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Abstract: The adsorption of retinol, niacinamide and glycolic acid active ingredients on the internal
surface of halloysite in an aqueous environment was explored at the molecular level by means of
calculations based on quantum mechanics and force fields from empirical interatomic potentials.
These active ingredients are stably adsorbed on the internal surface of halloysite forming hydrogen
bonds between the hydrogen, oxygen and nitrogen atoms with the hydroxyl groups of the inner
surface of the halloysite. In addition, electrostatic interaction between these active ingredients with
the water molecules was observed. Therefore, the theoretical results indicate that the adsorption
of these active principles is favourable in the halloysite nanotube, which allows directing future
experimental investigations for the development and design of retinol, niacinamide and glycolic acid
with halloysite nanotubes systems, which may be topical formulations for skincare.
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1. Introduction

Natural, modified, or synthetic clay minerals are some of the most used ingredients in
the pharmaceutical area. The interest in their numerous applications has been increasing
in the field of drug and active ingredient delivery systems. This is because clays have
a wide variety of properties that make them advantageous and useful ingredients [1,2].
Specifically, in cosmetics, clays have been used as active ingredients and as excipients, with
the main purpose of improving the cosmetic formulation. For example, they have been
used as viscosifiers [3,4], gelling and emulsifying agents in the formation of emulsions [5],
stabilizing agents for suspensions and agents that confer thixotropic properties to suspen-
sions [6], and moisturizers in the preparation of cosmetics for the skin and hair [5]. Clay
minerals are also used as binders in the formulation of toothpastes [7], and as sunscreens
because they reflect ultraviolet radiation and serve as support for other UV filters [8]. Other
uses are as powders, in the formulation of deodorant creams, in dry anti-grease shampoos
and in facial cosmetic formulations, as a base for make-up, compact powders and hydrating
masks [9]. Additionally, currently, they act as active ingredients in dermocosmetic products
for topical application, because clays have different properties for the maintenance and
care of the skin, including the delay in aging, wound healing, anti-inflammatory, soothing
of irritations, exfoliants, actiacne and improving the skin appearance and texture [10,11].

In particular, halloysite is a nanotubular clay of the kaolin group, its chemical com-
position is the same as kaolinite (Al2Si2O5(OH)4·nH2O), with a dioctahedral 1:1 structure.
Generally, the length of the nanotubes is 0.2–1.5 µm, and the inner and outer diameters
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are in the ranges of 10–30 nm and 40–70 nm, respectively [12]. The inner surface is alu-
minum hydroxide (with positive charge) and the external surface is silicon dioxide (with
negative charge). The halloysite structure and composition provide properties, such as
high-absorbent, biocompatible and low cost, that make them versatile materials for phar-
maceutical applications, as other clay minerals [13–17]. In the cosmetic field, halloysite
has been studied as a skin cleanser agent [18]. Recently, halloysite nanotubes have been
used to encapsulate hair dyes, allowing the use of different low water-soluble compounds,
and hair coating has also been observed through physical adsorption and self-assembly
of the nanotubes [19,20]. In addition, halloysite with titanium oxide as sunscreen [21],
and hybrid halloysite nanotubes and keratin have been studied, producing the coating
of the capillary surface and thus protecting it against ultraviolet radiation [22]. Within
the field of cosmetics, most of the products used nowadays, including those that contain
halloysite or other clays, are intended for topical application, specifically, the formulation
of anti-aging cosmetic products that delay the appearance of these signs, as well as other
skincare maintenance products that are booming [23,24].

Apart from clays, there are other ingredients widely used in this type of dermocos-
metic formulations and that can be used topically incorporated into halloysite, seeking
many positive effects in the same formulation. Pure vitamin A, also called retinol, has
several roles depending on the concentration at which it is used in the cosmetic formulation.
At low concentrations, it is a powerful antioxidant and neutralizer of free radicals, and
it has skin-softening effects by improving the synthesis of collagen and elastin, which
contributes to the hydration and luminosity of the skin. At higher concentrations, retinol
has keratolytic activity, decreasing the stratum corneum (cell renewal), improving wrinkles
and acne marks, and having depigmenting properties. Hence, retinol is frequently used as
an active ingredient in many skincare formulations to reduce photoaged and aged skin,
wrinkles, hyperpigmentation, acne, psoriasis, among others [25,26]. However, it has some
disadvantages in its formulations due to its low aqueous solubility and photosensitivity
(highly sensitive to light and oxygen). Additionally, retinol has a narrow therapeutic win-
dow, leading it to be ineffective at low concentrations and toxic at high concentrations [27].
Its administration as a hybrid halloysite–retinol system could show good results, improving
the elaboration of the formulations and their efficacy. Clay minerals could improve their
aqueous solubility, as has been shown in their interaction with other drugs [28]. Moreover,
clays could protect retinol from sunlight (physical sunscreen clays). Thus, the topical effects
of clays would act synergistically with retinol.

