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Ergodicity-breaking and slow relaxation are intriguing aspects of nonequilibrium dynamics both in
classical and in quantum settings. These phenomena are typically associated with phase transitions,
e.g. the emergence of metastable regimes near a first-order transition or scaling dynamics in the
vicinity of critical points. Despite being of fundamental interest the associated divergent time scales
are a hindrance when trying to explore steady-state properties. Here we show that the relaxation
dynamics of Markovian open quantum systems can be accelerated exponentially by devising an
optimal unitary transformation that is applied to the quantum system immediately before the actual
dynamics. This initial “rotation” is engineered in such a way that the state of the quantum system
becomes orthogonal to the slowest decaying dynamical mode. We illustrate our idea — which is
inspired by the so-called Mpemba effect, i.e., water freezing faster when initially heated up — by
showing how to achieve an exponential speed-up in the convergence to stationarity in Dicke models,
and how to avoid metastable regimes in an all-to-all interacting spin system.

Introduction.— A strong focus of current research
in many-body quantum physics is on understanding
(nonequilibrium) phases of matter and transitions be-
tween them. Often associated with that are slow relax-
ation and divergent time-correlations [1–7], which typi-
cally signal the onset of critical behavior [8–13] or the ap-
pearance of metastable dynamical regimes [14, 15] near
first order phase transitions. In certain instances, the
concomitant very long relaxation time scales become im-
practical or even detrimental when a fast approach to sta-
tionarity is desired. This is certainly the case when one is
interested in studying steady-state properties [16], or, for
instance, when the stationary state encodes the result of
some computation [17, 18]. In physical terms, the char-
acteristic time needed for an open dissipative quantum
system to approach stationarity is given by the lifetime
τ of the slowest decaying excitation mode. A random
initial pure state |ψ〉 [see Fig. 1(a)] is typically out-of-
equilibrium and excites all dynamical decaying modes,
including the slowest one. As such, it will ultimately
converge to stationarity in a time proportional to τ .

In this paper, we show that, if the slowest decaying
mode is unique, one can always find an appropriate uni-
tary operation which, once applied to the initial state
|ψ〉, allows the open system to reach stationary behavior
at a significantly faster pace. The idea, which is sketched
in Fig. 1(b), is that the unitary operation U removes
the excitation of the slowest decaying mode from the ini-
tial state |ψ〉, which achieves an exponential speed-up
[see Fig. 1(c)]. The basic mechanism underpinning our
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FIG. 1. Mpemba effect in a Markovian open quan-
tum system. (a) We consider a quantum system, initially
prepared in some pure state |ψ〉 and subject to a Markovian
open quantum dynamics. Generically, the time scale for the
approach to stationarity is contained in the dynamical gener-
ator L and is related to the slowest decaying excitation mode.
Before the time evolution starts, we apply a unitary operation
U to the quantum state |ψ〉, which makes it “orthogonal” to
such slow mode. (b) After applying the unitary operation the
system dynamics is not affected by long-lived excitation and
approaches the stationary state in a “more direct” way. (c)
Sketch of the slow relaxation (blue line), contrasted with the
accelerated one emerging after the applying the unitary (red
line). The y-axis is in logarithmic scale.

finding is reminiscent of the so-called Mpemba effect [19],
which refers to the phenomenon that a hotter liquid cools
at a faster rate than a colder one. Often, this and related
phenomena [20–28] indeed admit a transparent physical
explanation [20, 22, 24, 27]: the state of the hotter sys-
tem overlaps less with the slowest decaying modes of the
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cooling (dissipative) dynamics — a hypothesis which has
been confirmed experimentally in a trapped colloid par-
ticle [25]. In certain instances, however, such a clear
separation of time scales may not occur. Still, an anoma-
lous relaxation towards equilibrium can be investigated
by monitoring the evolution of thermodynamic quanti-
ties representing internal degrees of freedom, such as ki-
netic and rotational energy, kurtosis or correlation length
[21, 23, 26, 28]. Here, we explore the analogue of the
Mpemba effect in Markovian open quantum systems. Us-
ing paradigmatic many-body systems of both theoretical
and experimental interest we demonstrate the possibility
of speeding-up the approach to stationarity and to avoid
long pre-stationary metastable regimes.

