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drought regions.

• DIs were better predictors of soybean
yield variability than CIs.
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DIs in explaining the variability of soy-
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Site-specific studies are required to identify suitable drought indices (DIs) for assessing and predicting drought-
related impacts. This study presents a benchmark of eight DIs and 19 large-scale climate indices (CIs) to monitor
agricultural drought in Argentina. First, the link between the CIs and DIs was investigated at the departmental-
administrative level and at different temporal scales. Then, the effectiveness of the DIs in explaining the variabil-
ity of crop yields, understood as impacts of agricultural droughts, was evaluated using statistical regression
models. Soybeans were used as the reference crop. Additionally, the performances of DIs and CIs in explaining
the variability of crop yields were compared. The CIs located in the Pacific Ocean (El Niño 3.4 and El Niño
4) were found to have the best correlations with the DIs (R values up to 0.49). These relationships were stronger
with longer temporal aggregations and during the wet and hot seasons (summer), showing a significant role in
the triggering of droughts inArgentina. TheDIs that best corelatedwith CIswere those that included temperature
in their calculations (STCI, SVHI, and SPEI). The impacts of droughts on soybean productionwere better explained
using DIs than with CIs (up to 89% vs 8% of variability explained) as predictors of the statistical models. SVHI-6
and SPEI-6, depending on the area of interest, were, during the phenological period of crop growth (summer),
the most effective DIs in explaining annual variations in soybean yields. The results may be of interest in water
resourcemanagement, drought riskmanagement, and the Argentinean soybean production sector. Furthermore,
they provide a foundation for future studies aimed at forecasting agricultural droughts and their impacts.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Drought is a natural stochastic hazard that causes substantial socio-
economic and environmental losses worldwide (Golnaraghi et al.,
2014). It is a complexphenomenon, usually initiatedwhen precipitation
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presents with volumes below normal in a particular place (meteorolog-
ical drought). Such anomalies go on to affect agriculture and hydrology
(agricultural and hydrological drought, respectively), an issue reviewed
in Mishra and Singh (2010). To date, several drought indices (DIs) have
been developedwith the intention of characterising andmonitoring the
phenomenon (World Meteorological Organization and Global Water
Partnership, 2016; Zargar et al., 2011). These include the Standardised
Precipitation Index (SPI; McKee et al., 1993) and the Standardised Precip-
itation Evapotranspiration Index (SPEI; Vicente-Serrano et al., 2010) for
meteorological droughts, the Vegetation Condition Index (VCI) and the
Vegetation Health Index (VHI; Kogan, 1995) for agricultural droughts,
the Standardised Streamflow Index (SSI; Hao and AghaKouchak, 2013),
plus the Palmer Hydrological Severity Index (PHSI; Palmer, 1965; Zargar
et al., 2011) for hydrological droughts. Each DI has advantages and disad-
vantages, which have been discussed in previous studies (Keyantash and
Dracup, 2002; Mishra and Singh, 2010).

Since the introduction of the concept of a drought timescale by
McKee et al. (1993), DIs have been used to quantify drought events in
each component of the terrestrial water cycle (e.g. precipitation, soil
moisture, and groundwater). In turn, these DIs can be associated with
certain water uses (e.g. agriculture and electric generation) (Guttman,
1998). Agricultural activity, on which food security and much of the
global economy depends, has increased significantly in recent years
due to the growing demand for food by an increasing population
(Tester and Langridge, 2010). However, growth in farming has not
been linear in time, as annual variations have been characterised by sig-
nificant decreases in production. Although crop yields can be affected by
a variety of factors, including wars, social crises, and plagues, drought is
a key factor in yield variability, especially for rainfed crops (Leng and
Hall, 2019; Lobell et al., 2011a, 2011b; Zampieri et al., 2017). Several
studies have successfully correlated DIs with variability in crop yields
worldwide (Araneda-Cabrera et al., 2021; García-León et al., 2019;
Peña-Gallardo et al., 2019a; Quiring and Papakryiakou, 2003; Vicente-
serrano et al., 2012). Generally, these relationships are assessed using sta-
tistical models (Shi et al., 2013). DIs can thus be used as predictors of crop
yields in suchmodels andmay explain the impact of agricultural drought.

Drought variability can be linked to large-scale climate oscillations
(Hassan and Nayak, 2020; Singh, 2012), which are quantified by cli-
matic indices (CIs) that rely on sea surface temperature (SST) and sea
pressure level (SPL). Some well-known CIs based on SST are the ENSO
indices (in the Pacific Ocean: The El Niño 3.4, for instance), the
Caribbean Index (CAR; in the Caribbean Sea), and the south-eastern
tropical Indian Ocean (SETIO; in the Atlantic Ocean). On the other
hand, CIs based on SPL include Darwin and Tahiti (in the Pacific
Ocean) and North Atlantic Oscillation (NAO; in the Atlantic Ocean) in
the Atlantic Ocean. Several studies have linked climate indices to DIs
(Huang et al., 2016; Manatsa et al., 2008; Oñate-Valdivieso et al.,
2020; Santos et al., 2019). Other studies have used climate indices to
forecast droughts (Dutra et al., 2013; Tan and Perkowski, 2015).

Because variability in crop yields can be related to DIs, which in turn
can be linked to CIs, some studies have directly connected crop yield
variability with CIs (Anderson et al., 2017; Iizumi et al., 2014; Leng
and Hall, 2019; Wang et al., 2020). Correlations between crop yields
and CIs are usually lower than those with DIs, although no research
which specifically addresses and supports this assertion currently exists.
For instance, in the United States, Anderson et al. (2017) found correla-
tions between soybean yield and theOceanic Niño Index (ONI) of up to r
= 0.30, while Peña-Gallardo et al. (2019b) highlighted correlations be-
tween the same crop yield and the SPEI of as much as r = 0.70.

