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Abstract: In this work, we present a do-it-yourself (DIY) approach for the environmental-friendly
fabrication of printed electronic devices and sensors. The setup consists only of an automated
handwriting robot and pens filled with silver conductive inks. Here, we thoroughly studied the
fabrication technique and different optimized parameters. The best-achieved results were 300 mΩ/sq
as sheet resistance with a printing resolution of 200 µm. The optimized parameters were used
to manufacture fully functional electronics devices: a capacitive sensor and a RFID tag, essential
for the remote reading of the measurements. This technique for printed electronics represents an
alternative for fast-prototyping and ultra-low-cost fabrication because of both the cheap equipment
required and the minimal waste of materials, which is especially interesting for the development of
cost-effective sensors.

Keywords: additive manufacturing; ball pen; flexible substrate; printed electronics; silver nanoparticles

1. Introduction

The development of the Internet of Things (IoT) has created a surge in the request of
electronic sensing or communicating notes. Inevitably, however, to reach the mass market,
while keeping in sight the targets of economic and environmental sustainability, it will
be necessary to produce low-cost devices and to minimize the waste of raw material and
non-recyclable final products. In addition to this, new requirements, which could expand
the fields of application of IoT nodes, have attracted the attention of end-users, such as
flexibility, light-weight, and biocompatibility [1,2]. In this novel framework, innovative
manufacturing techniques and new materials are becoming more and more popular. In
particular, printed electronics (PE) and handwriting electronics (HWE) are gaining momen-
tum. The former refers to traditional printing techniques, such as inkjet printing, screen
printing, and gravure, applied to electronic circuit design [3–5]. The latter is based on
handwriting techniques, such as a brush pen or ball pen, to build electronic devices [6].

In the past decade, PE has significantly developed in the field of sensors [7–9] and
radiofrequency identification (RFID) technology [10,11]. The main advantages with respect
to traditional clean room processes are the lower cost of the equipment, the operating
conditions, and the speed of prototyping, among others. Especially interesting are final
applications where no silicon-based element is included but only printed ones to build
a functional system. Other examples of PE are harvesters and logic circuits. Ishida et al.
developed a piezoelectric energy harvester together with the pedometer circuit; the pseudo-
CMOS 14-bit step counter is able to record up to 16,383 steps using the harvested power [12].
Moreover, Chang et al. described analogue and mixed-signal circuits, including differential
amplifiers, and a charge-redistribution 4-bit digital-to-analogue converter (DAC) [13].
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Recently, HWE has awaken the interests of researcher because it can provide the
same benefits as PE but its cost are even smaller, facilitating prototyping and allowing
do-it-yourself (DIY) electronics [6]. Different writing techniques, such as pencil [14,15],
brush pen [16], ball pen [17,18], and fountain pen [19,20] have been lately employed to
directly define electronic circuits. For example, commercial pencils have been utilized for
ultraviolet (UV) sensors [21,22] and photodetectors [23]. Further, custom-made pencils
based on carbon nanomaterials have been developed for gas sensing applications [24,25].
The drawback of this technology is its poor resolution and lack of reproducibility limited by
human eye and freehand lines, which constituted the main bottleneck for the commercial
development of this technology.

Brush and rollerball pens have been already employed with metal inks to develop
circuits interconnects and passive electronic components (capacitors, resistors and induc-
tors) as well as to combine them into simple circuitry [16,26]. Even handwriting techniques
have been already used to develop antennas at different operating frequencies [27,28].
Further, by utilizing these techniques, different kind of sensors have been fabricated. For
example, Li et al. directly wrote with a rollerball pen glucose sensors based on carbon- and
sliver-based conductive materials [29]. Kano et al. fabricated a flexible respiration sensor to
detect relative humidity (RH) by defining graphite electrodes with a pencil and depositing
an RH sensitive layer based on silica nanoparticles using a brush pen-sensitive silica NP
film [30]. Yu et al. designed a skin circuit for biosignal acquisition based on this technology.
In particular, they were able to record the electrocardiogram (ECG) [31].

However, although all these examples demonstrate the potential of handwriting
technology to create electronics components, they lack of reproducibility and the resolution
of the written patterns is very poor. In this direction, some efforts have been devoted to
open more possibilities to handwriting electronics by using pen analogues and writing
machines [32]. For example, Soum et al. presented an automated HWE system based on ball
pens and a plotter robot [33]. They described the fabrication method and its applicability to
develop disposable electrochemical sensor. However, they did not show which parameters
of the system affect the electrical and physical properties of the written electronics.