Markovian open quantum dynamics.— We first
briefly discuss the fundamental elements of open quan-
tum systems subject to a Markovian dynamics [29–37].
The evolution of the density matrix ρt, describing the
state of the quantum system, is governed by the quan-
tum master equation ρ̇t = L[ρt] [29, 31, 32], where L is
the Lindblad map

L[X] = −i[H,X]+

NJ∑

µ=1

(
LµXL

†
µ −

1

2

{
L†µLµ, X

})
. (1)

Here, H = H† is the Hamiltonian of the system, and the
NJ jump operators Lµ describe the dissipative effects due
to the presence of an environment. The Lindblad map
L preserves the trace [Tr (L[X]) = 0] and hermiticity

[(L[X])
†

= L[X†], ∀X] and generates completely positive
(physical) dynamics of the quantum state ρt.

The formal solution to the quantum master equation is
given by ρt = etL[ρ0], where the exponential of the map
L must be interpreted as the power series. Assuming
the generator to be diagonalizable, one can find the right
eigenmatrices, rk, such that

L[rk] = λk rk . (2)

The complex numbers λk are the eigenvalues of the Lind-
blad map. Note that, due to the hermiticity-preservation
of L, if λk is a complex eigenvalue, then λ∗k must also be
an eigenvalue. For the same reason, one can also show
that if λk is real, then rk can be chosen to be Hermitian.
Associated with the map defined in Eq. (1), there is a
dual map, also called the adjoint Lindblad map, which
implements the evolution of observables:

L+[O] = i[H,O] +

NJ∑

µ=1

(
L†µOLµ −

1

2

{
O,L†µLµ

})
.

This dual map, L+, is diagonalized by the left eigenma-
trices `k,

L+[`k] = λk `k . (3)

The matrices `k are in principle different from the matri-
ces rk in Eq. (2). However, `k and rk still form a basis
for the space of matrices and can always be defined with
the property Tr (`krh) = δkh.

Since the dynamics generated by L is completely pos-
itive, the eigenvalues of the Lindblad map all have a
non-positive real part, Re (λk) ≤ 0. Furthermore, trace
preservation enforces that at least one eigenvalue is zero,
λ1 = 0. If such an eigenvalue is non-degenerate — we
will work under this assumption — the (asymptotic) sta-
tionary state of the open quantum system,

ρss = lim
t→∞

ρt , (4)

is unique and given by the right eigenmatrix r1. Since
the left eigenmatrix associated with λ1 is the identity,
`1 = 1, one has Tr (r1) = 1. Finally, the matrix r1 is
guaranteed to be positive due to complete positivity of
etL.

The spectral decomposition of L allows us to write the
dynamics of any initial density matrix as

etL [ρ0] = r1 +

d2∑

k=2

etλkTr (`k ρ0) rk , (5)

where d is the dimension of the Hilbert space of the sys-
tem. This decomposition shows that the matrices rk are
nothing but the excitation modes of the system, each one
characterized by its decay rate |Re(λk)|. For long times,
the relevant terms are those related to the λk with the
smallest real part in modulus. We order the eigenval-
ues λk in such a way that |Re (λ2) | ≤ |Re (λ3) | ≤ · · · ≤
|Re (λm) | and we further assume that the eigenvalue λ2
is real and unique. In this case, the time scale for relax-
ation is given by

τ =
1

|λ2|
, (6)

and r2 is in fact the slowest decaying excitation mode of
the Markovian open quantum dynamics.
Mpemba effect.— A generic initial state will overlap
with all decaying modes of a Lindblad dynamics, and
thus, in particular, also with the slowest one. As such,
the approach to the stationary state will take place in a
time which is of the order of the relaxation time (6).
However, looking at Eq. (5), one sees that this time
scale becomes completely irrelevant for the dynamics if
Tr (`2ρ0) = 0. In such a case, the state would relax at
a faster rate with time-scale 1/|Re(λ3)|, which implies
an exponential speed up of the convergence to stationar-
ity. In what follows, we show how such acceleration may
always be achieved when starting from an initial pure
state, ρ0 = |ψ〉 〈ψ|, by performing a unitary rotation to
the state before the actual time-evolution takes place.
This is in spirit similar to the Mpemba effect, where an
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initial thermal state is first heated up before the cooling
dynamics is started.

