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Abstract: The doubly stochastic mechanism generating the realizations of spatial log-Gaussian
Cox processes is empirically assessed in terms of generalized entropy, divergence and complexity
measures. The aim is to characterize the contribution to stochasticity from the two phases involved,
in relation to the transfer of information from the intensity field to the resulting point pattern, as
well as regarding their marginal random structure. A number of scenarios are explored regarding
the Matérn model for the covariance of the underlying log-intensity random field. Sensitivity with
respect to varying values of the model parameters, as well as of the deformation parameters involved
in the generalized informational measures, is analyzed on the basis of regular lattice partitionings.
Both a marginal global assessment based on entropy and complexity measures, and a joint local
assessment based on divergence and relative complexity measures, are addressed. A Poisson process
and a log-Gaussian Cox process with white noise intensity, the first providing an upper bound for
entropy, are considered as reference cases. Differences regarding the transfer of structural information
from the intensity field to the subsequently generated point patterns, reflected by entropy, divergence
and complexity estimates, are discussed according to the specifications considered. In particular,
the magnitude of the decrease in marginal entropy estimates between the intensity random fields
and the corresponding point patterns quantitatively discriminates the global effect of the additional
source of variability involved in the second phase of the double stochasticity.

Keywords: complexity; divergence; entropy; information transfer; spatial log-Gaussian Cox process

1. Introduction

Log-Gaussian Cox processes define a class of doubly stochastic Poisson processes [1]
where the Gaussian intensity-generating function is transformed through exponentiation.
These processes (see [2] for a formal definition and properties of log-Gaussian Cox pro-
cesses) allow the generation of point patterns through a stochastic two-step procedure,
where the clustering structure observed in the pattern is due to the inclusion of random
heterogeneities in the intensity function. The first applications of these processes are at-
tributed to Coles and Jones [3], who used a log-normal random field as a model of galaxies
distribution, and Rathbun [4], who modeled the effect of external variables to describe the
patterns formed by the location of organisms. Cox process models fit naturally into the geo-
sciences and ecology fields [5] as the resulting point processes are considered to be driven
by environmental variables. There are also contributions in the context of epidemiology [6],
ecology [7,8], crime data analysis [9] and seismology [10], among others.

The structural properties of random fields and point patterns can be characterized by
means of informational and complexity measures. The concept of entropy, first defined in
the context of Information Theory by Shannon [11], and generalized by Rényi [12], as the
uncertainty contained in a probability distribution, can be used to quantify the degree of in-
homogeneity of each phase of the process. Other informational measures, such as Kullback–
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Leibler divergence [13] and the corresponding generalization proposed by Rényi [12], are
useful to determine the probabilistic local coherence of the phases in the sense of the struc-
tural information transferred from the intensity field to the point pattern. A similar analysis
can be performed in the context of complexity—for instance, with López-Ruiz, Mancini and
Calbet (LMC) measure of complexity [14]. The exponential extension of LMC complexity
proposed in [15], although originally introduced to solve the problems that arise for contin-
uous distributions, is also appropriate in the discrete case as it can be interpreted in terms of
diversity [16,17]. A related two-parameter generalization, in terms of Rényi entropies of
different deformation orders, was formulated by López-Ruiz et al. [18]. Under a similar
product-type structure, the two-parameter generalized relative complexity measure in-
troduced by Romera et al. [19], based on Rényi divergences, is used here to describe the
local coherence in terms of complexity between the two phases of the doubly stochastic
process mechanism.

In the last few decades, since Papangelou’s [20] work defining the entropy rate for
continuous point processes in the real line, many other studies have introduced theoretical
concepts in the context of Information Theory and complexity for the analysis of point pro-
cesses. Baratpour et al. [21] assessed the properties of non-homogeneous Poisson processes
in terms of entropy; Daley and Vere-Jones [22] extended the definition of entropy for a
point process in a d-dimensional space, and more recently, Angulo et al. [16] introduced
approaches to the analysis of spatial point patterns regarding informational and complexity
aspects and focusing on a multifractal context. However, to our knowledge, complexity and
information transfer between the two phases of generation of log-Gaussian Cox processes
has not been explored.

Many natural phenomena can be modeled by using the family of log-Gaussian Cox
processes as the two phases of stochasticity allow us to fit point processes driven, in many
cases, by environmental variables. When there is no random field involved, and thus only
one phase is considered, we obtain, as a particular case, the family of inhomogeneous
Poisson processes. There is a major fundamental difference between these two families
and some classical second-order measures cannot clearly distinguish between them. The
approach introduced here more deeply considers the system stochastic hierarchical struc-
ture, disentangling the two-phase mechanism and analyzing the internal transmission
of information, thus highlighting the differences between both types of families. This
has a potential effect on a number of applications. For instance, when the point pattern
observed is driven in nature by some external environmental variables, this analytical
perspective is useful for the assessment of the information that these covariates transfer
into the pattern observed. This has immediate applications in crime science, forestry or
environmental problems.

