibrium in the
MFT context is difficult because we deal with mesoscopic systems with no a priori con-
nection with any underlying mechanical microscopic model. We have a hint from the
theory by Onsager and Machlup about fluctuations and relaxation toward the equilib-
rium of mesoscopic variables [23]. They assumed that the underlying time reversibility
of the microscopic equations of motion should appear in the mesoscopic equations to
derive their properties near the equilibrium state. Therefore, the mesoscopic dynamics’
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time reversibility should be the essential item that characterizes a system in an equilib-
rium state. We already know that the macroscopic time reversibility property does not
discriminate with enough precision equilibrium from nonequilibrium stationary states.
For instance, we may always have systems being macroscopically time-reversible with
nonzero average currents in a torus. That is typical of nonequilibrium stationary states
(see, for instance, the explicit example given by Bertini et al in [24]). In contrast, the
fundamental principle defined above contains detailed information on the time-reversed
mesoscopic dynamics (adjoint dynamics), and it is the natural place to understand the
consequences of time-reversal on the RD and DD models (see equations (55) or (63)).

We assume that a system at equilibrium should behave identically under a time-
reversal operation. That is, it should follow the same dynamics independently of the
arrow time. This happens when the system dynamics follow this proposition:

• Proposition: a system is in equilibrium when the adjoint dynamics are equal to the
original ones.

This definition of equilibrium applied to the RD and DD systems implies that F and
G should be of the form:

F [φ;x] = −1

2
h[φ; x]2

δV0[φ]

δφ(x)
(RD case)

G[φ; x] = −1

2
χ[φ; x]∇δV0[φ]

δφ(x)
(DD case)

(70)

where V 0[φ] is a solution of the Hamilton–Jacobi equation H[φ, δV 0/δφ] = 0. Therefore,
F and G also have the differential properties that we found for the macroscopically time-
reversible systems: D[φ ;x, y] = D[φ ; y, x] for RD and E[φ ;x, y ;α, γ] = E[φ ; y, x ; γ,α]
for DD, where D is given in (41) and E in (52).

We make some comments:

• In general:

Stationary state is in equilibrium ⇒ macroscopically time− reversible system. (71)

For systems with RD the reverse implication is true and, therefore, having an equi-
librium stationary state is equivalent to being macroscopically time-reversible. For
systems with DD the reverse implication is not true because only the macroscopically
time-reversible systems with S(x) = 0 have an equilibrium stationary state.

• The deterministic current for systems with DD at equilibrium is zero: G[φ∗ ; x] =
0. It is proven (see, for instance, [13]) that for boundary-driven diffusive systems
the reverse statement is true and zero deterministic current at the stationary state
implies equilibrium. However, this is not true in general. There are systems with
zero deterministic current at the stationary state and generic power-law decay of
correlations that is typical of nonequilibrium stationary states [25].
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6. Correlations

Another form to get some insight on V 0 is the study of the stationary correlations.
There is a direct relation between the quasipotential around the stationary state and
the correlations. Let us define

Z0 =

∫
DφPst[φ] �

∫
Dφ exp [−ΩV0[φ]] , Ω→∞ (72)

It can be shown that the two-body correlations on the stationary state are given by

C2(x, y) ≡ lim
Ω→∞

Ω〈(φ(x)− φ∗(x))(φ(y)− φ∗(y))〉st = −2
δ log Z̄0[V2]

δV2(x, y)
(73)

where

Z̄0[V2] =

∫
Dω exp

[
−1

2

∫
Λ

dx dy V2(x, y)ω(x)ω(y)

]
(74)

and

V2(x, y) =
δ2V0[φ]

δφ(x)δφ(y)

∣∣∣∣
φ=φ∗

. (75)

We have assumed that V 0 can be expanded around its stationary state φ∗ and we have
made the change of variables ω(x) =

√
Ω(φ(x)− φ∗(x)) in equation (72).

Z̄0 can be explicitly computed because it is a Gaussian-like integral:

Z̄0[V2] = cte(det(V2))
−1/2 (76)

and after substituting in equation (73) we finally obtain

C2(x, y) = V −1
2 (x, y). (77)

We can obtain the same result by constructing the quasipotential (23) by solving the
Hamilton evolution equation (22) near the stationary state (see appendix D). That is, the
two-body correlations are directly related to the curvature of the quasipotential around
the stationary state and, apart from their own relevance as measured observables that
can be checked by experimentalists, it helps us to understand the mathematical structure
of the quasipotential. For instance, if correlations are long-range that would indicate that
the relations (70) do not apply because they imply local behavior of correlations.

From now on, we are going to focus on stationary two-body correlations. In order
to find a self-consistent way to compute C2, we need to go through a more elaborate
scheme [13, 15, 21].

Let us first define the generating functional :

Z[b] = Z[0]

∫
DφPst[φ] exp

[
Ω

∫
Λ

dx b(x)φ(x)

]
(78)
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where b(x) is a kind of auxiliary external field. We know from this expression that the
n-body correlations at the stationary state (at zero field) are given by

〈φ(x1) . . . φ(xn)〉st =
1

ΩnZ[0]

δnZ[b]

δb(x1) . . . δb(xn)

∣∣∣∣
b=0

. (79)

The truncated n-body correlations are defined by:

〈φ(x1) . . . φ(xn)〉cst =
1

Ωn

δnW [b]

δb(x1) . . . δb(xn)

∣∣∣∣
b=0

(80)

where W [b] = lnZ[b],

〈φ(x1) . . . φ(xn)〉cst = 〈(φ(x1)− 〈φ(x1)〉st) . . . (φ(xn)− 〈φ(xn)〉st)〉st n > 1

(81)

and 〈φ(x)〉cst = 〈φ(x)〉st.
We know that P st[φ] ∝ exp[−ΩV 0[φ]] when Ω→∞. Then, the generating functional

(78) can be written:

Z[b] ∝
∫

Dφ exp[−ΩF [φ, b]], F [φ, b] = V0[φ]−
∫
Λ

dx b(x)φ(x). (82)

Let us define φ∗[b] as the field that minimizes F and let us assume that F [φ, b] is
differentiable on φ’s around φ∗[b]; then,

F [φ, b] = F [φ∗[b]] +
1

2

∫
Λ

dx dy
δ2F [φ, b]

δφ(x)φ(y)

∣∣∣∣
φ=φ∗[b]

(φ(x)− φ∗[x; b])(φ(y)− φ∗[y ; b]) + · · ·

(83)

where φ∗[b] is a solution of

δF [φ, b]

δφ(x)

∣∣∣∣
φ=φ∗[b]

= 0 ⇒ δV0[φ]

δφ(x)

∣∣∣∣
φ=φ∗[b]

= b(x). (84)

We observe that φ∗[0] = φ∗, the minimum of V 0[φ].
Therefore, we obtain an expansion of the generating functional:

Z[b] ∝ e−ΩF [φ∗[b],b]

∫
Dω exp

[
−1

2

∫
Λ

dx dy
δ2V0[φ]

δφ(x)φ(y)

∣∣∣∣
φ=φ∗[b]

ω(x)ω(y) +O(Ω−1/2)

]
(85)

where w(x) =
√
Ω(φ(x)− φ∗[x; b]). We see that this expression has some meaning when-

ever V 0 is differentiable and convex around φ∗[b]. Convexity also guarantees that there
is a one-to-one relation between b and φ∗[b]. It may also be shown that

δF [φ∗[b], b]

δb(x)
= −φ∗[x; b]. (86)
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That is, F [b] ≡ F [φ∗[b], b] is the Legendre transform of V 0[φ]. We can now relate F with
the correlations:

