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SUMMARY

This thesis builds a bridge between Bayesian deep learning and seismo-volcanic monitoring

systems for waveform recognition and change detection, with short-term volcano forecasting ca-

pabilities. We accomplish this task by proposing three scalable, flexible, and universal architec-

tures to perform rapid recognition of earthquake transients while estimating uncertainty to iden-

tify volcano dynamics and seismic changes.

The advent of deep learning (DL) hasmade deep neural networks (DNNs) the preferred choice

in the seismological community, boosting seismo-volcano monitoring to unprecedented levels by

attaining high prediction quality while reducing a broad range of challenging monitoring tasks

to computations within minutes. However, the direct application of DL methods in safety-critical

systems is always conditioned to the data available and the flexibility required to interpret the

unpredictable real world accurately.

A new research field, known as Bayesian deep learning (BDL), fuses the Bayesian theory with

deep learning algorithms. The new BDL approach employs Bayesian neural networks (BNNs) to

capture the uncertainty within the learning model. The BNNs allow rapid and robust Bayesian

inference of complex high-dimensional data distributions, along with the estimation of data-

inherent and model uncertainty. BNNs can be used in their standard form with static waveforms,

such as a classifier of acoustic events. However, most acoustic data has a sequential nature. A seis-

mic station collects seismic data streams, and BNNs may not be suitable to model the intra-event

and temporal dynamics of the recorded data streams that compose the monitoring task. Thus,

the design of robust architectures that can ingest sequential data while providing uncertainty es-
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timation is fundamental for safety-critical tasks, such as seismo-volcano monitoring. Further, a

set of unique geophysical challenges arise due to the nature of the data streams analyzed, leading

to several monitoring drawbacks that impede the exploitation of DL high-capacity models and

uncertainty quantification.

The shortage of large datasets correlated with volcanic activity is considered the foremost chal-

lenge facing a successful deployment of deep learning methods by volcanic observatories. Unfor-

tunately, such datasets are not often available due to the cost and difficulty in manual labeling.

Furthermore, when available, these seismic datasets cover a very short period of a particular erup-

tive episode. From a machine learning perspective, these brief temporary unrest episodes yield a

perpetual problem in which only modest portions of non-uniform data samples are available for

training. Moreover, available data catalogs assume that the geophysical variables and conditions

in the seismic unrest episode will be later encountered or exportable to other volcanoes. Given all

these hindrances, new alternatives have to be studied. We tackle these challenges by invoking a

Bayesian approach over the proposed networks.

In the first part of this research work, we investigate a new Bayesian approach to classify

seismo-volcanic events from frequency-based characteristics in two geologically related volca-

noes. The experimental results of this first approach have shown that the proposed BNN can

detect and recognize seismic events with very high performance. The model is even capable of

discerning which type of earthquake corresponds to which volcano, with the ability to repre-

sent the uncertainty related to the changes in the dynamics of both volcanoes. Next, we have

investigated transfer learning and uncertainty quantification as a unified framework to increase

monitoring adaptability. We propose the uncertainty as a feature to be considered as a detector or

change after an eruption and as a threshold to determine when transfer learning algorithms have

to be used.

In the second part of the thesis, we formulate a Bayesian approach for continuous monitoring

of seismo-volcanic data streams to elucidate whether the uncertainty changes are due to varia-

tions in the tremor background level, changes in the seismic events, or both. We propose a purely

convolutional hybrid model to learn and detect the intra-frequency dynamic range of seismic-
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volcanic events while performing automatic recognition for three different eruptions of the same

volcano. We propose using the estimated uncertainties as a detector of changes with respect to the

initial data distribution known by the model, a type of analysis known as data-drift detection. To

do this, we divide the total statistical uncertainty into two geophysical terms: the observed vari-

ability of the seismogram and the inherent randomness of the monitored seismo-volcanic wave

field. We study the temporal evolution of such proposed terms in the uncertainty analysis. From

a geophysical point of view, we revealed that the temporal evolution of the waveform uncertainty

coincides with higher eruption rates. The discovered data drift in seismo-volcanic datasets pro-

duces a degradation in the metric and a significant increase in uncertainty, both very perceptible

during eruptions. However, after the main eruption, the stabilization of the studied volcano tends

to return the monitoring metric to initial values, but the systems maintain high uncertainty levels.

Finally, we checked that the temporal evolution of the uncertainty coincides with seismological

bulletins.

We then explore if our proposed framework can exploit the total statistical uncertainty to over-

come data scarcity limitations after the data drift has been detected, that is, subsequent to the

main eruption. To this end, we blend our uncertainty framework with the temporal convolutional

model to perform seismo-volcanic recognition while providing a set of maximally informative

data samples to re-train the system. Experimental results have shown that our framework yields

compelling performance with minimal dataset samples, with only 6.6% of the total seismic dataset

to achieve the same performance as that of the baseline system.

In the last part of the thesis, we demonstrate that BDL methods can also be fine-tuned to learn

a direct mapping between the target labels and the raw seismic waveform signals. The scattering

network is a recent mathematical tool to parse raw waveforms into a robust, invariant, and stable

feature representation via wavelet filterbanks. We propose a novel recurrent deep scattering net-

work to learn the multi-scale temporal dependencies from streaming data and the wavelet filter-

banks. We coupled the scattering transform with a carefully designed deep convolutional-LSTM

architecture to learn the best intra-event temporal dynamics from the scattering coefficients. The

uncertainty is essential in our approach as it identifies data drifts likely associated with the vari-
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ations of volcanic processes. We have verified that the temporal evolution of the uncertainty co-

incides with seismological bulletins, as in our previous works. Therefore, we constructed enough

experimental evidence to characterize the data drift in the studied volcanoes. Last, we demon-

strate through transfer learning that the implemented architecture can be exported across various

volcanoes and eruptive styles. We can reuse the implemented system to switch volcano types

with minimal hassle, even if there are new or unknown signals in the target volcano where the

transfer is required. Finally, we show that uncertainty can also be exportable between volcanoes

as an indicator of eruptions.
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RESUMEN

Esta tesis tiene como objetivo el desarrollo de nuevos sistemas de monitoreo sismo-volcánico

para el reconocimiento de señales y la detección de cambios en volcanes, con potencial para la

predicción de erupciones a corto plazo. Los algoritmos de monitorización volcánicos, a pesar de

ser altamente eficientes en la vigilancia sísmica, adolecen de ciertas deficiencias que impiden su

completo despliegue como modelos de alta capacidad en un observatorio vulcanológico. Abor-

damos esta compleja tarea mediante métodos de aprendizaje profundo de tipo bayesiano para

desarrollar sistemas avanzados que permitan la identificación escalable, flexible y rápida de la

señal sísmica, así como estimaciones de incertidumbre asociadas con los cambios en el campo de

onda sísmico monitorizado.

El advenimiento del aprendizaje profundo (DL) ha convertido a las aproximaciones de redes

neuronales profundas (DNN) en la opción preferida y por defecto para la comunidad sismológica.

Esta adopción de sistemas de aprendizaje profundo ha impulsado el monitoreo sismo-volcánico

a niveles sin precedentes, alcanzando tasas de rendimiento muy elevadas mediante cálculos de

pocos minutos. Sin embargo, la aplicación directa de métodos DL en sistemas críticos para la

seguridad humana siempre está condicionada a los datos disponibles y la flexibilidad requerida

para interpretar con precisión el mundo real.

Las DNNs adolecen de una interpretabilidad interna muy limitada, aunque justificable de-

bido a su formulación funcional. Un nuevo campo de investigación, conocido como aprendizaje

profundo bayesiano (BDL), emerge para proporcionar capacidades interpretativas a las predic-

ciones de redes DNNs. La nueva metodología BDL emplea redes neuronales bayesianas (BNN)
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junto con metodologías aproximativas especializadas para capturar la incertidumbre asociada a

un conjunto de datos, a la vez que mantiene todas las ventajas computacionales intrínsecas a los

métodos DL. Las redes BNN permiten estimaciones bayesianas para distribuciones de datos al-

tamente complejas y multidimensionales, proporcionando valores estimados de la incertidumbre

inherente a los datos y del modelo. Esto algoritmos se pueden utilizar en su forma estándar con

formas de onda segmentadas, como un clasificador de eventos sísmicos. Sin embargo, la mayoría

de los datos acústicos exhiben una naturaleza secuencial. Una estación sísmica recopila flujos de

datos sísmicos secuenciales, lo que implica que las BNN requieren de ciertas modificaciones para

poder modelar la dinámica intra-evento y temporal de las secuencias de datos registrados que

componen la serie sísmica.

La escasez de grandes conjuntos de datos que reflejen la actividad volcánica es el principal de-

safío al que se enfrenta un despliegue exitoso de losmétodos de aprendizaje profundo por parte de

los observatorios vulcanológicos. Desafortunadamente, estos conjuntos de datos no suelen estar

disponibles debido al costo y la dificultad del etiquetado manual. Cuando están disponibles, estos

conjuntos de datos sísmicos contienen una breve cronología eruptiva, muy específica del volcán

monitorizado. Desde una perspectiva de aprendizaje automático, estas breves series sísmica son el

origen de un problema perpetuo en el que los conjuntos de datos sísmicos, modestos en su origen,

no homogéneos ni estandarizados en el etiquetado, asumen que el episodio sísmico estudiado se

corresponderá con situaciones posteriores en el volcán. Dados este conjunto de deficiencias iden-

tificadas, junto a lo anteriormente expuesto sobre la necesidad del modelado temporal Bayesiano,

debemos estudiar nuevas alternativas.

En la primera parte de la tesis, investigamos un nuevo enfoque bayesiano para la clasifi-

cación de eventos sismo-volcánicos a partir de características basadas en frecuencia en dos vol-

canes relacionados geológicamente. Los resultados experimentales de este primer enfoque han

demostrado que una red neuronal profunda BNN puede detectar y reconocer eventos sísmicos

con un rendimiento muy alto. El modelo incluso es capaz de discernir el origen volcánico del

terremoto analizado, con bajas tasas de error. Este primer modelo ha demostrado la capacidad de

proporcionar una representación de la incertidumbre relacionada con los cambios en la dinámica
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de ambos volcanes. A continuación, hemos investigado la complementariedad entre técnicas de

transfer learning y la cuantificación de la incertidumbre. Además, proponemos la incertidumbre

como una característica que debe considerarse precursora de los cambios previos a una erupción

y como límite para determinar cuándo deben reentrenarse los algoritmos de monitoreo mediante

transfer learning.

En la segunda parte de este trabajo, modificamos el enfoque bayesiano a configuraciones de

monitoreo continuo con la finalidad de dilucidar si los cambios de incertidumbre se deben única-

mente a variaciones del nivel de fondo de tremor, a los eventos sísmicos, o a ambos. Proponemos

un modelo temporal convolucional y Bayesiano para aprender el rango dinámico intrafrecuencia

de los eventos sismo-volcánicos a la vez que se realiza el reconocimiento automático de even-

tos sísmicos, para tres erupciones distintas de un mismo volcán. En este punto de la investi-

gación, empleamos las incertidumbres estimadas como un detector de cambios con respecto a la

distribución de datos de entrenamiento aprendida inicialmente. Este tipo de análisis se conoce

como data-drift detection. Para ello, dividimos la incertidumbre estadística total en dos términos

geofísicos: la variabilidad observada del sismograma y la aleatoriedad inherente del campo de on-

das sismo-volcánico monitoreado. Estudiamos la evolución temporal de tales términos y confir-

mamos, desde el punto de vista geofísico, que el data-drift en un volcán produce una degradación

en la métrica y un aumento significativo de la incertidumbre, ambos efectos bastantes percepti-

bles durante las erupciones. Sin embargo, la estabilización del volcán estudiado tras una erupción

tiende a retornar la métrica de monitoreo a valores iniciales, pero mantiene elevados niveles de

incertidumbre.

En la siguiente parte de esta tesis, exploramos la capacidad del módulo clasificador temporal

de nuestra arquitectura convolucional Bayesiana propuesta anteriormente para superar las lim-

itaciones de la escasez de datos tras haber detectado el cambio. Con este fin, combinamos nuestro

marco de incertidumbre con el modelo convolucional temporal para realizar tareas de monitor-

ización volcánica al tiempo que muestreamos un conjunto de datos inciertos para volver a entre-

nar el sistema. Este procedimiento, conocido como aprendizaje activo (active learning), ha de-

mostrado que nuestro marco ofrece un rendimiento prometedor con un número de muestras mín-
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imas: el 6,6 % del conjunto de datos sísmicos total ha sido suficiente para lograr un rendimiento

similar al sistema de base entrenado con todo el conjunto de datos.

En la parte final de esta investigación, demostramos que los métodos BDL también se pueden

ajustar para aprender la tarea de monitorización a partir de la forma de onda sísmica sin procesar.

Proponemos una nueva red neuronal profunda para modelar las dependencias temporales de los

datos volcánicos. Para ello, empleamos una nueva metodología, basada en un banco de filtros

wavelet (scattering network), para aprender una representación de características invariantes a

cualquier tipo de deformación o translación matemática, conocida como coeficientes de scatter-

ing. A partir de la red de scattering propuesta, construimos una arquitectura convolucional en el

tiempo (conv-LSTM) cuidadosamente diseñada para aprender la mejor dinámica temporal intra-

evento a partir de los coeficientes de scattering. La incertidumbre es esencial en este enfoque, ya

que identifica el data-drift asociado con las variaciones del volcán monitorizado. Hemos compro-

bamos que la evolución temporal de la incertidumbre coincide con boletines sismológicos y, por

tanto, construimos suficiente evidencia experimental para caracterizar el cambio en los volcanes

estudiados. Por último, demostramos a través del aprendizaje por transfer-learning que la arqui-

tectura implementada es exportable a otros volcanes y estilos eruptivos. Con un número mínimo

de operaciones, podemos reutilizar nuestro sistema de un volcán a otro, incluso si existen nuevas

señales que sean desconocidas en el volcán donde es necesario realizar el nuevo aprendizaje. Fi-

nalmente, demostramos que la incertidumbre también puede ser exportable entre volcanes como

un indicador de erupciones.
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1 | INTRODUCTION

1.1 MOTIVATION

The monitoring of active volcanoes has been characterized as a very challenging data domain.

From amachine learning perspective, the seismo-volcanic data domain is scarce as the availability

of publicly open-access seismic records that ended in an eruption is minimal. Therefore, the mon-

itoring challenges associated with the evolution of unrest have not received sufficient attention.

The complexity of seismic data streams entails years of study by experts to supply the scientific

community with theoretical models that best explain the observables of a particular eruption.

Unfortunately, the theoretical foundations of geophysical and eruptive models yield very sparse,

non-uniform data taxonomies across volcanoes: theoretical labels valid in one volcano do not have

to generalize to other volcanic environments worldwide. Last but not least, economic barriers

do condition the available electronic equipment for monitoring: not all volcanoes in the world

are monitored the same, or sometimes, stored data is overwritten in favor of periods of seismic

interest due to lack of extensive storage facilities. As a result, seismo-volcanic data catalogs remain

modest in some regions of the world and are often non-practical from a monitoring perspective.

Unforeseen seismic conditions may become more frequent in a volcanic environment, but the

relationship between the algorithm and the monitoring task remains the same. Hence, the pri-

mary data challenge associated with the monitoring of volcanoes is the pertinence of the model

over time. Unfortunately, this evolving situation can pass unnoticed by the deployed monitoring

algorithm, ending in erratic behavior, with a high error rate, much after the eruption has passed.
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However, in a safety-critical application such as seismic surveillance of active volcanoes, the mon-

itoring algorithm can output predictions with high accuracy when visual evidence tells otherwise.

This is especially concerning for seismo-volcanic monitoring applications, where datasets are typi-

cally small, labeling requires domain expertise, and any incorrect forecast may influence decisions

that directly impact the human population.

The procedural approaches to recover and deploy monitoring systems after significant erup-

tions are epitomized in the retrospective analysis of new seismic data streams, a manual selection

of events followed by a fine-tuning of the monitoring algorithm. The new seismic unrest condi-

tions can outpace the data analysis and lead to insufficient data samples to retrain the algorithm.

As an example of this situation, the eruptive periods studied here, with short quiescent periods

before the next eruption. Thus, a practical problem is the prompt detection of seismic data stream

alterations before they occur. The detection of change is intertwined with forecasting methodolo-

gies: knowing when and how the observables of the monitored volcano are changing can help to

mitigate volcanic hazards and establish better early warning protocols.

This thesis tackles the challenges of monitoring interpretability and seismic change detection

by developing a Bayesian methodology that permits the comprehensive consideration of how the

volcano is changing and how it influences the monitoring task. From continuous data, the devel-

oped Bayesian procedure discovers, without supervision, seismic data stream alterations, main-

taining the exportability of the monitoring system and the methodology proposed at all times.

Estimating the uncertainty of the monitoring model conditioned to the available seismic data es-

tablishes new venues to communicate volcanic risk. Transfer learning procedures are proposed

to transplant waveform information and prediction capabilities across volcanoes, even if no prior

knowledge (i.e., labels) are available. However, transfer learning still requires substantial anno-

tation efforts to provide a data catalog to perform learning procedures. Removing redundant

information by selecting the optimum set of significant best new seismic signals reduces anno-

tation efforts and increases monitoring adaptability under data shits. In this regard, we explore

how our Bayesian algorithms can be incorporated as an uncertainty-based active learning frame-

work. Finally, the uncertainty of the model is proposed as a potential precursor and an exportable
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forecasting tool across volcanoes.

1.2 OBJECTIVES OF THE THESIS

The main objective of this thesis is to investigate, build and extend recently proposed ad-

vanced machine learning techniques in the context of seismo-volcanic recognition systems. The

development of such systems can assist seismological observatories with the accurate forecasting

of volcanic eruptions, help develop theoretical models to explain what drives volcanic eruptions,

and increase early-warning capabilities while reducing the time required for evacuation proto-

cols. Although the primary field of application of this thesis is seismo-volcanic monitoring, the

algorithms introduced in this research are exportable to other acoustic data domains. We intro-

duce an application example of our novel recurrent architecture for spoken digits classification

and continuous environmental acoustic monitoring in Appendix A.

The core components of our proposed deep learning frameworks include deep neural net-

works (DNN), convolutional neural networks (CNN), temporal convolutions (TCNs), and spe-

cialized convolutional and recurrent architectures (ConvLSTMs). While utilizing these techniques

for monitoring tasks, we also aim to understand how transfer learning can export the embedded

knowledge in the hidden states of a deep learning framework when switching across volcanoes.

The wide range of monitoring tasks tackled in this thesis, detection, segmentation, and classifica-

tion, presents a clear idea of the scalability and the robustness of the presented techniques. More-

over, we aim to propose an uncertainty-based change detection in seismo-volcanic data streams,

potentially using the uncertainty of the model in early-warning procedures. Lastly, we aim to

investigate how these techniques can be integrated into an end-to-end monitoring framework

and propose a novel deep learning architecture with a learnable feature representation obtained

through a modified scattering transform from the raw signal.

In this thesis, the main research questions that we ask can be summarized as follows. First,

we investigate whether Bayesian deep learning techniques could be applicable to seismo-volcanic

recognition systems and if robust performance can be achieved. Second, the adaptability of the
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model via uncertainty-based active learning is explored to solve the data-scarcity problems. Third,

we question the effectiveness of the established feature representation techniques and search for

new venues to integrate deep learning with raw seismic data streams in a multi-label setting.

Finally, we investigate how the estimated uncertainty can be exploited from a forecasting per-

spective: if data drifts are detectable, how these affect performance, and how change correlates

with the evolution of volcanic unrest.

1.3 MAIN RESULTS

The main results and the contributions of our publications included in this thesis are listed

below, as follows:

Publication 1: Volcano Seismic Transfer Learning andUncertaintyQuantificationwith Bayesian

Neural Networks.

In this first publication [14], we propose BayesianNeural Networks (BNNs) to perform event iden-

tification, classification, and uncertainty estimation on seismic data gathered at two active volca-

noes, Mount St. Helens (USA) and Bezymianny (Russia). When both datasets are merged, and

no additional training information is provided, the proposed BNNs offer a considerable 92.08%

performance in discriminating both the type of event and the volcano of origin. Similarly, the

BNNs attain monitoring recognition performances above 90% on each volcano, independently.

We illustrated frequency content variations with estimated uncertainty for each volcano, thus as-

sociating uncertainty to changes in the state of unrest at the studied volcanoes. We propose that

the uncertainty gauge whether the learned models could be exported to other eruptive scenarios

with transfer learning.

Publication 2: Bayesian Monitoring of Seismo Volcanic Dynamics.

In this second publication, [10], the validity of the claim that seismic variations lead to higher un-

certainty levels before main eruptions are investigated from the perspective of continuous moni-
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toring. Our strategy blends a segmentation and temporal recognition module to learn a denoised

time-frequency feature representation, later used in a dynamic contextual analysis for automatic

classification. The experimental results demonstrate efficient signal detection and classification

accuracy. Furthermore, the estimated uncertainty provides a measure of the seismic wavefield

variations, with the characterization of the data drifts in the volcanic system in the hours preced-

ing eruptive activity.

Publication 3: Recurrent ScatteringNetwork detectsmetastable behavior in polyphonic seismo-

volcanic signals for volcano eruption forecasting.

In the proposed deep neural network method in publication [12], we augment the capability of

deep learning architectures with amodified, time-dependent scattering transform to learn a robust

feature representation from raw seismic signals. Specifically, we propose morphing the scattering

transform into a novel E2E hybrid and recurrent learnable deep scattering network to adapt to the

multi-scale temporal dependencies from streaming data. At the same time, with a carefully de-

signed deep convolutional-LSTM architecture, we learn intra-event temporal dynamics from the

scattering coefficients or features. Through evolving epistemic uncertainty, invoking a Bayesian

network strategy, we detect the seismic change and demonstrate the significance of uncertainty as

an indicator for possible forecasting of eruptions. We verify the effectiveness of transfer learning

switching between similar and geophysically different volcanoes.

Publication 4: Continuous Active Learning for Seismo-Volcanic Monitoring

In this work, we explore active learning from a deep neural network perspective using seismic

data streams [11]. Active learning has remained unexplored in seismic monitoring due to the

operational requirements of scalable uncertainty estimation of the data stream and a principled

procedure to select uncertain events within the seismic data stream. This work proposes an active

learning procedure based on temporal convolutions to estimate a temporal uncertainty map to

segment and select the class memberships that need to be reviewed. As a result, we attain a sig-

nificant improvement in monitoring metrics, with only a fraction of the initial dataset to achieve
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a similar performance of 83% for five seismo-volcanic events compared to the baseline system

trained on the full dataset.

Publication 5: REMOS: Recursive Entropy Method of Segmentation for Seismic Signals.

In publication [13], we propose an algorithm to detect, extract, and classify volcanic earthquakes

starting from raw, continuous, waveform data. This algorithm uses the well-established STA/LTA

method to identify trigger times of candidate earthquakes. A minimum entropy criterion is then

employed to investigate many triggers and parse events into individual waveforms. Experimental

results suggest that REMOS can effectively produce data catalogs, even when the signal-to-noise

ratio is poor or event occurrence rates are high.

Publication 6: PICOSS: Python Interface for the Classification of Seismic Signals.

The large seismo-volcanic datasets pose a significant challenge for the manual detection and clas-

sification of volcano-seismic signals. This research work [15] presents a novel open-source Python

interface designed to support seismo-volcanic data analysis. The high level of modularity within

this interface permits the geophysicist to quickly detect seismic signals and label raw seismic

events using either automated or manual approaches. Furthermore, implemented modules fol-

low an intuitive design, enhancing the efficiency and accuracy of the essential data-labeling tasks

required for large-scale volcano-seismological studies.

1.4 OUTLINE OF THE THESIS

The remainder of this work is organized as follows:

1. The theoretical background about Bayesian deep learning methods, and uncertainty quan-

tification, along with the implemented Bayesian methods, are presented in chapter 2

2. The scientific discipline of volcano seismology, how we tackled the classification of events,

and the developed uncertainty framework is presented in chapter 3.
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3. Chapter 4 describes the implemented Bayesian deep neural network for waveform classifi-

cation and uncertainty estimation. The links and temporal evidence between uncertainty

and unrest are presented here. Transfer learning is used to export system performance

across volcanoes.

4. In chapter 5, we introduce the research work with the hybrid Bayesian monitoring frame-

work to detect and segment seismo-volcanic signals. The connection between Bayesian un-

certainty analysis and continuous volcano-seismic monitoring is presented here.

5. We extended the scattering transform to perform learnable temporal modeling and intro-

duced a multi-modular recurrent architecture to perform multi-label detection, segmenta-

tion, and classification of seismo-volcanic waveforms. Our architecture and applicability on

data from three volcanoes are discussed in chapter 6.

6. In chapter 7, we introduce the active learning approach and cost-effective fine-tuning strat-

egy to perform retraining on the system and adaptability to new conditions when the vol-

cano has changed.

7. Finally, chapter 8 includes the geophysical applications developed as part of this thesis and

that support the data curation process and datasets of this research work.

8. Conclusions and discussions for the current and future research on seismic monitoring ap-

plications are provided in chapter 9.

In the appendixes of this document, we include additional figures to demonstrate the inter-

pretability of the developed scattering network in the field of seismo-volcanic monitoring, along

with benchmark results that have helped us to fine-tune the architectures and additional experi-

mental results of this thesis.
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2 | THEORETICAL BACKGROUND

Most problems in Bayesian statistics consist of estimating probability densities that are diffi-

cult to calculate. This type of approach includes a set of algorithms to determine unknown quan-

tities. In the case of neural networks, the non-linearity introduced by the multiple hidden layers

implies that the exact knowledge of the parameters of the network is not directly computable.

However, the knowledge of these parameters is of interest in using neural networks, for example,

to make predictions and compute uncertainties. Therefore, it is necessary to make an approxi-

mation that must be precise, scalable, and flexible enough for deep neural network architectures

working on streaming data. This section summarizes the variational inference framework based

on Monte Carlo numerical sampling, its connections with stochastic regularization techniques in

deep learning. In addition, we introduce the problem of the data drift and how the uncertainty

can be exploited to detect such change. The training workflow, model selection, optimization

procedures, and the technical scaling of the architectures are also presented as part of this chapter.

2.1 MATHEMATICAL DEFINITIONS

First, we establish themathematical notation that wewill follow in the formulation of Bayesian

modeling for neural networks. We define our dataset (assuming we are working with seismic

data) as a set of 𝑁 points, 𝐷 = (X,Y) where X = {𝑥1, 𝑥2, . . . , 𝑥𝑁 } the matrix whose rows corre-

spond to a set of seismic events (in samples) extracted from a continuous seismic record, and

Y = {𝑦1, 𝑦2, . . . , 𝑦𝑁 } is the matrix whose rows contain the corresponding labels that are assigned to
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every seismic event and that are categorized over a set of 𝐶 classes. It is important to emphasize

that the X and Y matrix can be adapted according to the type of monitoring task at hand. In event

classification, this matrix X contains the frequency characteristics extracted from the segmented

signal for each of its rows and each Y, the corresponded label in event classification. We refer to

the opening problem of temporal event recognition, being X, the matrix whose rows contain data

streams with multiple events, and the Ymatrix whose rows contain the labels (or multi-labels) of

each event.

We refer as 𝐿 to the total number of layers in the neural network, being 𝑖 the sub-index of any of

its layers, 𝑖 = {1, · · · , 𝐿}. Therefore, we can specify our neural network as a function parameterized

by its weights, y = 𝑓 𝜔 (x), where 𝜔 represents all weights matrices associated with the hidden

layers of the neural network, that is, 𝜔 = {𝑊𝑖}
𝐿
𝑖=1, x the input feature vector of the network (i.e., a

row of the matrix X) and y the associated vector labels (i.e., a row of the matrix Y). In this section,

we refer as 𝜃 to the parameters that define the approximate distribution 𝑞𝜃 (𝜔).

2.2 BAYESIAN MODELING IN NEURAL NETWORKS

It is well known that Bayesian methods provide a measure of uncertainty for each input and

output of a given model, based on all observed data. In most of the so-called frequentist approaches,

commonly used in neural networks, the final optimization result is a set of best-fitting parame-

ters. Unlike frequentist methods, the result of a Bayesian fit is a probability distribution of each

parameter of the model, called the posterior distribution. For a given set of parameters in our neu-

ral network, and the dataset 𝐷 defined, the posterior 𝑝(𝜔|X,Y) is determined by using the Bayes

Theorem:

𝑝(𝜔|X,Y) =
𝑝(Y|X,𝜔)𝑝(𝜔)

𝑝(Y|X)
. (2.1)

with 𝑝(Y|X,𝜔) is defined as the model likelihood distribution, that is, the knowledge of the model on

the data distribution, and therefore, the assignment of probabilities for each X and Y, given the

parameters of the model. The term 𝑝(𝜔) is known as prior and constitutes the initial, known prob-
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ability distribution of the parameters of the network. Hence, in a Bayesian neural network (BNN),

the prior distribution is specified as a set of probability distributions located on their weights [38].

The denominator of (2.1) corresponds to the model evidence or marginal likelihood, a normalizing

constant that can be obtained by marginalizing the likelihood over the parameters 𝜔:

𝑝(Y|X) =
∫

𝑝(Y|X,𝜔)𝑝(𝜔) d𝜔. (2.2)

Theoretically, the marginalization in (2.2) involves the average with respect to all possible pa-

rameters of themodel𝜔, weighted by 𝑝(𝜔). For complexmodels, such as BNNs, an approximation

is required [30]. Defining all the terms in the numerator and denominator of (2.1), a BNN can pre-

dict the outputs 𝑦∗ for any new input 𝑥∗ through the predictive function by integration over the

parameters of the network 𝜔:

𝑝(𝑦∗ |𝑥∗,X,Y) = E𝑝 (𝜔 |X,Y) =
∫

𝑝(𝑦∗ |𝑥∗,𝜔)𝑝(𝜔|X,Y) d𝜔. (2.3)

where 𝑝(𝑦∗ |𝑥∗,𝜔) is the data likelihood for this new point 𝑥∗. The prediction of new seismic events

for multiple instances in 𝑦∗ is known as inference. However, the exact inference in (2.3) is impos-

sible given that the posterior is part of the integral. The computation of (2.3) with 𝑝(𝜔 |X,Y) is

equivalent to evaluate an infinite number of neural networks with all the possible parameter con-

figurations. This is computationally intractable for neural networks of any size. For this reason,

in Bayesian modelling, an approximate inference procedure is required. This type of inference en-

tails an optimization conditioned to the training of the architecture, that is, the approximation of

this integral. Variational inference methods are used to approximate 𝑝(𝜔|X,Y) and therefore the

equation (2.3).
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2.3 VARIATIONAL INFERENCE IN BNNS

Variational Inference (VI) focuses on obtaining an approximation to 𝑝(𝜔|X,Y) by using opti-

mization procedures [9]. Formally, this optimization aims at determining a probability density,

𝑞𝜃 (𝜔), that should be as close as possible to 𝑝(𝜔 |X,Y). The measure of closeness is given by the

Kullback-Leibler (KL) divergence between both distributions:

𝐾𝐿 (𝑞𝜃 (𝜔) | | 𝑝(𝜔|X,Y)) =
∫

𝑞𝜃 (𝜔) log
{

𝑞𝜃 (𝜔)

𝑝(𝜔 |X,Y)

}
𝑑𝜔. (2.4)

with 𝑞𝜃 (𝜔) known as the variational distribution. We minimize the (2.4) by optimizing the varia-

tional parameters 𝜃 of our variational distribution 𝑞𝜃 (𝜔):

𝜃 = argmin
𝜃

E𝑞𝜃 (𝜔) [𝑙𝑜𝑔 𝑞𝜃 (𝜔) − 𝑙𝑜𝑔 𝑝(𝜔 |X,Y)] (2.5)

𝜃 = argmin
𝜃

𝐾𝐿 (𝑞𝜃 (𝜔) | | 𝑝(𝜔|X,Y)) (2.6)

with 𝜃 the parameters that results in the minimum KL divergence. Once we obtained our varia-

tional approximation 𝑞𝜃 (𝜔), and the KL in (2.4) has been minimized, the predictive distribution is

given as:

𝑝(𝑦∗ |𝑥∗,𝐷) ≈
∫

𝑝(𝑦∗ |𝑥∗,𝜔)𝑞𝜃 (𝜔) d𝜔 =: 𝑞𝜃 (𝑦
∗ |𝑥∗). (2.7)

However, we can verify that the evaluation of the KL divergence in (2.4) requires the computation

of the posterior distribution for our network’s parameters, which are precisely the distribution that

we want to approximate. To circumvent this, we can minimize a function similar to (2.4) added

to a constant term. This function is known as Evidence Lower Bound (ELBO). The mathematical

relationship between the ELBO and KL divergence can be derived from (2.4) as follows:
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𝐾𝐿 (𝑞𝜃 (𝜔) | | 𝑝(𝜔|X,Y)) =
∫

𝑞𝜃 (𝜔) 𝑙𝑜𝑔

{
𝑞𝜃 (𝜔) 𝑝(Y|X)

𝑝(Y|X,𝜔) 𝑝(𝜔)

}
𝑑𝜔

=
∫

𝑞𝜃 (𝜔) 𝑙𝑜𝑔 𝑝(Y|X)𝑑𝜔 +

∫
𝑞𝜃 (𝜔) 𝑙𝑜𝑔

{
𝑞𝜃 (𝜔)

𝑝(Y|X,𝜔) 𝑝(𝜔)

}
𝑑𝜔

= 𝑙𝑜𝑔 𝑝(Y|X) −

∫
𝑞𝜃 (𝜔) 𝑙𝑜𝑔

{
𝑝(Y|X,𝜔) 𝑝(𝜔)

𝑞𝜃 (𝜔)

}
𝑑𝜔

︸��������������������������������������������︷︷��������������������������������������������︸
ELBO or L𝐸𝐿𝐵𝑂 (𝜃)

Therefore it is observable from the above equations that the KL divergence is equal to the

ELBO (L𝐸𝐿𝐵𝑂 (𝜃)) and a constant which is given by the marginal log-likelihood of our data. Since

the KL divergence is a probabilistic distance and always positive, we can thus write:

𝑙𝑜𝑔 𝑝(Y|X) ≥ L𝐸𝐿𝐵𝑂 (𝜃) + 𝐾𝐿 (𝑞𝜃 (𝜔) | | 𝑝(𝜔 |X,Y)). (2.8)

with L𝐸𝐿𝐵𝑂 (𝜃) becoming the objective of our optimization problem. In addition, minimizing the

divergence of KL is also equivalent to maximizing ELBO with respect to the variational param-

eters of the distribution 𝑞𝜃 (𝜔). We can expand the term L𝐸𝐿𝐵𝑂 (𝜃), and obtain its closed-form

expression:

L𝐸𝐿𝐵𝑂 (𝜃) := −
∫

𝑞𝜃 (𝜔) 𝑙𝑜𝑔 𝑝(Y|X,𝜔)𝑑𝜔 + 𝐾𝐿 (𝑞𝜃 (𝜔) | | 𝑝(𝜔)). (2.9)

The optimization of the first integral term conditions the Bayesian model to better fit our data.

The second KL term acts as a regularizer, keeping 𝑞𝜃 (𝜔) from extreme deviations of 𝑝(𝜔). This

analytical representation can be used to rewrite (2.4) in approximative terms for the parameters of

our neural network:

𝐾𝐿 (𝑞𝜃 (𝜔) | | 𝑝(𝜔|X,Y)) ∝ −
∫

𝑞𝜃 (𝜔) log 𝑝(Y|X,𝜔)𝑑𝜔 + 𝐾𝐿 (𝑞𝜃 (𝜔) | | 𝑝(𝜔))

= −
𝑁∑
𝑛=1

∫
𝑞𝜃 (𝜔) log 𝑝(𝑦𝑛 | 𝑓

𝜔 (𝑥𝑛))𝑑𝜔 + 𝐾𝐿 (𝑞𝜃 (𝜔) | | 𝑝(𝜔))

(2.10)

where 𝑓 𝜔 (𝑥𝑛) is the output of the neural network for a given arbitrary input 𝑥𝑛, and the summa-

tory term defined as the expected log likelihood. Once all the parameters for variational optimization

in a BNN have been established, it is necessary to choose the prior and explicitly define the vari-
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ational 𝑞𝜃 (𝜔) distribution to optimize in (2.10). In a BNN, 𝑞𝜃 (𝜔) is always conditioned to the

distribution given by the matrices of its neural connections. The multiple non-linearities and the

evaluation of the first integral in (2.10) with 𝑁 events of a dataset entails a prohibitive, non-scalable

computation. However, we can consider the Monte Carlo sampling estimators and their connec-

tions to regularization techniques in deep neural networks. Monte Carlo estimators permit an

approximation of the expected log-likelihood for neural network models with multiple hidden

layers and their derivatives with respect to the variational parameters 𝜃. The so-called Monte-

Carlo dropout (MC-dropout) is thus a variational estimation that connects dropout regularization

and standard neural network optimization with the inference procedure in (2.10) [25].

2.4 MONTE CARLO DROPOUT

The dropout technique can be used in a BNN as a Bayesian approximation of the posterior

distribution of the network parameters. Initially, the dropout is formulated by [62] as a stochastic

regularization technique for deep neural networks, randomly deactivating the parameters of a

neural network with a given probability, 𝑝𝑖 . A Bernoulli distribution canmodel this probability 𝑝𝑖 ,

selecting which of the hidden units remain active in the network. The key result for this reasoning

is derived by [25] and [24]: the integral and KL terms in (2.10) can be linked to standard dropout

training in deep neural networks. This permits scalable and robust inference for large datasets in

very complex networks.

Formally, our neural network is composed of a set of weight matrices in all its layers, 𝜔 =

{𝑊𝑖}
𝐿
𝑖=1. Each weight matrix has a dimension 𝐾𝑖 × 𝐾𝑖−1. We define the variational distribution

𝑞𝜃 (𝜔) as the factorization over the weight matrices of all the hidden layers conditioned to the

dropout technique:

𝑊𝑖 = 𝑀𝑖 · diag( [𝑧𝑖, 𝑗])
𝐾𝑖

𝑗=1, (2.11)

𝑧𝑖, 𝑗 ∼ Bernoulli(𝑝𝑙), 𝑖 = 1, . . . , 𝐿, 𝑗 = 1, . . . ,𝐾𝑙−1, (2.12)
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where 𝑧𝑖, 𝑗 represents the dropout masks (matrices of zeros and ones drawn from the Bernoulli

distribution) which disable the hidden element 𝑗 on layer 𝑖− 1. The term 𝑀𝑖 is amean weight matrix,

whose set 𝜃 = {𝑀𝑖}
𝐿
𝑖=1 are the variational parameters. Finally, having defined the variational

distribution, we can use Monte-Carlo estimation to approximate the integral of the expected log-

likelihood in (2.10):

−

∫
𝑞𝜃 (𝜔) log 𝑝(Y|X,𝜔)𝑑𝜔 = −

𝑁∑
𝑛=1

∫
𝑞𝜃 (𝜔) log 𝑝(𝑦𝑛 | 𝑓

𝜔 (𝑥𝑛))𝑑𝜔

=
1
𝑁

𝑁∑
𝑛=1

− 𝑙𝑜𝑔 𝑝(𝑦𝑛 | 𝑓
𝜔̂ (𝑥𝑛))

(2.13)

where 𝜔̂ is not a maximum posterior estimate, but multiple realisations of random variables

from the Bernoulli distribution, 𝜔̂ ∼ 𝑞𝜃 (𝜔). This reasoning is identical to applying successive

dropout masks to the network weights. Hence, the averaged sum of 𝑙𝑜𝑔 𝑝(𝑦𝑛 | 𝑓
𝜔̂ (𝑥𝑛)) represents,

by definition, the cost function of a neural network.

In order to link the variational inference optimization L𝐸𝐿𝐵𝑂 (𝜃) to the optimization objec-

tive of standard neural networks with dropout, L𝑑𝑟𝑜𝑝𝑜𝑢𝑡 (𝜃), it is necessary that the mathematical

relation known as KL-condition in the regularizer term is fulfilled. The KL-condition links the

derivatives of the optimization objective in (2.4) with standard loss functions in neural networks.

In this Chapter, we do not cover the entire proof in detail and refer the reader to the original work

by [25]. The KL-condition establishes that the regularizer KL term in (2.4) can be approximated

as a standard dropout regularizer weighted by a normalization constant 𝜆. Our objective of vari-

ational minimization is defined as:

L𝑑𝑟𝑜𝑝𝑜𝑢𝑡 (𝜃) =
1
𝑁

𝑁∑
𝑛=1

− 𝑙𝑜𝑔 𝑝(𝑦𝑛 | 𝑓
𝜔̂ (𝑥𝑛)) + 𝜆

𝐿∑
𝑙=1

(‖𝑀𝑙 ‖
2
2 + ‖𝑏𝑙 ‖

2
2) (2.14)

Therefore, approximate inference procedures result in an optimization goal identical to that of

a neural network using the loss function L𝑑𝑟𝑜𝑝𝑜𝑢𝑡 (𝜃). This function is defined to optimize the

parameters of the neural network and find the best 𝑞𝜃 that minimizes the KL divergence term

in equation (2.10), 𝐾𝐿 (𝑞𝜃 (𝜔) | | 𝑝(𝜔|X,Y)). Finally, we can use the approximation learned by our
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network to evaluate the predictive function in (2.7), using Monte-Carlo sampling with 𝑇 sampling

steps:

𝑞𝜃 (𝑦
∗ |𝑥∗) =

∫
𝑝(𝑦∗ | 𝑓 𝜔̂ (𝑥∗))𝑞𝜃 (𝜔)𝑑𝜔 ≈

1
𝑇

𝑇∑
𝑡=1

𝑝(𝑦∗ | 𝑓 𝜔̂𝑡 (𝑥∗)) (2.15)

or equivalently 𝜔̂𝑡 ∼ 𝑞𝜃 (𝜔). Therefore, at the time of inference, the dropout layers are applied

to the 𝑀𝑖 matrices, generating a Monte-Carlo sample from the posterior distribution (see equation

2.3). In practice, the average of these samples can be interpreted as the prediction of the network,

although a single estimate is not obtained, as many as 𝑇 sampling steps are performed. We can

use the probabilities obtained by MC-dropout to estimate the uncertainty in the application of

seismo-volcanic recognition.

2.5 TRAINING OF THE ARCHITECTURES

The monitoring models that we have developed as the core algorithms of this thesis fuses

deep neural network, seismic datasets, and Bayesian techniques that have to be fine-tuned fol-

lowing the standard practices of machine learning. While the structure of deep learning networks

permits rich modeling capacity, the learning of the appropriate parameter values for the models is

quite a complex and challenging task. This section begins with a description of the optimization

frameworks in which the models and techniques here are implemented. Then, we present the

regularization techniques implemented to reduce training time but increase generalization on the

models.

2.5.1 TECHNICAL IMPLEMENTATION

The data processing routines required for reading raw seismic data streams and array opera-

tions are based on ObsPy [8], andNumPy [28]. There has been a growing interest in the seismolog-

ical community to incorporate unified open-source platforms to standardize the variety of seismic

data file formats and access to seismic network data. The package ObsPy unifies many geophys-

ical signal processing tasks into a workflow that seamlessly integrates with the deep learning
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libraries used in this work. Similarly, the package NumPy is the core array programming package

with a very expressive syntax for accessing and operate high-dimension data structures. We inte-

grated these two packages in the geophysical applications research manuscripts presented in this

thesis, [13], and [15].

The deep learning models in [10], [12], [11] and [14] have been implemented using these open-

source scientific libraries integrated with a state-of-the-art, high-level deep learning research li-

brary, TensorFlow [40]. TensorFlow is an industry-wise, well-established Python workflow devel-

oped by Google research teams to standardize and make accessible novel research deep learn-

ing operations, with built-in support for automatic gradient computations. Also, TensorFlow

offers integration at many programming levels, ranging from very explicit routines to already

pre-designed networks, with capabilities to extend single-device computations to multiple, het-

erogeneous computational graphs. The language expressivity of TensorFlow comprises a range

of functions, implemented mathematical expressions, and optimization sub-routines that can be

used as the core components of our optimization routines.

2.5.2 TRAINING METHODOLOGY

In figure 3.4; we depict a schematic overview of the machine-learning training methodology

used in this work. We divide the algorithmic fine-tuning into two well-differentiated blocks. The

upper part of Figure 3.4, or A, corresponds to the standard data processing pipeline required to

parse raw waveforms into input features and target labels. The lower part of Figure 3.4, or B,

corresponds to the definition and optimization process of the model. The following operations

are performed for all the research works concerning DL architectures unless stated otherwise:

1. Data preparation steps: This first step ingests the seismic data catalogs already prepared

with our developed algorithms [13], [15]. Then, given the differences of tasks and archi-

tectures implemented in this thesis, this block is geared according to the subroutines and

the monitoring task at hand. In [14], this pipeline is adapted to read individual, segmented

waveforms. Then, the data is band-pass filtered, followed by cepstral features extraction to
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Figure 2.1: Machine-learning training methodology followed during the fine-tuning of the implemented
models. Seismo-volcanic signals mandate the data preparation steps to produce a structured dataset,
later used in the fine-tuning of the architecture. Regularization techniques, learning rate halving, and
early stopping are systematically used to speed up training time while eliminating overfitting

perform seismic event classification. Hence, we can define our dataset (X,Y), with 𝑋 the

matrix whose rows contain the extracted cepstral features, and Y the matrix whose rows

contains the label. In [10] and [11], we follow a very similar procedure for this block, but

considering that our dataset (X,Y) is given by X, the matrix whose rows contains the spec-

trogram of 5 minutes, whereas Y contains the matrix whose rows corresponds to the cate-

gorical events within X. In [12], we erased the feature extraction process, substituted it with

a learnable wavelet filterbank as part of the scattering neural network component. We refer

reader the subsequent chapters for further insight into the data preparation steps for each

block.

2. Architecture fine-tuning: This block requires the definition of a loss function, the network

architecture, and the constraints that condition the training of the architecture. Each data

sample in the training set is randomly indexed and gathered into mini-batches that the
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model individually processes at each training step (or epoch). Hence, for each 𝑋 , being an

input feature vector or sequential waveforms, along with the corresponding labels in the 𝑌 ,

are randomly indexed and processed by the network. The average loss for each mini-batch

is estimated, and the gradients are computed for each mini-batch via back-propagation al-

gorithms.