We would emphasize at this point that our approach is parallel—complementary, in a
certain sense—to a more classical analysis of spatial point patterns based on second-order
tools. While, from the latter point of view, we try to detect spatial structure in the pattern,
in the novel, former approach, we envisage structural information and its transmission
through the different phases defining these processes.

In summary, the main objective of this paper is to analyze the structural transfer of
information from the intensity random field to the subsequently generated point pattern in
a log-Gaussian Cox process. A marginal global assessment is performed in terms of entropy
and complexity measures, and, complementarily, local correspondence is evaluated based
on divergence and relative complexity measures. The study, addressed by simulation
under a variety of selected scenarios, is primarily focused on sensitivity in relation to the
configuration of model parameters, as well as concerning the specification of deformation
parameters involved in generalized informational measures.

Section 2 introduces preliminary concepts, both in reference to the class of Cox pro-
cesses, the object of the present study, and to the information and complexity measures
used for structural assessment. The methodological approach and related computational
aspects are described in Section 3. The results of the marginal approach and related joint
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analyses, based on the estimation of information and complexity measures from simu-
lation of the doubly stochastic mechanism, are presented in Section 4, highlighting the
most significant aspects. A synthetic discussion in reference to the objectives proposed is
provided in Section 5. Concluding remarks, with identification of some relevant open lines
for continuing research, are given in Section 6.

2. Preliminaries

In this section, we present a summary of the theoretical concepts involved in our
analysis. First, we refer to the class of spatial doubly stochastic Poisson processes. Second,
we review the definitions and basic properties of some well-known information measures,
as well as related complexity measures developed in the last few decades.

2.1. Log-Gaussian Cox Processes

Cox processes [2], called doubly stochastic Poisson processes, constitute an important
class of spatial point pattern models useful for the representation of a rich variety of
structural point dependency effects. In essence, a Cox process can be defined as a Poisson
process with a random intensity function, which can be technically formalized in terms of
a hierarchical two-step procedure: first, a non-negative random field Λ(x) is generated on
a given continuous domain D ⊆ R2; second, for the obtained realization λ(x), a Poisson
process with intensity function λ(x) is built. For Λ(x) to be valid, it is required that each
realization is integrable on bounded sets. This mechanism allows the incorporation of
heterogeneities of an intrinsic random nature at the intensity level. Cox processes are
widely used in practice due to their meaningful and practical construction.

In many applications, it is appropriate to assume that the intensity generating random
field can be modeled as a suitable function of a Gaussian random field. Since the probabilis-
tic structure can be completely specified in terms of the first- and second-order moments of
the latter, consequently, this assumption represents some advantages regarding inferential
aspects and interpretations.

Under this approach, research has been particularly focused on the class of log-
Gaussian Cox processes, for which the intensity-generating random function is defined as

Λ(x) = exp(G(x)),

where G(x) is a Gaussian random field, with the first- and second-order moments expressed,
respectively, as

µ(x) = E[G(x)],

C(x, y) = Cov(G(x), G(y)) = E[G(x)G(y)]− µ(x)µ(y).

In this paper, the widely used Matérn class [23–26] is considered as the covariance
model for the intensity-generating Gaussian random field, due to its high flexibility and
richness for the representation of a wide variety of stationary spatial dependence scenarios.

This model is defined by the homogeneous and isotropic covariance function

K(r) =
σ2

2ν−1Γ(ν)

(
2ν1/2r

ρ

)ν

Kν

(
2ν1/2r

ρ

)
,

where Kν is the modified Bessel function of the second kind, σ2 ≥ 0 is the variance of
the Gaussian random field, and ν > 0 and ρ > 0, respectively, represent smoothness and
scale parameters.

2.2. Information and Complexity

Information Theory arose in the context of Communication Theory for solving the
emerging problems in message transmission through noisy channels. Based on the seminal
concept of ‘information content’ introduced by Hartley [27], as a measure of the amount
of information provided by the knowledge of the state in a finite system, Shannon [11]
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formulated ‘entropy’ (or ‘information entropy’) as a measure of the uncertainty intrinsic to
a given discrete probability distribution, p = (p1, . . . , pN), in terms of the expectation

H(p) := −E[ln(p)] = −
N

∑
i=1

pi ln(pi)

(i.e., the expected information content). Shannon entropy is maximum for a system con-
sisting of N equiprobable states, with Hmax = ln N. The reciprocal value given by the
difference Hmax − H(p), generally normalized dividing by Hmax, is interpreted as ‘redun-
dancy’ ([11]).

Among various well-known generalizations, formally derived by a certain relaxation
of the intrinsic axiomatic, Rényi [12] entropy of order α (with α being a ‘deformation
parameter’ on the probability distribution p) is defined by the expression

Hα(p) :=
1

1− α
ln

(
N

∑
i=1

pα
i

)
=

1
1− α

ln
(

E[pα−1]
)

(α 6= 1).

