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Simple Summary: A deep knowledge of the regulation of genes involved in human adipose-derived
mesenchymal stem cells (hASCs) neuronal differentiation is essential to their application in neurolog-
ical disorder treatment. hASCs were induced to neuronal differentiation using three differentiation
protocols and modulation of specific neuronal biomarkers and epigenetic genes changes were de-
termined. An excellent neuronal differentiation of hASCs was obtained after Neul media exposure
accompanied by relevant epigenetic changes in six genes including Hoxa-5. Moreover, functional
analysis overexpressing the Hoxa-5 gene by CRISPR/dCas9 and lentiviral systems induced neuronal
differentiation in hASCs which was improved and accelerated with the use of Neul media. These
results suggest that Hoxa-5 plays a crucial role in the differentiation process, highlighting it as a
potential candidate for the development of therapeutic strategies aimed at cell therapy in diseases
related to the nervous system.

Abstract: Human adipose-derived mesenchymal stem cells (hASCs) may be used in some nervous
system pathologies, although obtaining an adequate degree of neuronal differentiation is an important
barrier to their applicability. This requires a deep understanding of the expression and epigenetic
changes of the most important genes involved in their differentiation. We used hASCs from human
lipoaspirates to induce neuronal-like cells through three protocols (Neul, 2, and 3), determined the
degree of neuronal differentiation using specific biomarkers in culture cells and neurospheres, and
analyzed epigenetic changes of genes involved in this differentiation. Furthermore, we selected the
Hoxa-5 gene to determine its potential to improve neuronal differentiation. Our results showed that
an excellent hASC neuronal differentiation process using Neul which efficiently modulated NES,
CHAT, SNAP25, or SCN9A neuronal marker expression. In addition, epigenetic studies showed
relevant changes in Hoxa-5, GRM4, FGFR1, RTEL1, METRN, and PAX9 genes. Functional studies of
the Hoxa-5 gene using CRISPR/dCas9 and lentiviral systems showed that its overexpression induced
hASCs neuronal differentiation that was accelerated with the exposure to Neul. These results suggest
that Hoxa-5 is an essential gene in hASCs neuronal differentiation and therefore, a potential candidate
for the development of cell therapy strategies in neurological disorders.

Keywords: mesenchymal stem cells; neuronal differentiation; epigenetic changes; Hoxa-5; CRISPR/
dCas9
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1. Introduction

Human adipose-derived mesenchymal stem cells (hASCs) show clear advantages over
other MSCs, such as low donor morbidity, minimal postoperative discomfort, and high
cell yield. In fact, large amounts of hASCs can be obtained from liposuction surgery, since
hASCs are five to eight times more numerous in fat than in other tissues [1]. The hASCs
can be used not only for differentiation into mesodermal lineage but also into ectodermal
and endodermal-derived tissues, including nervous tissue [2-4]. Despite variations in
composition and duration of neuronal differentiation protocols exist, the assessment of
differentiation effectiveness includes the analysis of specific neuronal markers such as
Nestin (NES), Tubulin-III (TUB-III), microtubule-associated protein-2 (MAP2), enolase
(ENS), and tyrosine hydroxylase (TH) [5], glial markers such as glial fibrillary acidic protein
(GFAP) [6] and neuronal functional markers such as choline O-acetyltransferase (CHAT)
and synaptosomal-associated protein-25 (SNAP25) [7]. In fact, using a differentiation
protocol containing epidermal growth factor (EGF), fibroblast growth factor (FGF), and
adenosine 3',5’-cyclic monophosphate (cAMP), Urrutia et al. [8] observed a significant
increase in NES and TUB-III in differentiated MSCs from a variety of sources. Dave et al. [9]
found a significant increase in GFAP and TUB-III in hASCs treated with a differentiation
medium containing cAMP and EGF and Kang et al. [10] demonstrated an increase in CHAT,
TUB-III, and MAP2 in cells exposed to differentiation protocols containing NGF and FGF.

The therapeutic efficacy and biosecurity of differentiated hASCs has been widely
discussed. Gao et al. [11] recently showed that, with a differentiation protocol rich in
neurotrophic factors, hASCs could be converted into motoneuron-like cells that expressed
a cohort of neuronal markers and that induced partial functional recovery when were
transplanted into a spinal cord injury mouse model. Chudickova et al. [12] showed
that the conditions of injured neural tissue with an inflammatory environment are an
effective protocol for the differentiation of murine hASCs into cells expressing neuronal
markers. In addition, clinical trials in neural system disorders have demonstrated positive
results in terms of safety and effectiveness. In patients with multiple system atrophy,
intrathecal hASCs transplantation was safe and well-tolerated [13]. Recently, the infusion
of autologous hASCs has been demonstrated to be safe and feasible in patients with
secondary progressive multiple sclerosis [14].

