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A B S T R A C T   

The first known case of Coronavirus disease 2019 (COVID-19) was identified in December 2019. It has spread 
worldwide, leading to an ongoing pandemic, imposed restrictions and costs to many countries. Predicting the 
number of new cases and deaths during this period can be a useful step in predicting the costs and facilities 
required in the future. The purpose of this study is to predict new cases and deaths rate one, three and seven-day 
ahead during the next 100 days. The motivation for predicting every n days (instead of just every day) is the 
investigation of the possibility of computational cost reduction and still achieving reasonable performance. Such 
a scenario may be encountered in real-time forecasting of time series. Six different deep learning methods are 
examined on the data adopted from the WHO website. Three methods are LSTM, Convolutional LSTM, and GRU. 
The bidirectional extension is then considered for each method to forecast the rate of new cases and new deaths 
in Australia and Iran countries. 

This study is novel as it carries out a comprehensive evaluation of the aforementioned three deep learning 
methods and their bidirectional extensions to perform prediction on COVID-19 new cases and new death rate 
time series. To the best of our knowledge, this is the first time that Bi-GRU and Bi-Conv-LSTM models are used for 
prediction on COVID-19 new cases and new deaths time series. The evaluation of the methods is presented in the 
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form of graphs and Friedman statistical test. The results show that the bidirectional models have lower errors 
than other models. A several error evaluation metrics are presented to compare all models, and finally, the 
superiority of bidirectional methods is determined. This research could be useful for organisations working 
against COVID-19 and determining their long-term plans.   

Introduction 

Serious Intense Respiratory Disorder Coronavirus 2 (SARS-COV-2) is 
a novel zoonotic microorganism [1]. It is liable for Coronavirus Disease 
2019 (COVID-19) [2], which has spread all over the world [3]. The 
World Health Organization (WHO) and the worldwide countries 
affirmed the Covid-19 to be very infectious [4] and can even cause death 
[5]. The spread rate of Covid-19 has increased day by day in numerous 
nations, particularly in the United States [6], Spain [7], Italy [8], Ger
many [9], United Kingdom [10], France [11], and Iran [12]. Estimating 
the prevalence of Coronavirus is useful for controlling this pandemic. 
Each day more than 800,000 persons have been infected by COVID-19 
worldwide [13]. The foremost challenging aspect of its spread is that 
individuals may be infected without having any symptoms [14], 
explicitly for several days [15]. The transmission from infected people 
without symptoms is difficult to study [16]. 

Machine Learning (ML) has demonstrated itself as a specific research 
field in the recent decade [17] by solving numerous exceptionally 
complex and advanced real-world problems [18]. In this research, the 
number of new cases and new deaths are predicted using deep learning, 
which is a subfield of ML. There is existing literature that has tried to 
predict mortality each day. In this article, the prediction of mortality 
rate and new cases are performed every day, every three and seven days 
using deep learning models such as Long Short Term Memory (LSTM), 
Bidirectional-LSTM (Bi-LSTM), Convolutional-LSTM (Conv-LSTM), 
Bidirectional-Conv-LSTM (Bi-Conv-LSTM) and Gated Recurrent Unit 
(GRU), and Bidirectional-GRU (Bi-GRU). 

The motivation of this research is to perform an in-depth comparison 
of LSTM, Conv-LSTM, GRU with their bidirectional extensions. More
over, based on the existing literature, it seems that Bi-GRU and Bi-Conv- 
LSTM have not been used before as predictors of COVID-19 time series 
data. During our experiments, we rely on the Friedman test to compare 
the six deep learning methods statistically. Similar to the existing liter
ature, we perform everyday forecasting. Unlike the previous works, we 
also perform prediction every three and seven days which require one- 
third and one-seventh of everyday prediction computational 
complexity. Investigation of prediction every three and seven days is 
done to determine whether it is possible to reduce computational 
complexity and still achieve reasonable performance. Computational 
complexity reduction matters in any application involving real-time 
forecasting of time series. The rest of the paper is structured as fol
lows: Section 2 contains related research in this field, Section 3 reviews 
the background knowledge briefly, dataset description is provided in 
section 4, Section 5 is devoted to proposed method, Section 6 gives the 
experimental results, Section 7 presents discussion and Section 8 renders 
the conclusion and future works. 