There is no single DI that can explain variability in crop yields
(i.e., drought-related impacts on agricultural production). Similarly,
there is no single CI (teleconnection) that can represent all climate var-
iability and can thus be used to predict drought conditions over large re-
gions (Stenseth et al., 2003). This is due to the very large differences in
environmental physical factors (climate, soil composition, topography,
etc.) that make both climate and crop development respond differently
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in each location. Hence, the present study compares the performance of
eight DIs and 19 CIs to determine which are the most appropriate for
use in agricultural drought monitoring throughout Argentina.

Argentina has the highest per capita crop production in the world
(FAO, 2019) and is also the third largest soybean producer (Food and
Agriculture Organization, FAO; http://faostat.fao.org). The country has
substantial annual and inter-annual climate variability (Barros and
Silvestri, 2002), and the likelihood of soybean yield reduction due to
droughts ranges from 70 to 81% (when experiencing moderate to ex-
ceptional droughts, respectively) (Leng and Hall, 2019). In Argentina,
DIs have been related to crop variability (e.g. D'Ambrosio et al., 2013;
Seiler et al., 2007) and to CIs (e.g. Díaz et al., 2018; Rivera et al., 2018;
Vicario et al., 2015) for specific regions, such as certain provinces or
river basins. Similarly, relationships have been established between
some crop yields and CIs, but only for specific regions (e.g. Anderson
et al., 2017; Iizumi et al., 2014; Podestá et al., 1999). However, to the
best of the authors' knowledge, there are no studies that benchmark dif-
ferent DIs and large-scale CIs for explaining agricultural drought and as-
sociated crop variability.

The goals of this study are: a) to determine which climate index (or
indices) is best associatedwith droughts andwithwhichdrought index;
b) to establish a drought index (or a set of indices) that can explain the
annual variability in crop yield using soybeans as a benchmark crop;
and c) to compare drought and climate indices as predictors of crop
yield variability through three statistical models. The study was con-
ducted throughout the country at the level of administrative depart-
ments. The ultimate aim is to support decision makers, farmers, and
agricultural droughtmanagers in Argentina. However, themethodology
can be applied to other countries or regions and at any spatial scale.

2. Materials and methods

2.1. Study area

Continental Argentina was defined as the case study (Fig. 1a). It
covers 2,791,810 km2 and is divided into five main administrative re-
gions according to the National Institute of Statistics and Censuses
Argentine Republic (Spanish acronym INDEC: www.indec.gob.ar), 24
provinces (including the Autonomous City of Buenos Aires as a prov-
ince), and 525 departments (m number of departments) (Fig. 1b).
Due to its extensive area, the country sees wide climatic diversity,
from arid (south and centre-north) to fully humid (northeast) (Beck
et al., 2018; Kottek et al., 2006). However, 55% of the country has dry-
lands (Cherlet et al., 2018). Argentina is one of the major worldwide
producers of cereals (FAO, 2017), which are cultivated largely in the
Argentine Pampas. The departmental average annual precipitation
varies between 70 and 1880mmper year and, the average annual tem-
perature ranges from 2 to 23 °C. Both precipitation and temperature
increase from east towest and from south to north. The spring and sum-
mer seasons are the most humid, while autumn and winter are the
coldest and driest. The value of Argentina's cereal production was
$10.2 billion in 2013, representing 8.3% of its GDP (FAO, 2017). The
country is vulnerable to several natural phenomena (earthquakes,
floods, etc.); however, droughts represent the greatest risk for agricul-
tural losses (Cherlet et al., 2018). Argentina's agricultural year is defined
as July to June (https://www.argentina.gob.ar/agricultura-ganaderia-y-
pesca), while the hydrological year varies across the country according
to regional precipitation patterns. At the national level, the precipitation
data used in this study (see Section 2.2) show that the driest month is
June; therefore, in this study, the hydrological year was taken to coin-
cide with the agricultural year.

2.2. Drought indices

Various indices based on meteorological, vegetation condition, and
hydrological variables were calculated for each department on a

http://faostat.fao.org
http://www.indec.gob.ar
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Fig. 1. Location of a) Argentina; b) regional, providence and department divisions; and c) departments with soybean production.
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monthly scale: SPI, SPEI, SSI, SPDSI, SVCI, STCI, SVHI, and STWSI. Each
index, together with its data source, is briefly described, as follows:

The Standardised Precipitation Index (SPI) is one of the best-known
DIs and is recommended by the World Meteorological Organization
(WMO). It was introduced by McKee et al. (1993). It is based on
transforming precipitation into a normal function (x ¼ 0 and σ =
1) bymeans of a probability distribution function of two gammaparam-
eters. It is very versatile because it can be calculated for any time scale n.
The detailed procedure for its computation can be found in Kumar et al.
(2009). Monthly precipitation data were downloaded from the
TerraClimate database (Abatzoglou et al., 2018) at http://www.
climatologylab.org/terraclimate.html at a spatial resolution of 1/24°
(≈4 km at the equator) and were averaged for each department before
calculating the SPI.

The Standardised Precipitation and Evapotranspiration Index (SPEI)
was introduced by Vicente-Serrano et al. (2010). It is similar to the SPI,
but is computed by standardising thewater deficit (D=Precipitation−
Evapotranspiration). Here, D is fitted to a three-parameter log-logistic
function: precipitation and potential evapotranspiration series data
were downloaded from the TerraClimate database and calculated for
each department from the average prior to the computation of the SPEI.

