
Int J Intell Syst. 2021;1–31. wileyonlinelibrary.com/journal/int | 1

Received: 22 September 2020 | Revised: 3 June 2021 | Accepted: 19 June 2021

DOI: 10.1002/int.22573

RE S EARCH ART I C L E

Value‐based potentials: Exploiting
quantitative information regularity patterns
in probabilistic graphical models

Manuel Gómez‐Olmedo1 | Rafael Cabañas2 |

Andrés Cano1 | Serafıń Moral1 | Ofelia P. Retamero1

1Department of Computer Science and
Artificial Intelligence, University of
Granada, Granada, Spain
2Dalle Molle Institute for Artificial
Intelligence Studies, Lugano, Switzerland

Correspondence
Manuel Gómez‐Olmedo, Department of
Computer Science and Artificial
Intelligence, University of Granada,
ETSII, C/Periodista Daniel Saucedo
Aranda s/n, Granada 18071, Spain.
Email: mgomez@decsai.ugr.es

Abstract

When dealing with complex models (i.e., models with

many variables, a high degree of dependency between

variables, or many states per variable), the efficient re-

presentation of quantitative information in probabilistic

graphical models (PGMs) is a challenging task. To address

this problem, this study introduces several new structures,

aptly named value‐based potentials (VBPs), which are

based exclusively on the values. VBPs leverage repeated

values to reduce memory requirements. In the present

paper, they are compared with some common structures,

like standard tables or unidimensional arrays, and prob-

ability trees (PT). Like VBPs, PTs are designed to reduce

the memory space, but this is achieved only if value re-

petitions correspond to context‐specific independence

patterns (i.e., repeated values are related to consecutive

indices or configurations). VBPs are devised to overcome

this limitation. The goal of this study is to analyze the

properties of VBPs. We provide a theoretical analysis of

VBPs and use them to encode the quantitative informa-

tion of a set of well‐known Bayesian networks, measuring

the access time to their content and the computational

time required to perform some inference tasks.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and

reproduction in any medium, provided the original work is properly cited.

© 2021 The Authors. International Journal of Intelligent Systems published by Wiley Periodicals LLC

https://orcid.org/0000-0002-3817-8723
https://orcid.org/0000-0002-5034-582X
https://orcid.org/0000-0003-1733-9441
https://orcid.org/0000-0002-5555-0857
https://orcid.org/0000-0002-6521-470X
mailto:mgomez@decsai.ugr.es
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fint.22573&domain=pdf&date_stamp=2021-07-26

KEYWORD S

Bayesian networks, inference algorithms, influence diagrams,
probabilistic graphical models

1 | INTRODUCTION

Probabilistic graphical models (PGMs)1–3 are efficient representations for problems under uncertainty.
PGMs encode joint probability or utility distributions and are defined by two parts: first, a qualitative
component in the form of a graph that represents a set of dependencies among the variables (i.e.,
nodes) in the domain being modeled; second, a quantitative component consisting of a set of
functions quantifying such dependencies. In PGMs over discrete domains, such as Bayesian networks
(BN)4,5 or influence diagrams,6,7 these functions are traditionally represented with tables or uni-
dimensional arrays (marginal or conditional probability tables and utility tables, 1DA in general).

The size of 1DAs increases exponentially with the number of variables in their domains.
This property could restrict the ability to represent certain problems with large 1DAs (as
memory size requirements can be prohibitive). Moreover, even if we are able to encode the
model with 1DAs, problems may arise when performing inference computations. To make
inferences, these 1DAs are managed for computing marginal or conditional probabilities for a
certain variable, most probable explanation,8,9 decision tables in the case of influence diagrams,
and so on. Some inference algorithms10–19 use basic operations on potentials: combination,
restriction, and marginalization. Combination computes the product of two potentials ϕ X()1

and ϕ Y()2 , yielding a new potential with higher dimension ∪ϕ X Y(). 1DAs thus obtained as
intermediate results can be very large and exceed the memory capacity of the computer.

Therefore, to deal with complex problems, it is essential to use efficient representations of
the quantitative information in the model. Often, 1DAs encoding probabilities or utilities
contain repeated values. For example, some combinations of values are not allowed and re-
presented with 0's. An efficient representation should take advantage of all these repetitions to
reduce memory space. Moreover, a useful representation should offer the capacity of being
approximated with a trade‐off between precision and memory space. These features can make
possible handling models of greater complexity.

The importance of this problem is evidenced by previous attempts to obtain alternative structures
to 1DAs. Two examples of alternative approaches are standard and binary probability trees (PTs and
BPTs).20–26 These structures can capture context‐specific independencies20 and save memory space
when repeated values appear under certain circumstances. These representations also allow to obtain
approximations through pruning operations: Assuming a loss of information, some contiguous values
can be substituted by their average value to reduce memory space. There is previous work focused on
improving the operations on potentials to alleviate the computational cost when dealing with com-
plex models.27 Therefore, the existence of efficient structures for storing and managing quantitative
information is of interest in all those areas where PGM‐based models can be applied (i.e., in any
problem or system that requires the quantification of uncertainty or preferences.28–34).

Other data structures exploiting these independencies allow compiling a full PGM into a more
compact representation. This is the case of algebraic decision diagrams (ADDs),35,36 sequential de-
cision diagrams (SDDs)37,38 and recursive probability trees (RPTs).39,40 The former is a graph re-
presentation of a function that maps instantiations of Boolean variables to real numbers. A model
whose potentials are represented as ADDs can easily be transformed into an arithmetic circuit that

2 | GÓMEZ‐OLMEDO ET AL.

minimizes the number of arithmetic operations during inference. Similarly, an SDD is a full binary
tree for representing propositional knowledge bases (a.k.a. Boolean functions). This data structure
allows encoding potentials which can then be conjoined to obtain an efficient SDD representation of
a full model. RPTs provide efficient representations of joint distributions exploiting independencies
between the variables, and therefore encoding the whole information of complete Bayesian networks.

In this study, some new alternative representations for potentials are considered. They are based
on the properties of the values themselves, not on the contexts where they appear nor the structure of
the potential. For this reason, they received the name value‐based potentials (VBPs). This paper
defines these structures, showing a theoretical analysis of their properties and specific examples of
how they encode the quantitative information of known Bayesian networks, available in the bnlearn
package repository,41,42 as well as other networks used in UAI's inference competitions.43,44

The major advantages of VBPs over other related data structures are the following. First, the
memory requirements are noticeably reduced for some networks due to a better capacity of
exploiting regularity patterns. Second, a VBP represents a single potential, independently of the
other parameters in the model. This allows easily adapting many inference algorithms for
working with VBPs, by simply adjusting the basic operations over potentials (e.g., combination
and marginalization). This is not the case for ADDs and SDDs, where a complex compilation
process is done to obtain a compact representation of the full model. VBPs, on the other hand,
do not include any information about variable dependencies and are based solely on the values,
so they cannot be used to represent complete models.

The structure of this paper is as follows: Section 2 defines some basic concepts and notation,
as well as some usual representations of potentials as arrays and trees. Section 3 introduces
basic concepts about memory requirements analysis. Section 4 introduces VBP representations
and how to categorize them. Section 5 introduces VBP alternatives and their properties.
Section 6 presents the empirical evaluation performed for testing the features of VBPs. Finally,
Section 7 presents conclusions and lines for future research.

2 | BASICS

2.1 | Definitions and notation

Let us first introduce the basic notation. Upper‐case roman letters will be used to denote random
variables, and lower‐case will represent their values (or states). Thus, if Xi is a random variable, xi
will denote a generic value of Xi. The finite set of possible values of Xi is called domain and
denoted ΩXi. For simplicity, we will consider variable values as integers, beginning with 0, and
hence possible assignments will be X = 01 , X X= 1, = 21 1 , and so on. The cardinality of a
variable, denoted  ΩXi , is the number of values in its domain. Similarly, we use bold‐face upper‐
case roman letters to denote sets of variables, for example, ≔ X X XX { , , … }N1 2 is a set of N
variables (  NX =). The Cartesian product  ΩX XXi i

is denoted by ΩX. The elements of ΩX are
called configurations of X and will be represented by ≔ X x X x X xx { = , = , …, = }N N1 1 2 2 , or
simply ≔ x x xx { , , …, }N1 2 if the variables are obvious from the context.