W [b] = −ΩF [φ∗[b]] +O(Ω0) (87)

and

lim
Ω→∞

Ωn−1〈φ(x1) . . . φ(xn)〉cst = − δnF [φ∗[b]]

δb(x1) . . . δb(xn)

∣∣∣∣
b=0

≡ Cn(x1, . . . , xn) (88)

where 〈φ(x)〉cst = 〈φ(x)〉st = φ∗(x) = φ∗[x; 0].
At this point we can use a trick to build a set of closed equations for the correlation

functions. The Hamilton–Jacobi equation applied to φ∗(x ; b) is given by:

H

[
φ∗[b],

δV0[φ]

δφ

∣∣∣∣
φ=φ∗[b]

]
= H [φ∗[b], b] = 0 (89)

where H[φ, π] is given by equations (12) and (16) for the RD and DD, respectively. We
know that

φ∗[x; b] = φ∗(x) +

∫
Λ

dy C2(x, y)b(y) +O(b2). (90)

Then, we can implement a perturbative expansion on H around b = 0:∫
Λ

dx dy b(x)b(y)

[
δ2H[φ, π]

δπ(x)δπ(y)
|φ=φ∗
π=0

+

∫
Λ

dz

[
δ2H[φ, π]

δφ(x)δπ(z)
|φ=φ∗
π=0

C2(z, y)

+
δ2H[φ, π]

δφ(y)δπ(z)

∣∣∣∣
φ=φ∗
π=0

C2(z, x)

]]
= O(b3) ∀ b (91)

where we have used the facts that H is a second-order polynomial in π and that
H[φ∗, 0] = 0. Therefore,

∫
Λ

dz

[
δ2H[φ, π]

δφ(x)δπ(z)

∣∣∣∣
φ=φ∗
π=0

C2(z, y) +
δ2H[φ, π]

δφ(y)δπ(z)

∣∣∣∣
φ=φ∗
π=0

C2(z, x)

]
= − δ2H[φ, π]

δπ(x)δπ(y)

∣∣∣∣
φ=φ∗
π=0

. (92)

Let us explicitly apply equation (92) to the RD and DD cases.

6.1. RD case

We substitute H from equation (12) into (92) and we obtain:∫
Λ

dz
[
B(x, z)C̄(z, y) +B(y, z)C̄(z, x)

]
= −δ(x− y) (93)

where

C2(x, y) = h[φ∗ ; x]h[φ∗ ; y]C̄(x, y) (94)
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and

B(x, y) =
h[φ∗ ; y]

h[φ∗ ; x]

δF [φ; x]

δφ(y)
|φ=φ∗. (95)

Observe that B may be nonsymmetric on its arguments, while C̄ is symmetric by
construction. We can think of this equation as a representation of the linear operator
equation:

BC̄ + C̄B = −I (96)

with I the identity operator. The formal solution can be found by using the fact that
∂/∂α eαB = B eαB . Then,

∂

∂α

[
eαBC̄ eαB

T
]
= −eαB eαB

T ⇒ C̄ =

∫ ∞

0

dα eαB eαB
T

(97)

where we have assumed that B is negative defined. A simple representation of this
equation can be obtained in the case in which B is diagonalizable; in other words, when
we can apply to B some spectral theorem. Let v(x ;λn) and w(x ;λn) be the set of
right and left eigenvectors of B with eigenvalues λn and λ∗

n (complex conjugate of λn)
respectively:∫

Λ

dy B(x, y)v(y ;λn) = λnv(x;λn)∫
Λ

dy B(y, x)w(y ;λn) = λ∗
nw(x;λn).

(98)

The eigenvalues may have real or complex values but, because B is real valued, they
appear in pairs when they are complex: (λ, v(x ;λ)), (λ∗, v(x ;λ∗) = v(x ;λ)∗). We assume
that each set forms a complete basis on the functional space and that they follow the
orthogonality conditions:∫

Λ

dxw(x;λn)
∗v(x;λm) = δn,m∑

n

w(x;λn)
∗v(y ;λn) = δ(x− y).

(99)

Finally, solution (97) can be written:

C̄(x, y) = −
∑
n,m

v(x;λn)v(y ;λm)

λn + λm

∫
Λ

dz w̄(z ;λn)w̄(z ;λm). (100)

We see that the solution is symmetric, C̄(x, y) = C̄(y, x), and real, C̄(x, y)∗ = C̄(x, y),
due to the pairing property of the eigenvalues.

Solution (100) can be further simplified if B is symmetric: B(x, y) = B(y, x). In this
case the right and left eigenvalues and eigenvectors coincide; all of them are real and
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the eigenvectors form an orthonormal base on the functional space. Therefore,

C̄(x, y) = −1

2

∑
n

1

λn
v(x;λn)v(y ;λn) = −1

2
B−1(x, y) (101)

where ∫
Λ

dz B(x, z)B−1(z, y) = δ(x− y). (102)

As an example, let us apply these results to small deviations from equilibrium. Let us
assume that a system at equilibrium has a given quasipotential V 0[φ] and its Langevin
dynamics are defined by the pair (F , h) where we know that F is of the form (70). There-
fore, the correlations are given by equation (77): C2(x, y) = V −1

2 (x, y). This reference
system is now forced to slightly deviate from the equilibrium by imposing a perturba-
tion in the F term. That is, the Langevin equation for the new system is composed of
the pair (F̃ , h) where

F̃ [φ;x] = −1

2
h[φ; x]2 [1 + εg[φ;x]]

δV0[φ]

δφ(x)
. (103)

V 0[φ], g[φ ;x] and h[φ ; x] are given functionals and ε can be used as a perturbative
parameter. This change does not modify the system stationary solution φ∗ for any ε:
F̃ [φ∗ ; x] = 0 ∀ ε. Therefore, the quasipotential V ε[φ] associated to the dynamics (103)
always has the same extremal state: δVε[φ]/δφ(x)|φ=φ∗ = 0 for any ε value.

To compute the correlations for the dynamics defined in equation (103), we need to
construct the matrix B given by equation (95):

B(x, y) = (1 + εg[φ∗ ;x])B̃(x, y), B̃(x, y) = −1

2
h[φ∗ ;x]h[φ∗ ; y]

δ2Ṽ [φ]

δφ(x)δφ(y)
|φ=φ∗

(104)

and the equation for the correlations (96) can be written as:

G̃B̃C̄ + C̄G̃B̃ = −I (105)

where G̃(x, y) = (1 + εg[φ;x])δ(x− y). We look for perturbative solutions of this
equation:

C̄ =

∞∑
n=0

εnC̄n. (106)

After substituting the last expression into equation (105), we obtain order by order in
ε the following hierarchy of equations:

B̃C̄0 + C̄0B̃ = −I

B̃C̄n + C̄nB̃ = −GB̃C̄n−1 − C̄n−1B̃G n > 0
(107)
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where G̃ = I + εG and G(x, y) = g[φ ;x]δ(x− y). The solutions are:

C̄0 = −1

2
B̃−1

C̄n =

∫ ∞

0

dα eαB̃
(
GB̃C̄n−1 + C̄n−1B̃G

)
eαB̃ n > 0

(108)

and, in particular,

C̄1 = −
∫ ∞

0

dα eαB̃G eαB̃ = QAQT (109)

where Q is the matrix that diagonalizes B̃: B̃ = QDQT; that is, Qij = vi(λj) where v(λ)

is the eigenfunction of B̃ with eigenvalue λ (all in a formal discrete notation) and

Ai,j =
(QTGQ)ij
λi + λj

. (110)

Observe that B̃ is by construction a local functional. However, its eigenfunctions (that
depend on the boundary conditions and the form of V 0) may be nonlocal. Therefore,
the first correction to the correlations could be already quite singular. We can obtain
more corrections C̄n in the same spirit and we could study some general properties of
C̄ depending on the G and V 0. However, this is beyond the scope of this paper. We
just wanted to show the possibility to introduce a perturbative scheme and to show the
nontrivial changes that may appear in the behavior of the two-body correlations.

