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DAUGAVET PROPERTY IN TENSOR PRODUCT SPACES

ABRAHAM RUEDA ZOCA, PEDRO TRADACETE, AND IGNACIO VILLANUEVA

Abstract. We study the Daugavet property in tensor products of Ba-
nach spaces. We show that L1(µ)⊗̂εL1(ν) has the Daugavet property
when µ and ν are purely non-atomic measures. Also, we show that
X⊗̂πY has the Daugavet property provided X and Y are L1-preduals
with the Daugavet property, in particular spaces of continuous func-
tions with this property. With the same tecniques, we also obtain con-
sequences about roughness in projective tensor products as well as the
Daugavet property of projective symmetric tensor products.

1. Introduction

A Banach space X is said to have the Daugavet property (DP) if every
rank-one operator T : X −→ X satisfies the equation

(1.1) ‖I + T‖ = 1 + ‖T‖,

where I denotes the identity operator. The previous equality is known as
Daugavet equation after I. Daugavet who proved in [10] that every compact
operator on C([0, 1]) satisfies (1.1). Since then, several examples of Banach
spaces enjoying the Daugavet property have appeared such as C(K) for a
compact Hausdorff and perfect topological space K, L1(µ) and L∞(µ) for
a non-atomic measure µ, and the space of Lipschitz functions Lip(M) over
a metrically convex space M (see [16, 19, 29] and the references therein for
details). Moreover, in [19, Lemma 2.1] a characterisation of the Daugavet
property in terms of the geometry of the slices of BX appeared (see below).
This celebrated characterisation opened the door to understanding the many
geometrical interpretations of the DP and has motivated a lot of research
on the Daugavet equation ever since (see for instance [7, 9, 18, 20]).

Once the DP has been understood for the classical Banach spaces, it is
natural to study its stability under different combinations of these spaces.
In this direction, it is important to understand its stability under tensor
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products. Given the preeminent position of the injective (ǫ) and projective
(π) norms as the smallest and largest respectively tensor norms, it becomes
apparent the need to understand the stability of the DP under these norms.
Indeed, in his 2001 survey paper [29], D. Werner posed a list of open prob-
lems related to the Daugavet property. In particular, [29, Section 6, Question
(3)] says:

If X and/or Y have the Daugavet property, what about their tensor
products X⊗̂εY and X⊗̂πY ?

Soon afterwards, V. Kadets, N. Kalton and D. Werner provided an ex-
ample of a two dimensional complex Banach space Y without the DP such
that both LC

1 ([0, 1])⊗̂εY and LC
∞([0, 1])⊗̂πY

∗ fail the Daugavet property [17,
Theorem 4.2 and Corollary 4.3]. Real counterexamples were given in [23,
Remark 3.13] (the examples given there actually fail a weaker requirement
than the Daugavet property). Therefore, the “or” part of the previous ques-
tion was answered in the negative.

In view of the preceding paragraph, the following question remains open:

Question 1. Let X and Y be Banach spaces with the Daugavet property.
Do X⊗̂εY and X⊗̂πY have the Daugavet property?

It is well known that L1(µ)⊗̂πX = L1(µ,X) has the Daugavet property
whenever L1(µ) does. Concerning non-trivial positive results, we only know
of two results. On the one hand, in [8] it is proved, making a strong use of the
theory of centralizer and function module representation of Banach spaces,
that the projective tensor product of a Banach space without minimal L-
summands with another non-zero Banach space has the Daugavet property.
On the other hand, the first author proved in [27] that X⊗̂πY has the
Daugavet property provided X is a separable L-embedded Banach space
with the Daugavet property and Y is a non-zero Banach space with the
metric approximation property. Anyway, a common denominator in both
results is that, in order to get that X⊗̂πY has the Daugavet property, only
one of the spaces is required to enjoy the property. As a consequence of
this fact, to the best of our knowledge, no positive result is known in the
direction of Question 1.

The main results of this paper are two positive partial answers to Question
1:

Theorem 1.1. Let (Ω1,Σ1, µ1) and (Ω2,Σ2, µ2) be measure spaces with
purely non-atomic measures. Then the space L1(Ω1,Σ1, µ1)⊗̂εL1(Ω2,Σ2, µ2)
has the Daugavet property.

Theorem 1.2. Let X and Y be two L1-preduals. If X and Y have the
Daugavet property, then so does X⊗̂πY . In particular, C(K1)⊗̂πC(K2) has
the Daugavet property if K1 and K2 are compact spaces without isolated
points.

The proof of Theorem 1.1 is based on a discretization approach. It re-
quires only the definition of the injective tensor norm and some fine measure
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theoretical arguments. Section 2 is devoted to this proof and it is totally
self contained.

By the duality of the injective and projective tensor norms, Theorems 1.1
and 1.2 are somehow dual to each other. Therefore, it is not too surprising
that it is possible to use similar measure theoretical arguments as in the proof
of Theorem 1.1 to prove that C(K1)⊗̂πC(K2) has the Daugavet property
whenever C(K1) and C(K2) have it. However, a more abstract version of
this proof allows us to extend the result to general L1 preduals with the
DP, and this is the proof we present in Section 3, which is again quite self
contained.

An inspection to this last proof together with the characterisation of the
Daugavet property in X⊗̂πY given in Proposition 3.1 point out the conve-
nience of identifying a certain property about extension of bounded opera-
tors from X to Y ∗. Motivated by this, in Section 4 (see Definition 4.1), we
introduce the operator Daugavet property (ODP). Since ODP is a sufficient
condition for Banach spaces X and Y in order to make X⊗̂πY enjoy the DP
(see Theorem 4.3), the rest of Section 4 is devoted to providing new exam-
ples of Banach spaces with the ODP. These include for instance, L1-preduals
with the Daugavet property, L1(µ) spaces with non-atomic measures, or ℓ∞-
sums of spaces with the ODP.