The Standardised Soil Moisture Index (SSI) (Hao and AghaKouchak,
2014) is based on the standardisation of soil moisture following the
mathematical steps of the SPI. Here, we used soil moisture obtained
from the Climate Change Initiative (CCI) program of the European
Space Agency (ESA) at https://www.esa-soilmoisture-cci.org, version
v04.7, at a 0.25° spatial grid (Dorigo et al., 2017). These datawere down-
scaled to the departmental level using a bilinear resampling of their
centroids.

The Standardised Vegetation Condition Index (SVCI), Standardised
Temperature Condition Index (STCI), and Standardised Vegetation
Health Index (SVHI) (Agutu et al., 2017) were calculated following the
standardisation procedure of the SPI to the VCI, TCI, and VHI time series,
as defined by Kogan (1995). These data were downloaded from the
Center for Satellite Applications and Research (STAR) and the Environ-
mental Satellites for the U.S. Oceanic and Atmospheric Administration
3

(NOAA) at https://www.star.nesdis.noaa.gov/smcd/emb/vci/VH/vh_
ftp.php. Datasets consist of 7-day value composites at 8 km resolution
that were averaged to monthly and departmental scales before being
standardised.

The Standardised Palmer Drought Severity Index (SPDSI) (Ma et al.,
2014) is the result of standardising thewidely-used drought index PDSI
(Palmer, 1965). The PDSI was downloaded from the TerraClimate data-
base and averaged at the departmental scale. Then, the time series were
processed according to the SPEI computing steps.

The Standardised Total Water Storage Index (STWSI) (Agutu et al.,
2017) was computed using the SPEI procedure. Instead of D, the input
is the total water storage anomaly (TWS) – surface water and ground-
water – derived from the Gravity Recovery and Climate Experiment
(GRACE) developedby theNational Aeronautics and SpaceAdministration
(NASA) and theGermanAerospace Centre (Landerer and Swenson, 2012).
In this study, we used data (level water thickness in cm) provided by the
Jet Propulsion Laboratory (JPL) as part of the GRACE Follow On mission
JPL RL06_v02 (Landerer et al., 2020) at https://podaac.jpl.nasa.gov/
dataset/TELLUS_GRAC-GRFO_MASCON_CRI_GRID_RL06_V2. Because the
data are represented on a 0.5° grid, the time series were downscaled to
the departmental scale using bilinear resampling towards their centroids
prior to the standardisation procedure.

The datasets used in this study have been validated and used suc-
cessfully in other drought-related studies (Araneda-Cabrera et al.,
2020; Rojas et al., 2011; Thomas et al., 2014; Wang et al., 2019). The
TerraClimate database offers data from January 1958; however, only
the data since August 1981 were downloaded, so as to have the same
time span as that offered by NOAA STAR. GRACE began its mission in
April 2002; thus, we have data from that date. All variables were ob-
tained up to December 2019. The DIs were calculated for seasonal and
annual time scales (n) of 3, 6, and 12months, since crop data that reflect
agricultural droughts have sub-annual cycles (cf Section 2.4, below). Be-
cause of the aggregation of n months as part of the computation of the
DIs, the time length of the DIs is n months less than their primary vari-
ables. Therefore, the final common timespan covered by the DIs was
from August 1982 and April 2003 (STWSI) to December 2019. Some

http://www.climatologylab.org/terraclimate.html
http://www.climatologylab.org/terraclimate.html
https://www.esa-soilmoisture-cci.org
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https://podaac.jpl.nasa.gov/dataset/TELLUS_GRAC-GRFO_MASCON_CRI_GRID_RL06_V2
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datawasmissing for certainmonths due to technical problems (VCI, TCI,
VHI, and TWS), and here a linear interpolation method was adopted to
complete the data based on the neighbouring months. This method is
effective and widely-used for handling missing data (Noor et al.,
2015). As previously noted, the VCI, TCI, VHI, PDSI, and TWS variables
were standardised according to the recommendations proposed for
the calculation of the SPI and SPEI. In this way, all DI values could be
interpreted in the same, with values below −0.5 indicating droughts
with variable intensities (McKee et al., 1993).

2.3. Large-scale climatic indices

A wide variety of climate indices were considered in this study.
These are based on the SST from the Atlantic (TNA, TSA, NAT, SAT, and
TASI), Pacific (ENSO indices ERSSTv5: Niño 1 + 2, Niño 3, Niño 4,
Niño3.4, and PDO), and Indian (SWIO, WTIO, SETIO, and DMI) Oceans,
and SPL from various locations across the world (Darwin, Tahiti, SOI,
and NAO). Additionally, we used the CAR associated with the SST from
the Caribbean Sea. Thus, we used a total of 19 monthly aggregated cli-
mate indices that can be freely obtained in near real-time, the details
of which are shown in Table 1. For this study, we downloaded the cli-
mate indices for the same time span as for the Dis, from August 1981
and April 2002 (STWSI) to December 2019. To establish consistency in
the DIs, 3-, 6-, and 12-month running means were applied to the CIs.

