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Continuum spectra can be a way out to alleviate the tension generated
by the elusiveness of narrow resonances of new physics in direct experimen-
tal searches. Motivated by the latter, we consider the linear dilaton model
with a continuum spectrum of KK modes. It is provided by a critical expo-
nential bulk potential for the scalar field stabilizing the distance, between
the UV boundary at y = 0 and a naked (good) singularity at y = ys, in
proper coordinates, which corresponds in conformal coordinates to zs →∞.
The cutoff Ms in this theory is an intermediate scale Ms ' 10−5MPl and
the warped factor solves the hierarchy between Ms and the TeV, while the
hierarchy between MPl and Ms has to be solved by a (Little) String The-
ory with coupling gs ' 10−5. The Standard Model is localized on a 4D
IR brane. The graviton and radion Green’s and spectral functions have a
continuum of states with a TeV mass gap, and isolated poles consisting of
the 4D graviton and the light radion/dilaton. We construct the effective
field theory below the mass gap where the continua of KK modes are inte-
grated out, generating a set of dimension eight operators which contribute
to low-energy electroweak precision observables, and high-energy violation
of unitarity in vector boson scattering processes. The radion mass depends
on the stabilizing UV brane potential and its wave function is localized
toward the IR which enhances its coupling with the SM fields.
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1. Introduction

No clear deviation has been found, so far, at present (LHC, . . . ) and
past (Tevatron, LEP/SLC, . . . ) particle physics experiments, from the pre-
dictions of the Standard Model (SM) of electroweak and strong interactions.
However, given a number of observational facts which cannot be coped with
by the SM (dark matter and dark energy, the baryon asymmetry of the
universe, . . . ), and some theoretical drawbacks as, among others, its sensi-
tivity to the ultraviolet (UV) scale (a.k.a. hierarchy problem), it is generally
believed that the SM is an effective theory and that some UV completion,
with beyond the SM (BSM) physics, is needed. This fact has motivated
a plethora of BSM models aiming to UV completing the SM, thus solving
some of the above issues. In fact, Martinus Veltman was one of the pioneers
to recognize the hierarchy problem and the need for a UV completion of the
SM, in a seminal paper published in 1981 by Acta Physica Polonica B [1].

One of the most successful BSM models was proposed in 1999 by Lisa
Randall and Raman Sundrum [2], where the hierarchy between the four-
dimensional (4D) Planck scaleMPl and the TeV scale is provided by a warped
fifth dimension, in a five-dimensional (5D) space with a non-factorizable met-
ric and two branes, the UV brane and the infrared (IR) brane. This theory
predicts the existence of a discrete spectrum made out of towers of Kaluza–
Klein (KK) states, with masses in the TeV range, associated with the SM
fields, as e.g. the graviton. However, the elusiveness of narrow resonances in
direct searches [3, 4] led people to imagine different solutions to the hierar-
chy problem (leaving aside the possibility of superheavy KK modes [5, 6]),
either with broad resonances [7] or even a continuum of resonances heavier
than a mass gap [8, 9], evading direct searches and thus detectable only by
indirect measurements.

In theories with a warped extra dimension, the brane distance is stabi-
lized by means of a bulk scalar field φ̄ with brane potentials (the Goldberger–
Wise mechanism [10]), and different theories are classified by the behavior
of the bulk scalar field in the limit of φ̄→∞ [11]. In fact, in the absence of
the IR boundary, it is found in Ref. [11] that there is a critical behavior for
the spectrum to be a continuum with a mass gap, when the bulk potential
behaves as V (φ̄) ∝ e2φ̄ in the limit of φ̄ → ∞. If the bulk potential goes
faster than e2φ̄, there is a discrete spectrum, and if it goes slower, there is a
continuum spectrum without any mass gap. For this critical behavior of the
potential, the stabilizing field φ̄ behaves linearly in conformally flat coordi-
nates z near the asymptotic limit. This linear behavior was obtained as the
5D effective theory of a class of type II strings, known as the Little String
Theory (LST) [12], in the decoupling limit of very small string coupling.
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In this paper, we will then study 5D warped theories with a bulk potential
which is V (φ̄) ∝ e2φ̄, for all values of the field φ̄, thus providing a warped
realization of the so-called linear dilaton models.

We have found two classes of theories, depending on the sign of the metric
slope with respect to the conformal coordinate. (i) For the case of negative
slope [13–15], gravity decouples in the limit of z → ∞ so that an IR brane
is compelling. The size of the bulk cutoff is the TeV so that the SM fields
should be localized on the UV brane and the whole hierarchy problem has
to be solved by the LST, with a string scale at the TeV and a coupling as
tiny as ∼ 10−15. In the presence of the brane, the graviton and radion KK
modes are discrete with a mass gap and separated by ∼ 30 GeV. (ii) For the
case of positive slope, in the limit of z → ∞, gravity is correctly described
for a cutoff at an intermediate scale ∼ 10−5MPl, so that the string scale has
to be fixed by the LST at that intermediate scale and the string coupling is
small ∼ 10−5, but larger than in the case of negative slope. The SM has to
be localized on the IR brane, which is not a boundary of the space, and the
spectrum for the graviton and radion is a continuum with a gap related to
the metric slope. The distance between the UV boundary and the IR brane
is stabilized by a Goldberger–Wise mechanism.

The discrete spectrum of Kaluza–Klein gravitons in Randall–Sundrum
theories was considered in Refs. [16–21]. In this paper, we have studied the
linear dilaton theory, with positive slope metric in conformally flat coor-
dinates and continuum graviton and radion spectra. The contents of the
paper are as follows. In Sec. 2, the gravitational background is analyzed in
detail, with the discussion of linear dilaton models with different sign slopes,
and their connection with the Little String Theory. The Green’s functions
and spectral functions for the graviton are studied in Sec. 3. The graviton
Green’s functions contain a massless isolated pole, corresponding to the 4D
graviton and a continuum of KK modes with a TeV mass gap. The coupling
of the graviton continuum with the SM fields is studied in Sec. 4, where
a class of dimension eight operators is obtained after integrating out the
continuum of KK modes in the effective theory. The radion Green’s and
spectral functions are studied in Sec. 5. The radion Green’s function has
a continuum of resonances and an isolated pole in the first Riemann sheet
corresponding to a mass, below the continuum mass gap, which depends on
the UV stabilizing brane potential. Integrating out the continuum leaves
an effective theory with dimension eight operators similar to the case of the
graviton KK modes. Our conclusions are drawn in Sec. 6.
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2. The gravitational background

We consider a slice of 5D space-time between a brane at the value of
y = y0 = 0 in proper coordinates, the UV boundary brane, and a (pos-
sible) admissible singularity [22] placed at y = ys, a value which has to
be determined dynamically. In addition, we will introduce an IR brane, at
y = y1 < ys, responsible for electroweak breaking, where we will assume the
SM sector to be localized.

The 5D action of the model, with metric defined by

ds2 = gMNdxMdxN ≡ e−2A(y)ηµνdxµdxν − dy2 , (1)

including the stabilizing bulk scalar φ(x, y), with mass dimension 3/2, reads
as

S =

∫
d5x
√
|det gMN |

[
− 1

2κ2
R+

1

2
gMN (∂Mφ)(∂Nφ)− V (φ)

]
−
∑
α

∫
Bα

d4x
√
|det ḡµν |λα(φ)− 1

κ2

∫
B0

d4x
√
|det ḡµν |K0 , (2)

where κ2 = 1/(2M3
5 ),M5 being the 5D Planck scale, V (φ) and λα(φ) are the

bulk and brane potentials of the scalar field φ, and the index α = 0, 1 refer to
the UV and IR branes, respectively. The IR brane is responsible for the gen-
eration of the IR scale ∼ TeV and contains the brane Higgs potential which
spontaneously breaks the electroweak symmetry, thus solving the hierarchy
problem between M5 and the TeV scale for the considered value of A(y1), as
we will see. In Eq. (2), the 4D induced metric is ḡµν = e−2A(y)ηµν , where the
Minkowski metric is given by ηµν = diag(1,−1,−1,−1). The last term in
Eq. (2) is the usual Gibbons–Hawking–York boundary term [23, 24], where
K0 is the extrinsic UV curvature. In terms of the metric of Eq. (1), the ex-
trinsic curvature term reads as [25] K0 = −4A′(y0). Note that the extrinsic
curvature at the singularity is canceled by the action of the determinant.

