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Abstract: Comparing two digital elevation models (DEMs), S1 (reference) and S2 (product), in order
to get the S2 quality, has usually been performed on sampled points. However, it seems more natural,
as we propose, comparing both DEMs using 2.5D surfaces: applying a buffer to S1 (single buffer
method, SBM) or to both S1 and S2 (double buffer method, DBM). The SBM and DBM approaches
have been used in lines accuracy assessment and, in this paper, we generalize them to a DEM surface,
so that more area of the S2 surface (in the case of the SBM), or the area and volume (in the case of
the DBM) that are involved, more similarly are S1 and S2. The results obtained show that across
both methods, SBM recognizes the presence of outliers and vertical bias while DBM allows a richer
and more complex analysis based on voxel intersection. Both methods facilitate creating observed
distribution functions that eliminate the need for the hypothesis of normality on discrepancies and
allow the application of quality control techniques based on proportions. We consider that the SBM
is more suitable when the S1 accuracy is much greater than that of S2 and DBM is preferred when the
accuracy of S1 and S2 are approximately equal.

Keywords: grid DEM; buffering surface; quality assessment; accuracy; distribution function

1. Introduction

A Digital Elevation Model (DEM) is a bare earth elevation model representing the
surface of the Earth without features like houses, bridges and trees [1], which means
elevations of the terrain (bare Earth) void of vegetation and man-made features. DEMs
can be produced by various techniques (e.g., LiDAR, aerial photogrammetry and remote
sensing, etc.) [2]. The DEMs are the basis for other derived models, such as slopes, orienta-
tions (aspect), insolation, drainage networks, visual and watershed analysis, etc., which
can be easily derived from them through GIS operations [3]. For all these reasons, they
have application in numerous disciplines such as agriculture, biology, geology, climatol-
ogy, telephony, national defense, etc., where they are used for analysis, modeling and
decision-making activities.

Given the importance of DEMs, their positional altimetric accuracy must be known
through an evaluation method. In order to evaluate a data set, direct and indirect evaluation
methods are referred to [4]. The direct evaluation methods are based on the inspection of
the items within the data set, and the indirect evaluation methods on external knowledge
or experience [4]. The direct evaluation methods can be classified as internal or external.
In the first case, the evaluation uses only the data belonging to the same data set. In the
second case, an external and independent data set is required (usually considered as a
“reference”). Since the proposed methods fall into the category of direct and external, the
review that follows will focus on this scope.

Usually, the external data set is considered as a “reference”, and for this purpose inde-
pendence and greater accuracy are common requirements. The GNSS (Global Navigation
Satellite Systems) techniques (e.g., GPS) are the most widely used to obtain reference data
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for DEMs quality evaluations [5], but the use of other existing DEMs [6–12] is also very
common [5]. From the perspective of the geometry of the elements that are used for evalua-
tion, the DEMs can be evaluated by using points, transects (linear elements) or surfaces, but
almost all of the evaluations are based on considering analysis in one dimension (1D) [5]
which means that the planimetry is fixed. The planimetry is assumed to be correct, or that
it has been previously corrected. In this way, only the elevation discrepancies are analysed.

The points of high positional accuracy that are used to calculate elevation discrepancies
can come from GNSS surveys, but sometimes the use of vertices of an existing geodetic net
has been reported [13,14] since these points have an easily identifiable location. On other
occasions, data from spatial platforms (e.g., as ICESat in [15]) or from existing databases
(e.g., as DTED in [16]) are used. Reference [17] performs the assessment using elevation
profiles of roads, paths, tracks, etc., using as reference the profiles obtained from The Global
Elevation Data Testing Facility. Finally, it should be indicated that there is a high percentage
of cases [5] in which the assessment is performed using other DEMs [6–12].