2.4. Crop yield data

Annual crop yields at the departmental level were obtained from
the Ministry of Agriculture, Livestock, and Fisheries of Argentina
(Ministerio de Agricultura, Ganadería y Pesca de Argentina) at
https://datos.agroindustria.gob.ar/dataset/estimaciones-agricolas.
This database includes the sowed area, harvested area, and total
production of 30 different crops from 1961 to 2019. Each year was
measured from July to June (agricultural year). Soybeans were cho-
sen as a representative rainfed crop because since 2000 it has been
the cereal with the highest growth both in farmed areas and total
production in the country. It is the most important crop in
Argentina (Anderson et al., 2017; FAO, 2016; Leng and Hall, 2019;
Magrin et al., 2005). The annual soybean yield (kg/Ha) was calcu-
lated by dividing production by the sowed area. All departments
showing continuous series over time were considered, representing
a total of 193 soybean-producing departments (Fig. 1c), where the
annual yield data timespan was 16 years, from July 2004 to June
Table 1
Selected climatic indices and their free sources.

Variable/data set Period
available

Darwin Sea Level Pressure (Darwin SLP)a Jan 1882
Tahiti Sea Level Pressure (Tahiti SLP)a Jan 1882
Southern Oscillation Index (SOI)b Jan 1866
ENSO indices (ERSSTv5): El Niño 1 + 2, El Niño 3, El Niño 4, and El Niño 3.4a Jan 1950
Pacific Decadal Oscillation (PDO)b Jan 1948–
Caribbean Index (CAR)b Jan 1950
South Western Indian Ocean (SWIO) Nov 1981
Western Tropical Indian Ocean (WTIO)b Jan 1870
Southeastern Tropical Indian Ocean (SETIO)b Jan 1870
Indian Ocean Dipole Mode Index (DMI)b Jan 1870
Tropical Northern Atlantic Index (TNA)b Jan 1948
Tropical Southern Atlantic Index (TSA)b Jan 1948
North Atlantic Tropical (NAT)c Nov 1981
South Atlantic Tropical (SAT)c Nov 1981
Tropical Atlantic (TASI)c Nov 1981
North Atlantic Oscillation (NAO)b Jan 1950

“a”; “b”; “c”; “d” specifies Source.
a Climate Prediction Center of NOAA.
b Physical Sciences Laboratory of NOAA.
c Ocean Observations Panels for Climate.
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2019 (Fig. 2). In the case of soybeans, sowing is carried out from
October to December, and harvesting from April to June. Notably,
lower median and mean soybean yields were obtained in 2009 and
2018, years affected by significant drought episodes (EM-DAT,
2019).

Because crop yields are affected by factors other than climate, in-
cluding agricultural innovations, technological improvements in sowing
practices, and seed selection, crop yields generally have a positive trend
(Peña-Gallardo et al., 2019b; Tian et al., 2018). This is also evident in
Argentina; therefore, the yield serieswere detrended to remove the var-
iability in productivity caused by non-climate factors using a linear re-
gression model adjusted to the soybean yield series of each
department. The average crop yield of each series was added to the re-
sidualmodel series to produce non-trend yield data in Kg/Ha (hereafter
Y) following the procedure explained in detail in Lobell et al. (2011b)
and used in other studies (e.g. Tian et al., 2018).

2.5. Relationship between drought indices and climatic indices

Pearson correlations (r) were calculated between CIs and DIs aggre-
gated for 12 months at the departmental level throughout the country.
Because the sign of the correlations is important (positive or negative
indicate in-phase or anti-phase relation), r values were used instead of
other metrics as the coefficient of determination (R2). Then, a seasonal
analysis was also performed with DIs and a selected number of CIs (in
the previous step) with 6-month aggregations (for summer: March,
for autumn: June, for winter: August, and for spring: December). Sea-
sonal computing was performed for the entire country (m= 525) and
for all soybean producing departments (m = 193). In the latter, we
prioritised the summer analysis because this is the sowing and growing
period for soybeans. The STWSI, with a shorter data length, may show
better correlations with the CIs than the other DIs; thus, statistical sig-
nificance will be a determining factor in the comparison of results.

2.6. Statistical crop yield models

To compare DIs as explanations for the variability of crop yields, we
trained three statisticalmodels (Lobell and Burke, 2010; Shi et al., 2013)
over the 193 soybean producing departments: time-series, panel, and
cross-section models. In all three cases, we assumed Y (in each depart-
ment) was the response of a function of k independent variables X,
which, in this context, are the DIs as possible predictors.
Data availability

–now http://cpc.ncep.noaa.gov/data/indices/darwin
–now http://cpc.ncep.noaa.gov/data/indices/tahiti
–now https://psl.noaa.gov/gcos_wgsp/Timeseries/SOI/
–now https://cpc.ncep.noaa.gov/data/indices/ersst5.nino.mth.81-10.ascii
Dec 2018 https://psl.noaa.gov/data/correlation/pdo.data
–now https://psl.noaa.gov/data/correlation/CAR_ersst.data
–now https://stateoftheocean.osmc.noaa.gov/sur/ind/swio.php
–now https://psl.noaa.gov/gcos_wgsp/Timeseries/Data/dmiwest.had.long.data
–now https://psl.noaa.gov/gcos_wgsp/Timeseries/Data/dmieast.had.long.data
–now https://psl.noaa.gov/gcos_wgsp/Timeseries/Data/dmi.had.long.data
–now https://psl.noaa.gov/data/correlation/tna.data
–now https://psl.noaa.gov/data/correlation/tsa.data
–now https://stateoftheocean.osmc.noaa.gov/sur/atl/nat.php
–now https://stateoftheocean.osmc.noaa.gov/sur/atl/sat.php
–now https://stateoftheocean.osmc.noaa.gov/sur/atl/tasi.php
–now https://psl.noaa.gov/gcos_wgsp/Timeseries/Data/nao.long.data
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Fig. 2. Temporal series of detrended soybean yields for the 193 departments for the period 2004–2019. The solid black line shows the median, and the black dot shows the mean.
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Given Y ∈ [0,∞), the time seriesmodel was implemented in each de-
partment as follows:

ln Ytð Þ ¼ f Xt1;Xt2; :::;Xtkð Þ ¼ β0 þ
Xk

j¼1

β j Xtj
� �þ εt ; ð1Þ

where Y is the departmental vector of annual soybean yields, t is the
year, X represents the vector of the candidate predictors, β0 and βj are
the parameters (intercept and constant coefficients) to be fit, and ε is
the error.