The fabrication process we describe and characterize in this work tackles these two
main issues and conjugates the inherent simplicity of HWE with the precision of computer
control. In particular, we report the optimization of an automated ball pen to write
electronics pointing out the parameters that influence the fabrication with such technique
and the optimal manufacturing parameters for a common employed ink in PE. Finding
the most suitable writing parameters is of paramount importance to guarantee sufficient
stability and reproducibility of processing conditions. These elements are crucial in the
realization of any electronic device, and even more in the constantly growing field of printed
sensors. To showcase the potential of the technique, after finding the most satisfactory
parameters, we employ it to create two sets of electronic components: passive gas sensors
and the RFID tags essential to build sensor systems with remote readout.

2. Materials and Methods
2.1. Manufacturing Process

The AxiDraw robot is a precise and versatile pen plotter; it is normally used to create
for example postcards, invitations, or drawings. The vector graphic program Inkscape,
extended with the official AxiDraw plugin, is used to control it. First, the setup of the pen
needs to be adjusted. Therefore, the height in the up and down position is set, so that the
pen touches the surface when down low and raises high enough not to write accidentally
when moving around without the intention to distribute ink. Alongside the height, the
writing and raising speed can be set and a delay after the raising and lowering of the pen
can be added. When all the regulations are finished, the writing process can be started
by the plot command. In order to obtain satisfying results, a number of different pens, as
well as varying substrates, have been investigated. This section describes the methods and
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actions that were performed within this work, including both, the handwritten tests, and
primarily the writings executed by the AxiDraw robot.

In this work, we tested a silver nanoparticle (AgNP) ink from ANP (DGP-40LT-15C),
containing 30–35%wt nanoparticles in triethylene glycol monomethyl ether (TGME). The
particles size was at maximum 50 nm. The writing process was performed at normal
environmental conditions.

Firstly, we tested three different types of pens to determine the most suitable to obtain
reproducible silver pattern: nibs, gel pens, and ball pens. The best tests results were found
for ball pens. The handwriting tests showed quite uniform lines, especially compared to
the other tested pens. The drawback of this option is the tip degradation over time. When
non-printing, the ink slightly dries on the pen’s tip, causing its blocking. Storing the pen
in the fridge with the tip pointing upwards helps with this issue. Printing some dummy
designs before the printing enhances the results significantly. In particular, we employed
a Cartridge-Rollerball-System with a 0.7 mm TC ball fabricated by Schmidt technology
(see Figure 1a). Once the pen was selected, we performed tests with different layouts on
photopaper as it is shown in Section 3. The selected substrate was EMBLEM Poster Paper
with 200 g/m2 weight (SOPEP200).
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Figure 1. (a) General setup of HWE system. Shown is a schematic of the software (Inkscape)
connected to an automated XY-Stage in which a ballpoint is fixated. (b) Written layout.

Therefore, to study the influence of the speed in the resolution, we resorted to a safer
option and set lines of 250 µm width (Figure 1b), while checking the process quality at
5 different speeds: 10 mm/s, 25 mm/s, 50 mm/s, 75 mm/s, and 100 mm/s. We took
microscope images of lines at the different speeds, digitized them, and converted their
edges to numerical data. This information was used to estimate the average width, its
standard deviation, the standard deviation of the single edges and their ratio to the width.

After the writing of the patterns, the AgNPs were photonically sintered with a Sinteron
2010 (Xenon Corporation, Wilmington, MA, USA). Following the results of the optimization
of sheet resistance for the same silver ink [34], we used a pulse width of 500 µs and a
periodicity of 1 s for 15 times at 2.1 W.
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2.2. Characterization

For electrode morphology characterization, scanning electron microscopy (SEM) was
performed. SEM-images were recorded with a field-emission scanning electron microscope
(NVision40 from Carl Zeiss AG, Oberkochen, Germany) at an extraction and acceleration
voltage of 5 and 7 kV, respectively. To optimize the image quality, the working distance
was adjusted in the range 5–6 mm. White light interferometer (WLI) images were recorded
using a NT9080 from Veeco (Plainview, NY, USA)

Optical microscope images (DM 2500 equipped with a DFC295 camera, both of Leica
Microsystems (Germany)) were taken for visual inspection of the written patterns. The
sheet resistance of the conductive layers was measured with using a four-point probe head
from Jandel connected to a source-measuring unit (Keysight B2901A).