This entropy is a decreasing function of the order α, and Shannon entropy is obtained
as the limiting case for α→ 1 (hence being also denoted as H1(p)). Rényi entropy is also
maximum, for any α, in the case of equiprobability, again with Hα,max = ln N. Correspond-
ingly, the difference Hmax − H(p), or its normalization dividing by Hmax, is interpreted as
‘redundancy of order α’. The exponential of Rényi entropy (in particular, Shannon entropy)
can be seen as a ‘diversity index of order α’ representing, in a certain sense, the intrinsic
number of states of the system according to the reference distribution ([17]).

The meaning and added value of Rényi entropy with respect to Shannon entropy is
better understood in relation to the α-power distortion implied on the argument distri-
bution. In particular, for α > 1, in a non-equilibrium distribution, increasing values of α
tend to lead to higher probabilities, in a sensitive way that depends on the whole internal
structure of the distribution. Conversely, for α < 1, decreasing α tends to equilibrate, in
a certain way, as mentioned before, the reference distribution. Thus, the curve of Rényi
entropies can be used for assessing and comparing systems that even may have equal
Shannon entropy.

Another important concept for the structural assessment of a random system is com-
plexity, which, among other approaches introduced in the literature, has been specifically
understood, in a probabilistic informational sense, as a departure from both degeneracy
into one single state (‘perfect order’) and equiprobability (‘complete disorder’). In this di-
rection, López-Ruiz et al. [14] proposed the following formulation of a complexity measure
(usually referred to as the ‘LMC complexity’): for a given discrete probability distribution p,

CLMC(p) = H(p) · D(p),

with the first factor being the Shannon entropy and the second one representing the
disequilibrium defined as the quadratic distance

D(p) =
N

∑
i=1

(
pi −

1
N

)2
.

We may remark at this point that, as occurs with most proposals of complexity
measures, the widely used product-type formalism, and particularly the LMC complexity
measure, has certain inherent limitations, and its interpretation as a quantifier of some
specific aspects within the broad and multidimensional concept of ‘complexity’ must be
restricted to the relative balance between the two factors involved (see, for instance, the
critical discussion by [28]).

For the case of continuous probability distributions, Catalán et al. [15] proposed a
modified ‘exponential’ version of the LMC complexity (in the sense that Shannon entropy is
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replaced with its exponential), which was the basis for the formulation of a two-parameter
generalized complexity measure, proposed later by López-Ruiz et al. [18]. In fact, the latter
is perfectly meaningful also in the discrete case (see [16], for instance, in relation to [17]
diversity index), for which it takes the form

Cα,β(p) := eHα(p)−Hβ(p), with 0 < α, β < ∞. (1)

Therefore, this complexity measure quantifies, in the exponential scale (interpreted
as diversity, as mentioned before), the sensitivity of the argument distribution to power
distortion in terms of the increments of the Rényi entropy curve between two given values,
α and β, of the deformation parameter. A comprehensive display is usually given in the
form of an (α, β)-map, for selected deformation parameter ranges.

While entropy and complexity measures enable a comparison in global terms
(marginally) of two given probability distributions, a proper assessment of their struc-
tural (state by-state) dissimilarity, or lack of mutual coherence, is achieved by means of
divergence and relative complexity measures. For two given probability distributions
p = (p1, . . . , pN) and q = (q1, . . . , qN) on a system with N possible states, Kullback and
Leibler [13] defined the divergence of p from q as

KL(p‖q) :=
N

∑
i=1

pi ln
(

pi
qi

)
= Ep

[
ln
(

p
q

)]
.

This is a non-symmetric (‘directed’), non-negative measure, vanishing if and only if
p = q. A corresponding generalization based on a ‘deformation parameter’ is also given
by Rényi [12] divergence of order α of p from q, defined as

Hα(p‖q) :=
1

α− 1
ln

(
N

∑
i=1

pi

(
pi
qi

)α−1
)

=
1

α− 1
ln

(
Ep

[(
p
q

)α−1
])

(α 6= 1).

For fixed argument distributions, Rényi divergence is a non-decreasing function
of the deformation parameter. For α → 1, Hα(p‖q) tends to KL(p‖q) (hence with the
latter being also denoted as H1(p‖q)). The exponential of Rényi divergence (in particular,
Kullback–Leibler divergence) can be interpreted as a ‘relative diversity index of order α’
(see [16]).

In the special case of the divergence of order α from equiprobability, i.e., with q ≡
[

1
N

]
,

its value can be calculated as

Hα(p‖
[

1
N

]
) = Hα,max − Hα(p) = ln N − Hα(p),

hence being known as the ‘information difference’ of order α for p.
A divergence-based formulation of a product-type generalized relative complexity

measure was introduced for continuous distributions by Romera et al. [19]. In the discrete
case, it takes the form (see Angulo et al. [16], in relation to a concept of ‘relative diversity’)

Cα,β(p‖q) := eHα(p‖q)−Hβ(p‖q), with 0 < α, β < ∞. (2)

In particular, for q ≡
[

1
N

]
, the generalized complexity and relative complexity mea-

sures (1) and (2) are reciprocal in the following sense:

Cα,β(p‖
[

1
N

]
) =

1
Cα,β(p)

= Cβ,α(p).
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Both for Rényi divergence and generalized relative complexity, the implications of
the deformation parameter are directly related (similarly as mentioned for the cases of
Rényi entropy and generalized complexity) to the power distortion effect derived on the
two distributions involved; that is, the curve of Rényi divergences, and the corresponding
map of generalized relative complexities, provide information about the sensitivity of
divergence (as the directed distance between two distributions on a given system), or
relative diversity in the exponential scale, for different parameter deformation values.