A panel regression model was executed combining the 193 depart-
ments:

ln Yi;t
� � ¼ βi;0 þ

Xk

j¼1

βi; j Xi;tj
� �þ εi;t ; ð2Þ

where i represents each soybean-producing department, and βi, 0 is an
intercept.

Finally, the average departmental yields and DIs were computed to
estimate the cross-sectional model.

ln Yi;avg
� � ¼ β0 þ

Xk

j¼1

β j Xi;avgj
� �þ εi ð3Þ

The predictor candidates were: the June DIs with a 12-month aggre-
gation period, this for consistency with the annual crop yield data; the
MarchDIs with a 6-month aggregation period, coincidingwith the sow-
ing and growing periods of soybeans; and the December andMarch DIs
with a 3-month aggregation period, this to capture the sowing and
growing periods of soybeans, respectively. The coefficients of determi-
nation of the models were used as the comparative statistics.

Moreover, to compare the performance of DIs and CIs as crop yield
predictors, those CIs that showed the highest correlations with the DIs
in the analysis described in Section 2.5were evaluated as candidate pre-
dictors in the time-seriesmodel, following Eq. (1). A 3-, 6-, or 12-month
Fig. 3.Methodological flo

5

runningmean from June, March, or Decemberwas applied to the CIs for
consistency with the DIs.

The overall procedure for identifying suitable DIs and CIs for moni-
toring agricultural drought in Argentina is summarized in Fig. 3.

3. Results

3.1. Identification of the large-scale climate drivers of drought

The spatiotemporal patterns of the correlations between CIs and DIs
in Argentina were seen to vary significantly. The greater the temporal
aggregation, the greater the correlations and the higher the percentage
of departments with significant correlations (Table S1). Table 2 shows
the correlations between the DIs and CIs with a 12-month aggregation.
The STWSI showed the strongest correlation with all the CIs. However,
some DIs (SPI, SPEI, STCI, SVHI, and SPDSI) showed a higher percentage
of departmentswith significant correlations. The CIs that best correlated
with all the DIs were Tahiti and SOI, with negative correlations, and El
Niño 3.4 and El Niño 4, with positive correlations. These four CIs showed
percentages of departments with statistically significant correlations of
at least 74% (ρ<0.05) andwere selected for further analysis. The spatial
patterns of the correlations between the DIs and selected CIs were sim-
ilar (Figs. 4 and S1). DIs that included temperature in their calculus
(STCI, SPEI, and SVHI) had the highest percentage of departments
with significant correlations. The Pampas and NEA regions had the
strongest negative correlations, followed by Cuyo and NWAwith nega-
tive correlations, and finally Patagonia, where correlations were low
and negative (Fig. 4). Table 3 shows the results of the correlations by re-
gion, which support the spatial patterns shown in Fig. 4 and S1.

A seasonal analysis was conducted correlating the seasonal series
between the 6-month-aggregated DIs at the national level (Table S2 in
the supplementary materials). The El Niño 3.4 and El Niño 4 had stron-
ger correlations than did the other two indices. The SSI and STWSI
showed stronger correlations for the cold seasons (winter and spring),
while the rest of the DIs did so during the warmer seasons (summer
w-chart of the study.
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and autumn). Persistent (very few exceptions) negative correlations
during spring and summer and positive correlations during autumn
and winter between El Niño 3.4 and the DIs were observed (Table S3).
Similar patterns were observed for the other three selected CIs
(Table S4 in the supplementary materials). Spatially, regions with
weak correlations had the most departments with non-significant cor-
relations, and this number increased in the winter and spring seasons.
For example, Fig. 5 illustrates the spatial patterns of correlations be-
tween SPEI-6 and El Niño 3.4.

Considering only the soybean-producing departments and the sum-
mer season, when soybean sowing and growth occurs, the SPEI and
STWSI had the strongest correlations with the four selected CIs
(Table 4). For these specific departments and seasons, the r medians
were persistently higher than the correlation found when all depart-
ments were considered. However, similar patterns were found in
other seasons (Supplementary Table S5).

3.2. Comparison of the performance of DIs in explaining soybean yield
variability

The results of the three statistical models with the soybean yield
data and DIs are presented in Table 5. The determination coefficients
(R2) of the cross-section model were consistently higher than those of
the other models. The SVHI, SVCI, STCI, SPEI, and SPI, which are based
on meteorological and vegetation variables, better explained the vari-
ability of soybean yields in all three models and performed better
using their 3- and 6-month aggregations for the summer season (in
March) as a predictor. The other DIs (SSI, SPDSI, and STWSI) had a
lower explanatory power and performed better with the 12-month ag-
gregation in June.
Fig. 4. Spatial pattern of correlations between the 8 DIs with a 12-month aggregation period a
correlations were not statistically significant.