6.2. DD case

We substitute H from equation (16) into (92) and we obtain:∫
Λ

dz [K(x, z)C2(z, y) +K(y, z)C2(z, x)] = −
∑
i,j

∂

∂xi

∂

∂yj
[χij[φ

∗ ;x]δ(x− y)] (111)

where

K(x, y) =
δ

δφ(y)
(−∇ ·G[φ; x]) |φ=φ∗ (112)

with φ∗ the solution of ∇ ·G[φ∗ ;x] = 0.
Many models are designed from a dynamic acting on the system’s bulk and boundary

conditions that drives the system to an equilibrium state in the DD case. Afterward,
just by changing the boundary conditions, one manages to introduce to the system flows
of energy, mass, etc so that the system is driven into a nonequilibrium stationary state.
Other nonequilibrium stationary states are just due to a bulk dynamical mechanism
that directly introduces some current into the system and/or breaks some symmetry.
Moreover, DD permits models with a strictly conserved quantity, the average density,
which introduces a kind of long-range interaction that affects the system correlations.
Let us comment on these particular scenarios for the DD correlations.
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• Nonequilibrium stationary states driven by boundary conditions: let us assume first
that the stationary state of our system is the equilibrium one with a given V 0[φ] for
an appropriate set of boundary conditions. The bulk dynamics are defined by (G,χ)
with

Gi[φ;x] = −1

2

∑
j

χij[φ; x]∂j
δV0[φ]

δφ(x)
. (113)

We know that the corresponding two-body correlations are:

Ceq
2 (x, y) = V −1

2 (x, y ;φ∗
eq), V2(x, y ;φ) =

δ2V0[φ]

δφ(x)δφ(y)
(114)

with φ∗
eq the solution of G[φ∗

eq
;x] = 0 (the current is equal to zero). If we change the

boundary conditions, the system develops nonzero currents and, therefore, we have
a nonequilibrium stationary state. We assume that the stationary state φ∗ is given
now by the solution of the equation G[φ∗ ;x] = J where J is a constant vector that
is fixed by the boundary conditions. In this context, it is convenient to decompose
the two-body correlation function into two terms:

C2(x, y) = C leq
2 (x, y) + CD(x, y), C leq

2 (x, y) = V −1
2 (x, y ;φ∗). (115)

The first term is the local equilibrium correlation, which is the equilibrium correlation
evaluated with the local values of the field φ∗ as if the system were at equilibrium
at x with φeq = φ∗(x). On the other hand, we see that CD = 0 when J = 0 by con-
struction. That is, CD(x, y) describes in some sense the far-from-equilibrium part of
the correlations. When we substitute equations (115) into (111) we obtain the closed
equation for CD:

∑
i

∂

∂xi

[
αi[φ

∗ ;x]CD(x, y) +
1

2

∑
j

χij [φ
∗ ; x]

∂

∂xj

∫
Λ

dz C leq,−1
2 (x, z)CD(z, y)

]

∑
i

∂

∂yi

[
αi[φ

∗ ; y]CD(x, y) +
1

2

∑
j

χij[φ
∗ ; y]

∂

∂xj

∫
Λ

dz C leq,−1
2 (y, z)CD(z, x)

]

= −
∑
i

∂

∂xi

[
αi[φ

∗ ; x]C leq
2 (x, y)

]
−
∑
i

∂

∂yi

[
αi[φ

∗ ; y]C leq
2 (x, y)

]
(116)

where α is a d-dimensional vector

α[φ; x] = χ′[φ; x]χ−1[φ;x]J (117)

and we have considered that χij[φ ;x] is a function that depends only on φ(x); that
is, χij [φ ;x] = χij(φ(x)). Therefore, χ

′
ij[φ ;x] = ∂χij(u)/∂u|u=φ(x).

The solution of this equation is very complex and it depends on the particu-
lar system and boundary conditions used. Let us explicitly work out a well-known
particular case: the pure diffusive system, by taking:

V0[φ] =

∫
Λ

dx [v(φ(x))− 2E · xφ(x)] (118)

https://doi.org/10.1088/1742-5468/abdc19 27

https://doi.org/10.1088/1742-5468/abdc19


J.S
tat.

M
ech.

(2021)
024001

Notes about the macroscopic fluctuating theory

where E is an external constant vector. With this choice we obtain:

Gi[φ;x] = −
∑
j

[Dij [φ; x]∂jφ(x)− χij [φ;x]Ej] (119)

where

D[φ; x] =
1

2
v′′(φ(x))χ[φ;x] (120)

that is, the so-called Einstein relation. We observe that in equilibrium (with the
appropriate boundary conditions) φ∗

eq(x) is the solution of the barometric equation:

∇φ∗
eq(x) = − 2

V v′(φ∗
eq(x))

E. (121)

Moreover,

Ceq
2 (x, y) =

1

v′′(φ∗
eq(x))

δ(x− y). (122)

In a nonequilibrium setup we obtain that the stationary state is a solution of the
equation:

−
∑
j

[Dij [φ
∗ ; x]∂jφ

∗(x)− χij [φ
∗ ;x]Ej] = Ji (123)

and the equation for CD is, in this case:

∑
ij

[
∂

∂xi

[
∂(Dij[φ

∗ ; x]CD(x, y))

∂xj

− χ′
ij [φ

∗ ;x]CD(x, y)

]

+
∂

∂yi

[
∂(Dij[φ

∗ ; y]CD(x, y))

∂yj
− χ′

ij [φ
∗ ; y]CD(x, y)

]]

=
1

2
(∇ · ᾱ[φ∗ ;x]) δ(x− y) (124)

where

ᾱ[φ; x] = χ′[φ; x]D−1[φ;x]J. (125)

In particular, let us restrict to one dimension, D = cte, E = 0 and χ[φ ; x] a posi-
tive second-order polynomial of the form χ[φ ;x] = c0 + c1φ(x) + c2φ(x)

2. We find
that J = −D dφ∗(x)/dx. This implies a stationary state: φ∗(x) = φ∗(0)− Jx/D,
J = D(φ∗(L)− φ∗(0))/L, where we have fixed the values of φ at the boundaries
of the segment [0,L]. Then, the correlation function is

C2(x, y) =
χ[φ∗ ;x]

2D
δ(x− y) + CD(x, y) (126)
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where the equation for CD is reduced to:[
d2

dx2
+

d2

dy2

]
CD(x, y) = −2

J2

D3
c2δ(x− y). (127)

We can obtain an explicit solution for it (see, for instance, [19]):

CD(x, y) = − J2

D3
c2Δ

−1(x, y) (128)

with

Δ−1(x, y) = − 1

L
[(L− x)yθ(x− y) + x(L− y)θ(y − x)] (129)

where θ(x) is the Heaviside function. Observe the long-range behavior of CD and
that its sign depends on the sign of c2.

