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Abstract. Network densification with deployments of many small base
stations (SBSs) is a key enabler technology for the fifth generation (5G)
cellular networks, and it is also clearly in conflict with one of the target
design requirements of 5G systems: a 90% reduction of the power con-
sumption. In order to address this issue, switching off a number of SBSs
in periods of low traffic demand has been standardized as an recognized
strategy to save energy. But this poses a challenging NP-complete opti-
mization problem to the system designers, which do also have to provide
the users with maxima capacity. This is a multi-objective optimization
problem that has been tackled with multi-objective evolutionary algo-
rithms (MOEAs). In particular, a problem-specific search operator with
problem-domain information has been devised so as to engineer hybrid
MOEAs. It is based on promoting solutions that activate SBSs which
may serve users with higher data rates, while also deactivating those
not serving any user at all. That is, it tries to improve the two problem
objectives simultaneously. The resulting hybrid algorithms have shown
to reach better approximations to the Pareto fronts than the canonical
algorithms over a set of nine scenarios with increasing diversity in SBSs
and users.

Keywords: Problem specific operator · Hybridization · Multi-objective
optimization · Cell switch-off problem · 5G networks

1 Introduction

The analysis of the market included in the mobility reports elaborated by Er-
iccson [7] and Cisco [4] clearly state and confirm the inexorable growth of the
mobile subscriptions worldwide, and the consequent increase in the traffic de-
mands, which will not be able to be allocated within the current operative mo-
bile network technologies, mostly the third and fourth generations. With these
predictions, both public and private initiatives started to develop the fifth gen-
eration (5G) of cellular systems more than a decade ago. The design goals for
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such networks to clearly improve upon the existing technologies were quite ambi-
tious [2, 3], aiming, among others, at 1-10Gbps connections, 1 ms latency, 1000x
bandwidth, 10-100x connections and, the one that targets this work, 90% of
energy consumption to reduce the increasing carbon footprint of this newly 5G
networks [18].

Three main paradigms are considered as the key enabler technologies for
5G [14]: use the millimeter wave (mmWave), spectrum, multi-antenna transmis-
sion (massive, collaborative MIMO) communications, and network densification.
A common fact among them is that they are clearly conflicting the design goal
of saving energy. This is specially critical in the third one, which is the target of
this work, as 5G networks require the deployment of a large number of small base
stations (SBSs), which are close to the mobile users, resulting in the so-called
ultra-dense networks (UDN) [9, 12]. Indeed, these dense deployments come with
a considerable increase in the power consumption of the system as SBSs are the
most consuming device of the network (between 50% to 80%), regardless of its
load [19]. In order to address this issue, an already standardized strategy [1] is
to switch off a subset of the SBSs in periods of low demand. This is known as the
Cell Switch-Off (CSO) problem [8], an NP-complete problem [10] whose search
space grows exponentially with the number of SBSs of the UDN. But reducing
the energy consumption may be in conflict with maintaining the network oper-
ative in terms of the capacity provided to the users, thus clearly driving to a
multi-objective optimization problem [11, 15].

The focus of this work is to use multi-objective metaheuristics (MOEAs) [5],
more concretely, to enhance the search of two MOEAs, NSGA-II [6] and MO-
Cell [17], by incorporating problem knowledge into their evolutionary loop. We
already explored this line of research in [20], where a local search operator that
turns off those SBSs that do not have users connected was proposed. This op-
erator was solely aimed at reducing the power consumption of the network, not
considering the capacity objective. As a result, the approximated Pareto fronts
reached by the hybrid MOEAs clearly explore the regions of the search space
that activate the lower number of SBSs, and also provide the User Equipments
(UEs) with the lower network capacity. The goal of this work is to introduce a
novel local search operator that improves the capacity objective as well. To do
so, it works by activating the SBSs that may potentially serve users with higher
capacities (i.e., those with larger bandwidth), if the quality of the wireless link,
measured in terms of the signal-interference plus noise ratio (SINR), falls below
a given threshold. This operator has been called FCSOn, which stands for Fem-
toCell Switch On, as these are the types of cells of our UDN modeling with the
larger operating frequency, and thus the higher available bandwidth. In order to
show its effectiveness, it has been incorporated to NSGA-II and MOCell, giv-
ing rise to its hybrid versions NSGA-IIFCSOn and MOCellFCSOn, and they have
been compared to both the canonical versions of the algorithms and the previous
devised operator [20] on a set of 9 different scenarios with increasing densifica-
tion. The results have shown that the search of these two new hybrid MOEAs
are capable of better reaching non-dominated solutions with higher capacity.
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Table 1: Model parameters for BSs and UEs
Cell Parameter LL LM LH ML MM MH HL HM HH