6

The spatial distributions of the determination coefficients using the
time-series model with predictors aggregated for six months are
shown in Fig. 6. For all DIs, the models produced positive coefficients.
This was not surprising, given that when DI values are lower (indicating
more intense/severe drought events), reductions in crop (soybean)
yields are expected. Specifically, the time-series model estimated posi-
tive coefficients in >96% of the departments (except SSI, which did so
in 84%). The SVHI, which has the highest median determination coeffi-
cients, provided the best explanation of the variability of soybean yields
in the central areas of the Pampas region. This zone obtained the highest
R2 values using any of the DIs as predictors. The SPEI was the best pre-
dictor of soybean yield in departments located in the southern and
northern parts of the soybean belt.
3.3. Comparison of the performance of CIs in explaining soybean yield
variability

Table 6 highlights the results of the time series models computed
using the soybean yield data and four selected CIs (Tahiti, SOI, El Niño
3.4, and El Niño 4). Similar to the results with the DIs as predictors,
the CI 3- and 6-months running-mean in summertime (March) ex-
plained the variability of soybean yields better than the CI 12-months
running mean. The highest R2 was found using El Niño 3.4 and El Niño
4. However, this maximum goodness of fit explained only 11.90% of
the variability in soybean yield. In other words, the performance of CIs
as possible predictors of soybean yield was very poor in Argentina for
these specific timescales (6 and 12 months) and months (March and
June).
nd Tahiti SLP CI based on 1982–2019 data (STWSI 2003–2019). Black dots indicate where



Fig. 5. Spatial pattern of correlations between the seasonal time series SPEI-6 and El Niño 3.4 based on 1982–2019 data.
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4. Discussion

4.1. Drought indices and teleconnections

CIs located in the equatorial Pacific Ocean (Tahiti, SOI, El Niño 3.4,
and El Niño 4) showed stronger correlations with the DIs in Argentina.
Although relatively low r values were found for this type of study,
they can be considered acceptable (Lovino et al., 2018; Robledo et al.,
2013). These CIs have been found to indicate the triggering of droughts
in other parts of theworld (Gupta and Jain, 2021; Vicente-Serrano et al.,
2017), demonstrating the global importance of their variability in ex-
treme hydrological events. On a larger time scale (12 months), correla-
tions were persistently higher, something that has also been found in
other studies (Lovino et al., 2018; Singh and Shukla, 2020). However,
it might be possible to find stronger relationships on other time scales,
although this was not investigated in the present study. Some DIs
(i.e., SSI and SVCI) showed strong correlations with other CIs, which
suggests that the explanations for droughts in Argentina are highly
complex and cannot be covered by a single climate driver.

Stronger negative correlations between CIs and DIs were found in
warm seasons, whereas in cold seasons they were less strong yet posi-
tive. These findings coincide with the results in Hurtado and Agosta
(2020) and De La Casa andOvando (2006), inwhich the climatic drivers
were better correlated with the characteristic patterns of the summer
thanwith thewinter rainfall regime. Such results, then, suggest that ex-
tremely hot and humid summers and extremely dry and cold winters
are associated with the variability of these CIs, and may be used for
monitoring and forecasting droughts in Argentina, similar to other re-
gions (Dikshit et al., 2021; Seibert et al., 2017).

Spatially, the DIs and CIs showed a stronger correlation in regions
with high rainfall regimes and high temperature variability (Pampas
and NEA), where the climate classification is semi-arid (temperate cli-
mate) according to the Köppen-Geiger climate classification (Kottek
et al., 2006). The weakest correlations were found in the arid regions
(NEA and north of Cuyo). In the Patagonia region, where the climate is
cold, correlationswere persistentlyweaker throughout the year. Similar
results have been obtained byRobledo et al. (2013), who found stronger
relations between drought conditions and climate drivers in the
northeast and central regions of Argentina than in the south. In these re-
gions, CIs might be used in conjunction with other variables
(e.g., measurements of streamflow in rivers, water levels in lakes or res-
ervoirs, or snow cover) to better monitor and predict droughts. The
reader is referred to Hao et al., 2018 for a review of commonly used pre-
dictors for statistical drought prediction.

The spatial patterns of correlations between DIs and CIs indicated
that the five administrative regions used were not the most suitable
7

for drought monitoring based on climate drivers (Fig. 5). Therefore, at
the national level, we believe that it is necessary to define the climate
drivers of droughts in homogeneous drought regions. As an example,
Fig. 7 sets out how four regions, based on correlations, can be defined:
i) northern Patagonia + eastern Pampas + southern NEA; ii) northern
NWA; iii) western Cuyo and Patagonia; and iv) the central part of the
country from central NWA to northern Patagonia across eastern Cuyo
and western Pampas. The precise definition of homogeneous drought
regions is, however, beyond the scope of this work. Specific clustering
methodologies, such as principal component analysis and hierarchical
and non-hierarchical clustering methods, should be used to establish
this regionalisation, ensuring a robust definition of drought regions.
These techniques could be applied to identify patterns in the DI and CI
series, hence defining regionswith similar drought variability and char-
acteristics, as done for example in Espinosa et al. (2019).

Because each DI is associated with a specific part of the water cycle,
and it is not common for the entire water cycle also to be under stress at
the time due to the drought development process (frommeteorological
to hydrological) (Huang et al., 2017; Mishra and Singh, 2010), the DIs
showed different relationship levels with the CIs. Nevertheless, the
STWSI (associated with the total amount of water in the environment,
both ground and surface) was notable, showing strong correlations
with all CIs. It was also interesting that STWS showed stronger correla-
tions with CIs in the cold than in the hot seasons. This is possibly due to
the time lag between hydrological droughts and agricultural and mete-
orological droughts (Huang et al., 2017; Van Loon, 2015). However, al-
though STWSI primary variables (GRACE data) have been used to
successfully detect some significant drought events in Argentina
(Chen et al., 2010; Aragón et al., 2011), to claim that the STWSI is the
DI that best correlates with the CIs may imply a bias, due to the short
time that its data have been available. Thus, a longer time series needs
to be used to verify these results.