3. Results
3.1. Speed and Resolution

To fully characterize the technique, we started with the analysis of the effect of the
speed of the arm robot on the quality of the written pattern, as well as the resolution
achieved when defining lines and squares/corners. Such parameters are crucial to define
electrodes, sensing layers among others electronic components. For example, the sensitivity
of capacitive sensors is directly related to de geometry of the electrodes; in the case of
interdigitated electrodes (IDEs) employed in planar capacitive sensors, the closer the fingers
are the higher the sensitivity results. It should be noted that the pen was in contact with
the paper with no additional weight while writing the patterns to reduce the process
parameters and keep the setup as simple as possible. Our observations show that although
lines narrower than 200 µm can be written, the likelihood for failures increases, especially
for what concerns the straightness of the lines. To enhance the achieved resolution, it a pen
with a smaller tip would be required.

The most representative information for this study is certainly the mean width and
its standard deviation, which are detailed in Table 1. It can be seen in Figure 2 that the
higher the speed is then the narrower the lines are. There is a variation in the width of
about 65 µm between the 10 mm/s and the 100 mm/s, with the biggest part of the change
happening in the first step (10 mm/s to 25 mm/s). This can be associated with the fact that
higher speed deposits less material than slower ones, however, as long as the minimum
flow of material that guarantees a continuous line is kept, the width does not deviate
significantly from the target value. In absolute terms, the width value closer to the target
one was obtained with 25 mm/s, however the resulted line is wavier. The more straight
lines resulted with a fabrication speed of either 10 mm/s or 100 mm/s, although they
deviated significantly from the target. The best compromise between straightness and
width is found for 75 mm/s, which is only marginally better than the other options and
offers the additional benefit of quicker writing speed.

Table 1. Summary of Image Analysis Key Indicators.

Writing Speed Average Width Width Std. Top Edge Std. Bottom Edge Std.

10 (mm/s) 293 µm 5 µm (1.70%) 6 µm (2.05%) 7 µm (2.39%)
25 (mm/s) 239 µm 8 µm (3.34%) 11 µm (4.60%) 10 µm (4.18%)
50 (mm/s) 235 µm 9 µm (3.83%) 13 µm (5.53%) 13 µm (5.53%)
75 (mm/s) 237 µm 7 µm (2.95%) 13 µm (5.49%) 15 µm (6.33%)

100 (mm/s) 228 µm 8 µm (3.51%) 7 µm (3.07%) 8 µm (3.51%)
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Since contacting pads are essential building blocks of every circuit, we also studied
different hatching strategies when drawing contact squares and lines (Figure 3). Each area
consists of two pass overs with different angle combinations of 90◦ and 45◦. The worst
case is found for hatching performed with perpendicular lines, where the pads are not
fully covered. For the other combinations, there is no significant changes. Looking at these
results, it is feasible to produce IDEs with 240 µm with about the same interspacing among
fingers, which are common dimensions in printed IDEs for sensing applications [35–37].

The main driver in achieving uniform printing without bulging or breaking of the area
with a single pass is the inter-line spacing. The approach can be derived from the theory
of ink-jet printing, where studies have been carried out to calculate the maximum droplet
spacing allowed—i.e., for a given contact angle between the ink and the substrate—to
guarantee a continuous line. It can be shown that the instability threshold for moderately
hydrophilic substrates (i.e., with contact angle below 70◦) is at circa 90% of the droplet
spherical size. In other words, in order to have continuous lines, it is necessary to have at
least a marginal overlapping between droplets [38].

In this avenue, we based our choice of parameters on the fact that in order to have
gapless surfaces, the lines would have a marginal overlap. Consistent with the findings in
previous ink-jet printing theory, we observed that a line spacing of 90% of the line width
would allow us to cover areas without gaps (Figure 3). The final results with these patterns
are virtually indistinguishable from more complex patterns because the angled crosshatch
(Figure 3d,e) resulted in significantly higher quantities of released ink and writing time.
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Figure 3. Microscope images depicting resulting contact pads and lines drawn with different hatching
strategies. Each area consists of two pass overs: (a) incomplete hatching with hatchspace 2× larger
than line width at 90◦; (b) parallel horizontal lines with hatchspacing equal to 90% of line width;
(c) parallel vertical lines with hatchspacing equal to 90% of line width; (d) 90◦ angled crosshatch
at 45◦ configuration with hatchspacing equal to 90% of line width; (e) 90◦ angled crosshatch with
hatchspacing equal to 90% of line width.