A synthetic review, providing connective relations and interpretation of the above-
summarized information complexity concepts, is given by Angulo et al. [16].

3. Methodology

As mentioned in Section 1, the analysis is aimed at characterizing, both in a global
(marginal) and a local sense, the information transfer from the intensity field to the point
pattern. To this end, an empirical approach based on the lattice box-counting methodology
is adopted.

Formally, the analysis is based on the simulation of log-Gaussian Cox processes for
different scenarios, under different varying configurations of the covariance function and
mean parameters of the intensity-generating Gaussian random field; see details in Table 1.
For each specific configuration, in the first stage, M independent replicates of the intensity
field are simulated on the square D = [0, 10]2, based on a 180× 180 pixel window. From
each realization, in the second stage, one or multiple point patterns are independently
generated, as discussed below according to the objective of the analysis.

Table 1. Parameter configurations for the scenarios considered in the analysis.

Variable Parameters Fixed Parameters

Scenario 1 σ = [0, 0.25, ..., 5] ν = 1 ρ = 1 µ = 0
Scenario 2 µ = [0, 0.2, ..., 4] σ = 1 ν = 1 ρ = 1
Scenario 3 ν = [0.25, 0.375, ..., 2.75] σ = 1 ρ = 1 µ = 0
Scenario 4 ρ = [1, 1.5, ..., 11] σ = 1 ν = 1 µ = 0

For assessment, the information complexity measures are applied considering, in
particular, a 10× 10 lattice overlaid on the domain D. The choice of this lattice resolution
has been experimentally established with the aim of preserving a certain balance based
on the cell size fixed, being large enough to reflect a spatial distribution coherent with the
point pattern structure and, at the same time, adequately small regarding the smoothing
effect derived on the intensity field realization (see, for example, Figure 1).

Figure 1. Example of quadrat-based counts of a point pattern.
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Each intensity realization, λ[m] (for m = 1, . . . , M), is converted to a quadrat-based
(‘raster’) mean intensity field by averaging its values within each cell (as displayed in
Figure 2), and further transformed by normalization into a discrete probability distribution,
denoted as q[m] = (q[m]i,j : i, j = 1, . . . , 10), hence representing the relative intensity
for the quadrat design adopted; in the study performed here and in Section 4, we take
M = 100. As for the point patterns, the relative frequencies obtained from intra-cell event
counting provide the quadrat-based reference discrete probability distribution, denoted
as p[m] = (p[m]i,j : i, j = 1, . . . , 10) for just one correspondingly generated pattern, or
p[m; r] = (p[m; r]i,j : i, j = 1, . . . , 10), with r = 1, . . . , R, in the case of multiple patterns.

Figure 2. Example of intensity field realization (left) and derived mean intensity raster (right).

Entropy (Shannon, Rényi) and complexity (LMC, generalized) measures are marginally
evaluated on the related probability distributions derived, for the assessment regarding the
characterization and global transfer of information between the two phases of stochasticity.
In particular, according to the scenarios considered, the analysis of results is focused on
sensitivity with respect to variations in the model and deformation parameters.

Additionally, the degree of local (cell-based) coherence between the distributions
corresponding to the two phases is analyzed on the basis of divergence (Kullback–Leibler,
Rényi) and relative complexity (generalized) measures.

The K-function plots displayed in Figure 3 show the effect of diverse settings of
the covariance parameters in the spatial correlation of each pattern. Analysis based on
information complexity measures is expected to reflect, according to model specifications,
significant structural features in the internal hierarchical construction of the processes.
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(a) K-function with fixed parameter values σ2 = 2.5,
ν = 1, ρ = 1 and µ = 0.

(b) K-function with fixed parameter values σ2 = 1,
ν = 1, ρ = 1 and µ = 2.

(c) K-function with fixed parameter values σ2 = 1,
ν = 1.5, ρ = 1 and µ = 0.

(d) K-function with fixed parameter values σ2 = 1,
ν = 1, ρ = 6 and µ = 0.

Figure 3. K-function of 100 point patterns of log-Gaussian Cox processes generated under different scenarios.