In Section 5, we show how ODP can be applied to solve different isometric
problems in the setting of tensor products. First, in Theorem 5.1, it is
proved that if a Banach space X has ODP, then all the projective symmetric
tensor products ⊗̂π,s,NX have an octahedral norm (see definition below). In
general, we are not able to get Daugavet property in such symmetric tensor
product spaces because we lack a good description of norming sets for spaces
of polynomials. However, making use of the Dunford-Pettis property, we
will prove in Proposition 5.3 that ⊗̂π,s,NC(K) has the Daugavet property
whenever K is a compact Hausdorff topological space without any isolated
point and N ∈ N. Let us point out that, to the best of our knowledge, the
first (non-trivial) examples of projective symmetric tensor product spaces
with the Daugavet property or with an octahedral norm are those given in
Section 5.

In this same section, we also use the ODP in order to get some conse-
quences about roughness in projective tensor products. Indeed, we prove
in Proposition 5.7 that the norm of X⊗̂πY is 2-rough whenever X has the
ODP and Y is non-zero. As an application, we derive consequences about
stability of diameter two properties by injective tensor products of the form
L1⊗̂εX. These are motivated by the question, posed in [1, Question (b)],
about how diameter two properties are preserved by tensor product spaces.

1.1. Terminology. We will consider only real Banach spaces. Given a
Banach space X, we will denote the closed unit ball and the unit sphere of
X by BX and SX respectively. We will also denote by X∗ the topological
dual of X. Given a bounded subset C of X, x∗ ∈ X∗ and α > 0, a slice of
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C is given by

S(C, x∗, α) := {x ∈ C : x∗(x) > supx∗(C)− α}.

A Banach space X is said to have the Daugavet property if every rank-one
operator T : X −→ X satisfies the equation

‖I + T‖ = 1 + ‖T‖,

where I : X −→ X denotes the identity operator. It is known [19] that a
Banach space X has the Daugavet property if, and only if, for every ε > 0,
every point x ∈ SX and every slice S of BX there exists a point y ∈ S such
that ‖x + y‖ > 2 − ε. This characterisation will be freely used throughout
the text without any explicit mention.

By an L1-predual we will mean a Banach space X such that X∗ = L1(µ)
for certain measure µ. We refer the reader to the seminal paper [24] for
background on these spaces and the connection with norm preserving ex-
tension of operators. Also, we refer to [6] for background about L1-preduals
with the Daugavet property.

Given two Banach spaces X and Y , we denote by L(X,Y ) the space of
bounded linear operators T : X −→ Y . Also, we denote by B(X,Y ) the
space of bounded bilinear maps G : X × Y → R. Recall that the projective
tensor product of X and Y , denoted by X⊗̂πY , is the completion of the
algebraic tensor product X ⊗ Y under the norm given by

‖u‖ := inf

{
n∑

i=1

‖xi‖‖yi‖ : u =

n∑

i=1

xi ⊗ yi

}
.

It follows easily from the definition that BX⊗̂πY
= co(BX ⊗BY ) = co(SX ⊗

SY ). Moreover, given Banach spaces X and Y , it is well known that
(X⊗̂πY )∗ = L(X,Y ∗) = B(X,Y ) [11].

The injective tensor product of X and Y , denoted by X⊗̂εY , is the com-
pletion of X ⊗ Y under the norm given by

‖u‖ := sup

{
n∑

i=1

|x∗(xi)y
∗(yi)| : x

∗ ∈ SX∗ , y∗ ∈ SY ∗

}
,

where u :=
∑n

i=1 xi ⊗ yi. Note that, in the above formula, SX∗ and SY ∗

can be replaced with norming sets for X and Y respectively. We refer the
reader to [11, 28] for a detailed treatment of tensor product spaces.

2. L1⊗̂εL1 has the Daugavet property

In this section, we prove Theorem 1.1. As mentioned in the introduction,
the proof only requires the definition of the injective tensor product and
measure theoretical reasonings.

Proof of Theorem 1.1. For brevity, let X = L1(Ω1,Σ1, µ1)⊗̂εL1(Ω2,Σ2, µ2).
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Let α ∈ X and ϕ ∈ X∗ with ‖α‖X = 1 = ‖ϕ‖X∗ , and let ϕ ⊗ α denote
the rank-one operator given by ϕ⊗ α(x) = ϕ(x)α for x ∈ X. We will show
that

‖I + ϕ⊗ α‖ = 1 + ‖ϕ⊗ α‖ = 2.

To this end fix ε > 0. Notice that, up a perturbation argument, there is
no loss of generality in assuming that ϕ is a norm-attaining functional. Let
β ∈ X with ‖β‖ = 1 such that

ϕ(β) = 1.

Since simple functions are dense in any L1 space, up to perturbation, we can
assume without loss of generality that there are two collections of pairwise
disjoint sets of finite measure (Ai)

n
i=1 ⊂ Σ1 and (Bj)

n
j=1 ⊂ Σ2, and scalars

(aij)
n
i,j=1, (bij)

n
i,j=1 such that

α =
n∑

i,j=1

aijχAi
⊗ χBj

,

and

β =

n∑

i,j=1

bijχAi
⊗ χBj

.

Also note that it follows immediately from the definition of the injective
norm that the set

N = {h1 ⊗ h2 : hi ∈ ext(BL∞(Ωi,Σi,µi)), for i = 1, 2}

is a norming subset of X∗; here ext(BL∞(Ωi,Σi,µi)) denotes the set of extreme
points of BL∞(Ωi,Σi,µi), or in other words, |hi(x)| = 1 for µi-almost every
x ∈ Ωi.

We will need the following:

Lemma 2.1. For every δ > 0 there exist (A′
i)
n
i=1 ⊂ Σ1, (B

′
j)

n
j=1 ⊂ Σ2 such

that

(1) A′
i ⊂ Ai, µ1(A

′
i) < δ, for 1 ≤ i ≤ n.

(2) B′
j ⊂ Bj , µ2(B

′
j) < δ, for 1 ≤ j ≤ n.