On the other hand, the coding sequences of hASCs and differentiated adult cells are
almost the same [15], which seems to indicate that epigenetic factors play a primary role in
determining hASCs fate and differentiation [16]. Pluripotency-related genes are hyperme-
thylated in differentiated adult cells and hypomethylated in stem cells, indicating that DNA
methylation participates in lineage determination [17]. In fact, epigenetic changes drive
hASCs to commit to a particular lineage by repressing genes associated with the mainte-
nance of stemness while expressing others related to differentiation into alternatives [18].
At present, epigenetic modifications that regulate hASCs functions and their adipogenic,
osteogenic, chondrogenic, and neuronal differentiation remain unclear [19,20]. Regarding
the induction of a neuronal phenotype from MSCs, it has been recently demonstrated that
epigenetic reprogramming is required [21]. This plasticity could be the result of combining
epigenetic modulating enzymes and specific signaling pathways [22]. The manipulation
of hASCs towards a desired epigenetic status in order to transform them into the proper
neuronal lineages could achieve a more durable and faster neuronal differentiation by itself
or combined with enriched media. This epigenetic-based therapy is a promising tool under
investigation for clinical application in several human conditions, including neurological
diseases [23]. However, the mechanisms and essential genes that participate in the hASCs
neuronal differentiation process are unknown.

The hox gene family codifies transcription factors that contribute to determine the
neuronal fate [24]. Concretely, Hoxa-5 has been recently related to the differentiation of
neurons from nuclei with autonomic functions in the mouse brain [25], and to the axon
outgrowth of the posterior vagus motor neurons [26]. In addition, Hoxa-5 is not only
expressed in the early stages of development but also remains during adulthood, although



Biology 2021, 10, 802

30f17

the function in these stages is unknown [27]. Interestingly, the expression of Hoxa-5 has
been associated not only with the differentiation process of neurons but also with the
dedifferentiation process in cancer (e.g., acute myeloid leukemia, colon cancer, or gastric
cancer) [28].

The aim of this work was to determine and evaluate the importance of epigenetically-
regulated genes in the neuronal differentiation process of hASCs. In this context, three
differentiation protocols were tested to study epigenetic reprogramming. We further
determined the most important genes involved in the process of neuronal differentiation
and selected Hoxa-5 to verify its potential to improve and accelerate this process. These
data might help to clarify the mechanisms of epigenetic interactions occurring during
the neuronal differentiation of hASCs that are essential to maximizing the benefit and
usefulness of these cells.

2. Materials and Methods
2.1. hASCs from Human Adipose Tissue, Neuronal Differentiation and Neurospheres Formation

This study was conducted in accordance with the Declaration of Helsinki. The study
was approved by the ethical committee, under the project Fundacié La Maratoé de TV3
(Ref:111430/31), code: 91432-N1-16 at the Andalusian Public Health System in Granada,
and all participants provided informed consent allowing their anonymized information to
be used for data analysis. Adipose tissue samples were obtained by minimally invasive
liposuction procedures from three healthy patients aged 30 to 55 years. hASCs lines were
extracted and characterized as described in our previous study [29]. hASCs were differenti-
ated to neuronal lineage by in vitro induction using specific culture media. Three neuronal
differentiation protocols, namely Neul, Neu2, and Neu3, were employed. We chose these
induction protocols based on the results their components showed in previous studies, with
major changes observed in treated cells. Besides, different combinations of components
were tested in our laboratory prior to our work. Neul, Neu2, and Neu3 differentiation me-
dia (based on the procedure of Bossolasco et al. [30], Bae et al. [31], and Tondreau et al. [32]
were used (see Supplementary Methods for detail: procedure of differentiation medium).
Finally, hASCs were induced to forming neurospheres as previously described [33] (see
Supplementary Methods for detail: procedure of neurospheres formation).

2.2. Immunofluorescence Analysis of Neuronal Markers

To determine the degree of neuronal differentiation, immunofluorescence assays were
carried out. After the differentiation processes, the hASCs cells (plates of 12 and 24 wells)
were fixed with 100% ethanol (20 min at —20 °C) and permeabilized with 0.1% Triton
X-100 (Sigma Chemical Co) solution (10 min at RT). The cells were blocked with a blocking
solution consisting of 5% goat serum (Sigma-Aldrich) and 0.3% Triton X-100 in 0.1% PBS-
Tween (Bio-Rad) (1 h at RT). Following a PBS washing, cells were incubated with the
primary antibodies (overnight at 4 °C): NES, GFAP, TUB-III, sodium voltage-gated channel
alpha subunit-9 (SCN9A), synaptosome associated protein-25 (SNAP-25), O4 forkhead
box (FOXO-4), CHAT, MAP2, TH, ENS, Tau protein (TAU), Neurofilament (NFM), and
galactosylceramidase (GalC). Neurospheres were also incubated with n-cadherin and
vimentin (Supplementary Table S1). Cells were incubated with secondary antibody (Alexa
Fluor 488 goat anti-mouse IgG; A11001 Life Technology or bovine anti-mouse IgG-R; sc-
2368 Santa Cruz) 1:500 dilution (1 h at RT). Nuclei were counterstained with Hoechst
solution (Sigma). Negative controls that included the omission of primary or secondary
antibodies were carried out and cells were examined under a fluorescence microscope
(Nikon Eclipse E400). Images were generated using Image] software (version 1.52s).