Niacinamide is also among the top ten most used antioxidants in recent years [24].
Niacinamide, also known as nicotinamide, is a form of vitamin B3 and it is present in human
cells as a precursor of nicotinamide adenine dinucleotide. The topical administration
of this cosmetic ingredient has shown benefits across a wide range of skin conditions.
Niacinamide has been proposed as an antiaging cosmetic for its antioxidant effects. It
has also shown benefits in inflammatory, acneic, hyperpigmentary and photoprotection
processes, and it decreases cutaneous pigmentation, and thus its efficacy in the treatment
of rosacea, acne and autoimmune blistering disorders such as bullous pemphigoid has
been reported [29–32].

In addition, another compound currently relevant in skincare cosmetics is glycolic
acid or hydroxyacetic acid which is the shortest chain alpha hydroxy acid. This active
ingredient has an action on the deepest surface of the skin and after its facial application
produces superficial chemical exfoliation, being one of the most used peels together with
retinoids [33]. Hence, glycolic acid is widely indicated to rejuvenate the skin overall
because when it is applied, the skin surface is exfoliated in order to renew the skin [34].
This active ingredient is used for moderate photodamage, actinic damage, acne, seborrheic
skin, rosacea and pigmentary disorders [35]. Therefore, glycolic acid applications are
intended to reduce wrinkles, stretch marks, scars, acne, lack of luminosity or skin damaged
by the sun [36,37].
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For these reasons, the formulation of halloysite with these active ingredients (retinol,
niacinamide and glycolic acid) would bring great advantages in the cosmetic field. Hal-
loysite would be complemented with these ingredients acting as an active ingredient as
well as an excipient serving as a vehicle and protecting active ingredients inside the nan-
otube from degradation. In the last few decades, calculations at the atomic and molecular
levels have shown to be useful tools for design drugs and pharmaceutical composites in
order to explore potential applications. Specifically, the adsorption of organic molecules on
halloysite has been previously studied with molecular modeling [38–41]. In this work, the
halloysite–retinol, halloysite–niacinamide and halloysite–glycolic acid systems are studied
with computational methods as the first step in the development of cosmetic skincare
formulations.

2. Methodology
2.1. Models

The retinol, niacinamide and glycolic acid crystals were taken from the crystallo-
graphic data of CCDC num. 1,284,683 [42], 817,410 [43], 1,011,488 [44], respectively. Subse-
quently, the molecules were extracted and modified from the crystals in order to study their
adsorption in halloysite nanotube. For it, a 1 × 1 × 2 supercell of halloysite with the for-
mula Al152Si152O380(OH)304 and with 1292 atoms was generated. The halloysite supercell
was created from the unit cell of the nanotube that was described in previous works [45–47],
which has an internal layer of aluminium hydroxide octahedral, with an internal diameter
of 27 Å, joined to an external layer of silicon oxide tetrahedra. This small halloysite model
was chosen in a balance between the computational effort and a representative description
of the mineral surface in the confined space of the clay mineral. The adsorption complexes
created, halloysite–retinol, halloysite–niacinamide and halloysite–glycolic acid, were good
models to reproduce the interactions between the active ingredients at the molecular level.

2.2. Molecular Modeling Methodology

The optimization of the unit cell of halloysite nanotube structure was performed
with quantum mechanical calculations by using Density Functional Theory (DFT) with
CASTEP code of the Materials Studio package [48] the Perdew–Burke–Ernzerhof (PBE)
correlation exchange parameterization. On-the-fly generated (OTFG) ultrasoft pseudopo-
tentials were used with Koelling–Harmon relativistic treatment [49], and the cut-off energy
of the calculation was 300 eV [48]. After the optimization of the halloysite unit cell, the
1 × 1 × 2 supercell was created to study the adsorption of the retinol, niacinamide and
glycolic acid molecules.