(3) If we denote

β′ =
n∑

i,j=1

bij
µ1(Ai)µ2(Bj)

µ1(A
′
i)µ2(B

′
j)
χA′

i
⊗ χB′

j
,

then we have

‖β′‖X = 1 and ϕ(β′) > 1− ε.

Proof. Fix 1 ≤ i ≤ n. Let ri =
∑n

j=1 bijϕ(χAi
⊗ χBj

). Note that
∑n

i=1 ri =

ϕ(β) = 1. For f ∈ L1(Ω1,Σ1, µ1), let

ϕi(f) =

n∑

j=1

bijµ1(Ai)ϕ(fχAi
⊗ χBj

).
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Clearly, ϕi is linear and

|ϕi(f)| ≤ ‖ϕ‖X∗

n∑

j=1

|bij |µ1(Ai)µ2(Bj)‖f‖L1
≤ C‖f‖L1

,

for some finite C. Moreover, ϕi(f) = 0 whenever fχAi
= 0. Hence, by

Radon-Nikodym Theorem, there is gi ∈ L∞(Ai,Σ1 ∩Ai, µ1|Ai
) such that

ϕi(f) =

∫

Ai

gifdµ1.

Since
1

µ1(Ai)

∫

Ai

gidµ1 = ϕi

( χAi

µ1(Ai)

)
= ri,

it follows that gi > ri − ε/2n on a subset of Ai with positive measure. Let
A′

i be such a set satisfying the additional requirement that µ1(A
′
i) < δ. We

have that

ϕi

( χA′

i

µ1(A′
i)

)
=

1

µ1(A′
i)

∫

A′

i

gidµ1 > ri −
ε

2n
.

Let now

β′ =

n∑

i,j=1

bij
µ1(Ai)

µ1(A′
i)
χA′

i
⊗ χBj

.

It follows that

ϕ(β′) =
n∑

i,j=1

bij
µ1(Ai)

µ1(A
′
i)
ϕ(χA′

i
⊗χBj

) =
n∑

i=1

ϕi

( χA′

i

µ1(A
′
i)

)
>

n∑

i=1

ri−
ε

2n
= 1−

ε

2
.

Moreover, we have

‖β′‖X = sup
h1⊗h2∈N

〈h1 ⊗ h2, β
′〉

= sup
h1⊗h2∈N

n∑

i,j=1

bij
µ1(Ai)

µ1(A′
i)

∫

A′

i

h1dµ1

∫

Bj

h2dµ2

= sup
εi,σj∈{−1,+1}

n∑

i,j=1

bijεiσjµ1(Ai)µ2(Bj)

= sup
h1⊗h2∈N

n∑

i,j=1

bij

∫

Ai

h1dµ1

∫

Bj

h2dµ2

= ‖β‖X .

Finally, if we make the same argument starting with β′ and interchanging
the role of i and j, then the result follows.

Now, let f ⊗ g ∈ N be such that

(2.1) 〈f ⊗ g, α〉 > 1− ε.
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Take

(2.2) 0 < δ <
ε

2

(
max
1≤i≤n

µ1(Ai) + max
1≤j≤n

µ2(Bj)

)∑n
i,j=1 |aij |

,

and let (A′
i)
n
i=1 ⊂ Σ1, (B

′
j)

n
j=1 ⊂ Σ2 and β′ as given in Lemma 2.1. Let also

f ′ ⊗ g′ ∈ N be such that

(2.3) 〈f ′ ⊗ g′, β′〉 > 1− ε.

Now, let us define

f̃(x) =





f ′(x) for x ∈
⋃n

i=1A
′
i

f(x) elsewhere,

g̃(y) =





g′(y) for y ∈
⋃n

j=1B
′
j

g(y) elsewhere.

First, note that by our choice of δ we have

∣∣∣
n∑

i,j=1

aij

(
〈(f ′ − f)⊗ g, χA′

i
⊗ χBj

〉+ 〈f ⊗ (g′ − g), χAi
⊗ χB′

j
〉
)∣∣∣ ≤

≤
n∑

i,j=1

|aij|
( ∫

A′

i

|f ′|+ |f |dµ1

∫

Bj

|g|dµ2 +

∫

Ai

|f |dµ1

∫

B′

j

|g′|+ |g|dµ2
)
≤

≤
n∑

i,j=1

|aij|2(µ1(A
′
i)µ2(Bj) + µ1(Ai)µ2(B

′
j))

(2.2)

≤ ε.

From the above estimate and taking into account that ϕ(β′) > 1 − ε, it
follows that

‖I + ϕ⊗ α‖ ≥ ‖β′ + ϕ(β′)α‖X

≥ 〈f̃ ⊗ g̃, β′ + ϕ(β′)α〉

=

n∑

i,j=1

(
bij
µ1(Ai)µ2(Bj)

µ1(A′
i)µ2(B

′
j)
〈f̃ ⊗ g̃, χA′

i
⊗ χB′

j
〉+ ϕ(β′)aij〈f̃ ⊗ g̃, χAi

⊗ χBj
〉
)

= 〈f ′ ⊗ g′, β′〉+ ϕ(β′)(

n∑

i,j=1

aij
(
〈f ⊗ g, χAi

⊗ χBj
〉

+ 〈(f ′ − f)⊗ g, χA′

i
⊗ χBj

〉+ 〈f ⊗ (g′ − g), χAi
⊗ χB′

j
〉
)

(2.3)
> 1− ε+ ϕ(β′)

(
〈f ⊗ g, α〉 − ε

)

(2.1)
> 1− ε+ (1− ε)(1 − 2ε).

Since ε > 0 was arbitrary, we get that ‖I + ϕ⊗ α‖ ≥ 2 as claimed.
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Remark 2.2. Notice that the same idea works for the injective tensor product
of any finite number of L1 spaces with the Daugavet property.

3. The projective tensor product of L1 preduals has the
Daugavet Property

In this section we prove Theorem 1.2. We start with the following Propo-
sition, which is inspired by the characterisation of octahedrality of the norm
appeared in [21, Lemma 3.21].