2.3. Quantitative RT-PCR

Analysis using mRNA was performed to determine the relative neuronal lineage gene
expression levels. Total RNA was extracted using Trizol Reagent (Invitrogen, Carlsbad, CA,
USA) and was converted into cDNA using a retro-transcriptase kit (Promega, Madison,
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WI, USA), following the manufacturer’s instructions. Specific quantitative RT-PCR primers
were used (Supplementary Table S2).

2.4. Genome-Wide CpG Methylation Profiling

DNA samples from in vitro differentiated hASCs were extracted using conventional
phenol:chloroform:isoamylalcohol (Sigma), quantified by Quant-iT PicoGreen dsDNA
Reagent (Invitrogen), and DNA integrity was analyzed in a 1.3% agarose gel. Bisulfite
modification of 600 ng genomic DNA was carried out with the EZ DNA Methylation Kit
(Zymo Research, Irvine, CA, USA) following the manufacturer’s protocol. Next, 4 uL of
bisulfite-converted DNA were used to hybridize on an Infinium HumanMethylation450
BeadChip, following the Illumina Infinium HD Methylation protocol. The chip was ana-
lyzed using an Illumina HiScan SQ fluorescent scanner and the intensities of the images
were extracted using the GenomeStudio (2010.3) Methylation module (1.8.5) software. A
three-step-based normalization procedure was performed using the Lumi package, avail-
able from Bioconductor [34] in the R statistical environment. This consisted of color bias
adjustment, background level adjustment, and quantile normalization across arrays [24].
The methylation level (f3) for each of the 485,577 CpG sites was calculated as the ratio
of the methylated signal divided by the sum of methylated and unmethylated signals
plus 100. To avoid batch effects, the function preprocess Funnorm in the minfi package
was used [35]. It is particularly useful for studies comparing conditions with known
large-scale differences, such as cancer/normal studies, or between-tissue studies. It has
been shown that for such studies, functional normalization outperforms other existing
approaches [36]. After the normalization step, probes related to X and Y chromosomes,
and those containing SNPs with a frequency of >1% (1000 Genome Project) in the probe
sequence or interrogated CpG sites were removed. Probes located in frequent copy number
variant regions were also excluded. The methylation score of each CpG is represented as a
-value. DNA methylation microarray data are freely available for download from NCBI
Gene Expression Omnibus under accession number GSE145614. DNA methylation values
from undifferentiated hASCs were previously published [29], and free available from GEO
under the accession number GSE33896

2.5. Hierarchical Cluster Analysis and Definition of CpG Methylation Differences

Samples were clustered in an unsupervised manner using the 5000 most variable 3-
values for CpG methylation according to their standard deviation in the CpG sites located
in promoter regions by hierarchical clustering. An agglomeration method for Manhattan
distances was used. For the differential methylation analysis between conditions, Wilcoxon
signed-rank tests were conducted in the R statistical environment for all CpGs. The
resulting p-values were corrected for multiple testing [37]. The CpGs selected were those
with adjusted values of p < 0.05 and an absolute methylation differential value of >0.33.

2.6. Bisulfite Genomic Sequencing of Multiple Clones

Once the candidate genes were selected, we determined their CpG island methylation
status by PCR analysis of bisulfite-modified genomic DNA as described above. The PCR
product was run on a 1% agarose gel and the bands were cut and purified using a purifi-
cation kit (Macherey-Nagel, Diiren, Germany) following the manufacturer’s instructions.
Then, each genetic sequence of each sample was introduced in the pGEM-T Easy vector
(Promega) cloned in E. coli bacteria and 12 clones of each were automatically sequenced to
determine their degree of methylation. Primer sequences and annealing temperatures used
are collected in Supplementary Table S2.