The equations of motion (EoM) read then as

A′′ =
κ2

3
φ′ 2 +

κ2

3

∑
α

λα(φ)δ(y − yα) , (3)

A′ 2 = −κ
2

6
V (φ) +

κ2

12
φ′ 2 , (4)

φ′′ − 4A′φ′ = V ′(φ) +
∑
α

λ′α(φ)δ(y − yα) , (5)

where the prime symbol ( ′ ) will hereafter stand for the derivative of a func-
tion with respect to its argument. The EoM in the bulk can also be written
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in terms of the superpotential W (φ) as [26]

φ′ =
1

2

∂W

∂φ
, A′ =

κ2

6
W , (6)

and

V (φ) =
1

8

(
∂W

∂φ

)2

− κ2

6
W 2(φ) . (7)

The brane potential terms in the EoM are responsible for boundary and
jumping conditions for the fields in the branes. In particular, by integrating
the equations in a neighborhood of each brane, and using Eq. (6), we get on
the UV boundary

W (φ(y0)) = λ0(φ(y0)) , W ′(φ(y0)) = λ′0(φ(y0)) , (8)

where the Z2 orbifold conditions have been used. On the other hand, on the
IR brane, we have to impose continuity conditions for W (φ) and W ′(φ), i.e.

∆W (φ(y1)) = 0 , ∆W ′(φ(y1)) = 0 , (9)

where ∆X is the jump when crossing the brane. Simple brane potentials
satisfying boundary (8) and jumping (9) conditions, and fixing dynamically
the values of φ at the branes, i.e. vα ≡ φ(yα), are given by

λ0(φ) = W (φ) +
1

2
γ0(φ− v0)2 , λ1(φ) =

1

2
γ1(φ− v1)2 . (10)

Integrating the gravitational 5D Lagrangian by parts in the bulk, and
after using the background EoM, one can see that there are contributions
to the potential localized on the boundaries as ∓e−4A(yα)W [27], where the
∓ sign corresponds to the boundaries yα = (y0, ys). While this contribution
vanishes on the singularity at y = ys, it gives a contribution to the UV
boundary such that the effective UV brane potential is

U0(φ) = λ0(φ)−W (φ) =
1

2
γ0(φ− v0)2 , (11)

which is dynamically minimized for φ = v0. Moreover, on the IR brane,
there is not such boundary contribution and there the effective potential is
U1(φ) = λ1(φ) which is minimized for the value of φ = v1.

For convenience, we will define the dimensionless field φ̄ ≡ κφ/
√

3. The
properties of the 5D theory depend on the superpotential behavior in the
limit φ̄→∞ [11]. In particular, when the asymptotic superpotential behav-
ior is exponential eνφ̄, for ν < 1, the spectrum is continuous without mass
gap, for ν > 1 there is a mass gap and a discrete spectrum, and for the
critical value νc = 1, the spectrum is continuous with a mass gap.
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We will hereby consider the critical case νc where the superpotential and
bulk potential are

W (φ̄) =
6k

κ2
eφ̄ , V (φ̄) = −9k2

2κ2
e2φ̄ , (12)

where k . M5 is the parameter which determines the 5D curvature. The
model defined by superpotential (12) has a singularity at a finite value of
the proper coordinate y = ys, as in soft wall models. It leads to a gapped
continuum spectrum, and the hierarchy problem is, more conventionally,
solved in the same way as in RS theories, with fundamental scalesM5 and k,
and a derived TeV scale after warping. The solution for the background in
proper coordinates is1

φ̄(y) = − log[k(ys − y)] , A(y) = − log(1− y/ys) . (13)

We will also consider, as in general soft wall models, two branes, at y = 0
(the UV boundary) and y = y1 (the IR or Higgs brane) where we assumed
the Standard Model, and in particular the Higgs, to be located, such that the
values of the IR brane location y1 and the singularity ys will be dynamically
determined by the brane potentials λα(φ), fixing the field φ̄ at the values
v̄0 ≡ κv0/

√
3 and v̄1 ≡ κv1/

√
3 in the UV and IR branes, respectively, such

that
kys = e−v̄0 , ky1 = e−v̄0 − e−v̄1 . (14)

Notice that the first expression demands that kys > 0. Moreover, the solu-
tion of the hierarchy problem between M5 and the TeV scale is achieved for
a given value of the warp factor at the IR brane A(y1) ≡ A1, which imposes
the relation

v̄1 − v̄0 = A1 . (15)

As we will see in Secs. 3 and 5, the squared mass gap of the continuum
graviton and radion spectrum is then given by

m2
g =

9

4
ρ2 , (16)

with
ρ = ±1/ys . (17)

Using that dz = ±eA(y)dy, where ± corresponds to the sign of ρ, the relation
between conformally flat and proper coordinates in the model of Eq. (12)
turns out to be

ρ · (z − z0) = − log(1− y/ys) , (18)
1 The solution of the EoM, Eq. (6), leads in fact to A(y) = φ̄(y) + c, where c is a
constant that can be fixed by choosing A(0) = 0 so that c = −φ̄(0) = −v̄0.
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and then the background in these coordinates is given by

φ̄(z) = A(z) + v̄0 , A(z) = ρ · (z − z0) , (19)

where we fix z0 ≡ 1/k. Therefore, in conformally flat coordinates, the
dilaton is linear and the corresponding model is dubbed as linear dilaton
model (LDM).

According to Eq. (17), the parameter ρ can have both signs and, accord-
ingly, two classes of theories are implemented.

2.1. The ρ < 0 case: the discrete LDM

Let us now consider the solution with a negative sign of the parameter ρ
in (17) [13, 14]: ρ = −1/ys. Now we will fix the values of the scalar field in
the branes as v̄0 ' 0 and v̄1 ' −|A1|, and then the relation between ρ and
k is given by

k = |ρ|e−v̄0 ' |ρ| . (20)

In this case, we will consider as the fundamental interval z0 < z < z1 <∞,
with two branes located on them. The interval [z0, z1] is then mapped into
the interval [−|y1|, 0] in proper coordinates and the metric and background
field profiles are given by

A(z) = −|ρ|(z − z0) , A(y) = − log(1 + |ρy|) , (21)
φ̄(z) = A(z) + v̄0 , φ̄(y) = A(y) + v̄0 , (22)

so that A(y) < 0, A1 ≡ A(y1) = v̄1 − v̄0 < 0. Then

|ρy1| = e|A1| − 1 ' e|A1| , |ρ|(z1 − z0) = |A1| , (23)

and the location of the IR brane is dynamically fixed by v̄0 and v̄1.
The relationship with the 4D Planck scale is here given by

κ2M2
Pl =

z1∫
0

e−3Adz =
1

3|ρ|

(
e3|A1| − 1

)
⇒ MPl '

(
2M3

5

3|ρ|

)1/2

e3|A1|/2 .

(24)
The hierarchy problem is solved at the string level, as M5 ∼ |ρ| ∼ TeV, the
warped factor in this theory is required to be |A1| ' 23, which leads to a
value of |y1| ' 10−7cm, small as compared to that of the ADD model, but
greater (by a factor e|A1|) than the one for the ρ > 0 case.

The spectrum of this theory is discrete with the lightest KK mode mass
being O(ρ). Let us notice that this theory does not admit a continuum
spectrum, as sending z1 →∞ leads to MPl →∞, which means that gravity
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is decoupled. As the aim of this paper is considering continuum spectra for
linear dilaton models, this class of models with ρ < 0 will not be considered
here2. In this theory, the hierarchy problem has to be entirely solved by
the string theory which should set the cutoff scale in the 5D theory at the
TeV. Therefore, here the SM is located in the UV brane. Notice that in this
setup, M5 ' ρ ' TeV are fundamental scales, while the 4D Planck scale is
a derived scale.