Gradient-based methods are the most common procedures used to optimize deep learning

networks. We first compute the gradient vector of the loss function of choice for the entire

training dataset with respect to the parameters of our model for a pre-defined number of

epochs. Then, the parameters are updated according to the delta rule, with the learning rate;

a parameter that scales the magnitude of our weight updates. In this thesis, we selected

Adam optimizer [34]; an optimization technique that improves traditional stochastic gradi-

ent descent (SGD) by computing adaptive learning rates for each parameter conditioned to

a regressive approximation of second-order gradients. The step size of Adam update rule

is robust across epochs, which helps the optimization to navigate through saddle points or

ravines in the loss functions. We use the default values proposed in [34], (0.9 for 𝛽1, 0.999

for 𝛽2, and 10−8 for 𝜖), as these empirically serve well in practice for a broad range of deep

learning tasks.

The fine-tuning process of deep learning architectures is iterative. Once the network pa-

rameters are updated and a training step is finished, each data sample in the training step is

randomly indexed again into mini-batches, and the optimization procedure is repeated.

One can think that optimizing a neural network can continue unbounded by a pre-defined

number of epochs. However, that is not the case, as the standard practice in the machine learning

community concern the use of regularization techniques and frequent generalization checks to

speed up training procedures and increase the robustness of the model. In this research work, we

have used the following, unless stated otherwise:

1. Early stopping: This technique can be defined as the periodic check with a validation set

(sometimes named development set in audio domains) [51], [19]. Early stopping retains
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the generalization capabilities of the model for unseen data samples while speeding up

training time. Early stopping defines an initial state, 𝑡 = 0, and a threshold named the

patience interval that controls the dynamics of optimization and the number of steps that can

lead to overfitting, halting the training if necessary. When an epoch 𝑛 has finished and the

averaged loss computed, we check the performance with the new model. If the losses and

performance attain better metrics than the previous 𝑛 − 1 training epoch, the optimization

continues, and the parameters of the model are saved. If the losses and performance yield

worse metrics than the previous 𝑛 − 1 training epoch, the state 𝑡 is incremented by one, and

the parameters of the model are not saved. Then, early stopping allows the optimization

during a number of epochs equal to the value patience interval, incrementing by one on each

step if metrics do not fulfill the validation criteria. Suppose the model has navigated the

loss function and reached the patience interval, the training halts. Otherwise, if before the

patience interval the model attains a superior metric than the best-stored model, the state 𝑡

is reset to zero, and optimization continues from this point. In [14] we set 50 epochs, with

early-stopping set to a patience interval of 5 epochs. In [10] we set 50 epochs, with early-

stopping set to a patience interval of 5 epochs. In [10]; [12] and [11] we used early-stopping

with a patience interval of 5 epochs over 300 training epochs.

2. Learning rate scheduler: The loss landscape of a neural network is defined as the error ob-

tained for each of the neural network parameters. For each parameter configuration (and

even network configurations), the landscape loss can not be smooth, difficult to navigate

through the optimization process, and highly complex. This technique is used in combi-

nation with early-stopping to refine the optimization of the models further. Thus, we can

establish a learning rate schedule to update the learning rate during the training. We de-

fine an initial state 𝑙 = 0 to track the metrics with the validation set. The number of epochs

that the learning rate scheduler allows the optimization process is constrained to another

patience-interval, not necessarily the same as in the early-stopping case. When the patience

interval is reached, the learning rated is halved, and the state 𝑙 reset to zero again. This
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avoids learning rates that are too high that the network can start to diverge during the train-

ing. In this work, we generally used this technique to monitor validation losses, keeping the

patience interval a few epochs behind the early-stopping patience interval (3 and 4).

3. Dropout: Dropout is a regularization technique that randomly sets to zero the hidden units

of a neural network. The dropout regularization technique is the pivotal approach of all our

neural networks. The basic idea builds upon training smaller models instead of a larger one

that can overfit the network. These smaller models are sub-sampled by the random deac-

tivation of the weights. Hence, as these smaller models share parameters with the original

model, training a model with dropout is equivalent to training the entire model with all

the parameters at once. Thus, this procedure implicitly provides data augmentation tech-

niques and ensemble training. Furthermore, the statistical averaging of all the sub-sampling

models improve the generalization of the optimized architecture. Typically, the statistical

averaged network with all the parameters, often named as mean-network, is used at predic-

tion time. However, the use of dropout at test time involves a stochastic approximation

with Bayesian implications (section 2.4 of this chapter). Therefore, we employ dropout on

training and test time. In this thesis (Figure 3.4), to permit dropout at test time, TensorFlow

sub-routines flagging the inference phases, along with custom-made TensorFlow layers, are

used to invoke dropout at test time. The predictive output is performed via Monte Carlo 𝑇

sampling steps [10], [12].

2.5.3 SELECTING THE ARCHITECTURE

It is a common practice to fine-tune deep-learning systems towards best performance in the

task at hand. For example, in seismo-volcanic classification, select the best parameters of a neural

network that provide the best monitoring metrics. This type of problem, known as hyper-parameter

optimization, involves a non-trivial, high dimensional, non-convex optimization of parameters

towards optimum performance. Finding the best set of hyperparameters in a neural network is a

very active field of research, with a wealth of literature and a gamut of approaches, ranging from
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nature-based algorithms [45], tree-structure based optimizations, [6], reinforcement learning [71],

amongmany others methodologies [69]. Each one of the hyperparameter optimization algorithms

has different setups or requirements. Nonetheless, three primary methodologies are the accepted

practice in deep learning for hyper-parameters tuning: grid search, random search, and Bayesian

search.

1. Grid search is a thorough approach over all the training parameters, but it can be com-

putationally prohibitive. The optimization is performed over an exhaustive search on the

hyperparameter space, often as independent trials specified by the users. The main limita-

tion of grid search is the exponential growth of the number of times required to evaluate the

model, making it unfeasible.

2. Random search serves on smaller architectures but with the risk of missing essential train-

ing parameters during the random trials. However, this approach is feasible if some a-priori

knowledge of the search space is available to the user beforehand.

3. Bayesian search tackles hyperparameter optimization in a reasonable amount of time, lever-

aging random and grid search approaches. In Bayesian search, we implement a frame-

work with a given initial, non-uniform but plausible grid of hyperparameters. Then, the

search is performed in this grid by successive optimizations to find the best set towards

high performance after standard validation/test procedures. The simulation follows an ex-

ploration/exploitation approach, i.e., the optimization explores the entire grid of the given

hyper-parameters space and then exploits the surroundings of those most promising hyper-

parameters to attain high performance. This exploitation step can be performed manually

if the search space is too constrained.

We have adopted an optimization procedure based on a Bayesian search of a plausible set of

hyperparameters representing the structure of a neural net, with random exploitation of the most

promising hyperparameters. The design required by the developed neural architectures for the

monitoring tasks incorporates improvements to provide better gradient flows and smooth losses,
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tighten the hyperparameter search space to a more confined region. For example, in [10], [12]

and [11] incorporate skip connections, defined as bypass links between regions of a neural net-

work. These skip connections smooth out the optimization landscape loss, which yields a higher

hyper-parameter tuning. When networks are very deep, the loss landscape exhibit nearly chaotic

behavior, making the optimization of the architecture very challenging [36]. The skip connec-

tions systematically incorporated in [10], [11] and [12] provide smoother optimization procedures,

whilst keeping lower generalization error, and hyperparameter optimization feasible. Further, in

[10], the U-net structure requires symmetry between the encoder and the decoder [55], to achieve

a balance between the learned embedding features in the encoder and the representational ca-

pacity of the decoder. Hence, these theorems, along with the structural neural requirements (i.e.,

symmetry in the encoder), partly explain the neural network design presented in this thesis.

Training deep architectures requires plenty of computational resources and simulation time.

For example, in volcanic monitoring applications, it is necessary to perform hyper-parameter fine-

tuning based on efficiency and speed. An early-stopping methodology, previously explained, is

a method equivalent to the behavior of an A.I. expert who must maximize the performance of

a network for the most promising set of hyperparameters, conditioned on limited computational

resources. In this context, early stopping has permitted us to finish the training of the architectures,

freeing up computational resources, saving time, and increasing efficiency by discarding spurious

architectures.

An initial, starting learning rate of 0.01 is declared the starting point of the optimization in all

our networks. Early stopping is used aggressively to prune out non-optimal architectures during

the hyper-parameter search, whereas we focus on the most promising ones. Also, we build upon

previous knowledge of implemented architectures and the problem at hand, such as in [10] where

filters are selected to yield good convergence behavior. Finally, in Appendix B, we add additional

results of the best architectures we do not prune during the optimization process.
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2.6 SUMMARY

This chapter has presented the mathematical background for our thesis, introducing BNNs

and the Monte Carlo dropout approach. In addition, we have provided an overview of the best

practices in the machine learning community and established the optimization and fine-tuning

procedures that we will follow in this thesis. Then, we have mentioned the open-source software

pillars implemented and used in this research, ranging from geophysical data applications, array

operations to the core deep learning library. The field of deep learning evolves very quickly, and at

the time of writing this dissertation, theremay be other regularizations or optimization procedures

that support more comprehensive fine-tuning of the architectures already presented. However,

the employed techniques and the hyperparameters obtained via exploration-exploitation have

complied with a proper convergence behavior and have been demonstrated to generalized across

different volcanoes and audio domains.
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3 | VOLCANO SEISMOLOGY

Volcanic eruptions occur when lava, pyroclastic material, and gas are discharged from a vol-

canic vent due to energetic fluid migration and other phenomena inside Earth [20] [43]. Volcanic

activity generates a variety of seismo-volcanic signals recorded by seismometers placed near vol-

canoes. The presence of these signals is evidence of multiple sources acting within the volcanic

system, most of them responsible for or associated with the occurrence of volcanic eruptions.

Thus, there is a marked interest in the seismological community to associate different types of

seismo-volcanic signals with physical source models to understand the underlying unrest better.

This section presents the volcanoes studied, the type of seismo-volcanic events, and the criteria

for seismic labeling signals developed in this thesis. We then propose using the uncertainty as a

change detector and to discern different types of uncertainty, likely associated with the variability

of the seismogram or the monitored process itself.

3.1 SEISMIC SIGNALS

The main objective of volcano seismology is to identify causal relationships between earth-

quakes and the evolution and outcomes of volcanic unrest. These signals contain information

about many aspects of the volcano, including parameters of the seismic-volcanic source (position,

geometry, dynamics, energy, or spatio-temporal evolution) or characteristics of the medium (ve-

locity structure, attenuation, or the spatial heterogeneity distribution) [20]. The theoretical catego-

rization of seismo-volcanic signals and how they associate with magmamigration remain an open
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question. Each seismic signal is believed to represent a distinct source location and mechanism at

a given volcano. Seismologists favor signal categorization schemes with detailed descriptions of

every possible earthquake sub-type at a specific volcano. This fine-grained categorization yields

seismic data nomenclatures specific to individual volcanoes; that is, what holds for one volcano

may not be valid for another one. Regardless of the nomenclature used, identifying seismic signals

and their evolution through time comprise the basic foundations of forecasting systems. As part

of the daily routine at volcanic observatories, seismologists associate the detected seismic events

with a name or label, using already established criteria and models of seismic sources. By giving a

name to the signal, the observer assumes a volcanic state and infers a potential future evolution

of unrest.

As scientific knowledge advances, a paradoxical situation has developed: there is a lack of uni-

formity in naming the observed seismic signals, and new source models are specific to particular

cases. The initial subsets of seismic signals have been extrapolated across volcanoes and broadly

modified to incorporate a gamut of names and labels that match the theoretical models of seismic

sources. In addition, when a volcano exhibits unrest, several volcanic processes can co-exist in

time, thus producing a suite of overlapping signals in the raw seismic record that do not belong to

the already established criteria [70]. Traditionally, seismo-volcanic signals are classified based on

signal attributes. A summary of earthquake types, their frequency, and time-domain characteris-

tics, and source mechanisms proposed in the literature, is presented in [14], and Chapter 3 of this

thesis.

3.1.1 LABELLING CRITERIA

From a machine learning perspective, the sparse data taxonomy that characterizes the seismo-

volcanic science leads to seismic data catalogs that do not provide a consistent number of cat-

egorical samples. The categorical data scarcity is aggravated when volcanoes generate distinct

waveforms with respect to the known initial conditions, a consequence presumably related to

transitional physical mechanisms. As a result, very specialized training procedures, often condi-
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(a) (b)

(c) (d)

Figure 3.1: Representative examples of common waveforms recorded during the 2007 eruption at
Bezymianny volcano. For each waveform type, the normalized waveform (in black) and spectrogram
are depicted. (a) High frequency (HF) event (b) Low frequency (LF) event (c) Low-Frequency tremor
(LFT) (d) Surficial events (SE) as a small explosion. For visualization purposes, all waveforms have
been filtered between 1 and 20 Hz.

tioned with in-depth analysis of the predictions, are the recommended best practices, often im-

plemented as mandatory operational requirements [23]. Over the recent years, seismo-volcanic

monitoring has favored adopting higher-level data taxonomies that could benefit near-wavefield,

quasi-real-time monitoring without losing volcanic dynamics information. The labeling scheme

in this thesis is based on foundation work by [42]. We refer the reader to Chapter 4 for a complete

summary of labels, categories, and potential sources associated with these labels.

The data labeling scheme in [42] comprises five of the most common seismo-volcanic cate-

gories, based on the frequency range of events. For example, the Alaska Volcano Observatory

(AVO), a world-class example of effective information data acquisition related to volcanic activ-
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ity, employs this data taxonomy as the distilled recognition information for volcano-monitoring

in real-time, for more than 20 volcanoes [43]. Also, this categorical scheme has been adopted to

monitor Telica (Nicaragua) [54], Ngauruhoe (New Zealand) [49], or Mount Pinatubo (Philippines)

[53]. The data labeling scheme adopted in this thesis has also been employed to study the relation-

ships between magma migrations and earthquake dynamics for the volcanoes considered in this

thesis. Previous research work by [63], [68] and [27] summarized the eruptions at Bezymmiany

and Mount Saint Helens with these labels, which have helped to build and check the geophysical

foundations of this work. Thus, we can categorize our signals as:

1. High-frequency events (HF): Also known as volcano-tectonic earthquakes (VT) or A-type

earthquakes. These events are characterized by a broad frequency range (from 1 to up to

30 Hz) and are often associated with brittle failure processes occurring locally within vol-

canic systems. They include similar mechanisms to those of classical tectonic earthquakes.

In general, they provide evidence of changes in the local stress regime during magma mi-

gration at depth. Several factors influence the timing, character, and occurrence of HF/VT

seismicity, including local tectonics, cooling of magma inside of volcanic edifices, gravita-

tional settling of the volcanic edifice, unstable structures, and pressure changes (associated

with volcanic fluids, hydro-thermal interaction, or fluid injection) in the subsurface (that is,

hydraulic fracturing processes related to stress propagation due to magma movement).

2. Low-frequency events (LF): This category comprises seismic events named long-period

events (LP), long coda events, and B-type earthquakes. This type of earthquake concentrates

energy in the 0.5–5 Hz band, with typical durations of approximately 5 to 60 s. These events

are thought to be associated with resonances or fluid transport in the volcano plumbing

system or fluid-driven cracks or pressurization processes (bubbles), among other processes.

Theoretical models consider LF events as precursors to eruptions, given their connection to

internal volcanic activity associated with fluids (mostly interactions between magma and

underground water).

3. Hybrid Events (HYB): The energy of these earthquakes straddles the spectra of both LF and
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HF events. They are often explained by a mixture of processes, including fluids filling rocks

and the generation of cracks.

4. Volcanic Tremor (LFT): Volcanic tremor is a complex volcanic signal. Volcanic tremor is a

sustained seismic signal with a duration fromminutes to days with no clear onset of seismic

phases. Its origin and frequency content is diverse and can be associated with the volcanic

system’s internal or external processes. In many cases, the tremor shares the same frequency

band with the LF events, and some geophysical studies have associated TRE with swarms

of LF events recorded in a time span of seconds. At Bezymianny, tremor has a low fre-

quency, and thus we adopted the terminology of [63], in which the tremor is renamed a

low-frequency tremor (LFT). Although different models have been proposed to explain the

source mechanism of this type of tremor, most concur that its origin is the complex interplay

between magmatic or other fluids and their host rocks.

5. Surficial Events (SE): Surficial events are so named because the origin of their source seems

to be located in the summit zone. According to their waveform and spectral content, these

events share the characteristics of small summit explosions, often associated with moderate

degassing processes with a high content of water steam and rockfalls. Hence, in this cat-

egory, we gathered those signals associated with external effects such as pyroclastic flows,

rockfalls, and other processes that could offer insights into impending volcanic activity. In

Bezymianny volcano, they are present as cigar-shaped rockfalls, with very high-frequency

components and long duration (> 50.0 seconds).

3.2 VOLCANOES STUDIED

The number of volcanoes that dot the planet Earth is enormous, forming volcanic belts that

span from the ocean to the surface, including vast geographic areas with volcanoes very close to

each other [70]. Volcanoes can be categorized or grouped according to related features, for exam-

ple, similar chemical composition or eruptive style. From the perspective of probabilistic deep

29



Figure 3.2: Geographical area of Bezymianny volcano, with an ash emission of ≈ 15 𝑘𝑚 above sea
level. The red star represents the eruptive center of the volcano. The white triangle corresponds to the
coordinates of the BELO station.

learning, we define the entire set of recorded seismic data streams as the known support data

distribution for a given volcano and monitoring time period. Therefore, this initial support data

distribution is defined and conditioned by the geophysical characteristics of the recorded seismo-

volcanic data streams, which contain the events detailed in subsection 3.1.1, explicitly related to

the volcano that generates them. In this thesis, we focus our analysis on three volcanoes: Bezymi-

anny (Kamchatka, Russia), Mount Saint Helens (Washington, USA), andMount Etna (Sicily, Italy).

3.2.1 BEZYMIANNY VOLCANO

The Bezymianny volcano is located on the Kamchatka Peninsula (Russia), within the Klyuchevskoy

Volcanic Group (KVG). Figure 3.2 depicts the geological area of the Bezymianny volcano within

the KVG group. 1. The research works in this thesis, [10], [12], [11] are focused on a three well-

1Picture reproduced with permission of the Kamchatka Branch of FRC EGS RAS
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known 2007 eruptions, over a period of approximately three months [63], [67], [66]. The three

eruptions, 25th September, 14th-16th October, and 5th November are brief but energetic, covering

increased pre-seismicity rates and various eruption mechanisms. These three significant erup-

tive episodes were recognized and reported by the Kamchatka Volcanic Eruption Response Team

(KVERT) [27], and confirmed by posterior geophysical studies. Of the three eruptive episodes

dominated by strong ash explosions and lava emissions, it is the second one that is considered the

most energetic and relevant, lasting two full days, with ash plumes reaching 1000 km southeast

and a plume height of 10 km [68]. We subdivided our dataset according to the reported eruptive

chronology in [27] and [66]. From the deep learning perspective of our framework and draw-

ing parallels to neighbors’ acoustic domains, we strictly maintain the chronology of all the seismic

data for the definition of the available training data and the temporal estimation of the uncertainty

evolution.

3.2.2 MOUNT SAINT HELENS

Mount Saint Helens is located in Skamania County, within the Cascade Mountain Range of

Washington, United States. For this volcano, we have selected seismic data from the eruptive

sequence from 2004-2006 [32]. Previous foundation research has established seismological com-

parisons between Mount St. Helens and Bezymianny volcano [46]. Preliminary geophysical anal-

ysis at these two volcanoes has demonstrated similar seismic patterns before explosive activity,

with very similar waveform characteristics in amplitude and duration [68]. Compared with the

Bezymianny, this volcano is not significantly different in terms of external geometric shape; how-

ever, seismic sequences in this volcano occur with a very high event rate. In the context of our the-

sis, these similarities translate into a different scenario, with similar data distributions (although

conditioned to the geological context of this volcano), to test the generalization and exportability

capabilities of the implemented system on another volcano.
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Figure 3.3: Geographical area of Mount Etna volcano, with a photography of the 2019 paroxysm. The
white triangle corresponds to the coordinates of the selected station, ENCR.

3.2.3 MOUNT ETNA

The internal morphology of Mount Etna is frequently changed due to intracrater volcanic ac-

tivity [4], [18], [58], [52], [26], which provides a very challenging scenario for our approach to

detecting change with estimated uncertainties. Figure 3.3 depicts the geographical area of Mount

Etna, the ENCR station selected in the study of uncertainty exportability [12], and a picture of the

eruption 2. We use data gathered at the southeast of Mount Etna (Bocca Nuova, BN) during the

paroxysm recorded from 4th July to 24th July 2019 at the ENCR station. The primary eruption was

reported by seismological bulletins and visual observations on 18th July 2019, at 23:09 UTC time.

The significant changes in eruptive activity and correlation with other volcanic data are described

in [22].

2From VOSSIA research project, courtesy and reproduced with permission of Prof. Silvio de Angelis,
Dr.Luciano Zuccarello, and Dr. Alejandro Diaz-Moreno
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3.3 LABELING PROCEDURE

Once the labeling criteria and the volcanoes selected for this thesis have been introduced, we

describe the labeling and the data curation procedures followed in this thesis. This data curation

methodology has been applied to the three volcanoes in this thesis, Bezymianny, Mount Saint He-

lens, and Mount Etna, to extract seismic events from unrest periods in which no primary labeled

data were available. The software tools implemented and used for these tasks are included, along

with a detailed description, in chapter 8.

At present, a wealth of available seismic data acquired at volcanoes worldwide remain vastly

underutilized. Often, the myriad of data formats, differences in the sampling frequencies across

streams, scientific controversies in the labeling, or the temporal organization of the data implies

that performing the most basic machine learning training procedures can be challenging. These

difficulties can be worsened by strict, non-inclusive data policies complied by observatories sub-

ject to government rules that share minimal data (or none). Recently, data platforms such as

Incorporated Research Institutions for Seismology (IRIS) ingests and distribute a broad range of geo-

physical data, ranging from ground motion to atmospheric data. They provide a set of principles

and a range of practices to access andmanage seismic data for the global earth science community,

free of cost or other access barriers. However, for volcano-seismic data, no machine learning meta-

data nor geophysical interpretation is provided by IRIS. The continuous data streams recorded in

a seismogram need to be organized into a dataset with meaningful labels that correlate with vol-

canic activity. Here, we supply means to produce, from raw seismic data streams available at IRIS,

relevant information on said data.

Remark that before applying these labeling procedures, it is a mandatory step to conduct a

literature review to match the IRIS available data with studied and interpreted research works or

volcanological observatory bulletins. This thesis has checked that the obtained metadata using

the labeling procedures explained here concurs with previous seismological studies. For the se-

lected eruptive period in 2007, Bezymianny volcano, we followed the classification criteria and
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the chronological eruptive process reported by the Kamchatka Volcanic Eruption Response Team

(KVERT) [27] and research work on this volcano [66], [63]. For Mount Saint Helens volcano, our

segmentation is based on the seismological bulletin by [46]. Finally, for Mount Etna, we selected a

recent eruption, which is fully described in [22]. We divided the labeling procedure of our datasets

into two primary steps:

1. Automatic segmentation and frequency-based categorization with a waveform descriptor,

as proposed in [13].

2. A manual inspection of the events confirms and modifies the labels or the segmented times

derived from the automatic procedures [15].

Both methodological steps are interchangeable since we can use automatic or manual segmen-

tation depending on the requirements to generate the catalogs. In the following sections, we will

rigorously explain each one of them.

3.3.1 AUTOMATIC SEISMIC EVENT SEGMENTATION

The raw data is pre-processed to extract events of interest from the seismic data stream using

the REMOS (Recursive Entropy Method of Segmentation) package [13]. The algorithm REMOS

is a complete workflow for the detection, segmentation, classification, and visualization of seis-

mic data. Starting from the continuous data streams and the activation times of STA/LTA, RE-

MOS identifies a set of energy and entropy-based criteria to parse data into individual waveforms

(segmentation). Then, each segmented waveform is then categorized according to the frequency

content, using well-established frequency domain metrics [17]. REMOS also incorporates an ex-

ploratory data visualization tool based on t-Distributed Stochastic Neighbor Embedding (t-SNE),

and frequency attributes [37]. The steps of the segmentation are as follows:

1. Preparing the data: Preliminary processing steps are applied to the continuous data before

segmentation. Trends associated with effects such as very long-period instrument drift are

removed. A band-pass filter in a user-selected frequency range [ 𝑓𝑙𝑜𝑤 𝑓ℎ𝑖𝑔ℎ] (𝐻𝑧.) is applied
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to enhance the presence of earthquake signals. We observed that the frequency band [1− 15]

𝐻𝑧 is appropriate for most volcanoes during our tests.

2. Building the activation vector: The filtered data are then scanned using a recursive STA/LTA

algorithm to obtain trigger times of potential events. The parameters for the STA/LTA al-

gorithm are selected by the user according to the specific dataset [65]. For volcano-seismic

signals recorded at a relatively close distance from the source ( < 10𝑘𝑚), a short-term win-

dow of 0.5 − 2𝑠 and a long-term window of 8 − 15𝑠 are, frequently, appropriate. This proce-

dure yields a one-dimensional activation vector, on = [𝑜𝑛1, 𝑜𝑛2, 𝑜𝑛3, ..., 𝑜𝑛𝑛] of 𝑛 earthquake

trigger times.

3. Segmenting the data: The vector of activation times, on is used in combination with the

filtered signal to investigate regions within the continuous data stream that contain the sig-

nal of interest. REMOS defines two parameters, the maximum search window, 𝑊𝑠, and

the minimum duration window, 𝑊𝑑 . The maximum search window 𝑊𝑠 represents the time

window that REMOS explores to detect an event; 𝑊𝑑 captures the minimum duration that

REMOS uses to calculate signal energy. REMOS, then, considers all activation times in on,

and extracts segments of data (exploration regions) with duration𝑊𝑠 starting at these times.

Each of these regions is then windowed into 𝑘 frames with duration 𝑊𝑑 . A noise reduction

procedure is applied to the data stream to mitigate the influence of external noise sources.

The energy of the signal is computed according to all exploration regions for each individ-

ual frame. The entropy, 𝐻 (𝑝), is then calculated from the pseudo-probability normalized

vector, 𝑝, as:

𝐻 (𝑝) =
𝑘∑
𝑖=1

−𝑝𝑖 𝑙𝑜𝑔(𝑝𝑖) (3.1)

where 𝑝𝑖 is the normalized energy of each frame. If the entropy is below a pre-defined

threshold, 𝜖 < 2.5, then the onset of an event is declared. In this instance, the candidate event

is extracted from the exploration region and parsed into an individual waveform according

35



to the minimum of the energy distribution criteria:

arg min
𝑘

𝐸𝑘 (3.2)

The end of an event is declared when the energy reaches a minimum. To overcome long

segmentations when taking the lowest energy, REMOS computes, in parallel, the ratio 𝑅 of

the energies of the initial and final parts of the segmented signal. This ratio would be close

to zero if no earthquake signal were present in the final section of the segmented data. In

that case, the original candidate is segmented again. Otherwise, for ratios closer to one,

the original candidate is selected, as it could be, for instance, an episode of long-duration

tremor. Once the candidate is segmented, results are stored in a matrix. REMOS continues

segmenting signals along the main trace until the activation vector 𝑜𝑛 is exhausted.

The segmented candidate and the starting and end times are stored in a matrix; row-wise. As

a final step, candidates with low SNR can be erased from the final dataset. In REMOS, the SNR is

computed as the peak amplitude ratio within a time window containing the surface wave signals

to the root-mean-square of the noise trailing the signal arrival window.

3.3.2 FREQUENCY INDEX EVENT CATEGORIZATION

The individual traces extracted from the continuous data are then automatically classified

based on a frequency metric. This metric, known as the frequency index (FI), significantly re-

duces the time required to analyze data, and any mismatch in event classification due to the bias

introduced by a human analyst is potentially eliminated [17]. The label of an event can be assigned

using the FI, formally defined as a logarithmic interpretation of the spectral frequency ratio (FR),

given as:

FI = log10(FR) = log10

(
𝐴ℎ𝑖𝑔ℎ

𝐴𝑙𝑜𝑤

)
(3.3)

where 𝐴𝑙𝑜𝑤 and 𝐴ℎ𝑖𝑔ℎ are the mean amplitude of high and low spectral bands, respectively.
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REMOS defines a set of parameters as adjustable thresholds that control how events are catego-

rized. Note that the logarithmic spectral ratio forces high values of the FI to be associated with

higher frequency mechanisms (e.g., brittle fracture). In contrast, lower values correspond to seis-

mic events with narrow lower frequency bands (e.g., soft ruptures [2]). The logarithm is appealing

as waveforms with similar amounts of high and low energy (as defined by the frequency range

chosen in 𝐴𝑙𝑜𝑤 and 𝐴ℎ𝑖𝑔ℎ) will have a FI closer to zero. Events are classified as Low-Frequency

(LF) if the FI is below a given threshold 𝜂1. Similarly, if the FI is greater than the given threshold 𝜂2,

earthquakes are classified as High-frequency (HF). The range of values between 𝜂1 and 𝜂2 could

represent hybrid events. Low-frequency tremors (LFT) and surficial events (SE) are discriminated

according to their frequency index and duration 𝑡. The minimum duration 𝑡 over which to con-

sider an event, either low frequency or tremor, depends on the user and the volcanic environment

[44] or can be selected according to past research studies on the given volcano [63].

We adopted the labeling criteria of [42], explained above in subsection.3.1.1. Unrest at Bezymi-

anny during 2007 and the dataset studied here have been previously investigated by [63] [66],

thus providing a reliable benchmark for the performance of REMOS and geophysical insight for

the configuration of the REMOS parameters. Each extracted event was labeled according to the FI

value (𝐹𝑅 = 0.5) and duration of high- (HF) and low-frequency (LF) events, seismic background

tremor (SBT), and debris processes (DP). The selected 𝐴𝑙𝑜𝑤 and 𝐴ℎ𝑖𝑔ℎ spectral bands for this vol-

cano are [1 − 5]𝐻𝑧 and [6 − 12]𝐻𝑧, respectively.

REMOS stores the segmentation results in a matrix, S, whose rows contain, in order: the seg-

mented event, the FI, the 𝑠𝑡𝑎𝑟𝑡 time, the 𝑒𝑛𝑑 time, and the segmentation label. This matrix S con-

stitutes the data seed on which recognition systems can be trained. This type of matrix structure

obeys, on the one hand, a pragmatism oriented towards seamless integration with deep learning

models; that is, waveforms can be extracted quickly. For continuousmonitoring systems, start and

end times can index the seismic events and allow continuous recognition training. On the other

hand, any necessary waveform parameterization can be computed, and the matrix expanded ac-

cording to operational requirements. For example, the matrix computation allows obtaining pa-

rameters not only on the entire raw seismic data stream but by families of events. Finally, for an
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eruptive period in a given volcano, the set of all these matrices indexed by the day of the current

year (0-365), S𝑑𝑎𝑦 , constitute the dataset that we will use to study the volcanic dynamics.

3.3.3 REFINING SEGMENTED DATASETS

The features computed by REMOS are connected with the segmentation boundaries of events.

However, due to the statistical nature of seismo-volcanic data streams, the correct segmentation is

still not guaranteed. In this context, to ensure proper time boundaries, we extended REMOS with

a Graphical User Interface (GUI) to refine the S𝑑𝑎𝑦 matrices.

The customGUI, named PICOSS (Python Interface for the Classification of Seismic Signals) permits

the inspection, confirmation, and modification of the 𝑠𝑡𝑎𝑟𝑡 and 𝑒𝑛𝑑 times of events, along with the

labels [15]. Further, PICOSS provides a collection of tools to refine seismic meta-data, designed

to reduce data labeling fatigue while increasing data classification efficiency. For each day in the

dataset, a team of domain experts visually verifies each extracted event and its label. The result is

a complete and annotated catalog. Manual inspection of the seismic trace is required on the main

eruptions, given the complexity and multiple processes involved. In Chapter 8, we describe the

capabilities of each implemented software.

Once the seismic classes and the selected volcanoes have been established, we can formu-

late the Bayesian monitoring framework for continuous monitoring and drift detection from pre-

eruptive seismicity.

3.4 MONITORING OF VOLCANOES

Identification of seismic events is currently already carried out with very efficient supervised

Machine Learning techniques [5], [64], [21], [31], [39], [33], [50], [56]. However, identifying signals

by itself does not provide information about the dynamics of the processes that lead to eruptions.

The proposed approach departs from handcrafted features for detecting change [35], [29], [47], [7]

and mitigates that subtle changes in events that are critically important are possibly hidden from
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Figure 3.4: The traditional seismo-volcanic monitoring architectures are based on static supervised
learning, assuming that the initial situation at 𝑡0 would be similar to the one later encountered in 𝑡1.
Hence, in (a), a data catalog of historical seismicity is used for routine monitoring of volcanic unrest.
In reality, case (b) highlights when an unforeseen change can induce a data shift that compromises the
performance of the model and the monitoring task. The work on this thesis develops the monitoring
algorithm to detect such change, from pre-eruptive seismicity, with short-term forecasting applicability.

standard data analysis.

In themonitoring problem, seismic data arrives in real-time as a continuumdata stream. Given

the space-time evolution of magma ascent and other processes involved during an eruption, it is

expected that the recorded data stream evolve, for example, as steady increments in the energy of

volcanic tremor or subtle shifts in the frequency components of the signals. Over past years, there

has been a growing interest in probabilistic forecasting and uncertainty quantification methods to

provide direct knowledge about new seismic anomalies, which extends to a scientific understand-

ing of seismic sources variation [48], [59], [60]. Further, research insights by [61] emphasize the

necessity to shift from deterministic to probabilistic approaches to enhance monitoring outcomes.

Figure 3.4 depicts the monitoring problem from a monitoring perspective and highlights the

need for a probabilistic machine learning approach. The accepted practice is to assume that the

data used to fine-tune monitoring systems (𝑡0) represents the situations later encountered (𝑡1).

However, in practice, that assumption does not hold.

The analysis of figure 3.4 had summarized the key concepts presented in the research work of
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this thesis and highlighted the importance of uncertainty estimation. Monitoring situations such

as those in figure 3.4.b can benefit from probabilistic approaches, helping in the systemization of

early warning protocols while providing transparent hazard information to local authorities or

decision-makers. Beyond interpretability of the monitoring algorithms with estimated uncertain-

ties, one main challenge remains: how we detect the change? Is it possible to capture variations in

anticipation of eruptions (dotted line in figure 3.4.b)? We seek to supply our deep learning models

with the capabilities to discover unforeseen seismic patterns, the unknown unknowns.

3.4.1 UNCERTAINTY AND MONITORING

Following the key concepts introduced in Chapter 2, seismo-volcanicmonitoring can be framed

as a non-stationary environment with seismic data streams subject to unforeseen yet persistent

wavefield perturbations. From a probabilistic perspective, this is equivalent to temporal shifts

with respect to the initial support data distribution. For this purpose, the change could be known

ahead of time if the monitoring algorithm can detect particular environmental factors that condi-

tion the new situation.

Therefore, we can use the uncertainty to control the quality of the physical measurements of

a volcanic system and as an indicator of the evolution of these physical measurements over time.

We propose that the monitoring algorithms and the seismic data must be used in symbiosis to

address unforeseen inconsistencies in raw observations. This distilled information can be used

as surrogate knowledge to interpret unforeseen monitoring situations that could not be derived

from raw observations otherwise. Formally, we define the joint data distribution at the initial

monitoring time 𝑡0, as 𝑝𝑡0 (X,Y), and the conditional predictive distribution 𝑝𝑡0 (𝑦
∗ |𝑥∗,X,Y) (see

equations (2.1) and (2.15)). A data drift between time 𝑡0 and time 𝑡1 can be defined as:

∃X : 𝑝𝑡0 (X0,Y) ≠ 𝑝𝑡1 (X,Y) (3.4)

with 𝑝𝑡1 (X,Y) the new distribution. Changes in data can be characterized as changes in the

components of this mathematical relation. In this regard, considering the classification scheme of
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the seismic signals remains invariant [42], the volcanic changes would be perceived if changes in

the underlying distribution of the seismic data, 𝑝(X), can be perceived by the parameters of the

model. The estimated uncertainty 𝑈𝑡 can be used to detect out-of-distribution data samples, and

thus, quantify the migration from 𝑝𝑡0 (X,Y) to 𝑝𝑡1 (X,Y). Such value 𝑈𝑡 can be computed from the

Bayesian uncertainty framework derived in Chapter 2. The most striking quality of this frame-

work implies that monitoring volcanoes with uncertainty detection do not entail any supervision,

except for the initial fit in which the model is conditioned. Therefore, the detection of changes is

an additional parameter that the proposed Bayesian approach provides in an unsupervised way,

allowing us to discover patterns of change within the seismic data streams.

In Chapters 4 and 5, we show that a monitoring algorithm can probe the estimated 𝑈𝑡 as a

proxy to detect if the recorded seismograms depart from 𝑝𝑡0 (X,Y). To known what is driving

change, we subdivided the total statistical uncertainty 𝑈𝑡 into two terms, the observed seismo-

gram variability and the inherent randomness of the monitored seismic wavefield:

𝑈𝑡 = 𝑈𝑠𝑟𝑐 +𝑈𝑤𝑎𝑣 (3.5)

where 𝑈𝑤𝑎𝑣 is the uncertainty associated with the seismic wavefield, and 𝑈𝑠𝑟𝑐 is the uncertainty

linked to the monitoring process. This equation (3.5) links with the concepts of epistemic and

aleatoric uncertainties. From a monitoring perspective, we can link the geophysical uncertainties

in (3.5) to the statistical ones in equation 3.4. When different seismograms are recorded, incre-

ments in 𝑈𝑠𝑟𝑐 and 𝑈𝑤𝑎𝑣 must be observed, and thus, lead to the assumption that the volcano has

changed.

In chapter 6, we extend these ideas and build a very specialized network to detect the change

from the raw waveforms and measure the exportability of the estimated 𝑈𝑡 to other volcanoes.

Chapter 7 exploits the uncertainty in active learning setups to build an adaptable monitoring sys-

tem to perform uncertainty-based sampling detection and classification of seismo-volcanic events.
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3.5 SUMMARY

This chapter has presented the seismological context of this thesis. First, we have identified

the main challenges and how these affect machine-learning-based seismo-volcanic monitoring.

Then, we overcome these problems by presenting a self-contained signal processing workflow to

perform detection, segmentation, and classification of seismo-volcanic signals with a higher-level

data taxonomy. We then present the monitoring uncertainty framework and the association of

statistical uncertainties to the raw waveform. Finally, we introduce the concept of data drift and

its implications in volcano-monitoring science.
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4 | VOLCANO-SEISMIC TRANSFER

LEARNING AND UNCERTAINTY

QUANTIFICATION WITH BAYESIAN

NEURAL NETWORKS

This chapter is devoted to the classification of seismo-volcanic events across eruptions and vol-

canoes. We also analyze how the epistemic uncertainty can be used as a probability threshold that,

if exceeded, justifies the use of transfer learning procedures. The first explorations about uncer-

tainty quantification as a change detector are also illustrated. This article is published and avail-
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Jesús M. Ibáñez‡
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Abstract

Over the past few years, deep learning has emerged as an important tool in the fields of volcano and

earthquake seismology. However, these methods have been applied without performing thorough analyses

of the associated uncertainties. Here we propose a solution to enhance volcano-seismic monitoring

systems, through probabilistic Bayesian Deep Learning; we implement and demonstrate a workflow for

waveform classification, rapid quantification of the associated uncertainty, and link these uncertainties

to changes in volcanic unrest. Specifically, we introduce Bayesian Neural Networks (BNNs) to perform

event identification, classification, and their estimate uncertainty on data gathered at two active volca-

noes, Mount St. Helens, USA, and Bezymianny, Russia. We demonstrate how BNNs achieve excellent

performance (92.08 %) in discriminating both the type of event and its origin when the two datasets

are merged together and no additional training information is provided. Finally, we demonstrate that the

data representations learned by the BNNs are transferable across different eruptive periods. We also find

that the estimated uncertainty is related to changes in the state of unrest at the volcanoes, and propose

that it could be used to gauge whether the learned models may be exported to other eruptive scenarios.

I. INTRODUCTION

Over the past two decades, the integrated use of methods and techniques from different

disciplines including ground deformation, geochemistry, satellite remote-sensing and seismology,
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has allowed scientists to identify and track volcanic unrest with increasing confidence. Due to

comparatively low costs and the availability of real-time data with high temporal resolution,

seismology remains the backbone of most volcano monitoring programmes worldwide. Volcano-

seismic signals are frequently classified based on their frequency content, and source type; one

of the most widely adopted classification schemes ([1]) includes high-frequency (also known as

volcano-tectonic), low-frequency earthquakes, mixed-frequency (or hybrid) earthquakes, volcanic

tremor, explosions, and other superficial signals (e.g. rockfalls, lahars, pyroclastic flows). Low-

frequency and mixed-frequency earthquakes have been attributed to various mechanisms, which

include volumetric sources, magma fracture, stick-slip along the margins of volcanic conduits,

and slow-rupture of soft material. It has also been shown that the characteristic lack of high-

frequency energy in their waveforms may result from propagation through strongly attenuating

volcanic material [2], [3]. Separation of source and path effects remains a challenging task. High-

frequency earthquakes are nearly unanimously attributed to brittle failure processes locally within

volcanic systems with mechanisms similar to ordinary tectonic events, hence, the frequently

used name of volcano-tectonic. Volcanic-tremor is a continuous signal, at times with harmonic

frequency spectrum, which is recorded during periods of either eruption and non-eruptive unrest.

Explosion earthquakes are high-amplitude, short duration, pulses associated with the sudden and

violent ejection of gas and pyroclastic material from volcanic vents into the atmosphere [4], [5],

[6], [7]. A summary of earthquake types, their frequency- and time-domain characteristics and

source mechanisms proposed in the literature, is presented in Table I.

One of the main goals of volcano seismology and volcanology is to identify causal relations

between the occurrence of earthquakes, and the evolution and outcomes of volcanic unrest.

Success depends, clearly, on the ability to identify and track the evolution of earthquakes

during periods of volcano-seismic unrest. At present, although large amounts of seismic data

are continuously gathered at volcanoes worldwide, much of these data remain underutilised.

Seismic analysts typically focus on comparatively small subsets of earthquakes. During volcanic

crises, seismic networks can record earthquakes at rates of up to multiple events/minute over

time periods as long as months, or even years, making manual identification, classification and

location an unfeasible task [3]. Earthquake classification is often subjective, based on human

experience, and analysis of a small fraction of the available data may result in a partial and

biased interpretation of unrest. For instance, it has been shown that empirical methods used to

forecast volcanic eruptions, may fail due to the incompleteness of the seismic catalogues [8].
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Over the past decade, large computational resources have become more widely available at

reasonably low cost, and machine learning and advanced signal processing algorithms have

emerged as tools for use in volcano-seismic monitoring [9] [10]. This progress is parallel to

advances in the investigation of micro-seismicity [11], earthquake detection [12] and other

fields of the Earth Sciences [13]. A wealth of literature exists on automatic detection and

classification of volcano-seismic signal, including algorithms based on signal properties [14],

dimensionality reduction [15], embedding vectors [16], Gaussian Mixture Models (GMM) [17],

Hidden Markov models (HMMs) [18] [19] and Artificial Neural Networks [10]. A large body of

research has also explored the application of Deep Learning (DL) algorithms for identification

and classification of earthquake signals. In particular, unsupervised training has been shown

to be effective for use with Deep Neural Networks (DNN) [20]. Recurrent Neural Networks

(RNNs) have also been used for the classification of volcano-seismic data streams [21]. These

workflows have, however, been applied without performing any assessment of their uncertainty.

Reliability in adverse conditions is an important consideration for real-time applications. Many

investigators have focused their efforts on improving earthquake classification in order to increase

the accuracy of pattern recognition methods. Quantification of uncertainty, on the other hand,

can provide direct knowledge on the diversity of source mechanisms, which ultimately could

inform scientific interpretations of volcanic unrest [22]. In this paper, we propose a workflow for

the classification of volcanic earthquakes, enhanced by the integration of a Bayesian framework

that could provide fast uncertainty quantification at the seismic waveform level. In particular,

we explore the use of Bayesian Deep Learning, which combines the flexibility of Bayesian

theory with the computational advantages of deep learning, allowing rapid and robust Bayesian

inference. This probabilistic framework is applied to seismic data streams from two volcanoes,

Bezymianny (Kamchatka, Russia) and Mount St. Helens (Washington, USA). St. Helens and

Bezymianny are two examples of active strato-volcanoes with similar andesitic composition

and morphology, located in similar tectonic environments, and characterized by intermediate-

to-high explosivity [3]. These volcanoes are excellent candidates to asses whether the patterns

detected by Bayesian Neural Networks (BNNs) on one volcano, could be exported to other

eruptive scenarios. Our initial experiments are directed to understand the behaviour of BNNs

on these two separate volcanoes. After that, we focus our effort into one unified framework

that is trained jointly, under label sparsity conditions (different labels for each volcano), but

same categorisation scheme. These experiments would help to evaluate how BNNs classify
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events that are related in frequency content but distinct in seismic nature. For the new eruptive

periods, we perform an uncertainty analysis on the new data ranges to evaluate if uncertainty

estimations could be interpreted as a typical feature associated to the lack of specific knowledge

about the new volcanological situation. The proposed workflow can capture this information,

yielding higher uncertainties estimates and reduced recognition accuracy on later eruptive pe-

riods. The framework is enhanced by exploring the complementarity between transfer learning

techniques and uncertainty quantification. Specifically, we examine passing prior weights to the

new seismic period to assess if further improvements can be obtained by merging knowledge at

multiple scales. Our framework allows the seismological community to tackle the problem of

data scarceness and demonstrates the robustness of the proposed approach with more extensive

seismic catalogues, and on different volcanological conditions.