Formally, a PGM contains three elements  PX, , , where X is the set of variables of the
problem with a joint probability distribution P X(), and  is a graph that represents the de-
pendency (and independence) relations between the variables. A PGM allows to represent P,
which is usually high‐dimensional, as a factorization of lower dimensional local functions. For
instance, in the case of BNs, these are conditional distributions represented as tables or

GÓMEZ‐OLMEDO ET AL. | 3

conditional probability tables (arrays in general, 1DAs). However, we will use the term po-
tential, which is more general: A potential ϕ for X is a function ofΩX over 0

+. In other words,
each configuration x ΩX is associated to a real value. Thus, 1DAs or any other function
encoding the quantitative information in PGMs can be seen as representations of potentials.

Example 1. Let us consider the variables X X,1 2, and X3, with states 2, 3 and 2, respectively.
Then ϕ X X X(, ,)1 2 3 is a potential defined on such variables with the values shown in Figure 1.
It should be noted that this potential represents the conditional distribution P X X X(,)3 1 2 .

The definition of structures for representing potentials requires the introduction of the
following concept: Index of a configuration. It is a unique numeric identifier representing each
configuration in a given domain  ΩX . We will consider indices starting with 0 (all the variables
take their first value) and ending with  Ω − 1X . In the potential given in Figure 1, index 0 is
associated to {0, 0, 0}, index 1 is associated to {0, 0, 1}, and so on until the last one, 11, which is
associated to {1, 2, 1} (indices are shown in leftmost column).

It is possible to set a correspondence between indices and configurations based on the
concept of weight (a.k.a. stride or step size). Let us suppose a domain ≔ X X XX { , , …, }N1 2 . Each
variable Xi has a weight wi computed as follows:


  ⋅w

i N
w

=
1 if =

Ω otherwisei
X i+1i+1

(1)

For the potential considered in Example 1, the values of weights are: w w w= 1, = 2, = 63 2 1 .
Therefore, the leftmost variable is the one with the highest weight. Therefore, the index of a
certain configuration ≔ x x xx { , , …, }N1 2 can be computed using the following expression:

 ⋅index x wx() =
i

N

i i

=1

(2)

Example 2. Let us consider the potential ϕ X X X(, ,)1 2 3 given in Example 1, with
w w= 6, = 21 2 , and w = 13 . The indices for the domain configurations can be computed
as follows:

FIGURE 1 Representation of the potential ϕ X X X(, ,)1 2 3 as a mapping that assigns a numeric value to each
configuration

4 | GÓMEZ‐OLMEDO ET AL.

⋅ ⋅ ⋅

⋅ ⋅ ⋅

⋅ ⋅ ⋅

⋅ ⋅ ⋅

index

index

index

index

({0, 0, 0}) = 0 6 + 0 2 + 0 1 = 0

({0, 0, 1}) = 0 6 + 0 2 + 1 1 = 1

({0, 1, 0}) = 0 6 + 1 2 + 0 1 = 2
………………………………………….
({1, 2, 1}) = 1 6 + 2 2 + 1 1 = 11

Given index k, its associated configuration is denoted by x k() and satisfies index kx() =k() .
Given index k, the value assigned to each variable Xi can be computed as:

 ∕∕x k w= ()% Ωi i Xi
(3)

where ∕∕ denotes integer division and % the module of the division. This operation is necessary
to allow a fast conversion between configurations and indices.

Note that the association between indices and configurations requires an order of the
variables in the domain. Any order is valid, but we will consider by default the order in which
variables are written (e.g., for potential ϕ X Y Z(, ,), the first variable would be X). In addition,
we consider that the first variable has the highest weight (i.e., following row‐major order).
However, the opposite approach could be also considered: the first variable with weight 1 and
the last one with the highest weight (column‐major order).

2.2 | Representation for potentials

In essence, a potential is a multidimensional object with a dimension per variable. Thus, a
standard method for storing it is to flatten this object into a 1DA in computer memory.3 Thus,
potential ϕ defined on a set of N variables can be represented by array ϕ as follows:

      ≔ ϕ ϕ ϕ[(0, 0, …, 0), (0, 0, …, 1), …, (Ω − 1, Ω − 1, …, Ω − 1)]ϕ X X XN1 2 (4)

The main advantage of the representation with 1DA consists in the fact that the position
where each value is stored matches the index of the corresponding configuration. This allows a
very efficient access through indices. The size of a 1DA, denoted by size ()ϕ , is the number of
entries, which is equal to the number of configurations in the potential.

Example 3. The potential ϕ X X X(, ,)1 2 3 given in Example 1 can be represented as the
following 1DA with 12 entries (see Figure 2).

This representation has limitations. The access to 1DA through configurations would re-
quire a transformation into indices using Equation (2); the coincidence between indices and
storage positions requires storing all values. Therefore, the storage of repeated values in con-
secutive positions cannot be avoided.

FIGURE 2 ϕ X X X(, ,)1 2 3 as a 1DA

GÓMEZ‐OLMEDO ET AL. | 5

A probability tree (PT) is an alternative structure that has been used to store potentials in
PGMs and operate them,21,22,24 both accurately and approximately. The tree storing a potential
ϕ, ϕ, is a directed tree with two types of nodes: internal nodes that represent variables and leaf

nodes representing the values of the potential. The internal nodes have outgoing arcs (one for
each state of the associated variable). The size of a tree  size, (), is defined as the number of
nodes it contains.

Example 4. The same potential given in the previous example is presented in Figure 3
as a PT. This PT has a size of 21 nodes (12 leaves and 9 internal nodes).

With PTs, the most efficient access method is by means of configurations: the tree
must be traversed from root to leaves, selecting the corresponding branch for each vari-
able until a leaf node with its value is reached. In addition, PTs can benefit from context‐
specific independencies,20 as many identical values can be grouped into a single value,
thus providing a compact storage. The operation that collapses identical values is called
pruning.

Example 5. The potential in previous examples presents a context‐specific independence
that allows reducing its size: The value for X X= 0, = 11 2 is 0.5, regardless of the value of X3.
Once the pruning is complete, the result is a pruned PT (PPT) of size 19, shown in Figure 4.

However, PTs cannot leverage other repetition patterns. Let us consider the tree presented
in Figure 3. The values for indices 7 and 8 are 0.2, and they are consecutive, but cannot be
pruned because they correspond to configurations for which values X2 and X3 vary.

A variant of PTs, called binary trees (BPTs),24 can divide the domain of each variable into
two subsets of states. Compared to regular trees, this feature of BPTs allows exploiting finer‐
grained context independencies. For instance, in the PT (left‐side of Figure 5), values 0.4 in
configuration c (left subtree) cannot be pruned. However, with BPTs, grouping states 0 and 2 of
Xk would allow representing value 0.4 with a single leaf node (as shown in the BPT at the right‐
side of Figure 5). This reduces memory space for context c, but it would require more nodes for
the subtree at the right‐side (context c′). For this reason, only PTs and PPTs are considered for
comparison in this study.

FIGURE 3 ϕ X X X(, ,)1 2 3 as probability tree

6 | GÓMEZ‐OLMEDO ET AL.

3 | MEMORY REQUIREMENTS ANALYSIS

Even though the size of a representation gives an idea of its complexity, a more accurate
analysis of its memory space requirements is needed: Any representation will consume addi-
tional elements (e.g., pointers, meta‐information, etc.) and each one uses different data types.
For this analysis we will consider a potential ϕ defined over a set of N variables
≔ X X XX { , , … }N1 2 . Additionally, we define the following notation related to the different

memory sizes:

• sf is the memory required for storing a float value.
• si is the memory required for storing an index denoting a specific configuration of ΩX.
• sr denotes the size of a reference to an object.
• sv represents the memory space required for storing the information about a variable: name,
cardinality and state names. As this depends on the names of variables and states, we will
assume a fixed value for all of them (in fact, this memory space will be negligible compared
to the memory used for storing a potential). Moreover, we can define a standard way of
coding variables with numerical identifiers and follow the same idea for their states.

• ss denotes the memory size of the data structure used for storing information (array, list,
set or dictionary). A specific notation will be used for this term hereafter: s s s, ,arr list set ,
and sdict, respectively.

FIGURE 4 ϕ X X X(, ,)1 2 3 as pruned probability tree

FIGURE 5 Binary tree representation

GÓMEZ‐OLMEDO ET AL. | 7

As mentioned before, the representation by means of 1DA offers an important advantage: The
values for configurations are stored consecutively. That is, the value in position k corresponds to the
kth configuration. In this way, there is no need to store information about indices. Therefore, the
codification of the representation assumes an amount of memory given by the number of values to
store, the size of the array data structure and the memory required for its variables.