Proposition 3.1. Let X and Y be Banach spaces. The following assertions
are equivalent:

(1) X⊗̂πY has the Daugavet property.
(2) Given a finite-dimensional subspace E of X⊗̂πY , a slice S of BX⊗̂πY

,

an operator T ∈ L(X,Y ∗) and ε > 0 we can find x ⊗ y ∈ S and
G ∈ L(X,Y ∗) such that T = G on E, G(x)(y) = G(x ⊗ y) = ‖T‖
and ‖G‖ ≤ (1− ε)−1‖T‖.

Proof. (1)⇒(2). Let E be a finite-dimensional subspace of X⊗̂πY , S a
slice of BX⊗̂πY

, T ∈ L(X,Y ∗) and ε > 0. Since X⊗̂πY has the Daugavet

property, then [19, Lemma 2.8] yields the existence of another slice R ⊆ S
of BX⊗̂πY

such that

(3.1) ‖e+ λz‖ > (1− ε)(‖e‖ + |λ|)

holds for every e ∈ E, every z ∈ R and every λ ∈ R. Since R is a slice of
BX⊗̂πY

and BX⊗̂πY
= co(SX ⊗ SY ) then we can find x⊗ y ∈ R ⊆ S. Now,

define the following functional

ϕ : E ⊕ R(x⊗ y) ⊆ X⊗̂πY −→ R

e+ λx⊗ y 7−→ T (e) + ‖T‖λ.

We claim that ‖ϕ‖ ≤ ‖T‖
1−ε

. In fact, given e ∈ E and λ ∈ R, we have

ϕ(e+ λx⊗ y) = T (e) + λ‖T‖ ≤ ‖T‖(‖e‖ + |λ|)
(3.1)
≤

‖T‖

1− ε
‖e+ λx⊗ y‖.

So ϕ ∈ (E ⊕ R(x⊗ y))∗. By Hahn-Banach theorem we can extend ϕ to an
element G ∈ (X⊗̂πY )∗ = L(X,Y ∗), which satisfies the desired requirements.

(2)⇒(1). Pick z ∈ SX⊗̂πY
, a slice S of BX⊗̂πY

and ε > 0. Let us find
x⊗ y ∈ S such that

‖z + x⊗ y‖ > 2(1− ε).

To this aim, pick E := span{z} and an operator T ∈ SL(X,Y ∗) such that
T (z) = 1. By assumption, we can find an element x⊗y ∈ S and an operator
G ∈ L(X,Y ∗) with ‖G‖ ≤ (1 − ε)−1, G(z) = T (z) = 1 and G(x ⊗ y) = 1.
Now

‖z + x⊗ y‖ ≥
G(z + x⊗ y)

‖G‖
≥ 2(1− ε).
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The arbitrariness of z, S and ε implies that X⊗̂πY has the Daugavet prop-
erty, as desired.

In view of the previous proposition it is clear that the Daugavet property
on X⊗̂πY is strongly related to the possibility of extending operators on
L(X,Y ∗). Using this and the celebrated work of J. Lindenstrauss [24], we
prove the second of our main results.

Proof of Theorem 1.2. In order to prove that X⊗̂πY has the Daugavet prop-
erty pick an element z ∈ SX⊗̂πY

, a slice S = S(BX⊗̂πY
, B, α) and ε > 0,

and let us find an element x⊗ y ∈ S such that ‖z + x⊗ y‖ > 2− ε.

Choose η > 0 small enough so that

(
2− 3η − η

(
1+η
1−η

)2)(
1−η
1+η

)2
> 2−ε.

Pick a norm-one bilinear formG such thatG(z) > 1−η and x0 ∈ SX , y0 ∈ SY
such that G(x0, y0) > 1− η.

Choose x′ ∈ SX and y′ ∈ SY such that B(x′, y′) > 1 − α. From the
definition of projective norm consider n ∈ N, x1, . . . , xn ∈ X and y1, . . . , yn ∈
Y such that ∥∥∥∥∥z −

n∑

i=1

xi ⊗ yi

∥∥∥∥∥ < η.

Define E := span{x1, . . . , xn} ⊆ X. Since X has the Daugavet property we
can find from [19, Lemma 2.8] an element x ∈ S(BX , B(·, y′), α) (note that
the previous set defines a slice of BX since B is bilinear and continuous)
such that

‖e+ λx‖ > (1− η)(‖e‖ + |λ|)

holds for every e ∈ E and every λ ∈ R.
Similarly define F := span{y1, . . . , yn} ⊆ X. Since Y has the Daugavet

property we can find from [19, Lemma 2.8] an element y ∈ S(BY , B(x, ·), α)
(note that B(x) ∈ Y ∗, so the previous set defines a slice of BY ) such that

‖f + λy‖ > (1− η)(‖f‖ + |λ|)

holds for every f ∈ F and every λ ∈ R. Notice that B(x)(y) > 1− α which
means that x⊗ y ∈ S.

Define ψ : E ⊕Rx −→ X by the equation

ψ(e + λx) := e+ λx0.

We claim that ‖ψ‖ ≤ 1
1−η

. Indeed, given e ∈ E and λ ∈ R, we have

‖ψ(e + λx)‖ = ‖e+ λx0‖ ≤ ‖e‖+ |λ| ≤
1

1− η
‖e+ λx‖.

Now, since X is an L1 predual and ψ is a compact operator (it is actually
a finite-rank operator), we can find by [24, Theorem 6.1, (3)] an extension

ϕ : X −→ X such that ‖ϕ‖ ≤ 1+η
1−η

.

Similarly we can construct a bounded operator φ : Y −→ Y such that
φ(f) = f for every f ∈ F , φ(y) = y0 and ‖φ‖ ≤ 1+η

1−η
. Now define the
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bilinear form T (u, v) := G(ϕ(u), φ(v)) for every u ∈ X, v ∈ Y . We claim

that ‖T‖ ≤
(
1+η
1−η

)2
. Indeed, given u ∈ BX and y ∈ BY we have

|G(ϕ(u), φ(v))| ≤ ‖G‖‖ϕ(u)‖‖φ(v)‖ ≤

(
1 + η

1− η

)2

.