II. BAYESIAN DEEP LEARNING

A. Deep Neural Networks

Artificial Neural Networks (ANNs) are mathematical algorithms designed for function ap-

proximation. We define D = {(X,Y)} = (xi, yi)
N
i=1 as our dataset containing a collection of N

recorded seismic signals, xi, along with their annotated labels yi. The output of an ANN, noted

as y, is computed through a non-linear transformation (hidden layer) of the input data x. ANNs

work well on well-defined problems but lack the flexibility of modern deep learning techniques to

discover statistical regularities in high-dimensional datasets [23]. Deep neural networks (DNNs)

are defined as sets of fully connected hidden layers, f(·), in which the output y = fW (x) is

parameterized by w = (w1, w2, ..., wn), known as weights. On multi-class classification problems,

class probabilities pc are derived from the output layer of the DNN as:

pc(y = i|x, w) = f̃(xi;w) (1)

with f̃ the output of the softmax probability layer. The softmax layer is defined as a normalized

exponential function which computes class probabilities p(c) from the last layer output, o:

pc =
exp(oc)∑
k

exp(ok)
(2)

where k is the index over all classes and exp, the exponential function. The training of a deep

model typically consists of finding the optimum set of weights that maximizes the likelihood
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distribution, p(y|x, w), that best explains our observable data. This weights optimization is

computed via the backpropagation algorithm by measuring the discrepancies between the labels

and the predicted outputs [24].

B. Bayesian Neural Networks

In a classification problem, the probability output of softmax layer alone (equation 2) could

lead to over-confident predictions for points out of the data distribution. In this context, Bayesian

neural networks (BNNs) are defined as ”artificial neural networks in which a probability dis-

tribution is placed over the network weights” [25]. BNNs do not compute a single estimate of

the weights w, but a probabilistic approximation over all of them. This approximation allows a

rigorous approach to tackle statistical approximation problems. Given a volcano-seismic dataset,

D and the likelihood p(y|x, w), the posterior distribution of the network weights, p(w|D), can

be approximated using Bayesian inference:

p(w|D) =
p(y|x,w) ∗ p(w)

p(y|x) (3)

With p(y|x) known as the evidence and p(w) the prior distribution over the weights, on a

vector space w ∈ Ω. The predictive distribution is computed as:

p(y∗|x∗, D) =

∫
Ω

p(y∗|x∗, w)p(w|D,w) dw (4)

With x∗ and y∗ the new input and output, respectively. The computation of equation 4

requires the evaluation of an intractable integral. First work by [26] described a Bayesian

inference framework based on a Laplace approximation of the posterior. Work by [25] introduced

Hamiltonian Monte Carlo (HMC), an integration of Markov Chain Monte Carlo (MCMC) and

Hamiltonian dynamics to sample from the posterior distribution. However, the amount of time

required for computation limited their applicability to volcano-seismic data. Variational inference

(VI) algorithms cast the approximation of the posterior distribution as an optimisation problem

[27]; first, VI finds a set of variational distributions Q = {qθ(w)} and select the closest qθ(w) to

the true posterior distribution by computing the Kullback-Leibler (KL) divergence between the

two. This workflow permits the optimisation of a cost function and batch learning, thus being

suitable to be applied in deep learning.

A large body of literature is devoted to finding fast and accurate estimates of the posteriors
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using variational inference [28]. Previous applications in BNNs include Stochastic Gradient

Langevin Dynamics (SGLD) [29], Bayes by Backprop [30] and the reparametrisation trick

[31]. However, they still suffer from scalability or computational issues [22]. Bayesian Deep

Learning arises as the intersection of Bayesian methods with deep learning. They offer principled

uncertainty estimates by combining the hierarchical feature learning of deep networks with the

flexibility of Bayesian theory. Recent work by [32] links the dropout regularisation technique

with variational learning, enabling an efficient posterior approximation by sampling from multiple

dropout masks.

C. Variational dropout

Dropout is ANN regularization technique based on random de-activations of the network

weights for a given probability p [33]. The randomness of this technique has been associated with

VI in BNNs: the variational family Q = {qθ(w)} can be sampled from a Bernoulli distribution to

parametrize the neural network weights, W [32]. Therefore, the cost function of a BNN can be

used to approximate the posterior distribution, with p, the drop-out probability. Once the network

has been trained, the predictive function can be obtained by running T stochastics sampling steps

from the dropout variational distribution. In this case, equation 4 can be approximated as:

p(y = c|x) ≈ 1

T

T∑
i=1

f̃ (5)

With f̃ the probabilistic output of the softmax layer. By randomly dropping weights with

probability p at test time, we ensure that an ensemble of neural networks with weight dropout

distribution q(w|θ) can approximate the posterior over the weights p(w|D). This approximation

is based on how the dropout strengthen network weights that are essential during the learning

process, modelling uncertainty throughout the information dropped by de-activated weights from

an ensemble of models [32]. Therefore, deep learning could improve the learned representation

of volcano-seismic signals whilst gathering uncertainty estimates under a flexible Bayesian

methodology. The prediction of probabilities from deep networks, when plugged into a Bayesian

framework, allows the fast computation of uncertainty estimation on real time.
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Table I

MOST REPRESENTATIVE VOLCANO-SEISMIC SCIENTIFIC LABELS ASSOCIATED WITH THEIR GEOPHYSICAL INTERPRETATION

Mc. Nutt [1] Minakami [34] Other Names [35] [36] Frequency (Hz) [9]
Duration

(s) [9]
Some Source Models [1] [7] [6] [5] [9]

High Frequency (HF) A-Type
Volcano Tectonic Earthquakes,

Tectonic, Short Period Earthquakes
>5.0 20-60

Shear failure or slip on faults,

usually as swarms within the

volcanic edifice.

Low Frequency (LF) B-Type
Long Period Event, Volcanic,

Long Coda Event, Tornillo
1.0 - 5.0 10-60

Fluid driven cracks, pressurization processes

(bubbles), or attenuated waves.

Mixed Frequency (MX) - Hybrid Event, Medium Frequency 1.0 - 12.0 20-60 Mixture of processes, e.g: cracks and fluids

Explosion Quake (EXP) Explosion Quake Explosion, Volcanic Explosion >10.0 <10.0
Accelerated emission of gas and

debris to the atmosphere

Volcanic Tremor (TRE) Volcanic Tremor
Volcanic Tremor,

Harmonic Tremor,
1.0 - 12.0 150

Pressure disturbance, gas emissions,

debris processes or pyroclastic flows
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III. VOLCANO-SEISMIC UNCERTAINTY MONITORING

The wealth of seismic-data recorded during an eruption requires accurate classification. The

morphology, tectonic environment and composition of volcanoes contribute to shaping seismic

signal, for example, due to attenuation of high-frequency energy. Current machine learning

monitoring systems have highlighted topography changes or seismic variations of the medium as

a significant influence on detection performance. Concretely [37] identified a substantial change

in the physical mechanism of the events recorded at Piton de La Fournaise as the primary factor

influencing the predictive performance. Similarly, [9] describes seismicity changes over time at

Ubinas volcano as the main accuracy decay across eruptive periods. From a machine learning

perspective, changes within the seismic environment produce probability distributions that are

very distinct from the original training data. This leads to oversimplified assumptions that do

not reflect the current situation, thus decreasing detection and classification under-performance.

As a result, these statistical limitations could undermine the capacity to produce an objective

methodology to consistently classify signals with high-levels of confidence, which ultimately

can be extended to more refined early-warning methodologies [8].

Mathematically, two types of uncertainties can be defined: epistemic and aleatory. Epistemic

uncertainty is associated with the absence of knowledge about the natural process and aleatory

uncertainty is connected to the natural variability of volcanic unrest [22]. Quantifying aleatory

uncertainty in a volcanic environment can be very challenging, as it is a direct consequence of the

inherent non-linearity of volcanic processes. However, epistemic uncertainty could be quantified

from the randomness of statistical parameters and can be characterised as the uncertainty linked

to the neural network weights θ. Here, we propose to evaluate seismic uncertainty at a wave-

form level, using BNNs as stochastic parsers from raw signals into event probabilities. These

probabilities are sampled from the approximated variational dropout distribution Q, associating

the uncertainty of the statistical parameters with the current dynamic of a volcano, i.e., the

interaction of the seismic event with the environment. Thus, epistemic uncertainty for C classes

can be computed from the per-class probability vector pc using the entropy H(p) as generalised

measured of uncertainty [38]:

H(p) = −
C∑

c=1

pc log pc. (6)

For both models, this probability vector pc is the result of principled sampling from the
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variational distribution Q. Therefore, we do not obtain a single point estimate of the event,

but a probabilistic representation associated with the unknown knowledge of the model for the

selected event. In a multi-classification setting, these estimations provide not only the annotation

(label) of the waveform but also a probabilistic assessment of how far from the original data

distribution our estimates are. Information of individual events is not missed, and we can quantify

potential seismic variations that are associated to changes in the overall data distributions: BNNs

can detect and classify the event while providing high uncertainty, indicating that there is a

change in the probability distribution of seismic events. The association of weight uncertainty

to seismic changes would lead to more refined seismic catalogs and improved assessment of

volcanic hazards: not only the events are processed, but data distribution shifts can be tracked

between seismic snapshots.

A. Uncertainty and Transfer Learning

Volcano-seismic monitoring systems based on machine learning are very accurate on selected

periods but tend to decrease its performance given the data distribution shifts over time, reflecting

the evolving volcanic environments [9][37]. This leads to continuous manual analysis of the

new eruptive periods in order to produce datasets large enough to cover the novel range of data

distributions. Hence, the insufficient amount of new labelled data, along with the time needed

to analyse and retrain monitoring systems are the main factors that limit the exportability across

seismic campaigns in volcanological observatories. Transfer Learning could relieve the data

scarcity problem and the time needed to react to these changes [39]. Successful applications

of transfer learning in a number of disciplines have helped to identify the essential knowledge

that needs to be transferred across domains and tasks; great improvements in the performance of

these systems have been achieved, for example, in music [40], analyses of electroencephalograms

[41] and geophysical image processing [42]. However, given the extremely dynamic nature of

volcano-seismic sources, it is advisable to not apply brute-force transfer learning, but a more

refined approach to avoid negative transfer learning, i.e, the decrease of accuracy in the new

domain [43].

In this context, we link transfer learning and epistemic uncertainty in order to mitigate the

generalisation error gap between data distributions whilst detecting at the same time subtle

differences in the new seismic data. This would yield more polished monitoring systems, able



10

Table II

NUMBER OF EVENTS FOR BEZYMIANNY AND ST.HELENS VOLCANOES, COVERING BOTH ERUPTIVE PERIODS

Labels
St. Helens Bezymianny

2004-2005

(pre-eruptive)

2005-2006

(post-eruptive)

2007-2008

(pre-eruptive)

2008-2009

(post-eruptive)

HF 8353 1437 6929 10617

LF 8423 9310 8523 2843

MX 8525 8357 9464 8715

Total 25301 19104 24916 22175

to quantify uncertainty, detect statistically meaningful changes and help analysts to build large-

scale, high-quality annotated datasets.

IV. SEISMO-VOLCANIC DATASETS

In volcano seismology, there is not a uniform way to classify earthquake signals. Waveforms

are classified based on a set of properties measured in the time or frequency domain. Table

I shows a summary of earthquake classifications and possible source models that have been

traditionally attributed to them. Our Bayesian framework will be focused on the identification

and classification of the three most representative classes of earthquakes that are encountered

in a volcanic environment, low-, high-, and mixed-frequency events. Figure 1 illustrates the

typical frequency content for these three classes of volcano-seismic signals. We will test the

performances of our Bayesian workflow on data from two volcanoes, Mt. St. Helens, USA, and

Bezymianny, Russia. In Table II, we show the composition and per-class distribution of events

for the selected volcanoes. In summary, our database includes:

1) Low frequency events (LF) (Figure 1.a): This type of earthquakes deliver energy mainly in

the 0.5-5 Hz band, and have typical durations of ≈25.0 seconds.

2) High frequency events (HF) (Figure 1.b): They are characterized by broadband spectra,

with significant energy delivered well above 5Hz, clear P and S waves onsets, and typical

durations of less than 25.0 seconds.

3) Mixed frequency events (MF) (Figure 1.c): They are characterized by energy delivered

across the spectrum of both LF and HF events, across the 1-20 Hz band.
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Figure 1. Waveform and spectrograms for three of the most representative volcano-seismic signals [1]. The frequency content

of the events shifts from higher (a) to lower (c) frequencies. In the Mixed Frequency (MX) case (b), notice frequencies are

mixed between lower and higher part of the frequency bands, with a broad spectra.

This compact classification scheme allows avoiding label sparsity. Other events such as tremor,

explosions, rockfalls, ice-quakes or regional earthquakes are not considered in this work.

We focus our study on Mount St. Helens and Bezymianny volcanoes, during the eruptive

periods of 2004-2005 and 2007-2008, respectively. Prior waveform analysis at Bezymianny

and Mount St. Helens, [44] suggests similar seismic patterns at the two volcanoes prior to

explosive activity, and similar waveform characteristics in terms of amplitude, duration and

standard deviation from the average signal.

Following previous work of [44] and [3], we used, for initial classification, data from stations

BELO, BESA and BERG at Bezymianny, and from stations S02, S06 and S15 (dome

reactivation) at St. Helens. In order to assess how BNNs could transfer seismic knowledge across

eruptive crisis, and if uncertainty can be quantified during unrest periods and post-eruptive crisis,

we analysed BELO, BESA and BERG stations from 2008-2009 at Bezymianny volcano and

S03 and S07 and S15 stations from the 2005-2006 eruption at St. Helens (spine destruction,

stations S02 and S06 were not available during this period).
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Figure 2. Experimental framework implemented in this work. For each volcano, frequency features are computed from pre-

processed raw signals. Four datasets are created: SH (St.Helens), BZ (Bezymianny), similar labels (both 3 classes) and separately

(both 6 classes). Best models from joint datasets are tested with different eruptive periods to evaluate transfer learning and

uncertainty quantification capabilities of the BNN.

V. EXPERIMENTAL SETUP

In this section, we aim to establish if BNNs are suitable for volcano-seismic monitoring

and, for each volcano, if epistemic uncertainty could offer insights into volcanic and seismic

unrest. Figure 2 summarises the implemented data pre-processing workflow and experiments.

We implemented the same probabilistic framework as described in section II with St. Helens

and Bezymianny data from Table II. We evaluate transfer learning and uncertainty quantification

on a new eruptive period by selecting only the best model, on both 6 classes from previous

trained periods.

A. Data pre-processing and feature extraction

The raw continuous data streams for each volcano, at each of the selected stations, were pre-

processed in order to extract events of interest using the REMOS (Recursive Entropy Method of

Segmentation) algorithm [45]. Each extracted event is later characterised using a well-tested set

of features already investigated by us in several volcanic-scenarios, including Deception Island

[18], Etna [14] and Stromboli [46]. The REMOS algorithm performs data segmentation and

semi-supervised categorisation of events into classes based on their frequency index (FI), the
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ratio of energy within low- and high- frequency bands:

FI = log10

(
Ehigh

Elow

)
(7)

where Ehigh and Elow are the spectral energy in the, high ([6− 12]Hz) and low ([1− 5]Hz)

frequency bands. All events detected and classified by REMOS were visually inspected using

a custom Python Graphical User Interface (GUI) to confirm or modify the initial label of the

event. As a result, complete and annotated catalogues are generated (see Table II). Data pre-

processing and feature extraction pipelines are implemented using the signal processing modules

in the well-known Obspy seismic toolbox [47] on the detected waveform. Following the same

procedure as defined in previous work by [14], we derived a set of 13 cepstral coefficients

on a logarithmic scale for the data; first, using a Hamming window (4.0s), the spectrum of

the seismic signal is computed, and an log-spaced filterbank (16 triangular weighting function,

50% adjacency) is designed to yield an individual average of the spectral frequencies. Cepstral

analysis is performed and 13 cepstral coefficients are then derived for each earthquake in the

database [48].

B. Evaluation metric

Here we use confusion matrices and accuracy (Acc) to evaluate the performance of the BNNs

to classify volcano-seismic events. We compute the Acc as:

Acc (%) =
Number of Correct Predictions

(Total Number of Events)
∗ 100 (8)

The Acc is the standard measure of overall effectiveness for a classifier. Moreover, we compute

precision (PR) and recall (RC) metrics as:

Precision (PR) =
TruePositives

(TruePositives+ False Positives)
(9)

Recall (RC) =
TruePositives

(TruePositives+ FalseNegatives)
(10)

For a given model, these metrics can diagnose how many events are correctly detected and

classified. In practice, recall measures the proportion of relevant detected seismic events, i.e,

how good the model can detect events from a given class. Precision measures the refinement

of statistical model, i.e, how good the classifier can discriminate specific instances [49]. Both
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metrics offer more explicit information about the number of miss-classified events than accuracy

alone and are accepted performance measures in volcano-seismic monitoring [46]. The weighted

average of precision and recall, known as F1 score, can be computed as:

F1 =
2 ∗ (RC ∗ PR)

(RC + PR)
∗ 100% (11)

F1 score provides an informative trade-off measure between the PR and RC. These metrics

are of particular interest in seismology, as RC is related to a sensitivity of the system (how

many earthquakes is able to detect), and PR to specificity (how many earthquakes are correctly

classified), thus offering more global information than accuracy itself.

C. Model Implementations

For each of the volcano-seismic datasets in Table II, we perform data pre-processing as

described in subsection V-B. Once the features are extracted, we divide each dataset into train-

ing (80%), and test (20%) sets, and different BNNs are trained independently. Further, joint

datasets with events from both volcanoes are used to train two independent BNNs: a mixed

(Both 3 dataset) and sparse (Both 6 dataset). All BNNs models are initialised with Glorot

Initialization. Hyper-parameter fine-tuning is based on a Bayesian optimisation towards best

configurations, followed by a random search over the most promising hyperparameters [50]. All

models are optimised with Adam [51], initial learning rate of 0.01, ReLU activation function,

mini-batch size set of 32, and dropout probability at (p = 0.25). The cross-entropy loss is used

as cost function. The training stage is set to 50 epochs, with early-stopping set to a patience

interval of 5 epochs in order to mitigate overfitting. MC-Dropout has been implemented as

described in Section II. The transfer learning setting follows a similar procedure: Using the best

obtained models, volcano-seismic events from 2008 at Bezymianny and 2005 at St. Helens are

pre-processed and extracted as described in subsection V-B. Our BNN framework is implemented

entirely in Tensorflow, and simulations executed in an NVIDIA Tesla P40 GPU, 24 GB GPU

memory and 32 GB RAM.

VI. RESULTS AND DISCUSSIONS

Our data analysis is divided into three steps (see Figure 2). Firstly, we analyse each volcano

independently, i.e., we test the performance of the BNN to classify the three selected types
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of volcano-seismic events (LF, MF and HF) separately for each volcano. In the second step,

we explore how the BNN is able to recognise the signals when all labelled signals from both

volcanoes scenarios are merged together. Finally, after a second joint training of all events from.

both volcanoes, we investigate the associated uncertainties. Since we use data that change over

time from the two volcanoes, pre and post an eruption, we assess how these signals changed, and

the associated uncertainty in the recognition that can be interpreted as a change in the seismic

source mechanisms.

A. General performance of the system

After the pre-processing analysis performed in the previous section, we selected a large, high-

quality and balanced dataset for each volcano. For St. Helens we identified 25,301 seismic events,

and for Bezymianny 24,916. The size of the two datasets is similar, allowing to generalise our

observations.

Table III (a) and (b) presents the averaged Acc, confusion matrix, PR, RC and F1 metrics for

St. Helens and Bezymianny volcano, respectively. The overall mean of the epistemic uncertainty

is also reported. Being this our baseline system, notice that all optimised architectures result

in high-performance when the datasets are independently studied. The accuracy remains high,

with 95.7% for St. Helens (SH 0405) and 94.1% for Bezymianny (BZ 0506). Precision (PR)

and recall (RC) remain high for all classes in both datasets, which highlights that the feature

vector fed to the neural network carries rich information to exploit. From Table III, the confusion

matrix reveals that MX events are the only events that present fluctuations among the classes.

Due to their spectral characteristics, LF and HF were never misclassified at both volcanoes,

demonstrating the high quality of the characterization process. In general MX events, also known

as hybrid events, (see Table I) share characteristics of both HF and LF events. We infer that the

observed confusion matrix is associated with both attenuation effects and source effects, rather

than incorrect initial labelling.

B. Performance on joint datasets

In this section, we explore the exportability of the labelled database and assess whether it

is necessary to re-train the systems with new data when it is used at a new volcano. For this

purpose, we merge our test datasets and perform again the BNN analysis.
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Table III

AVERAGED CONFUSION MATRICES AND PERFORMANCE (PR, RC, F1) FOR ST.HELENS (a) AND BEZYMIANNY (b)

VOLCANOES

(a)

True

Pred.
HF LF MX PR RC F1

HF 2025 0 82 0.97 0.96 0.96

LF 0 1986 88 0.98 0.96 0.96

MX 52 48 2043 0.92 0.95 0.93

Overall Accuracy: 95.7%, Mean Epistemic Unc.: 0.10

(b)

True

Pred.
HF LF MX PR RC F1

HF 1628 0 87 0.95 0.95 0.95

LF 0 2305 75 0.96 0.97 0.96

MX 93 84 2214 0.93 0.93 0.93

Overall Accuracy: 94.5%, Mean Epistemic Unc.: 0.12

Table IV

AVERAGE CONFUSION MATRIX (a) AND PERFORMANCE (PR, RC, F1) (b) FOR BOTH VOLCANOES, SAME LABELS

(a) (b)

True

Pred.
HF LF MX PR RC F1

HF 3681 0 172 0.94 0.96 0.95

LF 0 4035 151 0.97 0.96 0.96

MX 224 130 4153 0.93 0.92 0.92

Overall Acc,: 94.6 % Mean Epistemic Unc.: 0.13

In the first stage of this analysis, we merged the two datasets (SH 0405 and BZ 0809) in

order to train a unique BNN, independently of the origin of the signal. In Table IV (a) we report

the confusion matrix, PR, RC, F1, averaged accuracy (Acc.) and epistemic uncertainty for both

datasets, when labels are unified (Both 3 classes). It is interesting to note that the previous

trend is maintained when labels from both volcanoes are merged together, with a slight decrease

in accuracy and an increment in uncertainty: more events are incorporated from distinct sources,

forcing the network to learn a more complex data distribution. We note that RC and PR are

elevated for HF and LF events, whereas the MX events present a lower RC but higher PR.
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Table V

AVERAGED CONFUSION MATRIX a, AND PERFORMANCE (PR, RC, F1) (b) FOR JOINT DATASET, SPARSE LABELS.

(a) (b)

True

Pred.
HF SH LF SH MX SH HF BZ LF BZ MX BZ PR RC F1

HF SH 2003 0 63 63 0 1 0.94 0.94 0.94

LF SH 0 1959 66 0 18 1 0.95 0.96 0.95

MX SH 88 66 1927 10 2 28 0.90 0.91 0.90

HF BZ 33 0 25 1533 0 157 0.91 0.88 0.89

LF BZ 0 39 6 0 1961 117 0.95 0.93 0.93

MX BZ 2 2 48 88 69 2180 0.88 0.91 0.89

Overall Accuracy: 92.08% Mean Epistemic Unc.: 0.20

These results reveal that only events that are correctly detected are classified with great precision,

which can be translated into a decreased number of false positives for the three classes. This

idea is highlighted by the LF events, as they can be discriminated with higher RC and PR.

Therefore, the first observation is the demonstration that BNN is a powerful tool to discriminate

distinct seismic events, even if they have a different origin: the only condition is to perform an

accurate pre-processing and data labelling. Hence, we can infer that the system is exportable, i.e.

the experience from one volcano is transferable to a new one, if the seed database was generated

with high-quality and large number of data.

In order to explore differences between volcanoes, we performed the same test, but differenti-

ating the labelled seismic classes according to their origin, here separating them between the two

test volcanoes. Table V (a) and (b) show the recognition performance when labels are separated

for each volcano. These results highlight an important property: increasing label sparsity could

decrease performance, but provide geophysical insight about the seismic events. From Table V

(b), whilst the overall performance of the BNN is good in terms of PR, RC and F1, the trend

with respect the unified dataset presents subtle differences. First, RC and PR remains high for

LF events. Second, MX events have similar recall at both volcanoes, 0.91, but lower precision at

Bezymianny volcano. Similarly, the recall and precision of HF events at Bezymianny volcano is

lower when compared to St. Helens. This could indicate that this seismic classes share frequency

properties across the two volcanoes, as RC magnitudes are influenced by the seismic events,

yielding a less sensitive system in the case HF events, but with increased PR. Similarly, PR
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Figure 3. Per-class overall mean and variance within predictions for (a) St.Helens 2005-2006 new eruptive period, blue line

(b) Bezymianny 2008-2009 post-eruptive period, red line. The axis order is the same as the assigned categorical labels in our

training data. By following the lines, notice that the probability of assignment between volcanoes is very low, but high in the

case of the same volcano.

and RC in the mixed frequency events, BZ MX and SH MX , are lower when compared to

the combined dataset: the system detects less mixed frequency events, but classify them with

higher precision, and can discern their origin.

The confusion matrix for the sparse labels (Both 6 classes) in Table V (a) suggests that even

if the BNN was able to merge classes previously when applied separately, is able to determine at

which volcano the seismic signal was generated. In general HF events are interpreted as the result

of brittle failure as a consequence of stress accumulation. Source depth and its mechanisms, and

path effects, influence the final characteristic of the recorded waveform; this allows differentiating

HF earthquakes with different sources, even at the same volcano.

C. Epistemic Uncertainty

In this section we introduce how uncertainties can be interpreted as a consequence of simi-

larities and differences between volcanoes, specific seismic source, and the general character of

unrest.

As described in the previous sections, we used seismic signals from two similar volcanoes

during pre- and post-eruption periods. In the previous analysis, we used for each volcano the

whole data set and observed a high degree of success of the BNN to recognise and classify
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Figure 4. Frequency distribution variations for the two selected eruptive periods on Bezymianny (upper part) and St. Helens

(lower part) volcanoes. Notice that, after the main eruptions, the frequency content in all selected events changes, shifting the

frequency index distribution.

seismic events, i.e. BNN is a powerful tool both for all data from each volcano, and for exporting

knowledge for both and separated labels. A deep and detailed frequency analysis of the seismic

signals shows that some characteristics of the seismic signals changed after eruptive activity took

place. We focus our analysis on the FI. Figure 3 depicts the per-class overall mean and variance

within predictions, and in Figure 4, we plot the frequency index distribution before and after

eruption for both volcanoes and the whole data set. In Table VI we report the accuracy, along

with the epistemic uncertainty, for the new eruptive periods, before and after the application of

the transfer learning methodology. From Figure 4, the differences are obvious; these differences

are likely associated with changes within the volcanoes. Thus, the BNN is able to quantify

variations in the seismic signals, assigning greater variance in their predictions, even if labels

are kept the same. Moreover, despite the recognition results at Table VI, higher accuracy on

blind-test in a new volcano-seismic dataset does not imply greater class probability. Therefore,

the models are able to correctly classify events, but they do yield per-class greater variances and

lower probabilities. Epistemic uncertainty has two roles: quantification of dataset distribution,

and its association to volcano-seismic changes, such as those reported in [3] and [44]. In Figure
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Table VI

EPISTEMIC UNCERTAINTY AND ACCURACY (%) FOR THE NEW ERUPTIVE DATASETS

Dataset
Blind Test After Transfer Learning

Acc (%) Epistemic Acc (%) Epistemic

Both post-eruptive 84.90 0.27 93.39 0.16

Bezy 0809 90.82 0.23 93.88 0.17

St.Helens 0506 80.08 0.32 95.13 0.14

Table VII

AVERAGED CONFUSION MATRIX BEFORE (A) AND AFTER (B) TRANSFER LEARNING, FOR THE POST-ERUPTIVE JOINT DATA

TEST DISTRIBUTION (70%)

(a) (b)

True

Pred.
SH HF SH LF SH MX BH HF BH LF BH MX SH HF SH LF SH MX BH HF BH LF BH MX

SH HF 716 29 38 14 178 4 810 0 46 123 0 0

SH LF 2 5201 250 0 979 7 0 6061 349 0 29 0

SH MX 114 2087 2480 4 817 226 39 218 5405 30 2 34

BH HF 340 8 47 3834 312 2830 56 0 56 7061 1 197

BH LF 1 34 1 0 1953 28 0 36 19 0 1661 301

BH MX 24 23 53 88 1620 4300 3 0 83 459 76 5487

3, we plotted the evolution of the main frequency indices for each class and volcano during

both, pre- and post-eruptive stage. The shift in the frequency index according to activity is a

clear consequence of a change in the physical properties of the sources and medium.

D. Transfer Learning

In this last experiment, we test the capabilities of the BNN (Both 6 classes) to learn with

data from new eruptive periods, aiming to investigate if by fine-tuning the weights of the pre-

trained network we could classify new events whilst decreasing the uncertainty of the models.

Transfer learning was implemented following procedures similar to those described in Section

V. Table VI reports the accuracy and the epistemic uncertainty on both post-eruption data (see

Table II), on a blind test prediction, and after the transfer learning procedure. Firstly, we notice

that as the frequency distribution of the events has changed, the accuracy drops in our dataset,

and uncertainty remains high. When the seismic source changes (see Figure 3), the overall

uncertainty increases, for each volcano, and on both datasets. Therefore, given that our feature

vector is trained on pure frequency attributes, changes within the frequency bands of the events
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can be perceived through the uncertainties associated with the BNN model, resulting in higher

uncertainties. The frequency characteristics previously learnt by the probabilistic weights of

the BNNs are transferable to the new eruptive period, helping the BNN to adapt itself to the

new changes in frequency bands. This yields higher accuracy and lower epistemic uncertainty.

Additionally, Table VI (b), the confusion matrix, demonstrates the transfer learning capabilities

of the BNN, trained on 25% of the training data, and 75 % test partition. This simulates the

condition in which only a small subset of the new data is available for re-training, which is often

the situation during a new eruptive crisis. Note that the sparsity of the matrix is reduced, and

more events are correctly classified. Additionally, the exportability is manifest given that many

of the errors are placed on similar type of events (MX , HF , LF ), but at different volcanoes.

Only the recognized LF events at Bezymianny are lower when compared to the blind-test case,

being confused with LF of Mt. St. Helens. This is indicative that some of these events share

similar properties at the two volcanoes, which was also reported by [44].

The lower number of miss-classified events, jointly with lower epistemic uncertainty, and

higher recognition accuracy highlights an important point: there is no need to train an early-

warning system from scratch, but it is possible to export systems that are related in other to

simplify the deployment. Considering the dynamics of learning, the selective reuse of the prior

model to unlearn irrelevant information from the previous datasets help the new model to exploit

at least some common structure on the new datasets (new eruptive periods). Therefore, this new

fine-tuning helps to improve recognition results (see Table VI) and to decrease data uncertainty,

and thus, to mitigate issues with volcano-seismic data scarcity. We are proving that BNN are

a powerful tool that, allow exporting knowledge from one volcano, or one stage to another

and, simultaneously, are capable of tracking how signals evolve over time from a probabilistic

perspective, even for mixed, sparse, datasets.

VII. CONCLUSION AND FUTURE WORK

In this work, we investigated a new Bayesian approach for application to volcano-seismic

monitoring. We focused our research on finding new ways to exploit uncertainties derived from

a Bayesian deep learning framework as a realistic unrest detector. Two different eruptive periods

at two volcanoes, Mount St. Helens and Bezymianny, were studied. Results demonstrate that

BNNs are able to detect and recognise volcano-seismic signals with outstanding performance for

the two volcanoes, separately. Moreover, when the two datasets are combined, the BNN attains
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an excellent performance in terms of PR, RC and Accuracy, and is able to classify events from

the two volcanoes, based on their frequency characteristics. Additionally, when the datasets are

separated according to their volcanic origin, the BNN is able to detect the volcano where signals

were generated.

The proposed approach provides uncertainty representation related to changes in the dynamics

of both volcanoes. Further, the flexibility of Deep Learning, when viewed through the lens of

Bayesian theory, allow us to tackle the problem of data scarcity from monitoring networks with

no prior data available. We illustrated frequency content variations during pre- and post-eruptive

periods, which are well-sensed by the epistemic uncertainty associated to the BNNs a-priori

weights. The epistemic uncertainty derived from the BNN weights has two main implications:

it stands not only as a feature to be considered as an unrest precursor, but also as a threshold

level to determine when transfer learning algorithms should be used.

The exploration of monitoring systems from the perspective of Bayesian theory has highlighted

the advantages of their deployment, and how the transfer of learned features with appropriate

datasets could mitigate the data scarcity problem, even under intense volcanic activity. Our results

can be exported to other volcanoes worldwide.
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SEISMO-VOLCANIC DYNAMICS

This chapter defines the Bayesian monitoring framework adopted for continuous detection,

segmentation, and classification of seismo-volcanic data streams. The definition of how statistical
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Bayesian Monitoring of Seismo-volcanic

Dynamics

Angel Bueno, Carmen Benı́tez, Luciano Zuccarello, Silvio De Angelis, and Jesús

M. Ibáñez

Abstract

Methods for volcano monitoring that are based on analysis of geophysical data often rely on

deterministic approaches without considering the complex and dynamic nature of volcanic systems.

In order to detect subtle changes within seismic sequences associated with volcanic unrest, specialized

workflows for data classification and analysis are required. Here, we present an inference framework

based on Bayesian Deep Learning as a probabilistic proxy, which allows monitoring continuous changes

in seismic activity at volcanoes. This architecture has been designed and trained to detect and classify

individual earthquake transients from continuous seismic data recorded in volcanic environments. We

tested this new framework by analyzing seismic data associated with eruptions at Bezymianny Volcano

(Russia) during 2007. Our results demonstrate efficient signal detection and classification accuracy, and

effective detection of changes in the volcanic system in the hours preceding eruptive activity. This

approach can be extended to other volcanoes and earthquake-prone areas, and demonstrates a new

application of deep learning in the field of seismic monitoring.

I. INTRODUCTION

Forecasting of volcanic eruptions is grounded in the ability to identify changes in metrics

derived from the analysis of geophysical time series, and in the successful implementation of
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such data analysis frameworks for pattern recognition in real- or quasi-real-time [1]. Volcano

seismology remains one of the most important tools for volcano monitoring. Volcanic activity

is known to generate a variety seismic signals, which represent evidence of multiple complex

processes acting within the volcanic system. Changes in the style of seismicity, and its rates

of occurrence and magnitude, are frequently recognized as precursors to eruptions [2]. Recent

technological advances, the reduced costs of equipment, and improved open access policies

for scientific data have meant that more information has become available. Research efforts in

recent years have, thus, focused on improving our ability to process large amounts of seismic

data efficiently; in particular, this has promoted the use of deep learning [3], [4], [5], [6], [7],

[8], [9]. Pre-trained deep neural networks (DNNs) and recurrent neural networks (RNNs) have

been explored in multi-class discriminative frameworks [10], [11], showing good performance in

selected periods of seismic unrest (snapshots); for time-intervals associated with well-identified

volcanic activity, they are used to fine-tune monitoring algorithms [12], [13], [14], [15]. These

workflows have, however, been implemented without consideration for the assessment of un-

certainty, which can affect their performance in certain conditions [16]. These algorithms can

experience significant performance drops due to limitations in the training seismic database

and procedures that do not account for the non-stationary evolution of volcanic unrest and of

its seismic fingerprint. These issues can be partly mitigated through constant updating of the

training dataset, a time-consuming task that involves continual manual inspection of a large

volume of seismic data and re-training of the neural network. A probabilistic approach to deep

learning can partly address these challenges [17]. Recent work by [18] has demonstrated the

capabilities of deep learning to operate as a multi-volcano classifier by re-using accumulated

seismic knowledge throughout time. The uncertainties derived from the Bayesian formulation in

[18] serve as an indicator of changes in the frequency content distribution of the seismic signal,

casting differences in eruptive periods as transfer learning scenarios. Although this approach

helps to mitigate some past issues it still requires expert-validated, manually segmented training

datasets.

In seismo-volcanic monitoring, uncertainty characterizes the dispersion of values that can

reasonably be attributed to the monitored process. In this context, aleatory uncertainty refers

to the notion of randomness; that is, the variability in the outcome due to inherently random,

unforeseen effects. Epistemic uncertainty refers to uncertainty caused by the model´s lack of

knowledge about the complete data distribution. In other words, epistemic uncertainty refers
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to the reducible part of the (total) uncertainty, whereas aleatory uncertainty refers to the non-

reducible part. The application of epistemic and aleatory uncertainty within seismo-volcanic

monitoring can be defined as a measure of how much data resembles known conditions, aiding

in the discovery of data variations and the temporal evolution of a physical system. Therefore,

the concept of uncertainty can be used to control the quality of the physical measurements of a

volcanic system and as an indicator of the evolution of these physical measurements over time.

A homogeneous volcanic system generates waveforms that resemble one another and lie within

the known support data distribution. When we deploy a trained system for seismo-volcanic

monitoring, the uncertainty varies according to whether there is an increase in the homogeneity

of the data or, to the contrary, the data cease to resemble known conditions. This evolution is

associated with changes in the characteristics of seismo-volcanic signals (e.g., increases in energy,

the existence of volcanic tremor, a shift in the frequency of the signals). With an increase in

seismic noise, for example, a signal would cease to resemble another of the same class because

a random noise level has been added to it. In this case, while the aleatory uncertainty will

increase, the growth of epistemic uncertainty will be more evident and more useful for defining

the change in the volcanic system. However, the nominal value of the aleatory uncertainty and

the difference with respect to the previous period reveals the significance of the produced change;

that is, whether epistemic variation is due to new data heterogeneity (i.e., mild increments in the

signal-to-noise ratio [SNR]) or to more significant internal variations (e.g., volcanic inflation,

change in seismic impedance, etc.). For this reason, randomness in monitoring data can imply

a change in data and/or in the environment, always conditioned to the available training data. If

the analyst can improve knowledge by taking more refined measurements, it may be sensible to

consider variables that exhibit dependence on those measures and that can explain stochasticity

in the data.

In this study, we introduce a new Bayesian deep learning (BDL) method for the detection,

segmentation, and classification of seismo-volcanic data streams, including uncertainty quan-

tification. We developed a new hybrid architecture that combines segmentation and temporal

sequence classification for the simultaneous identification and separation of seismic signals from

background noise. We tested and confirmed the capabilities of our model on a well-known,

short-lived and high-energy eruption at Bezymianny Volcano in 2007 (Russia) [19], recorded by

a near-field seismic station. Finally, we considered the potential future use of Bayesian uncertainty

in volcano monitoring.
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A

B

Fig. 1. Diagram of the proposed hybrid architecture to perform seismic event detection (A) and continuous sequence classification

(B) of seismo-volcanic events. The input is given by the two-dimensional spectrogram, X1, of size (freq, time). The outputs

are given by the segmentation mask Y1 of size (freq, time, pevent) and Y2 the labeled sequence (time, class). The X1 matrix

is embedded into a latent representation Z, in which the network learns to untangle frequencies from noise. This representation

is later upsampled and decoded through the expansive path, E, into an event detection mask highlighting the active frequencies of

the data stream, X1. The temporal Convolutional Neural Network (TCN) probes this representation to perform seismo volcanic

sequence recognition, producing Y2, size (t, nclasses), the per-frame classified data stream.

The remainder of this paper is organized as follows: Section 2 introduces the designed

hybrid architecture and the Bayesian methodology. Section 3 connects Bayesian theory and

volcano monitoring. Section 4 summarizes the eruptive phases studied. In section 5, we introduce

the experimental methodology. Section 6 presents the obtained segmentation and classification

results. Finally, section 7 closes the study with the conclusions and future research directions.
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II. BAYESIAN MONITORING

In volcano monitoring, background seismic tremor is a natural and continuous process implic-

itly related to volcanic unrest [15], [20]. The separation of seismic signals from the background

noise remains a challenging task, as they are located in a very narrow frequency band, over-

lapping many other seismo-volcanic events [21], [22]. However, identifying the level of seismic

background tremor can (i) help to perform seismo-volcanic event separation, segmenting only

those signals caused by volcanic unrest, even if noise levels prevail over the target events; (ii)

bound the classification of seismic events to the retrieved frequencies in the trace; and (iii) use

frequency masks to gain direct knowledge of potential volcanic sources and the environment in

which the seismograms are recorded.

To this end, our model learns two mapping operations (Figure 1). First, the network parses a

time-frequency representation of the seismic data stream (spectrogram), which we note as X1,

into a segmentation mask. The learn mask Y1 is overlapped with the input spectrogram to generate

an enhanced feature map representation M1; this feature map contains the broad spectrum of the

seismic events and the background noise. The second mapping operation performs continuous

event recognition with M1 as the input, generating Y2, the output sequence of geophysical labels.

This Bayesian approach permits quantification of the total uncertainty of the model, including

the uncertainty in classification and segmentation tasks, the frequency variations of the data

streams, and potential data drift.

A. Segmentation network module

The learning of target frequencies from other background signals has been applied in different

contexts, where background can have very diverse meanings, including vocals and music [23],

speech denoising [24], and, very recently, seismic signals for earthquake seismology [25]. Yet,

in volcano seismology, the word background might have an implication of rapid magma ascent,

among many other interpretations that require end-to-end methodologies that can exploit the learn

mask in the monitoring outcome [22]. Our segmentation framework adopts these approaches and

proposes an encoder/decoder architecture, designed to retrieve the frequency range of seismo-

volcanic events from copious and sustained tremor noise, applying multiple array-wise convo-

lution operators at a given frequency range [26]. We cast the problem of learning the seismic

background tremor as a segmentation task; with S(t, f) the seismo-volcanic signal, and T (t, f)

the seismic background tremor. The magnitude spectrum of the short-time Fourier transform
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(STFT), size (freq, time), is forwarded to a neural network to output the segmentation mask

Y1, size (freq, time, pevent), with pevent the index to the target seismo-volcanic events or noise.

As a final step, this learned representation Y1 is forwarded to a masking operation, that is later

used by the classification module.

The training target of this segmentation module is given by the ideal ratio mask (IRM) [27];

defined as the ratio of the given seismo-volcanic monitoring event, S|(t, f)|2 and the mixed

noisy representation of the data stream spectrum, S|(t, f)|2 + T |(t, f)|2. From the ground truth

label, the IRM is obtained at the frequencies corresponding to the trace, and later, mixed with

noise. The complementary mask yields the noise mask. A final binary operation is applied to

compose the Y1 target mask for both events.

The encoder (Figure 1, contractive path C), is based on a CNN with three successive convo-

lutional layers, containing two convolutions each. The number of filters in each convolutional

layer is twice that of the previous one: from the first to the last layer in C, 16, 32, and 64 filters

are used, with a kernel size (3x3). The latent path, noted in this work as Z, is a single layer

CNN with two convolutions operations, kernel size (3x3), and 128 filters. This Z path contains

a set of sparse feature maps with refined frequency information from the input feature matrix

X1.

The decoder, noted in Figure 1 as the expansive path, E, is built to keep the symmetry

with the contractive path C. The decoding steps comprises three up-sampling operations and

three convolutional layers that transform the latent features Z into a segmentation map, Y1.

The up-sampling operation halves the number of feature maps from the Z path, to permit

tensor concatenation of upsampled maps with convoluted feature maps from the encoder via

skip connections. These connections transmit the convoluted feature maps in each layer of the

encoder as an effective means of providing more informative fine-grained features with the

decoding steps. Furthermore, the successive skip connections and up-sampling operations help

to reassemble the time and frequency matrix dimensions of the input Y1, later used by the

classification network component.

Each of the three layers in E mirrors the number of convolutions and filters from C: two

convolutional operators with kernel size (3x3), and with 64, 32, and 16 filters, from first to last

decoding layer. A 1x1 convolution is applied to assign per-class frequency probability, producing

the output segmentation mask Y1. This output Y1 is a map of interconnected frequencies of all

the seismic events in our continuous trace. The network automatically indexes those frequencies
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and performs an overlapping operation with the input feature X1, resulting in a masked matrix

M1:

M1 = Y1[:,1] �X1 (1)

with [:, 1] the indices over the detected frequencies, and � the Hadamard product. The distilled

map M1 contains all the original frequencies from X1 and can be interpreted as an enhanced

version of the input spectrogram. The background noise has been eliminated from the trace,

and the presence/absence of events in the full seismic frequency range is marked. These feature

representation masks, M1, compose a structured representation of the input data suitable for

temporal modeling by the TCN component.

B. Temporal seismo-volcanic classification

The seismo-volcanic sequential module is a two-block temporal Convolutional Neural Net-

work (TCN) with causal constraint dilated convolutions; that is, a convolutional operator that

considers past contextual information without extensive computations [28] [29]. The causality

property refers to the mathematical property that temporally bounds future information to past

frames. Therefore, given the enhanced frequency map M1 = (mt0,mt1, ...,mt) as a sequence

of temporal frames, causal convolution operators assume that the prediction at any time t for

Y2 = (yt0, yt1, ..., yt), depends only on previous frames, (mt0,mt1, ...,mt−1,mt), but not on future

inputs, mt+1. The causal property analyses the past sequence linearly, expanding the number of

processed past frames with increasing network depth. The dilated convolution operator, F (t),

permits exponentially larger receptive fields with broader past frame sequence contextualization.

It is defined as:

F (t) =
k−1∑
i=0

f(i)Mt−d·i (2)

where f(i) is the inth filter in layer i, k is the filter size, and d is the dilation factor. Note

that equation 2 bounds each frame to consider t − d · i past frames in the sequence M1, for

any given dilation d. Hence, per-class prediction at time t depends solely on the number of

past frames, and no future frames from the seismic sequence are analyzed. This framework is

employed in online seismic sequence classification from the denoised representation M1. To this

end, our convolutions are made causal as in equation 2, with a kernel convolution size 3, 32

filters, and exponential dilation rates of [2, 4, 8] to cover the full segmented sequence. A final

1-D convolutional layer is added before the final softmax layer with a small kernel size of 3
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to improve prediction smoothness of the sequence results. Dropout is added after each dilated

convolution for regularization and learning stabilization.