2.7. Generation of a Stable hASCs Line Overexpressing Hoxa-5 Gene by Lentivirus

To overexpress Hoxa-5 in hASCs, two exons (exon 1: 75-636 pb; exon 2: 1602-1847
pb) of the Hoxa-5 NM_019102 gene (Genome Browser) were isolated and amplified from a
human lymphocytes cell line immortalized with the Epstein Barr virus, and the sequences
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of the restriction enzymes EcoRI and BamHI were added. After this, both exons were
fused together and the PCR product was purified from a 1% agarose gel and digested
with EcoRI and BamHI to be bound to the previously digested pLVX-IRES-Zsgreen vector
(Takara Bio, Saint-Germain-en-Laye, France) in a 3:1 ratio. The product of the ligation was
cloned in E. coli and sequenced. As a negative control, a Hoxa-5 truncated sequence was
designed to eliminate the 180 nucleic bases of its homeobox. The sequence was ligated
with the pLVX-IRES-tdTomato vector (Clontech) with red fluorescence, and finally, it was
sequenced following the same methodology already described. Complete and truncated
Hoxa-5 gene sequences and primers used are shown in Supplementary Table S3. Lentivirus
was packaged by transfecting HEK293T cells (cultured in the same conditions as the
hASCs) using JetPrime reagent (Polyplus-Transfection SA, Illkirch-Graffenstaden, France)
following the manufacturer’s instructions. Hoxa-5-pLVX-IRES-Zsgreen was cotransfected
with the packaging vectors pMD2.G (envelope expressing plasmid, Addgene) and psPAX2
(packaging empty backbone, Addgene) in a 1:1:1 ratio. Transfection controls were carried
out with the Truncated-Hoxa-5-pLVX-IRES-tdTomato, empty pLVX-IRES-Zsgreen, and
empty pLVX-IRES-tdTomato vectors following the same methodology. Virus supernatant
was collected 3 days after transfection and hASCs were infected using 0.45 um-filtered fresh
supernatant supplemented with 8 ng/mL polybrene. Twenty-four hours post-infection, the
supernatant was replaced with standard DMEM medium supplemented with 10% FBS and
1% penicillin/streptomycin. Infected hASCs were passaged at a 1:1 ratio every 4 days using
trypsin to favor the viral infection before using a cell sorter to select only transfected green
or red fluorescent cells. To demonstrate the presence of the Hoxa-5 gene in the infected
cells quantitative RT-PCR assays were performed one week after the sorter. Total RNA was
isolated from a 25 cm?2 flask of infected cells using trypsin and mRNA levels were measured
by RT-PCR using the SYBR-Green assay previously described (Supplementary Table S2).

2.8. Generation of a Hoxa-5—Expressing hASCs Cell Line Using a CRISPR/dCas9 System

PMLM3705 and MLM3636 plasmids were a gift from Keith Joung (Addgene plasmid
#47754 and #43860, respectively). pdCAS9-NED was gently donated by Prof. Rots at
UMCG [38]. Cloning of gRNAs was achieved as previously described [39]. Briefly, pairs of
DNA oligonucleotides, called Hox1 and Hox2, encoding 20 nt gRNA targeting sequences
were annealed together to create double-stranded DNA fragments with 4 bp overhangs.
Primer sequences were: (Hox1, 5'-~ACACCGTTCCGTGAGCGAGCAATTCG-3' (sense)
and 5-AAAACGAATTGCTCGCTCACGGAACG-3' (antisense); Hox2, 5 ACACCCGA
AGTCGTACCCCATATTTG-3 (sense) and 5'-AAAACAAATATGGGGTACGACTTCGG-3
(antisense). These pairs were annealed together to generate short double-strand DNA
fragments which were ligated into the MLM3636 plasmid (Addgene). The construction
was cloned in E. coli competent bacteria and confirmed by DNA sequencing. To obtain
large amounts of this plasmid for transfections, maxipreps (Qiagen) of bacteria grown
in LB medium supplemented with ampicillin at a concentration of 50 pug/uL were made.
To determine the activation of Hoxa-5 in hASCs, combined transfections were carried out
with the MLM3636-Hox1, MLM3636-Hox2, and the pMLM3705 plasmid (Addgene) with a
dCas9-VP64 domain (VP64-Hoxa-5). A dCas9-NEF (non-effector) system (Groningen) was
used as a negative control. Cotransfections of two CRISPR sequences (Hox1 and Hox2)
and the plasmid with dCas9-VP64 or dCas9-NEF were carried out using lipofectamine
(Invitrogen) at a 1:1:2 ratio, with 0.5 pg of total plasmid DNA concentration per well in a
24-well plate and 90% confluence. The transfection medium was removed and replaced
with fresh complemented DMEM medium after 4 h and cells were collected two days after
transfection. Total RNA was isolated using trypsin and mRNA levels were measured by
quantitative RT-PCR using the SYBR-Green assay previously described.
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2.9. Statistical Analysis

All of the analyses were carried out by triplicate, and the results were expressed as
the mean =+ standard deviation (SD). Statistical analysis was performed by the Student’s
t-test (SPSS v.20, SPSS, Chicago, IL, USA). Values of p < 0.05 were considered significant.