Furthermore,

T (z) ≥
n∑

i=1

G(ϕ(xi), φ(yi))− η‖T‖ >
n∑

i=1

G(xi)(yi)− η

(
1 + η

1− η

)2

> 1− 2η − η

(
1 + η

1− η

)2

.

Also

T (x, y) = G(x0, y0) > 1− η.

Finally

‖z + x⊗ y‖ ≥
T (x⊗ y + z)

‖T‖

≥
1− η + T (z)

‖T‖

≥
2− 3η − η

(
1+η
1−η

)2

‖T‖

≥

(
2− 3η − η

(
1 + η

1− η

)2
)(

1− η

1 + η

)2

> 2− ε.

Since ε > 0 was arbitrary then X⊗̂πY has the Daugavet property, so we are
done.

Remark 3.2. Notice that the same idea works for the projective tensor prod-
uct of any finite number of L1 preduals with the Daugavet property.

4. The operator Daugavet Property

In view of the proof of Theorem 1.2, we will define and study in this section
an operator version of the Daugavet property in the spirit of Proposition 3.1.
This property will allow us to obtain, in the next section, further results
about the geometry of tensor products.

Definition 4.1. Let X be a Banach space. We will say that X has the
operator Daugavet property (ODP) if, for every x1 . . . xn ∈ SX , every slice
S of BX and every ε > 0 there exists an element x ∈ S such that, for every
x′ ∈ BX , there exists an operator T : X −→ X with ‖T‖ ≤ 1+ ε, T (x) = x′

and ‖T (xi)− xi‖ < ε for every i ∈ {1, . . . , n}.
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Remark 4.2. Notice that the ODP implies the Daugavet property. Indeed,
given a Banach space X with the ODP, fix x ∈ SX , ε > 0 and a slice S of
BX . By hypothesis, there is an operator T : X −→ X and a point y ∈ S
such that ‖T (x)− x‖ < ε, ‖T‖ ≤ 1+ ε and T (y) = x. The existence of such
operator implies that ‖x + y‖ > 2−ε

1+ε
. Nevertheless, we do not know of any

example satisfying the Daugavet property but not the ODP.

From the proof of Theorem 1.2 the following result should be clear.

Theorem 4.3. Let X and Y be two Banach spaces. If X and Y have the
ODP then X⊗̂πY has the Daugavet property.

We will devote the remainder of this section to give examples of Banach
spaces with the ODP in order to enlarge the class of spaces where Theorem
4.3 applies.

It is clear from the proof of Theorem 1.2 that L1 predual spaces with
the Daugavet property actually have the ODP. Let us see another classical
space with the Daugavet property which actually enjoys the ODP.

Proposition 4.4. Let (Ω,Σ, µ) be a non-atomic measure space. Then L1(µ)
has the ODP.

Proof. Let us write X = L1(µ) for short. Consider x1, . . . , xn ∈ BX , ε > 0
and a slice S = S(BX , ϕ, α) of BX . We can assume with no loss of generality
that ε < α. To begin with, we can assume ϕ ∈ X∗ has norm one, and pick
some f0 ∈ S. Now, since f0 ∈ L1(µ) has σ-finite support, we can find
g ∈ L∞(µ) such that

ϕ(f) =

∫

Ω
fgdµ,

for every f ∈ L1(µ) whose support is included in that of f0. In particular,
this means that there exists A ∈ Σ contained in the support of f0, with
0 < µ(A) <∞, |g(t)| > 1− ε for every t ∈ A and sign(g|A) constant.

Since µ does not contain any atom, we can assume with no loss of gener-
ality that there exists a subset B ⊆ A which µ(B) > 0 and such that

‖xiχB‖ <
ε

4
,

for every i ∈ {1, . . . , n}.
Now, for every i ∈ {1, . . . , n}, we can find a simple functions x′i ∈ SX

such that

(4.1) ‖xiχΩ\B − x′i‖ <
ε

4
,

where x′i =
∑m

j=1 aijχAj
for suitable m ∈ N, aij ∈ R and pairwise disjoint

Aj ∈ Σ with B ∩Aj = ∅ for j ∈ {1, . . . ,m}.
Let also fB := 1

µ(B) sign(g|B)χB . Note that

ϕ(fB) =
1

µ(B)

∫

Ω
g(t) sign(g|B)χB dµ =

1

µ(B)

∫

B

|g(t)| dµ ≥ 1− ε > 1− α,
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from where fB ∈ S.
Now, in order to prove that X has the ODP, pick an element x′ ∈ BX

and let us construct an operator T : X −→ X satisfying the desired re-
quirements. To this end, consider the operator T : X −→ X given by the
equation

T (f) :=

m∑

j=1

1

µ(Aj)

∫

Aj

f dµ χAj
+

∫

B

f dµ sign(g|B)x
′.

It is clear from the disjointness of the sets B,A1, . . . , Am and the fact that
‖x′‖ ≤ 1 that ‖T (f)‖ ≤ ‖f‖ holds for every f ∈ X. Furthermore, it is clear
from the definition that T (x′i) = x′i , so

‖T (xi)− xi‖ ≤ ‖T (xi − x′i)‖+ ‖x′i − xi‖

≤ ‖T‖‖xi − x′i‖+ ‖xi − x′i‖

(4.1)
≤ ε.

On the other hand,

T (fB) =
1

µ(B)
sign(g|B)

2

∫

B

χB dµx′ = x′,

and the proof is finished.

Remark 4.5. (1) Notice that an adaptation of the proof of Proposition
4.4 yields that L1(µ,X) has the ODP whenever µ does not contain
any atom regardless of the Banach space X.

(2) The fact that L1-preduals with the Daugavet property have the ODP
can be considered in part as a consequence of the fact that these are
injective Banach spaces. The situation with L1(µ) spaces can also be
regarded as somehow similar, since these spaces are in turn injective
as Banach lattices (cf. [25, 26]).