C. Bayesian deep learning

Bayesian neural networks (BNNs) define its weights as probability distributions, ω = (ω1, ω2, ..., ωn),

also known as prior ω ∼ p(ω). Given seismic dataset D as the set of paired data samples

(x, y), with x as the processed input data stream and y as the target labels, this probabilistic

approximation allows the computation of the posterior distribution of the network weights,

p(ω|D) as:

p(ω|D) =
p(y|x, ω) ∗ p(ω)

p(y|x) (3)

where p(y|x) is the evidence. The predictive distribution for new input data (x∗, y∗) is given as:

p(y∗|x∗, D) =

∫
p(y∗|x∗, ω)p(ω|D) dω (4)

However, equation 4 is not analytically calculable, as the second term of the integral requires the

evaluation of the posterior p(ω|D). In this regard, variational inference (VI) has emerged as the

preferred choice in Bayesian inference; the posterior approximation is cast as an optimization

procedure designed to find the closest tractable distribution qθ(ω) by minimizing the Kullback-

Leibler divergence (KL) to the true posterior, KL(qθ(ω)||p(ω|D). Recent work by [30] connected

dropout regularization with VI in any arbitrary convolutional network structure to approximate

the posterior distribution of weights. The KL-divergence for approximant q(ω) is formulated as:

KL(q(ω)||p(ω|D)) ∝ −
∫

q(ω)log p(y|x, ω)dω +KL(q(ω)||p(ω)) (5)

Note that the second term of the KL divergence acts to regularize the weights, keeping q(ω) from

extreme deviations of the prior p(ω) but bounding the approximant towards p(ω|D). The nexus

of q(ω) to the regularization term in equation 5 is the dropout technique. This approach, formally

known as Monte Carlo dropout (MC-dropout), formulates qθ(ω) to the network posterior as ω,

the set of weight matrices in the lth layer (ω = {Wl}Ll=1), and θ as the variational approximate

in which the optimization has to be performed:

qVl
(Wl) = Vl · diag[pl,i]Ki

i=1 (6)

where Vl is the set of variational parameters, and dimension Ki ×Ki−1, pl,i is the distribution

of Bernouilli parameters. This mathematical formulation yields a VI foundation to approximate
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Fig. 2. Standard seismo-volcanic monitoring architectures based on static supervised learning. In practice, when an unforeseen

change in a volcano alters the seismograms, this translates into a potential data shift that can compromises the performance of

monitoring algorithm. Our framework integrates Bayesian theory with CNNs to monitor and perceive data changes due to Uwav

and Usrc from seismo-volcanic data streams.

equation 5 with an optimization target function and a regularization term [30]. Therefore, ap-

plying dropout in our convolutional architecture can produce an approximant q(ω) for predictive

equation 4 that can be approximated by sampling the parameterized weights at T stochastic

forward passes:

p(y∗|x∗, D) =

∫
p(y∗|x∗, ω)p(ω|D) dω ≈

∫
p(y∗|x∗,Wl)q((Wl)) ≈ 1

T

T∑
t=1

p(y∗|x∗, (Wl)t) (7)

where (Wl)t ∼ q(Wl). This approximation leverages the performance prowess of deep learning

with a Bayesian uncertainty quantification framework, which has been demonstrated to achieve

outstanding performance in earthquake location [17] and isolated seismo-volcanic waveform

classification [18].
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Fig. 3. Eruptive chronology of 2007 Bezymianny Volcano eruption. We subdivided the eruptive sequence into four minor

groups: Quiescent Period (QP), Eruption 1 (E1), Eruption 2 (E2), and Eruption 3 (E3). The QP covers a time-span of usual

background seismic data. The unrest periods (E1, E2, and E3) are each subdivided into pre- and post-eruptive episodes. This

division correlates with past geophysical bulletins and is designed to obtain insight into the statistical links of seismic wavefield

evolution and uncertainty quantification.

III. SEISMO-VOLCANIC UNCERTAINTIES

Recorded seismograms gather a set of informative parameters related to the seismic wavefield

and the volcanic environment in which they are generated (i.e., spectral content, P/S waves

amplitude, coda length, among many others). Figure 2 depicts the studied problem from a

machine learning perspective; the data used to fine-tune seismo-volcanic monitoring systems may

not represent the situations later encountered. This situation, defined as data drift, arises if the data

samples (seismograms) from an initial data support distribution are altered owing to unforeseen

changes in the volcano. Under these new conditions, we can estimate the uncertainty in the

segmentation and classification module to determine if the new recorded seismograms depart

from the initial distribution of frequencies. This section describes the uncertainty quantification

approach for classification tasks in seismo-volcanic monitoring applications.

A. Statistical uncertainties

The sources that could drive changes in a volcano include an unknown number of latent,

heterogeneous variables that contribute to the overall alteration on the seismic observable [2],

[21]. From statistical standpoint, the uncertainties can be categorized as epistemic or aleatoric,

based on whether more data can reduce their estimated values [31]. The Bayesian framework

proposed in section II can gauge both uncertainties by exploiting the mathematical relationship
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between the covariance and mean vector. This approach, derived by [32], decomposes the model

uncertainty into aleatoric and epistemic, offering a probabilistic proxy to uncertainty estimates

without additional network parameterization. Hence, given the sampled dropout-masked model

weights after T stochastic forward passes {ω̂t}Tt=1, and the predictive probability distributions

for realization of each sampling step, that is p̃t = p(ω̂t), the aleatoric and epistemic uncertainty

can be computed as:

Ut =
1

T

T∑
t=1

(
diag (p̃t)− p̃⊗2

t

)
︸ ︷︷ ︸

Aleatoric

+
1

T

T∑
t=1

(p̃t − p)⊗2

︸ ︷︷ ︸
Epistemic

(8)

where p is the averaged pt over all T stochastic forward passes from the dropout variational

distribution. The sum of both terms, Ut, is the total uncertainty of the model. In a monitoring

system, estimates of Ut can be used to infer shifts from the initial data distribution (i.e., changes

in the frequency content of the events, or the volcanic medium).

B. Monitoring uncertainties

A monitoring framework can probe the estimated uncertainties as a proxy to detect if the

recorded seismograms depart from the initial data distribution. Hence, the total statistical un-

certainty Ut of a seismo-volcanic monitoring algorithm comprises two terms, the observed

seismogram variability, and the inherent randomness of the monitored seismic wavefield:

Ut = Usrc + Uwav (9)

where Uwav is the uncertainty associated with the seismic wavefield, and Usrc is the uncertainty

linked to the monitoring process. Equation 9 intersects with equation 8 and is based on whether

the algorithm can identify reducible sources of uncertainties. In this context, epistemic uncertainty

arises if continuous seismograms are not affected by unexpected changes; gathering more data can

refine the original data space approximation. The uncertainty linked to the unforeseen changes

driving the observed process corresponds to the aleatory uncertainty. In this framework, the

aleatory uncertainty estimates a single value that reflects the aggregated contribution of all

irreducible sources of uncertainty, ranging from the inherent unpredictability of the eruption itself

to how seismic signals interact with the environment [16] [33]. From a monitoring perspective, we

can link these uncertainties to data changes; when evident alterations in the seismic wavefield are
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recorded, increments in Usrc and Uwav must be observed, which can lead to different seismograms,

and thus, to the assumption that the volcano has changed.

IV. BEZYMIANNY DATASET

To study potential changes in uncertainty according to eruptive and non-eruptive stages and

to observe possible similar behaviors in the seismic wavefield, we selected the 2007 eruptive

sequence at Bezymianny Volcano. This sequence included three well-identified eruptions, those

of 25 September, 14–16 October, and 5 November; Figure 3 summarizes the whole eruption

chronology. This eruptive crisis represents a non-stationary environment characterized by seismic

re-activations, eruptions, structural failures, and generic unrest over a short period. The seismic

network at Bezymianny includes numerous seismic stations; among them, we selected data from

the BELO station owing to the well-tested quality of its seismic records for the 2007 eruption

[19], [34]. The BELO station is ideal for recording potential changes in waveforms, as it is

1.7 km from the eruptive center and can be considered a very near field seismic station with

negligible attenuation [34].

Following the volcanological observatory bulletins and previous reports about eruptive time-

lines [19], [34], [35], the seismic dataset was divided into four well-differentiated periods: the

Quiescent Period (QP), Eruption 1 (E1), Eruption 2 (E2), and Eruption 3 (E3). Figure 3 depicts

a detailed overview of the dataset organization, covering unrest periods and volcanic evolution

across three different scenarios. This dataset organization manages the sheer volume of seismic

streams while offering a well-defined chronological structure for testing, and a chronological

uncertainty framework based on a well-known, historical eruption. The QP period corresponds

to a segment of 20 days during which ordinary volcanic activity was registered. The definitions

of eruptions E1, E2, and E3 were arranged according to volcanological observatory reports, and

were used to compare potential changes when a volcanic crisis occurs. Each eruption was further

subdivided into pre- and post-eruptive periods to achieve fine-grained precision in uncertainty

estimates before and after the main eruptions.

A. Bezymianny seismic events categorization

Based on preliminary geophysical knowledge of this volcano, the whole dataset was curated

with precise annotations and temporal onsets at the waveform level. Active volcanic systems

generate a full extent of seismo-volcanic signals. They receive different labels according to their
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generative volcanic sources, which are not always homogeneous or standard (a comprehensive

summary of naming conventions and associated source models are given in [18]). Nevertheless,

the past decade has adopted a novel classification scheme to ease source terminology in favor

of a unified data taxonomy. This categorization scheme, based on signal duration and frequency

content [36], includes high and low-frequency earthquakes, volcanic tremor, and other superficial

signals (e.g., rockfalls, lahars, pyroclastic flows). By adopting this geophysical criterion, the label

of an event can be assigned using the frequency index (FI), a logarithmic interpretation of the

spectral frequency ratio (FR), given as:

FI = log10(FR) = log10

(
Ahigh

Alow

)
(10)

where Alow and Ahigh are the mean amplitude of high and low spectral bands, respectively. We

adopted the labeling criteria of [19], with Alow and Ahigh defined as [1−5] Hz and [6−13.5] Hz.

Each extracted event was labeled according to the FI value (FR = 0.5) and duration of high-

(HF) and low-frequency (LF) events, seismic background tremor (SBT), and debris processes

(DP). Note that the logarithmic spectral ratio forces high values of the FI to be associated

with higher frequency mechanisms (e.g., brittle fracture). In contrast, lower values correspond

to seismic events with narrow lower frequency bands (e.g., soft ruptures [37]). The full eruptive

dataset was curated in two main steps. First, semi-supervised segmentation and categorization at

the stated FI frequency bands were performed using an entropy-based algorithm, REMOS [38].

This first procedure generates a set of preliminary event onsets and associated classes. Then, all

events are translated back into their original sequences and visually inspected and corrected using

PICOSS (Python Interface for the Classification of Seismic Signals); a data-curator graphical

interface that allows manual confirmation or modification of annotated labels, along with the onset

times of detected events [39]. The expert-reviewed data catalog from September to November

2007 was compiled into a sequence-level dataset.

V. EXPERIMENTAL METHODOLOGY

We performed two experiments to investigate how the proposed hybrid framework performs

in a non-stationary seismo-volcanic monitoring application. With the first set of experiments,

we aimed to obtain a broad understanding of the performance of the method. By establishing

baselines for each of the chronological periods as independent data-snapshots, we simulated the
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TABLE I

DATASET ORGANIZATION FOR THE BASELINE SYSTEMS, B-QP, B-E1, B-E2, AND B-E3

(a)

Baseline

system

Dev.

Set

Training

(hrs)
Nevents

Blind

test

Testing

(hrs)
Nevents

b-QP QP 480 3844 post-1 312 1941

b-E1 pre-1, post1 384 2422 post-2 288 9060

b-E2 pre-2, post-2 384 10295 post-3 264 1369

b-E3 pre-3, post-3 576 4681 QP 480 3844

(b)

Dev. set isolated events Blind-test isolated events

Baseline

system
HF LF DP HF LF DP

b-QP 1825 1241 778 303 1130 508

b-E1 415 1306 701 3698 2383 2979

b-E2 3984 2883 3428 138 2254 920

b-E3 768 2839 1074 1825 1241 778

generic situation in which an algorithm, fine-tuned for initial monitoring conditions, is evaluated

after major changes have happened at the volcano (eruption). This can help to determine if

the error rate decreases as a potential indicator of data drift. Table I (a) depicts the dataset

organization with the continuous baseline system, which we defined as b-QP, b-E1, b-E2, and

b-E3. The total number of hours of each training baseline period, along with the total number

of detected events Ntot in the seismic data stream, are also given. In Table I (b), we depict

the overall per-class extracted and isolated events from the continuous trace, for each baseline

system. The training of each baseline system was performed in isolation from the other baselines,

with no data leakage from past or future periods (see Figure 3) during the training stage. Thus,

each baseline system was independently trained and tested on each continuous data-snapshot,

with 75%–25% data cross-validation split. We then performed blind-tests for each post-eruptive

period after the next eruption in time (see Figure 3). Hence, for b-QP, b-E1, and b-E2, we blind-

tested with the post-1, post-2, and post-3 periods, respectively. For the b-E3 system, the blind

test-set corresponded to the entire QP period, where the monitoring conditions differed after the

three eruptions [19].

In the second experiment, we aimed to determine if our framework, starting from the QP

and extending for the whole eruptive chronology, can detect when a data drift is happening and
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TABLE II

OVERALL SEGMENTATION INTERSECTION OVER UNION (IOU) AND CLASSIFICATION METRICS (PR, RC, F1, ACC) FOR

THE BASELINE SYSTEM AND BLIND-TEST PERIODS

Test set Blind test

Period IoU PR RC F1 Acc IoU PR RC F1 Acc

b-QP 0.98 0.97 0.95 0.96 0.97 0.94 0.94 0.92 0.93 0.92

b-E1 0.98 0.96 0.94 0.95 0.95 0.97 0.86 0.84 0.85 0.85

b-E2 0.96 0.91 0.87 0.89 0.89 0.98 0.90 0.85 0.86 0.87

b-E3 0.97 0.91 0.86 0.88 0.87 0.98 0.96 0.92 0.94 0.94

asses the severity of the effect on monitoring system performance. To this end, we selected the

best model from the QP period, (25% of the whole Bezymianny dataset) and blind-test with the

rest of the eruptive period, for each temporal sub-partition of the dataset. This testing strategy

was motivated to provide a model with highly granular resolution of data partitions in order

to refine the time interval in which data change can be detected. We introduced monitoring

uncertainty maps as a visual means to provide monitoring interpretability of the connections

between waveforms and uncertainty. Finally, regardless of the dataset organized, we evaluated the

temporal evolution of the uncertainty for the whole dataset based on a broadly used monitoring

tool (energy), in order to link the monitored process with the estimated uncertainty.

A. Feature extraction

For each day in the eruptive chronology, the seismic data streams (100 Hz) are filtered in the

range [1 − 13.5] Hz, and windowed with a 5-min window (30,000 samples), with an overlap

of 2.5 min. From these windows, we computed the input magnitude spectra X1, using windows

of 2.5 and 1.5 s overlap. As a final result, each X1 is characterized by a matrix of dimensions

(freq, time), in our case, (256, 256). We created the target mask Y1 from the estimated IRM

as explained in section II. A matrix of size (freq, time, pevents), with pevents; the index for the

noise or frequency masks, composes the input Y1. The per-class target sequence classification

Y2 of size, (time, event) is also given during the training time, with event belonging to any of

the classes described in section IV. In this work, we consider SBT as a single class and part of

the mask.
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B. Optimization procedure

Training was perform using a multitask approach, in which a double loss function Lt was used:

Lseg for segmentation and Lclass for classification, with a softmax with cross-entropy. In the case

of Lseg, the softmax layer was applied over the frequency map of the target Y1, whereas Lclass

was applied frame-wise. We selected the Adam [40] optimizer with an initial learning rate of

0.01, and ReLU activation function and mini-batch size of 64. The dropout probability was set to

p = 0.25. We used early-stopping with a patience interval of 5 epochs over 300 training epochs to

prevent over-fitting. A random search was performed over the most promising hyper-parameters

derived from a Bayesian optimization procedure towards best classification and segmentation

performance [41]. The Bayesian inference procedure was implemented as described in section

II, with T = 20 MC-dropout sampling steps. We followed this optimization procedure for all

of the system trained on each period, independently. Our entire experimental methodology was

simulated using an NVIDIA Tesla P40 GPU (24 GB GPU memory) on a 64 GB RAM computer.

C. Monitoring metrics

The implemented volcano-seismic segmentation framework can be formulated as a multi-class

classification and binary segmentation problem. The model is trained to identify the frequency

ranges of seismo-volcanic events whilst categorizing seismic sequences. For the classification

TCN module, the accuracy (Acc) measures the overall effectiveness. Precision (PR) quantifies

the positively classified event rate, whereas the recall (RC) measures the sensibility of the system

to recognize correct frames. The F1 score is a weighted average between the precision and recall,

computed as:

F1score =
2 ∗ (RC ∗ PR)

(RC + PR)
∗ 100% (11)

Thus, F1 represents an informative balance between the refinement of our classifier (PR)

and the number of correctly detected events (RC) for any number of specific classes. These are

standard metrics in sequence classification [42]. The goodness of a model to correctly identify

class-boundaries is based on segmentation metrics. In this work, we report the IoU (Intersection

Over Union); a standard metric in segmentation to compute the overlap between the target T

and predictive mask P :



IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 17

IoU(T, P ) =
‖T ∩ P‖
‖T ∪ P‖ (12)

where ∩ is the intersection between the pixels in the target and prediction mask, and ∪ is the

union of pixels between both masks [26]. An IoU score of 1.0 is a perfect segmentation that

fully overlaps the target and predictive masks.

VI. RESULTS AND DISCUSSION

A. Segmentation baseline performance

We evaluated the monitoring capabilities of the proposed model to perform continuous seismic

event recognition. Table 2 depicts the attained metrics for each selected eruptive period and

test set. The implemented systems (b-QP, b-E1, b-E2, and b-E3) present high performance

segmentation IoU and classification PR, RC, and F1, with consistent generalization for the blind-

test partitions. The segmentation IoU remains above 96% for all of the test sets and 94% for the

blind-test partitions. Such IoU generalization capabilities reflect the capacity of the segmentation

module to isolate the set of frequencies that composes the seismic events in the continuous data

stream. However, the IoU metric was 4% lower for the blind test period of the b-QP and 1%

for the b-E1 system. In terms of classification metrics, the performance gap in the b-QP system

is less evident, being only 3% less in F1, PR, and RC for the blind-test partition.

Similarly, the b-E2 system experienced performance drops of 1%, 2%, and 3% for PR, RC, and

F1, respectively. However, all of the classification metrics dropped 10% for the b-E1 system when

blind-tested on post-eruptive 2, which may be a indicator that a change occurred in the volcano.

Note that the PR, RC, and F1 metrics were calculated from the enhanced M1 spectrogram

representation; hence, a change in the frequency spectra of the post-eruptive events, despite

good segmentation metrics (> 97% in the b-E2 system), can be perceived by the classification

module, which is fine-tuned to the initial distribution of frequencies from the previous eruptive

period of the b-E1 system. For example, changes in the physical properties of the medium (i.e.,

seismic impedance) can shift the frequency spectra of events, compromising the performance of

the model. The results of the blind-test for b-E2 suggest that predictions become less accurate

after significant eruptions, pointing towards potential data drift.
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B. Visualizing predictions

Based on the results, our hybrid framework can segment and classify seismic events from

continuous data streams. From top to bottom, Figure 4 displays the raw waveform, STFT

magnitude spectrum, retrieved frequencies of events (M1), and continuous predictions for a set

of volcano-seismic events. Overall, segmentation results suggest that the proposed architecture

can provide accurate classification and segmentation for each event. The main frequency spectra

of each seismo-volcanic event are highlighted within the main trace; for example, in Fig. 4

(a), there is a clear low-frequency band of LF earthquakes, ranging from 1.0 to the 3.5 Hz

for the second LF earthquake. Fig. 4 (b) shows the high frequency of spectra of the DP and

HF classes. The detection of target frequency components from broad spectra yields a denoised

feature representation of the continuous TCN to perform enhanced seismic event segmentation

and classification. Our network also generalizes data streams containing seismic events with

copious background tremor noise. The good classification ability is evidenced in Fig. 4 (c)

and Fig. 4 (d); the segmenter traces the intra-dynamic frequency range of the seismic events

from the background, tailoring frequency segmentation towards accurate boundary detection and

classification performance. The TCN correctly marks the time boundaries of the seismic signals,

even for long events such as the cigar-shaped DP class. This larger contextual predictive power

is due to the increased receptive fields and the stack of dilated causal convolutions, yielding a

network that keeps looking forward for potential longer events, considering a broad time-span

that incorporates a larger number of contextual past frames for the prediction at time t.

C. Evaluation of eruption uncertainties

Table 3 presents the performance metrics, along with the epistemic and aleatory uncertainties;

the situation in which an observatory would not have time to analyze the sheer volumes of

eruptive/post-eruptive data, given the substantial annotation effort required to provide new data

for retraining the monitoring system. The estimated root mean square (RMS) of the background

tremor, the spectral frequency ratio (FR) in the studied frequency bands (Ahigh = [6−13.5] and

Alow = [1− 5.0] Hz, and equation 10) are also reported for each sub-partition of the dataset.

Overall, the segmentation metric IoU remains above 96% for all test-set periods. The clas-

sification performance shows high PR and F1 scores, with RC being at an adequate level (¿

80%). For the pre- and post-eruptive periods, the system has a performance gap of 10% after the

main October eruption, a seismological situation in which the volcano had suffered a significant
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(a) (b)

(c) (d)

Fig. 4. Normalized waveform, input magnitude spectrum, retrieved frequencies, and continuous recognition of the signal. The

network can segment event onsets, and produce a segmentation mask highlighting the active frequencies in the trace. The seismic

background noise is learned efficiently, and the TCN can track the events despite copious background noise. Besides, the network

boundary segmentation for larger debris processes (DP) is consistent with event and frequency onsets.
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TABLE III

CHRONOLOGICAL PERFORMANCE, FREQUENCY RATIOS, NOISE ROOT MEAN SQUARE (RMS), AND OVERALL UNCERTAINTY

QUANTIFICATION FOR THE 2007 BEZYMIANNY DATASET

Geophysical params. Monitoring metrics Segmentation Classification

Period FR RMSnoise IoU PR RC F1 Acc Epistemic Aleatory Epistemic Aleatory Ut

QP 0.34 10.01 0.98 0.97 0.96 0.96 0.96 0.016 0.00021 0.014 0.0008 0.0310

pre1 0.56 9.95 0.97 0.91 0.89 0.90 0.90 0.021 0.00034 0.016 0.0011 0.0384

E1 0.55 77.16 0.95 0.83 0.81 0.82 0.81 0.034 0.00059 0.020 0.0018 0.0564

post1 0.22 15.17 0.98 0.94 0.92 0.93 0.93 0.021 0.00034 0.017 0.0011 0.0394

pre-2 0.5 97.94 0.96 0.90 0.88 0.89 0.88 0.035 0.00056 0.019 0.0017 0.0563

E2 0.58 405.34 0.93 0.68 0.64 0.65 0.66 0.057 0.00110 0.026 0.0032 0.0873

post-2 0.42 16.34 0.96 0.88 0.85 0.86 0.86 0.039 0.00072 0.022 0.0019 0.0636

pre-3 0.38 14.79 0.97 0.91 0.89 0.90 0.89 0.027 0.00046 0.018 0.0013 0.0467

E3 0.40 143.1 0.96 0.85 0.84 0.83 0.84 0.037 0.00073 0.021 0.0017 0.0604

post-3 0.30 12.11 0.97 0.88 0.87 0.87 0.88 0.027 0.00047 0.018 0.0012 0.0466

explosion and was recovering towards stability [19]. Nonetheless, the system experienced a

generalization gap in segmentation and classification metrics for all of the eruptions (E1, E2 and

E3), reaching up to 31% in the F1 classification metric for the E2 eruption. Hence, changes

in the eruptive periods are evidenced in the lowered performance and can be used as an

indirect measurement to indicate the severity of data drift. If learning accuracy has diminished

significantly, this can be a potential indicator of change. Yet, the metrics alone do not offer

information about what is generating these changes, since the estimated uncertainty provides

this information.

The uncertainties Uep and Ual in both the segmentation and classification modules act as a

coupled mechanism. Higher uncertainty values correspond to lower monitoring performance. The

variation of Ut with the eruptive chronology can thus be explained by comparing the variations

in frequency and noise levels for each time-lapse. Note that even if the FR, the initial frequency

distribution, remains approximately the same, the uncertainty is reflective of the RMS levels

of seismic background tremor. For example, post-eruptive period 3 presents a very similar FR

but higher RMS than the initial data period QP. Yet, our model emits higher Ut values and

lower performance metrics. The most elevated Ut values correspond to the eruptions, with E2

attaining the highest uncertainty in Ut, linked to peak RMS levels and FR changes. The epistemic

uncertainty Uep in Table 3 has slightly larger values than the computed aleatory Ual, for all of

the eruptions, but is significantly greater than its counterpart in the classification module. The
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(a) (b)

(c) (d)

Fig. 5. Raw waveform (up), along with epistemic (middle) and aleatoric (bottom) uncertainty seismic maps. The association

uncertainty-energy for each event is clearly visible. All uncertainties are associated with both seismic energy release and signal

onset.

larger values in segmentation Uep are due to the learning of the intra-frequency range of the

volcanic tremor and seismic signals, on very narrow spectra which can overlap. The evolving

wavefield yields seismograms and noise levels dependent on geophysical parameters, in which

frequency, energy, or duration could have changed owing to volcanic source evolution.

Consequently, changes in the sequences of data streams are connected to metric variations,

consistent with the estimated epistemic and aleatory uncertainties. A volcano changes its physical

state from one eruptive process to another, which means that the relevance of the seismic data is

not applicable to a new eruptive period in a few days. Most seismic events are the consequence

of fluid interaction (magma). A change in magma rheology, location, gas content, surface
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temperature, and/or a change from open to closed conduit (or vice versa) would all imply a change

in the waveform and spectral content, with substantial differences between signals observed

within days. The proposed framework demonstrates that the predictive uncertainty estimates are

meaningful as they are amenable to emerging power patterns in the seismic background tremor

and noise levels. The differences in the power levels of the tremor and noise conditions across

eruptive periods are equivalent, by analogy, to the distortion of images by varying the corruption

intensities to evaluate the predictive uncertainty. Hence, the uncertainty evolves for each eruptive

period, being an indicator of how and where the system evolves.

D. Visual uncertainty interpretation

We gathered numerical evidence that volcanic changes imply changes in the data space of

the signals. We then decomposed equation 9 and associated waveforms to seismo-volcanic

uncertainties. Visual interpretation of the uncertainty can help in post hoc seismic analysis

and in the intuitive understanding of the monitored situation. Our framework can provide an

estimation of the total epistemic and aleatory uncertainty, Uwav and Usrc, to generate a matrix

representation of each uncertainty source as part of the monitoring outcome. We call these

representations monitoring uncertainty maps.

Figure 5 displays four seismo-volcanic events, along with epistemic Uwav (middle) and aleatoric

Usrc (bottom) monitoring uncertainty maps. First, note that both uncertainties, Uwav and Usrc,

are consistently emitted through time. The most significant uncertainty phases are associated

with low detected energies, which is expected given the very narrow spectral band carrying

the information about the continuous volcanic tremor. For this volcano, Uwav and Usrc present

as a coupled, synchronous mechanism, for which the input waveform Uwav displays notable

uncertainty levels at the abrupt transition from background activity to a seismic event. The

uncertainty Usrc is linked to potentially co-existent sources in the seismic wavefield that the

model has learned to detect. Figure 5 (a) shows seismic uncertainty maps at two LF earthquake

boundaries. At the onset of the LF earthquakes, epistemic uncertainty is emitted in the SBT

and LF classes, and the switches immediately to the LF class until the event offset. In parallel,

the aleatoric uncertainty tracks the SBT and LF classes simultaneously. Figure 5 (b) depicts a

cigar-shaped rockfall (DP class) and an HF earthquake with similar behaviors in the Uwav and

Usrc uncertainty maps.
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(a)

(b)

(c)

Fig. 6. Hourly normalized plots of the overall epistemic (green), aleatoric (blue), and RMSE energy (red) for the pre-eruptive

and eruptive periods of E1 (a), E2 (b), and E3 (c). There is a direct correspondence across energy and uncertainties, aligned as

a coupled mechanism; a rise in both uncertainties is simultaneous to rising seismic energy. Drift is noticeable either suddenly

(c) or gradually (a) (b) for each eruption, which demonstrates drift traceability through time.
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Figure 5 (c) and (d) depicts the uncertainty maps of co-existent events with copious seismic

noise background. In Figure 5 (c), the three first HF earthquakes exhibit a low-frequency

component in uncertainty Usrc; the uncertainties can identify simultaneous frequency components

of events, even if the system is trained to recognize single categories, or classes, from the

seismic data stream. Similarly, the DP class shows this behavior in the low-frequency SBT. The

uncertainties follow the same pattern in Figure 5 (d); that is, the aleatoric uncertainty tracks

the high spectral component of the HF earthquakes whilst assigning high uncertainty to the LF

class. These maps contrast with Figure 5 (a) and (b), where the amount of background noise is

much lower, but the uncertainty exhibits a similar behavior on frequency components, high or

low, that are concurrent with the event.

These monitoring uncertainty maps serve as interpretable, multi-source activation maps that

highlight potential co-existent events at any given time. The maps reflect the intrinsic non-

linearity of seismic energy release, providing refined visual information about the behavior

of Uwav and Usrc in a seismo-volcanic wavefield. These seismic monitoring uncertainty maps

complement the segmentation mask Mt and classification outcome, providing a new source of

detailed information for seismo-volcanic monitoring.

E. Monitoring seismic wavefields

In previous sections, we have demonstrated how uncertainty can detect drift for each period

independently. We also investigated if the estimated uncertainty is correlated to other geophysical

parameters, and it evolves through time. Figure 6 depicts the normalized temporal variation

of Uep and Ual, along with the RMSE (energy). The x-axis of Figure 6 represents time-units

(TU); that is, time scales over which the uncertainty has been estimated. For all three main

eruptions, the estimated short-term evolution of the uncertainty exhibits similar temporal behavior

to that of the RMSE seismic energy. The sustained energy exchange from the volcano with the

medium depends on the waveform propagation and signal frequency, and is thus an independent

parameter of the estimated uncertainty. In a non-stationary environment, changes in the medium

or the seismic sources are associated with variations in seismograms. These waveform distortions

translate into an alteration of the monitored variable and thus into higher uncertainties 6. These

graphs indicate when data drift is happening. The accurate identification of such drifts is essential

to improve monitoring adaptability by indicating the requirement to re-train the algorithm with

data from the new period. These empirical uncertainty observations are in good agreement with
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previous scientific reports in seismological bulletins [19]. E1, a sustained but small eruption,

was preceded by minor increases in seismicity. Note that this sustained seismicity is reflected in

the gradual data drift. The principal, classic eruption (E2), which had the highest peak for Ut,

corresponded to the maximum release of seismic energy during the 2007 eruptive cycle, with

high rates of seismic events and a massive, longer explosion. Previous research reported steady

increments in the background tremor energy [34]. The seismic activity leading to eruption E3

was shallow, as reflected by the almost constant temporal evolution of the uncertainty. Eruption

E3 had a relatively small energy release, and the seismological observatory could not visually

verify the event owing to poor atmospheric conditions; the only observations were via thermal

camera anomaly detection over the dome and the RMSE measures [19] [35]. Therefore, the

continuous trend in the uncertainty rises abruptly, simultaneously with the RMSE, indicating an

explosion in the volcano that suddenly changed the monitored conditions, which is consistent

with past seismological bulletins.

VII. CONCLUSIONS

We applied Bayesian theory to continuous seismo-volcanic recognition to create new connec-

tions between non-stationary environments and monitoring uncertainties. The proposed model

departs from established approaches based on supervised learning with modest datasets, which are

not capable of detecting data drifts as part of the monitored outcome. We performed simulations

on three eruptive time-periods to gain insight into the generalization and performance of the

model.

The designed convolutional network can learn and detect the full intra-frequency dynamic

range of seismo-volcanic events whilst performing seismic event recognition. Moreover, the

designed framework is a probabilistic surrogate for estimating the total uncertainty Ut as the

summation of the seismic wavefield variations (reducible with more data) and the randomness

of the monitored volcanic process. The severity of the drift can be evaluated from the computed

metrics, yet this assessment is incomplete without knowing what is driving the change. This

formulation has allowed us to introduce monitoring uncertainty maps as a supportive tool for

illustrating the presence or absence of simultaneous sources. The epistemic uncertainty acts as a

complementary onset detector, whereas the aleatory uncertainty proxy multi-source identification

greatly enhancing monitoring outcomes. Finally, the principled uncertainty estimates are useful

for categorizing changes in seismic signals. The estimated short-term evolution of the uncertainty
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is consistent with the real-time seismic energy measurement, a direct waveform parameter

independent from the estimated uncertainty.
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This chapter presents the recurrent scattering deep neural network to detect seismic varia-

tions and demonstrate the significance of our theoretical framework as an indicator for possible

forecasting of eruptions. This article is in press at IEEE Transactions on Geoscience and Remote
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Recurrent Scattering Network detects

metastable behavior in polyphonic

seismo-volcanic signals for volcano eruption

forecasting

Angel Bueno, Randall Balestriero, Silvio De Angelis, Carmen Benı́tez,

Luciano Zuccarello, Richard Baraniuk, Jesús M. Ibáñez and Maarten V. de Hoop

Abstract

We introduce an End-to-End (E2E) deep neural network architecture designed to perform seismo-

volcanic monitoring focused on detecting change. Due to the complexity of volcanic processes, this

requires a polyphonic detection, segmentation and classification approach. Through evolving epistemic

uncertainty, invoking a Bayesian network strategy, we detect change and demonstrate its significance as

an indicator for possible forecasting of eruptions using data from the Bezymianny and Etna volcanoes.

Specifically, we propose morphing the scattering transform from previous work into a novel E2E hybrid

and recurrent learnable deep scattering network to adapt to the multi-scale temporal dependencies from

streaming data. The time-dependent scattering is in some sense physics informed, namely through

time-frequency representation (TFR) of the data. At the same time, with a carefully designed deep
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convolutional-LSTM architecture, we learn intra-event, temporal dynamics from the scattering coeffi-

cients or features. We verify the effectiveness of transfer learning switching between volcanoes. Our

experimental results set a new norm for semi-supervised seismo-volcanic monitoring.

Index Terms

Volcanoes, Seismology, Uncertainty, Recurrent Neural Networks, Wavelet transforms.

I. INTRODUCTION

We introduce an End-to-End deep neural network architecture designed to perform polyphonic

seismo-volcanic monitoring on the one hand and detecting change on the other hand. The search

for observable eruption precursory signals and their evolution has remained one of the challenges

of modern volcanology and is critical for effective monitoring and the forecasting of eruptions.

We address this search with a comprehensive deep learning framework.

A volcanic eruption, the emission of magma and gases as well as the exchange of various

forms of energy, is the final consequence of a series of energetic physical and chemical processes

in Earth’s interior. Volcanic eruptions range from fluid lava flows to explosive emissions that

inject large volumes of material into the atmosphere. Repose times also vary widely, even for

individual volcanoes, extending from minutes to years, suggesting that eruptions are associated

with quasi-stable processes [1], [2], complicating forecasting. From a seismic perspective, there

are currently two main approaches to forecasting eruptions. The first one is based on the study

of changes in the tensional state of the volcanic system when a volcano evolves towards an

eruption, as recorded by seismic velocity [3]. This approach assumes that pre-eruptive changes

to the edifice shape (volume) and tensional state affect the wave propagation velocity which can

be detected with seismic noise recorded by stations on the volcano. Indeed, important progress

in the analysis of seismic background noise at volcanoes has been made [4], [5]. The second

approach is to detect and identify seismo-volcanic signals associated with eruptive dynamics

(i.e., physical processes within the volcano) and to use these as precursors.

Here, we propose a third approach in which deep learning is used to relate changes in the

seismic wave field to changes in the state of the volcano (presumably directly related to the

underlying physics), including volcanic tremor. The results of this study show that the wave

field properties of tremor can reflect the evolution of volcano dynamics and can be used as

precursor of volcanic eruptions.
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Seismology has played a leading role in monitoring volcanoes and identifying precursors

to eruptions [6], [7], [8]. The sources of seismic energy are diverse and include rock rupture

through an accumulation of elastic energy, ground resonance phenomena, pressure changes due

to the movement of fluids, conduit resonance, and many more. As a consequence, seismic signals

exhibit variable durations and spectral contents [9], [10], [11], [12], [13], [14]. One challenge is

to identify classes of events causally related to distinct sources, providing an association that can

be used as a precursor to what is happening inside a volcano. Identification is currently carried

out using standard, supervised machine learning techniques [14], [15], [16], [17], [18], [19].

However, identifying signals does not provide information about the dynamics of the processes

that lead to eruptions.

Our approach departs from those using handcrafted features to detect change [20], [21],

[22], [23]; we suggest that subtle changes not currently identified in standard data analysis

are important. Our deep neural network can identify such changes by dynamically learning a

scattering representation of streaming data. The introduction of epistemic uncertainty revealed

by Monte Carlo dropout [24] is pivotal in our approach, identifying a drift in uncertainty in the

classification of events presumably related to the relevant processes.

State-of-the-art procedures for the detection, segmentation, and classification of signals or

events in streaming data are often implemented as separate workflows by combining signal

processing (to provide a priori representations) and traditional deep learning strategies (to probe

these representations) [9], [16], [17], [18], [25], [26]. The End-to-End approach proposed here

addresses the shortcomings of past methods.

New approach: The main contributions of this paper can be summarized as follows:

1) We propose a scattering network that cascades learnable wavelet transforms and complex

moduli, in its original form given by [27], to generate features with a learnable spline

approximation in both central frequencies and wavelet shape for each layer. The central

frequency of the mother wavelet in a given task can be calibrated by letting the dilation

factor of the filters, along with the spline knots, be learnable parameters. Knots and filter

learnability leads to a mother wavelet capable of shape morphing to better capture signal

onsets, even in very challenging environments.

2) We introduce a novel integration of this learnable scattering network in a recurrent ar-

chitecture. The learnable scattering network component produces a set of multiple-order

representations (so-called scatter-grams) that contain a full range of wavelet scales. This
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range is converted to a sequence of temporal, structured representations of local scattering

variations, with the scatter-grams as complementary channels, in which two stacked con-

volutional long-short term memories (conv-LSTMs) can extract intra-frequency temporal

variation across multiple scales [28], [29]. In parallel, a learnable scattering denoising

operation is performed via convolutional skip connections, suppressing background noise

and enhancing the scatter-grams from the data stream. The outputs of both components,

conv-LSTMs and skip connections, are fused, captured by bidirectional LSTMs [30], and

forwarded to a dense layer to output a probabilistic event detection and classification matrix

highlighting coexistent seismic signals as polyphonic events.

3) We use the uncertainty to study the goodness of a classifying process of seismo-volcanic

signals for the purpose of eruption early warning protocols that are exportable across

volcanic systems. We define uncertainty as a measure of how little or how much one set of

data resembles another and detect the variation or evolution of a physical system. Therefore,

the concept of uncertainty can be used to control the quality of the physical measurements

of a volcanic system and as an indicator of the evolution of these measurements over time;

as such, this approach is suitable for forecasting volcanic eruptions. We employ epistemic

uncertainty to detect change and reveal that the power-law drifts towards eruptions. The

evolution of the seismic data in a volcano can be potentially associated with the appearance

of new seismic signals or a change in the characteristics of those seismic signals. Therefore,

an increase (or decrease) in the uncertainty can be used as a good indicator for early

warning of volcanic eruptions and exported from one volcano to another.

4) We demonstrate through transfer learning that our implemented architecture can be ex-

ported across a range of different volcanoes and eruptive styles. With minimal hassle, we

are able to reuse our system from one volcano to another one, even if there exists new

or unknown signals in the target volcano. The use of uncertainty in a transfer learning

approach permits establishing universal early warning and predictive protocols that are the

same regardless of the volcano, thus giving an objective measure that can be communicated

during volcanic crises.

We demonstrate the potential of our architecture using data from three well-studied 2007

eruptions of Bezymianny volcano, over a period of approximately 3 months. The three erup-

tions—those on 25 September, 14 October, and 5 November—were brief but very energetic, and
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included various pre-eruptive seismicity rates and eruption mechanisms. Moreover, application

to data from Mt. Etna and Mt. St. Helens confirms that our approach can be applied to different

volcanic systems. To the best of our knowledge, this is the first deep learning approach of its kind;

that is, it is the first to address polyphonic detection, segmentation, and implicit classification

of physical processes in an eruptive sequence while detecting change through drift in epistemic

uncertainty.

II. PRIOR WORK

Machine learning in seismology. Advanced machine learning techniques provide tools beyond

human intuition to discover as yet unused signals and patterns, and have been applied to data

analysis in the field of seismology [31], [32], [33], [34]. In volcano-seismology, the application

of machine-learning methods has focused mostly on automated detection and classification of

seismic signals through handcrafted signal properties [16], embedding vectors [35], Hidden

Markov Models [26], and standard deep learning methodologies [17]. These works follow

archetypal machine-learning pipelines: A set of features related to continuous measurements

made on volcanic observations are selected to fine tune monitoring procedures. However, catalogs

remain incomplete leading to the underestimation of hazard assessment. This is partly due to the

lack of uniformity in labeling events, and the occurrence of multiple sources at the same time in

low SNR environments. Moreover, these methods have two main limitations when dealing with

seismic data. First, they can only handle non-overlapping, monophonic seismic signals. Second,

they cannot be applied to new seismic wave fields without re-training the entire network.

Study of volcano dynamics. Past attempts at the detection of volcanic precursors have

concentrated on ideas adapted from engineering applications: the Failure Forecast Method (FFM)

carries out a regressive estimation of the time to target (i.e., time to eruption or structural failure)

based on handcrafted features from accelerated strain. Recent machine learning methods discern

eruptive behavior from a set of handcrafted features. A filter-bank analysis of 6 years of data

from Piton de la Fournaise volcano (Reunion, France) was performed to derive 990 features in

the spectral band of 0.5–26 Hz, and forwarded to a decision-tree gradient boosting algorithm

named XGBoost [36]. The empirical results showed feature evolution through time, with tracking

capabilities of the variation in a narrow frequency range (3–5 Hz). A posterior analysis with

spectral clustering provided a physical interpretation of the volcano dynamics, highlighting the

dominance of tremor and high-frequency components during the eruptive behavior. An analysis
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similar to that of [36] but with different classifiers was carried out for Telica (Nicaragua)

and Nevado del Ruiz (Colombia), linking eruptive and non-eruptive behavior to the temporal

variations of features [37].

Despite the promising performance of integrated machine learning and handcrafted features,

two issues arise for the real-time deployment of such systems in an observatory. The tabular

set of features reflects a predetermined range based on analysts’ experience; thus, unforeseen

situations can saturate the classifier while underestimating volcanic unrest. Second, experimental

results show that not all of these features contribute to the final prediction. Instead, current,

traditional machine learning methods exhibit a predictive bias towards a specific frequency band

that is considered essential to categorize all types of seismic transients (from pressure pulses

in fluids to the fracturing of rocks) in a volcano. Finally, the consideration of parameterized

windows over the seismic data stream can effectively trace its temporal evolution but do not

identify which families of events contribute to those changes. The observable variables are

often intertwined with a myriad of source-dependent seismic events, such as volcano-tectonic

earthquakes or tremor. Given the different associations of these signals to physical mechanisms,

distilling such knowledge is essential to understand the eruptive dynamics of a volcano.

Learnable filter banks. With the availability of large scale audio classification datasets,

multiple methods have been developed to bring learnability to filter banks [38], [39], [40],

[41], [42]. Those methods can be divided into two main categories. The first category [43]

performs filter-bank learning by independently adapting the center frequencies and bandwidths

of a collection of Morlet wavelets. Another family of methods [44] relies on learning the start

and cutoff frequencies of a band-pass sinc filter apodized with a Hamming window. The second

category of methods are based on the STFT. For example, [39] propose to learn Mel filters

that are applied to a spectrogram (modulus of STFT). Those filters linearly combine adjacent

filters in frequency which can be interpreted as learning a linear frequency sub-sampling of the

spectrogram. Learning the apodization window used to produce the spectrogram has also been

developed [41], [45]. Alternatively, one may select a transform a priori that can be adapted with

learnable hyperparameters [46]. In monitoring applications where signals overlap in time, the

intra-class separability can be extremely difficult, and using the correct transform can greatly

impact predictive performance.

Convolution LSTM, 2D. Recurrent Neural Networks (RNNs) are highly successful in tem-

poral modeling of time sequences. LSTMs and GRUs have been proposed as specialized archi-
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tectures to refine temporal modeling. If applied over the scattering features, one of the LSTMs’

limitations is that intra-frequency scatter-grams variations information is missing. In this regard,

Convolutional-LSTM (ConvLSTM) is proposed as a mathematical modification able to model

scales variations through time by explicitly encoding this information into state tensors. The

first application of ConvLSTM was for weather forecasting [29]. The network is trained on a

forecasting problem with temporal sequences of radar echo maps. ConvLSTMs have been applied

in speech recognition [28], gesture detection [47] and, as mentioned, weather forecasting [48],

among many other disciplines. Modifications over the original structure have been developed

to increase robustness in specific settings [49]. The applicability of ConvLSTMs in seismology

remains to be explored. In our proposed framework, we modify the working regime of the

ConvLSTM architecture to cope with a multi-scale time-frequency representation, adjusting the

network to apply to waveform dynamics in a multi-source or polyphonic setting.