Related works 

In this section, we briefly review the existing literature that has a 
similar scope with this paper. The differences between the reviewed 
works and our approach will be highlighted as well. Pinter et al. [19] 
predicted the number of infected people and the mortality rate by 
employing a hybrid ML approach. Their hybrid method consisted of a 
Multi-layered Perceptron (MLP) and Imperialist Competitive Calcula
tion (MLP-ICA). The MLP was used as the predictor, and ICA (an 
evolutionary optimisation method) was used as the optimiser. The 
hybrid method was trained on the Hungary dataset [20]. The trained 
model was compared against an adaptive network-based fuzzy inference 

system (ANFIS). The prediction horizon was chosen to be nine days. 
Burke et al. [6] illustrated the ML model capability to determine the 

number of persons influenced by COVID-19 and the number of deceased 
cases. Linear Regression (LR), Least Absolute Shrinkage and Selection 
Operator (Lasso), Support Vector Machine (SVM), and Exponential 
Smoothing (ES) were utilised in their study [6]. They showed that their 
method had the best performance among other similar methods. 

Dowd et al. [21] investigated the effect of population age on the 
mortality rate of COVID-19 patients by utilising numerical modelling. 
They reported that the infection is more life-threatening to the older 
ages. Thus the approaches like social distancing and isolation can offer 
assistance to slow down and stop the spread of the virus. 

Arun and Iyer [22] examined the prevalence of COVID-19 infection 
and anticipated the scale of the pandemic and mortality rate. They 
utilised ML and numerical modelling methods such as Polynomial 
Regression, Bayesian Edge and LSTM. 

A study conducted by Zeroual et al. [23] proposed a deep learning 
system for the prediction of the COVID-19 time series. The main purpose 
of this study was to investigate deep learning methods for the number of 
deaths with limited information. The deep models can predict COVID-19 
time series up to a specific horizon based on given time-variant inputs. 
The results showed that the Variational Auto Encoder (VAE) model 
outperformed other models. 

Babaei et al. [24] analysed the impact of health-protective measures 
such as quarantine, wearing masks, and social distancing using a 
susceptible-exposed-infectious-recovered (SEIR) type model on a hypo
thetical population. To further improve the model, the environmental 
noise (present in the data) has been taken into account using the 
Brownian motion process. In addition, the stability analysis of the pro
posed model has been discussed. The authors reported that health 
strategies play a major role to contain the virus threat. 

A mathematical model about the spread of COVID-19 was proposed 
in [25]. The unique solvability of the proposed model was also proved. 
Additionally, the reproduction number of the proposed model was dis
cussed. Some numerical simulations were conducted to survey the 
behaviour of the considered model. Another research on the spread of 
COVID-19 has been conducted by Babaei et al. [26]. The authors 
introduced a stochastic model considering several disease compartments 
related to different age groups. Their model was based on observing 
safety protocols, such as using the mask and putting people into quar
antine. The numerical results showed the effectiveness of safety pro
tocols on COVID-19 containment. 

Danane et al. [27] investigated the dynamics of the COVID-19 sto
chastic model with an isolation strategy. The authors relied on a SIQR 
[28] model and made it stochastic to take into account the uncertainty of 
infection progress. To this end, in all compartments of the proposed 
model, the white noise and the Levy jump perturbations were added. 
The existence and uniqueness of a positive global solution were proven, 
and the stochastic dynamic properties of the solution around the 
deterministic model were investigated. The theoretical results were 
verified by some numerical simulations. While the authors relied on 
COVID-19 Morocco cases [29] to estimate the infection and the recovery 
rates of their simulations, we use Iran and Australia data [30] in our 
experiments. Another difference between the work [27] and ours is the 
modelling approach. Danane et al. [27] used a stochastic version of SIQR 
to simulate the dynamics of the virus while we rely on deep learning to 
carry out our predictions. 

Singh et al. [31] analysed the evolution of COVID-19 spread in an 
assumed population by employing a fractional-order dynamical system. 
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Table 1 
Data Description.  

Date Reported Country Code Country WHO Region 

1/25/2020 – 8/19/2020 AU Australia Western Pacific Regional Office (WPRO) 
1/3/2020 – 10/6/2020 IR Iran Eastern Mediterranean Regional Office (EMRO)  

Fig. 1. The proposed method high-level steps.  