From this result we can obtain the fluctuations of the averaged field ρ[φ] =
1
L

∫ L

0
dxφ(x):

Σ ≡ Ω〈(ρ[φ]− ρ∗)2〉st =
1

L2

∫ L

0

dx

∫ L

0

dy C2(x, y) ≡ Σleq + ΣD (130)

where

Σleq =
1

2DL

[
c0 + c1ρ

∗ +
c2
3

(
φ∗(0)2 + φ∗ (0)φ∗ (1) + φ∗(1)2

)]
ΣD =

c2
12DL

(φ∗ (0)− φ∗ (L))2 (131)

with ρ∗ = ρ[φ∗]. We see that the deviation from the local equilibrium is proportional
to the square of the external gradient. This result has been derived in the boundary-
driven symmetric simple exclusion process (SSEP) and in the KMP [19, 20, 26].

• Bulk nonequilibrium: let us focus on a very simple nonequilibrium model at the bulk
level that develops highly nontrivial correlations. Let

G[φ; x] = −D∇φ (132)

where we assume that D and χ are constant arbitrary d -dimensional matrices. One
can easily check that this system is time-reversible if D is proportional to χ. Let us
assume periodic boundary conditions such that φ∗(x) = cte is the stationary state.
Therefore, the currents on the system are zero: G[φ∗ ;x] = 0. The equation for C2 is
in this case given by:

∑
ij

Dij
∂2C̄2(x− y)

∂xi∂xj
=

1

2

∑
ij

χij
∂2δ(x− y)

∂xi∂xj
(133)

where we have assumed that the correlations are translationally invariant: C2(x, y) =
C̄2(x− y). The solution of equation (133) is given by:

C̄2(u) =

∫
dk eikuĈ2(k), Ĉ2(k) =

k · χk
k ·Dk

(134)
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We see that Ĉ2 is nonanalytic at k = 0 when D is not proportional to χ (this also
implies D and/or χ to be anisotropic) and C̄2(u) has a power-law decay behavior
[25]. Let us remark on the fact that these very simple conservative dynamics with no
macroscopic current have long-range correlations just by breaking the proportionality
between D and χ. We can infer that equilibrium is reached by fine-tuning of the
system’s parameters and that the normal behavior is the nonequilibrium one.

• Strictly conserved models: DD models permits the average density

1

|Λ|

∫
Λ

dxφ(x, t) = φ̄ ∀ t (135)

to be strictly conserved under suitable boundary conditions (for instance, periodic).
In this case, the stationary probability distribution can be written

Pst[φ] � exp [−ΩV0[φ]] δ

(∫
Λ

dxφ(x)− |Λ|φ̄
)

Ω→∞ (136)

where V 0[φ] is the solution of the Hamilton–Jacobi equation:

H

[
φ,

δV0[φ]

δφ

]
= 0 (137)

with H given by equation (16). This slightly changes the initial assumption we used
from equations (72) and (82) to derive the expressions for the correlations, and we
need to reformulate them. The generating functional (85) can be written

Z[b] ∝
∫

Dφ

∫
ds exp [−ΩF [φ, b, s]] Ω→∞ (138)

where

F [φ, b, s] = V0[φ]−
∫
Λ

dx b(x)φ(x) + s

(∫
Λ

dxφ(x)− |Λ|φ̄
)
. (139)

The two-body correlations are given by

C2(x, y) = lim
Ω→∞

δ2I[b]

δb(x)δb(y)
|b=0 (140)

with

I[b] =
1

Ω
log Z[b] = −F [φ∗[b], b, s∗[b]] (141)

and (φ∗[b], s∗[b]) are the values that minimize F :

δV0[φ]

δφ(x)
|φ=φ∗[b] = b(x)− s∗[b] ≡ b̄(x)

∫
Λ

dxφ∗(x; b) = |Λ|φ̄ ∀ b′s. (142)
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We observe that s∗[0] = 0 and we can obtain φ∗[b] and s∗[b] from equation (142)
using a perturbative scheme around b̄ = 0:

φ∗(x; b) = φ∗(x) +

∫
Λ

dy CNC
2 (x, y)b̄(y) +O(b̄2)

s∗[b] =

∫
Λ
dx
∫
Λ
dy CNC

2 (x, y)b̄(y)∫
Λ
dx
∫
Λ
dy CNC

2 (x, y)
+O(b̄2) (143)

where

CNC
2 (x, y) = V −1

2 (x, y) (144)

and V 2 is given by equation (75). That is, CNC
2 is the two-body correlation function

corresponding to a system with the same dynamics and boundaries as the original
system but without the density conservation condition (observe that V 0 is computed
using the Hamilton–Jacobi equation (137) where φ̄ is fixed when the stationary state
is chosen). Finally, we obtain C2 by performing the expansion of I[b] (141) up to the
second order in b̄ of their arguments:

C2(x, y) = CNC
2 (x, y)−

∫
Λ
dȳ CNC

2 (x, ȳ)
∫
Λ
dx̄ CNC

2 (x̄, y)∫
Λ
dx̄
∫
Λ
dȳ CNC

2 (x̄, ȳ)
. (145)

We see that
∫
Λ
dxC2(x, y) =

∫
Λ
dy C2(x, y) = 0 as expected. Observe also that the

difference between C2 and CNC
2 is of order |Λ|−1 and, therefore, both correlations

coincide in the thermodynamic limit |Λ| →∞. At the practical level, the condition
of density conservation does not change the fact that first we should obtain CNC

2

from equation (111) as in the other cases and the system’s physics are completely
characterized by it.

6.3. Initial approach to define nonequilibrium dynamical ensembles

We know from the equilibrium ensemble theory that there are several probability densi-
ties defined in the configurational space that give rise to the same macroscopic descrip-
tion in the thermodynamic limit [27]. For instance, we are aware of the microcanonical,
canonical, and grand canonical ensembles. The same Hamiltonian characterizes all the
ensembles at the microscopic level, and their differences are in the constraints they have
as the conservation of energy, of particles, etc. This equivalence can also be transported
to dynamic equations. For example, we can build several stochastic dynamics to drive
the system to the same equilibrium state. At the mesoscopic level, we have already
seen that RD and DD systems at equilibrium have the same stationary distribution
defined by the quasipotential V 0[φ] (except for a DD with strict conservation where the
conservation of the field appears explicitly and it affects the system correlations in a
controlled manner). In any case, all of them describe the same macroscopic state at the
thermodynamic limit: their deterministic values and their correlations are equal.

The equivalence of ensembles in nonequilibrium systems has been studied from
several different points of view. Let us comment, for example, on the comparison of
turbulent Navier–Stokes hydrodynamic equations with different forcing and dissipative
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mechanisms with equal averages for any reasonable observable [28], or the construction
of equivalent biased dynamics at the level of path’s probabilities for Markov processes
when a constraint is included on a time-averaged observable that gives rise to the same
large deviation distribution [29].

Here, we question the possibility of obtaining a couple of RD and DD dynamics
that drive a system to the same nonequilibrium stationary state. We assume that there
are two levels of equivalence: (i) the strong equivalence where the quasipotential V 0 is
the same in RD and DD models except for a conservation constraint if necessary (see
equation (136)), and (ii) the weak equivalence where we look for RD and DD models
that have the same macroscopic stationary state and two-body correlations. Showing the
strong equivalence for a couple of dynamics is a nontrivial task because of the nonlocal
structure of V 0. Therefore, it depends on the boundary conditions and the details of the
dynamics. For this reason, it is more convenient to first explore the weak equivalence by
looking for the conditions under which the RD and DD systems have equal two-body
correlations (observe that if we consider a DD with strict conservation of density, we
want to compare the RD correlation function with the DD’s correlation CNC

2 ).
The two-body correlation is the solution of equation (92), each one with their own

Hamiltonian. This implies equations (93) and (111) for the RD and DD systems, respec-
tively. We do not know how to solve such equations in general except in the RD case
when the B kernel (95) is symmetric. That restricts a lot of the types of nonequilib-
rium models we can study. Nevertheless, it gives us some interesting insights into the
conditions for the existence of a weak equivalence.