2.2. The ρ > 0 case: the continuum LDM

In this paper, we will consider the ρ > 0 case in (17), and the IR brane
location in conformally flat coordinates z1 is dynamically determined, as
well as the value of y1, by the IR fixing of the dilaton at the value v̄1. We
will here fix v̄1 = 0 and v̄0 = −A1 < 0. Then, one finds from Eq. (14) that
kys = eA1 and k(ys−y1) = 1. The hierarchy problem is then solved by fixing
A1 such that ρ = O(TeV), as given by Eq. (17) for k .M5 with

ρ = k e−A1 . (25)

The value of M5 is determined by the relation of M5 and k with the 4D
Planck scale MPl given by

κ2M2
Pl =

ys∫
0

e−2Ady ⇒ M5 =

(
3

2
ρM2

Pl

)1/3

, (26)

which yields, for ρ = O(TeV), M5 ' 1013 GeV ' 10−5MPl, and correspond-
ingly a warp factor A1 ' 23. In conformal coordinates, the location of the
branes in units of ρ are at ρz0 = e−A1 and ρz1 = A1 + e−A1 ' A1, while the
singularity is located at infinity, zs → ∞. The length of the fundamental
region is y1 ' ys ' 10−17 cm, much larger than the corresponding one in
the RS model ∼ 10−31 cm, but still much smaller than that in ADD theo-
ries [28] ∼ 10−2 cm (for the case of two extra dimensions) where only gravity
propagates in the bulk.

In this case, we can consider two kinds of fundamental intervals for our
theory:

— When the fundamental interval is [0, y1], i.e. [z0, z1] in conformal co-
ordinates, the theory spectrum is discrete, the first mode mass being
O(ρ).

— When the fundamental interval is [0, ys], i.e. [z0,∞) in conformal co-
ordinates (as we will consider in this paper), this theory predicts a
continuum spectrum with an O(ρ) gap: the continuum linear dilaton
model (CLDM).

2 Detailed phenomenological studies of this model have been done in Refs. [13–15].
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Let us notice that in this theory, the warp factor solves the hierarchy
problem between the intermediate scale M5 and the TeV scale. This means
that the UV completion of this theory should be a string theory with the
string mass at the intermediate scale, Ms ' M5, thus solving the hierarchy
problem between the Planck scale and M5. This class of models does not
support gauge bosons propagating in the bulk of the extra dimension, so
that we will consider the whole SM localized at the IR brane. Notice that in
this setup, as in RS models, M5 is a fundamental scale, while the TeV scale
and the 4D Planck mass are derived from the theory warp factor.

2.3. Connection with Little String Theory

As we have seen in the previous section, the hierarchy problem between
the 4D Planck scale, MPl, and the 5D Planck scale, M5 ' 1013 GeV, has
to be solved by a string theory with a string scale at the intermediate value
Ms 'M5. As the relation between Ms and MPl in string theory is given by

M2
Pl =

1

g2
s

M8
s V6 , (27)

where gs is the string coupling and V6 the volume of the compactified di-
mensions, imposing Ms � MPl requires, either V6 � `6s , with `s = 1/Ms,
or gs � 1. The second possibility, i.e. V6 ∼ l6s and gs ∼ Ms/MPl � 1 can
be realized in type II string theories, where the size of the gauge coupling is
unrelated to gs, but fixed by the geometry (radii) of the compact dimensions
where gauge interactions propagate. In the limit of gs → 0, a type II string
theory, dubbed Little String Theory3, was constructed where non-Abelian
gauge interactions are localized on a stack of (Neveu–Schwarz) NS5-branes,
a 6D space with 1+3 flat dimensions and two extra longitudinal dimensions
compactified on a torus T 2 with size ∼ `2s 4. In the gravity decoupling limit
gs → 0, the NS5-branes give rise to the 6D LST, which is strongly coupled
and seems to have no Lagrangian description. By holography, one can relate
the 6D strongly coupled theory in the absence of gravity to a 7D theory with
gravity weakly coupled with a linear dilaton.

Upon compactification of the two extra dimensions in T 2, we obtain a 5D
theory with weakly interacting gravity and a linear dilaton, as that studied
in the previous section. Here, there is a fundamental difference between the
two previous theories with ρ < 0 and ρ > 0.

— In the case of ρ < 0, by making the extra dimension infinite, i.e.
z1 → ∞, one gets from Eq. (24) that MPl → ∞ and so gravity is

3 For a review, see Ref. [12].
4 The four extra transverse dimensions are compactified in a manifold, and we will
assume all compact dimensions have a size ∼ `s.



720 E. Megías, M. Quirós

exactly decoupled as in the LST with gs → 0. When introducing the
IR brane at a finite value of z1, we recover the correct value of MPl

for |A1| ' 23, in which case gs = Ms/MPl ∼ 10−15. As M5 ∼ TeV, the
5D theory does not need to solve any hierarchy problem, and the SM
is localized in the UV brane. Reproducing the 4D Planck scale means
that the fundamental interval is finite and the graviton KK spectrum
is discrete, with the mass of the first KK mode being O(3ρ/2).

— However, in the case of ρ > 0, and even considering the infinite interval
[z0,∞], gravity is never decoupled, as one can see from Eq. (26), and
the correct value ofMPl is recovered for gs ' 10−5. In this case, the 5D
theory has to solve the hierarchy problem between M5 and the TeV,
and one has to introduce the IR (or SM) brane where the SM fields
are localized. The distance between the UV and IR branes is precisely
dictated by Eq. (26). Here, we always have two options:

— A fundamental finite interval [z0, z1] in which case there is a
discrete KK spectrum for the graviton, with the mass of the first
KK mode being O(3ρ/2). The discrete mass spectrum is given
by

m2
n

ρ2
=

9

4
+

π2n2

A2(z1)
, (n ∈ Z) , (28)

where the squared mass spacing ∆m2
n is governed by the value of

the warp factor A1 ≡ A(z1) at the IR boundary, and decreases
for increasing values of A1.

— A fundamental infinite interval [z0,∞], in which case there is a
gap equal to 3ρ/2, followed by a continuum spectrum. It can be
understood from Eq. (28) when we take the limit of A(z1)→∞
so that the squared mass spacing goes to zero. This is the model
we will consider in this work.

In both cases, the string theory has to solve (part of) the hierarchy
problem and explain the smallness of the coupling gs. Some mechanisms have
been proposed in Ref. [29], which induce potentials whose minima should fix
the value of gs. Of course, the larger the value of gs to be fixed, the more
easily these mechanisms are satisfied. For (Coleman–Weinberg) potentials
which depend logarithmically on gs, as those triggered by an anomalous U(1)
with a gauge mass proportional to √gsMs, where the coefficients (a and b)
are generated through string loop corrections, as e.g. V = g2

s (a+b log gs)M
4
s ,

the minimum is at gs ' e−a/b so that there should be some hierarchy between
the coefficients a and b, i.e. a/b ' 11 (35) for the case of ρ > 0 (ρ < 0).
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3. The graviton

The graviton is a transverse traceless fluctuation of the metric of the
form of

ds2 = e−2A(y) [ηµν + 2κhµν(x, y)] dxµdxν − dy2 , (29)

where hµµ = ∂µh
µν = 0. The Lagrangian is given by

L = −1

2

ys∫
0

dye−2A
[
∂ρhµν∂

ρhµν + e−2Ah′µνh
′µν] , (30)

and we will use the ansatz hµν(x, y) = h(y)hµν(x) from where the EoM can
be written as

e2A(y)
(

e−4A(y)h′(y)
)′

+ p2h(y) = 0 . (31)

In conformal coordinates, cf. Eq. (18), and after rescaling the field by
h(z) = e3A(z)/2h̃(z), the equation of motion for the fluctuation can be written
in the Schrödinger like form [11] as

−h̃′′(z) + Vh(z)h̃(z) = p2h̃(z) , (32)

where the potential is given by

Vh(z) =
9

4
A′

2
(z)− 3

2
A′′(z) . (33)

An explicit evaluation of this potential with the expression of A(z) given by
Eq. (19) leads to a constant value Vh(z) = m2

g, where mg = 3ρ/2 is the mass
gap for the graviton, typical of a continuum of states with a mass gap.