III. PROBLEM DESCRIPTION

Seismo-volcanic monitoring can be approached from a sequence prediction perspective. If

multiple and simultaneous sources generate waveforms or signals, a polyphonic approach is

needed to detect the presence and class-membership of overlapping events. We define our

seismic data domain as all of the recorded waveforms and known seismo-volcanic event types

for any given monitoring period, T . Within this defined data domain, our training dataset is

D = {(X, Y )}, with X = (x0, x1, . . . , xn), where X = (x0, x1, . . . , xn) represents raw, sampled

data streams of arbitrary time duration, and Y = (y0, y1, ..., yn) represents the labeled sequence,

with yi, i = (0, · · · , n) containing one or multiple categorical labels over K classes. From a

machine learning perspective, finding the relationships between pairs of multi-source, framewise

X and Y can be cast as polyphonic event detection and classification. To achieve this, the Y

labels must be converted into a binary temporal matrix whose columns represent time and whose

rows the frequencies are present in the trace. This type of formulation allows the ubiquitous

identification of seismic events whose sources may vary over time or for which enough data

samples are not available for training purposes.

To quantify the performance of our deep neural network, we adopt the polyphonic audio

metrics [50], that is, precision (PR), recall (RC), and the F-measure (F1), according to the frame

error rate at one second resolution in our monitoring setting. The PR quantifies the rate of
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Fig. 1. Network architecture for polyphonic sound event detection: the recurrent learnable scattering network permits flexible

temporal feature representation, while the joint modeling yields increased adaptability of the mother wavelet to the target sounds.

Path A performs dynamic multi-scale convolutions, whereas path B performs dimensionality reduction and scattering compression

yielding sensitivity to the onsets of events. After fusion, features are captured by a temporal classification module, with two

bidirectional long-short term memory (LSTM) and an Fully Connected (FC) layer that outputs the probabilistic event detection

matrix with per-class onsets.

positively classified frames, whereas RC measures the sensitivity of the system to recognize

correct frames. The F1 is a weighted average between the PR and RC.

IV. REPRESENTATION LEARNING

A. Scattering Network

The deep scattering network or DSN [27], [51], [52], extracts locally invariant robust repre-

sentations from a raw signal, by systematically applying a cascade of wavelet transforms and

modulus operators. Consider the input signal of length N as x ∈ R
N where each time sample
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is accessed via x(t), t = 1, . . . , N . Each DSN layer indexed by � is parameterized by J (�) and

Q(�), the number of octaves and the number of wavelets per octave, respectively. In fact, the

wavelet filter bank is derived as {φλ, λ ∈ {2i/Q, i = 1, . . . , JQ}} with φλ = λ−1/2φ(λ−1t)

where φ is a mother wavelet chosen a priori. This structure is similar to a convolutional neural

network architecture. At layer �, the wavelet filter-bank produces the representation U
(�)
λ which

corresponds to the application of each filter followed by application of taking the modulus as

U
(�)

λ(�),λ(�−1),...,λ(1)(t) = |(φλ � U
(�−1)

λ(�−1),...,λ(1))(t)|, (1)

where |.| denotes the (complex) modulus, and the initialization at the first layer is defined

as U (0) = x. Note that the wavelet filter bank can vary depending on the layer �. Once the

representations are obtained for all the layers, the scattering features or coefficients, which form

the representation, are obtained by performing a time averaging. In the case of global average

pooling this corresponds to

S
(�)

λ(�),...,λ(1) =
1

N

N∑
t=1

U
(�)

λ(�),...,λ(1)(t), (2)

with S
(�)

λ(�),...,λ(1) the scattering representation at layer �. The time averaging can be made local

based on the desired time invariance, thus defining the time resolution for the successive layers.

B. Learnable Scattering Transform

The scattering network introduced above consists of a succession of wavelet transforms and

complex moduli, in a neural-network fashion with per-layer wavelet filter banks. Hermite Cubic

Splines provide a learnable parametrization of the mother wavelet from which the wavelet filter

bank per layer is derived. Formally, we introduce a partition of a compact support of the mother

wavelet into R intervals using K = R + 1 knots, tr, r = 1, . . . , K, so that

fΘ,Γ(t) =
K−1∑
r=1

(
γr + u0

(
t− tr

tr+1 − tr

)
+ γr+1+

+ u1

(
t− tr

tr+1 − tr

)
+ θr+

+v0

(
t− tr

tr+1 − tr

)
+ θr+1+

+ v1

(
t− tr

tr+1 − tr

)
1{t∈[tr,tr+1].} (3)
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where Θ = {θ1, . . . , θK}, Γ = {γ1, . . . , γK} and the basis functions are given by

u0(t) = 2t3 − 3t2 + 1

u1(t) = −2t3 + 3t2

v0(t) = t3 − 2t2 + t

v1(t) = t3 − 2t2

subject to the following constraints,

γ1 = θ1 = θK = γK = 0, (compact support)

γ2 = −
∑
r �=1

γr, (zero mean)

max
r

|γr| < ∞,max
r

|θr| < ∞ (boundedness).

The parameters γ and θ allows one to learn the shape while keeping a uniform partition for the

spline with knots, tr, equally spaced in time. In this work, we propose a further adaptivity of the

mother wavelet by employing two critical extensions of the above formulation. First, we allow

learning of the knots’ positions of the mother wavelet. This enables learnability with varying

instantaneous frequency. Even chirplets [53] can be learned in this scenario. Second, we allow

learning of the scaling factors used to generate the filter bank from dilating the mother wavelet

layerwise. This entails learning the center frequencies of the wavelets. Formally, the filter bank

is obtained through dilation of the mother wavelet given a collection of scaling factors, Λ, as in

FilterBank = {ψλ, λ ∈ Λ} with ψλ(t) =
1√
λ
fΘ,Γ

(
t

λ

)
(4)

As a result, the learnable parameters of the scattering transform are Θ ∪ Γ ∪ {t1, . . . , tK} ∪ Λ,

where the labeling of the DSN layers by � is suppressed in the notation.

C. Time scattering learning stability

The learnable scattering transform coupled with RNNs generates learning instabilities due to

variations of the knots. In fact, a translation in time of the knots results in the well-known phe-

nomenon of exploding gradients [54]. We employ gradient clipping, an optimization constraint

to maintain the gradient values of the knots within an interval. In our case, gradients are clipped

between [−1, 1]. The optimization of the filters does not need additional constraints nor gradient

clipping.
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V. ARCHITECTURE: SCATTERING AWARE RECURRENT CONVOLUTIONAL LAYERS

We now describe the modules of our recurrent architecture taking the scattering coefficients or

features as input. These recurrent components comprise the volumetric layer, the pair of modified

ConvLSTM 1λ and ConvLSTM 2λ, the time-skip connection and the temporal classification

module in Figure 1.

A. Volumetric Layer

The recurrent DSN layers, L1 and L2 say, generate the first- and second-order scattering

coefficients. The scattering coefficients generated by both DSN layers can be considered as an

image upon identifying time-scale as spatial coordinates; the size of the image is (J × Q) ×
(number of time samples). Thus an image is obtained as an alternative representation of the

scattering coefficients of a signal while these vary with time. The number of time samples (and

time interval) is determined by the time resolution after the pooling operation at the DSN layers

L1 and L2 (see (2)). The volumetric layer arranges feature vectors of dimension n, say, into a

single volumetric representation, λv. The volumetric representation consists of a multi-channel

image with λ2,n + 1 channels, arranged by scattering order. The first channel consists of the

first-order scattering coefficients, and the λ2,n following channels constitute the second-order

scattering coefficients. Thanks to the learnability of the filter banks in the DSN layers coupled

with the subsequent recurrent networks, the multi-channel volume λv adjusts its sensitivity to

the set of important frequencies, event shapes and transient dynamics.

B. Dynamic Convolutions

In the upper branch, denoted by A, two temporal LSTM networks take the volumetric rep-

resentation and produces a sequence of tensors, C = (C1, C2, ..., Cn) as output. Instead of

learning a unique representation from the scattering layers L1 and L2, the upper branch of

the network learns the full sequence of scattering feature vectors from the volumetric layer.

The multi-channel image will be codified into a set of sequential hidden states H and memory

cells C that explicitly encode the intra-scale variations of the input feature vectors. To achieve

this, the core components of dynamic convolutions are Convolutional-LSTMs (ConvLSTMs),

a mathematically modified LSTMs units that have replaced its internal structure of standard

multiplications with convolutions [29]. The incorporation of internal convolutions in ConvLSTMs

remove the limitation of standard LSTMs that operate sequentially over single feature vectors
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[55]. Our branch of dynamic convolutions follows the governing equations described in [29], but

are modified to accept the volumetric representation, λv, as input and performing a sequential

analysis of n steps equal to the number of channels in λv.

The first ConvLSTM, (ConvLSTM 1λ in figure 1) probes the volumetric representation and per-

forms a sequential analysis with each feature vector. We note the sequence A = [A1, A2, A3, . . . , An]

as the input-to-state transitions from λv to the memory cell Cn in ConvLSTM 1λ. The memory

cell in a ConvLSTM has an embedded read-and-write functionality to select and store sequential

meaningful information. This functionality is implemented by a set of matrices, also known as

gates, that control the flux of information that has to be stored in Cn from the input feature vector

sequence. In our ConvLSTM 1λ, these gates control and select which time-scale dependencies

are written and kept in memory cell Cn. More precisely:

Cn = fn ◦ Cn−1 + in ◦ tanh(WA c ∗ An +Whc ∗ Hn−1 + bc) (5)

Hn = on ◦ tanh(Cn) (6)

with bc the bias and Hn−1, Hn, the previous and current and hidden states for sequential step n.

The symbol ◦ denotes the Hadamard product, whereas ∗ represents convolution. The term WA c

in (5) corresponds to the parameters of the input-to-state transitions, while Whc corresponds to

the internal state-to-state transitions, that is, the internal connections in ConvLSTM 1λ from the

hidden state Hn to the memory cell Cn. The fn or forget gate controls the amount of information

that is erased, whereas in is the input gate that controls what must be written in the memory

cell. The output gate on controls the amount of information that is passed from the memory to

the output sequence. All these three gates, fn, in and on are 3-dimensional tensors that for each

sequential step n reduces to a matrix whose rows and columns are the processed values of An

that must be stored or erased in the memory cell Cn. As the gates operate over the sequence

of time-scale variations, the internal memory preserves the number of time samples for all the

elements in A. ConvLSTM 1λ is designed to learn and select the feature vectors that best inform

the subsequent temporal classification modules. The output of ConvLSTM 1λ is the sequence

B = [B1, B2, . . . , Bn], with each element signifying a new feature vector.

The second ConvLSTM, indicated by ConvLSTM 2λ, is identical in its design to ConvLSTM 1λ.

The output of this ConvLSTM 2λ is the feature vector sequence C = (C1, C2, ..., Cn). Its

application results in a refined time-scale representation in which the interaction of the scattering
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coefficients across multiple scales is manifest. We observe that the physical, frequency transient

phenomena are linked with the dynamics of the learnable scattering transform.

C. Time Skip Connection

In parallel to subjecting the volumetric layer to ConvLSTMs, we apply a single convolution.

This is a time-skip connection (path B), that parses the multi-channel scattering coefficients

into an image of size (J ′ Q′)× (number of time samples). The single convolution collapses the

multi-channel scattering coefficients into a single output value. We do not apply any pooling to

preserve time resolution in the output representation.

D. Feature Fusion

The output of the branches A and B are concatenated in a new multi-channel image as

follows. For each time we stack the columns from the images generated by branches A and B.

The components for each time are labeled by λ′. The result we denote by S, essentially a matrix

signifying feature fusion (in green in Figure 1).

E. Temporal Classification

The bidirectional configuration is designed to provide long-term contextual information from

the entire input sequence S, one working as a forward and the other as a backward recurrence

(see BiLSTM1 and BiLSTM2 in Figure 1). The number of sequential steps for the forward and

backward LSTM unfolds is given by the length of the dimension time in S. The bidirectionality

of the recurrence allows incorporating contextual information from past and future frames,

reinforcing the detection capacity of our network. Finally, the output of the BiLSTM2 is fed

into an MLP to produce the prediction, that is, the predictive probability heatmap.

VI. UNCERTAINTY AND CHANGE QUANTIFICATION

The reliable detection of change in seismo-volcanic data streams remains a complex task given

the polyphony associated with multiple sources, tremor background, and overlapping signals.

The challenge is to find a universal approach, irrespective of the geological environment, to

systematically detect anomalous behavior and change.

The distribution variations of D = {(X, Y )} are especially challenging to detect in streaming

data [56]. Estimating the uncertainty in a monitoring framework with streaming data requires
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the generation of a distribution over the network’s predicted outcomes, fitting with a Bayesian

statistical framework [57]. The challenge in developing this in deep learning lies in providing

an effective approximation to the high-dimensional parameter space of deep networks that is

both fast and numerically reliable. Research work by [24] has related dropout neural networks

with Bayesian statistics by sampling from multiple dropout masks to infer an approximation

to the neural network’s posterior distribution (for details, see appendix A). This approach has

the advantages of scalability and integration with already well-established deep-learning training

methodologies. In seismology, Bayesian deep learning has been explored through a dropout

approximation for phase picking, and earthquake localization [25]. Bayesian deep learning has

also been applied to the probabilistic classification of events from filter-bank based features,

characterizing pre- and post-eruptive periods based on different types of seismic events [57],

[58].

A. Bayesian Monitoring

The sources driving change in a volcano are composed by an unknown number of latent,

heterogeneous variables that contribute to the overall alteration during monitoring. We gather all

sources of uncertainty into the epistemic uncertainty of our model at any given monitoring time

[59]. Starting from the distilled scattering feature vectors St in the feature fusion module, MC

dropout is invoked in the final two bi-directional LSTMs (BiLSTM1 and BiLSTM2) and the fully

connected predictive layers (contained in the dashed square in Figure 1). That is, we fix both the

scattering layers and the ConvLSTMs modules. The variational inference framework based on

Monte Carlo numerical sampling and its connections with stochastic regularization techniques

in deep learning are described in the Appendix A. During the training stage, invoking stochastic

dropout on the last layers can simplify the variational procedure while still providing meaningful

results from a Bayesian perspective. From a statistical perspective, it can be interpreted as a

jointly-learning point estimation followed by a shallow BNN [60], [61]. When new data streams

are presented to the neural network, the two bi-directional LSTMs and the fully connected

predictive layers analyze the processed scattering feature vectors and compute an uncertainty

estimate of the classification and segmentation for each of these processed vectors. This procedure

permits quantifying signal variations due to any external mechanism presumably closely related

to volcano dynamics.
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Fig. 2. Map of Bezymianny volcano (Kamchatka, Russia) and representative examples of common waveforms recorded

during the 2007 eruption. For each waveform type, the normalized waveform (in black) and spectrogram are depicted. For

visualization purposes, all waveforms have been filtered between 1 and 20 Hz.

VII. RESULTS

This section has been structured into three main subsections. The first subsection of this study

demonstrates the monitoring capabilities of the implemented architecture and multisource (or

polyphonic) monitoring tasks. To do this, we select three main eruptions of the Bezymianny

volcano during the 2007 eruptive sequence. Then, using the polyphonic system, we present

a complete application of how uncertainty and its adjustment with power-laws or exponential

functions can predict eruptive processes successfully in Bezymianny volcano. We then study the

exportability of the polyphonic system to other volcanic scenarios by doing a blind test with

data from Mount Saint Helens (Mt. St. Helens), a volcano similar to Bezymianny.

The second part of this study demonstrates the ability of the system to perform predictive
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TABLE I

BEZYMIANNY 2007 POLYPHONIC METRIC RESULTS

System Eruption 1 Eruption 2 Eruption 3

F1 (1s) PR (1s) RC (1s) F1 (1s) PR (1s) RC (1s) F1 (1s) PR (1s) RC (1s)

Vanilla 85.86 87.09 84.66 61.97 69.07 56.19 84.28 86.75 81.96

Filters 85.35 86.72 84.07 61.45 69.24 55.24 84.62 86.23 83.06

Knots + Filters 85.29 86.64 83.98 59.71 65.09 55.15 84.45 86.36 82.62

tasks in a completely different scenario, the Mt. Etna volcano. We first study how the uncertainty

behave in a blind test after we switch the volcano type. We then perform a transfer learning

approach and extend this study to use the uncertainty as a predictive element of eruptions in the

Mt. Etna volcano.

A. Bezymianny Volcano

We selected an eruptive sequence from Bezymianny volcano (Kamchatka, Russia). The data

catalog contains 3 months of daily records, from 1 September to 5 November 2007 [62].

During this period, three significant eruptive episodes (those on 25 September, 14 October,

and 30 October) were reported by the Kamchatka Volcanic Eruption Response Team (KVERT),

and confirmed via posterior geophysical studies [63]. Figure 2 shows the volcanic area and

representative seismo-volcanic events recorded during this period and that comprises the studied

dataset. Of the three eruptive episodes, which were all dominated by strong ash explosions and

lava emissions, the second is considered the most energetic. This event continued for 2 full days,

with the plume reaching 10 km in height and extending 1000 km to the southeast. Of the seismic

stations monitoring the eruptive activity, we selected BELO, located near the Bezymianny dome

and crater; BELO is a near-field station where any attenuation effects on the seismic wave field

can be neglected.

We categorized recorded waveforms according to the terminology proposed by [8]. This cat-

egorization scheme includes low-frequency (LF), high-frequency (HF), seismic volcanic tremor

(SBT), surficial events (SE), and low-frequency tremor (LFT); (see figure 2). These labels

presumably distinguish seismic source mechanisms induced by volcanic processes. Moreover,

although seismic networks can record several events per minute during volcanic crises (over

periods of days to years), there remains a lack of uniformity in giving meaning to the labels
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of observed signals. Further complications arise when several processes co-occur, producing a

suite of overlapping signals. Our neural network architecture utilizes all of the data, and through

polyphonic detection, segmentation, and classification enables insight in the dynamics of the

volcanic system.

We subdivided the dataset into time intervals based on periods of seismic unrest. During

quiescence periods, the level of seismic activity was very low. During periods of seismic unrest,

occurring before each eruptive episode, seismic activity increased in number of events and energy.

After each eruption, seismicity subsided, leading to another quiescence period. This dataset

division strategy also considered representative numbers of seismic events for training and testing.

For the first eruption (on 25 September), the training data covered the period from 1 to 24

September. For the quiescence period between the first and second eruptive events, the training

data covered the period from 26 September to 13 October. For the quiescence period between

the second and third eruptive events, the training data covered the period from 17 October to 4

November. We tested our approach for each period independently, so as to gain deeper insight

into the performance of our neural network as a monitoring tool.

B. Monitoring Results: Bezymianny

We follow the nomenclature vanilla, filters, and knots+filters to distinguish the learnable

options of the scattering network module in our E2E approach. The hyper-parameters of our

network are explained in Appendix B. We adopted the categorization scheme proposed by [8]

for training our network.

Table 1 shows the polyphonic metrics for the test (eruptive) partitions, trained using data

from the quiescent periods before each of the respective eruptions, with a frame precision of

1 s. Our approach yielded excellent performance for each of the eruptions. The PR, RC, and

F1 metrics attained high values for all of the scattering network options. Notably, our proposed

learnable configuration resulted in a high number of correctly detected frames at 1 s precision,

along with the effective event categorization of localized scattering information (i.e., high PR).

This performance is rooted in scattering learning stability inside the recurrent architecture. It is

important to emphasize that the three eruptive processes (i.e., quiescence, unrest, and eruption)

occur over a very small interval of time, but each involves different physical processes that

produce different seismic sources. In each process we have a first interval (quiescence) where

the volcanic system seems to be in an apparent rest. The system quickly enters unrest and shows
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an acceleration of all the seismic observable culminating in an eruption. Finally there is a period

of return to stability to enter the period of quiescence again.

Our polyphonic approach yielded high RC and PR during all three quiescent periods. The

recurrent scattering architecture mitigates one of the main challenges in seismo-volcanic moni-

toring owing to its ability to adapt. Notably, in the second eruptive period, during which multiple

physical mechanisms were active at the same time, the network’s performance showed high PR

and F1 scores, with RC being at an acceptable level for seismic signal detection and identification.

The network successfully dealt with significant variability in the durations of events and with

overlapping events. More than 50% of frames were correctly detected and assigned with high

precision to multiple and co-existent seismo-volcanic classes. As an aside, we achieve favorable

performance metrics for event detection as a single task (see appendix C). These results confirm

that our approach has significant advantages over more traditional monitoring protocols [14].

C. Predictive Heatmaps: Bezymianny

We use probabilistic heat-maps as an intuitive representation to verify if the learnable scat-

tering transform has effectively adapted to performing polyphonic event segmentation; that is,

these maps provide visual evidence that our neural network can detect, segment, and classify

simultaneous seismic waveforms. Figure 3 shows probabilistic heat-map predictions with 1 s

resolution for the pre-eruptive seismo-volcanic data stream of 22–24 September 2007. Attaining

accurate segmentation is critical for seismo-volcanic monitoring; the duration of a recorded event

is directly linked to the type of source mechanism that exchanges energy with its surroundings.

For example, low and high-frequency events have short durations (up to 30 s), while volcanic

tremor can last from minutes to hours. Isolated events are generated by sudden fluid (water or

magma) pressure changes (e.g., LF events) or the sudden release of energy due to rock rupture

(e.g., HF events). Meanwhile, volcanic tremor arises from the sustained exchange of energy

with the surroundings as the result of multiple pressure pulses within a fluid owing to bubbles,

energy transients due to fluid flow, and/or other dynamics. Given their geophysical relation

to the source, information inferred from each seismic event is equally important but is only

partially encoded in its duration and frequency content. Our recurrent scattering network captures

long- and short-term dependencies at 1 s resolution, departing from standard approximations

that often require a posteriori analysis. The multi-resolution analysis underlying scatter-gram

variation enables the network to learn the set of scattering coefficients with maximum intra-
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Fig. 3. Pre-eruptive heat maps for Bezymianny volcano (Kamchatka, Russia) from 21 to 24 September 2007. Normalized

waveforms and per-class probabilistic heat-maps for the pre-eruptive sequence at Bezymianny volcano from 21 to 24 September

2007. The neural network systematically isolates fundamental seismo-volcanic events, even when they occur in rapid succession.

The scattering transform can identify multiple active sources—including low frequency (LF) earthquakes—and uses the recurrent

structure to unmask the coupled mechanisms from the background noise or tremor. The polyphonic multi-output provides

invaluable geophysical information about potential sources and refines our understanding of volcanic unrest.

event information. The polyphonic approach is evident in the multiple frequency components

isolated as sparse probabilistic maps, concentrating higher output probabilities to higher spectral

content. For example, the waveforms of HF and LF have durations that are longer than the actual

duration of the source because they are composed of direct waves incoming from the source

(being the most energetic portion of the signal) and successive arrivals of waves coming from

the resonance of the system, or scattered waves generated by heterogeneities of the medium,

among other possible phenomena. Monitoring challenges at Bezymianny include the energetic

background tremor and noise level. However, our results show that the effect of these on intra-

class separability is negligible.

In Figure 4, we show seismic traces from the first eruption (25 September). Our approach

succeeded in isolating and categorizing the presence/absence of volcano-seismic signals despite
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Fig. 4. Heat maps for the 24–25 September 2007 eruptive period at Bezymianny volcano (Kamchatka, Russia). Normalized

waveforms and per-class probabilistic heat-maps for the eruptive sequence at Bezymianny volcano from 24 to 25 September

2007. The first two rows represent reported mild pre-eruptive seismicity (24 September). Earthquakes are classified as low

frequency (LF) and high frequency (HF) events, with occasional surficial debris processes (SE) identified during dome inflation.

The bottom row (25 September eruption) represents co-existent debris processes and low frequency tremor (LFT) during the

main eruptive episode; the LFT component is recognized over the recorded exogenous signal, effectively demonstrating how a

polyphonic approach enhances volcano monitoring by providing all potential sources active at any given time.

the per-class probabilistic heat maps showing many recorded concurrent processes. As an ex-

ample, elevated confusion occurs within the lower left seismic trace, in which there exist many

simultaneous processes with mixed frequencies, influencing intra-class separability and predictive

performance. The recorded SE activity could be caused by increased deformation through dome

growth paired with energetic rockfalls recorded prior to an eruption.

In Figure 5, we show a set of polyphonic heatmaps for data streams from 9 to 16 October

(first two rows) and 30 October to 5 November (last two rows). Polyphony is evident in the

heat maps for all of the earthquake transients; our neural network detected LF and HF events

co-existent with LFT. Furthermore, for the third eruptive period (the last two rows), polyphony

is also clearly visible, with both HF and energetic SE classes. As mentioned, in each eruptive

period, a series of changes in the seismic wavefield are used for forecasting. Alongside every
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Fig. 5. Heat maps for Bezymianny volcano (Kamchatka, Russia) from 9 October to 5 November. Normalized waveforms

and per-class probabilistic heat-maps for Bezymianny volcano from 9 October to 5 November 2007. Note that the waveforms

present concurrent processes. Multisourced signals arise in the low-frequency components, as the frequencies of low frequency

(LF) and high frequency (HF) events (i.e., earthquakes) overlap with the those of low frequency tremor (LFT). Similarly, surficial

events (SE) are correctly segmented, as their arrivals and subsequent envelopes differ from those of earthquakes.

data stream that has been extracted and classified is the ever-present volcanic tremor. The tremor

wavefield also changes as the volcano evolves, and in some cases can become highly energetic

and relevant from an identification and classification point of view. For example, in the second

eruptive period, such a background signal was manifested and identified as the LFT. These results

show that our neural network succeeds in intra-class separability of earthquake transients and

background signals, even under intense seismic fluctuations. Our neural network learns, without

supervision, the energetic onset/offset times of events, being sensitive to subtle fluctuations in

seismic transients from background noise and surficial events. Indeed, our neural network can

operate as an automatic event detector with the maximum probabilities of temporally aligned

and concentrated seismic signals. An interesting observation is that when our approach switches

the highest probabilities from volcanic tremor to a different class, a low probability emission is

generated before the potential arrival of the event in this different class, as it can be noticed from
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Fig. 6. Temporal epistemic uncertainty variation and detected drifts in pre-eruptive and eruptive sequences at Bezymianny

volcano. The main reported eruptions are indicated in gray. Multiple explosions for the third eruptive episode are indicated by ×.

Fits to power laws preceding eruptions and explosions are indicated in red. The Bayesian recurrent scattering network successfully

detected change prior to the main eruptions, revealing that changes in the uncertainty are related to unrest.

figures 3, 4 and 5. The learned scattering transform provides a physics-informed identification of

the distortions in the near seismic wave field. Such information serves as an a a-priori estimate

of the phase arrival time, covering an extensive low-probability range in time until the energetic

arrival. These probability switches are consistently present despite signal-to-noise ratio (SNR)

and spectral differences between seismic signals and background tremor.

D. Drifts in Pre-eruptive Epistemic Uncertainty

Epistemic uncertainty is uncertainty in model predictions reflecting the degree of data knowl-

edge of the model [57]; here, the model is the classification module of our designed recurrent
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scattering network. The data stream is mapped to the tensor St, which is forwarded to the tempo-

ral classification module (corresponding to BiLSTM1 and BiLSTM2 in Figure 1). The tensor St

contains, for any given frame time t, the mixture of all the scattering coefficients that best explain

the raw observable signal. From a Bayesian perspective, St is used as an embedding in which

compressed information can be used to approximate epistemic uncertainty. The greater the data

availability, the better we can approximate the training data distribution, with lower epistemic

uncertainty values. Regardless, the Bayesian approach is always conditioned to the training data

distribution, in which probabilistic shifts are detectable via epistemic uncertainties [57]. For our

learned scattering recurrent network, and for each day in the validation/test streaming data sets,

we computed the predictive map from each of the 20 stochastic Monte-Carlo dropout samples,

chronologically at 10 min time intervals. Our hypothesis was that a drift in epistemic uncertainty

would be directly correlated with changes in the volcanic processes.

Figure 6 depicts the results for the pre-eruptive and eruptive sequences for each of the

eruptive periods considered here; each point on the horizontal axis corresponds to a 10 min

interval and eruptions are marked in dark blue. In the pre-eruptive sequences, the predictions

are remarkably robust, reflecting the invariances encoded by the scattering transform module

of the network. Drifts in epistemic uncertainty preceding eruptions signify detectable changes

in volcanic processes. Remarkably, these drifts exhibit power-law behavior in time, directly

indicative of metastable behavior. Prominent peaks in epistemic uncertainty correlate with high-

energy events that are, clearly, not present in the training data sets. The general time fluctuations

in the uncertainty mostly relate to the complexity associated with polyphony in the predictions.

The uncertainty may not return to values encountered in a pre-eruptive period; this can be

attributed to changes in material properties and structural conditions after eruption. In this case,

our deep neural network might need to be retrained, for example, through transfer learning. The

plots in Figure 7 are consistent with those of previous studies [62], [64], [65].

For the first sequence (21–25 September), only minor pre-eruptive seismicity was recorded,

with no significant post-eruptive changes. Our epistemic uncertainly shows a sustained drift in the

form of a power law (in red) for 208 time units (or 34.6 h) prior to the eruption; the uncertainty

peak coincides with the main explosion. This first eruption ends at 442 time units (73.6 h), while

the uncertainty returns values encountered in the pre-eruptive period. For the second sequence,

the eruption of 14 October was preceded by increased seismicity and tremor, including relatively

large magnitude earthquakes. The eruption was characterized as explosive and lasted until the
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17 October. The uncertainty again shows a clear drift following a power law (in red) for 197

time units (32.83 h) prior to the eruption on 14 October. A second, short-lived but high-energy

eruption is clearly visible in the uncertainty on 15 October. Preceding this second eruption, the

drift in epistemic uncertainty is attributed to an increment of tremor amplitude. Finally, the third

eruption at Bezymianny, that on 5 November, was reported as weak with minor fumarole activity.

The activity could not be confirmed owing to weather conditions, but it was postulated that a

sequence of explosive events occurred. We can confirm such explosive activity based on two

spikes in the uncertainty at 700 and 810 time units along with other minor explosive activity

that could have preceded the main explosion at 914 time units. Again, the individual explosions

were preceded by a power-law drift in the uncertainty (in red) at 63 and 123 time units (10.5

and 20.5 h) for the first and second individual eruptions, respectively.

E. Power-law and Quasi-exponential Uncertainty Curves

In volcanology, eruption prediction methodologies include one based on modeling the rate of

change of selected observables using a differential equation with exponent, α [66]. Exponential

behavior occurs if α = 1, and power-law behavior occurs otherwise. We carried out careful

fitting [67] of α to the epistemic uncertainty obtained for the three eruptive periods (Figure 6;

note that the exponents of the eruptions are not 1), and argue that α estimated from epistemic

uncertainty is indicative of eruptive type.

A power law defines a polynomial relationship between two quantities, in which relative

changes in one leads to a proportional change in the other, modeled by exponent α. In our

volcanic setting, the quantities are time and uncertainty. Power-law models are often referred

to as a “material failure forecast” and can be used for the prediction of volcanic eruptions

[68]. Using this approach, it is more important to determine if there is an acceleration in the

change than if there is a change in itself; therefore, the second derivative is critical. As such,

an exponential of greater than 1 is often interpreted as a precursor element. Power laws are

universal across volcanoes, permit scaling, and implicitly encoding acceleration. Their use is

not new [8], [68]; however, by using uncertainty as an early warning element, our method can

reduce the uncertainty whether or not there is an increase in the homogeneity of the data. If the

uncertainty grows, it implies the appearance of new classes of events or that the events within a

class have begun to differ from each other. Therefore, an increase in uncertainty, which initially

reflects a lack of classifier quality, can be used as a good indicator for early warning of volcanic
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Fig. 7. Generalization and exportability test of the implemented system using data from Mt. Saint Helens. Normalized

waveforms and per-class probabilistic heat-maps for Mt. St. Helens volcano from 0000 PDT to 23:59 PDT on 9 September

2005. Seismic waveforms are from station JUN. Seismic signals are characterized by regularly spaced events (or “drumbeats”).

eruptions. It is important to note that this approach -measuring the variation of the uncertainty-

can be exported between volcanoes. While the nominal values of the uncertainty will differ

among volcanoes, observing the derivatives is more important than the absolute nominal value

of the uncertainty.

Figure 6 shows changes in uncertainty before each of the three eruptive events. The nominal

values of uncertainty differ, but similarities can be observed in the acceleration processes im-

mediately before each eruption. Among the three eruptions, field observations indicated that the

second was the most energetic, while the third was the least energetic. The shapes of change

for each uncertainty curve differ and are associated with the energy of the eruption. Both the

forecasting time and exponent of the second eruption exceeded those of the other two events. For

the third eruption, we identified potential previous failures and a law much closer to 1. These

observations are promising as they support the use of this approach for early warning.
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Fig. 8. Generalization and exportability test of the implemented system using data from Mt. Etna. Normalized waveforms

and per-class probabilistic heat-maps for Mt. Etna from 14 to 24 July 2019. Seismic waveforms are from station ENCR. The

polyphonic segmentation of the events permitted the identification of low frequency (LF) and MX frequency events, demonstrating

the existence of coupled mechanisms, such as hybrid-type events.

F. Blind Test: Mount Saint Helens, 2005

Bezymianny and Mount Saint Helens (Mt. St. Helens) share a similar composition and eruptive

style; both primarily andesitic and present a classic stratovolcano-type morphology. Both produce

explosive eruptions of high viscosity magma associated with a high rate of volcano seismicity.

The seismic data from Mt. St. Helens were gathered during a vent-clearing phase recorded

from 9 September (starting from 0000 PDT) to 5 October 2005 at the JUN station. This seismic

sequence comprises regularly spaced earthquakes, of very similar magnitude and waveform also

known as drumbeats, resulting from stick-slip motion of a conduit spine. During the vent-clearing

episode, the event rate increased to up to 3 earthquakes per minute, towards a sustained eruption.

Figure 7 shows the polyphonic results for the blind-test.

For explosions registered on 10 September 2005, although the arrival of the waveform is

clearly visible and detectable by less sophisticated algorithms [69], it is within the polyphonic

categorization where similarities across volcanoes are perceivable. Our pre-trained network can
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detect events that share waveform properties with those at Bezymianny, and, despite the differ-

ences in geophysical processes, it successfully highlights the current mechanisms via probabilistic

heatmaps. We note that with the pre-trained network we reliably detected the earthquakes in a

polyphonic setting, assigning a high probability to LF, HF, and SE classes. These experimental

results demonstrate the success of the proposed methodology for volcanoes that share similar

geophysical features, and thus being easily exportable between volcanoes without re-training the

whole architecture with a pre-existing dataset.

G. Transfer Learning, Switching Volcano Type: Mt. Etna

We also applied our Bezymianny-trained deep neural network to data from Mt. Etna. The

internal morphology of Mt. Etna frequently changes owing to intra-crater volcanic activity [70],

[71], [72], [73], which provides a challenge for our approach of detecting change with epistemic

uncertainty. The significant changes in eruptive activity and correlation with other volcanic data

are described in [74]. We used data gathered at the south-east of Mt. Etna (Bocca Nuova,

BC) during the paroxysm recorded from 4 to 24 July 2019, at the ENCR station. The main

eruption occurred at 23:09 UTC on 18 July. The seismic events and style of the eruption were

fundamentally different from those at Bezymianny and Mt. St. Helens. The activity comprised

explosive degassing preceding ash-rich explosions. Signals were characterized by HF and LF

events, along with a new class of MX event, a hybrid frequency event that shares the spectra of

LF and HF events. Hence, for this new volcanic scenario, we have the following classes: HF,

LF, MX, and SBT.

H. Uncertainty blind-test exportability

As observed with Mt. St. Helens, our architecture and approach can be exportable and produce

heatmaps to another volcano when no prior knowledge is available. Now we wonder if the study

of the temporal evolution of uncertainty can be exportable without having prior knowledge of

the new volcanic scenario. To do this, we performed a blind test for the selected Mt. Etna data

using the pre-trained system in Bezymianny volcano. We first window the data stream as in the

Bezymianny case but average the estimated uncertainty for 10 minutes. No training or additional

fine-tuning of the system is further performed in this test.

Figure 9.B represents the temporal evolution of this exported uncertainty along time. The main

observation is the uncertainty drops to zero when the main energetic moment of the eruption will
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Fig. 9. Switching volcano and eruption style with transfer learning: (A) Image of the Mt. Etna eruptive column from on

18 July 2019, along with a map of seismic stations and the location of the ENCR station shown. (B) Temporal evolution of the

uncertainty for an exportability test to Mt. Etna using the pre-trained system on Bezymianny. The blue line represents the linear

fit when uncertainty drops to zero. Observing this line indicates in advance when the more explosive episode of the eruption

will start. (C) RMSE energy and temporal uncertainty variation for the 2019 eruption after the system has been trained.

happen (observing the sudden increase of the energy), i.e. the network is effectively tracking the

frequency bands of the seismic data stream through time, which is why the uncertainty remains

relatively high at the beginning and drops to zero towards the eruption. The results of the blind

test do not indicate when the eruptive process will begin but when the most energetic event will

occur. If a simple linear fit is performed to the decay of the uncertainty in the blind test (blue

line in figure 9.B), we observe that this line marks precisely the moment of greatest energy of
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the eruptive process. This observation is fundamental because although it does not say when the

eruption will occur, it does forecast when the paroxysmal moment of the eruption will occur.

This observation cannot be generalized yet, but it is a significant result and opens a new venue

to the forecasting processes of volcanic eruptions. From the perspective of physical models that

could explain this behaviour, we do not yet have a conclusive answer. We believe that it is

associated with the fact that at the paroxysmal moment of the eruption, the system begins to

register again a high content of high-frequency signals, compared to the pre-eruptive moment

where low-frequency events dominate. Therefore, in the blind text, as we approach the explosive

paroxysm, high frequencies dominate again in the seismic data stream, similar to those already-

known already known by the system. Hence, the exported experience with the uncertainty tends

towards zero. We must insist that this test of exportability and the success as a predictor element

(onset of the eruption and paroxysmal moment) is a promising result, and tests should continue

in new volcanic scenarios to see it as a universal tool.

I. Transfer learning on Mount Etna

Applying our developed solution on different volcanoes can be done very simply by using

our pre-trained model and only adapting the parameters of the last layers in the architecture. We

adopted a transfer learning approach by replacing the whole temporal classification module with

two new bi-directional LSTMs and a dense layer with the number of classes at this volcano (HF,

LF, HYB, and SBT). Hence, the temporal classification module (dashed-square) in Figure 1 has

been substituted by a new temporal classification module; but changing the number of hidden

units to the same number of classes in this volcano. The rest of the seed network remained

unmodified, that is, the recurrent scattering layers, the volumetric layer, the ConvLSTM 1λ and

ConvLSTM 2λ; the time-skip connection and the feature fusion module. We followed the same

training procedure as that used for Bezymianny and retrained the new temporal classification

layers using the quiescent period of 10 days at Mt. Etna (4–14 July).

Figure 8 shows per-class heatmaps for the eruptive sequence recorded at Mt. Etna. Our system

detected LFT and MX classes attributed to fluid interactions (i.e., tremor and hybrid events).

Note that the MX class is well recognized and distinguished from the SBT class. The principled

recognition of MX events is present for all of the depicted waveforms, confirming that the

network has adapted to a new domain in which the broad spectra of seismo-volcanic events

is different from that of the seed dataset. As Mt. Etna volcano has different volcanic dynamic
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compared with Bezymianny or Mt. St. Helens volcanoes, there can be different geophysical

interpretations for seismic signals with the same label. However, while the target dataset is

significantly different from the original dataset from a machine learning perspective, the pre-

trained model already has learned features relevant to the monitoring problem. These results show

that the proposed network can reliably detect seismo-volcanic signals from different origins after

transfer learning.

Figure 9.C depicts the temporal variation of the epistemic uncertainty for period before the

main eruption. The root mean square (RMSE) energy is computed for the filtered trace between

0.5 and 12 Hz. First, it is noticeable that the uncertainty shows a gradual drift, following a power

law (in red), at 1005 time units (or 23.91 h). Note that the energy does not exhibit such a clear

drift from the usual background energy until 200 time units (7.6 h) prior to the main eruption.

As discussed, it is not possible to compare nominal values of uncertainty from one volcanic

system to another. However, we use uncertainty to define when our system can be considered

sufficiently well trained and adapted to the seismic data domain. One possible indication is that

the uncertainty value remains stable regardless of whether new events are used within the trainer

system. If the uncertainty remains stable when increasing the number of events, the system is

considered well trained. For Mt. Etna, the uncertainty at the main eruption is similar to that

of the second eruption at Bezymianny. The fact that it remains constant prior to the eruption

implies that the system is sufficiently well trained for use with the Mt. Etna dataset.

1) The evolution of uncertainty is a good indicator for volcanic early warning.

2) The laws of change for this uncertainty are exportable from one system to another.

3) The form and timing of the change are related to the apparent energy in each eruptive

process.

4) Comparing figure 6, figure 9.B and figure 9.C, we can confirm that the temporal behavior

of the uncertainty is opposite to when the system is trained and adjusted from one volcano

to a new, different one.

5) In terms of eruption pre-warning time, uncertainty is ahead of other observables, rendering

it potentially more effective for volcanic alert systems. For example, at Mt. Etna, the

uncertainty started to increase 16.6 hours before the eruption, that is, 200 time units before

the RMSE. The acceleration of uncertainty with such an hourly anticipation constitutes

the pillars to create exportable and universal early-warning systems in poorly-monitored

regions, and other volcanoes world-wide. Finally, we have shown that our technique was
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able to predict many hours in advance when the most energetic explosive process of this

eruption was expected.

VIII. CONCLUSION

We present a new neural network architecture rooted in a learnable scattering transform to

perform temporal modeling and introduce a multi-modular recurrent architecture to implement

polyphonic detection, segmentation and classification of seismic signals with the purpose of

seismo-volcanic data exploration. Our architecture demonstrates that the flexibility introduced

in learning layer-wise knots and filter-bank design, jointly with specialized recurrent dynamic

convolutions, yields optimal, robust features or representations in a frame-wise fashion. The

application of our architecture to data from three volcanoes, of different types and on different

continents, shows that our approach generalizes well and properly adapts to different environ-

ments. The non-uniform data taxonomies in seismo-volcanic applications are collapsed into a

generic but well-known categorization scheme to enable the computation of invariant, robust,

and universal scatter-grams. Our neural network guarantees the rapid recognition of events, and

is robust against sparse data taxonomies and the presence of background noise, which is an

active topic of research in machine learning applications [75].

Nonetheless, the designed recurrent scattering networks allows for seamless integration with

modern seismic data workflows, and includes an online streaming data approach that can provide

direct warning system statements. This requires a straightforward adjustment of the architecture,

namely, changing the bidirectionality to an unidirectional frame-wise sequential recurrent net-

work. Hence, our system is a universal framework that bridges the gap between deep learning

and online monitoring; moreover, despite the myriad of complex physical mechanisms involved

in volcanic unrest, our framework allows for simultaneous seismic events to be fully detected

and characterized.

In addition to studying the complexities in mechanisms that drive volcano dynamics, the

timing of eruptions remains an active research topic. Established forecasting algorithms are

designed to find mathematical relationships involving accelerated strain, energy, or frequency

variations; they assume handcrafted features that do not consider the class-membership of events

and discard hidden information that might offer insight in the source mechanisms that generate

seismic signals and drive volcanism. Our deep recurrent scattering network departs from the

traditional perspective and opens new directions for designing forecasting methods based on
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the connections between epistemic uncertainty and volcano dynamics. The power-law drift

in epistemic uncertainty associated with seismic data streams implies that volcanic processes

preceding eruptions are detectable. With no prior assumptions about signal distribution, deep

learning can identify such behavior without supervision or parametrization by data alone. The

epistemic uncertainty generated by our deep neural network holds promise for forecasting erup-

tions, although challenges remain. As our approach can be modified to act on real-time streaming

data, this goes in concert with the development of a novel early-warning strategy.

APPENDIX A

BAYESIAN NEURAL NETWORKS

Mathematical notation: First, we establish the mathematical notation that we will follow in

the formulation of Bayesian modelling for neural networks. We define our dataset (assuming we

are working with seismic data) as a set of N points, D = (X,Y) where X = {x1, x2, . . . , xN}
the matrix whose rows correspond to a set of seismic events (in samples) extracted from a

continuous seismic record, and Y = {y1, y2, . . . , yN} is the matrix whose rows contain the

corresponding labels that are assigned to every seismic event and that are categorized over a

set of C classes. We refer as L to the total number of layers in the neural network, being i the

sub-index of any of its layers, i = {1, · · · , L}. Therefore, in this appendix, we specify our neural

network as a function parameterized by its weights, y = fω(x), where ω represents all weights

matrices associated with the hidden layers of the neural network, that is, ω = {Wi}Li=1, x the

input feature vector of the network (i.e. a row of matrix X) and y the associated polyphonic

vector labels (i.e. a row of matrix Y). In this appendix, we refer as θ to the parameters that

define the approximate distribution qθ(ω).

Bayesian modelling in neural networks: It is well known that Bayesian methods provide a

measure of uncertainty for each input and output of a given model, based on all observed data.

In most of the so-called frequentist approaches, commonly used in neural networks, the final

optimization result is a set of best-fitting parameters. Unlike frequentist methods, the result of

a Bayesian fit is a probability distribution of each parameter of the model, called the posterior

distribution. For a given set of parameters in our neural network, and the dataset D defined, the

posterior p(ω|X,Y) is determined by using the Bayes Theorem:

p(ω|X,Y) =
p(Y|X, ω)p(ω)

p(Y|X)
, (7)
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with p(Y|X, ω) is defined as the model likelihood distribution, that is, the knowledge of the

model on the data distribution, and therefore, the assignment of probabilities for each X and Y,

given the parameters of the model. The term p(ω) is known as prior and constitutes the initial,

known probability distribution of the parameters of the network. Hence, in a Bayesian neural

network (BNN), the prior distribution is specified as a set of probability distributions located

on their weights [76]. The denominator of (7) corresponds to the model evidence or marginal

likelihood, a normalizing constant that can be obtained by marginalizing the likelihood over the

parameters ω:

p(Y|X) =

∫
p(Y|X, ω)p(ω) dω. (8)

Theoretically, the marginalization in (8) involves the average with respect to all possible param-

eters of the model ω, weighted by p(ω). For complex models, such as BNNs, an approximation

is required [77]. Defining all the terms in the numerator and denominator of (7), a BNN can

predict the outputs y∗ for any new input x∗ through the predictive function by integration over

the parameters of the network ω:

p(y∗|x∗,X,Y) = Ep(ω|X,Y) =

∫
p(y∗|x∗, ω)p(ω|X,Y) dω, (9)

where p(y∗|x∗, ω) is the data likelihood for this new point x∗. The prediction of new seismic

events for multiple instances in y∗ is known as inference. However, the exact inference in (9) is

impossible given that the posterior is part of the integral. The computation of (9) with p(ω|X,Y)

is equivalent to evaluate an infinite number of neural networks with all the possible parameter

configurations. This is computationally intractable for neural networks of any size. For this

reason, in Bayesian modelling, an approximate inference procedure is required. This type of

inference entails an optimization conditioned to the training of the architecture, that is, the

approximation of this integral. Variational inference methods are used to approximate p(ω|X,Y)

and therefore the equation (9).