Let us assume RD dynamics defined by F [φ ;x] and h[φ ;x] functionals with the
property:

B(x, y) ≡ h[φ∗
1
; y]

h[φ∗
1
; x]

δF [φ; x]

δφ(y)
|φ=φ∗

1
= B(y, x) (146)

where φ∗
1 is the solution of F [φ∗

1
; x] = 0. We showed above that in this case the two-body

correlations are given by:

C2(x, y) = −1

2
h[φ∗

1
;x]h[φ∗

1
; y]B−1(x, y). (147)

We impose that this correlation should also be a solution of equation (111) for the
two-body correlations in the DD case (defined by G[φ ; x] and χij[φ ;x] functionals).
Obviously, the boundary conditions for C2 are equal in both cases. In this way we
obtain the relation:

h[φ∗
1
; y]

∫
Λ

dz K(x, z)h[φ∗
1
; z]B−1(z, y) =

∑
ij

∂

∂xi

∂

∂yj

[
χij [φ

∗
2
;x]δ(x− y)

]
(148)

where

K(x, y) =
δ

δφ(y)
(−∇ ·G[φ; x]) |φ=φ∗

2
(149)

with φ∗
2 solution of ∇ ·G[φ∗

2
; x] = 0. After some trivial algebra, we find that the RD with

(F , h) and DD with (G,χ) have the same C2 correlation provided that the following
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relationship is fulfilled:

δGi[φ; x]

δφ(y)
|φ=φ∗

2
=
∑
j

χij[φ
∗
2
;x]

∂

∂xj

[
1

h[φ∗
1
;x]2

δF [φ; x]

δφ(y)
|φ=φ∗

1

]
. (150)

One can also check that

Gi[φ; x] =
∑
j

χij [φ;x]
∂

∂xj

[
F [φ; x]

h[φ; x]2

]
(151)

fulfills relation (150). Observe that in this case the deterministic solutions for the RD
and DD models coincide: φ∗

1 = φ∗
2 = φ∗. In conclusion, we have shown the following

property:

• All RD models with a symmetric B-kernel (146) have an associated DD model given
by (151) such that both have the same macroscopic state and two-body correlations
and therefore they are, at least, weak-equivalent.

We can apply this property to the equilibrium case where F is of the form:

F [φ;x] = −1

2
h[φ; x]2

δV [φ]

δφ(x)
(152)

for any arbitrary h and V functionals. The B -kernel (151) is in this case always
symmetric and the weak equivalent conservative dynamics are the expected:

Gi[φ; x] = −1

2

∑
j

χij [φ; x]
∂

∂xj

[
δV [φ]

δφ(x)

]
(153)

(see equation (70)). We know that both dynamics have the same quasipotential: V 0[φ] =
V [φ]. That is, they are also strong-equivalent.

Let us see what happens for a simple RD system with a nonequilibrium stationary
state. We assume that RD is defined by (F , h) where

F [φ;x] = −1

2
g[φ;x]2

δV [φ]

δφ(x)
(154)

with V [φ], g[φ ;x] and h[φ ;x] are given functionals. We know that whenever g[φ ; x] �=
h[φ ;x] the system is in a nonequilibrium stationary state and the quasipotential V 0[φ] �=
V [φ]. The B-kernel (146) is in this case

B(x, y) = −1

2

h[φ∗ ; y]

h[φ∗ ;x]
g[φ∗ ; x]2

δ2V [φ]

δφ(x)δφ(y)
|φ=φ∗ (155)

and it is symmetric when the deterministic solution is spatially homogeneous φ∗(x) =
φ∗ = cte. In this case we apply the result (151) and the DD dynamics with the same
two-body correlations as the RD are:

Gi[φ; x] = −1

2

∑
j

χij [φ; x]
∂

∂xj

[
g[φ;x]2

h[φ; x]2
δV [φ]

δφ(x)

]
(156)
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for any given χij. It is an open problem to see if there is a strong equivalence in this case.
We have just shown with this example that there exists a weak equivalence between a
family of RD and DD systems. It seems interesting to explore the possibility of finding
such an equivalence in more complex dynamics.

7. Conclusions

We have attempted to show nonequilibrium systems’ general properties in stationary
states, assuming that continuum Langevin equations describe them. We have studied the
stationary measure at the small noise limit through the quasipotential. This object is a
natural extension of the free energy functional for systems in equilibrium. A quasipoten-
tial typically has a nonlocal structure, a strong dependence on the boundary conditions,
and the dynamics’ details. Finally, it may contain some nondifferential behavior. These
properties make it very difficult to devise an a priori way of building them from first
principles as it occurs for the equilibrium. That prevents us from using the quasipoten-
tials as a starting point to develop hypothetical nonequilibrium thermodynamics. We
show how the most probable path to creating a fluctuation from the stationary state
is, for nonequilibrium systems, different from the most probable path to relax from it.
When both coincide, the system is called macroscopically time-reversible. This property
is not enough to discriminate nonequilibrium stationary states from the equilibrium. To
do that, one should introduce the adjoint dynamics as the Langevin equation for the
time-reversed process. In this way, equilibrium is defined as the process in which the
Langevin dynamics coincide with their adjoint. The stationary two-body correlations
characterize the quasipotential near the stationary state. We have explicitly built the
equations to derive them, studying several properties, examples, and even perturbation
schemes to show their richness and nontrivial behavior.

This work aims to show a systematic way to study nonequilibrium systems from a
theoretical point of view. It gives us the possibility to study different nonequilibrium
models under the same scheme and compare them to look for their common regularities.
Moreover, the advantage of this common theoretical ground is that any exact resolution,
approximation, perturbation scheme, or assumption can be checked in many different
scientific contexts from numerical models or real experiments.

Finally, it is also observed that small changes in the overall functionals may imply
large differences in the kind of results we derive from the theory. Therefore, one of
the main questions to be solved is to determine the influence of the underlying micro-
scopic details in the mesoscopic description. We know that in some important cases of
boundary-driven nonequilibrium systems (for example, fluctuating hydrodynamics [30]),
the mesoscopic theory contains most of the necessary elements to correctly describe
many observed phenomena. Nevertheless, we would like to have an a priori predictive
way to connect the microscopic and mesoscopic descriptions safely.
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Appendix A. From Langevin to Fokker Planck equations through a family of
discretization schemes

A.1. RD case

Let us assume that the Langevin equation (5) is the continuous limit of its time-discrete
version:

φ(x, s+ 1) = φ(x, s) + ε [F [φ; x, s, v] + h[φ; x, s, v]ξ(x, s)] (157)

where we also assume:

F [φ;x, s, v] = F [vφ(x, s) + (1− v)φ(x, s+ 1);x]

h[φ; x, s, v] = h(vφ(x, s) + (1− v)φ(x, s+ 1)) (158)

with v ∈ [0, 1], x ∈ Λ ⊂ IRd, s ∈ Z and F [φ ; x] is a functional on φ(y)’s with y pertaining
to a finite open region around x while h(λ) is a function. The random field ξ is Gaussian
white noise characterized by:

〈ξ(x, s)〉 = 0, 〈ξ(x, s)ξ(x′, s′)〉 = 1

εΩ
δ(x, x′)δs,s′ . (159)

Observe that for any value v ∈ [0, 1] the limit ε→ 0 of this discrete equation gives rise
to the continuous Langevin equation (5).