Focusing on the most statistical part, and on measures of error or discrepancy, two
main avenues are offered in the DEM evaluation processes. On the one hand, there is
the consideration of the hypothesis of normality, and on the other hand, the denial of
this hypothesis. The first case is the most common, and this model is explicitly proposed
by numerous studies (e.g., in [18]). [5] indicate that the vast majority of the cases they
analysed (89.17%) use this model. In this case, the use of measures of centrality (mean) and
dispersion (standard deviation), as well as the mean square error, is common. However,
many authors [6,19–23] indicate that positional errors are not normally distributed, and this
situation has increased since the expansion of LiDAR data. In this case, common measures
are the median, as a measure of the central tendency, and the median absolute deviation
(known as “MAD”) [24,25], as a measure of the dispersion. Another alternative is the direct
use of the observed distribution of discrepancies in a free-distribution approach [26].

Another relevant perspective in the evaluation of DEM is that provided by the stan-
dards. The standards and methods for the estimation and control of positional accuracy
of geospatial data are numerous, e.g., the Engineering Map Accuracy Standards [27], the
National Standard for Spatial Data Accuracy [28], the ASPRS Positional accuracy standards
for digital geospatial data [29], and others [30–32]. Some of these standards offer some
particular guidelines in the case of altimetry; however, all of them are based on the use of
points to carry out the evaluations. Some of these standards explicitly indicate the typology
of points as “well-defined points”. This last aspect is not suitable in the case of DEMs,
especially when they are registered as a space tessellation (grid). In references [5] and [33],
extensive critical reviews of the positional accuracy assessment methods applied to the
case of DEMs are made, and it is noteworthy that the majority approach is based on the
use of points, regardless of the standard or method that is applied.

In the case of linear geospatial data, such as communication routes, coastlines or hy-
drographic networks, in which it is not always possible to find well-defined or homologous
points between two representations of the same world feature, specific evaluation methods
have been proposed based on buffering, such as the single buffer method (SBM) proposed
in [34] (see Figure 1), the double buffer method (DBM) proposed in [35] (see Figure 2), or
the “vertex influence method” proposed in [36], and many others. The study of the ability
to detect biases, estimate dispersion, detect outliers, etc., in the case of buffer-based meth-
ods, has been evidenced in several studies based on synthetic data (e.g., [37,38]) and real
data ([39–42]), etc. Given that these capabilities have been demonstrated in applications
on linear elements (e.g., roads, coastlines, etc.), which are more complex than altimetry
profiles, we consider that these methods are fully adequate for the case of DEM.
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In this work, it is proposed to apply buffer-based methods (simple and double) on
gridded DEM data considered as 2.5D surfaces with the aim of comparing the altimetric
behavior of both data sets. With this perspective, the disadvantage of not having well-
defined points in the case of grid-type DEMs is avoided and, furthermore, it can be applied
in the natural context of the reality being analyzed, which is that of the Earth’s surface.
Methods based on DEM buffering can be used to compare two sets of DEM data, or a
product and a reference that serves for its quality assessment (e.g., quality control or
quality estimation).

This document is organized as follows: after this introduction, the next section (2nd)
presents the buffer-based methods, their adaptation to the case, and the data sets for
the application example. The fourth section develops a discussion and, finally, the main
conclusions of the work are included.
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2. Methods and Data

The adaptation of the SBM and DBM to the case at hand is presented below. First, an
outline of the idea on which the method is based will be presented in its application to the
original case of linear elements, and then it will be discussed how to adapt it to the case of
DEM surfaces.

2.1. The Single-Buffer Method

Since the SBM was designed for linear elements, for its explanation we will consider
two of them here: Q (reference) and X (element to analyze). The SBM consists of generating
incremental buffers of semi-width wi around (both sides) of the Q line (denoted by Qwi),
and counting the percentage of the line X that is included inside that buffer width [12].
Figure 1 presents a graphical excerpt. The parameter w will take values from approximately
zero to the one that allows the total length of X to be included. The method can be applied
to a line, as explained, or to a set of homologous paired lines Qj and Xj, obtaining an
aggregate result of all of them for each wi. If the percentage of line lengths that is included
for each value of w is considered, an observed distribution function is available that defines
the phenomenon of interest: the percentage of inclusion of assessed lines versus the buffer
widths of the reference lines.