Table 2 
Additional implementation details of the six models.  

Model Number of Hidden Layers Number of Units Number of Convolution Filters Size of Convolution Kernels 

LSTM 3 50 – – 
Bi-LSTM 3 50 – – 
Conv-LSTM 3 – 64 1× 2  
Bi-Conv-LSTM 3 – 64 1× 2  
GRU 3 50 – – 
Bi-GRU 3 50 – –  
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They proposed a stable computational method to solve the dynamical 
system numerically. The computational method is based on the dis
cretisation of the domain and the short memory principle. The imple
mented approach divided the population into five subgroups such as 
susceptible people, exposed people, infected people, etc. and analysed 
how these subgroups behave over time [32]. Gao et al. conducted 
another study to describe COVID-19 spread behaviour based on frac
tional calculus [31,32]. They utilised fractional natural decomposition 
(FNDM) to understand the dynamical structure of COVID-19. The 
methods in [32] have analysed COVID-19 spread behaviour well but 
working with fractional-order systems involves more complex compu
tation compared to neural networks. Gao et al. [33] have also employed 

fractional calculus to clearly describe the reported and unreported cases 
of COVID-19. To this end, a time-fractional model was parameterised 
using reported cases of the virus. The model solution was found by the q- 
homotopy analysis transform method. The number of unreported cases 
of the virus was then identified. They were able to predict the expo
nential growth of the virus using their model. The three methods 
reviewed above are based on fractional calculus and have well- 
established mathematical foundations; however, they are not easy to 
grasp and implement for the general readers. Our method, on the other 
hand, is based on neural networks, which is more intuitive and easier to 
work with. 

Boudaoui et al. [34] have relied on Caputo–Fabrizio fractional 

Fig. 2. Evaluation metrics for new cases forecasting in Australia.  

Fig. 3. Evaluation metrics for new deaths forecasting in Australia.  
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derivative to extend the transmission model of COVID-19 proposed by 
Tang et al. [35]. The existence and uniqueness of the solution for the 
extended model have been discussed, and the solution has been obtained 
using a numerical approach. Based on the conducted simulations using 
the model, the authors reported that the infective population peak de
creases as the contact rate is decreased and the isolation/hospitalisation 
of infected individuals is increased. Despite presenting interesting re
sults, the method proposed by Boudaoui et al. is based on a fixed 
mathematical model, which may bias the simulation results. On the 
contrary, we rely on the data collected from the population in a dynamic 
manner and use them during the training and prediction of our neural 
network-based model. Therefore, our model is able to adapt to the 

changing dynamics of the population on the fly, which reduces the bias 
in its prediction. 

Zamir et al. [36] took a Non-Pharmaceutical Intervention (NPI) 
approach to reduce the outbreak of COVID-19. To this end, the popu
lation concerned with the disease was divided into six compartments 
based on which a mathematical model consisting of coupled differential 
equations was proposed. Analysing the model, they were able to 
determine NPIs critical to the virus containment. The important NPIs 
were isolation, sanitisers, infection side effects treatment, and wearing a 
face mask. While Zamir et al. focused on devising strategies to flatten the 
COVID-19 infection curve, we focus on forecasting the mortality and 
spread of the virus. 

Fig. 4. Evaluation metrics for new cases forecasting in Iran.  

Fig. 5. Evaluation metrics for new deaths forecasting in Iran.  
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Facing COVID-19 without having an effective vaccine, many gov
ernments panicked and adopted lockdown strategy to prevent the virus 
from the spread. However, such a strategy hurts the global economy. 
Sahoo et al. [37] investigated the possibility of containing the virus 
without lockdown. To this end, mathematical models based on partial 
differential equations were considered to inspect the effect of proper 
quarantine with no lockdown on the virus spread. The authors reported 
that social distancing and proper quarantine of citizens prior to entering 
their native countries or native states are the best preventive measures in 
the absence of a vaccine. While Sahoo et al. tried to determine general 
measures to prevent the virus spread; we aim to predict the trend of the 
virus spread and mortality. 