3. Results
3.1. Neuronal Differentiation of hASCs

After cell isolation and monolayer establishment (Figure 1A), cells were character-
ized by flow cytometry and found to be positive for stem cell markers and negative for
hematopoietic markers (Figure 1B) and exposed to the three neuronal differentiation proto-
cols -Neul, Neu2, and Neu3- (see Section 2). The immunofluorescence study (Figure 1C)
revealed a significant increase in specific markers of neuronal stem cells (NES), young
neurons (TUB-III), mature neurons (TAU, GFAP, and TH), and functional markers (SNAP25,
CHAT, and FOXO4) in hASCs exposed to Neul. To determine the proportion of differenti-
ated cells after Neul exposure we analyze the number of cells that expressed TH and TAU
and SNAP25, finding that 85 and 84% of the cells were positive for mature neuron markers
(TH and TAU, respectively) and 79% were positive for the functional cell marker SNAP25.
By contrast, little changes were observed with the use of Neu2 and Neu3, especially in
functional markers, although Nestin and SNAP25 markers were significantly increased in
Neu2-treated cells, and TH and SNAP25 markers in Neu3-treated cells.
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Figure 1. Isolation, characterization, and differentiation of hASCs. (A) The cells grow as a monolayer adhering to the surface

of the flask and form colonies on (a) day 7, (b) day 14, and (c) day 21. (B) Inmunophenotypic characterization of hASCs by

FACScan analysis showing mesenchymal and hematopoietic surface markers. Approximately 99% of cells were positive
for mesenchymal markers (CD73: 98.1%, CD105: 99.9%, and CD90: 99.6%), and 98.5% were negative for hematopoietic
markers (CD45: 2.4%, CD34: 2.4%, and CD133: 1.7%), representing a typical mesenchymal-like immunophenotype (all
mAbs from BD Biosciences). (C) Representative immunofluorescence analysis of markers in hASCs. Markers of neural stem

cells, immature and mature neurons, glial cells, and functional markers (green) were analyzed in hASCs control, hASCs
exposed to Neul (21 days), Neu2 (15 days), and Neu3 (10 days) media. Nuclei were stained with Hoechst solution (blue).

To assess these results, a quantitative RT-PCR (Figure 2) was carried out demonstrating
that Neul was the differentiation protocol that induced a major change (7.6-fold) in NES
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and a significant change in MAP2 (25.92-fold) and SNAP25 (17.84-fold), CHAT (35.22-fold),
FOXO4 (10.64-fold), and, especially, in SCN9A (79.12-fold), a marker related to the voltage-
gated sodium channel. Hence, the modulation of the aforementioned markers suggests
that hASCs are committed to the neuronal lineage. By contrast, the Neu2 did not induce a
significant modulation of NES and produced a more subtle increase in NFM, MAP2, and
SNAP25 than Neul. There is an increase in the expression of CHAT (33.68-fold), FOXO4
(6.71-fold), SNAP25 (27.33-fold), MAP-2 (53.82-fold), and SCN9A (62.08-fold). Finally, Neu3
caused a large increase in the expression of astrocyte markers such as GFAP (87.44-fold),
functional markers such as FOXO4 (32.36-fold), and CHAT (52.03-fold). In relation to the
modulation of functional markers, the increase in SNAP2 was clearly corroborated by the
three techniques in Neul-treated cells. Furthermore, an increase in FOXO4 was observed
by immunofluorescence and RT-PCR in all treated cells. A global evaluation of the neuronal
markers modulation suggested that hASCs reached a neuronal lineage. Neul protocol
was chosen as, overall, it induced the most significant changes in the protein expression of
functional and mature neurons markers.
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Figure 2. Quantitative RT-PCR analysis of markers in hASCs. Expression of neuronal markers was analyzed in hASCs
control, hASCs induced with the Neul (21 days), Neu2 (15 days), and Neu3 (10 days) media. Statistically significant
differences (Student’s ¢-test) (*) with respect to the control (p < 0.05).

3.2. Neuronal Differentiation in hASCs Neurospheres

Based on the positive results with Neul, a complementary study was carried out
with neurospheres, tridimensional cultures that allow a higher interaction between hASCs
(mimic in vivo differentiation process), and a more accurate evaluation of the differenti-
ation ability of hASCs. Neul-induced neurospheres grew, developing long extensions
as dendrites until reaching a radius of approximately 250 to 350 um (day 21 of culture),
coincident with the maximum distance of oxygen diffusion (Figure 3A). In addition, an
immunofluorescence study showed an increase in the expression of specific neuronal stem
cell markers (similar to monolayer cultures) including TUB-III or mature neuron markers
like TAU, NFM, and TH. However, a non-significant increase in functional markers such
as SNAP25 was observed (Figure 3B). Interestingly, vimentin and N-cadherin expression,
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two cell adhesion molecules, increased in neurospheres suggesting a preliminary cell-
cell contact, generally binding through calcium-dependent interactions that drive cells to
self-assemble into aggregates, supporting their neural differentiation.