It is known that if X and Y have the Daugavet property then so does
X ⊕∞ Y [30, Theorem 1]. The following proposition proves that the same
holds for the ODP.

Proposition 4.6. Let X and Y be two Banach spaces with ODP. Then
X ⊕∞ Y has ODP.

Proof. Let (x1, y1), . . . , (xn, yn) ∈ SX⊕∞Y , ε > 0, and a slice

R = S(BX⊕∞Y , (x
∗, y∗), α).

Let us find (x, y) ∈ R such that, for every (x′, y′) ∈ BX⊕∞Y , there exists an
operator T : X ⊕∞ Y −→ X ⊕∞ Y satisfying the desired requirements.

Since X has the ODP, there exist an element x ∈ {z ∈ BX : x∗(z) >
‖x∗‖− α

2 } (which is a slice of BX) such that, for every x′ ∈ BX , there exists
an operator G : X −→ X with ‖G‖ ≤ 1+ε, ‖G(xi)−xi‖ ≤ ε and G(x) = x′.



DAUGAVET PROPERTY IN TENSOR PRODUCT SPACES 13

Repeating the same argument on the factor Y find y ∈ {z ∈ BY : y∗(z) >
‖y∗‖ − α

2 } (which is a slice of BY ) such that, for every y′ ∈ BY , there exists
an operator S : Y −→ Y with ‖S‖ ≤ 1 + ε, ‖S(yi)− yi‖ ≤ ε and S(y) = y′.

Consider (x, y) ∈ BX⊕∞Y . Then

(x∗, y∗)(x, y) = x∗(x) + y∗(y) > ‖x∗‖+ ‖y∗‖ − α = 1− α,

which means that (x, y) ∈ R. In order to finish the proof let us show that
(x, y) satisfies the desired requirements. To this end, pick (x′, y′) ∈ BX⊕∞Y .
Note that ‖(x′, y′)‖ = max{‖x′‖, ‖y′‖} = 1, which means that both ‖x′‖ and
‖y′‖ are less than or equal to 1. Consider G : X −→ X and S : Y −→ Y
with the properties described above associated to x′ and y′ respectively, and
define T : X ⊕∞ Y −→ X ⊕∞ Y given by T (u, v) = (G(u), S(v)) for every
u ∈ X, v ∈ Y . First of all, given u ∈ X, v ∈ Y , we get

‖T (u, v)‖ = max{‖G(u)‖, ‖S(v)‖} ≤ (1+ε)max{‖u‖, ‖v‖} = (1+ε)‖(u, v)‖∞,

so ‖T‖ ≤ 1 + ε. Moreover,

‖T (xi, yi)− (xi, yi)‖ = max{‖G(xi)− xi‖, ‖S(yi)− yi‖} ≤ ε.

Finally notice that
T (x, y) = (x′, y′),

which finishes the proof.

In order to summarise the content of the section and to relate it with
Question 1 we get the following corollary.

Corollary 4.7. Let X and Y be two Banach spaces with the Daugavet
property. Then X⊗̂πY has the Daugavet property if X and Y satisfy any of
the following requirements:

(1) To be an L1-predual.
(2) To be an ℓ∞ sum of L1(µ) spaces.
(3) To be an ℓ∞ sum of an L1(µ) space and an L1-predual.

5. Further consequences of the ODP

In this section we obtain further connections between the ODP and dif-
ferent questions about the geometry of tensor product spaces.

5.1. Daugavet property in the projective symmetric tensor prod-

uct. Given a Banach space X, we define the (N -fold) projective symmetric
tensor product of X, denoted by ⊗̂π,s,NX, as the completion of the space
⊗s,NX under the norm

‖u‖ := inf

{
n∑

i=1

|λi|‖xi‖
N : u :=

n∑

i=1

λix
N
i , n ∈ N, xi ∈ X

}
.

The dual, (⊗̂π,s,NX)∗ = P(NX), is the Banach space of N -homogeneous

continuous polynomials on X, and notice that B⊗̂π,s,NX = co({xN : x ∈

SX}) (see [13] for background).
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As far as we are concerned, no non-trivial example of projective symmetric
tensor product with the Daugavet property is known. In the sequel, we will
provide one such example using the ODP. In order to do so, let us introduce
a bit of notation. Recall that the norm of a Banach space X is said to be
octahedral if, whenever Y is a finite-dimensional subspace of X and ε > 0,
there exists x ∈ SX such that

‖y + λx‖ > (1− ε)(‖y‖ + |λ|)

holds for every y ∈ Y and every λ ∈ R. Daugavet property implies octahe-
drality by [19, Lemma 2.8], but the converse is not true as the norm of ℓ1 is
octahedral. Now we can prove the following result.

Theorem 5.1. Let X be a Banach space with the ODP and let N ∈ N. Then
the N -fold symmetric projective tensor product, ⊗̂π,s,NX, has an octahedral
norm.

Proof. In order to save notation define Y := ⊗̂π,s,NX. In view of [15, Propo-
sition 2.1] it is enough to prove that, given z1, . . . , zn ∈ SY and ε > 0 we
can find x ∈ SX such that

∥∥zi + xN
∥∥ > 2− ε

holds for every i ∈ {1, . . . , n}. Fix i ∈ {1, . . . , n} and choose a norm-one
polynomial Pi such that Pi(zi) = 1. Furthermore, since BY = co({xN :
x ∈ SX}) choose vi ∈ SX such that Pi(vi) > 1 − ε. Furthermore, find∑ni

j=1 λijx
N
ij ∈ co({xN : x ∈ SX}) satisfying that

(5.1)

∥∥∥∥∥∥
z −

ni∑

j=1

λijx
N
ij

∥∥∥∥∥∥
< ε.