The method described in the previous paragraph is directly transferable to the case
of DEMs. First, we will consider two surfaces S1 and S2, such that S1 acts as a reference
and S2 as a product. Furthermore, we must assume that the planimetric uncertainty is
negligible, in such a way that the buffer can be done directly on the altimetric component.
This supposition is a rule for positional accuracy assessments when dealing with DEMs.
When the SBM is applied to linear elements, it is not considered whether the inclusion
of X in the buffer of Q is made to one side or the other. However, since in this case there
is the physical sense that one surface is above or below the other (e.g., S1 on S2), it is
interesting to make this distinction (above and below), and also to consider absolute values
of discrepancies. In the case of grid-type DEMs, like the one at hand, the SBM application
process is very simple, it is enough to calculate the difference between both DEMs (S2-S1)
and order the discrepancy (errors) values from smallest to largest obtained, and count the
accumulated area.

Considering S1 and S2 has the same rows (m) and columns (n) we denote the ho-
mologous cells as S1r,c and S2r,c (1 < r ≤ m; 1 < c ≤ m) and the height difference of
homologous cells as hdr,c = S2r,c − S1r,c:

If |hdr,c| < wi → S2r,c is inside the S1r,c buffered by the semi-width wi

The percentage of S2 inside the S1 buffered by the semi-width wi is number o f S2r,c : |hdr,c |<wi
m×n

In this way we can obtain three curves

(a) one for the evolution of negatives discrepancies (S2 below S1, i.e., number o f S2r,c : hdr,c<wi
m×n ),

(b) also the same for positive discrepancies (S2 above S1, i.e., number o f S2r,c : hdr,c>wi
m×n )

(c) and in absolute value (i.e., number o f S2r,c : |hdr,c |<wi
m×n ).

The curves thus obtained have the same properties as that generated in the original
method for linear elements, in such a way that it can be applied to a DEM or to a set of
“patches” (e.g., several zones or patches of a larger DEM).

2.2. The Double-Buffer Method

Continuing with the two linear elements, Q (reference) and X (element to analyze),
presented previously, the DBM consists of generating incremental buffers of semi-width
wi around (both sides) of the Q and X lines. Figure 2 presents a graphical excerpt. In this
case, the proposal by [13] is to count several measures that evolve with wi. Being AX(wi)
the area of the buffer over X for the width wi, and AQ(wi) the area of the buffer over Q for
the same width, these measurements correspond to the following areas: AX(wi)∩ AQ(wi),
AX(wi) ∩ AQ(wi), AX(wi) ∩ AQ(wi), AX(wi) ∪ AQ(wi) and, based on them, establish
an average displacement and the possibility of counting the number of oscillations. The
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last determination is linked to the possibility of analyzing the randomness of the lateral
displacements of X with respect to Q. The parameter w will take values from approximately
zero to that which allows the total length of X and Q to be included in the buffer. The
method can be applied to a pair X, Q of lines, as explained, or to a set of lines Qj and
Xj, obtaining an aggregate result of all of them for each wi. As a result, a curve with
characteristics of the observed distribution function is obtained.

The same assumption as in Section 2.1 has to be considered for the DBM with respect
to the planimetric uncertainty component. Furthermore, the method described in the
previous paragraph should be slightly adapted for its application to the case of grid-type
DEM (Figure 3). Considering that S1 acts as a reference and S2 as a product, we proceed to
establish the incremental buffering on the two surfaces. For the analysis with grid-type
data, it is convenient to introduce the concept of voxel specified for this context. A voxel is
a volume that has as its central section a cell of the grid-type DEM on whose elevation we
work, and a height wi on each side (above and below) of that cell. When working with two
surfaces S1 and S2 for each position two voxels are considered, one for S1 and another for
S2, and we must pay attention to the following situations:

• There is no intersection. There is no intersection between the voxels of the two buffered
surfaces. This means that the vertical distance between S1 and S2 exceeds 2 × wi.