As mentioned, from each simulation of the intensity field, either one or multiple
independent point pattern replicates can be analyzed. The second strategy specifically
seeks to discriminate the relative contribution from the two phases of stochasticity to the
structural variability of the process. For a preliminary assessment regarding this issue,
R = 100 independent patterns are generated from each one of M = 100 replicates of
the intensity random field (hence having in total M× R = 10, 000 patterns), for varying
values of the variance parameter according to Scenario 1 (see Table 1). Different standard
deviation values of Shannon entropy and Kullback–Leibler divergence, summarized in
Tables 2 and 3, respectively, are computed for comparison as follows:

• ‘Mean Intra SD’—The average of the internal standard deviations of the entropy and
divergence values obtained within each of the M sets of R point patterns:

Ave
(m)

(
SD
(r)

(H(p[m; r]))
)

, Ave
(m)

(
SD
(r)

(KL(p[m; r]‖q[m]))

)
• ‘Inter-Mean SD’—The standard deviation of the internal average entropy and diver-

gence values obtained within each of the M sets of point patterns:

SD
(m)

(
Ave
(r)

(H(p[m; r]))
)

, SD
(m)

(
Ave
(r)

(KL(p[m; r]‖q[m]))

)
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• ‘Total SD’—The standard deviation of the entropy and divergence values obtained for
the M× R patterns:

SD
(m,r)

(H(p[m; r])), SD
(m,r)

(KL(p[m; r]‖q[m]))

• ‘Inter-Single SD’—The standard deviation of entropy and divergence values based
on only one single pattern being generated from each of the M replicates of the
intensity field:

SD
(m)

(H(p[m])), SD
(m)

(KL(p[m]‖q[m]))

(In the expressions above, ‘Ave’ and ’SD’ denote the usual basic operations given, for a
generic set of real numbers {xl : l = 1, . . . , L}, by Ave

(l)
(xl) = 1

L ∑L
l=1 xl and

SD
(l)

(xl) =

{
1
L ∑L

l=1

(
xl −Ave

(l′)
(xl′)

)2
} 1

2

. Clearly, in the special case where R = 1, the

‘Mean Intra SD’ is null and the three remaining quantities, ‘Inter-Mean SD’, ‘Total SD’ and
‘Inter-Single SD’, become equivalent.)

In general terms, comparing the results for ‘Total SD’ and ‘Inter-Single SD’, we can see
that the total variability of the entropy and divergence measures obtained from multiple
patterns can be well captured with just a single pattern generated from each realization of
the intensity field. Therefore, in the analyses performed in Section 4, we simulate patterns
without replicates.

Nevertheless, from the ‘inter-intra’ analysis based on multiple replicates, it is interest-
ing to observe that, as the variance parameter σ2 increases, the average internal variability
of entropy and divergence values for the patterns derived from each intensity realization
progressively decreases compared to a significant increase in the corresponding variability
for the intra-averaged entropy values, and a more stable behavior for the divergence values.
This is also visualized in the 95% confidence-level bands in the curves represented in the
plots of Figures 4 and 5, respectively, for the mean entropy and mean divergence values
obtained with and without multiple replicates.

With the aim of providing a benchmark case, 100 independent realizations of a homo-
geneous Poisson process with constant intensity λ = 10, and similarly for a log-Gaussian
Cox process with (pixel-based) white noise intensity, are simulated and analyzed. In the
second case, the intensity generating the Gaussian random field has a local normal distri-
bution with mean µ = 0 and variance σ2 = 2 ln 10, generating an average intensity close
to 10. These cases result in patterns with low structuring, establishing certain upper and
lower bounds for entropy and complexity, respectively.

The study is carried out using R software—in particular, the spastat and RandomFields
packages for simulating the processes using the rLGCP function. The raster package is
used for discretization of the intensity random field.



Entropy 2021, 23, 1135 10 of 24

Table 2. Table of ‘Inter-Intra’ standard deviations of Shannon entropy for point patterns generated under Scenario 1, with
multiple and single replicates.

Parameter Value

Shannon Entropy SD

Multiple Patterns Single Pattern

Mean Intra SD Inter-Mean SD Total SD Inter-Single SD

σ2 = 0 0.0782 0.0076 0.0784 0.0820
σ2 = 0.25 0.0765 0.0552 0.0943 0.0914
σ2 = 0.5 0.0737 0.0607 0.0954 0.0911

σ2 = 0.75 0.0749 0.0849 0.1133 0.1245
σ2 = 1 0.0733 0.0966 0.1211 0.1279

σ2 = 1.25 0.0743 0.1127 0.1349 0.1364
σ2 = 1.5 0.0709 0.1497 0.1654 0.2081

σ2 = 1.75 0.0702 0.1590 0.1734 0.1767
σ2 = 2 0.0685 0.1432 0.1584 0.2025

σ2 = 2.25 0.0695 0.1856 0.1977 0.2141
σ2 = 2.5 0.0650 0.2227 0.2312 0.2758

σ2 = 2.75 0.0619 0.2187 0.2266 0.3048
σ2 = 3 0.0607 0.3478 0.3516 0.2188

σ2 = 3.25 0.0625 0.2711 0.2774 0.2982
σ2 = 3.5 0.0574 0.3561 0.3591 0.2585

σ2 = 3.75 0.0560 0.2575 0.2627 0.2949
σ2 = 4 0.0516 0.3702 0.3722 0.3422

σ2 = 4.25 0.0519 0.3046 0.3079 0.4179
σ2 = 4.5 0.0495 0.4012 0.4025 0.3855

σ2 = 4.75 0.0493 0.3999 0.4013 0.3825
σ2 = 5 0.0471 0.3920 0.3131 0.4212

Table 3. Table of ‘Inter-Intra’ standard deviations of Kullback–Leibler divergence for point patterns generated under
Scenario 1, with multiple and single replicates.