Given an initial pure state ρ0 = |ψ〉 〈ψ|, there always
exists a unitary U — which depends on the state — such
that

Tr
(
`2 Uρ0U

†) = 0 , (7)

if the slowest decaying mode is unique. This can be
shown as follows. First of all, we notice that the ma-
trix `2 must be Hermitian since we have assumed that λ2
is real and nondegenerate. As such we can write it in its
spectral form

`2 =

d∑

k=1

αk |ϕk〉 〈ϕk| ,

where 〈ϕk|ϕh〉 = δkh. We then note that, since
Tr (`2 r1) = 0 and r1 is positive, the set of eigenvalues
αk must contain at least two eigenvalues with opposite
sign or one equal to zero. Introducing an auxiliary or-
thonormal basis {|ψk〉}dk=1 for which |ψ〉 = |ψ1〉 (i.e. the
initial state is a basis state) and using the spectral de-
composition we find for the left hand side of Eq. (7):

Tr
(
`2 Uρ0U

†) =

d∑

k=1

αk 〈ψ1|U† |ϕk〉 〈ϕk|U |ψ1〉 .

To simplify the construction of the unitary we divide it
into two parts, U = U2 U1. The first unitary is chosen
such that it maps the auxilliary basis |ψk〉 onto the basis
|ϕk〉, which is simply achieved by U1 =

∑
k |ϕk〉 〈ψk|,

yielding

Tr
(
`2 Uρ0U

†) =
∑

k

αk 〈ϕ1|U†2 |ϕk〉 〈ϕk|U2 |ϕ1〉 .

In the next step we construct U2 such that the right hand
side of this expression becomes zero. Recalling that αk
are real numbers, two cases need to be considered: In case
one of the αk is zero, it is sufficient that U2 performs a
permutation of the basis {|ϕk〉}, mapping |ϕ1〉 onto the
eigenstate |ϕh〉 for which αh = 0.

In the non-trivial case, in which `2 does not have a
zero eigenvalue, we can make a construction based on the
following observation: the eigenvalue α1 is a real number
and can be either positive or negative. Since `2 cannot
be a positive (or negative) eigenmatrix there must be
an eigenvalue αn such that sign(αn) = −sign(α1). We
then construct the Hermitean operator F = |ϕ1〉 〈ϕn| +
|ϕn〉 〈ϕ1|, which we use to define the unitary

U(s) := e−is F = 1 + (cos(s)− 1)F 2 − i sin(s)F (8)

where F 2 = |ϕ1〉 〈ϕ1| + |ϕn〉 〈ϕn|. Using this unitary
operator we find that

Tr
(
`2 U(s)U1ρ0U

†
1U
†(s)

)
= α1 cos2(s) + αn sin2(s) .

(9)

The above quantity has the same sign as α1 for s = 0 but,
on the other hand, it has the same sign as αn for s = π/2.

In particular, it vanishes for s̄ = arctan
(√
|α1/αn|

)
,

so that if we take the unitary U = U(s̄)U1, Eq. (7) is
satisfied. This implies that the initial state is rotated
into a state which is orthogonal to the slowest decaying
mode and will thus relax, in general, with the time scale
1/|Re(λ3)|. In particular, this means that the approach
to stationarity has been exponentially accelerated by a
factor |Re(λ3)| − |Re(λ2)|.
Application to the dissipative Dicke model.— As a
first application of our result, we consider the single-mode
open quantum Dicke model [38, 39], which is paradig-
matic for the understanding of matter-light interactions
and variants of which have been realised in a number of
experiments [40–44]. It consists of an ensemble of two-
level quantum systems, each of which is described by the

spin operators s
(k)
α = 1

2σ
(k)
α , with σα being the Pauli ma-

trix α. The superscript k indicates the spin to which the
operator belongs. These spin variables are coupled to
a bosonic mode, described by annihilation and creation
operators, a, a†.