The interaction with matter is found as

L5D = − 1
√

2M
3/2
5

hµν(x, y)Tµν(x, y) , (34)

where the energy-momentum tensor is defined as

Tµν =
2√
−g

δ(
√
−gL)

δgµν
, (35)

and so it is symmetric by definition.
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3.1. Green’s functions for the graviton

The Green’s function for hµν(x, y) in the transverse, traceless gauge, is
given by [30]

Dµν,ρσ =
1

2

(
ηµρηνσ + ηµσηνρ −

2

3
ηµνηρσ

)
Gh(y, y

′; p) , (36)

where we are using, for the 5D Green’s function Gh(y, y
′; p), a mixed repre-

sentation where the 4D coordinates xµ have been Fourier transformed into
4D momenta pµ. After fixing the value of y′, one can see that the Green’s
function obeys the same EoM as the field h(y), except for an inhomogeneous
Dirac delta term, i.e.

p2Gh

(
y, y′

)
+ e2A(y) d

dy

(
e−4A(y)G′h

(
y, y′

))
= e2A(y′) · δ

(
y − y′

)
, (37)

where the prime indicates derivative with respect to the variable y and,
for simplicity, we are omitting the p dependence from the argument of the
Green’s function. After substituting the explicit expression for A(y), we find
that the equation writes as

G′′h
(
y, y′

)
− 4

ys − y
G′h
(
y, y′

)
+

1

(ys − y)2

(
p

ρ

)2

Gh

(
y, y′

)
= e4A(y′)δ

(
y − y′

)
,

(38)
whose general solution is

Gh(y, y
′; p) =

{
CI1 · (ys − y)

3
2
∆−h + CI2 · (ys − y)

3
2
∆+

h y < y′ < ys

CII1 · (ys − y)
3
2
∆−h + CII2 · (ys − y)

3
2
∆+

h y′ < y < ys

,

(39)
where we have defined

∆±h = ±δh − 1 , δh =
√

1− (4/9) · p2/ρ2 . (40)

The Green’s function Gh(y, y
′) is subject to the following boundary and

matching conditions

G′h
(
0, y′

)
= 0 , ∆Gh

(
y′, y′

)
= 0 , ∆G′h

(
y′, y′

)
= e4A(y′) ,

∆Gh

(
y1, y

′) = 0 , ∆G′h
(
y1, y

′) = 0 .
(41)

In addition, we should impose regularity in the IR, i.e. we consider CII1 = 0.
Then, all the integration constants are fixed.

After conveniently defining the variables

y↓ = min
(
y, y′

)
, y↑ = max

(
y, y′

)
, (42)
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and implementing the boundary and matching conditions in the general
solution of Eq. (39), one finds5

Gh

(
y, y′

)
=

1

3ρ

1

δh
(1− ȳ↑)

3
2
∆+

h

(
−(1− ȳ↓)

3
2
∆−h +

∆−h

∆+
h

(1− ȳ↓)
3
2
∆+

h

)
, (43)

where we are using dimensionless coordinates ȳ ≡ ρy. In particular, in the
limit y → y0, one finds

Gh

(
y0, y

′) = −2

3

1

ρ

1

∆+
h

(
1− ȳ′

) 3
2
∆+

h . (44)

Notice that the Green’s function (43) can be expressed as the product of
two functions in the form Gh(y, y

′) = A(y↓)B(y↑), and this can be written
also as

A(y↓)B(y↑) = A(y)B
(
y′
)

Θ
(
y′ − y

)
+A

(
y′
)
B(y)Θ

(
y − y′

)
, (45)

where Θ(x) is the step function. Then, it is clear that the Green’s function
is symmetric under the exchange of y and y′, i.e. it fulfills the property

Gh

(
y, y′

)
= Gh

(
y′, y

)
. (46)

This property is not obvious from the EoM, Eq. (37). Another property is

Im
(
A(y)B

(
y′
))

= Im
(
A
(
y′
)
B(y)

)
, (47)

which follows from the explicit expression of Eq. (43), and taking into ac-
count the relation (

∆±h (p)
)∗

= ∆∓h (p) ,
(
p2 ≥ m2

g

)
, (48)

which is valid for time-like momenta p2 > 0. The properties given by
Eqs. (47) and (48) will be relevant for the study of the spectral functions in
Sec 3.2.

5 Note that when y′ < y1, we could split the domain y′ < y < ys in Eq. (39) into two
domains: y′ < y ≤ y1 and y1 < y < ys. However, in that case, the jumping conditions
in the IR brane, i.e. continuity of Gh(y, y′) and G′h(y, y′) in y = y1, demand that the

term (ys−y)
3
2
∆−

h is also absent in y′ < y ≤ y1, so that the solution would be identical
as the one presented in Eq. (43). The solution would also be identical to this formula
in the case of y1 < y′.
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Let us consider, in particular, the analytical expressions for the UV-to-
UV, UV-to-IR and IR-to-IR Green’s functions. There are

Gh(y0, y0; p) = − 2

3ρ

1

∆+
h

, (49)

Gh(y0, y1; p) = − 2

3ρ

1

∆+
h

e−
3A1
2
∆+

h , (50)

Gh(y1, y1; p) =
1

3ρ

e3A1

δh

(
−1 +

∆−h

∆+
h

e−3A1δh

)
, (51)

respectively. All Green’s functions include the zero-mode contributions
which behave as

G0
h =

3ρ

p2
= lim

p→0
Gh(y, y

′; p) , (52)

so that we can define Green’s functions contributed only by the continuum
of KK modes, with the zero-mode contribution subtracted out, as

Gh
(
y, y′

)
≡ Gh

(
y, y′

)
−G0

h . (53)

We plot in Fig. 1, |Gh(y0, y0; p)| (left panel), |Gh(y0, y1; p)| (middle panel),
and |Gh(y1, y1; p)| (right panel), conveniently normalized, as functions of
p/ρ, for time-like momenta p2 > 0. For space-like momenta p2 < 0, the
Green’s functions are purely real. We plot in Fig. 2 the Green’s func-
tions Gh(y0, y0; |p|), Gh(y0, y1; |p|), and Gh(y1, y1; |p|) as functions of |p|/ρ,
for space-like momenta p2 < 0.
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Fig. 1. Plots of ρ|Gh(y0, y0; p)| (left panel), ρ e−3A1/2|Gh(y0, y1; p)| (middle panel),
and ρ e−3A1 |Gh(y1, y1; p)| (right panel) as functions of p/ρ. We have used A1 = 23

in all panels and assume time-like momenta p2 > 0.
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Fig. 2. Plots of ρGh(y0, y0; |p|) (left panel), ρGh(y0, y1; |p|) (middle panel), and
ρ e−3A1Gh(y1, y1; |p|) (right panel) as functions of |p|/ρ. We have used A1 = 23 in
all panels and assume space-like momenta p2 < 0.