Parameter Value

Kullback–Leibler Divergence SD

Multiple Patterns Single Pattern

Mean Intra SD Inter-Mean SD Total SD Inter-Single SD

σ2 = 0 0.0782 0.0076 0.0784 0.0820
σ2 = 0.25 0.0698 0.0561 0.0895 0.0911
σ2 = 0.5 0.0600 0.0707 0.0927 0.0912

σ2 = 0.75 0.0532 0.0717 0.0894 0.0892
σ2 = 1 0.0469 0.0655 0.0807 0.1051

σ2 = 1.25 0.0429 0.0806 0.0917 0.1064
σ2 = 1.5 0.0358 0.0778 0.0860 0.0865

σ2 = 1.75 0.0326 0.0749 0.0820 0.0767
σ2 = 2 0.0290 0.0666 0.0729 0.0914

σ2 = 2.25 0.0282 0.0812 0.0863 0.0686
σ2 = 2.5 0.0249 0.0788 0.0830 0.0759

σ2 = 2.75 0.0201 0.0716 0.0746 0.0696
σ2 = 3 0.0184 0.0632 0.0661 0.0649

σ2 = 3.25 0.0177 0.0598 0.0626 0.0638
σ2 = 3.5 0.0150 0.0491 0.0516 0.0512

σ2 = 3.75 0.0143 0.0530 0.0551 0.0574
σ2 = 4 0.0117 0.0493 0.0510 0.0572

σ2 = 4.25 0.0116 0.0490 0.0505 0.0575
σ2 = 4.5 0.0100 0.0370 0.0384 0.0567

σ2 = 4.75 0.0103 0.0543 0.0556 0.0387
σ2 = 5 0.0088 0.0384 0.0396 0.0428
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Figure 4. Mean Shannon entropy values for point patterns obtained with 100 replicates (left) and with only one generation
(right) from each intensity random field realization.

Figure 5. Mean Kullback–Leibler divergence values for point patterns obtained with 100 replicates (left) and with only one
generation (right) from each intensity random field realization.

4. Analysis
4.1. Weak Structure Reference Processes

Due to the trivial structure of the reference homogeneous and white noise intensity-
based Poisson processes, significant inhibition or aggregation effects are not expected to
be observed in the pattern realizations, i.e., points should be mostly evenly distributed
throughout the spatial domain; as a consequence, Shannon and Rényi entropies
(Figures 6 and 7) take high values, still showing a certain global gain in structuring,
slightly increased in the white noise intensity case. Obviously, as the intensity field is
constant for the homogeneous Poisson process, its quadrat-based distribution is perfectly
uniform and entropy reaches the maximum possible value Hα,max = ln(102) = 4.60517, for
all α, whilst the entropy of the quadrat-based distribution for the white noise intensity is
always close to this maximum.

On the other hand, the LMC complexity of the pattern realizations, in both cases, is
close to the minimum value 0; see Figure 8. This is expected since H ∼ Hmax and D ∼ 0.
However, in terms of this complexity measure, the pattern structuring is still slightly higher
in the white noise intensity case.

The structuring effect from the additional source of variability present in the generation
of the point patterns is also assessed by the local discrepancies measured between the point
pattern and intensity quadrat-based distributions, as shown in Figure 9 for Kullback–Leibler
divergence, Figure 10 for Rényi divergence, and Figure 11 in terms of the generalized
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relative complexity. The initial variability present in the white noise intensity field is
reflected as well in the generation of the patterns.

Figure 6. Shannon entropy of 100 point patterns and their generating intensity field, with constant λ = 10 (left) and with
white noise-based intensity (right).

Figure 7. Rényi entropy of 100 point patterns and their generating intensity field, with constant λ = 10 (left) and with
white noise-based intensity (right).

Figure 8. LMC complexity of 100 point patterns and their generating intensity field, with constant λ = 10 (left) and with
white noise-based intensity (right).
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Figure 9. Kullback–Leibler divergence between 100 point patterns and their generating intensity
field, with constant λ = 10 (red) and with white noise-based intensity (blue).

Figure 10. Rényi divergence between 100 point patterns and their generating intensity field, with constant λ = 10 (left)
and with white noise-based intensity (right).
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Figure 11. Generalized relative complexity between 100 point patterns and their generating intensity field, with constant
λ = 10 (left) and with white noise-based intensity (right).

4.2. Marginal Analysis

The behavior of entropy is highly influenced by the isolated variation in each parame-
ter. The increase in the variance parameter results in clusters with a high concentration
of points, which implies a decrease in entropy values as the distributions move further
away from equiprobability (Figure 12a). Large values of the variance parameter increase
the local variability in the magnitude of clustering.