3.2. Thickness and Roughness

One essential parameter when it comes to fabrication techniques is the thickness
obtained in one-step and the roughness of the resulting layer. For this purpose, we drew
single lines of 250 µm at 75 mm/s.

The thickness of the AgNP-films was determined using WLI, as sketched in Figure 4,
which illustrates the WLI-image for a photopaper/AgNP-film transition. The thickness of
the AgNP-film yields to 164 ± 8 nm, which considers the average over 5 distinct areas of
3 µm × 3 µm on both sides, i.e., the AgNP film and the photopaper side.
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Figure 4. WLI-image for the photopaper/AgNP-film transition recorded over an area of
100 µm × 75 µm.

3.3. DC Characterization

The hatching and thickness of the printed layers can also heavily influence the con-
ductivity of the printed films. Low sheet resistance for conductive layers offers multiple
benefits in the realization of sensors’ physical layers by interconnecting building blocks of
sensor systems (such as antennas for RFID systems).

Both for capacitive and resistive sensors, a high resistivity of conductive lines might
result in a significant loss of sensitivity, because the parasitic resistance will become more
and more dominant. The response of a resistive chemosensor, for instance, can be modelled
in a first approximation as:

Rsensor(c) = Rcontacts + R f ilm(c)∆R%(c) =
R f ilm(c)

Rcontacts + R f ilm(c)
× 100

where Rsensor is the total resistance of the sensor, composed of the conductors’ resistance
(Rcontacts) and the resistance of the sensing film (R f ilm(c)). Only the latter is a function of
the concentration c. When printing parameters are not optimized and the resistance of
the contacts becomes predominant, there would be an undesired loss of sensitivity. An
analogous rationale can be followed for capacitive sensors, yet for the sake of conciseness
it will not be explicitly reported here.

Additionally, the lower the interconnect resistance then the lower the losses within the
printed system (a critical item for any device powered by batteries or energy harvesters),
and similar considerations can be expressed for the resistivity of printed antennae.

One of the targets of the process optimization for this automated HWE technique
shall then be the reduction of the sheet resistance of the written silver layers. To achieve
this goal through electrical characterization of the silver patterns, we studied the sheet
resistance of the written patterns obtained at 75 mm/s, which are illustrated in Figure 5.
The mean value is about 550 mΩ/sq. However, this value can be reduced by almost to half
(300 mΩ/sq.) by using a double 90◦ angle crosshatch with hatch spacing equal to 90% of
line width.
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Figure 5. Relationship between hatching pattern and sheet resistance. (1) Parallel horizontal lines
with hatchspacing equal to 90% of line width. (2) Parallel vertical lines with hatchspacing equal to
90% of line width. (3) 90◦ angled crosshatch at 45◦ configuration with hatchspacing equal to 90% of
line width. (4) 90◦ angled crosshatch with hatchspacing equal to 90% of line width. (5) Double 90◦

angled crosshatch with hatchspacing equal to 90% of line width.

The average thickness of the silver layer was circa 165 nm; however, the hatching
pattern significantly affects the sheet resistance due to the route taken by the pen, and
consequently the way in which the particles agglomerate and the total amount of material
deposited on the substrate.

3.4. Applications

We employed a technique used to fabricate electronic devices that normally belongto
the PE domain rather than to the HWE, because of the low degree of control that normally
can be obtained with handwriting methods. In particular, we used this procedure to
fabricate IDEs on paper for gas sensors (see Figure 6a), which are characterized in [39], and
radiofrequency identification (RFID) tags (Figure 6b), creating two of the main building
blocks of fully printed sensing systems.
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UHF RFID tag.

The gas sensors were composed by Ag NP electrodes written with the system here
described with a finger width and interspacing of 300 µm. On top of the IDEs, a carbon
nanotube (CNT) layer was also written, which acts as sensing layer. Such sensor exhibited
sensitivities similar to other CNT-based resistive sensors [40–42].