Proposition 1 (Memory space for an array representing a potential). Let ϕ be a 1DA
representing  ϕ NX X(), = . Then, the amount of required memory is given by the following
expression:

 ⋅ ⋅memory N s m s s() = + +ϕ v f s (5)

where  m = ΩX is the number of elements in the array.

Example 6. From the previous examples, consider potential ϕ X X X(, ,)1 2 3 and its
codification as a 1D‐array given in Example 3. The estimated memory size is:

memory s s s() = 3 + 12 +ϕ v f s (6)

The tree representation (PT and PPT) is usually less efficient in terms of memory re-
quirements, since the full structure of the tree must be stored. Thus, the amount of memory
depends on the number of internal nodes, denoted by nI , and the number of leaves nL. It should
be noted that n n size+ = ()I L . Internal nodes store links (or references) to subtrees (each for a
state of the corresponding variable). These links are stored into an array. Then, it is relevant to
consider the number of outgoing arcs: nI

j() denotes the total number of internal nodes for
variables with j states.

Proposition 2 (Memory space for a tree representing a potential). Let ϕ be a tree
representing  ϕ NX X(), = . Then, the amount of memory required is estimated as follows:

 ⋅ ⋅ ⋅ ⋅memory N s n s n s s j s() = + + (+ +)ϕ v L f

j

K

I
j

v s r

=2

() (7)

where  K X X= max{ Ω : }X ii
is the maximal cardinality among the variables in the

potential.

In the case of a nonpruned tree, the number of leaf nodes will be equal to the number of
configurations in the potential. Consequently, the first two terms in Equations (5) and (7) are
equal. Thus, the main factors that determine the size of a tree are the data structure employed
for storing links to subtrees and the information on variables repetition.

Example 7. Let ϕ be the PT from Example 4 (Figure 3) containing seven internal
nodes for binary variables, two internal nodes for ternary variables, and 12 leaves.
Similarly, let  ′ϕ be the PPT from Example 5 (Figure 4) with six internal nodes for binary
variables, two internal nodes for ternary variables, and 11 leaf nodes. To compute their
memory cost, the following expressions can be used:

memory s s s s s s s s() = 3 + 12 + 7(+ + 2) + 2(+ + 3)ϕ v f v s r v s r (8)

memory s s s s s s s s(′) = 3 + 11 + 6(+ + 2) + 2(+ + 3)ϕ v f v s r v s r (9)

8 | GÓMEZ‐OLMEDO ET AL.

In the previous example, the pruning operation has reduced the number of internal nodes
as well as the number of leaves; however, the cost is higher than the size of the table re-
presentation. Memory savings with PTs often require a large number of repeated values.

For a specific analysis, let us assume the following sizes of data types (the real sizes can vary
depending on the architecture of the machine used; in fact, real sizes are not relevant as long as
the same sizes are used for all comparisons):

• long: 4 bytes (for indices).
• float: 8 bytes (for real values).
• pointer or reference: 8 bytes (memory addresses).
• variable: 50 bytes (this includes the space for storing name, state names, etc). That
is, s = 50v .

• the value of ss will depend on the specific data structure employed:
∘ array and list (sarr and slist, respectively): 16 bytes.
∘ set (sset): 32 bytes.
∘ dictionary (sdict): 64 bytes.

For these sizes, the estimated memory cost of representationsϕ, ϕ, and  ′ϕ are 262, 1000,
and 910, respectively.

4 | VALUE ‐BASED REPRESENTATIONS

4.1 | Motivation

At this point, it is clear the need for efficient quantitative information handling mechanisms for
the representation, inference, and learning tasks of PGMs. We have already seen that PTs allow
to capture some repetition patterns in very specific situations. For VBPs, the underlying idea is
to let the values guide the representation process and save as much space from repetitions as
possible. Therefore, VBPs were designed with the following goals in mind:

• Being able to take advantage of all repetition patterns, regardless of the order in which
they appear.

• Allow an efficient access to values and provide the necessary operations to perform
inference tasks. In this study, basic implementations for combination and marginalization
operations are provided to get an initial estimate of the behavior of VBPs when using
inference algorithms.

• Facilitate the approximation task and the parallel management. This study does no ex-
plore these features. Nevertheless, they must be considered to devise a good design taking
into account these possibilities (to be explored as future research).

4.2 | Categorization of alternatives

The proposed alternatives can be classified in two groups depending on how the queries
are made:

GÓMEZ‐OLMEDO ET AL. | 9

• Approaches driven by values, based on the use of dictionaries in which the keys will be
values. Two representations belonging to this group are presented Value‐Driven with
Grains (VDG) and Value‐Driven with Indices (VDI).

• Alternatives driven by indices, where the keys are indices. From this group we present
Index‐Driven with Indices (IDP) and Index‐Driven with Map (IDM). Both alternatives use
an array for values (V). IDP also uses a second array (L) that stores the indices and the
information required to link indices and values. IDM uses a map (M) with indices as keys
and the information to link with V as values.

The particular features for all of them will be presented below. However, a common
feature is outlined here. It must be clear that these representations require a search for
managing the information. This can be exploited by defining a default value that will be
returned when the search fails. This default value can be set to 0.0 or fixed after analyzing the
values of the potential. In this case, it would help to select as default value the most repeated
one, to reduce the memory requirements, even if computation requires more time. This study
considers the first alternative (i.e., 0.0 as default value).

5 | VBPS DESCRIPTION

5.1 | Value‐driven with grains

Identical values in potentials will often appear in configurations with consecutive indices.
Consider for instance the potential given in Example 3, in which the value 0.5 appears in
positions 2 and 3. A similar situation happens with value 0.2 in positions 7 and 8. It follows that
the sets of configurations associated to the same value can be defined in a compact way by
using intervals (i.e., grains). Formally, a grain can be defined as follows.

Definition 1 (Grain). Let X be a set of variables and i and j indices of valid
configurations onΩX, with i j. A grain g i j(,) defines a sequence of consecutive indices
i i j, + 1, … . Grains will be used for representing sequences of repeated values in VBPs.

In a VDG which encodes a potential, each non‐zero value will be associated with one or
more grains defining all the indices for which the potential takes this value. More formally, a
VDG can be defined as follows.

Definition 2 (VDG). Let ϕ be a potential defined over X. Then a value‐driven with
grains for ϕ, VDG ϕ, is a dictionary D in which entries are defined as v L< , >v , where
v ϕ (key) is a nondefault value and Lv is a list of grains that store the associated indices.

Therefore, for each grain g i j L(,) v, all the indices correspond to v (i.e., for all
k i i j= , + 1, …, then ϕ vx() =k).

Example 8. The potential ϕ X X X(, ,)1 2 3 used in previous examples and presented in
Figure 1 will be represented with VDG, as shown in Figure 6.

The outermost rectangle with rounded corners represents the dictionary. The circular
nodes indicate entry keys. The related list of grains associated with each key is
represented on the right. It can be seen in Figure 6 that each value is stored only once.

10 | GÓMEZ‐OLMEDO ET AL.

Some values appear only once in the potential. This is the case of 1.0, with 5 as starting
and ending index in the grain. The rest of values appear several times. For example, 0.1 is
the value for indices 0 and 11. Since these indices are not consecutive, they must be
stored in two different grains. Values 0.2 and 0.5 appear in consecutive indices and their
corresponding grains capture the sequences of repetitions.

Algorithm 1 (Access to index in VDG). Given VDG ϕ, the algorithm for getting the value
corresponding to a given index l is described in Algorithm 1.

Algorithm 1 Access to index l in VDG ϕ

1: function ACCESS (lVDG ,ϕ)

2: result = 0.0 ⊳ sets the default value to result

3: for each v (key) in key set D do ⊳ loop over dictionary entries

4: ←L D v()v ⊳ list of grains for v

5: for each g (grain) in Lv do

6: if l g ⊳ l is included in g

7: result v= and stop iteration

8: end if

9: end for

10: end for

11: return result

12: end function

Assume 6 is the target index. The search progresses through dictionary entries until
reaching key 0.8. The internal loop (Line 5) iterates over the grains for this value. Since the first
one contains 6, then 0.8 would be the result of the search. When the search fails and the index
is not found, then 0.0 (the default value) is returned. This would be the case for index 4.