• There is an intersection. There is an intersection between the voxels of the two buffered
surfaces. This means that the vertical distance between S1 and S2 is less than 2 × wi.
If the distance between S1 and S2 is zero, there will be a complete match of the voxels
(100% intersection). In this case, for a given wi and a specific position in the DEM, the
degree of intersection between the voxels of S1 and S2 can be considered as a fuzzy or
probabilistic approximation.
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2.3. Data

We apply the SBM and DBM to DEM data obtained in a study area around Allo
(Navarra, Spain). The following DEMs data sets are used:

• DEM02. This is a gridded DEM (2 × 2 meter resolution), it was generated in 2017 and
its primary data source is an aerial LiDAR survey (RMSEz ≤ 20 cm) (second coverage
of the PNOA-LiDAR project https://pnoa.ign.es/estado-del-proyecto-lidar/segunda-
cobertura, accessed on 28 July 2021). The informed positional accuracies for the DEM
are RMSEXY ≤ 50 cm and RMSEZ-02 ≤ 25 cm. It is considered as the reference in our
work: S1.

https://pnoa.ign.es/estado-del-proyecto-lidar/segunda-cobertura
https://pnoa.ign.es/estado-del-proyecto-lidar/segunda-cobertura
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• DEM05. This is a gridded DEM (5 × 5 meter resolution), it was generated in 2012 and
its primary data source is an aerial LiDAR survey (RMSEz ≤ 40 cm) (first coverage of
the PNOA-LiDAR project https://pnoa.ign.es/estado-del-proyecto-lidar/primera-
cobertura, accessed on 28 July 2021). The informed positional accuracies for the DEM
are RMSEXY ≤ 50 cm and RMSEZ-05 ≤ 50 cm. It is considered as the product under
analysis in our work: S2.

Both DEM data sets come from the Instituto Geográfico Nacional (IGN, Spain,
www.igne.es, accessed on 28 July 2021) and are freely available, and have the same spa-
tial reference system ETRS89 UTM Zone 30N with the following coordinates 577,845 m,
4,715,566 m. In relation to the study area, Figure 4 shows a general vision and Figure 5 the
corresponding histogram for the elevations. In both figures, the data correspond to the
DEM02 data set, (the data corresponding to the DEM05 data set are not presented since
visual differences would not be appreciated at this scale of representation). The study
area covers 100 km2, and it has a varied relief, but not abrupt, with valleys of different
widths, and areas with different degrees of undulation. In order to dispose of some terrain
morphological variability, the study area includes a small mountain (Montejurra) and a
valley created by the Ega river The elevation is in the interval 354–1047 m, mean value of
elevation is 513.66 m and the standard deviation of the elevation is 127.93 m.
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Figure 4. DEM02 of the study area.

To ensure the overlap of the two grids, and not degrade the quality of the reference
(DEM02), the MDE05 data set was interpolated with a 2 × 2 mesh step. Following the vari-
ance prediction model for the case of bilinear interpolation developed by [43], considering
the equality of all the variances of the four positions that intervene in the bilinear interpola-
tion, and the case of a high altimetric correlation, the average variance of the predictor of
an altimetric value over any position is equivalent to the variance of the positions involved
in the interpolation. In our case, according to the information provided by the metadata, it
can be considered to be of the order of 50 cm.