It is interesting, for further purposes as we will see, to explicitly provide
the limits p� ρ of the Green’s functions. This leads to the following Taylor
series expansions

G−1
h (y0, y0) '

p�ρ

1

3

p2

ρ
+

1

27

p4

ρ3
+O

(
p6
)
, (54)

G−1
h (y0, y1) '

p�ρ

1

3

p2

ρ
+

1

27
[1− 3A1]

p4

ρ3
+O

(
p6
)
, (55)

G−1
h (y1, y1) '

p�ρ

1

3

p2

ρ
+

1

27

[
e3A1 − 6A1

] p4

ρ3
+O

(
p6
)
. (56)

The asymptotic expansions in the regime ρ � p, for time-like momenta
p2 > 0, are

G−1
h (y0, y0) '

ρ�p
ip+

3

2
ρ , (57)

G−1
h (y0, y1) '

ρ�p
ie
−A1

(
i p
ρ

+ 3
2

)
p , (58)

G−1
h (y1, y1) '

ρ�p
2i
[
1 + e

i2A1
p
ρ

]−1
e−3A1p . (59)

It is now obvious that for time-like momenta, for which p = i|p|,

Gh(y0, y1) '
|p|→∞

e−A1|p|/ρ

goes to zero exponentially (see also Ref. [31]), while both Gh(y0, y0) and
Gh(y1, y1) behave has ∼ 1/|p|.
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3.2. Spectral functions

In this section, we find it convenient to work in a basis with flat extra
dimensional coordinate y, i.e. with wave function h̄µν(x, y) as

h̄µν(x, y) = e−A(y)hµν(x, y) , (60)

with a corresponding Green’s function

Ḡh

(
y, y′

)
= e−A(y)Gh

(
y, y′

)
e−A(y′) . (61)

For time-like momenta, p2 > 0, all Green’s functions are complex for values
of p > mg = 3ρ/2, which is not associated with a particle threshold decay,
an intrinsic property of e.g. unparticle theories [32]. In this way, we can
define the corresponding spectral functions as

ρ̄h
(
y, y′; s

)
= − 1

π
Im Ḡh

(
y, y′; s+ iε

)
, s ≡ p2 . (62)

In Fig. 3, we show ρ̄h(y0, y0; p), ρ̄h(y0, y1; p) and ρ̄h(y1, y1; p) as functions of
p/ρ where the prefactors, defined as

F00 = ρ , F01 = ρ
(ρ
k

)1/2
, F11 = ρ

(ρ
k

)
(63)

make them scale-invariant [9]. By using the identity

lim
ε→0+

1

x+ iε
= P 1

x
− iπδ(x) , (64)
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Fig. 3. Scale-invariant spectral functions F00 · ρ̄h(y0, y0; p) (left panel), F01 ·
ρ̄h(y0, y1; p) (middle panel) and F11 · ρ̄h(y1, y1; p) (right panel) as a function of
p/ρ, for a continuum graviton. We have used A1 = 23 in all panels and assume
time-like momenta p2 > 0.
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one can see that the small p behavior of the Green’s functions provided
in Sec. 3.1 implies the existence of a Dirac delta behavior in the spectral
functions at p = 0

ρ̄h
(
y, y′; s

)
= 3ρe−A(y)−A(y′) δ(s) + · · · . (65)

This delta function appears in all the Green’s functions of Fig. 3. Notice
that, although the spectral functions ρ̄h(y0, y0) and ρ̄h(y1, y1) are positive
definite, the spectral function propagating from the UV to the IR brane
ρ̄h(y0, y1) is not. This fact just challenges the physical interpretation of the
spectral function in a 4D quantum field theory, which is positive definite by
its probabilistic interpretation.

To understand the positivity of the spectral function in our theory, we
have to consider, from the 4D point of view, the spectral function ρ̄h(y, y′; s)
as the matrix element (y, y′) of an operator ρ̂h, i.e.

(ρ̂h)
y′
y ≡ ρ̄h

(
y, y′; s

)
(66)

acting on the infinite-dimensional space parametrized by the coordinate y.
The matrix action on a vector vy ≡ v(y) is thus represented by the integral,
e.g.

∑
y′(ρ̂) y

′
y vy′ ≡

∫
dy′ρ̄h(y, y

′; s)v(y′). In parallel with the definition of
the operator ρ̂h, one can define, from the Green’s functions Ḡh(y, y

′), the
operator Ĝh such that

ρ̂h = − 1

π
Im Ĝh , where Im Ĝh =

1

2i

(
Ĝh − Ĝ†h

)
. (67)

The elements of ρ̂h then form an infinite-dimensional matrix whose pos-
itivity properties will be analyzed now. When taking into account the prop-
erty of Eq. (48), the matrix ρ̂h turns out to have a factorizable form, i.e. one
finds the following explicit expressions for the spectral function

(ρ̂h)
y′
y = ρ̂y · ρ̂ y′ , (68)

where, for p2 ≥ m2
g,

ρ̂y =

√
2

3πρR (1 +R2)

1

(1− ȳ)1/2
Im
(

(1 + iR) (1− ȳ)
3
2
iR
)
, (69)

with
R(p) =

√
(4/9) · p2/ρ2 − 1 . (70)
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Given the factorization property, Eq. (68), it turns out that the operator
ρ̂h is positive semidefinite: all its eigenvalues are zero except one λ(p) (i.e.
det ρ̂h = 0), which is given by the trace of the matrix, i.e.

λ(p) = tr ρ̂h =
1

ρ

1∫
0

ρ̄h(ȳ, ȳ; s)dȳ . (71)

Using Eq. (68), one can see that there is a divergence at the value ȳ = 1, so
that the expression for λ needs to be regularized. We will do it by introducing
the cutoff ε̄ in the integral (71) which now will extend from 0 to 1 − ε̄, so
that the integral will be dominated by its value at 1 − ε̄, giving a term
∝ (− log ε̄) which will be the leading one. As we will see, this divergence
will cancel out when computing physical observables, so it will not require
any renormalization procedure. It turns out that λ(p) is computed as

λ(p) = δ
(
p2
)

+

[
− log ε̄

2πρ
λun(s) +O

(
ε̄ 0
)]

, λun(s) =
(
s−m2

g

)−1/2
,

(72)
where δ(p2) is the contribution to the spectral function of the graviton
zero mode6 and λun(s) the contribution to the spectral function from the
continuum, or unparticle contribution with a mass gap mg and dimension
dun = 3/2 [33].

Therefore, in the diagonal basis, the matrix ρ̂ d
h has all elements null

except one, which can be chosen to be the element with y = y′ = ys, which
is equal to λ, i.e. (

ρ̂ d
h

)y′
y

= λ(p)δy,ysδys,y′ , (73)

and the (infinite) orthogonal rotation Oy
′
y from ρ̂h → ρ̂ d

h has, in particular,
elements

Oysy =
ρ̂y√
λ
. (74)

Now, the contribution of ρ̂h to a physical process where φ(y) is the profile
along the extra dimension of the initial state in the tensor Tµν(x, y) with a
coupling for fields h̄µν(x, y) given by

L5D = − 1
√

2M
3/2
5

eA(y)h̄µν(x, y)Tµν(x, y) , (75)

6 Its correct normalization comes from the prefactor in Eq. (65) as 3ρ
∫ ys
0

e−2A(y) = 1.
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and ψ(y′) the profile of the final state in Tρσ(x, y′), is given by the element

tr
(
φT eA · ρ̂h · eAψ

)
= tr

(
φT eAOT · ρ̂ d

h ·OeAψ
)

=
∑
y,y′

φye
Ay
(
OT
)y
ys

(
ρ̂d
h

)ys
ys
Oysy′ e

Ay′ψy
′

=
∑
y,y′

φye
Ay ρ̂y√
λ
· λ ·

ρ̂y′e
Ay′ψy

′

√
λ

=

ys∫
0

dydy′ φ(y)eA(y)ρ̄h
(
y, y′

)
eA(y′)ψ

(
y′
)

=

ys∫
0

dydy′ φ(y)ρh
(
y, y′

)
ψ
(
y′
)
,

(76)

where we see that the divergence in the calculation of the eigenvalue λ cancels
out, while the last equality is written in terms of the spectral density ρh in
the basis hµν(x, y). In particular, if the initial-state function is located at
the brane y = yα, and the final state is localized at the brane y = yβ , then
φ(y) ∝ δ(y − yα), ψ(y′) ∝ δ(y′ − yβ), and the result of Eq. (76) is given by

tr
(
φT eA · ρ̂h · eAψ

)
= eA(yα)+A(yβ)ρ̄h(yα, yβ; p) = ρh(yα, yβ) . (77)

The functions ρ̄h(yα, yβ; p) are those plotted in Fig. 3.

4. Coupling of the graviton with SM matter fields

We are assuming fields located in the brane y = yα. Then, the usual
form of the interaction Lagrangian in the 4D effective theory is given by the
Lagrangian

L5D = − 1
√

2M
3/2
5

Tµν(x, y)hµν(x, y)δ(y − yα) , (78)

where Tµν(x, yα) is the energy-momentum tensor of the matter fields local-
ized at yα7.