FIGURE 6 ϕ X X X(, ,)1 2 3 as value‐driven with grains

GÓMEZ‐OLMEDO ET AL. | 11

Proposition 3 (Memory space for a VDG representing a potential). Let VDG ϕ be the
representation of ϕ X(), with   NX = . Let us assume that d represents the number of
different values in the potential (discarding the default value). The number of grains for
each value is denoted by g g… d1 . Then the amount of memory required is estimated as
follows:

⋅ ⋅ ⋅ ⋅memory N s s s d s s g s(VDG) = + + + (+) + 2ϕ v f dict f list

j

d

j i

=1

(10)

The terms in Equation (10) consider sizes for: variables, storage for default value, dictionary,
values and lists, and grains with two indices per grain. The number of grains for each value will
depend on the sequences of repetitions. It will be lower as long as the sequences are longer.
Therefore, the critical point in this representation is the number of grains required, given
by  gj

d
j=1 .

Example 9. Let VDG ϕ be the VDG from Example 8 with six different values to store in
the dictionary and 0.0 as the default value. Therefore, the dictionary stores six entries.
The sequences of repetitions require nine grains. Hence, the memory cost can be
computed using the following expression:

⋅ ⋅ ⋅memory s s s s s s(VDG) = 3 + + + 6 (+) + 9 2ϕ v f dict f list i (11)

Using the memory sizes described in Section 3, the complete amount of memory is
438 bytes (the sizes of 1DA, PT, and PPT are 262, 1000, and 910 bytes, respectively).

5.2 | Value‐driven with indices

Even though the previous structure with grains is a compact representation for potentials, it
could encode unnecessary information when repeated values are not in consecutive positions.
This is the case for 0.1 in Figure 6. The entry includes two grains of length 1: (0, 0) and (11, 11).
This repetition can be avoided by, for example, associating values to the complete list of indices
in which they appear. In this example, value 0.1 will be related to the list →(0 11). This
alternative will be advantageous if the sequence of values for a potential does not contain large
series of repetitions. Having this idea in mind, the following representation can be defined.

Definition 3 (VDIs). Let ϕ be a potential defined over X. A VDIs for ϕ, VDI ϕ, is a
dictionary D in which each entry v L< , >v contains a value (as key) and a list of indices
Lv, such that ϕ vx() =i for each l Lv.

Example 10. The potential ϕ X X X(, ,)1 2 3 used before and described in Figure 1 will be
represented as VDI as shown in Figure 7. The outermost rectangle represents the
dictionary: keys of entries are drawn as circles. Keys give access to lists of indices
(rectangles of rounded corners).

Algorithm 2 Access to index in VDI. Given VDI ϕ, the algorithm for getting the value
corresponding to a given index l is described in Algorithm 2.

12 | GÓMEZ‐OLMEDO ET AL.

Algorithm 2 Access to index l in VDI ϕ

1: function ACCESS (lVDI ,ϕ)

2: result = 0.0 ⊳ sets the default value to result

3: for each v (key) in key set D do ⊳ loop over dictionary entries

4: ←L D v()v ⊳ list of indices for v

5: for each p in LV do ⊳ loop over list of indices

6: if p l= = then ⊳ l is included in Lv
7: result v= and stop iteration

8: end if

9: end for

10: end for

11: return result

12: end function

Let us assume that 6 is the target index. The search progresses through dictionary
entries until reaching key 0.8. The internal loop (Line 5) iterates over the list. Since it
contains 6, the result would be 0.8. A failed search produces 0.0 as the result. This is the
case for index 4.

Proposition 4 (Memory space for a VDI that represents a potential). Let VDI ϕ be the
representation of ϕ X() with   NX = . Let us assume that d represents the number of
different values in the potential (discarding the default value). The number of indices for
each value is denoted by i i… d1 . The required amount of memory is estimated as follows:

⋅ ⋅ ⋅memory N s s s d s s i s(VDI) = + + + (+) +ϕ v f dict f list

j

d

j i

=1

(12)

FIGURE 7 ϕ X X X(, ,)1 2 3 as value‐driven with indices

GÓMEZ‐OLMEDO ET AL. | 13

The terms of Equation (12) consider sizes for: variables, default value, dictionary, values,
lists and indices. In VDI, the main source of savings comes from avoiding the storage of
repeated values, since the indices in which the significant (nonzero) values appear must be
explicitly stored.

Example 11. Let VDI ϕ be the VDI from Example 10 with six different values to
store in the dictionary and 0.0 as default value. Therefore, the dictionary stores six
pairs and six lists with 11 indices. The memory cost can be computed using the
following expression:

⋅ ⋅memory s s s s s s(VDI) = 3 + + + 6 (+) + 11ϕ v f dict f list i (13)

Using the memory sizes described in Section 3, the complete amount of memory is
410 bytes (a bit lower than VDG).

5.3 | Index‐driven with pairs

The problem with the access to value‐driven structures is the need to perform a double
iteration. The search for a target index, l, requires iterating over the list of entries and over the
associated lists (of grains or indices). To avoid this double iteration and make the search more
efficient, new structures are introduced in which the search is based on the indices themselves.
This is the case of IDP and IDM.

Definition 4 (IDP). Let ϕ be a potential defined over X. Then a structure IDP
representing ϕ, IDP ϕ, is a pair of arrays:V and L. Nonrepeated values in ϕ (excluding 0.0
as default value) are stored in ≔V v v v{ , , …, }d0 1 −1 . Let ndϕ represents the set of indices
storing nondefault values. The array L is defined as follows:

≔L i j ϕ v i ndx{(,) : () = , }i j ϕ (14)

That is, IDP is based on two components. First, an array storing the values (without re-
petitions, as before, and excluding 0.0 as the default value). Second, an array of pairs (index in
potential—index in array of values). The second index of the pair keeps the relation between
indices and values.

Example 12. The representation as IDP of the potential ϕ X X X(, ,)1 2 3 presented in
Figure 1 is shown in Figure 8.

As explained before, IDP uses two coherent arrays. V stores nonrepeated values
(except the default value). L contains pairs of indices. Let us consider value 0.5 in
ϕ X X X(, ,)1 2 3 , presented in indices 2 and 3. Then, the array of pairs, L (bottom part of
Figure 8), requires two pairs for this relation: (2, 2) and (3, 2). Both indicate that potential
indices 2 and 3 store the value in V (2).

Algorithm 3 (Access to index in IDP). Given a IDP ϕ, the algorithm for getting the value
corresponding to a given index l is described in Algorithm 3.

14 | GÓMEZ‐OLMEDO ET AL.

Algorithm 3 Access to l index in IDP ϕ

1: function ACCESS (lIDP ,ϕ)

2: result = 0.0 ⊳ sets the default value to result

3: for each pair t i i= (,)ϕ V in L do ⊳ loop over L array pairs

4: if i l= =ϕ then ⊳ l is found; value stored in V i()V

5: result V i= ()V and stop iteration

6: end if

7: end for

8: return result

9: end function

Let us assume that 6 is the target index. The search progresses through L until reaching the
6th position (pair (6, 3)). The value to be returned is stored inV (3) = 0.8. If index 4 is searched,
then 0.0 will be returned (this index is not present in L).

Proposition 5 (Memory space for an IDP representing a potential). Let IDP ϕ be the
structure representing  ϕ NX X(), = . Let us assume that d represents the number of
different values in the potential (discarding the default value). The number of indices
corresponding to a nondefault value is p. The amount of memory is estimated as follows:

⋅ ⋅ ⋅ ⋅ ⋅memory N s s s d s s p(IDP) = + + 2 + + 2ϕ v f arr f i (15)

The terms in Equation (15) consider the sizes for: variables, default value, both arrays,
values and pairs of indices. This representation tries to use simple structures and favors the
direct search on indices rather than on values.

Example 13. Let IDP ϕ be the IDP from Example (12) with six different values to store
and 0.0 as the default value. Therefore, V stores six values and L 11 pairs. The memory
cost can be computed using the following expression:

⋅ ⋅ ⋅ ⋅memory s s s s s(IDP) = 3 + + 2 + 6 + 11 2ϕ v f arr f i (16)

Using the specific memory sizes described in Section 3, the complete amount of
memory is 326 bytes.

FIGURE 8 ϕ X X X(, ,)1 2 3 as index‐driven with pairs

GÓMEZ‐OLMEDO ET AL. | 15

5.4 | Index‐driven with map

This structure aims to take a further step in the idea of facilitating access to the structure, using
a dictionary in which the keys are the indices. The definition of this new index‐driven alter-
native can be found below.

Definition 5 (IDM). Let ϕ be a potential defined over X. Then, a structure IDM
representing ϕ, IDM ϕ consists of a dictionary D and an arrayV . Nonrepeated values in ϕ
are stored in ≔V v v v{ , , …, }d0 1 −1 . D entries i j< , > are formed by indices (keys) ϕ and
indices V . Let ndϕ represent the set of indices storing nondefault values. Given an entry
i j< , >, then: ϕ vx() =i j and i ndϕ.