https://pnoa.ign.es/estado-del-proyecto-lidar/primera-cobertura
https://pnoa.ign.es/estado-del-proyecto-lidar/primera-cobertura
www.igne.es
www.igne.es
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The discrepancies (or vertical errors) between both DEM data sets can be observed in
Figure 6 and the histogram in Figure 7, which is presented for the interval [−2, 2] where
the majority of values are included. Usually, the values assumed for the discrepancies
between a product and a reference must be close to zero, but in this case, it is observed
(Figure 6) that discrepancies are in the interval [–55.39, 10.81] m, which means the presence
of extreme values (outliers). The position of some of these outliers is highlighted with a red
circle in Figure 6. The mean value of the discrepancies is µ = −0.0347 m and the standard
deviation σ = 0.6414 m.
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Figure 7. Histogram of the observed altimetric discrepancies for the study area (DEM05-DEM02) in
the interval [−2, 2] m.

3. Results
3.1. The Single-Buffer Method

Applying the procedure indicated in Section 2.1, the result shown in Figure 8 can be
obtained. This curve has a very long tail until it reaches the extreme value (55.39 m), but to
facilitate visual interpretation, only the interval [0, 4] is presented. This curve represents
the distribution function of the area of S2 included inside a buffer with wi. S1 is buffered on
both sides and results are presented for above, below and the general case (above + below).
These curves allow us:

Remote Sens. 2021, 13, x FOR PEER REVIEW 10 of 17 
 

 

 

Figure 8. Result of the simple buffer method. Inclusion of S2 for each buffer width (wi) (x-axis range 

trimmed to better observe curve start). 

The layout of the curve obtained is totally equivalent to that generated by the SBM 

on lines, and its interpretation is exactly the same, but substituting percentage of line 

length by percentage of DEM area, as already indicated. Likewise, it can be applied to a 

single DEM data set, as in the presented case, or to multiple DEMs data sets or for several 

patches of a single DEM in an aggregated way. On the other hand, the curve presented in 

Figure 8 is fully comparable to that used by [26] to apply a method of positional control 

by points that is based on the application of several tolerances and a multinomial law to 

take into account different percentages of error cases. 

3.2. Double-Buffer Method 

The direct application of the method indicated in Section 2.2 allows obtaining various 

results, some of which are presented below. In order to understand the process, Figure 9 

shows the evolution of areas below (in green), above (in reddish) and within (in white) 

the buffered surfaces S1 and S2 for w = [0.05, 0.15, 0.25, 0.5]. As is logical, the tendency is 

that as w increases, the area with white color increases. It is interesting to note that there 

is no homogeneous distribution of red and yellow colors, which indicates the preponder-

ance of discrepancies (negative and positive) in different areas of the study zone. 

Figure 10 presents a complementary perspective to the previous one. In this case, 

what is shown is the degree of buffer-overlapping. That is, only for the case of the white 

areas in Figure 8 above, the degree of buffer-overlapping between S1 and S2 is presented 

with gray colors ranging from light to dark. Now the trend is that as w increases, there 

will be a greater level of buffer-overlapping. Figure 10d is the darkest of all as it has the 

widest buffer width. This level of overlap can be understood as a degree of confidence in 

the existence of an effective overlap between S1 and S2. 

Figure 8. Result of the simple buffer method. Inclusion of S2 for each buffer width (wi) (x-axis range trimmed to better
observe curve start).

• To recognize the presence of outliers. Outliers are excessively large discrepancies
between the S1 and S2 with low presence probabilities and, in general, would corre-
spond to the presence of peaks or wells. This presence would generate the need for a
very large value of wi to achieve their inclusion and an asymptotic flattening of the
curve close to the value of unity on the vertical axis (100% inclusion). As can be seen
in Figure 8, this is the case 99% inclusion is reached approximately for 1.89 m, while
there is a long tail, which will extend up to 55.39 m to achieve 100% inclusion. Thus,
in the data under analysis, there is the presence of outliers.
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• To recognize the presence of vertical bias. The vertical bias, in this case, means that
one DEM has an altimetric predominance over the other. In this case, we compare
the curves for the cases Above and Below and observe that the below curve is over
the above curve. This implies that, in general, S1 is over S2, which means a vertical
bias. Here we can remember that the mean value of the discrepancies is µ = –0.0347,
the bias is small but in terms of frequencies the difference is in the order of 7.57%,
which means an imbalance between the Above and Below cases. To determine the
uncertainty, either by establishing a percentile of interest (e.g., 90%) and determining
the corresponding distance (≈0.5 m), or by establishing a distance (e.g., d = 1 m) and
determining its corresponding percentile (96.5%). The use of a single percentile is fully
equivalent to what is proposed in some DEM evaluation methods for non-normal
data (e.g., [2,6]). However, the use of a curve such as the one presented in Figure 8
offers much more information and the possibility of using several percentiles for better
control of the distribution of discrepancies. In this line, the method proposed by [26]
allows the use of several tolerances for the case of non-normal data.