We can expand the Langevin equation (157) in powers of ε:

φ (x, s+ 1) = φ (x, s) + εh (φ (x, s)) ξ (x, s) + εF [φ; x, s]

+ (1− v) ε2h (φ (x, s))h′ (φ (x, s)) ξ(x, s)2 +O
(
ε3/2
)

(160)

where we have assumed that ξ is of order ε−1/2.
The probability of finding a given configuration φ at time s is defined by

P [φ; s+ 1] =

〈∏
x∈Λ

δ(φ(x)− φ(x, s+ 1))

〉
ξ

(161)

where φ(x, s) is the solution of the Langevin equation for a given random noise realiza-
tion and 〈·〉ξ is the average over all noise realizations with their corresponding Gaussian
weight. We can substitute the ε expanded Langevin equation into equation (161) and
after some algebraic manipulation we obtain

P [φ; s+ 1] =

∫ ∏
x∈Λ

[
dφ̄ (x)

]
P [φ̄; s]

〈∏
x∈Λ

δ
(
φ (x)− φ̄ (x)− εh

(
φ̄ (x)

)
ξ (x, s)− εF [φ̄ ;x]

− (1− v) ε2h
(
φ̄ (x)

)
h′ (φ̄ (x)

)
ξ(x, s)

2
+O

(
ε3/2
))〉

ξ

. (162)
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We have used the fact that φ(x, s) only depends on ξ’s of previous times, s′ < s, and
therefore, we can break the averages over ξ’s. We expand the last expression with respect
to ε by using the perturbative formula:

∏
n

δ(a(n) + b(n)η + c(n)η2) =

(∏
n

δ(a(n))

)
+ η
∑
m

(∏
n �=m

δ(a(n))

)
δ′(a(m))b(m) +

1

2
η2

×
∑
m

[(∏
n �=m

δ(a(n))

)[
δ′′(a(m))b(m)2 + 2δ′(a(m))c(m)

]

+
∑
m′ �=m

⎛
⎝ ∏

n �=m,m′

δ(a(n))

⎞
⎠ δ′(a(m))δ′(a(m′))b(m)b(m′)

⎤
⎦

+O(η3) (163)

that we obtain by performing the first two derivatives with respect to η on the right-
hand side of equation (163) and expanding the remaining expression up to the second
order in η. In our case we identify η = ε1/2.

Finally, we can calculate the averages over ξ’s and we obtain (in the limit ε→ 0) the
Fokker–Planck equation:

∂tP [φ; t] =

∫
Λ

dx
δ

δφ(x)

[
−(F [φ;x] +

(1− v)

Ω
h(φ(x))h′(φ(x)))P [φ; t]

+
1

2Ω

δ

δφ(x)

(
h(φ(x))2P [φ; t]

)]
. (164)

One can show that the observables (averages) computed with this Lagrangian do not
depend on the v used [31]. For v = 1 (Ito’s discretization) we obtain the Fokker–Planck
equation that is used in this paper:

∂tP [φ; t] =

∫
Λ

dx
δ

δφ(x, t)

[
−F [φ; x, t]P [φ; t] +

1

2Ω

δ

δφ(x, t)

(
h[φ; x, t]2P [φ; t]

)]
. (165)

A.2. DD case

In this case it is necessary to define space and time discretizations. The field at lattice
site n ∈ Zd at discrete time s ∈ Z, φ(n, s) is a solution of the discrete Langevin equation:

φ(n, s+ 1) = φ(n, s)− ε

2a

d∑
α=1

[jα(φ;n+ iα, s)− jα(φ;n− iα, s)] (166)

where iα is the unit vector in the direction α and

jα(φ;n, s) = Gα[φ;n, s] +
d∑

β=1

σαβ [φ;n, s]ψβ(n, s) (167)
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〈ψα(n, s)ψβ(n
′, s′)〉 = 1

Ω̃εad
δα,βδn,n′δs,s′ (168)

where a and ε are the lattice node separations in space and time, respectively. For
simplicity we are considering just Ito’s scheme.

The probability of finding a given configuration φ at time s is defined by

P [φ; s+ 1] =

〈∏
n∈Λ

δ(φ(n)− φ(n, s+ 1))

〉
ψ

(169)

where φ(n, s) is the solution of the Langevin equation for a given random noise real-
ization; that is, it depends on ψ and 〈·〉ψ is the average over all noise realizations with
their corresponding Gaussian weight. We can insert the right-hand side of the Langevin
equation and we introduce an auxiliary field φ̄:

P [φ; s+ 1] =

〈∫ ∏
n∈Λ

[
d̄φ(n)δ(φ̄(n)− φ(n, s))

]

×
∏
n∈Λ

δ

(
φ(n)− φ̄(n) +

ε

2a

d∑
α=1

[
jα(φ̄ ;n+ iα)− jα(φ̄ ;n− iα)

])〉
ψ

. (170)

We use the fact that the noise ψ is time-uncorrelated and Ito’s prescription. Moreover,
φ(n, s) only depends on ψ’s with times strictly smaller than s. Therefore, we can break
the average over ψ and we obtain:

P [φ; s+ 1] =

∫ ∏
n∈Λ

[d̄ φ(n)]P [φ̄; s]

×
〈∏

n∈Λ
δ

(
φ(n)− φ̄(n) +

ε

2a

d∑
α=1

[
jα(φ̄ ;n+ iα)− jα(φ̄ ;n− iα)

])〉
ψ

. (171)

We expand the last expression for ε � 1, taking into account that ψ is of order ε−1/2.
We can use formula (163) with

a(n) = φ(n)− φ̄(n)

b(n) =
ε1/2

2a

d∑
α=1

d∑
β=1

[
σαβ [φ̄;n+ iα]ψβ(n+ iα, s)− σαβ [φ̄;n− iα]ψβ(n− iα, s)

]

c(n) =
1

2a

d∑
α=1

[
Gα[φ̄;n+ iα]−Gα[φ̄;n− iα]

]
. (172)
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After substituting this expansion into equation (171) we can explicitly calculate
the averages over ψ and after some algebra we obtain

P [φ; s+ 1] = P [φ; s] + ε
∑
m∈Λ

∂

∂φ(m)

[
P [φ; s]

1

2a

d∑
α=1

(Gα[φ;n+ iα]−Gα[φ;n− iα])

+
1

8Ω̃ad+2

d∑
α=1

d∑
β=1

(
∂

∂φ(m+ iα − iβ)
(P [φ; s]χαβ [φ;m+ iα])

− ∂

∂φ(m+ iα + iβ)
(P [φ; s]χαβ [φ;m+ iα])

− ∂

∂φ(m− iα − iβ)
(P [φ; s]χαβ [φ;m− iα])

+
∂

∂φ(m− iα + iβ)
(P [φ; s]χαβ [φ;m− iα])

)]
+O(ε2) (173)

where

χαβ [φ;n] =

d∑
γ=1

σαγ[φ;n]σβγ[φ;n]. (174)

This expression can be written in a more compact form using the definition:(
∂α

∂

∂φ(n)

)
≡ 1

2a

(
∂

∂φ(n+ iα)
− ∂

∂φ(n− iα)

)
. (175)

Therefore, we obtain

1

ε
[P [φ; s+ 1]− P [φ; s]] =

d∑
α=1

∑
m∈Λ

(
∂α

∂

∂φ(m)

)
[−Gα[φ;m]P [φ; s]

+
1

2Ω̃ad

d∑
β=1

(
∂β

∂

∂φ(m)

)
(χαβ [φ;m]P [φ; s])