The response with respect to NH3 (shown in Figure 7) is in line in terms of relative
changes, time constants and general behaviour with what we described in our previous
works, where similar material stacks were deposited with different technologies. In particu-
lar, it can be observed the characteristic resistance drop when the sensor is heated, followed
by a recovery trend to the initial resistance value, and different slopes and growth of the
resistance as a function of the gas concentration.
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concentrations of NH3. The sensor undergoes cycles of heating, thermal recovery and exposure to
concentrations of 20 ppm and 50 ppm of HN3.

We also manufactured a RFID tag on paper, which is essential for the read-out of au-
tonomous systems. The tag operates in the ultrahigh frequency (UHF) band. The employed
the chip EM4325 (from EM Microelectronic) with the optimized antenna provided by this
manufactured (see Figure 6b) with a diameter of 3.8 cm. The total length of the dipole
arms is 8.6 cm. The antenna is designed to resonate at 867 MHz. We checked the RFID
tag with a commercial reader (DK-UHF RFID HP2 from IDS Microchip AG, Switzerland),
and we only achieved a reading range of 0.4 m, which is sub-optimal when compared to
commercial antennae, but it could be sufficient for most practical applications. Although
the antenna is functional, it suffers from the inherit high resistance of the printed pattern.
The values obtained in this work (in the order of hundreds of mΩ/sq.) compared to other
printed antennas, such as the inkjet printed ones (sheet resistance in the order of tens of
mΩ/sq.), are indeed about an order of magnitude higher with an optimized photonic
sintering process [34]. Nevertheless, in case longer reading distances are required, this
shortcoming can be overcome by printing thicker patters (increasing the number of printed
layers [43]) or enhancing conductivity by the tuning/selection of the used conductive ink.

Both gas sensors and RFID tags are key pillars in the development of the IoT, which is
of great interests if both cost-effective manufacturing process and biodegradable materials
like paper are employed.

Regarding the cost of the described automated HWE, the total cost of the system is
below 500 €. The robot is about 450 € and the pen with reservoir is around 20 €, which
can be reutilized several times if it is properly cleaned. This total cost is much lower than
almost any dedicated printing equipment for electronics and cheaper than almost any
printing system. Moreover, the cost of empty reservoir is about 2 €, which is much cheaper
than any consumable of other printing system.

4. Conclusions

In this work, we studied an automatized handwriting technique based on ball pens.
We benchmarked and tested for prototyping different printed electronic devices, aiming to
demonstrate the feasibility of handwritten complex sensing systems.

It was found that the best compromise between the straightness of lines and desired
width was 75 mm/s. Further, the hatching patterns reduced the sheet resistance of the
produced layouts. In particular, a double 90◦ angled crosshatch with hatchspacing equal
to 90% of line width decreased the obtained sheet resistance in half, with respect to the
other hatching patterns analyzed. However, they did not show any apparent difference in
terms of morphology and coverage level. Using these optimal parameters of speed and
hatching pattern, this technique reproduced patterns with a resolution of 250 µm and sheet
resistance of about 300 mΩ/sq.
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Reproducibility was good enough to manufacture similar conductive patterns with er-
rors below 3%, which is a key finding for the production of reliable sensors with repeatable
characteristics and antennae with predictive performance.

Such a technique has been employed to fabricate and test printed electrodes for
gas sensors and RFID antennas at the HF band. The described technology paves the
way for DIY in-house prototyping and for “decorative” electronic nodes, where accurate
handwritten patterns can be used to disguise the presence of a sensor or antenna. Compared
to other printing techniques, two advantages can be highlighted: due to the additive
fabrication process, which impies no waste of materials, and the ultra-low-cost equipment
that minimizes both, the time and cost associated with the produced sustainable electronic
prototypes. This fact can be important in iterative design processes, where slightly different
prototypes need to be fabricated until the optimal design is reached like in the case of
antenna design and where antenna performance is optimized through small differences in
the design. The limitations of the proposed technique are related to the lower performance
compared to other comparable fabrication techniques (e.g., inkjet printing), although they
can be overcome by depositing multiple layers (in an approach similar to what ink-jet
printing or spray-deposition employ).

In this work, we focused on the optimization of writing conductive silver; we demon-
strated the utilization of the same technique with carbon nanotubes in a previous work.
Therefore, this technique is versatile and can be utilized with various materials to manufac-
ture complete sensing tags by just filling the pen with another cartridge.
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