The layout of the curve obtained is totally equivalent to that generated by the SBM on
lines, and its interpretation is exactly the same, but substituting percentage of line length
by percentage of DEM area, as already indicated. Likewise, it can be applied to a single
DEM data set, as in the presented case, or to multiple DEMs data sets or for several patches
of a single DEM in an aggregated way. On the other hand, the curve presented in Figure 8
is fully comparable to that used by [26] to apply a method of positional control by points
that is based on the application of several tolerances and a multinomial law to take into
account different percentages of error cases.

3.2. Double-Buffer Method

The direct application of the method indicated in Section 2.2 allows obtaining various
results, some of which are presented below. In order to understand the process, Figure 9
shows the evolution of areas below (in green), above (in reddish) and within (in white) the
buffered surfaces S1 and S2 for w = [0.05, 0.15, 0.25, 0.5]. As is logical, the tendency is that
as w increases, the area with white color increases. It is interesting to note that there is no
homogeneous distribution of red and yellow colors, which indicates the preponderance of
discrepancies (negative and positive) in different areas of the study zone.

Figure 10 presents a complementary perspective to the previous one. In this case,
what is shown is the degree of buffer-overlapping. That is, only for the case of the white
areas in Figure 8 above, the degree of buffer-overlapping between S1 and S2 is presented
with gray colors ranging from light to dark. Now the trend is that as w increases, there
will be a greater level of buffer-overlapping. Figure 10d is the darkest of all as it has the
widest buffer width. This level of overlap can be understood as a degree of confidence in
the existence of an effective overlap between S1 and S2.