The STCI, SPEI, and SVHI showed high percentages of departments
with significant correlations with CIs (better than the percentage ob-
tained by STWSI, this perhaps due to the length of the time series), indi-
cating that they could be used throughout the country, despite having a
lower correlation than the STWSI. These DIs all include temperature in
their calculus, which is a very important variable in the relationship be-
tween droughts and climate drivers, especially in Argentina (Carcedo
and Gambin, 2019). Furthermore, the SPEI showed the strongest corre-
lations with the CIs in the analysis based on soybean-producing depart-
ments (Fig. 1c), particularly with El Niño 3.4, and specifically for warm
seasons (the growing season for crops such as soybeans). Thesefindings
might be of particular interest to drought managers and farmers in
Argentina. Further research could define CIs, such as El Niño 3.4, as pre-
dictors of agricultural drought in this area.



Table 3
Median correlations between DIs and CIs aggregated for 12 months based on the depart-
ments of Cuyo (m = 44) Patagonia (m = 53), Pampas (m = 233), NEA (m = 76), and
NWA (m= 119) and 1982–2019 data (STWSI 2003–2019).

DI CI Region

Cuyo Patagonia Pampas NEA NWA

SPI-12 Tahiti SLP −0.009 −0.319 −0.376 −0.533 −0.094
SPEI-12 −0.083 −0.397 −0.375 −0.505 −0.010
SSI-12 −0.004 0.067 −0.085 −0.116 −0.056
SVCI-12 0.112 −0.075 −0.189 −0.027 0.147
STCI-12 −0.433 −0.369 −0.481 −0.399 −0.360
SVHI-12 −0.247 −0.350 −0.407 −0.263 −0.130
STWSI-12 −0.263 −0.330 −0.545 −0.346 −0.076
SPDSI-12 −0.263 −0.330 −0.545 −0.346 −0.076
SPI-12 El Niño 3.4 0.045 0.235 0.250 0.501 0.049
SPEI-12 0.075 0.250 0.262 0.478 −0.021
SSI-12 0.015 0.064 0.092 0.141 0.050
SVCI-12 0.032 0.185 0.157 0.061 −0.044
STCI-12 0.295 0.204 0.301 0.330 0.239
SVHI-12 0.274 0.299 0.273 0.255 0.137
STWSI-12 0.087 0.225 0.502 0.438 0.228
SPDSI-12 0.087 0.225 0.502 0.438 0.228
SPI-12 El Niño 4 −0.106 0.181 0.326 0.390 −0.050
SPEI-12 −0.055 0.169 0.303 0.363 −0.128
SSI-12 −0.007 0.105 0.059 0.083 −0.014
SVCI-12 0.089 0.194 0.172 0.121 0.050
STCI-12 0.143 0.134 0.217 0.251 0.115
SVHI-12 0.176 0.236 0.230 0.214 0.081
STWSI-12 0.148 0.338 0.610 0.519 0.246
SPDSI-12 0.148 0.338 0.610 0.519 0.246
SPI-12 SOI −0.092 −0.328 −0.283 −0.499 −0.109
SPEI-12 −0.152 −0.387 −0.303 −0.474 −0.027
SSI-12 −0.014 0.006 −0.094 −0.132 −0.068
SVCI-12 0.069 −0.121 −0.148 0.032 0.146
STCI-12 −0.466 −0.358 −0.452 −0.377 −0.355
SVHI-12 −0.336 −0.373 −0.362 −0.221 −0.153
STWSI-12 −0.275 −0.332 −0.567 −0.411 −0.196
SPDSI-12 −0.275 −0.332 −0.567 −0.411 −0.196
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4.2. Drought indices and soybean yield variability

This study has indicated that the utilisation of a cross-section model
resulted in the highest R2, followed by the time-series model. Such a
pattern of results between statistical models is consistent with the re-
sults shown in Lobell and Burke (2010). However, statistical models
based on a time-series show a better spatial understanding of the rela-
tionship between drought and crop yield, which was expected, since
having subnational data would a priori provide better approximations
(Lobell and Burke, 2010).

The time-seriesmodel allowed us to identify areas (or departments)
inwhich soybeansweremore sensitive to drought. Soybeans responded
better to the SVHI in departmentswhere yieldswere higher (explaining
up to 88.8% of agricultural variability). These areas are located in the
north of the Buenos Aires Province (Fig. 8). DIs based on vegetation con-
dition variables (e.g., SVHI) have been associated with crop variability
with other crop yields. For instance, in Spain, García-León et al. (2019)
Table 4
Median correlations betweenDIs and the selectedCIs (Tahiti SLP, El Niño 3.4, El Niño 4 and
SOI) aggregated for 6 months based on soybean producing departments (m = 193) and
1982–2019 data (STWSI 2003–2019).