Variational inference in BNNs: Variational Inference (VI) focuses on obtaining an approxi-

mation to p(ω|X,Y) by using optimization procedures [78]. Formally, this optimization aims at

determining a probability density, qθ(ω), that should be as close as possible to p(ω|X,Y).

The measure of closeness is given by the Kullback-Leibler (KL) divergence between both

distributions:

KL(qθ(ω) || p(ω|X,Y)) =

∫
qθ(ω) log

{
qθ(ω)

p(ω|X,Y)

}
dω. (10)
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with qθ(ω) known as the variational distribution. We minimize the (10) by optimizing the

variational parameters θ of our variational distribution qθ(ω):

θ̂ = argmin
θ

Eqθ(ω)[log qθ(ω)− log p(ω|X,Y)] (11)

θ̂ = argmin
θ

KL(qθ(ω) || p(ω|X,Y)) (12)

with θ̂ the parameters that results in the minimum KL divergence. Once we obtained our varia-

tional approximation qθ(ω), and the KL in (10) has been minimized, the predictive distribution

is given as:

p(y∗|x∗, D) ≈
∫

p(y∗|x∗, ω)qθ̂(ω) dω =: qθ̂(y
∗|x∗). (13)

However, we can verify that the evaluation of the KL divergence in (10) requires the computation

of the posterior distribution for our network’s parameters, which are precisely the distribution

that we want to approximate. To circumvent this, we can minimize a function similar to (10)

added to a constant term. This function is known as Evidence Lower Bound (ELBO). The

mathematical relationship between the ELBO and KL divergence, KL(qθ(ω) || p(ω|X,Y)) can

be derived from (10) by invoking Bayes rule and taking logarithm, yielding [78]:

log p(Y|X)−
∫

qθ(ω) log

{
p(Y|X, ω) p(ω)

qθ(ω)

}
dω︸ ︷︷ ︸

ELBO or LELBO(θ)

(14)

Therefore it is observable from the above equations that the KL divergence is equal to the ELBO

(LELBO(θ)) and a constant which is given by the marginal log-likelihood of our data. Since the

KL divergence is a probabilistic distance and always positive, we can thus write:

log p(Y|X) ≥ LELBO(θ) +KL(qθ(ω) || p(ω|X,Y)). (15)

with LELBO(θ) becoming the objective of our optimization problem. In addition, minimizing

the divergence of KL is also equivalent to maximizing ELBO with respect to the variational

parameters of the distribution qθ(ω). We can expand the term LELBO(θ), and obtain its closed-

form expression:

LELBO(θ) := −
∫

qθ(ω) log p(Y|X, ω)dω + KL(qθ(ω) || p(ω)). (16)

The optimization of the first integral term conditions the Bayesian model to better fit our data.

The second KL term acts as a regularizer, keeping qθ(ω) from extreme deviations of p(ω). This
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analytical representation can be used to rewrite (10), KL(qθ(ω) || p(ω|X,Y)) in approximative

terms for the parameters of our neural network:

−
N∑

n=1

∫
qθ(ω) log p(yn|fω(xn))dω +KL(qθ(ω) || p(ω)) (17)

where fω(xn) is the output of the neural network for a given arbitrary input xn, and the

summatory term defined as the expected log likelihood. Once all the parameters for variational

optimization in a BNN have been established, it is necessary to choose the prior and explicitly de-

fine the variational qθ(ω) distribution to optimize in (17). In a BNN, qθ(ω) is always conditioned

to the distribution given by the matrices of its neural connections. The multiple non-linearities

and the evaluation of the first integral in (17) with N events of a dataset entails a prohibitive, non-

scalable computation. However, we can consider the Monte Carlo sampling estimators and their

connections to regularization techniques in deep neural networks. Monte Carlo estimators permit

an approximation of the expected log-likelihood for neural network models with multiple hidden

layers and their derivatives with respect to the variational parameters θ. The so-called Monte-

Carlo dropout (MC-dropout) is thus a variational estimation that connects dropout regularization

and standard neural network optimization with the inference procedure in (17) [24].

Monte Carlo dropout: The dropout technique can be used in a BNN as a Bayesian approxi-

mation of the posterior distribution of the network parameters. Initially, the dropout is formulated

by [79] as a stochastic regularization technique for deep neural networks, randomly deactivating

the parameters of a neural network with a given probability, pi. A Bernoulli distribution can

model this probability pi, selecting which of the hidden units remain active in the network. The

key result for this reasoning is derived by [24] and [80]: the integral and KL terms in (17) can

be linked to standard dropout training in deep neural networks. This permits scalable and robust

inference for large datasets in very complex networks.

Formally, our neural network is composed of a set of weight matrices in all its layers, ω =

{Wi}Li=1. Each weight matrix has a dimension Ki ×Ki−1. We define the variational distribution

qθ(ω) as the factorization over the weight matrices of all the hidden layers conditioned to the

dropout technique:

Wi = Mi · diag([zi,j])Ki
j=1, (18)

zi,j ∼ Bernoulli(pl), i = 1, . . . , L, j = 1, . . . , Kl−1, (19)
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where zi,j represents the dropout masks (matrices of zeros and ones drawn from the Bernoulli

distribution) which disable the hidden element j on layer i− 1. The term Mi is a mean weight

matrix, whose set θ = {Mi}Li=1 are the variational parameters. Finally, having defined the

variational distribution, we can use Monte-Carlo estimation to approximate the integral of the

expected log-likelihood in (17):

−
∫

qθ(ω) log p(Y|X, ω)dω =
1

N

N∑
n=1

− log p(yn|f ω̂(xn)) (20)

where ω̂ is not a maximum posterior estimate, but multiple realisations of random variables

from the Bernoulli distribution, ω̂ ∼ qθ(ω). This reasoning is identical to applying successive

dropout masks to the network weights. Hence, the averaged sum of log p(yn|f ω̂(xn)) represents,

by definition, the cost function of a neural network.

In order to link the variational inference optimization LELBO(θ) to the optimization objective

of standard neural networks with dropout, Ldropout(θ), it is necessary that the mathematical

relation known as KL-condition in the regularizer term is fulfilled. The KL-condition links the

derivatives of the optimization objective in (10) with standard loss functions in neural networks.

In this Appendix, we do not cover the entire proof in detail and refer the reader to the original

work by [24], pages 150-152, Appendix A. The KL-condition establishes that the regularizer KL

term in (10) can be approximated as a standard dropout regularizer weighted by a normalization

constant λ. Our objective of variational minimization is defined as:

Ldropout(θ) =
1

N

N∑
n=1

− log p(yn|f ω̂(xn)) + λ

L∑
l=1

(‖Ml‖22 + ‖bl‖22) (21)

Therefore, approximate inference procedures result in an optimization goal identical to that

of a neural network using the loss function Ldropout(θ). This function is defined to optimize

the parameters of the neural network and find the best qθ̂ that minimizes the KL divergence,

KL(qθ(ω) || p(ω|X,Y)) in equation (17). Finally, we can use the approximation learned by our

network to evaluate the predictive function in (13), using Monte-Carlo sampling with T sampling

steps:

qθ̂(y
∗|x∗) =

∫
p(y∗|f ω̂(x∗))qθ̂(ω)dω ≈ 1

T

T∑
t=1

p(y∗|f ω̂t(x∗)) (22)

or equivalently ω̂t ∼ qθ(ω). Therefore, at the time of inference, the dropout layers are applied

to the Mi matrices, generating a Monte-Carlo sample from the posterior distribution (see equation

9). In practice, the average of these samples can be interpreted as the prediction of the network,

although a single estimate is not obtained, as many as T sampling steps are performed. We can
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use the probabilities obtained by MC-dropout to estimate the uncertainty in the application of

seismo-volcanic recognition.

Fig. 10. Pre-eruptive event detection heat maps. Probabilistic heat maps for the first eruptive sequence of Bezymianny

volcano. Data were obtain on 25 September 2007.

APPENDIX B

HYPERPARAMETERS OF THE NETWORK

Our neural network architecture contains two paths or branches. The first, named path A, ana-

lyzes via dynamic convolutions a sequence of local scattering coefficient variations, outputting a

refined feature map. The second, path B, is a bypass skip connection with a learnable convolution

to perform data reduction and per-frame time analysis to capture precise onsets of events. The

training is done, for all the data sets, with the raw seismic wave forms.

The number of knots k, the number of octaves J and wavelets per octave Q are carefully chosen

after some signal analysis of the input waveforms. We selected, for the first scattering layer L1,

k = 8, J = 6 and Q = 7, and for the second scattering layer L2, k = 2, J = 5 and Q = 5. These

parameters give enough bandwidth and frequency resolution to provide a scattering representation

where the main frequencies of the events are discernible from the background tremor. After the
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concatenation of both scattering feature vectors, a volumetric pooling of size (1, 1, 100) is applied

to remove redundant information. Both ConvLSTMλs contain 16 filters, with a kernel size of

(5, 5) and strides (1, 1). The temporal skip connection is a single filter with a kernel size of

(1, 1) to perform dimensionality reduction. The successive BiLSTMs layers are composed of 92

hidden units in each direction (128 in each BiLSTM). A per-class sigmoid activation function is

applied to compute the final detection matrix: 5 hidden units for Bezymianny and Mount Saint

Helens. The scattering transform module produces a sparse vector of 30000 samples pooled by

100 to achieve a 1s time resolution. Layer normalization is applied after all successive recurrent

layers. The dense, predictive layer contains a sigmoid activation function in which a binarization

threshold of 0.5 over the per-class event activity probabilities is applied to produce the event

detection matrix allowing multiple class memberships to be detected. We adopt the polyphonic

training framework in [42]; with binary cross-entropy loss function. For the transfer learning

setup in subsection VII-I, we use the same hyper-parameter configurations but changing the

per-class sigmoid activation function to 4 hidden units corresponding to SBT, HF, MX and LF

classes.

APPENDIX C

EVENT DETECTION

Seismo-volcanic event detection is a monophonic task. Our neural network is trained to detect

and segment the presence or absence of events, where the classes become event and no event.

We use the same hyper-parameter that those on the polyphonic class, except that we change the

number of hidden units in the sigmoid class to two, event/no event. Table II contains the attained

metrics for each learnable configuration on the test data set associated with the Bezymianny

eruption of 25 September 2007. The results improve on those obtained using a polyphonic setting.

Implicitly, the neural network becomes more sensitive to the onset of events as well as to the

duration. It can thus be applied to seismology as an alternative to traditional algorithms [69],

feature-based algorithms [81], or data-mining based pipelines [82]. Traditional STA/LTA methods

require some prior knowledge about the signals to which they are applied, which is avoided

by using a learning-based approach. Feature-based algorithms do improve the segmentation

boundaries in the time of events, but require prior knowledge about the frequency range in

which events are distinguished from noise. An algorithm based on fingerprint similarity, where

fingerprints are generated through a network analogue from signals using data mining [82],
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TABLE II

SEISMIC EVENT DETECTION PERFORMANCE ON THE ERUPTION ON SEPTEMBER 25TH

System F1 (1s) PR (1s) RC (1s)

Vanilla 88.17 88.16 88.18

Filters 88.11 88.12 88.09

Knots + Filters 88.18 88.18 88.19

relies on the assumption that all events are sufficiently frequently represented in the data set.

Our neural network for event detection can be pre-trained and is exportable so that it can be

applied ubiquitously to many volcanic systems, regardless of eruptive style. Results on test data

from Bezymianny are illustrated in Figure S1. The pre-eruptive event detection heat maps show

that our neural network can systematically detect and segment seismo-volcanic events even in

the presence of significant background noise.
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7 | CONTINUOUS ACTIVE LEARNING

FOR SEISMO-VOLCANIC

MONITORING

This chapter introduce the active learning framework with B-TCNs to significantly reduce

annotation time, speed up algorithmic training, and boost monitoring adaptability to unforeseen

situations; that is, when the change has been detected. This article is in press at IEEE Geoscience

and Remote Sensing Letters, with the following journal metrics: (IF), JCR 2020: (3.833). Remote

Sensing (Rank 10/30) (Q2). Geochemistry and geophysics (Rank 13/85) (Q1). Imaging Science

and photographic technology (Rank 5/27) (Q2). We reproduce the draft in press by the journal,

which can be cited as:

1. A. Bueno, M. Titos, C. Benitez and J.M. Ibánez. Continuous Active Learning for Seismo-

Volcanic Monitoring. IEEE Geoscience and Remote Sensing Letters (in press).
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Continuous Active Learning for

Seismo-Volcanic Monitoring

Angel Bueno, Manuel Titos, Carmen Benı́tez, and Jesús M. Ibáñez

Abstract

The advancements in Deep Learning have boosted the field of volcano-seismology to unprecedented

levels. Nevertheless, curated data catalogs still require substantial annotation efforts, often delayed in

time due to the ever changing seismic data conditions. The selective segmentation of which earthquake

transients has to be reviewed by an expert can significantly reduce annotation time, speed up algorithmic

training, and boost monitoring adaptability to unforeseen situations. In this work, we propose a Bayesian

temporal convolutional neural network (B-TCN) to perform continuous detection and classification while

extracting the most uncertain events from the continuous data stream. Formulated as an active learning

(AL) procedure, our B-TCN outputs an uncertainty map over time, highlighting the class memberships

that need to be reviewed. We attain a significant improvement in monitoring metrics, with only a fraction

of the initial dataset to achieve a performance of 83% for five seismo-volcanic events.

I. INTRODUCTION

Seismo-volcanic monitoring involves the individual identification of earthquake transients in

the continuous data stream, [1]. The typical monitoring framework comprises an algorithm that

classifies, supervised or unsupervised, seismic transients into a specific category. The advent of

deep learning has made neural networks the preferred choice of the seismological community to

perform such tasks in both isolated waveform classification, and continuous seismic recognition

[2]. Well-established deep learning algorithms work well under the assumption that training and
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test data follow the same distribution. Nevertheless, modelling the radiated seismic wavefield

harbor a set of complex factors, such as data challenges (non-stationary environment changing

conditions) [3] and geophysical constraints (underlying physical factors that influence recordings)

[4]. Besides, seismic waves are affected by data shifts due to seismic changes in the volcanic

settings, hindering monitoring capabilities that sometimes require a complete re-training of the

deployed system [5].

The procedural approach to recover monitoring systems from severe data shifts is often

based on the manual selection of events followed by a fine-tuning of the monitoring algorithm.

However, in a period of seismic changes, the severe alterations of the monitored variables can

lead to situations where there are not enough data samples for most classes of interest. Thus,

a practical problem is the optimization of a monitoring system with fewer annotation efforts.

Recent approximations to bridge performance degradation and annotation efforts focuses on

semi-supervised categorization [6] [7], transfer learning (TL) procedures [3] [8], novel feature

descriptors [9], [10] or feature selection [11]. TL approaches have proven useful in reducing

training time, but they require substantial annotation efforts to provide a meaningful dataset to

perform transfer learning procedures. In this regard, removing redundant information by selecting

the optimum set of significant new seismic signals could appreciably reduce annotation efforts

and increase monitoring adaptability.

In this work, we propose an active learning (AL) procedure based on temporal convolutional

neural networks, TCN, to systematically select the most informative seismic samples to maximize

the performance, even if limited training data is available. AL for seismo-volcanic monitoring

has not been extensively studied. The main hindrance in the applicability of AL from continuous

streams is rooted in the reliable extraction and selection of relevant events within the continuous

data stream. To solve this, we exploit the Bayesian dropout approximation, previously applied

in seismic monitoring [5] [12], to generate an uncertainty representation to segment and select

those events that need to be queried for re-training. We test the capabilities of our model on

a dataset from Bezymianny volcano (Russia), recorded in 2007 by a near-field seismic station

(BELO). An AL scenario is simulated by only using a small portion of available annotations.

The amount of waveforms used for training the TCN is increased based on the decisions of the

proposed AL approach as if they were generated online by human annotators.

This paper is organized as follows: Section 2 introduces seismic sequence modeling and the

TCN model. Section 3 presents the active AL framework. Section 4 summarizes the datasets
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Fig. 1. A: Implemented TCN architecture consisting of two stacks of dilated convolutions with weight normalization and dropout

layers. A skip connection of a 1× 1 convolution is added for gradient stability. B: Dilated causal convolutions operator applied

over the input feature vector of our network, at time tn. Each time bin is convoluted by the successive hidden layers, at different

dilation rates [1, 2, 4, 8], with a pyramidal increase of the number of analyzed frames. The black lines correspond to the causal

convolutions, in which it is noticeable that no future information leakage is allowed to the model.

studied. In section 5, we introduce the experimental methodology and the obtained results.

Finally, section 6 closes the study.

II. SEISMIC SEQUENCE MODELING

Seismic monitoring is cast as an automatic sequence recognition problem. Let it be our data

domain D = (X,Y ), with X the dataset of n continuous seismic streams over time, with

X = (X1, X2, ..., Xn) the input feature vectors from the seismic signal, and Y = (Y1, Y2, ..., Yn)

the corresponding sequence of labels. In monitoring tasks, an algorithm is trained to find the

temporal relationships between sequences within (Xn, Yn). TCNs offer a flexible, robust, and

scalable approach for the automatic recognition of earthquake transients [5]. The temporal

modeling prowess of TCNs, rooted in the formulation of neural convolutions, permits the analysis

of longer input sequences in an online fashion. The mathematical formulation of TCNs builds

upon the dilated convolution operator F , parametrized by a dilation factor d, which supports

larger receptive fields to reach broader temporal ranges. Figure 1.A depicts the proposed TCN

architecture with the stacks of convolutions operators and additional layers. The TCN can thus

ingest seismic data sequentially, with integrated causal constraints and residual connections



IEEE GEOSCIENCES AND REMOTE SENSING SENSING LETTERS 4

to magnify seismo-volcanic long-term dependencies. The third component in this architecture,

residual connections, acts as a rectified shortcut that keeps learning stable.

A. TCN convolutions

The convolutions in a TCN facilitate online sequence recognition; causal property bounds the

prediction at time t to past frames, and the dilated convolution operator enables larger receptive

fields for long-term memory. Figure 1.B portrays these operations over the input feature vectors

of a seismo-volcanic stream. Hence, given the input sequence Xt, the dilated convolution operator

F at time t is defined as:

F (t) =
k−1∑
i=0

f(i)Xt−d·i (1)

with f(i) the inth filter in layer i, k the filter size and d the dilation factor. Note that each filter

f(i) operates over t−d · i frames of the seismic signal, with d controlling the number of frames

that can be accessed by the inth filter for contextual information. Remark that if d = 1 in equation

1, F (t) corresponds to standard convolutions. The pyramidal configuration of the dilation factor

permits the TCN to cover broader input ranges, exponentially increasing the number of analyzed

frames from the first to the predictive output layer.

B. Residual connections

Retaining long-term temporal information of seismic sequences is essential to learn the tem-

poral correlation between distant events. Yet, gradient stability in longer sequences can be

compromised as the numerical values of the gradient decrease over time, a problem known

as vanishing gradient [13]. In this regard, TCNs incorporate residual connections to solve the

vanishing gradient problem. Formally defined in [14], a residual connection aggregates the input

Xn to the convoluted feature representation φ(Xn):

o = Xn + φ(Xn) (2)

However, if Xn and φ(Xn) do have different size, the addition cannot be done. To ensure same

output o, the TCN includes a 1×1 convolution kernel on the residual connection, rectifying any

variable length by squeezing the input Xn to a specific shape.
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III. ACTIVE LEARNING AND MONITORING

The applicability of AL in continuous seismo-volcanic monitoring presents several challenges.

First, the monitoring algorithm needs to perform reliable and quasi-real-time event detection

and segmentation, besides data scarcity conditions [3]. The definition of AL has to embrace a

Bayesian perspective so that the uncertainty from temporal sequence modeling can be maximally

informative of seismic changes and re-training requirements. AL encompasses the definition of

a quintet, (M,Q,O, L, U), with M the classifier model trained on the initial labeled dataset

L. The component Q or acquisition function selects (or query) the meaningful samples from

the unlabeled data pool, U . For queried samples, the oracle O assigns the correct labels. This

procedure is repeated until the exhaustion of U or to fulfill operational requirements stopping-

criterion.

Hence, the classifier M and the querying function Q are two key components that need to be

carefully defined in seismo-volcanic applications. We propose to incorporate the implemented

TCN in an AL framework as a Bayesian model. The uncertainty of the model is then exploited

to select the seismic events that need to be revisited. In the dynamic of the volcanic unrest, it

is known that the uncertainty grows with time due to data drift [3] [5]. Hence, from an AL

perspective, the initial support distribution is continuously shifted towards the newly acquired

data. Hence, the model can forget the previous learning, and thus, estimate high uncertainty from

initial, already revised conditions. To avoid alternate sampling across time-span, we incorporate

a cost-effective active learning (CEAL) strategy: the model does not learn only those uncertain

data samples, but very certain points are also concatenated as pseudo-labels to maintain a uniform

sampling data distribution [15].

A. Bayesian TCN

We adopt the Bayesian seismic monitoring framework described in [5], which exploits the

predictive uncertainty to detect change in a volcano. Formally, we define ω as the prior probability

distributions, ω = {W l}Ll=1; with ω the weights matrices at each layer l. In a BNN, one aims to

find an approximation to the posterior distribution of the network weights, p(ω|D) [16]. With

this posterior, we can define the predictive distribution for a new pair of data stream samples,

(X∗, Y ∗), as:

p(Y ∗|X∗, D) =

∫
p(Y ∗|X∗, w) p(ω|D) dω (3)
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Fig. 2. Proposed AL framework: the initial monitored volcanic state, s0, suddenly morph into a new monitoring condition

s1 with a geo-induced seismic data drift. The new unlabelled data, U is evaluated by the trained TCN uncertainty-sampling via

the Q acquisition function by selecting a batch of maximally informative samples to retrain the model. This process, known as

acquisition step, is repeated until fulfillment of the stopping criteria.

Yet, estimating p(ω|X, Y ) is a very challenging task, in which few approximations exists.

MC-dropout is equivalent to a variational inference approximation in which a probabilistic

function qθ(ω), parameterized by θ is used to approximate the Kullback-Leibler (KL) divergence

to the neural network posterior p(ω|X, Y ) [16]. The uncertainty in the weights yields predictive

uncertainty by marginalizing over the approximate posterior,

p(Y ∗|X∗, D) ≈
∫

p(Y ∗|X∗, ω) qθ(ω)dω ≈ 1

K

K∑
k=1

p(Y ∗|X∗, ω̄k) (4)

with K stochastic forward sampling steps at test time. Hence, MC-dropout generate a range

of predictions which can be used to select which earthquakes are necessary for further analysis

and system re-training.

B. Acquisition Functions

The models in AL are based on a canonical set of Q functions designed to evaluate the

performance of the classifier M . This is done by defining multiple venues of how the uncertainty

is exploited as an acquisition function [16]:

1) Random sampling: Random sampling is equivalent to perform a random choices of a

seismic waveform from the unlabeled set U at any given monitoring time.

2) Predictive Entropy: Rooted in information theory measures, it quantifies the information

within the predictive distribution, sampling those events that maximize the entropy of the

predictions.
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H[y|x,D] = −
∑

p(y|x,D) log p(y|x,D) (5)

3) Bayesian active learning by disagreement (BALD): This functions samples seismo-

volcanic events that are maximally informative with respect to predictive information and

expected model posterior, with probabilities assigned high variance across multiple seismic

classes.

I[y, ω|x,D] = H[y|x,D]− Ep(ω|D)[H[y|x,D] (6)

Figure 2 summarizes the AL strategy implemented in this work. When unforeseen data shifts

occurs in a volcano, a new unlabelled data pool streaming U from the new distribution is

presented to the algorithm, M . The already presented query functions Q, batch a set of N samples

forwarded to the oracle, O to assign a label. We keep the same notation as in descriptive AL

frameworks. However, the oracle, O in our AL pipeline has been substituted by expert elicitation,

where the best label has been selected and validated.

IV. VOLCANO-SEISMIC DATASET

Volcanic sources are highly variable, unpredictable and nearly chaotic, and thus, there is not

a uniform criterion in the classification of seismic signal. To circumvent this problem, other

classification taxonomies advocate for a rapid categorization scheme based on frequency proper-

ties instead of source-based event categorization, [1]. Nonetheless, the frequency categorization

obliquely shares the type of fracture and the presence or not of fluid interaction. This study

focuses on Bezymianny volcano, located on the Kamchatka Peninsula (Russia). We focus this

study to the closest station to the eruptive center (BELO, Z component), on the period from

17th October to 29th October, 2007, that contains 288 hours with the following composition:

3698 high frequency (HF ), 2383 low frequency (LF ), 2979 debris processes (DP ) and 333

low frequency tremor (LFT ) [17]. In summary, these labels capture the common interactions

recorded in volcano monitoring [1]:

1) High frequency events (HF): Broad frequency range from 1 to up to 30 Hz. These events

are the results of fracturing processes related to stress propagation in the volcanic edifice.

2) Low frequency events (LF): Their energy is concentrated in the [1-5] Hz band. These

events are associated with fluid-driven processes in the volcanic plumbing system. In
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TABLE I

AL HYPER-PARAMETER SETUP

Data partition AL config. Windowed waveforms

Xseed Labelled Set (L) 31

Un-labelled Set (U) 11969

Xtest Test set 10147

Bezymianny volcano, the tremor has been renamed as low-frequency tremor (LFT), char-

acterized as sustained signal (several minutes to hours) containing a swarm of LF events

in a time-span of seconds.

3) Debris process (DP): This category gathers seismic events with very high spectra and

large duration, often associated with rockfalls, avalanches and other external processes

that offer insights about volcanic unrest.

We refer the reader to [1] for a detailed geophysical explanation of seismic sources and [3]

for a complete summary of seismic categories and potential associated mechanisms.

V. EXPERIMENTS AND DISCUSSION

A. Training details

The raw signal is preprocessed to generate an input feature representation for the TCN model

(see Figure 1.A). Each day of the dataset is filtered in the frequency range of [0.5− 13.5] Hz,

and then divided into five minutes frames with 50% overlapping windows. We then partion the

data into two chronological subsets: one for baseline and testing purposes, Xseed, with 12000

waveforms of five minutes each; and a held-out test, Xtest, of 10147 waveforms, that corresponds

to the last 28 hours of the available seismic period. The model accuracy on the held-out test

set is recorded, and remains the same for all the baseline experiments and the active learning

procedure.

We then compute, for each of the seismic windows in Xseed and Xtest, the log-energy

frequency-band features as the input of the TCN. Following [3], neural network training is

performed on the full dataset Xseed, using Adam optimizer, with a 75%-25% data split over

three k-fold splits. The learning rate linearly halves every five epochs, starting at 0.001; with

early stopping added every ten epochs to avoid over-fitting. The dilation factor d is kept fixed
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TABLE II

TCN BASELINE RECOGNITION PERFORMANCE

Conv. Filters TCN structure F1 PR RC ER

128 Causal + Skip 85.47 88.19 82.92 0.176

Non-Causal + Skip 85.58 88.16 83.14 0.174

Causal + No Skip 84.2 86.51 82.01 0.197

Non-Causal + No Skip 83.91 85.55 82.33 0.201

64 Causal + Skip 85.61 89.06 82.48 0.176

Non-Causal + Skip 86.14 89.37 83.14 0.171

Causal + No Skip 85.38 88.55 82.53 0.178

Non-Causal + No Skip 85.67 88.99 82.59 0.178

32 Causal + Skip 85.42 88.99 82.12 0.180

Non-Causal + Skip 85.70 89.11 82.55 0.176

Causal + No Skip 85.77 88.91 82.85 0.174

Non-Causal + No Skip 85.79 88.94 82.86 0.174

64, 2 stacks Causal + Skip 85.14 87.61 82.8 0.173

Non-Causal + Skip 85.86 88.93 83.0 0.171

to [1, 2, 4, 8]. This setup is exported to the active learning experiments: the hyper-parameters for

the active learning setup are given in Table I.

TABLE III

ACTIVE LEARNING RECOGNITION PERFORMANCE FOR EACH ACQUISITION STEPS

Acquisition

Steps
Random BALD Entropy

F1 PR RC ER F1 PR RC ER F1 PR RC ER

1 50.28 48.32 52.42 0.88 50.28 48.32 52.42 0.88 50.28 48.32 52.42 0.88

2 72.13 73.90 70.45 0.38 72.24 73.87 70.68 0.40 77.44 77.33 77.56 0.27

3 76.92 76.93 76.90 0.29 78.62 79.58 77.68 0.26 78.08 79.03 77.16 0.25

4 79.86 83.33 76.67 0.24 80.39 83.32 77.66 0.22 79.43 84.51 74.93 0.22

5 80.2 83.83 76.87 0.23 81.34 83.62 79.18 0.21 81.66 84.05 79.41 0.20

6 81.04 82.47 79.65 0.25 83.03 85.30 80.87 0.21 82.37 84.73 80.15 0.17

7 82.24 84.90 79.75 0.22 82.00 84.15 79.95 0.17 82.69 84.62 80.85 0.21

8 81.70 80.31 83.13 0.22 83.74 83.81 83.68 0.17 83.45 83.34 83.57 0.18

Time per iteration TRandom: 544.85 s / it TBALD: 531.85 s / it TEntropy: 532.06 s / it
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B. Classification results

The model performance is measured using the per-frame precision (PR), recall (RC), (F1)

and error rate (ER) [4] [5]. The F1 metric represents a metric between the refinement of our

classifier (PR) and the number of correctly detected events (RC) for any number of specific

classes. The ER is calculated based on the sum of the total number of insertions I , deletions

D, and substitutions S over the N data streams within Xtest.

Table II shows the recognition results for different configurations of the TCN models. The

terms skip and no-skip refers to the residual connection in the TCN; whereas causal and no-

causal refers to the type of convolution employed (see Figure 1). The TCN model with causal and

non-causal convolution bestows outstanding monitoring performance. When the dilation factors

increase exponentially, the performance diminishes. This is due to the TCN model accessing a

very broad temporal context in time, a very large feature vector sequence, implying that the TCN

hinders the modeling of all the intra-event temporal dependencies. With non-causal convolutions,

higher performance increases as future frames are incorporated into the convolutional operator.

Such temporal aggregation implies a better learning of the energy variations dynamics of the

LFCCs, thus yielding lower ER and higher PR, RC and F1 metrics. Finally, the advantages of

skip connections are evident since, in addition to maintaining the robustness of the model, the

aggregation of the input signal through a simple convolution improves monitoring performance.

If we increase the number of TCN blocks to make the TCN deeper, although the system is

indeed sufficiently fast and adaptable to the known initial data distribution, the TCN tends to

decrease performance due to additional complexity added.

C. Active learning

In this subsection, we present the AL results. We start with 31 chronological waveforms from

Xseed, keeping the rest as the unlabeled data pool U . The selected waveforms correspond to

a reasonable time to collect geophysical evidence to request a re-training of the monitoring

algorithm. Table I resumes the hyper-parameters for the dataset used in these experiments. The

iterative procedure starts with initializing the TCN model with the initial L dataset and select,

from the data pool U those events that have to be revised. The TCN samples 100 waveforms from

U for each iteration, according to the acquisition functions (see section III.B). Hence, according

to the CEAL strategy, the sampled data vector consists of 100 waveforms (50 minutes of the

data stream), of which 50 are uncertain, and 50 are certain and thus, acting as pseudo-labels.
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Table III presents the performance results for each acquisition step and the time required for

each iteration. As the number of acquisition steps progresses, the performance metrics improve.

Hence, the acquisition steps imply a very significant time gain, in the order of hours or even

days of human-based data analysis. Notice that for 8 acquisition steps, that is, 4000 minutes

of data curation in a seismological observatory, the BALD attains an F1 of 83.74%, and an

ER of 0.17, whereas the entropy criteria achieve an F1 of 83.45%, and an ER of 0.18. The AL

procedure yields a similar performance if compared to baselines in Table II trained with the entire

dataset. Finally, it is observed that for each acquisition step, a steady percentage increase of the

monitoring metrics above random sampling criteria demonstrates that the model is queried with

the correct events, thus promotes adaptability when there are changing monitoring conditions

VI. CONCLUSION

This research presents an active learning framework based on temporal convolutions to perform

seismo-volcanic event segmentation and classification. The dropout predictive uncertainty from

the TCN is exploited to overcome the limitations of how the monitoring model must select

uncertain events within the trace for re-training. The experimental results have shown that the

TCN integrated with AL provides compelling performance with minimal dataset samples. The

presented results illustrate that pragmatism in the design of deep learning monitoring algorithms

overcome the ever-present data scarcity issues in automatic seismo-volcanic recognition.
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8 | GEOPHYSICAL APPLICATIONS

This section of the thesis presents the supporting scientific software that we have implemented

for data processing and labelling of the studied datasets, including the automatic detection, seg-

mentation, and classification of volcanic signals. This chapter provides these two research works

and their presented key concepts.

8.1 REMOS: RECURSIVE ENTROPY METHOD OF

SEGMENTATION

This section is devoted to the description of the entropy-based automatic detector, segmenta-

tion and classification of seismo-volcanic events across eruptions and volcanoes. The frequency-

index and visualization techniques based on non-linear embeddings are also presented here. This

article is published and available online at Seismological Research Letters (SRL), with the follow-

ing journal metrics: (IF) 2019: (3.131). Geochemistry and Geophysical (Rank 29/85) (Q2). We

reproduce the draft by the journal, which can be cited as:

1. A. Bueno, L. Zuccarello, A. Díaz-Moreno, S. De Angelis, J.Woolam, I. Alvarez, M. Titos,

M.C. Benitez, J.M. Ibánez. PICOSS: Python Interface for the Classification of Seismic Signals.

Computer & Geosciences. 2020 Sep 1; 142-104531.
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Abstract

A wealth of data collected over the past three decades have demonstrated that volcanic unrest is

often associated with elevated levels of seismicity. Volcano seismic networks commonly record

intense swarms of earthquakes in the weeks to months before eruptions; peak rates of more than

one event per minute are not uncommon. The ability to readily detect and classify these signals is

crucial to effective monitoring operations, and hazard assessment. The sheer volume of information

collected, however, poses a challenge to volcano observatories due to the unrealistically large number

of staff required for manual inspection of these data. Here, we present REMOS (Recursive Entropy

Method of Segmentation), a computationally efficient Pythonworkflow to detect, extract, and classify

volcanic earthquakes starting from raw, continuous, waveform data. Within REMOS, seismograms

are first analyzed using the well-established Short-Term Average/Long-Term Average method to

identify trigger times of candidate earthquakes. A new algorithm based on measurements of seismic

energy and minimum entropy is then employed to investigate large amounts of earthquake triggers,

and to discriminate and parse events into individual waveforms for further analyses. REMOS also

includes a facility for classification of the extracted waveforms, based on simple frequency-domain

metrics. Finally, the results can be visualized using t-Distributed Stochastic Neighbor Embedding

(t-SNE), a technique for dimensionality reduction that is particularlywell-suited to inspection of high-

dimensional datasets. In this work we demonstrate the use of REMOS with seismic data recorded in

2007 during a period of unrest and eruption at Bezyminany volcano. Our results show that REMOS

can efficiently detect, segment and classify earthquakes at scale, and at very low computational cost.

Introduction

Volcano and earthquake observatories routinely archive large amounts of seismic data that contain

informative evidence on the likelihood of forthcoming eruptions. Arising from this plethora of

observations there is a growing appreciation of how earthquake swarms reflect a variety of physical

processes underneath volcanoes (e.g., McNutt et al. [2015]). Earthquake catalogs associated with

intense periods of unrest and elevated seismicity at volcanoes, however, remain largely incomplete.

The sheer volume of data recorded by volcano observatories poses a challenge due to the unrealistic

amount of human resources that would be required for manual inspection in real-time. Similarly,

efforts to retrospectively analyse decade-long time-series, and re-assess catalogs, are rarely under-

taken. On the other hand, complete earthquake catalogs in near real-time would allow computation

of parameters to form the input for, or allow validation of, advanced statistical and physical models

of volcanic activity (Bell and Kilburn [2012]). Understanding the time history of seismicity at
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volcanoes can, thus, provide valuable constraints for the assessment of the likelihood and timing

of eruptions, and the prognosis of their related hazards. During volcanic crisis, the timeliness of

response to unrest is critical, and large volumes of continuous data must be rapidly processed and

interpreted (Tepp, G. [2018]).

Here, we introduce REMOS (Recursive Entropy Method of Segmentation), a complete work-

flow for detection, segmentation, classification, and visualization of seismic data. Starting from

continuous data streams and the activation times of STA/LTA (Short-Term Average/Long-Term Av-

erage (Withers et al. [1998])), we identify a set of energy and entropy-based criteria to parse data into

individual waveforms (segmentation); segmented data are then classified according to their frequency

content, using well-established frequency domain metrics (Buurman and West [2010]). In order to

assess the quality of the resulting catalog, and to provide direct knowledge of the high-dimensional

structure of the dataset, we extend the capabilities of REMOS by including an exploratory data visual-

ization tool based on t-Distributed Stochastic Neighbor Embedding (t-SNE) and frequency attributes

(Maaten and Hinton [2008]). REMOS is developed in Python, and leverages its rich scripting syntax

and scientific libraries, including Numpy, Scikit and Obspy (Beyreuther et al. [2010]). Here, the

applicability of REMOS is tested using data collected at Bezymianny volcano (Kamchatka, Rus-

sia) (Thelen et al. [2010]). In particular, we analyze data recorded during a pre-eruption sequence

between September-December 2007, which includes variable rates of seismic activity, and a com-

prehensive range of waveform types. This example demonstrates the use of REMOS, and provides

a preliminary benchmark for its scalability when applied to comparatively large datasets.

Introduction

Volcano and earthquake observatories routinely archive large amounts of seismic data that contain

informative evidence on the likelihood of forthcoming eruptions. Arising from this plethora of

observations there is a growing appreciation of how earthquake swarms reflect a variety of physical

processes underneath volcanoes (e.g., McNutt et al. [2015]). Earthquake catalogs associated with

intense periods of unrest and elevated seismicity at volcanoes, however, remain largely incomplete.

The sheer volume of data recorded by volcano observatories poses a challenge due to the unrealistic

amount of human resources that would be required for manual inspection in real-time. Similarly,

efforts to retrospectively analyse decade-long time-series, and re-assess catalogs, are rarely under-

taken. On the other hand, complete earthquake catalogs in near real-time would allow computation

of parameters to form the input for, or allow validation of, advanced statistical and physical models

of volcanic activity (Bell and Kilburn [2012]). Understanding the time history of seismicity at
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volcanoes can, thus, provide valuable constraints for the assessment of the likelihood and timing

of eruptions, and the prognosis of their related hazards. During volcanic crisis, the timeliness of

response to unrest is critical, and large volumes of continuous data must be rapidly processed and

interpreted (Tepp, G. [2018]).

Here, we introduce REMOS (Recursive Entropy Method of Segmentation), a complete work-

flow for detection, segmentation, classification, and visualization of seismic data. Starting from

continuous data streams and the activation times of STA/LTA (Short-Term Average/Long-Term Av-

erage (Withers et al. [1998])), we identify a set of energy and entropy-based criteria to parse data into

individual waveforms (segmentation); segmented data are then classified according to their frequency

content, using well-established frequency domain metrics (Buurman and West [2010]). In order to

assess the quality of the resulting catalog, and to provide direct knowledge of the high-dimensional

structure of the dataset, we extend the capabilities of REMOS by including an exploratory data visual-

ization tool based on t-Distributed Stochastic Neighbor Embedding (t-SNE) and frequency attributes

(Maaten and Hinton [2008]). REMOS is developed in Python, and leverages its rich scripting syntax

and scientific libraries, including Numpy, Scikit and Obspy (Beyreuther et al. [2010]). Here, the

applicability of REMOS is tested using data collected at Bezymianny volcano (Kamchatka, Rus-

sia) (Thelen et al. [2010]). In particular, we analyze data recorded during a pre-eruption sequence

between September-December 2007, which includes variable rates of seismic activity, and a com-

prehensive range of waveform types. This example demonstrates the use of REMOS, and provides

a preliminary benchmark for its scalability when applied to comparatively large datasets.

The REMOS algorithm

Segmentation of continuous seismic data streams relies on signal processingmethods that exploit

the internal structure of the data. From an information theory perspective, when earthquakes are

generated by sources within a volcano the system is characterized by low-levels of chaos; in contrast,

when volcano-seismic sources are not active seismometers record the continuous Earth’s background

noise, characterized by high entropy levels. Based on these principles, REMOScalculates the pseudo-

energy of the seismic signal within specified time windows along the continuous waveforms in order

to discriminate the boundaries between events (low entropy) and background noise (high entropy).

The pseudo-energy of a seismogram, on the component being analysed, is calculated as

𝐸 = < 𝑠(𝑛) · 𝑠(𝑛) > =
𝑁∑
𝑛=1

|𝑠(𝑛) |2 (1)
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Figure 1. Recursive Entropy Method of Segmentation (REMOS) workflow. The algorithm is divided into

four different stages: preprocessing, segmentation, classification, and visualization. From continuous raw data

streams, initial processing aims to increase signal quality and produce an activation vector (on) from application

of short-term average/long-term average (STA/LTA). Each element in on is considered to explore a segmentation

region for potential earthquakes. Candidate events are segmented according to a minimum energy criterion

within these regions. When all events are segmented, frequency-based classification and t-distributed stochastic

neighbor embedding (t-SNE) visualization are performed. Bpf, bandpass filter; FI, frequency index.

where 𝑠 is a vector of ground velocities, and 𝑁 the number of samples in 𝑠. Note that 𝐸 is proportional

to seismic energy but it does not have physical dimensions of energy. In the next sections we present

a description of the four main steps in REMOS: pre-processing, segmentation, classification, and

visualization.

Pre-processing

Figure [1] illustrates the workflow of REMOS. Preliminary processing steps are applied to the

continuous data before segmentation. Linear trends associated with effects such as very long-period

instrument drift are removed. A bandpass filter in a user-selected frequency range [ 𝑓𝑙𝑜 𝑓ℎ𝑖𝑔ℎ] (𝐻𝑧.)
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is applied to enhance the presence of earthquake signals; during our tests we observed that for most

volcanoes the frequency band [1-15] 𝐻𝑧. is appropriate. The filtered data are then scanned using

a recursive STA/LTA algorithm to obtain trigger times of potential events (Withers et al. [1998]).

The parameters for the STA/LTA algorithm are selected by the user according to the specific dataset

(Trnkoczy [1999]). For volcano-seismic signals recorded at relatively close distance from the source

( < 10𝑘𝑚), a short-term window of 0.5 − 2𝑠 and a long-term window of 8 − 15𝑠 are, frequently,

appropriate; the STA/LTA threshold to declare a trigger is dependent on signal-to-noise ratio. This

procedure yields a one-dimensional activation vector, 𝑜𝑛 = [𝑜𝑛1, 𝑜𝑛2, 𝑜𝑛3, ..., 𝑜𝑛𝑛] , of earthquake

trigger times.

Segmentation

In the second step of REMOS the vector of activation times, 𝑜𝑛, is used in combination with

the filtered signal to investigate regions within the continuous data stream that contain earthquakes,

and to parse these events into individual waveforms. Data segmentation in REMOS depends on

two parameters: the maximum search window, 𝑊𝑠 , and the minimum duration window, 𝑊𝑑 . The

maximum search window 𝑊𝑠 represents the time window that REMOS explores to detect an event;

𝑊𝑑 captures the minimum duration that REMOS uses to calculate signal energy. A noise reduction

procedure is applied to the data stream (Fig. 1) to mitigate the influence of external noise sources

(e.g: electronic spikes). Data are corrected according to:

𝑧(𝑛) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
0 𝑠 𝑓 (𝑛) <= 𝑇

𝑠 𝑓 (𝑛)

𝑇 𝑠 𝑓 (𝑛) > 𝑇

(2)

where 𝑠 𝑓 (𝑛) is the filtered signal, and 𝑇 a threshold value that corresponds to the n-th percentile

of the data stream. This threshold is selected to be large enough to represent the background noise

levels for the data stream. We, then, consider all activation times in 𝑜𝑛, and extract segments of

data (exploration regions) with duration 𝑊𝑠 starting at these times. Each of these regions is then

windowed into 𝑘 frames with duration 𝑊𝑑 . The energy of the signal is computed according to (1)

within all exploration regions, for each individual frame. The entropy, 𝐻 (𝑝), is then calculated from

the pseudo-probability normalized vector, 𝑝, as:

𝐻 (𝑝) =
𝑘∑
𝑖=1

−𝑝𝑖 𝑙𝑜𝑔(𝑝𝑖) (3)
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where 𝑝𝑖 is the normalized energy of each frame. If the entropy is low, below a pre-defined

threshold, 𝜖 , then the onset of an event is declared. In this instance, the candidate event is extracted

from the exploration region and parsed into an individual waveform according to the minimum of

the energy distribution:

arg min
𝑘

𝐸𝑘 (4)

The end of an event is declared when the energy reaches a minimum. If the exploration region

contains multiple earthquakes, using the minimum energy as a factor to discriminate the end of an

event ensures correct segmentation. To overcome long segmentations when taking the lowest energy,

we compute the ratio 𝑅 of the energies of the initial and final parts of the segmented signal. This

ratio would be close to zero if no earthquake signal was present in the final section of the segmented

data. In that case, the original candidate is segmented again. Otherwise, for ratios closer to one, the

original candidate is selected, as it could be for instance an episode of long-duration tremor. Once

the candidate is segmented, results are stored into a matrix. REMOS continues segmenting signals

along the main trace until the activation vector 𝑜𝑛 is exhausted. As a final step, candidates with low

SNR can be erased from the final dataset. In REMOS, the SNR is computed as the ratio of the peak

amplitude within a time window containing the surface wave signals to the root-mean-square of the

noise trailing the signal arrival window.