In particular, for the SM fields living in the IR brane at y = y1, the
energy-momentum tensor is given by

Tµν = 2DµH
†DνH + iψ̄γµDνψ − FµρFνρ − ηµνLSM , (79)

where Dµ is the SM covariant derivative, ψ corresponds to all SM left- and
right-handed fermions and Fµν is the field strength of different gauge fields

7 We are assuming here the simplified case where matter lives in some brane, as e.g.
the SM which is living in the IR brane, or perhaps some dark sector which could live
in the UV brane. For matter (SM singlets) propagating in the extra dimension, one
should replace the interaction term in Eq. (78) by

∫
dy Tµν(x, y)hµν(x, y).
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Fµν = W a
µν , Bµν . The term proportional to ηµν does not contribute to the

different vertices as the tensor hµν is traceless. Notice that in the broken
phase, when 〈H〉 = v/

√
2(0, 1)T , the massive gauge bosons have contribu-

tions to Tµν proportional to m2
V VµVν . The graviton zero mode wave func-

tion, h0
µν(x, y) = h0(y)h0

µν , where h0(y) =
√

3ρ is canonically normalized
as
∫ ys

0 dy e−2Ah2
0 = 1, couples with the energy-momentum tensor at the IR

brane as
− 1

MPl
Tµν(x, y1)h0

µν(x) . (80)

We will now consider the coupling with matter of the continuum of KK
modes, with Green’s function Gh(y, y′). The effective field theory (EFT) for
matter localized at the brane yα, for momenta p� ρ, provides the dimension
eight operator Oh(x, yα) with Wilson coefficient c(yα) as

LEFT(yα) = c(yα)Oh(x, yα),

Oh(x, yα) = Tµν(x, yα)Dµν,ρσT
ρσ(x, yα) = TµνT

ν
µ −

1

3

(
Tµµ
)2
, (81)

where the Wilson coefficients here have mass dimension −4.
In particular, for the SM which is localized in the IR brane,

c(y1) = −1

6

1

ρ4
. (82)

Thus, gravitational interactions are suppressed by the TeV scale ρ, reflecting
the fact that the continuum of KK modes is localized toward the IR. On the
contrary, if there is some extra matter localized in the UV brane, SM singlets,
the corresponding Wilson coefficient would be

c(y0) = −1

9

1

ρ2M2
Pl

. (83)

In fact, if we define the effective coupling geff(yα) as

|c(yα)| ≡ g2
eff(yα)

1

ρ2
, (84)

we can see that geff(y0) ' 1/MPl, while geff(y1) ' 1/ρ.

4.1. Low-energy constraints

The effective Lagrangian in Eq. (81) does give rise, in particular, to the
dimension eight operators, in the notation of Refs. [34, 35]

LEFT ⊃
2∑
i=0

fSi
ρ4
OSi , (85)



The Continuum Linear Dilaton 731

where

OS0 =
(
DµH†DνH

)(
DµH

†DνH
)
, OS1 =

(
DµH†DµH

)(
DνH†DνH

)
,

OS2 = (DµH†DνH)(DνH
†DµH) ,

fS0 = −1

3
, fS1 =

2

9
, fS2 = −1

3
. (86)

The contributions of these effective operators to the observables S, T, U have
been computed in Ref. [34] as8

αT = − 15

16π2
(mW /ρ)4

(
fS0 + fS2 +

2

5
fS1

)(
1 + c2

W

) s2
W

c2
W

log(ρ/mW ) ,

(87)
where α is the fine structure constant, and sW (cW ) the sine (cosine) of the
electroweak mixing angle θW , while S = U = 0. Using now the values in
Eq. (86), we get

αT ' 13

24π2
(mW /ρ)4 (1 + c2

W

) s2
W

c2
W

log(ρ/mW ) , (88)

which provides a very mild bound on the value of ρ as αT . 4 × 10−5

(3 × 10−6) for ρ & 500 GeV (1 TeV). The small value of the T parameter
comes mainly because this effect stems from a dimension eight operator, and
thus is suppressed by the fourth power of 1/ρ.

4.2. High-energy constraints

The effective Lagrangian in Eq. (81) does also give rise to a number of
dimension eight operators, which contribute to an anomalous quartic gauge
coupling (aQGC) as

LEFT ⊃
∑
j

fTj
ρ4
OTj +

∑
k

fMk

ρ4
OMk

, (89)

where, using the notation of Refs. [34, 35], we have

OT0 = (WµνWµν)
(
WαβW

αβ
)
, OT2 = (WµαWνα)

(
WµβW

νβ
)
,

OT5 = (WµνWµν)
(
BαβB

αβ
)
, OT7 = (WµαWνα)

(
BµβB

νβ
)
,

OT8 = (BµνBµν)
(
BαβB

αβ
)
, OT9 = (BµαBνα)

(
BµβB

νβ
)
, (90)

8 We thank Prof. O.J.P. Éboli for a private communication on this result.
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and

OM0 = (WµνWµν)
(
DαH†DαH

)
, OM1 = (WµαWνα)

(
DµH

†DνH
)
,

OM2 = (BµνBµν)
(
DαH†DαH

)
, OM3 = (BµαBνα)

(
DµH

†DνH
)
,

(91)

with Wilson coefficients

fT0 = 1
18 , fT2 = −1

6 , fT5 = 1
9 , fT7 = −1

3 , fT8 = 1
18 ,

fT9 = −1
6 , fM0 = −2

9 , fM1 = 2
3 , fM2 = −2

9 , fM3 = 2
3 . (92)

The LHC constraints on the above operators are obtained from the CMS
experiment [36–38]. The strongest constraints are over the operators OT0
and OT2 which translate into the 95%.L. lower bound mg & 1.3 TeV. Pro-
jections in FCC-hh, at

√
s = 100 TeV and integrated luminosities up to 30

ab−1, have been made on the anomalous WWγγ couplings [39] which, for
leptonic decay channels of the W s in the final state, yield future bounds
reaching values as mg & 7 TeV.

Of course, the presence of aQGC induces violation of unitarity, e.g. in
longitudinal gauge boson scattering processes involving four-vector particles,
as the corresponding scattering amplitudes grow with ŝ2, where

√
ŝ is the

center-of-mass energy, since the SM cancellation fails. This issue has been
generally considered for the operators OSi , OTj and OMk

in Refs. [35, 40].
The unitarity violation indicates a failure of the EFT to describe the cor-
responding processes at such large values of

√
ŝ. In particular, using the

general results in Ref. [35], the unitarity constraints imply an upper bound
as
√
ŝ . 2mg for the validity of the EFT.

5. The radion

The radion field F (x, y) is defined as the scalar perturbation of the metric

ds2 = e−2A(y)−2F (x,y)ηµνdxµdxν − [1 +G(x, y)]2dy2 ,

φ(x, y) = φ(y) + ψ(x, y) , (93)

with F (x, y) = F (y)R(x). When considering an appropriate gauge choice,
the EoM for the y-dependent part become [41]

(
p2e2AA′′(y)−1 − 2

)
F (y) +

d

dy

[
e2AA′′(y)−1∂y

(
e−2AF (y)

)]
= 0 ,

F ′ − 2A′F = φ′ψ , G = 2F . (94)
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After rescaling the field by F (z) = e3A(z)/2φ′(z)F̃ (z), one can cast the EoM
in a Schrödinger-like form as

−F̃ ′′(z) + VF (z)F̃ (z) = p2F̃ (z) , (95)

where the potential is given by

VF (z) =
9

4
A′

2
(z) +

5

2
A′′(z)−A′(z)φ

′′(z)

φ′(z)
− φ′′′(z)

φ′(z)
+ 2

(
φ′′(z)

φ′(z)

)2

. (96)

This potential turns out to be equal to the constant value VF (z) = m2
g,

where mg = 3ρ/2 is the mass gap for the radion. This value of the mass gap
equals that of the graviton in previous sections.