These spatial results can also be expressed by curves, as is shown in Figure 11. Now,
let us consider a larger range of semi-width values: wi ∈ [0.025, 0.05, 0.1, 0.15, 0.2, 0.25,
0.3, 0.5, 0.75, 1, 10] m. In Figure 11, the horizontal axis corresponds to the percentage of
common intersection between voxels of S1 and S2 (voxel-overlapping), and the vertical
axis to the percentage of area of the DEM zone included by each wi and voxel-overlapping
value. We can distinguish two groups of curves; first, those that are practically straight lines
(corresponding to wi ∈ [0.025, 0.05, 0.1] m, and second, those that are more or less convex
curves, corresponding to wi ∈ [0.25, . . . , 10] m. The curves of the first type intersect the
vertical axis on the left by the percentage of the area that wi can include for all percentages
of voxel-overlapping. Thus, with wi = 0.05 m only approximately 43% of the area can be
covered (blue point). The rest is out of the buffer width capability, so for this buffer width
surfaces S1 and S2 have more than 57% of their area outside this analysis.
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Convex curves do achieve high values of percentage of area (e.g., 90.1, 96.7, 99.1 for
widths of 0.25, 0.5 and 1 m respectively). To understand how this graph works, first let us
look at a value of voxel-overlapping (e.g., 80%) and then at the curves corresponding to
the wi value of interest (e.g., 0.1 m and 1 m). The cross between the curve corresponding to
w = 0.1 m with the vertical for 80% of voxels-overlapping gives ≈18% (green point). This
value means that when working with w = 0.1 m there is 18% of the area that has more than
80% of voxel-overlapping. On the other hand, it also indicates that approximately 54%
(=72% − 18%) of the area has voxel-overlapping less or equal than 80%. The interpretation
is exactly the same for the case of the curve corresponding to w = 1 m. The cross between
the curve corresponding to w = 1 m with the vertical for 80% of voxels-overlapping gives
≈88% (yellow point). This value means that when working with w = 1 m there is 88% of
the area that has more than 80% of voxel-overlapping. On the other hand, it also indicates
that approximately 11% (=99% − 88%) of the area has voxel-overlapping less or equal
than 80%. This graph allows us to determine the value of w that would offer a certain
percentage of voxel-overlapping affecting a certain percent of the area. For example, if you
want at least 50% of the area to have a 50% or more overlap level, we must look at the point
(overlap ≥ 50%, area ≥ 50%) (red point). Any curve that passes above this point meets
these conditions. In the case of Figure 11, the curve corresponding to wi = 0.15 m is the first
one that satisfies this double condition.
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The complex result presented in Figure 11 can be taken to a representation in some
way similar to that of Figure 8 corresponding to the SBM. This is presented in Figure 12.
In this case, the horizontal axis represents the buffer width w, here it is only presented up
to 1 m to appreciate the starting zone in greater detail. The vertical axis represents the
percentage of the involved area. The curves labeled as below and above correspond to the
red and yellow areas of Figure 9, respectively so that these curves represent the evolution
of these areas when increasing wi, and of course, the percentage of the involved area is
reduced by increasing wi. If the curve labeled “in the buffer” of Figure 12 is compared
with the curve labeled “All” presented in Figure 8, a great similarity is observed, but if
it is observed in greater detail (e.g., observe the included area for w = 0.5 m and w = 1
m in both curves), it is concluded that they are not exactly the same, and that the curve
corresponding to the DBM is always above the SBM curve. The mean difference between
both curves is in the order 11%. This shows that both evaluation methods are very similar,
but that they do not perform the same type of measurement.
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The results presented for the SBM and DBM methods allow us to conclude that S1
and S2 are very similar but that there are marked differences. For the case of the RMSE

composed of the two DEM, according to Section 2.3 (
√

RMSE2
z−05 + RMSE2

Z−02 ≈ 0.5 m),
both in Figures 8 and 12, percentages of areas greater than 90% are obtained. This means
that there is a great resemblance. However, quite large values for outliers were detected
along with a spatial behavior that shows a clear presence of spatialized bias which is not
randomly distributed (see the clustered spatial preponderance of the red and yellow areas
in Figure 8). The curves labeled “above” and “below” in Figures 8 and 12 corroborate this
situation, and also the predominance of the case “below”. That is, S2 is somewhat sunk
with respect to S1.

The curves and figures generated as results are descriptive of the similarity and
differences between S2 and S1, but could also be the basis for acceptance/rejection processes
if specifications were available. For example, if it had been considered as a specification
that for a buffer width w = 3 × RMSE the product under control must have at least 95%
of the area within the buffer and that, at least 50% of the population has a voxel-overlap
level greater than 50%, Figure 11 would indicate that this condition is fulfilled for S2 with
respect to S1.
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4. Discussion

Since our greatest interest in this work is the methodological proposal, the discussion
will focus on different key aspects that we consider regarding the use of buffer methods:

• Concept. The leap from the application of buffering methods from lines to DEM is
quite straightforward and the concepts handled are very similar. The application of
the buffer methods to lines entails a certain dimensional change, from 1D to 2D, which
in our proposal should have led to a step from 2D to 3D. For simplicity, and because
it is more usual to deal with area units than with volume units, the first perspective
was developed. The presence of the 3D perspective is included in the application of
the DBM when dealing with voxel-overlapping. Of course, the volume could also
have been analyzed for the case of the SBM, but in this case, a curve like the one in
Figure 8 would be obtained but scaled in units of volume. The use of areas allows the
application of these methods also quite directly to the case of other variables such as
slope and elevation.