Example 14. Figure 9 shows the representation as IDM of the potential ϕ X X X(, ,)1 2 3

presented in Figure 1. The dictionary D is represented on the left side of Figure 9 and the
array of values V is on the right side. Keys in D are drawn as circles and give access to V
indices (boxes linked to keys).

Algorithm 4 (Access to index in IDM). Given IDM ϕ, the algorithm for getting the value
corresponding to a given index l is described in Algorithm 4.

Algorithm 4 Access to l index in IDM ϕ

1: function access (lIDM ,ϕ)

2: result = 0.0 ⊳ sets the default value to result

3: ←entry l j D l(< , >) () ⊳ searches l in dictionary

4: if entry! = null then ⊳ dictionary contains l as key

5: ←result V j()

6: end if

7: return result

8: end function

Let us assume that 6 is the target index. Since this is a valid key, entry <6, 3> is retrieved.
The value to be returned is stored inV (3) = 0.8. If index 4 is searched, then 0.0 will be returned
(this index is not present in D).

Proposition 6 (Memory space for an IDM representing a potential). Let IDM ϕ be the
structure representing  ϕ NX X(), = . Let us assume that d represents the number of
different values in the potential (discarding the default value) and p is the number of indices
storing nondefault values. The amount of memory is estimated as follows.

⋅ ⋅ ⋅ ⋅memory N s s s s d s p s(IDM) = + + + + + 2ϕ v f dict arr f i (17)

The terms of the Equation (17) represent sizes for: variables, default value, dictionary,
arrays of values, different values and indices in dictionary entries.

16 | GÓMEZ‐OLMEDO ET AL.

Example 15. Let IDM ϕ be the VBP from Example (14) with six different values to store
and 0.0 as the default value. Hence, the array of values has six elements. The dictionary
contains 11 entries. The memory cost can be computed using the following expression:

⋅ ⋅ ⋅memory s s s s s s(IDM) = 3 + + + + 6 + 2 11ϕ v f dict arr f i (18)

Considering the specific values as detailed in Section 3, the complete amount of
memory is 374 bytes.

5.5 | Example of extreme case

Let us consider an example of using the representation structures under consideration for a
potential with extreme features: only three different values (0.0, 0.5, and 1.0) and many re-
petitions of one of them (0.0 used as default value; around 70% of the indices are assigned to
0.0). The potential has 1024 possible values, with five variables in its domain, each with four
states. The values are randomly generated. We have considered 10 random potentials with

FIGURE 9 ϕ X X X(, ,)1 2 3 as index‐driven with map

GÓMEZ‐OLMEDO ET AL. | 17

these features to get a reliable idea of the behavior for these representations. Results are shown
in Table 1. 1DA and PT representations do not depend on the specific values and require
memory sizes of 8574 and 53,816, respectively.

For all the random potentials, the number of non‐zero values ranges from 156 to 222 (last
row in Table 1) and the longest sequence of repeated values is 2. Although better results could
be obtained with longest sequences of repeated values (at least with VDG representation), the
results show that the savings in memory consumption compared to 1DA, PT, and PPT are
noticeable.

6 | EMPIRICAL EVALUATION

Two sets of Bayesian networks are used for evaluating VBPs capabilities against previous
representations of potentials in PGMs: conditional probability Table 1 and trees (PT and PPT).
The first set is taken from the bnlearn repository41,42 and the second one from UAI competi-
tions.43,44 The quantitative information of these models is represented with the structures
previously defined (VDG, VDI, IDP, and IDM). Experiments are organized in three different
blocks: comparison of memory sizes, access time and computation time of posterior distribu-
tions using the variable elimination (VE) algorithm.11,45,46

The representations compared in experiments are:

• 1DA, PT, PPT, VDG, VDI, IDP, and IDM for memory sizes and access time comparisons on
bnlearn and UAI networks.

• 1DA, PT, VDI, and IDM for posterior computations with UAI networks.

6.1 | Features of Bayesian networks

Some basic information about the Bayesian networks employed is gathered in Tables 2 and 3:
name of network; number of nodes, number of arcs; minimum, average and maximum number
of variable states; and complete number of parameters for quantifying the uncertainty in the
networks. Networks are ordered by number of parameters. Observe that networks from the UAI
set require more parameters than the networks from bnlearn.

6.2 | Comparing memory sizes

To compare the memory sizes required for each representation with respect to 1DA, PT, and
PPT, we proceed to convert all the potentials to VDG, VDI, IDP, and IDM. The memory size
used by 1DA is taken as a reference and does not appear in the table. Given a certain network,
let m DA1 be the memory space for the 1DA representation and mrep the memory size for a
different representation. The value s included in the table cells and representing the gain (or
loss) for rep is computed as:

∗
s

m

m
=

100
− 100

rep

DA1

(19)

18 | GÓMEZ‐OLMEDO ET AL.

TABLE 1 Memory sizes for random potential representations

Iteration 1 2 3 4 5 6 7 8 9 10

PPT 39,090 38,332 37,658 38,396 40,946 38,910 42,610 38,120 42,706 38,544

VDG 1822 1814 1670 1774 1934 1854 1990 1734 2030 1694

VDI 1206 1210 1110 1190 1310 1218 1346 1166 1374 1194

IPD 1862 1870 1670 1830 2070 1886 2142 1782 2198 1838

IDM 1910 1918 1718 1878 2118 1934 2190 1830 2246 1886

values 180 166 156 176 206 183 215 170 222 177

TABLE 2 bnlearn features of Bayesian networks

Network Nnodes Arcs Min. st. Avg. st. Max. st. Parameters

cancer 5 4 2 2 2 20

asia 8 8 2 2 2 36

survey 6 6 2 2.33 3 37

sachs 11 17 3 3 3 267

child 20 25 2 3 6 344

alarm 37 46 2 2.83 4 752

win95pts 76 112 2 2 2 1148

insurance 27 52 2 3.29 5 1419

hepar2 70 123 2 2.31 4 2139

andes 223 338 2 2 2 2314

hailfinder 56 66 2 3.98 11 3741

pigs 441 592 3 3 3 8427

water 32 66 3 3.625 4 13,484

munin1 186 273 2 5.33 21 19,226

link 724 1125 2 2.53 4 20,502

munin2 1003 1244 2 5.36 21 83,920

munin3 1041 1306 2 5.38 21 85,615

pathfinder 109 195 2 4.11 63 97,851

munin4 1038 1388 2 5.44 21 97,943

munin 1041 1397 2 5.43 21 98,423

barley 48 84 2 8.77 67 130,180

diabetes 413 602 3 11.34 21 461,069

mildew 35 46 3 17.6 100 547,158

GÓMEZ‐OLMEDO ET AL. | 19

Thus, a negative value for s indicates that rep requires less memory space than 1DA.
Conversely, positive values indicate a higher memory consumption.

6.2.1 | Memory sizes for bnlearn networks

The results for this set of networks are presented in Figure 10. Some comments about these
results:

• PTs and PPTs always require more memory space than 1DA. Both of them are quite similar
except for win95pts. This network contains several potentials with repeated values where
the prune operation substantially reduces the number of leaf nodes and, consequently, the
memory size.

• For most of the networks, the most competitive representation is IDP. For networks with a
number of parameters lower than 8427 (from cancer to hailfinder), IDP requires more
memory than 1DA. But for the rest of the networks, IDP offers memory savings ranging from
−6.31% to −90.25%; the barley network is an exception. The potentials in this network have
short sequences of repeated values including few indices. For example, the potential for
variable jordn has 4752 possible values, but only four are different. However, the sequences
are arranged in such a way that they cannot be exploited by PPT. This is the reason why VDG
uses many grains. Moreover, potentials contain few zeros, which means that there are many

TABLE 3 UAI competition features of Bayesian networks

Network Nodes Arcs Min. st. Avg. st. Max. st. Parameters

BN_76 2155 3686 2 7.01 36 627,298

BN_87 422 867 2 2 2 933,776

BN_29 24 30 10 10 10 1,132,080

BN_125 50 375 2 2 2 2,117,680

BN_115 50 375 2 2 2 2,285,616

BN_119 50 375 2 2 2 2,410,544

BN_121 50 375 2 2 2 2,564,144

BN_123 50 375 2 2 2 3,249,200

BN_27 3025 7040 3 6 10 3,698,565

BN_117 50 375 2 2 2 4,003,888

BN_22 2425 4239 2 18.743 91 4,073,904

BN_111 50 375 2 2 2 4,238,512

BN_109 50 375 2 2 2 4,581,936

BN_113 50 375 2 2 2 4,669,488

BN_20 2483 5272 2 18.92 91 5,009,364

BN_107 50 375 2 2 2 5,154,864

BN_105 50 375 2 2 2 6,431,792

20 | GÓMEZ‐OLMEDO ET AL.

indices to store. In these cases, it would be appropriate to select the most repeated value as
the default, but this would complicate the combination and marginalization operations.