These molecules were optimized with the Compass force field (FF) by using the
Forcite program that has provided good results in previous studies [48,50]. For non-
bonding interactions, the Coulomb and van de Waals interactions were calculated by the
Ewald and atom-based methods, respectively, with a cut-off of 18.5 Å. The water geometry
was optimized using the same methodology.

Different conformations and orientations between the retinol, niacinamide and glycolic
acid inside the halloysite nanotube were randomly explored using Monte Carlo methods
with the Compass FF and the Adsorption Locator module [48]. The more stable active
ingredient-clay complexes were selected. Later, the selected adsorption models were filled
with the optimized water molecules with 1 g/cm3 density using the Compass FF and
Amorphous Cell module [48]. In these complexes, the DFT optimized structure of the
halloysite was fixed except for the hydrogen atoms of the inner surface. Subsequently,
the complexes with the water molecules were reoptimized using again Compass FF and
Forcite module with a cut-off of 18.5 Å.

The adsorption energies of these complexes were compared according to the equation:

∆Eads = (Ecomplex) − (Eactive + Eclay). (1)
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For this, the energies of each optimized active-clay adsorption complex with water,
Ecomplex, the optimized active ingredients, Eactive, and the optimized halloysite nanotube
with water, Eclay, was calculated using the Compass FF and the Forcite program with a
cut-off of 18.5 Å [48].

3. Results

Firstly, the geometry of retinol, niacinamide and glycolic acid molecules was optimized
with Compass FF as described above. In Figure 1, the optimized structures are shown. In
addition to the bioactivity of these drugs, the chosen molecules represent a wide range
of molecular properties, one with a long hydrophobic chain as retinol, one more polar
with an aromatic ring and amide group as niacinamide, and another more polar and small
molecule with reactive functional groups as the glycolic acid. In the optimized molecule
of niacinamide, the carbonyl group and amide N atom are co-planar with the aromatic
ring. In the same way, the hydroxyl and carbonyl groups of glycolic acid are co-planar with
hydroxyl groups in a syn conformation, oriented towards the carbonyl group.
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Subsequently, the unit cell of the halloysite nanotube was optimized with the DFT
method as described above, and then the supercell 1 × 1 × 2 was created. The adsorption of
the optimized retinol molecule in the inner of the halloysite nanotube was explored. Monte
Carlo methods using the Compass FF were performed to sample the large conformation
space of these macromolecular systems and to determine the most stable active ingredients–
halloysite complexes. From these simulations, the 10 structures with the lowest energy
were compared. In all cases, the molecules were adsorbed in the internal surface of the
halloysite with a parallel arrangement and similar orientation between the clay surface
and the drug with no large variance were found. Therefore, the lowest-energy structure
was taken as representative of this sampling. Other orientations are not expected to have a
significant role due to their higher relative energy.

The retinol–halloysite complex was selected, filled with water molecules and reopti-
mized again with Compass FF. The results showed that the retinol inside the halloysite was
oriented in a perpendicular direction with respect to the c axis of the nanotube and in par-
allel with respect to the mineral surface (Figure 2). The most important interaction between
the active molecule and the mineral is a strong hydrogen bond between the hydroxyl O
atom of retinol and the H atoms of the OH groups of the inner surface of halloysite with
d(ORET . . . HHAL) = 1.65 Å. In addition, electrostatic interactions were found, between the
H atoms of the retinol and the O atoms of the clay mineral inner surface with d (HRET . . .
OHAL) about 2.54–2.76 Å. The water molecules that surround retinol also present electro-
static interactions with this molecule with d(HRET . . . OH2O) = 2.61–2.84 Å (Figure 2). The
adsorption energy of this complex was −57.52 kcal/mol. Therefore, the adsorption of the
retinol on the internal surface of the halloysite is exothermic and favourable.
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The most stable complex of niacinamide adsorbed on the internal surface of the hal-
loysite was also found with Monte Carlo methods using the Compass FF. This complex was
selected, filled with water molecules and reoptimized again with Compass FF (Figure 3).
The results indicated that the niacinamide was oriented in a perpendicular direction with
respect to the c axis of the nanotube and in parallel with respect to the halloysite surface.
Therefore, there are strong hydrogen bonds between the oxygen and the nitrogen atoms
of niacinamide with the H atoms of the OH groups of the inner surface of halloysite with
d(ONIAC . . . HHAL) = 1.79 Å and d(NNIAC . . . HHAL) = 1.87 Å, respectively. Electrostatic
interactions were found between the H atoms of niacinamide and the O atoms of halloysite
with d(HNIAC . . . OHAL) about 2.61–2.85 Å. Additionally, hydrogen bonds between the
oxygen, nitrogen and hydrogen atoms of niacinamide with the water molecules around
d(ONIAC . . . HH2O) = 1.81 Å, d(NNIAC . . . HH2O) = 1.88 Å, and d(HNIAC . . . OH2O) = 2.28 Å,
respectively were observed (Figure 3). In addition, the niacinamide–halloysite complex
adsorption energy was −45.45 kcal/mol, hence the adsorption of this active ingredient on
the halloysite confined surface is a favourable process.