A
Day 15 Day 21
A S
% o 3
e
B MATRIGEL 50% AGAROSE 0.5%

Neul Control Neul Control

N-cadherin

Vimentin

TH

TTUB NI

Nestin

NFM

GFAP

TAU

SNAP25

Figure 3. Differentiation of neurospheres from hASCs. (A) Representative optical microscope
image of hASCs neurosphere formation (agarose 0.5%) after exposure to Neu 1 media (21 days).
(B) Representative immunofluorescence images of marker expression (green) in hASCs neurospheres
(matrigel 50% and agarose 0.5%) with and without Neul induction medium. The nuclei were stained
with Hoechst solution (blue).

3.3. DNA Methylation Changes Associated with Neuronal Differentiation of hASCs

We analyzed the levels of DNA methylation of the human genome in hASCs obtained
from different donors (n = 3) compared with neuronally-differentiated hASCs using the
Neul, Neu2, and Neu3 media. To search for specific changes in the methylation status
of particular CpGs, we employed a threshold-based method using three replicates for
each sample and a >20% CpG methylation 3 value as the cutoff. Six neurogenesis-related
genes showing the greatest changes in hypomethylation (Hoxa-5, GRM4, FGFR1) and
hypermethylation (RTEL1, METRN, PAX9) were detected. The genes selected were those
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with adjusted values of p < 0.05 and an absolute methylation differential value of >0.33
(Supplementary Table 54). As shown in Figure 4A, a decrease in methylation was observed
in Hoxa-5 when comparing control hASCs (~=70%) with differentiated cells (=40%, 50%,
and 45% in Neul, Neu2, and Neu3, respectively). In addition, the methylation of GRM4 and
FGFR1 represented ~82% and ~78% in control hASCs versus ~55% and ~37% respectively
in differentiated cells, in the three differentiation protocols. On the other hand, a significant
increase in the degree of methylation was found in RTEL1, METRN, and PAX9 (~=45%,
~55%, and ~50% with Neul; ~45%, =52%, and =50% with Neu2; and ~48%, ~53%, and
52% with Neu3, respectively) in differentiated hASCs versus control cells (=15%, ~10%,
and 35%, respectively) (Figure 4A). We further validated the microarray results using
bisulfite genomic sequencing of multiple clones in differentially methylated candidate
genes, obtaining the same results for the control and differentiated samples (Figure 4B),
which were 77.8% for GRM4 and 44.5% for FGR1.
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Figure 4. Promoter methylation studies of gene candidates. (A) Promoter methylation arrays of the Hoxa5, GRM4, FGFR1
(hypomethylated) and RTEL1, METRN, and PAX9 (hypermethylated). Statistically significant differences (Student’s t-test)
(*) with respect to the control (p < 0.05). (B) Validation of microarray results by bisulfite genomic sequencing of the promoter
region of the same genes after differentiation with Neul, Neu2, and Neu3. The results of bisulfite genomic sequencing of
eight individual clones are shown, in which CpG dinucleotides are represented as short vertical lines. The presence of a
methylated or unmethylated cytosine is indicated by a black or white square, respectively.
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3.4. Modulation of Neuronal Markers in Stable hASC Line That Overexpresses the Hoxa-5 Gene

We selected the Hoxa-5 gene to perform the functional study because of its high methy-
lation and its crucial role in cell differentiation processes, as well as in the development
of the central nervous system. Firstly, in order to know specifically the modulation of the
Hoxa-5 expression after Neul, 2, and 3 exposure, a study of transcripts was carried out by
quantitative RT-PCR, revealing a significant increase in differentiated samples (Figure 5A).
Secondly, to study the impact of the Hoxa-5 gene in the process of neuronal differentiation,
an hASC cell line that overexpressed this gene was generated through a lentiviral system
(see Section 2). After infecting hASCs with HEK293T supernatant, the expression of Hoxa-5
was determined by quantitative PCR (Figure 5B). To establish a functional consequence
for the changes in the overexpression of the Hoxa-5 gene after transfection, we studied the
expression of neuronal markers in Hoxa-5, Green, Truncated, and Tomato cells by quantita-
tive RT-PCR. As shown in Figure 5C, the specific neuronal stem cell marker MAP2 and the
functional markers SCN9A and CHAT showed a significantly increased expression (14.15,
10.28, and 18.37-fold, respectively) in Hoxa-5 cells in comparison with control hASCs. In
addition, some immature neuron markers such as NES and TUB III, and the glial marker
GFAP, showed a significantly decreased expression. Controls with Truncated, Green, or
Tomato cells did not show a significant modulation in the expression of neuronal markers.
In conclusion, overexpression of the Hoxa-5 gene involves an increased expression of other
neuronal markers, ultimately enhancing neuronal differentiation. Although it is known
that Hoxa-5 participates in many tissue differentiation processes, the pathway by which
these processes are carried out still needs to be clarified.