• More important savings correspond to diabetes and mildew. In these two networks there
are several potentials with a high number of repeated values. For diabetes there are 25
potentials with 7056 parameters, but only 44 different values. The same circumstance arises
in mildew (two examples are a potential with 39,040 possible values but only 1756 different
values, and another one with 201,300 parameters and 4508 different values). In these po-
tentials, repeated values cannot be collapsed when using PPTs.

• VDI is the best representation for pathfinder and diabetes. This is explained by the low
number of different values compared to the number of parameters. In pathfinder, a po-
tential with 8064 parameters needs only 29 different values.

FIGURE 10 Memory sizes for bnlearn networks [Color figure can be viewed at wileyonlinelibrary.com]

GÓMEZ‐OLMEDO ET AL. | 21

http://wileyonlinelibrary.com

6.2.2 | Memory sizes for UAI networks

The results for these networks are presented in Figure 11.
The following conclusions can be outlined from these results:

• Percentages for PTs and PPTs are always over 200%, except for BN_27. For this network,
there is an important difference between PT (488%) and PPT (−95.55%). Furthermore, PPT is
the best representation, but VDG offers a similar saving. This network presents 1005 po-
tentials with 3645 parameters, but only a single value (therefore, PPTs contain a single
leaf node).

• IDP is the best representation for most of the networks, with substantial savings for BN_76,
BN_22, and BN_20, and moderate savings for BN_111, BN_109, BN_113, BN_107, and
BN_106. For the rest of the network, the percentages of increase with respect to 1DA are the
lowest ones.

• All the proposed representations offer a competitive alternative to PTs and PPTs. In general,
the most significant savings are found in networks with a very high number of parameters,
where efficient representations are paramount for applying inference algorithms.

FIGURE 11 Memory sizes for UAI networks [Color figure can be viewed at wileyonlinelibrary.com]

22 | GÓMEZ‐OLMEDO ET AL.

http://wileyonlinelibrary.com

6.3 | Access time

Although the treatment of complex models implies the need of alternative models with higher
computation times (this is assumed as a tradeoff for saving memory space), it is important to
take into account the speed of access to potential values and the efficiency of the operations
required for the inference tasks. Complex model representations with long computation times
would be totally impractical.

Therefore, the efficiency of access to potential values is an indispensable requirement. For
this reason, part of the experimentation is focused on testing this operation. The experiment is
based on a random selection of 10,000 pairs (potential, index). This set will be used for all the
representations of each network. The tables show the results with times in milliseconds.

To do a reliable estimation of access times, we have used the Scalameter library.47 This tool
allows to configure the time measurement experiments ensuring that the machine reaches a
steady state (after a warm‐up phase); after that, it repeats several times the procedure of interest
and finally reports the average time.

FIGURE 12 Access times for bnlearn networks [Color figure can be viewed at wileyonlinelibrary.com]

GÓMEZ‐OLMEDO ET AL. | 23

http://wileyonlinelibrary.com

6.3.1 | Access times for bnlearn networks

Access times for bnlearn networks are presented in Figure 12. These times show that IDM
representation is very competitive, with 1DA‐like times. The times for the other alternatives are
in most cases shorter than those required for PT and PPT, except for barley and mildew. For
these networks, savings in memory space entail a more complex structure that requires longer
access times.

6.3.2 | Access times for UAI networks

Times for UAI networks are shown in Figure 13. In this set, IDM representation is the most
advantageous, with times similar to those required for 1DA. In these complex networks, where
VBPs offer significant reductions in memory space, the resulting structures for VDG VDI, , and

FIGURE 13 Access times for UAI networks [Color figure can be viewed at wileyonlinelibrary.com]

24 | GÓMEZ‐OLMEDO ET AL.

http://wileyonlinelibrary.com

IDP lead to higher access times. This is especially relevant for structures where the search is
value‐driven (VDG and VDI).

6.4 | Posterior computation

Since the objective of this study is to investigate the possibilities of using VBPs in inference
algorithms with Bayesian networks, the marginalization and combination operations must be
defined on these structures.

In general, if ϕ is a potential defined on X and ⊆Z X, then the marginalization of ϕ in Z is
computed by:

 ∀↓

↓

ϕ ϕz x z() = (), ΩZ

x z

Z

=Z

(20)

where ↓x Z denotes the projection of configuration x on Z. This operation can be done by
iteratively marginalizing out each variable  ⧹Y X Z.

In the case the of combination operation, given two potentials ϕ X()1 and ϕ Y()2 , the com-
bination of ϕ1 and ϕ2 is the potential denoted by ⊗ϕ ϕ1 2, which is defined on ∪Z X Y= using
pointwise multiplication:

⊗ ⋅ ∀ ∪↓ ↓ϕ ϕ ϕ ϕz z z z X Y() = () (),X Y
1 2 1 2 (21)

We have developed simple and direct algorithms for the marginalization and combination
operations (see Algorithms 5 and 6). These algorithms are based on accessing the values of the
potentials (operations defined in Algorithms 1, 2, 3, and 4), so the access operation is extremly
important. Since there is a one‐to‐one correspondence between indices and configurations, we
refer to them interchangeably (e.g., index l on Z corresponds to configuration zl).

Algorithm 5 (Marginalization in VBPs). Given VBP X()ϕ , a potential defined over X and
Y X, the method for marginalizing out Y from VBPϕ is described in Algorithm 5. It

must be noted that this algorithm can be used for all VBP alternatives.

Algorithm 5 Marginalization of Y from VBP (X)ϕ

1: function MARGINALIZE (VBP Y,ϕ)

2: ⧹YZ X= ⊳ make result domain

3: creates VBP Z()ϕr
⊳ empty result potential

4: for each  l k k= {0… }, = Ω − 1Z do ⊳ loop over VBP Z()ϕ indices

5: for each y ΩY do

6: ← ↑x zly l
Y y= ⊳ get configuration xly compatible with zl

7: ← VBPv x()ly ϕ ly ⊳ value inVBP X()ϕ for xly
8: end for

9: ←VBP z v()ϕ l y lyΩr y

10: end for

11: return VBP Z()ϕr

12: end function

GÓMEZ‐OLMEDO ET AL. | 25

Algorithm 5 removes a variable Y from VBP X()ϕ . In Lines 2 and 3, the final potential
domain ⧹YZ X= is used to create the resulting potential, which will be empty initially. Line 4
iterates over indices VBP Z()ϕr . Let us assume that l corresponds to a specific configuration of
variables in Z (denoted by zl). Compatible indices xl refer to configurations produced by
completing zl with the possible values of Y . This operation is denoted as ↑zl

Y . An internal loop
(Lines 5 to 8) iterates over the Y values. The sum of vly values is assigned to the resulting
potential (Line 9).

Algorithm 6 (Combination in VBPs). Given VBP X()ϕ1 and VBP Y()ϕ2 , two potentials
defined over X and Y , the method for combining both potentials is presented in
Algorithm 6. As it happens with Algorithm 5, this is a general method applicable to all
the alternatives described previously: VDG, VDI, IDP, and IDM.