In the Markovian regime, the open quantum dynamics
of the Dicke model is described by a generator of the form
in Eq. (1), with Hamiltonian [38]

H = ΩSz + ωa†a +
g√
N

(
a+ a†

)
Sx ,

and a single jump operator (NJ = 1), L1 =
√
κa. This

latter contribution accounts for dissipative losses of ex-
citations for the bosonic mode. While our method can
also be applied to the above model, in order to simplify
the numerics we make an assumption. We consider the
adiabatic elimination of the bosonic mode. By perform-
ing such an approximation (see Supplemental Material),
the model is described solely in terms of spin degrees of
freedom. The dynamics is governed by a generator of the
form (1), with

H̃ = ΩSz−
4ωg2

4ω2 + κ2
S2
x

N
, L̃1 =

2|g|√κ√
4ω2 + κ2

Sx√
N
. (10)

The above dynamics conserves the total angular momen-
tum S2 = S2

x +S2
y +S2

z . In the following we consider the
largest symmetry sector, for which S2 = N(N + 1)/4.
This subspace is formed by the 2m+ 1 eigenstates of the
Sz operator, Sz |m〉 = m |m〉 with m = −N/2,−N/2 +
1, . . . N/2. As initial state ρ0 we take a random pure state
of the form |ψ〉 ∝∑m(am + ibm) |m〉 with am, bm being
uniformly distributed random numbers between 0 and 1.
As shown in Fig. 2(a), the overlap of a randomly selected
state |ψ〉 with the matrix `2 is generically finite. However,
by tuning U(s) we can find an appropriate transforma-
tion U = U(s̄)U1 such that Eq. (7) is satisfied. For the
rotated state, the overlap with `2 is thus zero and we
have an approach to stationarity governed by the decay
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FIG. 2. Dissipative Dicke model. (a) Dependence of the
overlap of a rotated initial random state on the rotation pa-
rameter s. According to Eq. (9), this overlap can interpolate
between the eigenvalue α1 of `2 — which we take here to be
the largest in modulus — and the eigenvalue αn, which is the
largest one with sign opposite to α1. There always exists an
optimal value s̄ for which the overlap can be tuned to zero.
The dashed line shows the overlap, 〈ψ| `2 |ψ〉, of the initial
random state with the decaying mode r2. (b) Distance be-
tween the time-evolved state and the stationary state ρss. We
compare the case of an initial random state (black line) with
the time-evolution ensuing after the application of the rota-
tion U (see main text for discussion). While in the original
case, the approach to stationarity is governed by the eigen-
value λ2, the application of U leads to an exponentially faster
convergence to the steady-state with rate given by |Re(λ3)|.
The parameters for this plot are ω = 1, g = 1, κ = 1 (all in
units of Ω) and N = 40 spins.

rate |Re(λ3)|. This is clearly shown in Fig. 2(b), where
we plot the Hilbert-Schmidt distance

Et(ρ, ρss) =
[
Tr
(
etL [ρ]− ρss

)2]1/2
, (11)

between the stationary state ρss [cf. Eq. (4)] and the time-
dependent state starting from the state ρ0 as well as from
Uρ0U

†, respectively.
Application to an all-to-all interacting spin
model.— As a second application, we consider a spin
model with resemblance to laser-driven interacting en-
sembles of Rydberg atoms [45–49]. This model allows us
to demonstrate how the Mpemba effect may be used to
avoid long-lasting metastable regimes [15, 49, 50]. From
a theoretical perspective, we model the N atoms as two-
level systems, exactly through the spin degrees of freedom
introduced previously. The state with spin pointing up
in the z direction corresponds to the atom being in the
excited (Rydberg) state, while the one pointing down
refers to the ground state of the atom. We consider a
Markovian dynamics such as the one in Eq. (1) with