macro
Gtx 14
f 2 GHz (BW = 100 MHz)

m
ic

ro
1 Gtx 12

f 3.5 GHz (BW = 175 MHz)
λmicro1
P [BS/km2] 100 100 100 200 200 200 300 300 300

m
ic

ro
2 Gtx 10

f 5 GHz (BW = 250 MHz)
λmicro2
P [BS/km2] 100 100 100 200 200 200 300 300 300

p
ic

o
1 Gtx 5

f 10 GHz (BW = 500 MHz)
λpico1
P [BS/km2] 500 500 500 600 600 600 700 700 700

p
ic

o
2 Gtx 7

f 14 GHz (BW = 700 MHz)
λpico2
P [BS/km2] 500 500 500 600 600 600 700 700 700

fe
m

to
1 Gtx 4

f 28 GHz (BW = 1400 MHz)

λfemto1
P [BS/km2] 1000 1000 1000 2000 2000 2000 3000 3000 3000

fe
m

to
2 Gtx 3

f 66 GHz (BW = 3300 MHz)

λfemto2
P [BS/km2] 1000 1000 1000 2000 2000 2000 3000 3000 3000

UEs λUE
P [UE/km2] 1000 2000 3000 1000 2000 3000 1000 2000 3000

The work has been structured as follows. The next section formally describes
the model of the UDN used, as well as the formulation of the problem objectives
for both the CSO problem. Section 3 details the FSOn operator and its integra-
tion in NSGA-II and MOCell. The experimental methodology and the analysis
of the results is carried out in the Sect. 4. Finally, the main conclusions of the
work as well as the lines for future research are included in Sect. 5.

2 Problem modeling
This section first introduces the modeling of the UDN and, then, a mathematical
formulation of the CSO problem is provided.

2.1 UDN modeling

This work considers a service area of 500 × 500 square meters, which has been
discretized using a grid of 100×100 points (also called ”pixels” or area elements),
each covering a 25 m2 area, where the signal power is assumed to be constant.
Ten different regions have been defined with different propagation conditions.
In order to compute the received power at each point, Prx[dBm], the following
model has been used:

Prx[dBm] = Ptx[dBm] + PLoss[dB] (1)

where, Prx is the received power in dBm, Ptx is the transmitted power in dBm,
and PLoss are the global signal losses, which depend on the given propagation
region, and are computed as:



4 F. Luna, P. Zapata, Á. Palomares, J.F. Valenzuela

PLoss[dB] = GA+ PA (2)

where GA is the total gain of both antennas, and PA are the transmission losses
in space, computed as:

PA[dB] =

(
λ

2 · π · d

)K
(3)

where d is the Euclidean distance to the SBS, K is the exponent loss, which
ranges randomly in [2.0, 4.0] for each of the 10 different regions. The signal to
interference plus noise ratio (SINR) for User Equipment (UE) k, is:

SINRk =
Prx,j,k[mW ]∑M

i=1 Prx,i,k[mW ]− Prx,j,k[mW ] + Pn[mW ]
(4)

where Prx,j,k is the received power by UE k from SBS j, the summation is the
total received power by UE k from all the SBSs operating at the same frequency
that j, and Pn is the noise power, computed as:

Pn[dBm] = −174 + 10 · log10BWj (5)

being BWj the bandwidth of SBS j, defined as the 5% of the SBS operating
frequency (see Table 1). Finally, the capacity of the UE k is:

Cjk[bps] = BW j
k [Hz] · log2(1 + SINRk) (6)

where BW j
k corresponds to the bandwidth assigned to the UE k when connected

to the SBS j, assuming a round robin scheduling, that is:

BW j
k =

BWj

Nj
(7)

where Nj is the number of UEs connected to SBS j, assuming that UEs are
connected to the SBS with the highest SINR, regardless of its type.