3.5. Neuronal Differentiation by Hoxa-5 Gene and Neul Medium in hASCs

To allow a stable transcriptional activation of the Hoxa-5 promoter and maximize
its overexpression, an inducible cell line was generated using a CRISPR/dCas9 system,
assaying the potentiation effect that the Neul neural differentiation protocol exerts. hASCs
with overexpressed Hoxa-5 by CRISPR/dCas9 were treated with the Neul differentiation
medium (Neul + VP64-Hoxa-5) and compared to hASCs transfected with CRISPR/dCas9
without Neul induction (VP64-Hoxa-5). In addition, hASCs induced with Neul, and
hASCs induced with Neul and transfected with a non-functional CRISPR system (Neul +
NEF-Hoxa-5), were used as controls. The study was taken up to 14 days to guarantee that
the cell cultures kept an optimal condition and did not show any symptoms of aging or
alterations due to transfection with lipofectamine. The study of mRNA by RT-PCR revealed
increases of up to 8.7-fold in hASCs induced with Neul at day 14, and 63.3-fold in hASCs
transfected with CRISPR/dCas9 without Neul induction, and also showed a synergistic
effect (i.e., 165.8-fold increased expression) in hASCs treated with Neul + VP64-Hoxa-5
(Figure 6).

In order to determine the modulation in the expression of the neuronal markers MAP2,
SCN9A, and CHAT, a quantitative RT-PCR was monitored (14 days) for all treatments. As
shown in Figure 7, overexpression of Hoxa-5 mediated by CRISPR/dCas9 enhanced the
expression levels of mature neuronal markers such as MAP2 (which increased slightly), and
functional markers of the nervous system such as SCN9A and CHAT. These increases were
higher in CRISPR/dCas9-transfected cells (~90-fold for SCN9A and CHAT, and ~48-fold
for MAP2 on day 14) than in Neul-induced cells (~=27-fold for SCN9A, ~11-fold for CHAT,
and ~47-fold for MAP2 on day 14). When both treatments were combined, a synergistic
effect was observed in the expression of functional markers, reaching an increase of 142.7-
fold for SCN9A, and 165-fold for CHAT on day 14 (p < 0.05). In summary, we confirmed that
both the Neul differentiation medium and our designed Hoxa-5-CRISPR/dCas9 system
enhance the neuronal differentiation of hASCs, showing a synergistic effect when applied
together.
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Figure 5. Hoxa-5 expression after hASC exposure to differentiation media (Neu) and hASC transfection. (A) Quantitative RT-
PCR of Hoxa-5 expression on differentiated hASC cells after Neu 1, 2, and 3 exposure. (B) Quantitative RT- PCR of Hoxa-5
expression after the use of a lentiviral system to obtain hASC-Hoxa-5-pLVX-IRES-Zsgreen (Hoxa-5 cells). hASC-Truncated-
Hoxa-5-pLVX-IRES-tdTomato (Truncated cells), hASC-pLVX-IRES-Zsgreen (Green cells), and hASC-pLVX-IRES-tdTomato
(Tomato cells) (see Section 2). (C) Neuronal markers expression (a: CHAT; b: GalC; c: FOXO4; d: GFAP; e: NFM; f: SNAP25;
g MAP2; h: Nestin; i: TUB-IIL; j: SCN9A) was analyzed in Hoxa-5, Truncated, Green, and Tomato cells by quantitative
RT-PCR. Statistically significant differences (*) with respect to the control (p < 0.05).
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4. Discussion

hASCs have shown promising results regarding the development of an alternative
treatment for neurodegenerative diseases [40]. Several protocols can be used to induce
hASCs into neuronal cells [41], although the control mechanisms underlying this differenti-
ation process are far from being understood. Our aim was to determine an efficient protocol
to drive hASCs towards neuronal-like cells and to perform a genome-wide epigenetic anal-
ysis of differentiated hASCs detecting modulations of relevant genes that may be used to
improve this complex process. In this context, one of these genes (Hoxa-5) was selected to
generate stable genetically modified hASCs and to induce a neural differentiation process.