5.1. The radion Green’s functions

After making the field redefinition F (x, y)→ κF (x, y), as for the case of
the graviton, the EoM for the radion Green’s function GF (y, y′; p) [41, 42]
is the same as the one for the graviton, cf. Eq. (38). After fixing the value
of y′, we can divide the y space into the following domains: 0 ≤ y ≤ y′ and
y′ ≤ y ≤ ys. Then, the general solution is

GF (y, y′; p) =

{
CI1 · (ys − y)

3
2
∆−F + CI2 · (ys − y)

3
2
∆+
F y < y′ < ys

CII1 · (ys − y)
3
2
∆−F + CII2 · (ys − y)

3
2
∆+
F y′ < y < ys

,

(97)
where we have defined ∆±F = ∆±h and δF = δh, cf. Eq. (40). The Green’s
function is subject to boundary and matching conditions in the UV and IR
branes, as well as for y = y′. These read

G′F
(
0, y′

)
=

(
1

3
κ2W (φ(y))− 2p2e2A(y)

U ′′0 (φ(y))

)
GF (y)

∣∣∣∣∣
y=0

, (98)

∆GF
(
y′, y′

)
= 0 , ∆G′F

(
y′, y′

)
= e4A(y′) ,

∆GF
(
y1, y

′) = 0 , ∆G′F
(
y1, y

′) = 0 ,

where the localized effective potential in the UV brane U0(φ) is defined by
Eq. (11), and its second derivative turns out to be U ′′0 (φ(0)) = γ0 − 2ρ,
which in the following we will denote by U ′′0 . In addition, we should impose
regularity in the IR, i.e. we consider CII1 = 0. After implementing the
boundary and matching conditions in the general solution, one finds

GF
(
y, y′

)
=

1

3ρ

1

δF
(1− ȳ↑)

3
2
∆+
F

×
[
−(1− ȳ↓)

3
2
∆−F +

(
1 +

3U ′′0
2ρ

δF
Φ(p)

)
(1− ȳ↓)

3
2
∆+
F

]
, (99)
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where

Φ(p) =
p2

ρ2
− U ′′0

4ρ
(1 + 3δF ) . (100)

The analytical expressions of the brane-to-brane Green’s functions are

GF (y0, y0; p) =
U ′′0
2ρ2

1

Φ(p)
, (101)

GF (y0, y1; p) =
U ′′0
2ρ2

1

Φ(p)
e−

3A1
2
∆+
F , (102)

GF (y1, y1; p) =
1

3ρ

1

δF
e3A1

[
−1 +

(
1 +

3U ′′0
2ρ

δF
Φ(p)

)
e−3A1δF

]
, (103)

and their low-momentum behaviors are

G−1
F (y0, y0,1) '

p�ρ
−2ρ+O

(
p2
)
, (104)

G−1
F (y1, y1) '

p�ρ
− 6ρ4

2k3 + ρ3
+O

(
p2
)
. (105)

In the following, we will denote the zero momentum limits of the brane-to-
brane Green’s functions as GαβF ≡ limp→0GF (yα, yβ; p).

We plot in Fig. 4 the result for the Green’s functionsGF (y0, y0), GF (y0, y1)
and GF (y1, y1), normalized to their zero momentum limits, as functions of
p/ρ, for time-like momenta p2 > 0. For space-like momenta p2 < 0, the
Green’s functions are purely real. We plot in Fig. 5 the Green’s functions
as functions of |p|/ρ, in the latter case.
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Fig. 4. Plots of |GF (y0, y0; p)/G00
F | (left panel), |GF (y0, y1; p)/G01

F | (middle panel),
and |GF (y1, y1; p)/G11

F | (right panel) as functions of p/ρ. We have used A1 = 23

and U ′′0 = k in all panels, and assume time-like momenta p2 > 0.
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Fig. 5. Plots of GF (y0, y0; |p|)/G00
F (left panel), GF (y0, y1; |p|)/G01

F (middle panel),
and GF (y1, y1; |p|)/G11

F (right panel) as functions of |p|/ρ. We have used A1 = 23

and U ′′0 = k in all panels, and assume space-like momenta p2 < 0.

Notice that (unlike the graviton case) the Green’s functions do not have
an isolated massless mode as their behavior in the limit p → 0, as shown
in Eqs. (104)–(105), yields a constant value and not an isolated singularity.
This point is in agreement with previous studies on the subject in Ref. [11].
The function Φ(p) given by Eq. (100) has a single zero, either in the first or
second Riemann sheet. Let us write the equation Φ(mF ) = 0, with mF the
mass of the radion, in the form of

U ′′0
ρ

=
4m2

F /ρ
2

1 + 3δF
with δF = ±

√
1− (4/9) ·m2

F /ρ
2 , (106)

where the +(−) corresponds to the first(second) Riemann sheet. We display
in the left panel of Fig. 6 the parametric dependence of U ′′0 /ρ with mF as
given by Eq. (106). One can see that U ′′0 ≥ 0 demands that mF ≤ mg

when considering the 1st Riemann sheet, while
√

2ρ < mF ≤ mg in the 2nd

Riemann sheet, so that the mass is below the mass gap, except for U ′′0 /ρ = 9
where it has the same value. Notice that there exists a zero of Φ(mF ) in
the first Riemann sheet only if 0 ≤ U ′′0 /ρ ≤ 9, while the existence of a zero
in the second Riemann sheet demands that 9 ≤ U ′′0 /ρ < +∞. The zero of
Φ(mF ), either in the first or second Riemann sheet, is given by

m2
F

ρ2
=

1

8

U ′′0
ρ

−(U ′′0
ρ
− 2

)
+

√(
U ′′0
ρ
− 2

)2

+ 32

 . (107)

This zero corresponds to an isolated pole of the Green’s function. Note that
m2
F /ρ

2 is always real and positive, hence this pole corresponds to a bound
state of the radion spectrum that should be located in the first Riemann
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sheet, i.e. the physical sheet. Given the considerations above, we conclude
that such a bound state for the radion exists only for values 0 ≤ U ′′0 /ρ ≤ 9 9.
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Fig. 6. Left panel: Parametric dependence of the isolated zero of Φ(mF ). We
display U ′′0 /ρ as a function of mF /ρ in the 1st Riemann sheet (solid blue) and
in the 2nd Riemann sheet (dashed red) as given by Eq. (106). To guide the eye,
we display vertical lines for values mF =

√
2ρ (dot-dashed black) and mF = mg

(dashed black). Notice that the range 0 ≤ U ′′0 /ρ ≤ 9 corresponds to the pole of
the Green’s function in the 1st Riemann sheet, while the range 9 ≤ U ′′0 /ρ < ∞
corresponds to the pole in the 2nd Riemann sheet. Right panel: Normalized wave
function for the radion as a function of ȳ ≡ ρy, as given by Eq. (113). We display
the results for U ′′0 /ρ = 0, 1 and 8.
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Fig. 7. Spectral functions ρF (y0, y0; p) (left panel), ρF (y0, y1; p) (middle panel) and
ρF (y1, y1; p) (right panel) as a function of p/ρ, for a continuum radion. We have
used A1 = 23 and U ′′0 = ρ (left panel) and U ′′0 = k (middle and right panels), and
assume time-like momenta p2 > 0.

9 Notice that when considering negative values of U ′′0 or taking the negative sign in front
of the square root of Eq. (107), this equation predicts the existence of an unphysical
tachyonic mode (m2

F < 0). One can see from Eq. (106) that such a mode is in the
second Riemann sheet for U ′′0 /ρ > 0, and in the first Riemann sheet for U ′′0 /ρ < 0.
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Finally, let us study the spectral functions for the radion. In Fig. 7, we
show ρF (y0, y0; p), ρF (y0, y1; p) and ρF (y1, y1; p), as functions of p/ρ. Note
that the isolated mode appears as a Dirac delta contribution. In addition,
there appears a continuum for p > mg. We are using the prescription p2 →
p2 + iε, so that for real values of p above the mass gap, p > mg, δF is
computed in the physical sheet as δF = −iR, where R is given by Eq. (70).
Finally, note that for the choice of U ′′0 = k, middle and right panels, no
Dirac delta function appears in the corresponding spectral functions.