Classification

The individual traces extracted from the continuous data are then classified based on a simple

metric, the frequency index (FI) (Buurman and West [2010]). Automated data classification has the

advantage of producing objective classifications at scale (Titos et al. [2018]), (Ibáñez et al. [2009]).

The time required to analyze data is greatly reduced, and any mismatch in event classification due to

the bias introduced by a human analyst are potentially eliminated. REMOS computes the FI as:

𝐹𝐼 = 𝑙𝑜𝑔10

(
𝐴ℎ𝑖𝑔ℎ

𝐴𝑙𝑜𝑤

)
(5)

where 𝐴ℎ𝑖𝑔ℎ and 𝐴𝑙𝑜𝑤 are spectral energies above and below a certain threshold value, respec-

tively. We define a set of adjustable parameters 𝜂 =
{
𝜂1, 𝜂ℎ𝑦𝑏𝑟𝑖𝑑 𝑙𝑜𝑤 , 𝜂ℎ𝑦𝑏𝑟𝑖𝑑 ℎ𝑖𝑔ℎ , 𝜂2, 𝜂3

}
as the

FI thresholds that control how events are categorized according to their FI. Events are classified as

Low-Frequency (LF) if the FI is below than a given threshold 𝜂1. Similarly, if the FI its greater

–7–



Confidential manuscript submitted to <Seismological Research Letters>

Frequency (Hz)
LF HF

5Hz

HF event
LF event

Hyb
1= hyb_low 2= hyb_high

0
6

18
12

Fr
eq

ue
nc

y 
(H

z)

Frequency (Hz)

10 15 20 255

155 25

LF

Time (s)

Time (s)

10 15 20 255

HF

Time (s)

0
6

18
12

Fr
eq

ue
nc

y 
(H

z)

155 25
Time (s)

100 20
Frequency (Hz)

100 20

b) c)

a)

Figure 2. Comparison of High Frequency and Low Frequency spectrum and threshold selection for frequency

index calculation. In order to include hybrids, 𝜂1 = 𝜂ℎ𝑦𝑏𝑟𝑖𝑑 𝑙𝑜𝑤 and 𝜂ℎ𝑦𝑏𝑟𝑖𝑑 ℎ𝑖𝑔ℎ = 𝜂2, but other configurations

are possible. Figure 2.b and 2.c depict the seismograms, spectrograms and power spectrum for two segmented

signals at BELO station, classified as low frequency (2.b) and high frequency (2.c) events.

than the given threshold 𝜂2, earthquakes are classified as High-frequency (HF). The events with FI

between 𝜂1 and 𝜂2 deliver energy at both, low and high frequencies, and could be categorized as

hybrids. The parameters 𝜂1 and 𝜂2 can be set with the same values, thus acting as a single threshold

for HF and LF events.

Tremors and Rockfalls are discriminated according to their frequency index and duration 𝑡.

Additionally, 𝜂3 is a threshold to control when an event is declared to be a rockfall or a tremor. The

minimum duration 𝑡 over which to consider an event either low frequency or tremor depends of the

user and the volcanic-environment (McNutt et al. [2015]). Figure 2.a illustrates the frequency content

of a HF and LF events at Bezymianny volcano. In the case of LF events, most of the frequency

content is below 5 𝐻𝑧, making the FI from equation 5 to be below zero or negative. Similarly, HF

events result in FI to be greater than zero, or positive. Thus, LF’s events have negative FI’s, whereas

HF will have positives FI’s. The range of values between 𝜂1 and 𝜂2 could represent hybrid events.
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REMOS supports the configuration of 𝜂ℎ𝑦𝑏𝑟𝑖𝑑 𝑙𝑜𝑤 and 𝜂ℎ𝑦𝑏𝑟𝑖𝑑 ℎ𝑖𝑔ℎ parameters to quantify

hybrid events and overcome the limitation of a single threshold for HF and LF events. Hybrid

earthquakes could be labeled by selecting any intermediate values between 𝜂1 and 𝜂2. However, one

can set the values of 𝜂ℎ𝑦𝑏𝑟𝑖𝑑 𝑙𝑜𝑤 and 𝜂ℎ𝑦𝑏𝑟𝑖𝑑 ℎ𝑖𝑔ℎ to zero to not categorize any hybrid events, or set

𝜂ℎ𝑦𝑏𝑟𝑖𝑑 𝑙𝑜𝑤 and 𝜂ℎ𝑦𝑏𝑟𝑖𝑑 ℎ𝑖𝑔ℎ to any value between 𝜂1 and 𝜂2 in order to categorize hybrids with FI

between the threshold for low and high frequency events. The value of 𝑡 could be set by the analysts

based on geophysical knowledge of the specific study volcano. Typically, 30𝑠 should suffice for most

volcanoes. Volcanic tremors are often observed as a precursor to and during eruptions; tremor that

can last from minutes to days, or even longer, and delivers energy at frequencies, typically, between 1

and 10 Hz. In the case of harmonic tremor, multiple, equally spaced, spectral peaks can be observed.

Classification of these signals is beyond the scope of REMOS, which focuses on the segmentation

of seismic signals at a higher level; specific detectors exist to discriminate sub-categories within the

general classification scheme (D. C. Roman [2017]).

Data exploration and visualization

Exploratory analysis holds potential to provide insights about topological hierarchies in high

dimensional data. Here, for the purpose of visualization of REMOS outputs, we adopt t-SNE, a

dimensionality reduction method that has proved very useful to discover subtle differences in highly

complex data, and to obtain meaningful information about how data points are distributed in high

dimensional spaces. The algorithm t-SNE aims to find a representation (𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔 − 𝑣𝑒𝑐𝑡𝑜𝑟)

that can minimize the distance between multidimensional data (with hundred of features) and a

lower representation. This distance can be inferred using the Kullback-Leibler (KL-divergence) as it

measures the difference between two probability distributions. Therefore, the 𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔− 𝑣𝑒𝑐𝑡𝑜𝑟𝑠

could be found as the minimization of the KL-divergence divergence between the joint probability

distribution from data points in high dimensional space, 𝑃, and the joint probability distribution 𝑄

from the embeddings in the low dimensional space:

𝐾𝐿 [𝑃 | |𝑄] =
∑
𝑖

∑
𝑗

𝑝𝑖 𝑗 log
𝑝𝑖 𝑗

𝑞𝑖 𝑗
(6)

with 𝑃 and 𝑄 the probability distributions between the high- and low-dimensional space, 𝑝𝑖 𝑗

and 𝑞𝑖 𝑗 the pairwise similarities across data points in the high- and low-dimensional space. This

minimization process helps to preserve topology and information from complex data by projecting

representative embeddings into a low dimensional space that faithfully capture hidden similarities.
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The reader is referred to Maaten and Hinton [2008] for further details on the t-SNE algorithm

and visualization methodology. We use log-cepstrum frequency features (cepstral coefficient on a

logarithmic scale of the given dataBeyreuther et al. [2010]), as the input data for the t-SNE algorithm.

The natural logarithms of the filter-bank energies are calculated, producing a 16-parameter feature

vector. The Discrete Cosine Transform (DCT) is used to de-correlate the features and reduce the

number of components from the feature to 13 coefficients. Therefore, log-cepstrum coefficients

would enhance lower frequencies whilst providing highly refined information for the visualization.

Application of REMOS

In this section we demonstrate the use of REMOS with data collected at Bezymianny volcano

(Russia) during 2007; this dataset contains a large number earthquakes, including high frequency

(HF), low frequency (LF), rockfalls (R), and tremors (T). Unrest at Bezymianny during 2007 and the

dataset used here have been previously investigated by Thelen et al. [2010], thus providing a reliable

benchmark for the performance of REMOS and geophysical insight for the configuration of 𝑊𝑑 ,

𝑊𝑠 and 𝜖 parameters. A Python script and notebook examples, along with seismic data from this

example, are included as supplementary material. We perform our experiments on a 64-bit computer

with a i7-8700k CPU (3.70GHz), 32GB RAM and Ubuntu 16.04. The unprocessed trace is filtered

between 𝑓𝑙𝑜𝑤 = 1𝐻𝑧 and 𝑓ℎ𝑖𝑔ℎ = 12𝐻𝑧. The recursive STA/LTA algorithm is used with STA of 3

seconds, LTA of 15 seconds, 2.0 as the on trigger, and 1.0 as off trigger thresholds, respectively. A

vector of activation times of length 818 (the number of regions to explore) is generated. Individual

events are then extracted using the segmentation method implemented in REMOS:

>>> W_d = 10

>>> W_s = 80

>>> windows = [W_d, W_s]

>>> remos_segmentation(original, processed, on, [W_d, W_s], epsilon=2.5,

plot=False, cut="original", delay_in=4.5 )

The REMOS short window (𝑊𝑑) is set as 10 seconds, whereas the region of exploration𝑊𝑠 is 80

seconds. The parameter 𝑑𝑒𝑙𝑎𝑦𝑖𝑛 can be configured to segment the signal before the detection time.

In this work, and following Thelen et al. [2010], we define 𝑑𝑒𝑙𝑎𝑦𝑖𝑛 as 4.5 seconds before the trigger

time, given our STA/LTA is configured to detect very impulsive events. Being completely optional,

the parameter 𝑑𝑒𝑙𝑎𝑦𝑖𝑛 can be set to zero. If the parameter is included, the difference between the

𝑜𝑛 time and 𝑑𝑒𝑙𝑎𝑦𝑖𝑛 is included in the segmented waveform. The normalized 80𝑡ℎ percentile from
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Figure 3. (a) Segmentation results with REMOS triggers on the continuous trace (17th October 2007) from

BELO station before classification and visualization stage, filtered between 1 and 12 𝐻𝑧. Different examples

of segmented waveforms by REMOS, with (b) a signal with a small energetic coda, (c) a short event and (d)

exponential decay segmented waveform.

the seismic trace is used to reduce noise, and processed trace along with activation vector 𝑜𝑛 are

used for discriminative segmentation. Regions of exploration with duration 𝑊𝑠 are segmented and

windowed with 10 seconds duration (𝑊𝑑). The entropy 𝐻 (𝑝) is computed using the short-term

energy as in equation 3. If 𝐻 (𝑝) is below 𝜖 = 2.5, the minimum of the energy is taken (see equation

1) within the 𝑊𝑠 region and potential candidates are cut. The value of the 𝜖 threshold is selected to

minimize the excessive influence of background noise, and can be adjusted by the analyst. Further,

each candidate is windowed by half value of 𝑊𝑑 , and energy ratios computed. If the parameter 𝑐𝑢𝑡

is set to original, the candidate is taken from the raw data, and a 0.5 𝐻𝑧 high-pass filter is applied

to reduce background noise. Otherwise, the event is selected from the filtered trace. When all the

events are segmented, signals with low SNR are erased from the final data matrix. Start and end

times (in samples) and frequency index of each event are also stored.

Figure 3 shows the results for the segmentation of a 20-minute seismogram recorded on 17th

October, 2007 at station BELO. All events are taken from the filtered data by setting the parameter
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𝑐𝑢𝑡 to 𝑓 𝑖𝑙𝑡𝑒𝑟𝑒𝑑. The entropy criteria, used jointly with the minimum energy search, results in very

effective data segmentation. Figure 3.b illustrates how REMOS preserve the coda decay of seismic

signals. Figure 3.c, for instance, shows how REMOS can detect short-duration events.

The next step is FI classification. Events at Bezymianny volcano are characterized by a frequency

range between 1 and 10 Hz. As the parameter 𝑐𝑢𝑡 was set to 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙, we use the high-pass filtered

signal (0.5 Hz) to perform classification. Therefore, FI is calculated by considering a low-frequency

band between 1 to 5 Hz, and high frequencies between 6 and 10 Hz. The FI cutoffs 𝜂1 (for LF),

𝜂2 for (HF) and 𝜂3 (for R, T) are selected as 𝜂1 = −0.2 and 𝜂2 = 0.2, and 𝜂3 = 0.2. These cutoffs

values were empirically defined after manual data inspection. As no hybrid events were present in

the study by Thelen et al. [2010], 𝜂ℎ𝑦𝑏𝑟𝑖𝑑 𝑙𝑜𝑤 and 𝜂ℎ𝑦𝑏𝑟𝑖𝑑 ℎ𝑖𝑔ℎ were set to zero. Figure 2 shows the

classification results for two segmented signals. Notice that the ratio of spectral energy above and

below 5𝐻𝑧 suffices to discriminate events at BELO station.

We note that the FI thresholdsmust be fine-tuned and calibrated according to the specific dataset.

We refer the reader to (Buurman and West [2010]) for further discussion on the choice of the correct

FI parametrization. In simple words, when the frequency spectrum is dominated by energy below

5𝐻𝑧, the event is labeled as LF (figure 2.b). When the frequency content is mostly above 5𝐻𝑧, the

events are labeled as HF (figure 2.c). The duration of the segmented waveform serves to discriminate

rockfalls and tremor from other events. REMOS was able to detect 3259 HF, 3796 LF, 1442 R and

864 T. The classification matrix is stored in Numpy format (.𝑛𝑝𝑦). The average processing time for

these steps, (segmentation and classification) was 7.04 seconds.

In the final step of the REMOS workflow we combine t-SNE and log-cepstrum features to

assess the quality of the labeled dataset. The non-linear nature of t-SNE reduces the dimensionality

of the log-cepstrum features whilst providing a good understanding of global and local data structures

(Maaten and Hinton [2008]). Log-cepstrum features enhance frequencies below 20 𝐻𝑧, especially

at the lower end of the spectrum (Ibáñez et al. [2009]). A total of 13 log-cepstrum coefficients are

computed using the Obspy signal processing package. A normalized t-SNE visualization map is

shown in figure 4. At BELO station, t-SNE reveals the presence of four distinct clusters. Notice that

few tremors (clear blue) fall within the low-frequency cluster (turquoise). Similarly, some rockfalls

(blue) appear within the high frequency region (darkest blue). This map allows rapid visualization

of what type of events are present in a database, and serves as an exploratory data analysis that could

be used to refine posterior statistical analysis. Thus, given a specific classification criteria, REMOS

produces an objective data-driven classification consistent with time and different observed features.
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Figure 4. t-SNE visualization on BELO station

Conclusions

We have introduced REMOS, a Python module for the detection, segmentation, classification

and visualization of continuous volcano-seismic data streams. REMOS makes extensive use of

optimized scientific libraries, including Obspy, SciPy and NumPy. REMOS has a highly modular

structure that can be easily adapted to different case studies. The results of our tests suggest that

REMOS is capable of consistently segmenting and classifying large amounts of volcano-seismic

data, with minimum supervision. REMOS provides a computationally cost-effective solution to

enhance volcano monitoring systems, allowing rapid assessment of volcano-seismic unrest. Here,

we have demonstrated the use of REMOSwith data gathered during a period of unrest at Bezymianny

volcano in 2007. The robustness and scalability of REMOS were tested against previous analyses

of the same dataset. Our results show that REMOS can effectively detect, segment and classify

volcano-seismic events, even when the signal-to-noise ratio is poor or event occurrence rates are

high. The methodology described here is easily transferable to other domains, such as infrasound or

hydroacoustic data. We suggest that real-time implementation of algorithms like REMOS is crucial

to improving our ability to monitor unrest at active volcanoes.
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Data and Resources

The data used in this study can be obtained from IRIS DMC. The facilities of IRIS Data

Services, and specifically the IRIS Data Management Center, were used to access the waveforms,

related metadata, and/or derived products used in this study. IRIS Data Services are funded through

the Seismological Facilities for the Advancement of Geoscience and EarthScope (SAGE) Proposal

of the National Science Foundation under Cooperative Agreement EAR-1261681.

The REMOS implementation, along with example data, extensive documentation and conda

environment can be found at https://github.com/srsudo/remos. Scientific libraries, including NumPy,

SciPy and ObsPy are accessible via their web-pages: https://www.numpy.org, https://www.scipy.org

and https://www.obspy.org. Scikits.talkbox can be accessed at https://github.com/cournape/talkbox,

and installed via Python package manager, pip. Last access on all websites on August 2018.
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Abstract

Over the last decade machine learning has become increasingly popular for

the analysis and characterization of volcano-seismic data. One of the re-

quirements for the application of machine learning methods to the problem

of classifying seismic time series is the availability of a training dataset; that

is a suite of reference signals, with known classification used for initial vali-

dation of the machine outcome. Here, we present PICOSS (Python Interface

for the Classification of Seismic Signals), a modular data-curator platform

for volcano-seismic data analysis, including detection, segmentation and clas-

sification. PICOSS has exportability and standardization at its core; users

can select automatic or manual workflows to select and label seismic data

from a comprehensive suite of tools, including deep neural networks. The

modular implementation of PICOSS includes a portable and intuitive graph-

ical user interface to facilitate essential data labelling tasks for large-scale

1corresponding author: Angel Bueno angelbueno@ugr.es.
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volcano seismic studies.

Keywords: Volcanoes, Software, Classification, Segmentation, Detection

1. Introduction

Seismic networks are the backbone of volcano monitoring programs. Rapid

technological advances over the past two decades have made the installation

of geophysical networks with multiple sensors increasingly more affordable;

thus, large amounts of data are routinely generated and archived at volcano

and earthquake observatories. Earthquakes at volcanoes may occur at rates

as high as hundreds of events per hour during periods of unrest (Bell and

Kilburn, 2012); their waveforms must be extracted from the continuous seis-

mic records and classified. Volcano-seismic signals are traditionally classified

based on either waveform appearance (e.g., amplitudes, duration, and the

number and type of seismic phases visible) or frequency domain features

(e.g., the frequency band over which most energy is delivered). With dif-

ferent terminology but similar classification criteria, different authors (e.g:

(Minakami , 1974), (Lahr et al., 1994), (Chouet, B., 2003), (McNutt et al.,

2015)) have proposed classification schemes for volcanic earthquakes. To-

day’s most commonly adopted volcano-seismic classifications include high-

frequency (HF), hybrids or mixed frequency (MF), low-frequency (LF) earth-

quakes and tremor (T), in addition to a number of other signals generated by

surface processes (landslides, lahars, pyroclastic flows), and explosions (E).

Over the years, different solutions for analysing continuous seismic data have

been implemented (Goldstein et al., 1998, Havskov et al., 1999, Lesage, 2009,

Abdelwahed, M.F.,, 2012, Olivieri et al., 2012, Álvarez et al., 2013, Romero

2



et al., 2016). Most recently, the Python language has gained popularity in

the field of seismology and new toolboxes have been developed; the most

popular example is Obspy (Beyreuther et al., 2010), a flexible and modular

environment to access waveform data in different formats, and to perform

both basic and high-level data analysis tasks on multi-channel seismic data

(Zuccarello et al., 2016). In this manuscript, based on our experience with the

development of APASVO (Romero et al., 2016), a Python and Obspy-based

interface designed for manual picking of P- and S-wave arrival times, we have

built PICOSS (Python Interface for the Classification of Seismic Signals), a

modular open source interface designed to support visualization, detection

and characterization of volcano-seismic signals. In PICOSS, a single graph-

ical user interface allow the user to span a wide range of tasks in seismic

analysis, significantly simplifying the seismologist’s workflow and decreasing

the discovering of geophysical insights. PICOSS expands our first-generation

interface by implementing additional signal processing and machine learning

techniques. Additionally, the simplicity of its GUI offers opportunities for its

use in higher education classroom settings.

2. PICOSS Description

PICOSS is a program conceived to detect and label volcano-seismic datasets,

which offers a high-level of modularity as modern seismology toolboxes. All

outputs are stored in easily accessible, platform-independent, standard for-

mat. This format includes segmentation times, along with the identified type

of event, quality of the event, and seismological information used to build

robust datasets. PICOSS can access seismic data from community wave-
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form data servers (e.g., the Incorporated Research Institution for Seismology

Data Management Center, IRIS DMC), and from off-line data structures in

multiple formats. PICOSS is built to enable the following work-flow loop:

1. Manual Inspection: PICOSS provides a fully-functional GUI inter-

face for manual inspection of seismic events, allowing the analyst to

associate custom loaded labels and organise relevant seismic informa-

tion to annotate the data. Supervised earthquake analysis capabilities

include time-frequency analysis, and assignment of classification labels

and picking times.

2. Detection: PICOSS supplies algorithms, such us STA/LTA (Short-

Term Average/Long-Term Average; (Allen, 1982)) or adaptative multi-

band processing algorithm (AMPA; (Álvarez et al., 2013)) to perform

automatic detection and picking. Additional infrastructure and binding

modules are also provided to ease the integration with new algorithms.

3. Classification: The program includes a classification module that cat-

egorizes seismic signals according to Frequency Index analysis (Buur-

man and West , 2010) or a multi-volcano pre-trained neural network

(Bueno et al., 2019b) specifically designed to refine datasets and de-

crease manual inspection time.

Our software can read labels and/or phase arrival times from existing cat-

alogues, and associate them to waveform data. By default, PICOSS include

the most common labels in volcanic-seismology. However, specific catego-

rization schemes can be loaded via the ”Extra Info” menu, which permits

a broader range of applications (i.e, infrasound or hydro-acoustic data). Fi-

nally, the classification module permits grouping of the segmented signals
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based on unsupervised learning techniques, with an intuitive visualization

tool of data hierarchies. Specifically, active learning, i.e., the continuous

and interactive querying of data following an acquisition function criteria,

is incorporated as a procedure to decrease the amount of time required for

data labelling and model adaptation (Neal, R.M,, 2012). A Command Line

Interface (CLI) is provided with a set of auxiliary task for data conversion

between formats and add scalability to the whole workflow.

2.1. PICOSS GUI

PICOSS can display single-channel continuous streams, currently up to

24h, along with their spectrogram and Fourier power spectrum. Figure 1

shows an example of continuous seismic data recorded on 19th October,

Montserrat Volcano observatory (MVO), station MBGA, vertical component

Z (Luckett et al., 2007). The analyst can drag-select any part of the loaded

stream, visualize the spectrogram and the spectrum, and annotate the data.

Above the main trace panel (main), PICOSS includes a toolbar from which

the user can access most of the program facilities, i.e: loading traces, signal

processing routines, detection and picking routines or add extra (custom)

information. The default seismic labels offered by PICOSS follows common

classification practice and terminology in volcano-seismology, although cus-

tom labels can be loaded via the ”Extra Info” menu. Additionally, a quality

factor, Q, can be assigned to the signal as a qualitative measure of the an-

alyst’s confidence in the classification; Q ranges from 1 (very poor) to 5

(excellent). Segmented events can be compared with data recorded on other

stations/components; the options Visualize other components and Visualize

other stations open an auxiliary small GUI in which the user can explore
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other components and/or stations.

PICOSS is written in Python, and built on Obspy (Beyreuther et al.,

2010), a popular Python-based seismic data analysis package. Libraries for

segmentation, classification and detection are programmed in NumPy and

Scipy. The CLI provides access to these specific routines, with a set of aux-

iliary tasks, including the conversion of segmented results from NumPy to

MATLAB, earthquake detection, picking routines and automated classifica-

tion of volcanic signatures.

3. Earthquake detection and segmentation

The earthquake detection functionality allow the configuration of earth-

quake detection and picking based on STA/LTA (Allen (1982)), AMPA

(Álvarez et al. (2013)) and sophisticated detectors for low frequency events

based on wavelet decomposition (Kanwaldip et al., 1997). In particular, due

to the necessity to discriminate volcano seismic events with respect to re-

gional and teleseismic earthquakes (Giudicepietro et al., 2017), we have con-

figured the STA/LTA and AMPA parameters, following (Aki and Richards ,

2002), (Küperkoch et al., 2012) and (Álvarez et al., 2013).

Figure 2 shows results from the application of the STA/LTA triggering

algorithm to a seismic swarm recorded at Mount St. Helens in 2004. De-

tection results can be further extended with automated segmentation with

the REMOS (Recursive Entropy Method of Segmentation) algorithm (Bueno

et al., 2019a). REMOS is an end-to-end approach which uses the detection

time as the anchor point of an exploration window to determine the exact

boundaries (beginning and end of an event) based on seismic entropy. By
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Figure 1: (a) Screenshot of PICOSS Main Interface, showing a sequence of manually

segmented high-frequency events from Soufrière Hills Volcano, Montserrat, recorded on

June 25, 1997, MBGA station.

taking measurements of the seismic energy, a minimum entropy criterion is

used by REMOS to investigate large amounts of earthquake triggers and

to discriminate and parse events into individual waveforms. REMOS con-

figuration parameters shall be selected by the analyst to meet operational

requirements specifically for each volcano.

4. Spectral Analysis

Whilst an analyst can manually segment and classify data from the main

interface, PICOSS incorporates a semi-automated classification module based

on spectral analysis. This classification is following the well-known catego-

rization scheme proposed by (McNutt et al., 2015). PICOSS automatic clas-

sification is performed using a pre-trained Bayesian Neural Network (BNN;
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Figure 2: Example of application of STA/LTA, using the PICOSS interface, to continuous

data recorded at Mount. St. Helens volcano on the 15th November, 2004, YEL station.

PICOSS outputs a standard format which includes onset detection times. Alternative

earthquake triggering methods (e.g, AMPA), along with automated data segmentation

(i.e., extraction of earthquake waveforms with REMOS) are also included.

Bueno et al. (2019b)) and a frequency-index (FI) analysis (Buurman and

West , 2010), in which the logarithm of the ratio of spectral energies over

user-specified frequency bands is computed:

FI = log10

(Ahigh

Alow

)
(1)

where Ahigh and Alow are the spectral energies above and over user-

specified frequency bands. A set of threshold values η = {η1, ηhybrid low, ηhybrid high, η2, η3}
are defined as the FI thresholds that control how events are categorized ac-
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Figure 3: Figure 3.a and 3.b show seismograms, spectrograms and power spectrum for

two segmented signals at BELO station. These earthquakes are classified as low-frequency

(3.a) and high-frequency (3.b), respectively. Seismogram and power spectrum amplitudes

are normalized to the unit. Figure 3.c shows high-frequency and low-frequency spectra

along with the threshold selection for frequency index calculation (see main text). Mixed

frequency events are confined within the interval [η1, η2].

cording to their FI value. Events are classified as Low-Frequency (LF) if

the FI is below the given threshold η1. Similarly, if the FI its greater than

threshold η2, it is classified as High-Frequency (HF). The events with FI

between η1 and η2 correspond to events with significant energy at both low

and high frequencies and are categorized as hybrids. Parameters ηhybrid low

and ηhybrid high can be configured to quantify hybrid events and overcome the

limitation of a single threshold for HF and LF events (see Fig.3.c). The

sufficient time t over which to consider low frequency or tremor depends of
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Figure 4: Temporal evolution of the frequency of detected events in the 2005 St.Helens

eruption, station S02.

the analyst and the volcanic-environment (McNutt et al., 2015). As tremor

and rockfall require different frequency characterization as those of high/low

frequency events, η3 is a threshold to control whether an event is classified as

a rockfall or tremor. For each event identified in the initial continuous trace,

PICOSS extracts their waveform, computes the FI as in equation 1, assigns

a label, and stores the results in .npy format.

The implemented module includes a deep neural network trained in a

transfer learning setup on a multi-volcano dataset, with shared knowledge

representations across similar seismic events (Bueno et al., 2019b). This has

the advantage of reducing data labelling time while allowing the model to

generalize for new data samples rapidly, even under intense seismic activity.

The trained network follows a Bayesian approach, in which the deterministic

neural connections are substituted by probability distributions, thus bridging

the gap between Bayesian modelling and deep learning architectures (Neal,

R.M,, 2012). The extracted signals are characterized using a set of 13 cep-
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stral coefficients on a logarithmic scale. This procedure is as follows: using

a Hamming window (4.0 s), the spectrum of the seismic signal is computed,

and a logspaced filter bank (16 triangular weighting function and 50%adja-

cency) is designed to compute the spectral frequencies. A cepstral analysis is

performed to derive the 13 cepstral coefficients that best define each earth-

quake in the database. The network is trained following Adam optimization

procedure, initial learning rate of 0.01, ReLU activation function, mini-batch

size set of 32. The cross-entropy loss is used as a cost function for the clas-

sification of seismic events.

The computed uncertainty is exploited by PICOSS under an active learn-

ing setting: using a maximum entropy acquisition strategy, those segmented

events with the highest classification uncertainty are selected (queried) to the

user, which ultimately decides the samples that shall be used for re-training

purposes. The included neural network is trained on very characteristic

events from Bezymianny and St. Helens volcanoes, under the generalization

scheme proposed by McNutt et al. (2015) (see Figure 3). Figure 4 depicts

the temporal evolution of the FI for the volcano-seismic segmented events

recorded at Mount St. Helens volcano, S02 station, using the pre-trained

neural network. Only Q>2 are selected for this figure, as those below exhibit

low SNR. Note the evolution of the frequency index over time; this type of

analysis provides valuable, rapid, initial assessment of if and how seismic

unrest evolves over time.
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5. Output formats

The ultimate objective of PICOSS is to assist users to produce high-

quality volcano seismic datasets. PICOSS stores earthquake segmentation

and classification results by serializing the segmentation table (manual or au-

tomatic) in a high and efficient Python format, the pickle format. PICOSS

saves the start, end times (in seconds), along with the assigned label, the

peak amplitude (PeakAmplitude), the duration, quality Q values and addi-

tional comments for further post-processing. Additionally, PICOSS allows

the user to further edit the segmentation table. Finally, pickle formats can

be converted to NumPy arrays, MATLAB data formats (.mat), text CSV or

numerical Pandas dataframe framework. The trigger times, along with the

visualization, if required, are stored as NumPy arrays and can also be con-

verted using the CLI utility functions included within ”convert data” script.

Each stream is saved according to its metadata within the seismic network,

including the station, component, year, day and last segmentation time.

6. Conclusions

At present, a wealth of available seismic data acquired at volcanoes world-

wide remain largely underutilized. In this paper, we present PICOSS, a

Python Interface for the Classification of Seismic Signals. PICOSS is a mod-

ular open source software, with a graphical user interface designed for detec-

tion, segmentation and classification, focus on exportability and standardiza-

tion of data formats. PICOSS includes functionalities that are programmed

as independent modules that can be easily adapted for operational require-

ments at volcano observatories. The implemented modules are independent

12



from each other, and provide a collection of tools to analyse volcano-seismic

data. The user can switch between automatic or manual modes by incorpo-

rating this suite of tools to efficiently compile complete catalogues of labelled

volcano-seismic events. PICOSS could also be used for educational purposes,

or refine other types of seismic data. All the modules of this interface are

designed to reduce data labelling fatigue while increasing data classification

efficiency.
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Jesús M. Ibáñez, without a doubt, the functionalities of PICOSS has been

greatly expanded with his feedback. This interface is currently being used

to produce the datasets used in the following projects: TEC2015-68752 and

VOLCANOWAVES (Marie Sklodowska-Curie Grant Agreement no 798480).

This research is funded by TEC2015-68752 (MINECO/FEDER), by NERC

Grant NE/P00105X/1 and by European Union’s Horizon 2020 Research and

Innovation Programme Under the Marie Sklodowska-Curie Grant Agreement

no 798480.

References

Aki, K., and Richards, P.G., (2002), Quantitative Seismology, Second Edi-

tion, University Science Books, Sausalito, California.

13



Abdelwahed, M.F., (2012), SGRAPH (SeismoGRAPHer): Seismic waveform

analysis and integrated tools in seismology, Computers and Geosciences,

40, pp. 153–165.

Allen, R., (1982), Automatic phase pickers: their present use and future

prospects, Bulletin of the Seismological Society of America, 72 (6B), pp.

225–242.
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Beńıtez, C., (2016), APASVO: A free software tool for automatic P-phase

picking and event detection in seismic traces, Computer and Geosciences,

90, pp. 213–220.

Zuccarello, L., Paratore, M., La Rocca, M., Ferrari,F., Messina, A., Branca,

S., Contrafatto, D., Galluzzo, D., and Rapisarda, S., (2016), Shallow ve-

locity model in the area of Pozzo Pitarrone, Mt. Etna, from single station,

array methods and borehole data, Annals of Geophysics, DOI: 10.4401/ag-

7086.

17



9 | CONCLUSION

This thesis has studied Bayesian deep learning as the core algorithmic component of seismo-

volcanic monitoring algorithms. We developed unified machine-learning pipelines that blend

ideas from seismology, signal processing, Bayesian theory, and neural networks to produce a

broad range of monitoring models for sequential data. The conclusions extracted from this re-

search work are presented in section 9.1. Section 9.2 highlights the contributions of this work, and

section 9.3 explores open questions and future work.

9.1 CONCLUSIONS

While state-of-the-art techniques in other waveform data domains offer highly specialized

deep learning routines for specific tasks, we identified a few steps behind productization. By

drawing parallels to speech, or music recognition, we believe that the methods developed here fit

very well in monitoring volcanoes or other seismological tasks, especially if we consider that no

prior assumptions about the seismic data distribution or supervision are required in the detection

of change. It is always a challenge to know precisely which of these techniques could be used as

the core component of a monitoring data pipeline, but recent publications from seismological ob-

servatories are geared towards the methods considered in this thesis: CNNs, ConvLSTMs, TCNs,

bi-LSTMs, and Bayesian approaches. Below, we provide the conclusions for each of the presented

work, which we believe will strengthen the consideration of these methods as core components in

modern observatories:
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1. In publication 1 [14], Chapter 4, we show that a BNN, trained on cepstral coefficients, can

attain significant classification performance for three of the most representative volcano-

seismic signals registered in two volcanoes (Mount Saint Helens and Bezymianny); high,

low, and mixed frequencies earthquakes. When fine-tuning independent systems for each

volcano, the proposed BNN attains an F1 score performance beyond 90% for each volcano,

independently. Moreover, when the two datasets are combined into a larger one with the

same labels, the BNN supersedes the previous F1 score. Then, when the datasets of both

volcanoes are separated according to their volcanic origin, the proposed BNN trained over

the sparse labels achieves high accuracy and can discern seismic events according to their

recorded volcano. The seismic signals presumably linked to the same geophysical mecha-

nism can be used with the same class to augment the datasets and increase the monitoring

capacity, as data samples belong to a similar feature space. By drawing parallels with audio

domains, similar seismic transients of different volcanoes can be treated as recordings of the

same acoustic entity but under different conditions. On the other hand, these results show

that the data taxonomy adopted in this work [42] is robust and offers intra-class separability

with high accuracy for the models trained with this taxonomy.

We then illustrate frequency content variations that are well-sensed by the uncertainty as-

sociated with the proposed BNN. The uncertainty derived from the proposed BNN has

two main implications: it stands as a feature to be considered an unrest precursor and as

a threshold level to determine when transfer learning algorithms should be used. Finally,

we observe that the application of transfer learning allows exporting knowledge from one

volcano or one stage to another and, simultaneously, can track how signals evolve, even for

mixed seismo-volcanic datasets.

2. In publication 2 [10], Chapter 5, we focus our problem on sequential data streams from three

eruptions at Bezymianny volcano. Hence, we extend the previous approach and expand the

discovered insights between non-stationary seismo-volcanic environments and uncertainty
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quantification. We propose a hybrid end-to-end Bayesian convolutional neural network (B-

CNN) to learn and detect the full intra-frequency dynamic range of seismo-volcanic events

while performing seismic event recognition with a temporal modeling network. This archi-

tecture is based on a segmentation U-net type framework fused with a temporal convolu-

tion TCN (B-TCN). We tested on different eruptive periods, with very high frame-wise seg-

mentation ( 90%𝑖𝑛𝐼𝑜𝑈𝑚𝑒𝑡𝑟𝑖𝑐𝑠)𝑎𝑛𝑑𝑐𝑙𝑎𝑠𝑠𝑖 𝑓 𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑚𝑒𝑡𝑟𝑖𝑐𝑠( 80%𝑖𝑛𝑜𝑛𝑒𝑠𝑒𝑐𝑜𝑛𝑑𝑓 𝑟𝑎𝑚𝑒 − 𝑤𝑖𝑠𝑒𝐹1 −

𝑠𝑐𝑜𝑟𝑒)

The designed framework yields a probabilistic approximation of the total uncertainty of the data

streams, 𝑈𝑡 , as the contribution of the uncertainty associated with seismic wavefield variations

(reducible with more data) and the randomness of the monitored volcanic process. This formu-

lation has allowed us to introduce monitoring uncertainty maps as an additional tool to illustrate

how the estimated uncertainty behaves at the waveform level. The epistemic uncertainty acts as a

complementary onset detector, whereas the aleatory uncertainty highlights the potential sources

available in the seismic data stream.

Finally, the estimated short-term evolution of the uncertainty is consistent with the real-time seis-

mic energy measurement, a direct waveform parameter independent from the estimated uncer-

tainty. The temporal evolution of the uncertainties in pre- and post-eruptive periods is in good

agreement with seismological bulletins for the studied eruption. Thus, changes in the seismic data

streams due to volcano dynamics are detectable by the model as data drift, with the uncertainty

of the model associated with volcanic unrest.

3. In publication 3 [11], Chapter 6, we investigate the feature learning capabilities of deep learning

methods and find if the uncertainty follows similar patterns as the previously discovered for the

three eruptions at Bezymianny volcano. This work presents a novel end-to-end deep learning

architecture embedded with a learnable scattering transform to implement multi-label detection,

segmentation, and classification of seismic signals. The flexibility introduced in learning layer-
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wise knots and filterbank design, jointly with specialized recurrent dynamic convolutions, yields

optimal, robust feature representations in a frame-wise fashion. The application of this architec-

ture to data from three volcanoes of different types and on different continents shows that this

architecture generalizes well and appropriately adapts to different environments. Our neural net-

work ensures prompt recognition of events and is robust against sparse data taxonomies and

background noise, a very active research topic in acoustic machine learning applications.

Our deep recurrent scattering network departs from the traditional perspective and opens new

directions for designing forecasting methods based on the connections between epistemic un-

certainty and volcano dynamics. The power-law drift in epistemic uncertainty associated with

seismic data streams implies that volcanic processes preceding eruptions are detectable. With no

prior assumptions about signal distribution, deep learning can identify such behavior without

supervision or parametrization by data alone. Further, for the Bezymianny volcano, the tempo-

ral evolution of uncertainty behaves similarly as the case studied in [14], already verified with

seismological bulletins [63], [27]. When performing transfer learning on Mt. Etna volcano, the

uncertainty at the main eruption is similar to that of the second eruption at Bezymianny. These

results confirm that the Bayesian approach proposed in this thesis is robust, exportable, and holds

promise for forecasting eruptions, although operational challenges remain. Nonetheless, this ar-

chitecture can be modified to act on real-time streaming data; this goes in concert with developing

a novel early-warning strategy.

4. In publication 4 [12]; we investigate how the system can overcome new situations after a vol-

canic eruption after the data drift has decreased monitoring performance [12]. We propose an

active learning framework based on TCNs. The total uncertainty associated with the model, from

[12] is exploited to gain insight about how the model must select seismo-volcanic events within

the continuous data stream, necessary for retraining. We noted that seismic data stream evolu-

tion influences the sampling of active learning procedures, shifting the dynamics of the sampling

process. We incorporate cost-effective active learning to mitigate this influence, selecting cor-
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rect, well-labeled examples as pseudo-labels. We note that for eight acquisition steps, equivalent

to 4000 minutes of data curation in a seismological observatory, our active learning framework

attains frame-wise F1 score recognition performance above 83.00% for all acquisition functions

tested. Thus, we achieve similar performance to that of the baseline system trained with the entire

dataset (288 hours) but with a fraction of the data. Hence, this approach answers the earlier claims

on the necessity of high-quality data for fine-tuning monitoring algorithms.

5. In publication 5 [13] and publication 6 [15], albeit being research works devoted by their de-

sign to signal-processing-based geophysical applications, they comprise a significant, practical

work of this thesis. First, the algorithm [13] had highlighted the complexity of the seismic signals

to achieve correct segmentation and time boundaries, notably when no broad baseline seismo-

volcanic data catalogs were available at the time of implementation. Dimensionality reduction

and visualization techniques in [15] have demonstrated the necessity of supervisory control seis-

mic data curation architectures comprising computers, networked accessible waveforms, and data

labeling platforms for high-level seismic data processing.

9.2 CONTRIBUTIONS

In this thesis, we investigate the effectiveness of Bayesian deep learning methods for various

monitoring tasks. These tasks can be listed as seismic waveform classification, temporal separa-

tion of seismic events from background noise, sequence recognition, seismic feature learning, and

transfer learning. Further, we have undertaken Bayesian theory to analyze seismic data streams,

aiming to detect change patterns before eruptions and characterize volcanic unrest. We thus have

covered very early examples of how Bayesian deep learning methods can be applied in seismo-

volcanic monitoring. The main contributions of this thesis are summarized as follows:

Design of three novel architectures to extend the current state-of-the-art monitoring in volca-

noes. Exportability of the implemented architectures across different volcanoes and eruptive

194



styles.

BNNs, TCNs, hybrid architectures, and the proposed recurrent scattering neural networks pro-

vide a significant numerical advantage in monitoring performance, with the ability to capture the

uncertainty within the learning model. All these methods have been blind-tested across different

eruptive periods or volcanoes with different geological conditions. The results confirm the ex-

portability of our frameworks.

The evolution of uncertainty is a good indicator for volcanic early warning.

The uncertainty estimation has led to the discovery and identification of the data drifts before,

during, and after volcanic eruptions, regardless of the features used. In terms of eruption pre-

warning time, uncertainty is ahead of other monitoring observables, rendering it potentially more

effective for volcanic alert systems. The laws of change for this uncertainty are exportable from

one system to another. Independent of the framework or features used, the temporal evolution

of the uncertainty with other monitoring parameters or visual evidence reported in seismological

bulletins implies that uncertainty is an excellent early-warning descriptor.

Overall uncertainty as a descriptor to know when monitoring algorithms need to be retrained.

The monitoring algorithms that operate in volcanic settings need to incorporate mechanisms to

detect, adapt and overcome evolving data changes over time; otherwise, the performance accu-

racy will degrade. As time passes, the algorithm needs to be updated by considering operational

requirements or be replaced entirely to meet the new situation. We proposed the uncertainty as a

threshold of the model from the properties of the classifier and the data. Our three implemented

networks have demonstrated the capacity to detect seismic changes and adapt when required via

transfer or active learning.

formulation of a Bayesian monitoring framework to associate and identify which uncertainties

are due to seismogram variability or the monitored process.

The assessment of change and early warning outcomes is incomplete without knowing what is
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driving the change. We had proposed a time-uncertainty representation, where we were able to

identify onsets and sources, with notable phases of uncertainty related to the continuous volcanic

tremor.

Identification of power-law behaviour. Estimated uncertainty holds the potential for volcano

forecasting.

This work has characterized when and how the dynamics of the volcano are changing. However,

challenges remain in the accurate forecasting of volcanic eruptions. Remarkably, the discovery

of power-law drift in the uncertainty associated with seismic data streams implies that volcanic

processes preceding eruptions are detectable, and thus, advanced procedures can be implemented

to perform forecasting.

The duality of the uncertainty discovered by shifting volcano dynamics and active learning.

The estimated uncertainty in volcanoes does have a double side. In the active learning frame-

works, the temporal evolution of uncertainty implies that the monitoring algorithms tend to sam-

ple those seismic waveforms in which the data drift occurs. Therefore, the initial support of the

known data distribution, T0, is shifted towards the newly acquired data, T1, and forgets the previ-

ous learning in T0. The next phase reacquires signals from T0, which yields a recurrent problem

of back and forth time sampling. Cost-effective active learning strategies maintain the uniform

sampling of events to attain significant improvements over the trained baseline with the entire

dataset.

9.3 FUTURE WORK

Based on the research work conducted herein and observations made in the process, this thesis

raises more questions than answers. In the spirit of guiding future research work, we would like

to highlight several perspectives on deep bayesian learning and seismo-volcanic monitoring, with

excursions to other acoustic domains, which we believe are crucial to advance the monitoring
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science further.

9.3.1 VOLCANO FORECASTING

The appearance of seismic swarms or the increment of background tremors are precursors

that often precede eruptions at volcanoes worldwide [20]. This thesis has addressed algorithms

to detect seismic change ending in eruptions from continuous data streams. However, we did not

mention another critical problem: how does the uncertainty behave for seismic sequences that do not end

in an eruption?. Many eruptions can occur without such precursors, and there exist certain volca-

noes in which such behavior is not observable. Thus, a persistent challenge to build generalizable

forecasting models to quantify the probability of an eruption is a lack of datasets containing failed

eruptions.

A failed eruption can occur due to the intrusion of exogenous elements in the volcano or sea-

sonal effects. Volcanoes are placed in geological areas containing water, subterranean aquifers, or

melting ice. These elements increase tremor levels and accelerate seismic rates that do not end

in an eruption [20]. Although these issues are commonly known, efforts to quantify from a fore-

casting perspective remain very limited. The developed Bayesian monitoring framework can help

tackle this challenge by identifying exotic, non-volcanic signals via uncertainty-maps; and through

the exploitation of the uncertainty to identify seasonality of the time series. Then, additional mod-

els can ingest this information and be trained to discern eruptions from seasonal effects or failed

eruptions. An accurate prediction of volcanic eruptions would benefit from three themes of this

thesis: recurrent scattering, end-to-end deep learning, and uncertainty.

9.3.2 EXPORTABILITY OF THE BAYESIAN METHOD

Uncertainty monitoring can be a universal indicator of change that is not unique nor specific

to seismic monitoring. The developed Bayesian deep learning workflows can also be applied to

acoustic surveillance in which the prompt identification of sounds outside the common acous-

tic background is an operational requirement. For example, condition-monitoring methods that
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rely on data collections and sensors are difficult to implement due to the background noise in the

industrial environment. Environmental sound identification with multi-source sounds or poly-

phonic music applications are acoustic data domains in which our deep learning methods can be

further explored. We provided an example in Appendix A, but other refined architectures with

the methodology developed in this thesis can enhance the monitoring outcome.