The increase in the mean parameter is reflected in a larger mean intensity of the
process, which results in an exponential increase in the mean number of points in the
pattern. As a result, while the entropy values of the quadrat-based probability distribution
from the intensity field essentially remain at a constant level below Hmax (related to the
specification of a fixed variance σ2 = 1), the entropy values for the corresponding patterns
progressively tend to increase from below this level (Figure 12b).

The ν parameter controls the differentiability of the intensity field and determines its
smoothness. In Figure 12c, the entropies of the two phases of the processes show a slight
gradual decrease as the parameter increases, while the differences between them remain
steady. This is partly influenced by the adopted box size, taking into account the local
nature of the smoothness effect.

The scale parameter ρ measures the decay of covariance in the intensity field as a
function of the distance. The covariance decays more slowly as ρ increases, which results
in more homogeneous fields, limiting the formation of clusters. As a result, larger values of
entropy are obtained for the intensity fields as the scale parameter increases, whilst, for the
point patterns, we can observe an increase in the variability of the measure (Figure 12d).

The maps of Rényi entropy (Figures 13–16) show the evolution of the global hetero-
geneity in each scenario for different magnitudes of the deformation parameter, which
produces a distortion effect on the probability distributions.
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(a) Shannon Entropy as a function of the variance
parameter (Scenario 1).

(b) Shannon entropy as a function of the mean pa-
rameter (Scenario 2).

(c) Shannon entropy as a function of the smoothness
parameter (Scenario 3).

(d) Shannon entropy as a function of the scale pa-
rameter (Scenario 4).

Figure 12. Shannon entropy as a function of the variance, mean, smoothness and scale parameters.

(a) Point patterns. (b) Random fields.

Figure 13. Rényi entropy of log-Gaussian Cox processes as a function of the variance parameter (Scenario 1) and order
α = {0, ln 5, ln 10, ln 15, ln 20}.
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(a) Point patterns. (b) Random fields.

Figure 14. Rényi entropy of log-Gaussian Cox processes as a function of the mean parameter (Scenario 2) and order
α = {0, ln 5, ln 10, ln 15, ln 20}.

The behavior of the processes in terms of the exponential LMC complexity (Figure 17)
reflects, in general, an increase in structuring from the intensity field to the generated point
pattern (the inversion observed in Figure 17a in relation to the variance parameter is related
to the quadrat-counting procedure and the low mean value specified).

The maps of the generalized complexity (Figure 18) show the structural variation in
each system for different combinations of the deformation parameters α and β.

(a) Point patterns. (b) Random fields.

Figure 15. Rényi entropy of log-Gaussian Cox processes as a function of the smoothness parameter (Scenario 3) and order
α = {0, ln 5, ln 10, ln 15, ln 20}.
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(a) Point patterns. (b) Random fields.

Figure 16. Rényi entropy of log-Gaussian Cox processes as a function of the scale parameter (Scenario 4) and order
α = {0, ln 5, ln 10, ln 15, ln 20}.

(a) Exponential LMC complexity as a function of the
variance parameter (Scenario 1).

(b) Exponential LMC complexity as a function of
the mean parameter (Scenario 2).

(c) Exponential LMC complexity as a function of the
smoothness parameter (Scenario 3).

(d) Exponential LMC complexity as a function of
the scale parameter (Scenario 4).

Figure 17. Exponential LMC complexity as a function of the variance, mean, smoothness and scale parameters.
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4.3. Joint Analysis

In this section, we focus on the divergence-based measures that allow the local com-
parison of two probability distributions in each possible state of the system. In particular,
we aim to compare the distributions of the intensity fields and the point patterns to asses
the state-by-state information transfer, and hence structural contribution, between the
two phases.

As we have seen in the previous section, Shannon entropy for the distributions of
intensity fields and corresponding point patterns in Scenarios 1 and 2 (Figure 12a,b) con-
verges globally as the variance and mean parameter values increase, respectively. The
Kullback–Leibler divergence shows that there exists as well increasing local coherence
in the transfer of information (Figure 19a,b). On the other hand, in Scenario 3, diver-
gence essentially remains steady with respect to changes in the smoothness parameter
(Figure 19c), which suggests that, under the quadrat-based approach adopted, the struc-
tural transfer is not overly sensitive to variations in the smoothness parameter. In Scenario
4, the loss of the structure in the intensities induced by high magnitudes of the scale pa-
rameter increases the stochasticity in the generation of the patterns in the second phase
(Figure 19d).

(a) Generalized complexity with σ2 = 0 (top),
σ2 = 2.5 (center), σ2 = 5 (bottom).

(b) Generalized complexity with µ = 0 (top), µ =

2 (center), µ = 4 (bottom).

Figure 18. Cont.
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(c) Generalized complexity with ν = 0.25 (top),
ν = 1.375 (center), ν = 2.75 (bottom).

(d) Generalized complexity with ρ = 1 (top), ρ =

5.5 (center), ρ = 11 (bottom).

Figure 18. Generalized complexity as a function of deformation parameters α and β (with fixed parameter values according
to each scenario—see Table 1).