• Algorithms. The application to the case of grid-type DEMs is straightforward, the use
of simple map algebra operations allows executing these processes without problem,
with agility and for large amounts of data. Working with other DEM data would
require coding more complex algorithms.

• Analysis element. In this sense, there is a radical change with respect to the assessment
usually applied to DEM, which is based on points (e.g., altimetric error assessments).
The analysis based on surfaces seems to us more natural and closer to the reality that
we want to analyze. As in the case of application to linear elements, the proposed
methods allow them to be applied to a single surface, or to a set of surfaces, regardless
of their extension.

• Discrepancies. Since distributional curves are obtained (e.g., those of Figures 8, 11 and 12),
more information is available on the behavior of the discrepancies between two DEM
data sets. Since the discrepancies do not usually fit a normal distribution, having
curves relative to observed distributions allows working with percentiles in a direct
way. In the case of wanting to carry out quality control (hypothesis testing), these
curves can be used as a basis for control methods based on tolerances (one or more
tolerances) (see [26]).

• Analysis capabilities. In relation to the results and possibilities of analysis, the SBM
and the DBM are different, as happened in the case of application to linear data and
their complementary results, since they present two different perspectives of the same
reality. In general, the results of the SBM are easier to interpret than those of the
DBM when a partial voxel intersection perspective is adopted on it. In any case,
both methods generate curves very similar to observed distribution functions (global
or partial). This offers a powerful analysis tool since it visualizes what happens in
the entire population or sub-population of interest. Furthermore, the use of these
observed distribution functions eliminates the need for the normality hypothesis
on discrepancies and allows the application of quality control techniques by means
of tolerance(s).

• Applicability of SBM and DBM. We consider that the SBM is more suitable for the case
in which the accuracy of S1 is much greater than that of S2, in such a way that it can
be considered negligible. In the case of analysis of positional accuracy by points, this
circumstance is considered valid when its accuracy is at least three times better. In this
case, discrepancies can be considered as errors of S2 in relation to the reference (S1).
We consider the DBM to be more suitable for the case where the accuracy of S1 and S2
are approximately equal.

5. Conclusions

This research proposes the use of buffering methods for the comparison of DEMs.
Buffer methods have originated in the field of evaluating linear elements, where their use
is consolidated, but not widespread. The application of buffering methods to the case of
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DEMs is a logical consequence since, in principle, they are more suitable for dealing with
continuous realities and where it is difficult to find “easily identifiable and well-defined
points” as required in the positional accuracy standards (e.g., [5]).

The application of the methods to the case of gridded DEMs is quite straightforward,
although it requires some adaptation for the DBM, but, in any case, they are solved with
simple map algebra operations. The results of the SBM allow a direct relationship with
already developed positional control methods, which are based on control by tolerances
applying a multinomial law. Furthermore, the area inclusion curve per buffer width
allows conclusions to be drawn about the presence of outliers and biases. The results of
the DBM are richer and more complex than those of the SBM since it is played with the
degree of intersection of the voxels (voxel overlapping) of the two buffers, which allows
a probabilistic interpretation that, in addition, can help to a visual interpretation. This
method also makes it possible to analyze the presence of biases. The results of both methods
are complementary to the existing ones that are based on parameters (e.g., root mean square
error, deviation). In addition, we consider that they present a richer perspective by offering
a broader view of what is happening through distributional curves.

The two methods presented here were applied to altimetry, but can also be applied,
mutatis mutandis, to the case of slopes and orientations. In this way, it is possible to have a
homogeneous approximation to the most used variables of a DEM.

In the future, we plan to develop our method using a wide set of DEMs based on
producer specifications to be accomplished and then try several values for wi in order to
perform a quality control deciding amongst acceptance or rejection.
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