Four different types of cells of decreasing size are considered (fully hetero-
geneous network): femtocells, picocells, microcells, and macrocells. Two sub-
types of femto, pico, and microcells are also defined, summing up 7 cell types
(see Table 1). The SBSs that serve these cells all have a transmitting power of
Ptx = 750mW , so their actual coverage is defined by their operating frequencies
and the consequent losses that considers the SINR (the higher the frequency,
the lower the coverage). Also, SBSs are deployed using an independent Poisson
Process (PPP) with different densities (defined by λBSP ). UEs are also positioned
using a PPP with a value of λUEP , but using social attractors (SAs), following
the procedure proposed in [16]. This deployment scheme also uses two factors α
and µβ , which indicate how strong the attraction of BSs to SAs is (same applies
for SAs to UEs). The values used in the simulations are α = µβ = 0.25.

The detailed parametrization of the addressed scenarios is included in Ta-
ble 1, in which the names in the last nine columns, XY, stand for the deployment
densities of SBSs and UEs, respectively, so that X = {L, M, H}, meaning either
low, medium, or high density deployments (λSBSP parameter of the PPP), and
Y = {L, M, H}, indicates a low, medium or high density of deployed UEs (λUEP
parameter of the PPP). The parameters Gtx and f of each type of cell refer to
the transmission gain and the operating frequency (and its available bandwidth)
of the antenna, respectively.
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2.2 The CSO problem

Let B be the set of the SBSs randomly deployed. A solution to the CSO problem
is a binary string s ∈ {0, 1}|B|, where si indicates whether SBS i is activated or
not. The first objective to be minimized is therefore computed as:

min fPower(s) =

|B|∑
i=1

si (8)

that is, the number of active SBSs in the network.
Let U be the set of the UEs also deployed as described in the section above.

In order to compute the total capacity of the system, UEs are first assigned to
the active SBS that provides the highest SINR. Let A(s) ∈ {0, 1}|U|×|B| be the
matrix where aij = 1 if sj = 1 and SBS j serves UE i with the highest SINR,
and aij = 0 otherwise. Then, the second objective to be maximized, which is the
total capacity provided to all the UEs, is calculated as:

max fCap(s) =

|U|∑
i=1

|B|∑
j=1

sj · aij ·BW j
i (9)

where BW j
i is the shared bandwidth of SBS j provided to UE i (Eq. 7). We would

like to remark that these two problem objectives are clearly in conflict with each
other, as switching off base stations, that is, minimizing the power consumption
of the network, will clearly decrease its capacity because the available bandwidth
to serve users is reduced.

3 Hybrid MOEAs: The FCSOn Operator

This section details, firstly, the solution representation used to address the CSO
and the genetic operators of the two MOEAs. Secondly, a description of the
FCSOn operator is provided, followed by the contributions of this work. Finally,
a brief description of NSGA-II and MOCell and how they integrate the operator
within its evolutionary cycle is given.

3.1 Representation and genetic operators

The representation used for the candidate solutions is the canonical binary string,
in which each gene corresponds to a SBS, and indicates whether it is on (’1’)
or off (’0’). The selection, crossover and mutation operators are, respectively,
binary tournament, two-point crossover with rc = 0.9, and flip bit mutation with
rm = 1/L, where L is the number of SBSs of the UDN. The stopping condition
is to reach 100000 evaluations of the objective functions. All the algorithms used
in this work have been implemented in the jMetal framework3.

3.2 The FCSOn operator

As stated in the introduction section, this is a capacity-based operator as it
aims at increasing the capacity the UDN provides to the UEs by switching on
femtocells that may act as serving cells. Recall that this type of cells are those
with the higher available bandwidth (they have the higher operating frequency)

3 https://github.com/jMetal/
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when users are rather close to them. We assume this closeness to be enough when
the SINR received by the UE u from the a femtocell f is greater than 1 dB. If this
holds, then the f is switched on as is could be a potential candidate to serve u
with higher capacity. If the current cell that serves u has no more users connected,
then it is switched off. The FCSOn operator builds upon the CSO operator
presented in [20], which deactivates those cells not having any UE connected.
Whereas the CSO operator clearly targets only the power consumption objective,
the FCSOn operator also aims at improving the capacity. Algorithm 1 sketches
the pseudocode of the operator.

3.3 Hybrid algorithms NSGA-IIFCSOn y MOCellFCSOn

This section first outlines the template of a generic MOEA (Algorithm 2), to fur-
ther describe the canonical versions of NSGA-II and MOCell afterwards. Then,
based upon this template, the modifications required to include the FCSOn op-
erator are detailed.