H = ΩSx −∆Sz +
V

N
S2
z , L1 =

√
κS− ,

where S− = Sx − iSy is a spin ladder operator. For this
model, Ω is the Rabi frequency, ∆ is the laser detun-
ing with respect to the atomic transition frequency ωat

while V parametrises here the strength of the all-to-all
interactions.

largest eigenvalue

smallest  
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initial overlap 
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⇣
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FIG. 3. All-to-all interacting spin model. (a) Depen-
dence of the overlap of a rotated initial random state on the
parameter s. For s = 0 this coincides with the largest eigen-
value of `2, while for s = π/2 it coincides with the smallest.
The latter eigenvalue is negative and very close to zero in
modulus. Also in this case there exists an optimal value s̄
for which the overlap can be tuned to zero. The dashed line
shows the overlap 〈ψ| `2 |ψ〉. (b) Distance between the time-
evolved state and the stationary state ρss of the interacting
spin system. We compare the case of the initial random state
ρ = ρ0 with the one obtained after the rotation ρ = Uρ0U

†.
We see how in this case, the transformation U prevents the
system from entering a metastable regime which would slow
down the approach to stationarity. The parameters for this
plot are ∆ = −1, V = 3, κ = 1 (all in units of Ω) and N = 40
spins.

For certain parameters regimes, e.g. the one consid-
ered in Fig. 3, the model features a so-called metastable
regime, which emerges since |Re(λ2)| � |Re(λ3)|. This
means that, over a long time window during which all
other decaying excitation modes have already relaxed,
the mode related to |Re(λ2)| is still relevant and keeps
the system away from stationarity. In such a scenario, the
accelerated relaxation achieved by applying the transfor-
mation U is even more striking since the exponential gain
is by a factor et(|Re(λ3)|−|Re(λ2)|). This is can be appreci-
ated from the curves displayed in Fig. (3).

Discussion.— We have presented a general method to
control the time scale for the approach to stationarity
in Markovian open quantum systems, which can be con-
sidered a quantum variant of the so-called Mpemba ef-
fect. Our results show how a dramatically accelerated
approach to stationarity can be achieved by applying a
suitable unitary transformation to the initial state, which
removes its overlap with the slowest decaying mode. We
note that the unitary operation U introduced in this work
is “optimal” in the sense that it completely de-populates
the slowest decaying mode. However, as discussed for in-
stance in Ref. [22], in order to observe a Mpemba effect
it would be sufficient to engineer a rotation which simply
diminishes the excitation of such a slow mode. As shown
in Fig. 2-3, this is also achieved by “non-optimal” values
of the parameter s for which the transformed overlap is
smaller, in modulus, than the initial one. Considering
specific many-body quantum models, it would be inter-
esting to explore the possibility to reduce the population
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of the slowest decaying mode by means of a less involved
unitary, for instance by implementing local and indepen-
dent rotation of the different system constituents. This
would not lead to an “optimal” speed-up but would facil-
itate the implementation and observation of the Mpemba
effect in actual experiments with open quantum many-
body systems.
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SUPPLEMENTAL MATERIAL

We show here how to obtain the spin-only description of the Dicke model by performing an adiabatic elimination
of the bosonic mode. The starting point is to consider the Heisenberg equation of motion for the annihilation (or
creation) operator. This equation reads as

d

dt
a = L+[a] =

(
−iω − κ

2

)
a− i g√

N
Sx . (S1)

The actual approximation consists in setting the above derivative to zero. This produces a relation between the
bosonic operator a and the collective spin operator Sx. The idea behind is that the dynamics, and in particular the
decay time-scale, of the bosonic mode is much faster than the dynamics on the spin degrees of freedom. In this regime,
the bosonic mode can be “slaved” to the spin operator Sx. Setting Eq. (S1) to zero, one indeed finds the relation

a = − g (4ω + 2iκ)√
N (4ω2 + κ2)

Sx . (S2)

As a consequence, we can write

(a+ a†) = − 8gω√
N (4ω2 + κ2)

Sx ,

as well as

ωa†a =
4ωg2

4ω2 + κ2
S2
x

N
.

Substituting these relations in the Lindblad generator of the Dicke model, we find the spin-only dynamical description
given in the main text.
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