Algorithm 6 Combination of VBP (X)ϕ1 and VBP (Y)ϕ2

1: function COMBINE (VBP VBPX Y(), ()ϕ ϕ1 2
)

2: ∪Z X Y= ⊳ make result domain

3: createsVBP Z()ϕr ⊳ empty result potential

4: for each  l k k= {0… }, = Ω − 1Z do ⊳ loop over indices VBP Z()ϕ

5: ←v 0.0l

6: ← ↓x zl l
X ⊳ project index zl on X

7: ←v VBP x()ϕ l1 1
⊳ value in VBP X()ϕ1

for xl
8: if ≠v 0.01 (default value) then

9: ← ↓y zl l
Y ⊳ project index zl on Y

10: ←v VBP y()ϕ l2 2
⊳ value inVBP Y()ϕ2 for yl

11: if ≠v 0.02 then

12: ⋅v v v=l 1 2

13: end if

14: end if

15: ←VBP vz()ϕ l lr

16: end for

17: return VBP Z()ϕr

18: end function

Algorithm 6 combines two potentials, VBP X()ϕ1 and VBP Y()ϕ2 . Line 2 produces the domain
Z as ∪Z X Y= . This is the domain of the potential VBP Z()ϕr that must be returned. Line 4
iterates over indices VBP Z()ϕr . Let l be the index under consideration (it corresponds to a given
configuration zl). The value that is going to be assigned to l is initialized to 0.0 (Line 5).
Configuration zl must be projected into VBP X()ϕ1 (Line 6) and VBP Y()ϕ2 (Line 9). These op-
erations are denoted by ↓zl

X and ↓zl
Y, and entail removing from zl those variables values that do

not belong to X and Y, respectively. The index of configuration xl is used to get v1 (Line 7). If v1
is 0.0, then v = 0.0l for sure, so no more operations are required. Otherwise, VBP y()ϕ l2

must be
accessed as well (see Line 10). Finally, vl is assigned to VBP Z()ϕr in Line 15.

26 | GÓMEZ‐OLMEDO ET AL.

This section presents the computation times required for obtaining the posterior on 10
variables selected randomly (using the VE algorithm) from each bnlearn network, and using
the algorithms for marginalization and combination previously described. Experiments have
been limited to bnlearn networks because for most of UAI networks, computations with 1DA,
PT and PPT exceed the memory capacity of the computer used for the experimental work.

In any case, it is important to highlight that the goal of these experiments is to get an overall
idea of the behavior of VBP structures. A foreseen line of work will be to carry out specific
implementations of the marginalization and combination operations, taking into account the
special properties of each representation.

We have selected one alternative for each category: VDI for value‐driven approximation and
IDM for index‐driven approach. These two representations show the best tradeoff between
memory use and access times within their category. They are compared with 1DA and PT
(when using trees, there is not much difference between PT and PPT in general). We have also
used the Scalameter library for measuring computation times. The results for this section are
presented in Figure 14.

FIGURE 14 Variable elimination times for bnlearn networks [Color figure can be viewed at
wileyonlinelibrary.com]

GÓMEZ‐OLMEDO ET AL. | 27

http://wileyonlinelibrary.com

Regarding these results, it is observed that the inference with PT shows the higher effi-
ciency. This is due to the specific implementations of marginalization and combination op-
erations in PTs (see Reference [22]). The implementation of these methods is recursive. It
should be noted that for some of the UAI networks, the execution of the algorithm produces a
stack overflow error when generating PTs with many variables. In these cases, the evaluation
with 1DA also fails producing out of memory errors.

It is also observed that, in most cases, times for IDM are similar to those for 1DA. This is
remarkable and suggests that more refined implementations of the marginalize and combine
operations, fitted to their structure, will improve current computation times. More efficient
implementations of these operations should try to avoid iterating over all indices of the re-
sulting potential, using instead only those which are stored. For some networks, this can offer
significant time reductions.

7 | CONCLUSION

Regarding the use of memory space, it is observed that all the alternatives proposed offer
competitive results compared to 1DA, PT and PPT. For most of the networks, VDI (value‐
driven) and IDP (index‐driven) alternatives stand out. In terms of access times, the best al-
ternative is IDM. For this reason, this representation was selected as an alternative for VE tests.

The basic versions of marginalization and combination allows to observe that VDI and IDM
also offer reasonable execution times, similar to those necessary for 1DA. In our opinion, these
results are promising. We also think that more efficient implementations will produce better
results. This task will be the addressed in future research.

Another important feature of VBPs (which has not been used in this study) should be noted:
VBPs can be approximated. The approximation operation assumes a loss of information. In-
tuitively, the idea is to group nearby values and replace them with their average (or some other
measure), so that repetition patterns are expanded and therefore reducing the number of values
that must be stored. With this operation, any algorithm involving the use of approximate
potentials will become approximate as well, and will ultimately offer nonexact solutions. This is
helpful, since for very complex problems it is always better to have at least one approximate
solution (see References [23–26] as examples of approximation with PTs).

The software used in this paper was implemented in Scala. The code is available in https://
github.com/mgomez‐olmedo/VBPots and the materials also include the information required
to reproduce the experiments. The functional programming paradigm combined with object
orientation that Scala offers can be used to parallelize well‐defined operations on multicore
CPUs when possible. Some of these benefits were studied in Reference [48].

ACKNOWLEDGMENTS
This study was jointly supported by the Spanish Ministry of Education and Science under
projects PID2019‐106758GB‐C31 and TIN2016‐77902‐C3‐2‐P, and the European Regional De-
velopment Fund (FEDER). Funding for open access charge from Universidad de Grana-
da/CBUA.

CONFLICT OF INTERESTS
The authors declare that there are no conflict of interests.

28 | GÓMEZ‐OLMEDO ET AL.

https://github.com/mgomez-olmedo/VBPots
https://github.com/mgomez-olmedo/VBPots

AUTHOR CONTRIBUTIONS
All the results and contents presented in this study have been developed jointly by all the
authors.

ORCID
Manuel Gómez‐Olmedo https://orcid.org/0000-0002-3817-8723
Rafael Cabañas https://orcid.org/0000-0002-5034-582X
Andrés Cano https://orcid.org/0000-0003-1733-9441
Serafı́n Moral https://orcid.org/0000-0002-5555-0857
Ofelia P. Retamero https://orcid.org/0000-0002-6521-470X

REFERENCES
1. Pearl J. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. San Francisco, CA:

Morgan Kaufmann; 1988.
2. Lauritzen SL. Graphical Models. New York, NY: Oxford University Press; 1996.
3. Koller D, Friedman N. Probabilistic Graphical Models: Principles and Techniques. Cambridge, MA: MIT

Press; 2009.
4. Pearl J. Bayesian Networks: A Model of Self‐Activated Memory for Evidential Reasoning. Los Angeles, CA:

Computer Science Department, University of California; 1985.
5. Pearl J, Russell S. Bayesian Networks. Los Angeles, CA: Computer Science Department, University of

California; 1998.
6. Olmsted SM. On representing and solving decision problems. PhD Thesis, Department of Engineering‐

Economic Systems, Stanford University; 1983.
7. Howard RA, Matheson JE. Influence diagram retrospective. Decision Anal. 2005;2(3):144‐147.
8. David AP. Applications of a general propagation algorithm for probabilistic expert systems. Stat Comput.

1992;2:25‐36. https://doi.org/10.1007/BF01890546
9. Kwisthout J. Most probable explanations in Bayesian networks: Complexity and tractability. Int J Approx

Reason. 2011;52(9):1452‐1469. https://doi.org/10.1016/j.ijar.2011.08.003
10. Dagum P, Luby M. An optimal approximation algorithm for Bayesian inference. Artif Intell. 1997;93(1):

1‐27.
11. Dechter R. Bucket elimination: A unifying framework for probabilistic inference. In: Learning in graphi-

calmodels, Springer; 1998:75‐104.
12. Jensen CS, U, Kjærulff, Kong A. Blocking Gibbs sampling in very large probabilistic expert systems. Int

J Human‐Comput Studies. 1995;42(6):647‐666.
13. Jensen FV, Nielsen TD. Bayesian Networks and Decision Graphs, Springer Verlag; 2007.
14. Li Z, D'Ambrosio B. Efficient inference in Bayes networks as a combinatorial optimization problem. Int

J Approx Reason. 1994;11(1):55‐81.
15. Madsen AL, Jensen FV. Lazy evaluation of symmetric Bayesian decision problems. In: Proceedings of the

15th Conference on Uncertainty in AI, Morgan Kaufmann Publishers Inc.; 1999:382‐390.
16. Madsen AL, Jensen FV. Lazy propagation: a junction tree inference algorithm based on lazy evaluation.

Artif Intell. 2004;113(1‐2):203‐245.
17. Pearl J. Evidential reasoning using stochastic simulation of causal models. Artif Intell. 1987;32(2):245‐257.
18. Shachter RD. Evaluating influence diagrams. Operat Res. 1986;34(6):871‐882.
19. Shachter RD, D'Ambrosio B, Del Favero B. Symbolic probabilistic inference in belief networks. In: AAAI

Proceedings; 1990:126‐131.
20. Boutilier C, Friedman N, Goldszmidt M, Koller D. Context‐specific independence in Bayesian networks. In:

Proceedings of the 12th International Conference on Uncertainty in Artificial Intelligence, Morgan Kaufmann
Publishers Inc.; 1996:115‐123.