DI Tahiti El Niño 3.4 El Niño 4 SOI

SPI-6 Summer-ONDJFM −0.29 0.35 0.38 −0.34
SPEI-6 −0.29 0.37 0.38 −0.35
SSI-6 −0.12 0.03 −0.03 −0.15
SPDSI-6 −0.16 0.10 0.13 −0.14
SVCI-6 −0.20 0.22 0.24 −0.23
STCI-6 −0.27 0.29 0.33 −0.35
SVHI-6 −0.26 0.28 0.32 −0.32
STWSI-6 −0.32 0.28 0.40 −0.41
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found better responses in wheat, barley, oat, rye and maize to the VHI
(non-standardised SVHI), and in Argentina, Seiler et al. (2007) ex-
plained corn yield variability with the VCI and TCI (non-standardised
SVHI SVCI and STCI). The SPEI, on the other hand, accurately explains
areas with low yields in the south and north of the soybean belt (up
to 71.5% of variability). The SPEI has also been widely associated with
the response of crop yields to droughts (Chen et al., 2016; Peña-
Gallardo et al., 2019a). Interestingly, the STWSI,which has a strong rela-
tionship with the CIs, performed poorly in explaining soybean re-
sponses to droughts, which can be explained by the fact that this
index is associatedwith longer drought timescales, more representative
of hydrological droughts (reservoirs, aquifers, etc.) than meteorological
or agricultural droughts (Zhou et al., 2020).

The findings also indicate that CIs explain variability in soybean yield
very poorly. This does not necessarily mean that climate drivers and
crop (soybean) production are not associated. Relations between ENSO
and crop yields have been established by Anderson et al. (2018) and
Podestá et al. (1999). Furthermore, in this study, we analysed three time-
scales (3, 6, and 12 months) for specific months (December, March, and
June); therefore, an extension of this study using a variety of different
time scales may be necessary to verify the results. However, for the pur-
poses of annual/seasonal monitoring of soybean production in Argentina,
based on our results, we recommend using a DI rather than a CI.

One of the limitations of this study was the lack of data associated
with irrigation. In areas with purely rainfed crops, meteorological vari-
ables are more important for crop development (Kuwayama et al.,
2018). Therefore, the disparity in the results using the SPEI and SVHI
could be attributed to the fact that in areas with higher yields, there
might have been some type of additional irrigation. According to (FAO
et al., 2015), there are some small-scale irrigated areas irrigated fields
in the northern Buenos Aires Province. This should be studied in detail
in each departmental unit. In other locations, crops (including soy-
beans) usually have short time dependencies (1–4 months) (Peña-
Gallardo et al., 2018). In future studies, it will be necessary to refine
the analysis of the link between soybean yields and droughts using var-
ious other time scales, for instance, following the methodology used by
Peña-Gallardo et al. (2019b) in the United States. However, at the na-
tional level, but with a focus on specific regions, the use of SPEI and
SVHI aggregated for 3 and 6 months during phenological growth to
monitor the state of soybeanproduction is recommended. This informa-
tion might prove useful for local farmers.

5. Conclusions

In this study, 8 DIs, and 19 CIs were benchmarked for agricultural
drought monitoring in Argentina. First, the relationship between DIs
and CIs was explored. Then, DIs were evaluated based on their capacity
to explain the impacts of agricultural drought (annual soybean yield
variability). Finally, the best response of crop production to DIs, rather
than to CIs, was presented.

DIs were particularly related to the CIs located in the Pacific Ocean,
including El Niño 3.4 and El Niño 4. DIs that include temperature in
their computation (STCI, SPEI, and SVHI) correlated best with CIs across
the country. For soybean production areas, SPEI was the DI that best
responded to variations in CIs. Correlations were positive and strong
in thewarmandwet season (summer),while in the cold and dry season
(winter), they were negative and less strong. Droughts were strongly
linked to the CIs defined in some Argentinian regions.

The time series model showed a sound spatial characterization of
the relationship between drought and crop yield. Soybean yield vari-
ability (impacts associated with agricultural droughts) responded bet-
ter to DIs than to CIs. The SVHI and SPEI aggregated for 6 months and
corresponding to the month of March (soybean growth season) were
found to best explain the state of soybean production in certain regions.

The results provide useful drought insight tools in various parts of
the water cycle and their association with variability in soybean



Fig. 6. Spatial patterns of the determination coefficient results of the time-series models between DIs aggregated 6 months (ONDJFM) and soybean yield based on soybean-producing
departments (m= 193) and 2004–2019 data.

Table 6
Median correlations between the selected CIs (Tahiti SLP, El Niño 3.4, El Niño 4 and SOI)
aggregated for 3,6, and 12months and the soybean yield based on soybean-producing de-
partments (m= 193) and 2004–2019 data.

R2 - Time-series
model

3-Months
JFM

3-Months
OND

6-Months
ONDJFM

12-Months
year

El Niño 3.4 0.087 0.074 0.073 0.004
SOI 0.129 0.025 0.044 0.000
TAHITI 0.110 0.110 0.027 0.015
El Niño 4 0.119 0.082 0.063 0.002

Fig. 7. Spatial distribution of positive (r > 0.2), negative (r <−0.2), and near zero (−0.2 ≤
r ≤ 0.2) correlations between SPEI-6 and the El Niño 3.4. The black lines show the regional
divisions.
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production in Argentina Therefore, this research might be of interest to
water managers and especially soybean producers, at national and re-
gional level in Argentina. It may also serve as a foundation for future
studies on drought in Argentina. It would be particularly interesting to
explore the predictive rather than the explanatory capacity of the se-
lected DIs and CIs for forecasting droughts in the country. The method-
ology is also of general applicability and relies on freely global-scale
datasets, so it could be replicated in other regions of the world.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.scitotenv.2021.148090.
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Fig. 8. Spatial distribution of average annual soybean yield (period 2004–2019).
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