Gao et al. [38] investigated the numerical distributions of COVID-19 
according to time. To this end, the authors found the optimal values for 
the mathematical model Bats-Hosts-Reservoir-People coronavirus 
(BHRPC) of the virus transfer from the reservoir to people. The Varia
tional Iteration Method (VIM) was employed for the numerical investi
gation of the BHRPC model. To reach realistic results, the model 
parameters were chosen according to the values reported by experts in 
the Wuhan area of China. The authors reported that the presence of 
susceptible people in the population accelerates the virus spread. While 

Gao et al. [38] focused on the virus transfer from the reservoir to people, 
we focus on prediction on mortality rate and the spread of the virus 
based on observed data. 

Deep learning and its variations 

Deep learning (DL) is a machine learning algorithm that is based on 
artificial neural networks (ANNs). This research introduces a DL system 
for the prediction of the COVID-19 time series. The following is an 
introduction to some of the DL methods used to predict time series, 
namely LSTM, Bi-LSTM, Conv-LSTM and GRU. 

LSTM is a special type of Recurrent Neural Network (RNN) that relies 
on its repeating module called cell to remember the sequence of infor
mation. Each cell contains three gates, namely input, output, and forget 
gates. The forget gate decides how much information of the cell state 
have to be thrown away. The input gate specifies the new information 
that must be stored in the cell state. The output gate decides the parts of 
the cell state that must be sent to the cell output. 

A Bi-LSTM network is an extension of traditional LSTM, which trains 
two LSTMs. One of the LSTMs is trained on the input sequence. The other 
LSTM is trained on the input sequence but in reversed order. Bi-LSTM 

Fig. 6. New cases forecasting a) every day, b) every 3 d and c) every 7 d in Australia.  
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can achieve faster learning compared to traditional LSTM. 
Traditional LSTM has been designed to work with one-dimensional 

data, so it cannot cope with multi-dimensional data such as images. 
Conv-LSTM replaces the associated gate layers of the LSTM with con
volutional layers to address this issue. Conv-LSTM can encode Spatio- 
temporal data in its memory cell [39]. Subsequently, by supplanting 
the convolution operators with an LSTM memory cell, the Conv-LSTM 
can know which data should be ‘remembered’ or ‘forgotten’ from the 
past cell state. 

GRU [40] is a special version of RNN. GRU is similar to LSTM, but 
instead of three, the number of gates in GRU is two: upgrade and reset 
gates. The upgrade gate determines how the past information should be 
passed along to the future. The reset gate determines how much of the 
past information must be discarded [41]. 

Dataset description 

This research aims to predict COVID-19 prevalence in the future, 
focusing on the new cases and the new deaths rate. The dataset used in 

this research contains the statistical reports of COVID-19 cases and the 
mortality rate of different countries. It has been obtained from the WHO 
website [42]. The dataset includes eight different columns such as “Date 
Reported”, “Country Code”, “Country”, “WHO Region”, “Cumulative 
Cases”, and “Cumulative Deaths”. In this research, “New Cases”, “Cu
mulative Cases”, “New Deaths”, and “Cumulative Deaths” columns are 
used as time series to forecast the future rate of new cases and deaths in 
Australia and Iran. The rest of the features are presented in Table 1. In 
the presented study, data from two countries Australia and Iran, are 
used. 

Proposed method 

In this research, a DL-based approach was used to forecast the rate of 
new cases and new deaths every one, three and seven days. We 
experimented with six neural network models as our predictor. Each 
model consists of an input layer, an output layer and three hidden layers. 
The first three models were LSTM, Conv-LSTM, and GRU. The next three 
models were the bidirectional version of the first three ones, i.e. Bi- 

Fig. 7. New deaths forecasting a) every day, b) every 3 d and c) every 7 d in Australia.  
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LSTM, Bi-Conv-LSTM and Bi-GRU. The number of neurons in the hidden 
layers was 50. In all layers, the Rectified Linear Unit (ReLU) was used as 
the activation function. The training was performed with respect to the 
MSE loss function using Adam optimiser. The hyper-parameters of Adam 
were set toβ1 = 0.9 and β2 = 0.999. The learning rate was set to 0.001. 
The model was trained for 200 epochs. In Table 2, additional details of 
the implemented models are shown. 

For the training data, the time series of Australia and Iran have been 
chosen from the WHO website’s database, which reports new cases and 
new deaths rates. Approximately 70% of the data were used for training, 
and the rest were kept for testing. About 20% of the training data were 
used for validation. 