]
+O(ε). (176)

where we have used the properties:

∑
m∈Λ

∂

∂φ(m)
(∂αG[φ;m]) = −

∑
m∈Λ

(
∂α

∂

∂φ(m)

)
G[φ;m]

(
∂α

∂

∂φ(m)

)
(Q[φ]F (φ(m))) = F (φ(m))∂α

(
∂Q[φ]

∂φ(m)

) (177)

with F (λ) being a function.
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In the limit ε→ 0 and a→ 0, and defining Ω̃ = adΩ, we recover the Fokker–Planck
equation for diffusive systems:

∂tP [φ; t] =

∫
Λ

dx

d∑
α=1

(
∂α

δ

δφ(x, t)

)
[−Gα[φ; x, t]P [φ; t]

+
1

2Ω

d∑
β=1

(
∂β

δ

δφ(x, t)

)
(χα,β [φ; x, t]P [φ; t])

]
(178)

where

χα,β [φ;x, t] =

d∑
γ=1

σα,γ [φ;x, t]σβ,γ[φ; x, t] (179)

and (
∂α

δ

δφ(x)

)
= lim

a→0

1

2a

(
∂

∂φ(n+ iα)
− ∂

∂φ(n− iα)

)
(180)

where x = na. This operator has the useful property

(
∂α

δ

δφ(x, t)

)
H[φ;x, t] = ∂α

(
δ

δφ(x, t)
H[φ;x, t]

)
− δ

δφ(x, t)
(∂αH[φ;x, t]) .

(181)

Appendix B. Large deviations and Green–Kubo relations

Let us define the bulk average of an observable a[φ ;x, t] for a given time t:

a[φ; t] =
1

Λ

∫
Λ

dx a[φ;x, t]. (182)

Its time average over the time interval [0,T ] is then

aT [φ] =
1

T

∫ T

0

dt a[φ; t]. (183)

If the stochastic model is well behaved, we can apply the law of large numbers in the
sense that

a∗ ≡ 〈a[φ; 0]〉ss = lim
T→∞

aT [φ]. (184)

The probability to observe a certain value of aT [φ] = a assuming that at time t = 0 the
system is at the stationary state is given by:

P (a ;T ) =

∫
Dφ[0,T ]Pss[φ(0)]P [{φ}[0,T ]]δ(a− aT [φ]). (185)
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The large deviation principle states that for large values of T this distribution should
be very peaked around a∗. In fact, in such a limit it should be of the form:

P (a ;T ) � e−TR(a) T →∞ (186)

with

R(a∗) = 0 R′(a∗) = 0. (187)

Therefore,

lim
T→∞

T
〈
(a− a∗)2

〉
P
= R′′(a∗)−1 (188)

where 〈·〉P means the average is done with the P (a ;T ) distribution. We can now
substitute P (a,T ) for its path definition and we obtain the Green–Kubo relation:

1

2R′′(a∗)
=

∫ ∞

0

dτ 〈(a[φ; 0]− a∗)(a[φ; τ ]− a∗)〉 (189)

where now 〈·〉 is the path average defined above.
We can apply this scheme to our RD and DDmodels and obtain (for a given a[φ ;x, t])

the function R(a). As an example, let us study only an RD system with

a[φ;x, t]→ φ(x, t)

a[φ; t]→ ρ[φ; t] =
1

Λ

∫
Λ

dxφ(x, t)

aT [φ]→ ρT [φ] =
1

T

∫ T

0

dt ρ[φ; t] (190)

and P [{φ}[0,T ]] is given by equation (9). The probability of observing a given average
density over the space and a time interval T at the stationary state ρT [φ] = ρ is:

P [ρ ;T ] =

∫
Dφ[0,T ]Pss[φ(0)]

∫ c+i∞

c−i∞

dλ

2πi
exp [−ΩTR[{φ}[0,T ]]] (191)

where

R[{φ}[0,T ],λ] = 1

2T

∫ T

0

dt

∫
Λ

dx

(
∂tφ(x, t)− F [φ;x, t]

h[φ; x, t]

)2

+ λ (ρ− ρT [φ])

(192)

and we have used in equation (185) the representation of the Dirac delta by the inte-
gral on λ. We can explicitly compute P [ρ ;T ] when T →∞ because the integrals are
dominated by its minimum value over the fields and λ. That is,

P [ρ,T ] � exp[−ΩTR[{φ̃}[0,T ], λ̃]] (193)
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where φ̃ and λ̃ are solutions of

δR

δφ(y, τ)
|φ=φ̃,λ=λ̃ = 0,

∂R

∂λ
|φ=φ̃,λ=λ̃ = 0. (194)

In general, these sets of equations have many different types of solutions (see, for
instance, [32]), static and dynamic, that are local extremals of R. It is a daunting
practical task to obtain solutions and check which one is the absolute minimum for R.
Let us assume the simplest case in which the deterministic solution of the Langevin
equation is constant in space: φ∗(x, t) = ρ∗ = cte. Obviously, when ρ = ρ∗ we expect

that φ̃(x, t) = ρ∗. For values of ρ near the stationary state solution ρ∗ we can assume

by continuity that φ̃(x, t) = ρ is a solution of the equations. This ansatz is the so-called
additivity principle [33]. In this case

R[{φ̃}[0,T ], λ̃] = Λ
F [ρ]2

2h[ρ]2
≡ R[ρ]. (195)

Therefore,

R′′[ρ∗] = Λ
F ′[ρ∗]2

h[ρ∗]
(196)

and the Green–Kubo relation is

h[ρ∗]2

F ′[ρ∗]2
= 2Ω

∫
Rd

dx

∫ ∞

0

dτ 〈(φ(0, 0)− φ∗)(φ(x, τ)− φ∗)〉 (197)

in the limit Λ→∞ and assuming spatial translation invariance.
We can similarly study different observables. In the DD case the time averaged mean

current in some 1-d systems has been studied extensively [34]:

JT [φ] =
1

TΛ

∫ T

0

dt

∫
Λ

dx j(x, t). (198)

In one dimension, it is shown that the additivity principle is correct when we look for
fluctuations of the current near the stationary value, but, in general, it fails for large
current fluctuations where the solutions that minimize the functional R are much more
complex than the uniform solution. For instance, this occurs when we use periodic
boundary conditions where such solutions are soliton-like functions that move around
the system at a constant speed. Moreover, it has been shown that in two dimensions,
the KMP model [26] with a thermal gradient in one direction and periodic boundary
conditions in the other presents a solution (weak additivity principle) that is not spatially
uniform but is a better minimizer than the uniform solution even near the stationary
value [35].

Appendix C. Method of characteristics to solve Hamilton–Jacobi equations

We reproduce page 233 in Gallavotti’s book Elements of Mechanics [36]. Let S(q, t) be
a solution of the Hamilton–Jacobi equation
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H

(
∂S(q, t)

∂q
, q, t

)
+

∂S(q, t)

∂t
= 0 (199)

where H = H(p, q, t) is a given function on its arguments. Let us assume the following
differential equation:

dq

dt
=

∂H

∂p

∣∣∣∣
p= ∂S

∂q

(200)

with the initial condition q(t0) = q0. Then, we can show that if we take

p(t) =
∂S

∂q

∣∣∣∣
q=q(t)

(201)

with q(t) the solution of equation (200), the functions (q(t), p(t)) are solutions of the
Hamilton equations with Hamiltonian H(p, q, t) and initial values q(t0) = q0 and p(t0) =
∂S/∂q|q=q0. That is, each solution of the Hamilton–Jacobi equation (199) corresponds
to a Hamiltonian dynamic.