Since X has the ODP we can find an element x ∈ SX and operators ϕi :
X −→ X such that

(5.2) ‖ϕi(xij)− xij‖ < ε

holds for every j ∈ {1, . . . , ni}, ϕi(x) = vi and ‖ϕi‖ ≤ 1 + ε. Now define
Qi := Pi ◦ ϕi : X −→ R. Notice that Qi is a N -homogeneous polynomial.
In fact, if we denote by P̂i the N -linear form associated to Pi (i.e. Pi(z) =

P̂i(z, z, . . . z), then Q̂i(z1, . . . , zN ) = P̂i(ϕi(z1), ϕi(z2), . . . , ϕi(zN )), which is
anN -linear form because of the linearity and continuity of ϕi). Furthermore,
in order to estimate the polynomial norm of Qi, pick x ∈ X. Then

|Qi(x)| = |Pi(ϕi(x))| ≤ ‖Pi‖‖ϕi(x)‖
N ≤ ‖ϕi‖

N‖x‖N ≤ (1 + ε)N‖x‖N .
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So ‖Qi‖ ≤ (1 + ε)N . Furthermore

Qi(zi) ≥
ni∑

j=1

λijQi(xij)− (1 + ε)N

∥∥∥∥∥∥
z −

ni∑

j=1

λijx
N
ij

∥∥∥∥∥∥
(5.1)

>

ni∑

j=1

λijPi(xij)− ‖Pi‖‖ϕi(xij)− xij‖
N − (1 + ε)NεN

(5.2)

>

ni∑

j=1

λijPi(xij)− εN − (1 + ε)Nε

(5.1)

> Pi(zi)− ε− εN − (1 + ε)NεN

= 1− ε− εN − (1 + ε)NεN .

Moreover

Qi(x) = Pi(vi) > 1− ε.

Hence

∥∥zi + xN
∥∥ ≥

Qi(zi + xN )

‖Qi‖
>

2− 2ε− εN − (1 + ε)NεN

(1 + ε)N
.

Since i and ε were arbitrary we conclude that the norm of Y is octahedral,
as desired.

Remark 5.2. Let X be a Banach space with the ODP. Given x1, . . . , xn ∈
SX , x

′ ∈ BX and ε > 0, consider the set A of those x ∈ BX for which there
exists a bounded operator ϕ : X −→ X such that ‖ϕ(xi)−xi‖ < ε,ϕ(x) = x′

and ‖ϕ‖ ≤ 1 + ε. Then, in order to ensure that ⊗̂π,s,NX has the Daugavet
property by an adaptation of the proof of Theorem 5.1 we need to guarantee
that the set {xN : x ∈ A} is norming for P(NX) for every x1, . . . , xn, x

′ ∈ BX

and every ε > 0.

Although we do not know whether the property exhibited in the preceding
remark holds in general for every ODP space, we will prove in the following
proposition that this is the case for spaces of continuous functions.

Proposition 5.3. Let K be a compact Hausdorff space without isolated
points. Then ⊗̂π,s,NC(K) has the Daugavet property.

In order to prove the Proposition we need the following lemma.

Lemma 5.4. Let K be a compact Hausdorff space without isolated points.
Let E be a finite-dimensional subspace of C(K) and ε > 0. Then the set

A := {g ∈ SC(K) : ‖f + λg‖ > (1− ε)(‖f‖ + |λ|)∀f ∈ E,λ ∈ R}

is weakly sequentially dense in BC(K).
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Proof. Write X = C(K) for shorten. Let 0 < δ < ε
4 . Pick f1, . . . , fk to be

a δ-net in SE and h ∈ SX . Let us find a sequence {gn} ∈ SX such that
{gn} → h in the weak topology of BX and that ‖fi + gn‖ > 2− 2δ holds for
every i ∈ {1, . . . , k} and every n ∈ N. This is enough in view of the proof of
[19, Lemma 2.8]. In order to do so consider, for every i ∈ {1, . . . , k}, the set

Ai := {t ∈ K : |fi(t)| > 1− δ}.

Note that every Ai is an (infinite) open subset of K. Now, making an
inductive argument we can find, for every i ∈ {1, . . . , k}, a sequence of non-

empty open sets V i
n such that V

i
n ⊆ Ai for every i ∈ {1, . . . , k} and such

that

V
i
n ∩ V

j
m = ∅

holds for every n,m ∈ N and i, j ∈ {1, . . . , k} such that either n 6= m or
i 6= j. Now select, for every i ∈ {1, . . . , k} and every n ∈ N a point tin ∈ V i

n.
Making use of Urysohn lemma we can construct, for every n ∈ N, a function

gn ∈ SX such that gn(t
i
n) = sign(fi(t

i
n))fi(t

i
n) and gn = h on K \

k⋃
i=1

V i
n. It

is clear that the (bounded) sequence {gn} converges pointwise to h, so {gn}
converges weakly to h . Furthermore,

‖fi + gn‖ ≥ |fi(t
i
n) + g(tin)| = 2|fi(t

i
n)| > 2− 2δ.

So the lemma is proved.

Proof of Proposition 5.3. Let X = C(K). According to Remark 5.2 we will
prove that, given a finite-dimensional subspace E of X, x′ ∈ BX and a
positive ε > 0, if we define

A := {g ∈ SX : ‖f + λg‖ > (1− ε)(‖f‖ + |λ|)∀f ∈ E,λ ∈ R},

then {gN : g ∈ A} is norming for P(NX). Note that if the assertion were
proved then, given x ∈ A, we could construct, by a similar argument to that
of the proof of Theorem 1.2, an operator ϕ : X −→ X such that ϕ(e) = e
for every e ∈ E, ϕ(x) = x′ and ‖ϕ‖ ≤ 1 + ε since X is an L1- predual. So
the Proposition would follow by an application of Remark 5.2.