During the training for the first time, the time series were fed to the 
model based on which the model predicted the next day. The model 
training was repeated for the second time such that its output predicted 
the next three days. Finally, the model was trained for the third time to 
achieve predictions for the next seven days. As the forecasting horizon 
increases from one to three and to seven, the error rate of the model 
increases, which makes sense since forecasting for a longer horizon is 
harder than forecasting for a shorter horizon. The training process was 
implemented for both the time series of new cases and new deaths. Fig. 1 

illustrates the high-level steps of the proposed method. 

Experimental results and analysis 

In this section, the experimental results for LSTM, Conv-LSTM and 
GRU, as well as their bidirectional counterparts, are reported. To the 
best of our knowledge, we are the first to use Bi-Conv-LSTM and Bi-GRU 
for the prediction of COVID-19 new cases and deaths based on time 
series data. 

To have a fair comparison, we tried to implement all methods with 
relatively similar conditions. The prediction error was calculated based 
on criteria [14] such as Mean Squared Log Error (MSLE), Mean Absolute 
Percentage Error (MAPE), Root Mean Squared Log Error (RMSLE), and 
Explained Variance (EV). These evaluation criteria are computed as 
below [41]: 

MSLE =
1
n

∑n

i=1
(log(yi) − log

(

ŷi

))2

(1)  

Fig. 8. New cases forecasting a) every day, b) every 3 d and c) every 7 d in Iran.  

N. Ayoobi et al.                                                                                                                                                                                                                                 



Results in Physics 27 (2021) 104495

9

MAPE =
100

n

∑n

i=1

⃒
⃒
⃒
⃒
⃒
⃒

yi − ŷi

yi

⃒
⃒
⃒
⃒
⃒
⃒

(2)  

RMSLE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
(log(yi) − log

(

ŷi

))2
√

(3)  

EV = 1 −
Var

(

ŷi − yi

)

Var(yi)
(4) 

where yi is the actual values, ŷi is the corresponding estimated 
values, and n is the number of samples. 

Forecasting performance 

For each of the mentioned methods, the error of 1, 3, and 7-day 
ahead predictions for new cases/deaths in a 100-day period were 
calculated in Australia and Iran. To this end, the predicted values were 
compared with the actual values, and the error rate was calculated based 
on evaluation criteria (Equations 1–4). The results of calculating the 

errors in the 100-day period for each of Australia’s models are given in 
Fig. 2 and Fig. 3. As it is apparent from MAPE values in Fig. 2, Bi-GRU 
and LSTM have the best performance in the 1-day prediction, Conv- 
LSTM is the best method in the 3-day prediction, and Bi-Conv-LSTM 
has the best performance in the 7-day prediction. All of the evaluated 
methods in Fig. 2 have approximately similar explained variance. Fig. 3 
illustrates the evaluation results for new deaths prediction for the 100- 
day period in Australia. An interesting observation in Fig. 3 is how 
LSTM significantly outperforms GRU in the 7-day ahead prediction. The 
reason lies in the fact that GRU has a simpler structure (fewer parame
ters) consisting of only two gates. However, the more complex structure 
of LSTM seems to prevail sometimes, as is the case in the 7-day pre
diction of new deaths in Fig. 3. 

The evaluation results of the models for the prediction of Iran new 
cases and new deaths are presented in Figs. 4 and 5. The main obser
vation based on the MAPE criterion in these figures is that most of the 
time, LSTM and its variations outperform GRU, especially for the longer 
horizons (3 and 7-day) scenarios. 

The predictions of new cases and new deaths in Australia and Iran for 
1, 3, and 7-day ahead are compared with actual data in Figs. 6-9. The 

Fig. 9. New deaths forecasting a) every day, b) every 3 d, and c) every 7 d in Iran.  
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prevalent pattern observed in these figures is that a longer prediction 
horizon often leads to larger prediction errors. Of course, such a pattern 
is violated in Fig. 8.a where Bi-Conv-LSTM has deviated from the actual 
data badly. 