In order to show this assertion, we check that p(t) so defined is a solution of the
corresponding Hamilton equation dp/dt = −∂H/∂q:

dpi
dt

=
d

dt

(
∂S

∂qi

∣∣∣∣
q=q(t)

)
=
∑
j

∂2S

∂qi∂qj

dqj
dt

+
∂2S

∂t∂qi
(202)

but deriving the Hamilton–Jacobi equation by ∂/∂qi we find the relation:

∑
j

∂2S

∂qi∂qj

dqj
dt

+
∂H(p, q, t)

∂qi

∣∣∣∣
p= ∂S

∂q

+
∂2S

∂t∂qi
= 0 (203)

that we can use in equation (202) to obtain the desired result:

dpi
dt

= −∂H(p, q, t)

∂qi
,

dqi
dt

=
∂H(p, q, t)

∂pi
(204)

with the above-mentioned initial conditions. In the case of a time-independent Hamil-
tonian, S(q, t) = W (q)− αt, where α is a constant fixed at the initial time.

We can find S(q, t) just by studying the time behavior of S(q(t), t) with q(t) the
solution of the Hamilton equations:

dS(q(t), t)

dt
=
∑
i

∂S(q, t)

∂qi

∣∣∣∣∣
q=q(t)

dqi
dt

+
∂S(q, t)

∂t

∣∣∣∣
q=q(t)

. (205)

We perform a time integration on it and obtain:

S(q(t), t)− S(q(t0), t0) =

∫ t

t0

dτ
∑
i

pi(τ)
dqi(τ)

dτ
+

∫ t

t0

dτ
∂S(q, τ)

∂τ

∣∣∣∣
q=q(τ )

(206)
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where q((τ), p(τ)) are the solutions of the Hamilton equations with initial conditions
q(t0) = q0 and p(t0) = ∂S/∂q|q=q0. It is convenient to choose p(t0) = 0, that is, the value
of q0 = q∗ in which S(q, t0) has an extreme: ∂S/∂q|q=q∗ = 0.

Appendix D. Path integral method to obtain the correlations

Let us study the RD case as an example. In order to obtain V 0[φ] from the path
integral formalism we have to solve the evolution equations for (φ̄(x, t), π(x, t)) given
by equation (24) with boundary conditions (φ̄(x,−∞), π(x,−∞)) = (φ∗(x), 0) and
φ̄(x, 0) = φ(x). The quasipotential is obtained from equation (23) by solving the Hamil-
ton equation (22) with the RD Hamiltonian given by (12). We know that the two-body
correlation C2(x, y) is related to the second derivative of the quasipotential at the deter-
ministic stationary state (whenever V 0 is differentiable at such a point). Therefore, we

want to solve the Hamilton equations when φ̄(x, 0) = φ∗(x) + Ω−1/2ω(x). We have no
a priori guarantee that there are many paths that connect the initial condition φ∗ at
time −∞ to a small deviation from it, φ̄. Moreover, it could also be that the path that
minimizes the Lagrangian functional is one with a trajectory that travels far from the
initial point. An analytic solution for these types of situations is far from our actual
capabilities. Let us focus, then, on the simple assumption that the linearized dynamics
correctly approximate the path that connects the initial state with the final perturbed
one. As we will see, this assumption is, in practice, equivalent to the local differentiability
of the quasipotential.

Let us linearize the evolution equation (24), assuming:

φ̄(x, t) = φ∗(x) +
1√
Ω
h[φ∗ ;x]ω̄(x, t), π(x, t) =

1√
Ωh[φ∗ ;x]

η̄(x, t). (207)

Then,

∂tω̄(x, t) =

∫
Λ

dy B(x, y)ω̄(y, t) + η̄(x, t)

∂tη̄(x, t) = −
∫
Λ

dy B(y, x)η̄(y, t) (208)

where B(x, y) is defined in equation (95). The initial conditions are
(ω̄(x,−∞), η̄(x,−∞)) = (0, 0) and ω̄(x, 0) = ω(x, 0). The quasipotential is, in this
approximation, given by:

V0[φ] = V0[φ
∗] +

1

2Ω

∫ 0

−∞
dt

∫
Λ

dx η̄(x, t)2. (209)

Let us remark that the trajectory η̄(x, t) contains the boundary conditions and therefore

the ω(x) =
√
Ω(φ(x)− φ∗(x)) field.

∂tω̄ = Bω̄ + η̄

∂tη̄ = −BTη (210)
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where ε̄ and η̄ are vectors and B a matrix, and BT its transpose. The general solution
is then

η̄(t) = e−tBT

η̄0

ω̄(t) = etBa0 +

∫ t

dτ e(t−τ )B e−τBT

η̄0 (211)

where η̄0 and a0 are constant vectors to be determined. First, we assume that ω̄(0) = ω;
then,

ω = a0 + C(0)η̄0, C(t) =

∫ t

dτ e−τBe−τBT

(212)

where

η̄0 = C(0)−1(ω − a0). (213)

Now we assume that B can be diagonalized; that is, there exists a Q matrix such that
B = QDQ−1 with Dij = λiδi,j, Qij = vi(λj) where (λ, v(λ)) are the right eigenvalues and

eigenvectors of B: Bv(λ) = λv(λ), Q−1
ij = w∗

j (λi) where (λ
∗,w(λ)) are the left eigenvalues

and eigenvectors of B :BTw(λ) = λ∗w(λ) (a∗ stands for the complex conjugate of a).
Notice that the set of eigenvalues of B and BT are the same. Two useful orthogonal
properties can be derived from QQ−1 = Q−1Q = 1:

w∗(λi) · v(λj) = δi,j ,
∑
k

w∗
i (λk)vj(λk) = δi,j . (214)

Observe that if B is nonsymmetric, the set of eigenvectors may not be an orthonormal
vector base.

With all this information, we may introduce the boundary conditions to our general
solutions. First, we see that

η̄(t) = (Q−1)Te−tDQTη̄0. (215)

We know that η̄(−∞) = 0, implying that the real part of all the eigenvalues of B should
be negative:

Re(λi) < 0 ∀ i. (216)

This is a ‘stability condition’ over the dynamics and it is equivalent to requiring that
an arbitrary and small perturbation to the deterministic stationary state will relax to
it. The second condition is ω̄(−∞) = 0. Let us write the ω̄(t) solution as a function of
its eigenvalues:

ω̄ (t) = Q etDQ−1a0 +

∫ t

dτ Q e(t−τ )DQ−1
(
Q−1
)T
e−τDQTη̄0. (217)
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First, we can show that the integral term tends to zero when t→−∞ because:

(∫ t

dτ e(t−τ )DQ−1
(
Q−1
)T
e−τD

)
ij

= −

(
Q−1(Q−1)

T
)
ij

λi + λj

e−tλj (218)

and we are assuming Re(λi) < 0∀ i. On the other hand, the first term always diverges
when applied to nonzero a0 when t→∞. Therefore, a0 = 0 and the solution compatible
with the boundary conditions is:

η̄ (t) =
(
Q−1
)T
e−tDQTC(0)−1ω, ω̄ (t) = Q eDtQ−1C (t)C(0)−1ω (219)

where

C(t)ij = −
∑
ks

Qik

(
Q−1
(
Q−1
)T)

ks

(
QT
)
sj

e−(λk+λs)t

λk + λs
. (220)

Finally, the quasipotential is:

ΩV0[φ] =
1

2
ωT
(
C(0)−1

)T
ω (221)

and the two-body correlation is:

C̄ = C(0)T (222)

which in the continuum limit reproduces equation (100).
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