Another exciting application is speech recognition, as human biology can significantly im-

pact speech production: accent, articulation, pronunciation, nasality, pitch, speed, or spoken lan-

guage, to name a few examples. Besides, human speech is often influenced by emotions and

external causes, including reverberation, distant sources, sound attenuation, or noise contamina-

tion. Drawing parallels to seismic monitoring, waveform alteration is a recurrent problem that

our architectures are obliquely designed to cope with. Applying the developed models to these

complex and challenging tasks can drive the research on many of these acoustic domains.

9.3.3 REFINING SEISMIC DATA DOMAINS

From a transfer learning perspective, the hidden states of a neural network can be used across

different data domains to identify shared activation patterns in the hidden layers. These patterns

of neural activities subsequently cause a high, secondary level of activation in the hidden units for

waveforms that share common frequencies and waveform attributes. Thus, by providing means

to extract distributed patterns, unsupervised clustering can find families of events across different

domains, for example, to know what infrasonic and seismic domains have in common.

As demonstrated in this research, volcanoes yield a different data distribution due to data

drift after eruptions. The infrasound domain can be treated similarly: an acoustic domain that

shares properties with the seismic one. Hence, from a transfer learning lens, we raise the pos-

sibility of how exportable is a system trained in seismic signals to a data stream of infrasonic

waveforms, and similar classification schemes such as those in volcanoes case correlate with in-

frasound. These ideas are also extensible to poorly monitored volcanoes, and the real classes

remain largely unknown. This would undoubtedly help to create infrasonic data catalogs and
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explore the similarities between volcanic sources.

9.3.4 REFINEMENT OF ARCHITECTURES

It has been highlighted in this research that the developed algorithms attain very high perfor-

mance in a gamut of tasks and configurations. Furthermore, while the theoretical and empirical

benefits of our models have been thoroughly explained and tested, we have built upon the knowl-

edge of well-known machine learning guidelines in the seismo-volcanic monitoring field in terms

of hyperparameter fine-tuning, feature extraction, or waveform input selection. In the future, it

may be wise to spend research effort finding answers to questions such as: how can we adapt the

long-term temporal modeling over more extensive sequences of seismic data streams? How can

we change the segmentation configurations for the temporal modeling of seismic events? Can we

apply very sparse data taxonomies? While the implicitly answer the first question in Appendix

A, with the benchmarked data (in essence, a waveform at a higher sampling rate, and thus larger

number of time samples), the author believes these research directions would be crucial for devel-

oping better and more robust monitoring algorithms in the future.

9.3.5 DATA FUSION TECHNIQUES

Data fusion is defined as the aggregation of multiple data sources to produce more precise,

scalable, and valuable information than that provided by any individual data source. Based on the

processing stage in which they are fused, the level of refinement in which features are aggregated,

data fusion techniques can be classified as low, intermediate, or high. As a result, data fusion

techniques can increase the applicability of the Bayesian methods developed here, for example, by

identifying signs of unrest using radar satellite images and seismic data streams or after processing

embeddings from both camera-based and seismic surveillance methods.

A high-definition camera (with thermal capabilities) can survey the volcanic cone looking for

ash clouds, degassing, fumaroles, or volcanic deformation that can precede an eruption. From the

frameworks developed here, the degassing images do not correspond to the known data distribu-
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tion by the model. Again, we are tackling an out-of-distribution problem in which the uncertainty

can be exploited to trigger an alarm. If fused with seismic data streams, we can refine the uncer-

tainty obtained and gain compelling visual evidence that if only the seismic stream is used for

this task. Similarly, these camera-based systems are also exportable to radar satellites that can

monitor the volcanoes and their surroundings to detect hot spots that correlate to new variations

in the seismic stream. Remark that the deep scattering network can be applied to images as the

scattering operator takes multiple convolutions. As a direct application, the proposed recurrent

scattering can analyze the multiple sequences of video frames and yield a feature vector represen-

tation that can be fused in the feature-fusionmodule with the ones obtained by the seismic analysis.

The fused vector can be parsed to obtain the required monitoring outcome.
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A | APPENDIX: BENCHMARK RESULTS

RECURRENT SCATTERING

NETWORK

Weevaluated the performance of our neural network on two publicly available audio data sets:

AudioMNIST for audio classification and URBAN-SED for polyphonic sound event detection 1.

Our SED analysis is focused on the most challenging task: identifying multiple time onsets and

segmentation of sounds of interest. These benchmark tests demonstrate the generalizability and

exportability of our approach to audio tasks beyond seismo-volcanic monitoring. 2 On both data

sets, we trained on the available raw wave forms; that is, we did not apply any pre-processing.

We refer as vanilla to the model in which no spline approximation is computed, filter to learnable

filters and filter-knots to the learnable knots approximation

A.1 AUDIO CLASSIFICATION: AUDIOMNIST

This benchmark data set consists of 30000 audio samples of spoken digits (0− 9) of 60 different

speakers, with 50 repetitions for each speaker, recorded at a sampling frequency of 48kHz [3]. We

1Online datasets:
AudioMNIST: https://github.com/soerenab/AudioMNIST.
URBAN-SED: http://urbansed.weebly.com

2This research section has been done in collaboration with R. Balestriero, R. Baraniuk andM.V. de Hoop.
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adopt the same configuration scheme as the baseline benchmark, [3]. Our network was trained

with anAdam optimizer and a learning rate of 0.001. The batch size was 32 and training was carried

out for 50 epochs with a validation split of 20%.

A.2 POLYPHONIC SOUND EVENT DETECTION:

URBAN-SED

This benchmark data set comprises a total of 27.8 hours of audio organized into 10, 000 sound-

scapes of 10𝑠. duration and sampling frequency of 44.1kHz. Each soundscape contains between

1˘9 foreground sound events from the UrbanSound8k data set, mixed with a background Brown-

ian noise or hum as heard in urban environments. Training, validation and test sets are pre-sorted

in this audio data set, comprising 6000, 2000 and 2000 soundscapes, respectively.

A hybrid C-RNN trained on 40 log-normalized mel-based filterbanks computed over 40ms

with 50% overlapping has been the established baseline for the URBAN-SED dataset [57]. In

another architecture proposed by [41], a family of adaptive pooling operators has been embedded

in a dynamic CNN to promote smooth label interpolation so that the model can adapt to the

characteristics of the sound sources. In our architecture, the time resolution of the wavelets to

achieve a specific target accuracy can be adjusted via the pooling of the scattering transform [1],

in a similar fashion as explained in [12].

A.3 RECURRENT SCATTERING NETWORK TRAINING

Our neural network architecture (Chapter 6, [12]), contains two paths or branches. The first,

named path A, analyzes via dynamic convolutions a sequence of local scattering coefficient vari-

ations, outputting a refined feature map. The second, path B, is a bypass skip connection with a

learnable convolution to perform data reduction and per-frame time analysis to capture precise

onsets of events. Switching between audio classification or sound detection and seismo-volcanic
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Table A.1: AudioMNIST digit classification benchmark

System Acc (%)
AlexNet (Spectrogram) 95.82
AudioNet (Waveform) 92.52

Vanilla 99.05
Filters 99.22

Knots + Filters 99.12

monitoring only involves changing the numbers of filters in the scattering layers.

Urban-SED and AudioMNIST: For the vanilla configuration, the number of knots 𝑘 , the num-

ber of octaves 𝐽 and wavelets per octave 𝑄 are chosen as follows. First scattering layer L1: 𝑘 = 4,

𝐽 = 5 and 𝑄 = 8; second scattering layer L2: 𝑘 = 2, 𝐽 = 2 and 𝑄 = 5. After the concatenation

of both scattering feature vectors, a pooling operation of size (1, 1, 441) is applied to reduce re-

dundant information and align the processed feature vectors with the time resolution. Standard

dropout with a factor of 0.5 is applied at the conv-LSTMs and BiLSTMs layers of the network.

Both 𝐶𝑜𝑛𝑣𝐿𝑆𝑇𝑀𝜆s following path A contain 16 filters, a kernel size of (5, 5) and strides (1, 1). The

time skip connection following path B contains a single filter with a kernel size of (5, 5). A dense

layer with a sigmoid activation function with the number of classes (here, 10) as hidden units is

used as predictive layer.

The training is done, for all the data sets, with the raw audio waveforms. In URBAN-SED, we

down-sample the data by a factor of 2 to reduce redundancy while keeping memory efficiency.

We adjust the precision of the wavelets to achieve a specific time resolution via the pooling of the

scattering transform. In URBAN-SED, the scattering transform module produces a sparse vector

of 22050 samples pooled by a factor of 441 for a window overlap of 20ms. We selected the Adam

optimizer with an initial learning rate of 0.01 and halved it every 10 epochs, and early stopping

criterion of 100 epochs if no further improvement over the F-measure over one-second resolution

was obtained.
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Table A.2: URBAN-SED segmentation metrics benchmark

System F1 (1s) PR (1s) RC (1s)
Max [41] 0.463 0.774 0.330
RAP [41] 0.526 0.650 0.442
CAP [41] 0.533 0.622 0.466

Auto Pooling [41] 0.504 0.738 0.382
C-RNN [57] 0.568 0.533 0.607
CNN [57] 0.569 0.691 0.483
Vanilla 0.571 0.544 0.601
Filters 0.568 0.539 0.601

A.4 AUDIOMNIST RESULTS

Table A.1 contains the classification results for the digit identification task, benchmarked with

two different input feature vectors, spectrograms and rawwave forms, against two popular audio

tagging networks, AlexNet and AudioNet. The classification results show a relative improve-

ment of 3% over the spectrogram inputs, and 7% over the raw wave form representation. The

performance of our network can surpass the specifically designed networks, with competitive

performance in classification audio tasks.

A.5 URBAN-SED RESULTS

Table A.2 contains the comparative results; the 𝑅𝐶, 𝑃𝑅 and 𝐹1 metrics shows that our neural

network is able to pick up events whilst maintaining high accuracy and recognition rate. Note

that our model model is able to detect events correctly since its 𝑅𝐶 is more significant in all cases.

On the other hand, the adaptability of our architecture is made manifest. Even without adap-

tative pooling nor label smoothing, it attains higher recall and F1-metrics than very specialized

architectures.
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B | APPENDIX: ADDITIONAL RESULTS

This appendix of the thesis presents additional results that were not included in the publica-

tions due space constraints. However, the author believes these experiments shall be included

here to support previous experimental research.

B.1 HYBRID U-NET COMPARATIVE TABLE

There exist a plethora of algorithms to classify seismic events, very well-known and tested,

with high classification accuracy [56]. The work presented in this thesis focuses mainly on the

Bayesian approximation and uncertainty exploitation to gain scientific insight into impending un-

rest. In [10], we focus on learning the background tremor while performing change detection.

This double task renders to be very challenging in static supervised learning scenarios with de-

terministic algorithms. Moreover, the uncertainty approach in Chapter 2 is formulated within

the convolutional neural network frameworks, in which its applicability to seismic signatures,

volcanic or not, has already been very well tested. This section of Appendix.B includes a com-

parative table of each of the components in [10], independently. Here, we refer as TCN as the

temporal sequence classifier part B of our architecture in [10]. Hence, the number of classes are

4: 𝐻𝐹, 𝐿𝐹, 𝐷𝑃 and 𝑆𝐵𝑇 . We incorporate the best LSTM proposed in [64] (128 hidden units), with

the same hyperparameter configurations. Then, the encoder part of our hybrid u-net architecture,

that is, the encoder with 16, 32 and 128 filters, is concatenated with a fully dense layer. To do this,

we had to design the encoder part by down-sampling only in frequency (the y-axis component),
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Table B.1: Comparative classification performance for different architectures.

System
test b-QP test b-E2

PR RC F1 Acc PR RC F1 Acc
Encoder+Dense 0.88 0.87 0.87 0.88 0.81 0.80 0.80 0.80

LSTM 0.92 0.91 0.91 0.92 0.88 0.87 0.87 0.87
TCN 0.93 0.94 0.93 0.93 0.84 0.83 0.83 0.83
Ours 0.97 0.95 0.96 0.97 0.91 0.87 0.89 0.89

thus changing the down-sampling operation from (2 × 2) to (2 × 1). The output is flattened and

forwarded to a bottleneck hidden layer with 512− 128− 64 hidden units. A time-distributed layer

is used to make frame-wise predictions for each time step.

Following [10], we report the b-QP and the b-E2 systems. The quiescent system, b-QP, is the

less noisy period, whereas the b-E2 is the seismic period with the highest noise. Training and

testing on the relatively mild QP seismic activity can highlight the classification capabilities of the

implemented architecture. Similarly, the b-E2 can provide knowledge about how these systems

surpass the tested approaches with noise. We follow the exact same training procedure as in [10],

with 75% - 25% for the b-QP and the b-E2 periods.

As shown in Table B.1, the proposed model in [10] presents a very high 𝑃𝑅 and 𝑅𝐶 for the

b-QP period; which is also the case for the noisy period of the b-E2. These results highlight that

learning the mask provides the classifier with an enhanced, denoised representation in which the

model can perform very accurate classification, despite the higher noise levels. Note that these

results in the classification part of our architecture only show the metric for that task, but not

the results from the segmentation module, related to event detection (basically a noise vs event),

which from [10], remains high.

B.2 TCN FINE TUNING PROCEDURE

In the manuscript [11]; we have shown that a TCN trained with AL can achieve very similar

accuracy to that of baselines levels, but with fewer annotated examples. Here, we show additional

results for the fine-tuning procedure on the selected dataset. The best model are selected based on
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the trade-off between complexity and error rate, that is, we favor low error rate for less complex

neural structures.

Table B.2: TCN fine-tuning on the period from 17th October to 29th October, Bezymianny, 2007.

Hyperparameters Type of convs Dilations F1 PR RC ER

128, 1 stack

Causal + Skip 1, 2, 4, 8 85.47 88.19 82.92 0.176
1, 2, 4, 8, 16, 32, 64 85.98 89.59 82.64 0.175

Non-Causal + Skip 1, 2, 4, 8 85.58 88.16 83.14 0.175
1, 2, 4, 8, 16, 32, 64 85.44 88.31 82.74 0.180

Causal + Non Skip 1, 2, 4, 8 84.20 86.51 82.01 0.197
1, 2, 4, 8, 16, 32, 64 84.78 88.71 81.19 0.188

Non-Causal + Non- Skip 1, 2, 4, 8 83.91 85.55 82.33 0.201
1, 2, 4, 8, 16, 32, 64 85.51 88.51 82.70 0.181

64, 1 stack

Causal + Skip 1, 2, 4, 8 85.61 89.06 82.48 0.176
1, 2, 4, 8, 16, 32, 64 85.50 89.16 82.13 0.179

Non-Causal + Skip 1, 2, 4, 8 86.14 89.37 83.14 0.171
1, 2, 4, 8, 16, 32, 64 85.94 90.07 82.17 0.180

Causal + Non Skip 1, 2, 4, 8 85.38 88.55 82.53 0.178
1, 2, 4, 8, 16, 32, 64 84.74 88.18 81.55 0.185

Non-Causal + Non- Skip 1, 2, 4, 8 85.67 88.99 82.59 0.178
1, 2, 4, 8, 16, 32, 64 85.56 89.09 82.30 0.180

32, 1 stack

Causal + Skip 1, 2, 4, 8 85.42 88.99 82.12 0.180
1, 2, 4, 8, 16, 32, 64 85.25 88.68 82.08 0.180

Non-Causal + Skip 1, 2, 4, 8 85.70 89.11 82.55 0.176
1, 2, 4, 8, 16, 32, 64 85.62 89.29 82.24 0.178

Causal + Non Skip 1, 2, 4, 8 85.77 88.91 82.85 0.174
1, 2, 4, 8, 16, 32, 64 85.22 88.53 82.15 0.180

Non-Causal + Non- Skip 1, 2, 4, 8 85.79 88.94 82.86 0.174
1, 2, 4, 8, 16, 32, 64 85.23 88.62 82.09 0.180

BEST MODELS ON 2 STACKS (two TCN blocks)

Hyperparameters Type of convs Dilations F1 PR RC ER

64, 2 stack Causal + Skip 1, 2, 4, 8 85.14 87.61 82.8 0.173
Non-Causal + Skip 1, 2, 4, 8 85.86 88.93 83.0 0.171
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B.3 EVENT CLASSIFICATION - FINE TUNING

In the manuscript [14]; we have shown that a BNN trained on log-cepstral coefficients attains

excellent performance in event identification on data gathered at Bezymianny and Mount Saint

Helens. Here, in table B.3, we present additional results for the fine-tuning procedure on these

datasets. We show the best models obtained after following the optimization procedure explained

in Chapter 2, trained with log-cepstral input feature vectors [14].

Table B.3: Best models seismic event classification on isolated, mixed and sparse datasets

Volcano Features Best models Test Loss Test Acc

Bezymianny, 3 classes CC

256-512-256-2000 0.15 0,939
2000-64-128 0.14 0.941
128-1024-512 0.21 0,927
64-512-256-256 0.18 0.930

Mount St-Helens, 3 classes CC
128-1024-2000-64 0.15 0.948
1024-128-64 0.10 0.957
512-128 0.11 0.955

Both volcanoes, 3 classes CC
512-64 0.143 0.946

1024-128-64 0.142 0.946
1024-1024-256-64 0.164 0.936

Both volcanoes, 6 classes CC
1024_64 0.22 0.93

512-256-128 0.21 0.92
1024-512-256-128 0.26 0.91
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C | MODEL INTERPRETABILITY

In this section of the thesis, we provide additional results to provide interpretability to the

recurrent scattering network. The application of deep learning in acoustic monitoring has long

been considered as a black-boxes without interpretability. However, the operational monitoring

requirements shall provide a compelling gateway to view and analyze their inner workings. This

appendix demonstrates that our network captures the dynamic range of events through visualiza-

tion of the internal layers. The results obtained in seismo-volcanic monitoring (and by extension,

to audio) can be interpretable tracked through the internal connections of the network.

C.1 THE RSN VOLUMETRIC LAYER

The RSN volumetric layer learns the best arrangement possible for the coefficients from the

scattering layer. From [12], the first scattering layer, known as 𝜆1,𝑛 only produces, by definition, a

single feature map. This set of scatter-grams is further concatenated and organized in a volumetric

layer for the second and subsequent layers. This module arranges each 𝜆𝑛,𝑚 into 𝜆𝑣 , a dynamic

structure that presents the variations of the scattering coefficients frequency for the events of in-

terest, which implicitly also has information about the location in time. Hence, this structure is

arranged in a volumetric fashion. Figure C.1 depicts the volumetric layer representation for a

signal in the URBAN-SED dataset.

We can see that the set of all maps contains a dimensional shape equivalent to (𝑁 , 𝐽 ×𝑄, 𝑡𝑖𝑚𝑒, 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠);

where 𝑁 is the number of seismic signals per batch, 𝐽 ×𝑄 the scales components, 𝑡𝑖𝑚𝑒 given as the
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Figure C.1: RSN volumetric layer for the learned filters, and on a random signal sampled from the
URBAN-SED dataset. The ground truth labels are jackhammer, dog bark, and drilling.

(number of time samples) and 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 each of the 𝜆𝑛,𝑚 independently. Recall that the volumetric

layer can be seen as data augmentation, as each 𝜆𝑛,𝑚 codifies a set of invariant features within the

raw signal.

C.2 RSN VISUALIZATION

Once we have shown that our RSN network can learn an input feature representation (see fig-

ure C.1) from audio data, we then visualize the middle components of the RSN network proposed

in [12], but the application context of this thesis. In figure C.2.(a), we show a map of processed

scattering feature vectors for convLSTM1, the output of the feature fusion module (before the

classification), and the internal activations of the temporal classification module, for a random

signal of the Bezymianny, 2007. The system that outputs these feature maps corresponds to the

so-called system eruption 1, with Knots+Filters in [12], with the training data covering the period

from September 1st to September 24th. Thus, we can verify that, for the learned scattering, the

neural network can detect and track all the processed scattering feature vectors that defined these
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(a) (b)

Figure C.2: RSN intermediate steps for a set of signals recorded at Bezymianny.

two events over time. On the other hand, it is observed that the refinement of our convLSTMs,

together with the skip connections, produces an excellent feature representation to be exploited

by the temporal classification module. Remarkably, the biLSTM1 in the temporal classification

module can detect some small scattering contributions at a shallow scale, but these are indeed

smoothed out and eliminated by the second biLSTM1 before the final classification module. We

can see similar behavior with the signal in figure C.1.(b) the very energetic waveform shows dif-

ferent feature fusion maps, a consequence of the convLSTMs tracking much higher frequencies

captured by learned scattering feature vectors.
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D | APPENDIX: TESIS EN ESPAÑOL

Este apéndice en español se incluye como parte de la Memoria de tesis con la finalidad de

cumplir con la normativa de elaboración proveniente de la Escuela de Posgrado. Este resumen

debe incluye las siguientes secciones: introducción, objetivos, estructura de lamemoria, metodología

y conclusiones. Para la introducción, objetivos, estructura de la memoria, se ha empleado el texto

del capítulo 1 (Chapter 1) de la tesis. Para la metodología, se incluye un resumen de los trabajos

científicos. Por último, las conclusiones se han escrito en base al capítulo 9 ((Chapter 9).

D.1 INTRODUCCIÓN

D.1.1 MOTIVACIÓN

Desde una perspectiva de aprendizaje automático, el dominio de datos sísmicos y volcánicos

es escaso, dado que la disponibilidad de registros sísmicos de acceso abierto a la comunidad cien-

tífica y que incluyan erupciones es limitado. Sin embargo, existe un creciente interés en obtener

estos conjuntos de datos para mejorar los sistemas de monitoreo e incluir aplicaciones.

La complejidad volcánica implica años de estudio por parte de expertos para suministrar a

la comunidad científica modelos teóricos que expliquen los observables las erupciones volcáni-

cas. Los modelos teóricos producen taxonomías de datos escasas, no uniformes. La validez de

un modelo teórico en un volcán no implica una generalización a otros entornos volcánicos. Por

último, las barreras económicas condicionan los equipos electrónicos disponibles para el moni-

toreo: no todos los volcanes del mundo son monitoreados de la misma manera, llegando incluso
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a sobrescribir registros almacenados en favor de otros períodos de interés sísmico. Todas estas

deficiencias resultan en catálogos de datos volcánicos bastante modestos, limitados en el tiempo,

y a menudo no utilizables desde una perspectiva de aprendizaje profundo. Como resultado, los

desafíos de monitoreo asociados a la dinámica evolutiva de la serie sísmica no han recibido la

atención suficiente. En una aplicación crítica para la seguridad humana, como es la vigilancia

sísmica, el algoritmo de monitoreo puede generar predicciones en las que el modelo “piensa” que

son correctas, a pesar de que la evidencia visual indica todo lo contrario. La detección de cambios

y la interpretación de los resultados es uno de los pilares fundamentales sobre los que debemos

construir los sistemas de monitoreo.

Esta tesis aborda estos retos y desarrolla una metodología que permite la detección de cambios

en los volcanes mediante una aproximación bayesiano. Proponemos un conjunto de arquitecturas

novedosas que incorporan el aprendizaje Bayesiano como una parte esencial del modelado de

datos. Se proponen procedimientos de aprendizaje por transferencia (transfer learning) para fa-

cilitar el aprendizaje, la inferencia y la predicción a través de volcanes donde no existe ningún

conocimiento previo disponible. También exploramos la capacidad de nuestros algoritmos para

seleccionar mediante incertidumbre el conjunto óptimo de señales sísmicas, con la finalidad de re-

ducir esfuerzos de anotación a la vez que se aumenta la adaptabilidad del sistema en condiciones

cambiantes. Finalmente, la incertidumbre de la modelo condicionada a los datos de entrada es

considerada como un potencial precursor y una herramienta de forecasting exportable a través de

los volcanes.

D.1.2 OBJETIVOS

El objetivo principal de esta tesis es investigar, construir y ampliar las técnicas de aprendizaje

automático recientemente propuestas en el contexto de sistemas de reconocimiento volcánico. Por

otro lado, nuestro objetivo es investigar cómo las técnicas Bayesianas pueden integrarse en un

marco de monitoreo volcánico que emplee la señal sísmica en bruto, aprendiendo aquellas car-

acterísticas que mejor definen los datos de entrada. Aunque el principal campo de aplicación
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de esta tesis es monitorización sísmica y volcánica, los algoritmos introducidos en esta investi-

gación son exportables a otros dominios de datos acústicos. En el Apéndice A , presentamos dos

ejemplos de aplicación para nuestra nueva arquitectura recurrente de scattering con datos de voz

(audioMNIST) y el monitoreo acústico ambiental (UrbanSED). La amplia gama de tareas de mon-

itorización abordadas en esta tesis, presentan una idea clara de la escalabilidad y robustez de las

técnicas presentadas. Además, nuestro objetivo es proponer una detección de cambios basada en

la incertidumbre del flujo de datos sismo-volcánicos, comprobando la exportabilidad de la incer-

tidumbre en sistemas de alerta temprana. Por último , se exploran estrategias para mitigar los

problemas de escasez de datos mediante técnicas de active learning y de transfer learning.

D.1.3 ESTRUCTURA DE LA MEMORIA

La estructura de esta tesis está organizada de la siguiente manera:

1. Los antecedentes teóricos sobre los métodos bayesianos de aprendizaje profundo y la esti-

mación de incertidumbre, junto con la metodología propuesta, se presentan en el capítulo

2.

2. La disciplina científica del sismo-volcánica y, cómo abordamos la creación de los catálogos

de datos, clase de eventos y entorno de monitoreo Bayesiano se presenta en el capítulo 3.

3. El capítulo 4 describe la red neuronal profunda bayesiana implementada para la clasifi-

cación de eventos pre-segmentados sísmicos. Los vínculos entre la incertidumbre y la dinámica

volcánica son presentados en este capítulo. El aprendizaje de transferencia se utiliza para

exportar el rendimiento del sistema a través de volcanes, y tras cambios producidos en una

erupción.

4. En el capítulo 5, presentamos el trabajo de investigación con el modelo híbrido de monitor-

ización bayesiana, creado para detectar y segmentar señales volcánicas. La conexión entre

la incertidumbre y la forma de onda, junto a la variación temporal de la incertidumbre, son

presentados en este capítulo.
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5. En el capítulo 6, introducimos una arquitectura recurrente multimodular para realizar la

detección, segmentación, y la clasificación de señales sísmicas mediante una aproximación

multi-fuente. La arquitectura es novedosa puesto que aprende los mapas de características

más relevantes para la captación de estos eventos. También proporcionamos aplicabilidad

de la arquitectura y la incertidumbre estimada a otros volcanes.

6. En el capítulo 7, presentamos el enfoque de aprendizaje activo y la estrategias propuestas

para realizar un reentrenamiento en el sistema, aumentando la adaptabilidad a las nuevas

condiciones cuando el volcán ha cambiado.

7. En el capítulo 8, se incluyen las aplicaciones geofísicas desarrolladas como parte de esta

tesis y que avalan los conjuntos de datos y la investigación sísmica de este trabajo de inves-

tigación.

8. En el capítulo 9 figuran las conclusiones y futuras líneas de investigación. aplicaciones de

la vigilancia sísmica.

En los apéndices de este documento, incluimos resultados y figuras adicionales para completar

la comprensibilidad de los resultados presentados.

D.2 METODOLOGÍA

En esta sección, se detalla la metodología investigada y propuesta a lo largo de esta tesis:

las redes Bayesianas BNN , el muestreo basado en Monte Carlo dropout y la estimación de la

incertidumbre.

La mayoría de los problemas de la estadística bayesiana consisten en estimar densidades de

probabilidad que son difíciles de calcular. Este tipo de enfoque incluye un conjunto de algorit-

mos para determinar cantidades desconocidas. En el caso de las redes neuronales, las múltiples

capas ocultas inducen no linealidad en sus representaciones aprendidas, lo que conlleva a que el

conocimiento exacto de los parámetros de la red no sea directamente computable. Sin embargo, el
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conocimiento de estos parámetros es de interés en el uso de redes neuronales, por ejemplo, para

realizar predicciones y calcular incertidumbres. Por tanto, es necesario realizar una aproximación

precisa, escalable y robusta para arquitecturas de redes neuronales profundas que trabajen con

datos sísmicos en continua. Empleando inferencia variacional, una metodología de optimización

para funciones complejas, se establecen las técnicas de regularización estocástica y deMC-dropout

empleadas en el aprendizaje profundo de nuestra red. Construimos conexiones entre las redes

profundas y la teoría de detección de cambio mediante la estimación de incertidumbre. Nues-

tra contribución teórica en este apartado consiste pues en la asociación matemática de cambios

geofísicos unidos a la incertidumbre del modelo, condicionada a los datos disponibles. Posteri-

ormente, presentamos el contexto sismológico de esta tesis, junto con las implicaciones geofísicas

del marco de estimación de incertidumbre anteriormente propuesto. Finalmente, presentamos el

concepto de deriva de datos y sus implicaciones en la ciencia del monitoreo de volcanes.

D.3 TRANSFER LEARNING Y CUANTIFICACIÓN DE

INCERTIDUMBRE

En este capítulo, proponemos la mejora de los sistemas demonitorización sísmicos a través del

Deep Learning Bayesiano. Presentamos las redes neuronales bayesianas para realizar la identifi-

cación y clasificación de eventos sísmicos, además de estimaciones de incertidumbre en datos re-

copilados en dos volcanes activos. Demostramos que la arquitectura propuesta logra un rendimiento

excelente (92,08%) al discriminar tanto el tipo de evento como su origen cuando los dos conjuntos

de datos se fusionan y no se proporciona información adicional al modelo entrenado. Finalmente,

demostramos que las representaciones de datos aprendidas por las BNN son transferibles a través

de diferentes períodos eruptivos. También encontramos que la incertidumbre estimada está rela-

cionada con cambios en las características de los eventos analizados, y proponemos que pudiera

usarse para medir si los modelos aprendidos pueden exportarse a otros escenarios eruptivos. Ilus-

tramos las variaciones de contenido de frecuencia durante los períodos pre y post eruptivo para
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ambos volcanes, demostrando que la incertidumbre epistémica del modelo detecta el cambio. Por

último. la incertidumbre epistémica derivada esta primera aproximación tiene dos implicaciones

principales: no solo se presenta como una característica que debe considerarse como un detec-

tor de cambios, sino también como un nivel de umbral para determinar cuándo deben usarse los

algoritmos de aprendizaje por transferencia.

D.4 MONITOREO BAYESIANO EN SEÑALES SÍSMICAS

Los métodos para el monitoreo de volcanes suelen estar basados en enfoques deterministas

que pueden no considerar la compleja dinámica de los sistemas volcánicos. Para detectar cam-

bios sutiles no solamente en los eventos, sino en las secuencias sísmicas asociadas con datos vol-

cánicos, extendemos nuestra aproximación anterior y presentamos un marco de inferencia para

monitorizar a lo largo del tiempo de la actividad sísmica. Esta arquitectura ha sido diseñada y

entrenada para detectar y clasificar múltiples señales sísmicas con registros sísmicos continuos.

Comprobamos esta nueva arquitectura analizando datos sísmicos asociados con erupciones en el

volcán Bezymianny (Rusia) durante 2007. Aprendemos el fondo del tremor y desenmascaramos

la señal sobre el ruido. Para ello, ha sido esencial construir arquitecturas de tipo autoencoder que

permitan reducir los datos de entrada, espectrogramas en este caso, a una representación latente

que captura las propiedades y estructura jerárquica de los datos. A partir de esta representación,

se emplea una arquitectura temporal convolucional que realiza el reconocimiento de la entrada.

Nuestros resultados demuestran una detección eficiente de señales y precisión de clasificación.

La incertidumbre total del sistema, 𝑈𝑡 , definida como la suma de las variaciones del campo de

ondas sísmicas (reducibles con más datos) y la aleatoriedad del proceso volcánico monitoreado,

proporciona una detección efectiva de cambios en el sistema volcánico en las horas previas a una

erupción. Esta formulación teórica 𝑈𝑡 nos ha permitido introducir los mapas de incertidumbre,

como una herramienta de apoyo para ilustrar la presencia o ausencia de fuentes simultáneas. La

incertidumbre epistémica actúa como un detector señales complementario, mientras que la incer-

tidumbre aleatoria representa la identificación de múltiples fuentes que mejora en gran medida
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los resultados del monitoreo.

D.5 REDES DE SCATTERING Y COMPORTAMIENTO

METAESTABLE

Presentamos una nueva arquitectura de red neuronal profunda extremo a extremo (E2E) dis-

eñada para realizar un monitoreo sismo-volcánico enfocado en detectar cambios mediante el

aprendizaje de un banco de filtros avanzado, a partir de la señal en bruto. A través de la evolu-

ción de la incertidumbre epistémica, invocando una estrategia de red bayesiana, detectamos el

cambio y demostramos su importancia como indicador para el posible pronóstico de erupciones

utilizando datos de los volcanes Bezymianny y Etna. Específicamente, proponemos modificar la

transformada scattering, integrada en redes de scattering profundas, en una nueva red de apren-

dizaje recurrente e híbrida E2E que permita capturar las dependencias temporales de múltiples

escalas de la forma de onda, en muestras. El aprendizaje de la transformada scattering y del banco

de filtros está condicionada en cierto sentido por la física del campo sísmico, es decir, a través de

la representación de características aprendidas a lo largo del tiempo. Al mismo tiempo, con una

arquitectura LSTM convolucional profunda que ha sido cuidadosamente diseñada, aprendemos

la dinámica temporal y las características intra-evento. Verificamos la efectividad del aprendizaje

de transferencia cambiando entre volcanes, confirmando nuestra hipótesis de tratar a los volcanes

como distribuciones de datos generadoras. Estas observaciones de incertidumbre concuerdan bien

con informes científicos anteriores en boletines sismológicos. La erupción principal, clásica (E2),

para el volcán Bezymianny, registrada en octubre y que contiene el pico más alto de la incertidum-

bre total,𝑈𝑡 , se corresponde a la máxima liberación de energía sísmica durante el ciclo eruptivo de

2007. Por lo tanto, la tendencia continua en la incertidumbre se eleva abrupta y simultáneamente

junto con la energía, indicando una explosión en el volcán que cambió repentinamente las condi-

ciones iniciales. La energía, siendo un parámetro independiente de la incertidumbre y asociado a

la forma onda, demuestra que nuestro framework de estimación es universal.
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D.6 APRENDIZAJE ACTIVO

Los avances en el aprendizaje profundo han impulsado el campo de la sismología volcánica

a niveles sin precedentes. Sin embargo, los catálogos de datos seleccionados aún requieren es-

fuerzos sustanciales de etiquetado, a menudo retrasados en el tiempo debido a las condiciones

cambiantes de los datos sísmicos, ya demostradas en esta tesis. En este trabajo, proponemos una

red neuronal convolucional temporal con aproximación bayesiana para realizar tareas de detec-

ción y clasificación en continua mientras se extraen los eventos más inciertos de la traza sísmica.

La segmentación selectiva de qué terremotos deben de ser revisados por un experto reduce sig-

nificativamente el tiempo de anotación, acelera el entrenamiento de redes neuronales y aumentar

la adaptabilidad del monitoreo a situaciones imprevistas. Formulado como un procedimiento de

aprendizaje activo (AL), la arquitectura propuesta genera un mapa de incertidumbre a lo largo del

tiempo, destacando las membresías de clase que deben revisarse. Logramos una mejora significa-

tiva en las métricas de monitoreo, con únicamente una fracción del conjunto de datos inicial para

lograr un rendimiento del 83 % para cinco eventos sismo-volcánicos. Esto contrasta con el sistema

base, que requiere datos por un total de 288 horas para alcanzar un rendimiento parecido, aunque

nuestro sistema lo alcanza con datos de un total de 6.6 horas.

D.7 OTRAS APLICACIONES GEOFÍSICAS

Por último, presentamos el software científico de apoyo que hemos implementado para el

procesamiento de datos y el etiquetado de los conjuntos de datos estudiados, incluida la detección,

segmentación y clasificación automática de señales volcánicas. En primer lugar, hemos empleado

un reconocedor de señales sísmicas para segmentar formas de onda volcánicas, y clasificar, de

manera semi-supervisada, señales sísmicas a gran escala. Posteriormente, hemos empleado una

plataforma de creación propia para verificar los resultados de segmentación, y clasificar de nuevo

en caso de error.
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D.8 CONCLUSIONES

Las conclusiones que pueden extraerse de todo el trabajo desarrollado en esta tesis son las

siguientes:

1. En la publicación 1, Capítulo 4 [14], hemos demostrado que una red BNN, entrenada con

características cepstrales alcanza un rendimiento de clasificación significativo para los tres

eventos de dinámica cercana de un volcán, HF, LF y MX, en dos volcanes (Monte Saint He-

lens y Bezymianny); terremotos de frecuencia alta, baja y mixta. El sistema ha demostrado

que cuando se entrena para cada volcán de forma independiente, logra rendimientos (F1-

score) más allá del 90% para cada volcán. Cuando los datos de ambos volcanes se combi-

nan, la BNN alcanza una mejora sobre la métrica respectiva obtenida anteriormente. Por

otro lado, si los conjuntos de datos de ambos volcanes se separan de acuerdo con su ori-

gen volcánico, la BNN propuesta entrenada sobre las etiquetas dispersas (en este caso, seis),

logra una alta precisión y puede discernir eventos sísmicos en función del tipo de volcán

que fueron registrados. Las señales sísmicas presuntamente vinculadas al mismo mecan-

ismo geofísico se pueden usar con la misma clase para aumentar los conjuntos de datos y

mejorar la capacidad de monitoreo, ya que las muestras de datos pertenecen a un espacio

de características similar. Si comparamos con otros dominios de audio, las señales sísmicas

de diferentes volcanes pueden tratarse como grabaciones de la misma entidad acústica (ej.:

una canción) pero en diferentes condiciones de grabación. Por otro lado, estos resultados

demuestran que la taxonomía de datos adoptada en este trabajo es robusta puesto que ofrece

separabilidad intraclase con alta precisión para los modelos entrenados con esta taxonomía

de datos.

Por último, ilustramos las variaciones del contenido de frecuencia que son bien detectadas

por la incertidumbre asociada al conjunto de datos y el modelo BNN propuesto. La incer-

tidumbre derivada en esta red BNN tiene dos implicaciones: se erige como una característica

para ser considerada un precursor de cambio a la vez que un nivel de umbral para determi-
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nar cuándo deben usarse los algoritmos de aprendizaje por transferencia. Finalmente, ob-

servamos que la aplicación del aprendizaje por transferencia permite exportar conocimiento

de un volcán o de una etapa eruptiva a otra.

2. En la publicación 2 [10], capítulo 5, enfocamos nuestro problema en reconocimiento sís-

mico en continua para datos secuenciales provenientes de tres erupciones en el volcán

Bezymianny. Proponemos una red neuronal convolucional bayesiana e híbrida (B-CNN)

para aprender el ruido de fondo, y que por tanto contiene el tremor, a la vez que se realiza

el reconocimiento continuo de eventos sísmicos. Esta arquitectura se basa en un marco de

segmentación tipo U-net fusionado con una TCN de convolución temporal. Probamos en

diferentes periodos eruptivos, con métricas de segmentación y clasificación muy altas para

todos ellos. El marco diseñado produce una aproximación probabilística de la incertidum-

bre total del sistema, 𝑈𝑡 , como la contribución agregada de la incertidumbre asociada con

las variaciones sísmicas del campo de ondas (reducible con más datos) y la aleatoriedad del

proceso volcánico monitoreado. Esta formulación nos ha permitido introducir mapas de in-

certidumbre de monitoreo como una herramienta adicional para ilustrar cómo se comporta

la incertidumbre del modelo a nivel de forma de onda. La incertidumbre epistémica actúa

como un detector de la llegada de la señal, mientras que la incertidumbre aleatoria destaca

las fuentes potenciales que pueden estar presente en el flujo de datos sísmicos.

Finalmente, la evolución de la incertidumbre a corto plazo es consistente con la medición

de energía sísmica en tiempo real, un parámetro de forma de onda que es independiente

de la incertidumbre estimada. La evolución temporal de la incertidumbre en los períodos

antes y después de una erupción concuerda con los boletines sismo-volcánicos del obser-

vatorio ruso, para la erupción estudiada. Por lo tanto, los cambios en las señales debido

a la dinámica interna del volcán son detectables por el modelo y caracterizados como una

deriva de datos, asociando incertidumbre con erupciones volcánicas.

3. En la publicación 3 [12], capítulo 6, investigamos si la incertidumbre sigue patrones sim-
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ilares aquellos descubiertos previamente para las tres erupciones del volcán Bezymianny,

con otros vectores de características. Este trabajo presenta una arquitectura novedosa de

aprendizaje profundo de extremo a extremo incorporada con un filtro de bancos wavelet

que puede ser aprendido mediante optimización para mejorar las capacidades de gestión

del sistema en términos de detección, segmentación y clasificación de múltiples señales sís-

micas. La flexibilidad introducida en el aprendizaje en el banco de filtros, junto con la red

temporal recurrente cuidadosamente diseñada, generan representaciones de características

óptimas y robustas. La aplicación de esta arquitectura a datos de tres volcanes de diferentes

tipos y en diferentes continentes demuestra la generalización y adaptación a distintos en-

tornos. Nuestra red neuronal garantiza el reconocimiento rápido de eventos y es robusta

contra taxonomías de datos escasos y ruido de fondo, temas de investigación muy activos

en aplicaciones de aprendizaje automático para reconocimiento acústico.

En este trabajo partimos de la perspectiva tradicional en el monitoreo sísmico, y abrimos

una nueva perspectiva para diseñar métodos de pronóstico basados en las conexiones entre

la incertidumbre y la dinámica de los volcanes. La incertidumbre epistémica sigue una la

ley de aceleración, asociada con los flujos de datos sísmicos, lo que implica que los procesos

volcánicos que preceden a las erupciones son detectables. Sin suposiciones previas sobre

la distribución de señales, el aprendizaje profundo puede identificar tal comportamiento

de manera no supervisada. Para el volcán Bezymianny, la evolución temporal de la in-

certidumbre se comporta de manera similar al caso estudiado en [14], ya verificado con

boletines sismológicos [63], [27].

Al aplicar metodologías de transfer learning con datos del Etna, la evolución temporal de la

incertidumbre epistémica para esta erupción es parecido a la segunda erupción en el volcán

Bezymianny, con una aceleración de la incertidumbre antes de la erupción principal. Estos

resultados confirman que el enfoque bayesiano propuesto en esta tesis es exportable y prom-
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etedor para pronosticar erupciones, aunque persisten desafíos operativos. No obstante, esta

arquitectura se puede modificar para actuar sobre datos de transmisión en tiempo real; esto

va de la mano con el desarrollo de una nueva estrategia de alerta temprana.

4. En la publicación 4 [11]; investigamos cómo el sistema puede superar situaciones derivadas

de un rendimiento bajo como consecuencia de un cambio anterior, es decir, el nuevo stream

de datos tras una erupción volcánica. Para ello, proponemos unmarco de aprendizaje activo

(active learning) basado en redes convolucionales temporales. La incertidumbre total asoci-

ada con este modelo se emplea en la obtención de información sobre aquellos eventos que

han de ser seleccionados, dentro de la traza sísmica, que contienen una incertidumbre ele-

vada y pueden mejorar el rendimiento del sistema. Incorporamos una estrategia de apren-

dizaje efectivo para mitigar la influencia de la dinámica volcánica en la selección de eventos.

Hemos comprobado que durante ocho pasos de adquisición (muestreo), equivalentes a 4000

minutos de análisis de datos en un observatorio sismológico, nuestro marco de aprendizaje

activo alcanza un rendimiento de reconocimiento por encima del 83,00% (F1-score), con to-

das las funciones de adquisición probadas. Por lo tanto, logramos un rendimiento similar al

del sistema inicial que, por el contrario, ha sido entrenado con el conjunto de datos completo

(unas 288 horas). Esta investigación responde a las afirmaciones anteriores sobre la necesi-

dad de datos de alta calidad para reentrenar los algoritmos de monitoreo tras cambios en

los datos monitorizados.

5. En la publicación 5 [13], publicación 6 [15] y publicación 7 [16], si bien son trabajos de in-

vestigación dedicados a la creación de aplicaciones geofísicas, constituyen un trabajo emi-

nentemente práctico y significativo de esta tesis. Primero, el algoritmo [13] había resaltado

la complejidad de las señales sísmicas para lograr una segmentación adecuada, con límites

de tiempo correctos Y EXACTOS, especialmente cuando no se disponía de catálogos am-

plios de datos sismo-volcánicos de referencia en el momento de la implementación. Las

técnicas de visualización y reducción de dimensionalidad en [13] han demostrado la necesi-

dad de plataformas de etiquetado de datos de alto nivel, y de forma automática. Incluso
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en el reconocimiento sísmico infrasónico, un dominio de datos estrechamente relacionado

con el puramente sísmico, el algoritmo [15] ha resaltado las complejidades asociadas con

otras fuentes de monitoreo de volcanes, requiriendo aproximaciones muy especializadas

para captar información significativa.

D.8.1 CONTRIBUCIONES

Las contribuciones de esta tesis pueden resumirse en las siguientes:

1. Diseño de tres arquitecturas novedosas para ampliar lamonitorización de última generación

actual en volcanes. Exportabilidad de las arquitecturas implementadas en diferentes vol-

canes y estilos eruptivos

2. La evolución de la incertidumbre caracterizada como un buen indicador de alerta temprana

volcánica.

3. Incertidumbre general como descriptor para saber cuándo es necesario volver a entrenar los

algoritmos de seguimiento.

4. Formulación de unmarco demonitoreo bayesiano para asociar e identificar qué incertidum-

bres se deben a la variabilidad del sismograma o al proceso monitoreado.

5. Identificación del comportamiento de la incertidumbre del modelo y los datos sísmicos

como una power-law. La incertidumbre estimada tiene el potencial para el pronóstico de

volcanes, y caracteriza cuándo y cómo está cambiando el monitoreo volcánico.

6. La dualidad de la incertidumbre que ha sido descubierta al emplear metodologías de apren-

dizaje activo. La evolución temporal de la incertidumbre implica que los algoritmos de

monitoreo tienden a muestrear aquellas formas de onda sísmica en las que ocurre la deriva

de datos, lo que implica un muestreo recurrente e infinito sin alcanzar un buen rendimiento.
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