For a better comparison of the six methods performance, histograms 
of their absolute error are also presented in Figs. 10-13. The horizontal 
axes of the histograms represent the absolute error which is the differ
ence between the models predictions and the actual data. Recall that 
predictions are performed for 100 days. The height of each histogram 
bin shows the number of predictions in which absolute error falls within 
the interval dictated by that bin. For better clarity, in Figs. 10-13, the 
histograms of different methods are drawn with different colours and 
line widths. At first glance, the maximum absolute error observed in 
Figs. 10-13 seems to be too high. However, it should be noted that the 
number of new cases/deaths each day are cumulative values. In other 
words, the actual new cases/deaths reported for i-th day is the total 
number of new cases/deaths reported from the first day until i-th day 
across the whole country (such as Iran). Considering that data are re
ported as cumulative values, it comes as no surprise that they are usually 
large values. The absolute error of prediction is directly influenced by 
the magnitude of the actual data. For example, in a one-day prediction of 
new cases for Iran (Fig. 12.a), GRU has predicted 354,000 while the true 
value was 345,000. The absolute error in this case is 
|345,000 − 354,000| = 9,000, which is 2.6% of the true value. At first, 

9,000 seems to be a large error, but it is indeed tolerable compared to the 
magnitude of the true value (345,000). For the seven days ahead pre
diction (Fig. 12.c), the same method has predicted 404,000 while the 
true value was 345,000. The absolute error is 
|345,000 − 404,000| = 59,000, which is 17.10% of the true value. 
Obviously, the absolute error of the seven days ahead prediction is 
higher than that of one day ahead prediction. However, 59,000 is still a 
reasonable value compared to the true value. 

Statistical analysis 

Friedman [43] proposed a nonparametric statistical test known as 
the Friedman test [44], which is widely used by researchers to analyse 
their methods [45]. In this subsection, the Friedman test was used to 
compare the algorithms. To this end, the average of error evaluation 
criteria (EV, MAPE, MSLE, RMSLE) in Figs. 2-5 were computed and 
listed in Table 3, based on which the algorithms were ranked as shown in 
Table 4. The methods with lower ranks are better than the ones with 
higher ranks. 

To carry out the Friedman test, the rankings from Table 4 are 
required. Suppose the rank of the j-th classifier on the i-th dataset is 
denoted by ri

j so the average rank of the algorithms can be computed by 
Rj = 1

N Σrj
i . The Friedman test is then computed by the following formula: 

Fig. 10. Absolute error histogram of forecasting new cases in Australia a) every day, b) every 3 d and c) every 7 d.  
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X2
F =

12N
k(k + 1)

[
∑

j
R2

j −
k(k + 1)2

4

]

(5) 

where k is the number of algorithms and N is the number of datasets. 
Motivated by the Friedman test, Iman and Davenport [46] proposed 
another statistical test as follows: 

Ff =
(N − 1)X2

F

N(k − 1)− X2
F
, (6) 

which has F-distribution with ((k − 1),(k − 1)(N − 1)) degrees of 
freedom. According to the results of Table 4, χ2

F and Ff are computed as 
follows: 

X2
F =

12×12
6(6+1)

[

(3)2
+(3.25)2

+(4.83)2
+(4.08)2

+(2.33)2
+(3.42)2

−
6(6+1)2

4

]

=10.84  

Ff =
(12 − 1) × 10.84
12(6 − 1) − 10.84

= 2.43 

According to six algorithms and 12 datasets (New cases 1-day AU, 
…), Ff is governed by the F-distribution with ((k − 1), (k − 1)(N − 1)) =
(5,55) degree of freedom. The critical value of F(5,55) is 2.38 for sig
nificance level α = 0.05. As it is clear in Table 4, the Bi-GRU algorithm 

has the best average rank among all the algorithms followed by LSTM, 
GRU, Bi-Conv-LSTM, Bi-LSTM, and Conv-LSTM. 

Discussion 

Time series prediction is an important topic in finance, economics, 
and business. Recent advancement in computers’ computational power, 
ML methods and new perspectives such as DL have led to the emergence 
of new algorithms for times series analysis and prediction. Some of these 
algorithms are LSTM, GRU, Conv-LSTM, Bi-LSTM, Bi-GRU and Bi-Conv- 
LSTM. Each algorithm has its advantages and disadvantages. Our 
investigation about the forecasting ability of these methods on the 
COVID-19 time series led to the following contributions:  

• Based on the literature review, it seems that Bi-GRU and Bi-Conv- 
LSTM models have never been used before for prediction on 
COVID-19 new cases and new deaths rate time series.  