The NSGA-II algorithm (Non-dominated Sorting Genetic Algorithm II ) [6]
is a genetic algorithm that works by generating, from a population Pt, another
auxiliary population Qt using the genetic operators of selection, crossover and
mutation (line 8 of the Algorithm 2); then, the solutions included in Pt ∪ Qt
are ordered according to their rank and, those with the best (lowest) values of
this quality indicator, are passed on to the next generation Pt+1 (line 11). For
selecting among solutions with the same range, NSGA-II uses a density estimator
that promotes solutions from the less populated areas of the approximated front.

MOCell (Multi-Objective Cellular Genetic Algorithm) is a cellular genetic
algorithm [17] that includes an external file to store the non-dominated solu-
tions found during the search (line 4 in Algorithm 2). This archive is bounded
and uses the same density estimator of NSGA-II to maintain the diversity of
solutions along the approximated Pareto front. Its major contributions lies in
the neighborhood relationship between solutions, as the population is structured
in a 2D toroidal mesh, defining a set of neigboring solutions that is used in the
evolutionary cycle.

Algorithm 1 Pseudocode of the FCSOn operator

1: U ← GetUsersNotServedByFemtoCell()
2: for u in U do
3: current ← GetServingCell(u)
4: C ← GetFemtoCellsWithHigherSINR(u)
5: for c in C do
6: if SINR(u,c) > 1 dB then
7: Activate(c)
8: SetServingCell(u,c)
9: end if

10: end for
11: end for
12: ApplyCSOOperator() //see [20] for the details
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Algorithm 2 Template of a multi-objective metaheuristics

1: S(0)← GenerateInitialPopulation()
2: A(0)← ∅
3: Evaluate(S)
4: A(0)← Update(A(0), S(0))
5: t← 0
6: while not StoppingCondition( ) do
7: t← t+ 1
8: S(t) ← GeneticOperators(A(t− 1), S(t− 1))
9: Evaluate(S′(t))

10: A(t) ← Update(A(t), S′(t))
11: end while
12: Output: A

Algorithm 3 NSGA-IIFCSOn and MOCellFCSOn

8: S(t) ← GeneticOperators(A(t− 1), S(t− 1))
9: r ← Random(0, 1)

10: if r < rFCSOn then
11: S′(t) ← FCSOn(S(t))
12: end if
13: Evaluate(S′(t))
14: A(t) ← Update(A(t), S′(t))

The FCSOn operator has been integrated within the NSGA-II and MOCell
evolutionary cycle by replacing Algorithm 2 lines 8 to 10 with those of the Algo-
rithm 3. Right after applying genetic operators, and before evaluating to deter-
mine whether or not to incorporate them into the next generation of algorithm
solutions, the local search is applied with a given rate, rFCSOn.

4 Experimentation

This section describes the methodology used to conduct the experiments,
showing the effectiveness of the new hybrid proposals, NSGA-IIFCSOn and
MOCellFCSOn, as well as the analysis of the obtained results.

4.1 Methodology

Since metaheuristics are stochastic algorithms, 30 independent runs of each al-
gorithm for each of the nine scenarios have been performed. Each run addresses
a random instance of the problem, but the same 30 seeds are used to ensure that
all algorithms tackle the same set of instances. Two indicators have been used to
measure the quality of the approaches to the Pareto front achieved by the four
algorithms: the hypervolume (HV) [21] and the attainment surfaces [13].

The HV is considered as one of the more suitable indicators in the multi-
objective community. Higher values of this metric are better. Since this indicator
is not free from an arbitrary scaling of the objectives, we have built up a reference
Pareto front (RPF) for each problem composed of all the nondominated solutions
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found for each problem instance by all the algorithms. Then, the RPF is used
to normalize each approximation prior to compute the HV value. While the
HV allows one to numerically compare different algorithms, from the point of
view of a decision maker, it gives no information about the shape of the front.
The empirical attainment function (EAF) [13] has been defined to do so. EAF
graphically displays the expected performance and its variability over multiple
runs of a multi-objective algorithm.

4.2 Results of the HV indicator
This section first starts by analyzing the effect of the hybridization of NSGA-II
and MOCell with the FCSOn operator in the HV indicator. To do so, taking the
base setting for the two algorithms described in Sect. 3.1, two different values for
rFCSOn have been evaluated: 0.01 and 0.1, the same as in our previous work [20].
This value is superscripted to NSGA-IIFCSOn and MOCellFCSOn for a better
identification in Table 2, which includes the average HV values and its standard
deviation for both the canonical algorithms and their hybrid versions. A grey
coloured background has been used to highlight the best (highest) value for each
algorithm.