We tested three different media named Neul, Neu2, and Neu3 (see Section 2) to
analyze the process of neuronal induction in hASCs. After 5 days, Neul-containing EGF-
induced hASCs to form neuron-like cells, with large spherical nuclei, a spindle-shaped
body, and some extensions of dendrite-like cells. These cells showed a low proliferation rate.
These findings were consistent with those from Garcez et al. [42], who demonstrated that
EGF induces the differentiation of hASCs into a neuronal phenotype while FGF induces
a glial phenotype. In fact, FGF seems essential to induce great functional differentiation
towards the neural lineage, as Khademizadeh et al. recently showed in hASCs obtained
from lipoaspirates [43]. In addition, Neul induced neurospheres formation, reaching a
radius of approximately 250 to 350 um, coinciding with the maximum oxygen diffusion
distance [44]. By contrast, the Neu2 medium caused minor morphological changes in
hASCs despite including hepatocyte growth factor, a neurotrophic factor that plays an
important role in the survival of neurons in the brain [45], and vascular endothelial growth
factor and EGF, which stimulate neuronal mesenchymal proliferation [31]. Finally, Neu3
containing cAMP, NGF, insulin, and 3-isobutyl-1-methylxanthine (IBMX), showed no
morphological changes in hASCs despite Deng et al. [46] showing that cAMP may increase
expression of neuronal markers such as GFAP, and Wang et al. [47] using IBMX to activate
the protein kinase K, a crucial mediator in the neuronal differentiation of MSCs. On
the other hand, the presence of NGF and insulin, two factors that improve proliferation,
reduce apoptosis during differentiation, and/or are highly expressed in adult brains [48],
was not effective in our hASCs differentiation. Immunofluorescence and quantitative RT-
PCR analyses demonstrated an effective process of neuronal lineage induction of hASCs,
especially after treatment with the Neul medium. In fact, the expression of TAU and TH,
two mature neuronal markers, was increased in differentiated hASCs [49]. This last, TH,
has been detected as an unequivocal sign of hASCs maturation towards dopaminergic
cells [27]. In addition, the expression of NES and TUB-III, two markers of immature
neurons also increased and some functional markers such as Snap25 and CHAT (synapse
marker and cholinergic marker, respectively) [7], showed less expression changes. Finally,
FOXO4, which is necessary for embryonic neuronal development and specifically critical
for the differentiation of stem cells into neuronal cells [50] was also significantly modulated.
Therefore, our results showed that exposure to an adequate medium promoted changes
towards a neuronal morphology (i.e., axon- and dendrite-like structures) in hASCs, and
also showed a pattern of expression markers, including functional markers, related to a
neuronal lineage. In this context, Neul induced a more complete neuronal differentiation
than Neu2 and Neu3.

Nevertheless, the major limitation for the application of differentiated hASCs in neu-
ronal disorders is the impossibility of ensuring their long-term stability once transplanted.
Although it is known that the process of neuronal differentiation is largely controlled by
epigenetic changes, the precise mechanism is not yet fully understood. We used DNA
from hASCs treated with three neuronal differentiation media and untreated hASCs, in
order to carry out a genome-wide methylation array and to define specific genes with
significant epigenetic modifications [40]. Comparative analysis between differentiated
hASCs and controls showed significant hypomethylation of Hoxa-5, GRM4, FGFR1, and
significant hypermethylation of RTEL1, METRN, and PAX9. These epigenetic changes were
corroborated by bisulfite genomic sequencing of multiple clones and RT-PCR. The critical
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role of the Hoxa-5 gene in successive steps of the central nervous system formation during
embryonic and fetal development was determinant to selecting this gene for the incoming
experiences.

Functional studies focused on this gene developing stable hASCs lines that over-
expressed it. Previous studies indicated that Hox proteins contribute to neuronal fate
and muscle connectivity through controlling the expression patterns of cell surface re-
ceptors [51] and that, specifically Hoxa-5, may have a potential role in the establishment
and plasticity of pre-cerebellar circuits during postnatal and adult life [24]. In addition,
Philippidou et al. [52] showed that Hox5 genes orchestrate the neurons in the development
of the phrenic motor column through the deployment of temporally distinct wiring pro-
grams, showing the importance of this gene in the correct development of motor neurons.
Our results showed that Hoxa-5 overexpression in hASCs positively modulated specific
neuronal markers such as CHAT, FOXO4, MAP2, and SCN94, in accordance with a process
of neuronal differentiation. These results support the hypothesis that Hoxa-5 is an essential
gene in neuronal lineage and it is able to initiate a partial process of neuronal differentiation
by itself [25]. Therefore, this gene could be a tool to improve the differentiation of hASCs
to be applied in neurological disorders. In fact, when the CRISPR/dCas9-modified hASCs
that overexpressed Hoxa-5 were exposed to the Neul differentiation media, the expression
of neuronal markers was significantly higher in comparison with a unique differentiation
system

5. Conclusions

This study demonstrated that morphological and functional neuronal differentiation
of hASCs obtained from lipoaspirates can be induced by using a specific combination of
factors (Neul), ensuring the appearance of a neuronal lineage and that this neuronal dif-
ferentiation process implies at least a significant methylation change in six genes. Among
them, Hoxa-5 was able to induce neuronal differentiation, which was improved and accel-
erated by Neul. Although future studies will be necessary to determine the relevance of
other hypo- or hypermethylated genes in the neuronal lineage, our results suggest that
Hoxa-5 is an essential gene in this process. Therefore, Hoxa-5 is a potential candidate for
the development of therapeutic strategies aimed at cell therapy in diseases related to the
nervous system.
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