Finally, the adsorption of the glycolic acid on the inner surface of the halloysite was
also studied initially with Monte Carlo methods using the Compass FF. After that, the most
stable complex of glycolic acid–halloysite was selected, filled with waters and reoptimized
again with the same FF. With this active ingredient, the optimized adsorption complex
showed that the glycolic acid was also placed in a perpendicular direction with respect
to the c axis of the nanotube and in parallel with respect to the clay mineral (Figure 4).
The main interactions between glycolic acid and the halloysite structure were showed,
specifically between the hydrogen and oxygen atoms of glycolic acid with the oxygen
and hydrogen atoms of the mineral internal surface with d(HAC . . . OHAL) = 1.65–2.56 Å
and d(OAC . . . HHAL) = 2.11–2.68 Å, respectively. In addition, interactions between the
hydrogen and oxygen atoms of glycolic acid with the oxygen and hydrogen atoms of the
water molecules were found with d(HAC . . . OH2O) = 1.68 Å and d(OAC . . . HH2O) = 2.19 Å,
respectively (Figure 4). The adsorption energy of this complex was calculated with the
equation described above. The results showed adsorption energy of −21.22 kcal/mol,
therefore the adsorption of the glycolic acid on the internal surface of the halloysite is also
favourable. Nevertheless, this energy is lower than in the above drugs.
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In summary, with the results obtained with the Monte Carlo simulations, it was
observed that the adsorption of these molecules (retinol, niacinamide and glycolic acid)
is more favorable in the internal surface of the halloysite. Specifically, the molecules are
positioned parallel to the surface and in a perpendicular position with respect to the c
axis of the nanotube. The geometry optimizations of the adsorption complexes in a water
environment showed the main hydrogen bonds and electrostatic interactions between
the drug, the surface of the halloysite and the water molecules; as well as that retinol,
niacinamide and glycolic acid are stably adsorbed in the clay mineral nanotube.

Considering these findings in the context of possible applications in the field of dermo-
cosmetics, it can be stated that the three active ingredient–clay complexes have favourable
affinities and the adsorption physicochemical properties suggest the continuation of stud-
ies focused on preparing cosmetic formulations based on these systems. Note that the
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retinol–halloysite hybrid material showed the best performance among the three studied
here and would be then the optimal one for this purpose.

4. Conclusions

Retinol, niacinamide and glycolic acid are molecules whose use is currently booming,
due to the fact that they have a great variety of beneficial effects on the skin, like halloysite.
The combined use of these aforementioned active ingredients with halloysite clay minerals
may lead to formulations for skincare.

In this work, the adsorption of these active ingredients (retinol, niacinamide and
glycolic acid) on the halloysite nanotube was studied with theoretical calculations allowing
to investigate these adsorption phenomena at the atomistic level, as the first stage in the
design and development of these active ingredient–halloysite formulations. The results
showed that the main interactions between these active ingredients and the halloysite in
an aqueous environment are hydrogen bonds or electrostatic interactions between mainly
oxygen and hydrogen atoms of the active ingredients with hydrogen or oxygen atoms
of the internal surface of the halloysite nanotube. Furthermore, retinol, niacinamide and
glycolic acid were adsorbed inside the nanotube with an exothermic process, and the
adsorption of these active ingredients on the confined halloysite surface was favourable.
This indicates that retinol, niacinamide and glycolic acid could be experimentally adsorbed
on the halloysite to obtain topical formulations for skincare.
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