The first clear conclusion drawn from the results is that the hybrid algorithms
are always reaching approximated fronts with higher (better) HV values (no
row for the NSGA-II and MOCell columns are highlighted). This means that
the problem-domain information included in the algorithms has improved the
search performance. The second conclusion is that, as long as the scenarios gain
in density, the gap between the HV value of the canonical algorithm and the
hybrid versions increases, thus resulting to approximated Pareto fronts with
lower power consumption and higher capacity. Indeed, averaging over all the LX,
MX, and HX scenarios results in a HV gap of 0.02, 0.09 and 0.16, respectively.
Figure 1 displays the statistical analysis of the results. It shows that differences
become statistically significant with the size of the instances gets larger.

Table 2: HV results for all algorithms over the 9 scenarios

NSGA-II NSGA-II0.01FCSOn NSGA-II0.1FCSOn MOCell MOCell0.01FCSOn MOCell0.1FCSOn

LL
0.3327 0.3678 0.3653 0.3413 0.3553 0.3663
±0.0766 ±0.1041 ±0.0990 ±0.0849 ±0.0852 ±0.1008

LM
0.3702 0.4081 0.4084 0.3596 0.3848 0.3945
±0.1064 ±0.1171 ±0.1218 ±0.1015 ±0.1100 ±0.1137

LH
0.4229 0.4642 0.4483 0.4032 0.4263 0.4349
±0.1463 ±0.1496 ±0.1534 ±0.1305 ±0.1457 ±0.1304

ML
0.2541 0.3345 0.3349 0.2677 0.3086 0.3223
±0.0635 ±0.1008 ±0.0989 ±0.0698 ±0.0789 ±0.0909

MM
0.1827 0.3243 0.3211 0.1747 0.2920 0.2953
±0.0949 ±0.1507 ±0.1414 ±0.0934 ±0.1344 ±0.1368

MH
0.2729 0.3721 0.3705 0.2661 0.3411 0.3438
±0.1156 ±0.1633 ±0.1664 ±0.1147 ±0.1500 ±0.1487

HL
0.1527 0.3690 0.3857 0.2497 0.3653 0.3715
±0.0616 ±0.0950 ±0.0921 ±0.0663 ±0.0867 ±0.0922

HM
0.0968 0.3357 0.3536 0.1930 0.3315 0.3315
±0.0676 ±0.1129 ±0.1088 ±0.0795 ±0.1025 ±0.1041

HH
0.1349 0.3302 0.3329 0.2116 0.3278 0.3203
±0.0642 ±0.1219 ±0.1210 ±0.0800 ±0.1089 ±0.1022
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Fig. 1: Statistical analysis of the HV results for each of the 9 scenarios.
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Fig. 2: Attaiment surfaces of NSGA-II and NSGA-IIFCSOn (top), and MOCell
and MOCellFCSon (bottom), for the three scenarios with a lower SBS density.

As to the effect of the application rate of the FCSOn operator, rFCSOn, it
can be observed that, in general (12 out of the 18 cases), the setting with 0.1
has obtained higher HV values. This is a very promising finding, as it opens a
research line to further enhance the search capabilities of the MOEAs for this
problem by promoting the use of the smallest SBSs of the network, which are not
only the more numerous, but also the ones that provide the higher bandwidth.
They are those that also consume the lower power consumption.

Finally, and as it consistently occurred with the search operator devised in
our previous paper, it can also be seen that NSGA-II has better integrated the
newly generated genetic material within the search than MOCell, because in the
initial study on this problem [15], NSGA-II was outperformed by MOCell, and
now the situation with the hybrid version has been reversed, that is, NSGA-
IIFCSOn has always obtained a higher HV value (except for the LL instance).

4.3 Attainment surfaces

In order to graphically show the actual differences of the approximated Pareto
fronts reached by the hybrid algorithms that uses the FCSOn operator, Figs.
2, 3, and 4 includes the 50%-attainment surfaces of the algorithms for the LX,
MX and HX scenarios, respectively. The figures have been arranged in two rows,
with the surfaces of NSGA-II at the top, and those of MOCell at the bottom.
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Fig. 3: Attaiment surfaces of NSGA-II and NSGA-IIFCSOn (top), and MOCell
and MOCellFCSon (bottom), for the three scenarios with a medium SBS density.
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Fig. 4: Attaiment surfaces of NSGA-II and NSGA-IIFCSOn (top), and MOCell
and MOCellFCSon (bottom), for the three scenarios with a high SBS density.