Hence, in order to prove that {gN : g ∈ A} is norming for P(NX), pick
a norm-one polynomial P ∈ P(NX), a positive ε > 0 and a point y ∈ SY
such that P (y) > 1− ε. By Lemma 5.4 we get that A is weakly sequentially
dense in BX , so we can find a sequence of points in A, say {gn}, such that
{gn} → y in the weak topology of BX . Now, since X has the Dunford-Pettis
property [3, Theorem 5.4.5] then P (gn) → P (y) > 1− ε [14, Corollary 5.1],
so we can find n ∈ N such that P (gn) > 1−ε. Since gn ∈ A, the arbitrariness
of P and ε proves the fact that {gN : g ∈ A} is norming for P(NX), and
the proposition is proved.
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Remark 5.5. To the best of our knowledge, Proposition 5.3 provides the first
non-trivial example of a projective symmetric tensor product enjoying the
Daugavet property.

Remark 5.6. Note that Lemma 5.4 does not hold for general Banach spaces
with the Daugavet property. Indeed, in [20, Theorem 2.5] an example of a
Banach space with the Daugavet property and the Schur property is exhib-
ited.

5.2. 2-roughness in projective tensor product. Let X be a Banach
space. Recall that the norm of X is said to be ε- rough if

lim sup
‖h‖→0

‖x+ h‖+ ‖x− h‖ − 2‖x‖

‖h‖
≥ ε

holds for every x ∈ X.
Note that rough norms are “uniformly non-Fréchet differentiable”. See

[12, Chapter 1] for background on rough norms.
Our aim will be to prove the following result.

Proposition 5.7. Let X be a Banach space with the ODP. Then the norm
of X⊗̂πY is 2-rough for every non-zero Banach space Y .

In order to prove the proposition we need the following reformulation of
2-roughness, which will be useful in the sequel. The proof (1)⇐⇒(2) is [12,
Proposition I.1.11] whereas that of (1)⇐⇒(3) is [15, Lemma 3.1].

Lemma 5.8. Let X be a Banach space. The following assertions are equiv-
alent:

(1) The norm of X is 2-rough.
(2) Every weak-star slice of BX∗ has diameter two.
(3) X is locally octahedral (LOH), that is, for every x ∈ SX and every

ε > 0 there exists y ∈ SX such that ‖x± y‖ > 2− ε.

Proof of Proposition 5.7. In order to prove that the norm of X⊗̂πY is 2-
rough, we will make use of Lemma 5.8 (3). Pick an element z ∈ SX⊗̂πY

and

ε > 0, and let us find an element x⊗y ∈ SX⊗̂πY
such that ‖z±x⊗y‖ > 2−ε.

Choose η > 0 small enough so that 2−η(4+η)
1+η

> 2 − ε. Pick a norm-one

bilinear form G such that G(z) > 1 − η and x0 ∈ SX , y0 ∈ SY such that
G(x0, y0) > 1− η.

From the definition of projective norm consider n ∈ N, x1, . . . , xn ∈ SX ,
y1, . . . , yn ∈ SY and λ1, . . . , λn ∈ [0, 1] such that

∑n
i=1 λi = 1 and

∥∥∥∥∥z −
n∑

i=1

λixi ⊗ yi

∥∥∥∥∥ < η.

Since X has the ODP we can find x ∈ SX and ψ± : X −→ X such that
‖ψ±(xi)− xi‖ < η,ψ±(x) = ±x0 and ‖ψ±‖ ≤ 1 + η.
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Now, define the bilinear forms T±(u, v) := G(ψ±(u), v) for u ∈ X, v ∈ Y .
We claim that ‖T±‖ ≤ 1 + η. Indeed, given u ∈ BX and y ∈ BY we have

|G(ψ±(u), v)| ≤ ‖G‖‖ψ±(u)‖‖v‖ ≤ 1 + η.

Furthermore,

T±(z) ≥
n∑

i=1

λiG(ψ
±(xi), yi)− η‖T±‖

≥
n∑

i=1

λiG(xi)(yi)−
n∑

i=1

λi‖G‖‖ψ
±(xi)− xi‖‖yi‖ − η(1 + η)

> 1− η(3 + η).

Also

T±(±x, y) = G(x0, y0) > 1− η.

Finally

‖z ± x⊗ y‖ ≥
T± (±x⊗ y + z)

‖T±‖

≥
1− η + T±(z)

1 + η

≥
2− η(4 + η)

1 + η

> 2− ε.

Since ε > 0 was arbitrary then X⊗̂πY is LOH, and we are done.

Remark 5.9. An examination of the previous proof yields that, in Proposi-
tion 5.7, if we localise z in a given slice then we can get the local diametral
diameter two property (see [4] for definition and backgroud). We do thank
Johann Langemets for pointing out to the authors this improvement.

In order to obtain some consequences from Proposition 5.7, let us intro-
duce a bit of notation. Given a Banach space X, recall that X is said to
have the slice diameter two property (slice-D2P) if every slice of the unit
ball of BX has diameter two. If X is itself a dual Banach space, then X
is said to have the weak-star slice diameter two property (w∗-slice-D2P) if
every weak-star slice of BX has diameter two. See [1, 5, 22] and references
therein for background on diameter two properties.

Taking into account the duality L(X,Y ∗) = (X⊗̂πY )∗ and Lemma 5.8
we get the following result.

Corollary 5.10. Let X be a Banach space with the ODP. Then L(X,Y ∗)
has the w∗-slice-D2P.

Let us end with an application of Proposition 5.7 to the study of the slice
diameter two property in injective tensor products.
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Corollary 5.11. Let (Ω,Σ, µ) be a measure space and assume that µ does
not contain any atom. Let X be a Banach space such that X∗ has the RNP.
Then L1(µ)⊗̂εX has the slice-D2P.

Proof. Notice that (L1(µ)⊗̂εX)∗ = L∞(µ)⊗̂πX
∗ by [28, Theorem 5.33], so

its norm is 2-rough by Proposition 5.7. Consequently, L1(µ)⊗̂εX has the
slice-D2P by [15, Theorem 3.3].

In [1, Question b)] it is asked how are the diameter two properties, in
general, preserved by tensor product spaces. Corollary 5.11 yields new ex-
amples of injetive tensor products with the slice-D2P different from those
obtained in [2, Theorem 5.3] and of [22, Theorem 2.6].
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