5.2. The radion spectrum

In order to compute the spectrum of the radion, we have to solve the
EoM of Eq. (94). The general solution of this equation is

F (y) = C1F · (ys − y)
3
2
∆−F + C2F · (ys − y)

3
2
∆+
F , y < ys . (108)

The wave function is subject to the following boundary condition in the UV
brane and jumping conditions in the IR brane

CUV(p) ≡ F ′(y)

F (y)

∣∣∣∣∣
y=0

−

(
1

3
κ2W (φ(y))− 2p2e2A(y)

U ′′0 (φ(y))

)∣∣∣∣∣
y=0

= 0 , (109)

∆F (y1) = 0 , ∆F ′(y1) = 0 , (110)

as well as regularity in the IR, which demands that C1F = 0. The integration
constant C2F can be fixed by normalization of the wave function as we will
see below. Notice that the wave function of Eq. (108) fulfills by construction
the IR brane conditions, but it remains the UV boundary condition which is
fulfilled only for certain values of the momentum. The zeros of the function
CUV(p) will then lead to the spectrum of the radion. From an explicit
computation of CUV(p), the result for this function turns out to be

CUV(p) = 1/GF (y0, y0; p) , (111)

where the explicit expression of the UV-to-UV Green’s function is given by
Eq. (101). Then, we conclude that the radion spectrum contains a single
bound state corresponding to the pole of the Green’s function, and hence
to the zero of the function Φ(mF ). The squared mass of this state is given
by Eq. (107), and exists only for values 0 ≤ U ′′0 /ρ ≤ 9. Notice also that the
function CUV(p) in the regime p � ρ behaves as CUV(p) = −2ρ + O(p2) ,
which is non-vanishing. This implies that the UV boundary condition is not
fulfilled in this limit, and hence there is no massless mode for the radion.
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Finally, the wave function can be normalized to
ys∫

0

dy e−2A(y)|F (y)|2 = ys (112)

leading to
F (y) =

√
3δF e

3
2
A(y)(1−δF ) , (113)

with the value δF = (−U ′′0 /ρ + [(U ′′0 /ρ− 2)2 + 32]1/2)/6. This result for
the normalized wave function is displayed in the right panel of Fig. 6. No-
tice that the radion is mostly localized toward the IR brane, as F (y) is a
monotonically increasing function and divergent in the limit y → ys. The
localization is controlled by U ′′0 , so that the effect becomes more important
for U ′′0 /ρ→ 9, while in the opposite limit, U ′′0 /ρ→ 0, the radion wave func-
tion becomes flat, as it should as the interval distance is not stabilized in
that case.

5.3. Coupling to the SM fields

The coupling of the radion to the SM fields, localized on the IR brane,
is with the trace of the energy-momentum tensor

L4D = − 1
√

2M
3/2
5

F (x, y1)T , T ≡ trTµν(x, y1) . (114)

This gives rise, upon integration of the radion continuum, to the EFT La-
grangian with dimension eight operators as

LEFT = cF (y1)OF , OF = T 2 , (115)

where the Wilson coefficient cF (y1) is equal to

cF (y1) ' −1

6

1

ρ4
. (116)

The dimension eight operator T 2 gives rise to a subset of the operators
in Eqs. (86), (90) and (91), in particular to OS1 , with corresponding Wilson
coefficient fS1 = −2/3.

Similarly to the case of the graviton continuum, the operator OS1 gives
rise to the observable T as

αT =
1

4π2
(mW /ρ)4 (1 + c2

W

) s2
W

c2
W

log(ρ/mW ) , (117)

which is αT . 10−5 (10−6) for ρ & 500 GeV (1 TeV), and thus harmless for
electroweak observables.
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As for the high-energy constraints the analysis is similar to that per-
formed for the case of the graviton continuum, including the violation of
unitarity in gauge boson scattering processes. Similarly, the isolated radion
light mode also couples to the SM and its phenomenology depends on a large
extent on its mass which, as we have seen is a function of the parameter U ′′0 .
A detailed analysis of its phenomenology is beyond the scope of the present
paper and will be done elsewhere.

6. Conclusions

Theories with a warped extra dimension, relating the 5D Planck scale
and the electroweak scale by the warp factor, are among the best candidates
to solve the hierarchy problem. In view of the strong constraints from the
LHC direct searches of isolated narrow resonances, a possible solution to
alleviate the experimental tension could be held in theories where the KK
spectrum is a continuum, as no bump in cross sections should appear, but
only indirect deviations from the Standard Model predictions.

Linear dilaton models have recently received a lot of attention, as their
UV completion is a type II string theory, where non-Abelian gauge interac-
tions arise non-perturbatively localized on stacks of NS5-branes, with gauge
coupling geometrically determined by moduli of the 5-branes where they are
confined, and thus independent of the value of the string coupling gs. This
allows to have string scalesMs much smaller than the 4D Planck mass. This
theory, in the decoupling limit gs → 0, is described by the Little String The-
ory, a string theory where gravity decouples. From the bottom-up approach,
dilaton models arise from a 5D model with a warped extra dimension and a
critical bulk potential, in terms of the stabilizing field, given by V (φ̄) ∝ e2φ̄,
see Eq. (12). In proper coordinates y, the metric has a naked singularity at
a finite value ys = 1/|ρ|, which corresponds in conformal coordinates z to
the limit zs →∞.

For ρ < 0, one has to introduce an interval between two boundaries, at
the UV (y = 0) and at the IR (y = y1 < ys), with a Z2 orbifold symmetry,
and the theory has a discrete spectrum. In this case, the string scale is of
the order of the TeV scale, and the length of the interval is dictated by the
4D Planck scale, so that the SM fields are in the UV brane, the hierarchy
problem is entirely solved by the string theory and the string coupling is
tiny, gs ∼ 10−15. For ρ > 0 (which is the case studied in this paper), one
can consider the interval between the UV boundary and the singularity at
ys = 1/ρ, and the theory spectrum is a continuum with a mass gap of the
order of ρ. The string scale is at an intermediate value, Ms ∼ 10−5MPl, and
the string coupling is small but larger than for the previous case, gs ∼ 10−5.
In this theory, the SM cannot propagate in the bulk of the extra dimension,
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so we have introduced a brane, the IR or SM brane, where the SM fields are
localized. We dub this theory the continuum linear dilaton model. In this
theory, the hierarchy problem is partly solved by the string theory, which
should provide the hierarchy between MPl and Ms, i.e. the explanation of
the size of gs, and by the warped extra-dimensional theory, which explains
the hierarchy between Ms and the TeV scale.

We have considered the graviton and radion sectors in the bulk of the
continuum linear dilaton model. We have worked out the general Green’s
functions and spectral functions for both. For the graviton, the spectrum is
a continuum of KK modes with a mass gap equal to mg = 3ρ/2, and an iso-
lated massless pole which corresponds to the 4D graviton. For the radion,
the spectrum is also a continuum of KK modes with the mass gap equal
to mg, and an isolated pole with a mass below mg and whose value is con-
trolled by the Goldberger–Wise potential in the UV brane, which determines
the total length of the interval. Integrating out the continuum of states, for
both the graviton and radion fields, gives rise to dimension eight operators
which should contribute to the effective field theory below the mass gap.
These dimension eight operators give rise to anomalous quartic gauge cou-
plings, which contribute to the low-energy electroweak observables, and to
high-energy unitarity violations in, e.g., longitudinal vector boson scattering
amplitudes. There is a wide literature on the subject and the results in these
models can easily be (and have been) adapted to them.

Moreover, the model can have, depending on the UV brane potential
parameters, a light radion/dilaton in which case, after integration of the
continuum of KK modes, it remains as the only light state on top of the
SM ones. The wave function of the radion is strongly localized toward the
IR, so one expects its couplings with the SM fields could be sizable. In this
respect this is similar to conventional Randall–Sundrum models, so that
the phenomenology of such a state is expected to follow similar lines. A
more phenomenological analysis of the light dilaton in the continuum linear
dilaton model is beyond the scope of the present paper and we postpone it
for a future publication.
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