21. Cano A, Moral S, Salmerón A. Penniless propagation in join trees. Int J Intell Syst. 2000;15(11):1027‐1059.
22. Salmerón A, Cano A, Moral S. Importance sampling in Bayesian networks using probability trees. Comput

Stat Data Anal. 2000;34(4):387‐413.

GÓMEZ‐OLMEDO ET AL. | 29

https://orcid.org/0000-0002-3817-8723
https://orcid.org/0000-0002-5034-582X
https://orcid.org/0000-0003-1733-9441
https://orcid.org/0000-0002-5555-0857
https://orcid.org/0000-0002-6521-470X
https://doi.org/10.1007/BF01890546
https://doi.org/10.1016/j.ijar.2011.08.003

23. Gómez‐Olmedo M, Cano A. Applying numerical trees to evaluate asymmetric decision problems. In:
Nielsen T, Zhang N, eds. Symbolic and Quantitative Approaches to Reasoning with Uncertainty. Lecture
Notes in Computer Science. Vol. 2711. Berlin, Heidelberg: Springer; 2003. https://doi.org/10.1007/978‐3‐
540‐45062‐7_16

24. Cano A, Gómez‐Olmedo M, Moral S. Approximate inference in Bayesian networks using binary probability
trees. Int J Approx Reason. 2011;52(1):49‐62.

25. Cabañas R, Gómez M, Cano A. Approximate inference in influence diagrams using binary trees. In:
Proceedings of the Sixth European Workshop on Probabilistic Graphical Models (PGM‐12); 2012.

26. Cabañas R, Gómez‐Olmedo M, Cano A. Using binary trees for the evaluation of influence diagrams. Int
J Uncertain Fuzziness Knowl‐Based Syst. 2016;24(1):59‐89.

27. Arias M, Díez F. Operating with potentials of discrete variables. Int J Approx Reason. 2007;46(1):166‐187.
28. Heckerman D, Mamdani A, Wellman MP. Real‐world applications of Bayesian networks. In: Association for

Computing Machinery; 1995. https://doi.org/10.1145/203330.203334
29. Gómez‐Olmedo M. Real‐World applications of influence diagrams. In: Gámez JA, Moral S, Salmerón A,

eds. Advances in Bayesian Networks. Studies in Fuzziness and Soft Computing. Berlin, Heidelberg: Springer;
2004. https://doi.org/10.1007/978‐3‐540‐39879‐0_9

30. Díez FJ, Luque M, Arias M, Pérez‐Martín J. Cost‐effectiveness analysis with unordered decisions. Artif
Intell Med. 2021;117. https://doi.org/10.1016/j.artmed.2021.102064

31. Wong TL, Xie H, Lam W, Wang FL. A learning framework for information block search based on prob-
abilistic graphical models and Fisher Kernel. Int J Mach Learn Cybernet. 2018;6:1473‐1487. https://doi.org/
10.1007/s13042‐017‐0657‐9

32. Yang L, Guo Y. Combining pre‐ and post‐model information in the uncertainty quantification of non‐
deterministic models using an extended Bayesian melding approach. Inform Sci. 2019;502:146‐163. https://
doi.org/10.1016/j.ins.2019.06.029

33. Lee W, Zabaras N. Parallel probabilistic graphical model approach for nonparametric Bayesian inference.
J Computat Phys. 2018;372(1):546‐563. https://doi.org/10.1016/j.jcp.2018.06.057

34. Alaa AM, van der Schaar M. Bayesian nonparametric causal inference: Information rates and learning
algorithms. IEEE J Selected Topics Signal Process. 2018;12(5):1031‐1046. https://doi.org/10.1109/JSTSP.
2018.2848230

35. Chavira M, Darwiche A. Compiling Bayesian networks using variable elimination. In: Proceedings of the
20th International Joint Conference on Artificial Intelligence; 2007:2443‐2449.

36. Sanner S, McAllester D. Affine algebraic decision diagrams (AADDs) and their application to structured
probabilistic inference. In: Proceedings of the 19th International Joint Conference on Artificial Intelligence;
2005:1384‐1390.

37. Choi A, Kisa D, Darwiche A. Compiling probabilistic graphical models using sentential decision diagrams.
In: European Conference on Symbolic and Quantitative Approaches to Reasoning and Uncertainty, Springer;
2013:121‐132.

38. Oztok U, Darwiche A. A top‐down compiler for sentential decision diagrams. In: Proceedings of the 24th
International Conference on Artificial Intelligence; 2015:3141‐3148.

39. Cano A, Gómez‐Olmedo M, Moral S, Pérez‐Ariza C, Salmerón A. Recursive probability trees for Bayesian
networks. In: Conference of the Spanish Association for Artificial Intelligence, CAEPIA 2009: Current Topics
in Artificial Intelligence; 2012. https://doi.org/10.1007/978‐3‐642‐14264‐2_25

40. Cano A, Gómez‐Olmedo M, Moral S, Pérez‐Ariza C, Salmerón A. Learning recursive probability trees from
probabilistic potentials. Int J Approx Reason. 2012;53(9):1367‐1387. https://doi.org/10.1016/j.ijar.2012.
06.026

41. Scutari M. Bayesian network constraint‐based structure learning algorithms: Parallel and optimized im-
plementations in the bnlearn R package. J Stat Software. 2017;77(2). https://doi.org/10.18637/jss.v077.i02

42. Scutari M. Learning Bayesian networks with the bnlearn R package. J Stat Software. 2010;35(3). https://doi.
org/10.18637/jss.v035.i03

43. UAI 2016 Inference Competition. 2016. http://www.hlt.utdallas.edu/~vgogate/uai16‐evaluation/
44. UAI 2014 Inference Competition. 2016. http://www.hlt.utdallas.edu/~vgogate/uai14‐competition/

index.html

30 | GÓMEZ‐OLMEDO ET AL.

https://doi.org/10.1007/978-3-540-45062-7_16
https://doi.org/10.1007/978-3-540-45062-7_16
https://doi.org/10.1145/203330.203334
https://doi.org/10.1007/978-3-540-39879-0_9
https://doi.org/10.1016/j.artmed.2021.102064
https://doi.org/10.1007/s13042-017-0657-9
https://doi.org/10.1007/s13042-017-0657-9
https://doi.org/10.1016/j.ins.2019.06.029
https://doi.org/10.1016/j.ins.2019.06.029
https://doi.org/10.1016/j.jcp.2018.06.057
https://doi.org/10.1109/JSTSP.2018.2848230
https://doi.org/10.1109/JSTSP.2018.2848230
https://doi.org/10.1007/978-3-642-14264-2_25
https://doi.org/10.1016/j.ijar.2012.06.026
https://doi.org/10.1016/j.ijar.2012.06.026
https://doi.org/10.18637/jss.v077.i02
https://doi.org/10.18637/jss.v035.i03
https://doi.org/10.18637/jss.v035.i03
http://www.hlt.utdallas.edu/~vgogate/uai16-evaluation/
http://www.hlt.utdallas.edu/~vgogate/uai14-competition/index.html
http://www.hlt.utdallas.edu/~vgogate/uai14-competition/index.html

45. Shenoy P, Shafer GR. Axioms for probability and belief‐function propagation. In: Shachter RD, Levitt TS,
Kanal LN, Lemmer JF, eds. Uncertainty in Artificial Intelligence, Vol. 9 of Machine Intelligence and
Pattern Recognition, 1990. https://doi.org/10.1016/B978‐0‐444‐88650‐7.50019‐6

46. Zhang NL, Poole D. Exploiting causal independence in Bayesian network inference. J Artif Intell Res. 1996;
5:301‐328.

47. Scalameter: Automate your performance testing today; 2021. http://www.github.com/deepfakes/
48. Masegosa AR, Martinez AM, Borchani H. Probabilistic graphical models on multi‐core cpus using Java 8.

IEEE Computat Intell Magazine. 2016:11(2):41‐54.

How to cite this article: Gómez‐Olmedo M, Cabañas R, Cano A, Moral S, Retamero
OP. Value‐based potentials: exploiting quantitative information regularity patterns in
probabilistic graphical models. Int J Intell Syst. 2021;1‐31.
https://doi.org/10.1002/int.22573

GÓMEZ‐OLMEDO ET AL. | 31

https://doi.org/10.1016/B978-0-444-88650-7.50019-6
http://www.github.com/deepfakes/
https://doi.org/10.1002/int.22573