The figures not only display the attainment surfaces of the canonical algorithms
and the FCSOn-based hybrid versions of the algorithms, but also that of the
CSO operator obtained in [20].

A first common, clear fact in all figures is that the CSO-based hybrid has
always explored better the region of the search space with a smaller number
of active SBSs (lower consumption), that is, the left-hand side of the displayed
graphics. But this is expected, because the CSO operator has been devised only
targeting this problem objective (recall, it is based on switching off SBSs not
serving any UE). The second conclusion is that the median approximated fronts
of the FCSOn-based hybrids always dominate those of the canonical algorithms,
and improving upon the two objectives (not only in the power consumption, as
the CSO-base one does), thus also reaching solutions with higher capacity. This
is specially relevant in the LL, LH, and HL scenarios.
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This visual inspection of the median approximated fronts clearly shows that
the initial working hypothesis of developing an capacity-based operator that also
accounts for the capacity objective has been achieved. Our goal of promoting the
activation of close, high bandwidth femtocells has enabled the hybrid algorithms
to explore a complex region of the search space. It is complex because increasing
the capacity is not an easy task as it requires to minimize interferences (to
increase the SINR), which is done by deactivating SBSs. That is, the FCSOn
operator has reached a proper balance between activation and deactivation of
SBSs. Indeed, we would also like to remark the newly proposed FCSOn operator
has been able to improve the energy consumption objective, activating an smaller
number of SBSs than the canonical algorithms do.

5 Conclusions

This work has addressed the Cell-Switch Off problem in ultra-dense network
deployments required for the fifth generation of telecommunication systems. It
has been formulated as a multi-objective optimization problem with two con-
flicting objectives: minimizing the power consumption measured in terms of the
number of active base stations, and maximizing the capacity provided to the
end users (GBps in downlink). In this context, a new capacity-enhanced local
search operator aiming at promoting the association of users to femtocells, called
FCSOn, is devised. The rational behind this problem-specific knowledge is that
this type of cells are those that provide the higher bandwidth (higher capacity).
The FCSOon operator is built upon a previous operator that also deactivates
all the cells with no users assigned, thus also targeting a reduction of the power
consumption. The integration within NSGA-II and MOCell has resulted in an
enhanced exploration of the search space that has reached solutions that improve
the two problem objectives. It has been shown both numerically, by using the
HV indicator and, graphically and more clearly, with the attainment surfaces.
As future work we plan to better characterize this operator, measuring the im-
pact of the threshold it requires (set to 1 dB), and also to devise other operators
that keep improving the search of multi-objective metaheuristics. Evaluating the
impact of the operator in other MOEAs will also be considered.
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12 F. Luna, P. Zapata, Á. Palomares, J.F. Valenzuela

2. Andrews, J.G., Buzzi, S., Choi, W., Hanly, S.V., Lozano, A., Soong, A.C.K., Zhang,
J.C.: What Will 5G Be? IEEE J. on Sel. Areas in Comm. 32(6), 1065–1082 (2014)

3. Bohli, A., Bouallegue, R.: How to meet increased capacities by future green 5g
networks: A survey. IEEE Access 7, 42220–42237 (2019)

4. Cisco: Global mobile data traffic forecast update, 20172022 white pa-
per. https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-
networking-index-vni/white-paper-c11-738429.html (2019), accessed June 8, 2019

5. Coello Coello, C.A., Lamont, G.B., Van Veldhuizen, D.A.: Evolutionary Algorithms
for Solving Multi-Objective Problems. Springer, New York (2007)

6. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Trans. on Ev. Comp. 6(2), 182 – 197 (2002)

7. Ericsson: Ericsson mobility report. https://www.ericsson.com/en/mobility-
report/reports/q4-update-2018 (2018), accessed June 8, 2019

8. Feng, M., Mao, S., Jiang, T.: Base station on-off switching in 5g wireless networks:
Approaches and challenges. IEEE Wireless Communications 24(4), 46–54 (2017)

9. Ge, X., Tu, S., Mao, G., Wang, C.X., Han, T.: 5G Ultra-Dense Cellular Networks.
IEEE Wireless Communications 23(1), 72–79 (feb 2016)

10. Gonzalez, D., et al.: A Novel Multiobjective Cell Switch-Off Framework for Cellular
Networks. IEEE Access 4, 7883–7898 (2016)
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