(a) Kullback–Leibler divergence as a function of the
variance parameter (Scenario 1).

(b) Kullback–Leibler divergence as a function of the
mean parameter (Scenario 2).

Figure 19. Cont.
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(c) Kullback–Leibler divergence as a function of the
smoothness parameter (Scenario 3).

(d) Kullback–Leibler divergence as a function of the
scale parameter (Scenario 4).

Figure 19. Kullback–Leibler divergence between point patterns and intensity random fields as a function of the variance,
mean, smoothness and scale parameters.

The maps representing the Rényi divergences in Figure 20 allow us to visualize how
the distortion induced by the deformation parameter is reflected in the structural local
departure of the point patterns from the intensity fields. Similarly, those referring to the
generalized relative complexity show the sensitivity of Rényi divergences with respect to
incremental changes in the deformation parameter (Figures 21–24).

(a) Rényi divergence as a function of the vari-
ance parameter (Scenario 1) and order α =

{0, ln 5, ln 10, ln 15, ln 20}.

(b) Rényi divergence as a function of mean
parameter (Scenario 2) and order α =

{0, ln 5, ln 10, ln 15, ln 20}.

Figure 20. Cont.
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(c) Rényi divergence as a function of smooth-
ness parameter (Scenario 3) and order α =

{0, ln 5, ln 10, ln 15, ln 20}.

(d) Rényi divergence as a function of mean
parameter (scenario 4) and order α =

{0, ln 5, ln 10, ln 15, ln 20}.

Figure 20. Rényi divergence between point point patterns and random fields as a function of variance, mean, smoothness
and scale parameters (Scenarios 1–4) and order α = {log 0, log 5, log 10, log 15, log 20}.

Figure 21. Generalized relative complexity as a function of the variance parameter, for σ2 = 0 (left), σ2 = 2.5 (center) and
σ2 = 5 (right) and order α, β ∈ {0, 0.6, 1.2, 1.8, 2.4} (fixed parameters as in Scenario 1).

Figure 22. Generalized relative complexity as a function of the mean parameter µ = 0 (left), µ = 2 (center) and µ = 4
(right) and order α, β ∈ {0, 0.6, 1.2, 1.8, 2.4} (fixed parameters as in Scenario 2).
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Figure 23. Generalized relative complexity as a function of the smoothness parameter ν = 0 (left), ν = 2.5 (center) and
ν = 5 (right) and order α, β ∈ {0, 0.6, 1.2, 1.8, 2.4} (fixed parameters as in Scenario 3).

Figure 24. Generalized relative complexity as a function of the scale parameter ρ = 1 (left), ρ = 5 (center) and ρ = 11 (right)
and order α, β ∈ {0, 0.6, 1.2, 1.8, 2.4} (fixed parameters as in Scenario 4).

5. Discussion

As a result, from the study performed, it can be emphasized that the information
transfer and, in general, the structure of the processes are mainly determined by the values
of the mean, variance and scale parameters. Conversely, the value of the smoothness
parameter does not have a perceptible effect on the structural information transferred
between the phases.

In particular, among other aspects, the analysis shows a significant increase in the
system complexity and a loss of diversity for large magnitudes of the variance parameter
(both marginally, for the intensity field and point pattern). Regarding the local coherence
measured in terms of divergence, we can observe an enlargement of the structural infor-
mation transferred as a result of the increase in the mean and variance parameter values.
On the other hand, the increase in the scale parameter results in the loss of structure of
the intensity field, raising the stochasticity inherent to the pattern generation, with an
associated increase in the divergence between both phases.

6. Conclusions

An assessment focused on the relevance of using entropy, divergence and complexity
measures for the evaluation of the global and local structural information transfer from the
intensity fields to the point patterns of log-Gaussian Cox processes is presented. Maps of
generalized ordinary and relative information complexity measures are derived, showing
the sensitivity of the distributions involved in relation to both stochasticity phases, with
respect to the deformation parameter under different scenarios.

In general terms, and depending on the specific case, the transfer of structural informa-
tion from the intensities to the subsequent point patterns is quantified by the information
and complexity estimates, reflecting as well the contribution of the additional source of
variability involved in the second step.
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Among other relevant lines for continuing research, the study performed motivates
the subsequent formal investigation of several analytical aspects involved in the structural
complexity of log-Gaussian Cox processes. Multifractal Cox processes [29] constitute an
important extension for analysis based on the connection between information complexity
measures and multifractal dimensions [16]. In the spatiotemporal context, implications
with reference to predictive risk evaluation and mapping [30], regarding the informa-
tion complexity characterization of different scenarios, are also under development by
the authors.

A further insight to be considered in future research is quantifying the information
transfer from individual external covariates and providing an inferential framework to
attach significance to this sort of statistical testing. In this paper, we have been restricted
to a descriptive analysis, but the upgrade into the inferential context offers a natural
motivation for the continuation of the study presented. Future developments also include
using and comparing alternative models under the information complexity approach. The
development of a model classification in terms of these measures would be worth exploring.
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