• No research was found which predicts new cases and new deaths 
every three or seven days. The motivation behind attempting to 
predict every n days (instead of every day) was to investigate 
whether it is possible to reduce computational complexity and still 
achieve reasonable performance. Such a scenario gains importance 
in any application involving real-time forecasting of time series. 
Whether the incurred error due to prediction every n days is 

Fig. 11. Absolute error histogram of forecasting new deaths in Australia a) every day, b) every 3 d and c) every 7 d.  
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acceptable or not fully depends on the application requirements. It is 
the designer who decides whether it is worth sacrificing performance 
to gain better computation efficiency. In our experiments, an in
spection of the RMSLE metric in Figs. 2-5 shows that predicting every 
three days approximately doubles the prediction error. The incurred 
error of predicting every seven days is more than four times of error 
when prediction is made every day.  

• A comprehensive evaluation of LSTM, Conv-LSTM, GRU and their 
bidirectional extensions.  

• Statistical comparison of the investigated methods using Friedman 
test. 

Recall that in Figs. 2-5, the error rate of the new cases and new deaths 
in Iran and Australia were determined by methods LSTM, GRU, Conv- 
LSTM, Bi-LSTM, Bi-GRU and Bi-Conv-LSTM. Overall, it was observed 
that in most of the conducted experiments (Figs. 2-5), the bidirectional 
methods achieved better results than the other methods. 

Based on data in Table 4, the key observations can be summarised as 
below:  

• For the prediction of new deaths in the next day in Australia and Iran, 
Bi-GRU had the best performance. For 3-d ahead prediction of new 
deaths in Australia, GRU was the best method, while Bi-Conv-LSTM 
made the best prediction in Iran. Finally, in the 7-d ahead case, LSTM 
performed better than other methods on Australia data, and Bi-Conv- 
LSTM outperformed other methods on Iran data.  

• On the other hand, for 1-d ahead predictions of new cases in 
Australia, LSTM and Bi-GRU gained the best performance. For 3 and 
7-d ahead predictions, Conv-LSTM and Bi-Conv-LSTM showed better 
performance, respectively. In Iran, Bi-GRU was better for 1 and 3- 
d ahead predictions, and Bi-Conv-LSTM was better for 7-d ahead 
prediction. 

The proposed method can provide the health crisis management 
centres with valuable forecasting based on the observed data. Having an 
estimate of what awaits us in the near future might help with the 
appropriate preparation to minimise the inevitable damage. The fore
casting ability of the six models is due to their memorising capability. 
The limitation of the proposed method is that the characteristics of the 

Fig. 12. Absolute error histogram of forecasting new cases in Iran a) every day, b) every 3 d, and c) every 7 d.  
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Fig. 13. Absolute error histogram of forecasting new deaths in Iran a) every day, b) every 3 d and c) every 7 d.  

Table 3 
Average of error evaluation metrics.  

Dataset LSTM GRU Conv-LSTM Bi-LSTM Bi-GRU Bi-Conv-LSTM 

New Cases 1-day AU  0.49265  0.494675  0.71  0.49435  0.4927  0.548825 
New Cases 3-day AU  0.723475  0.732625  0.66365  0.72595  0.71915  1.19685 
New Cases 7-day AU  1.170475  2.074175  1.691325  1.18285  1.1824  1.0894 
New Deaths 1-day AU  0.941625  0.9237  3.38425  1.191925  0.699025  2.862275 
New Deaths 3-day AU  1.900225  1.2567  3.971975  2.14865  1.7409  2.3506 
New Deaths 7-day AU  0.33295  1.947175  3.420925  2.317075  2.025875  3.186675 
New Cases 1-day IR  0.6287  0.7975  1.594025  1.083375  0.6021  0.93275 
New Cases 3-day IR  1.136925  1.135425  1.8335  2.269875  1.088375  1.476 
New Cases 7-day IR  2.275075  2.24805  1.8335  2.269875  2.124775  1.476 
New Deaths 1-day IR  1.0377  0.852075  2.3332  1.088225  0.848625  0.955325 
New Deaths 3-day IR  1.181725  1.179825  1.6878  1.01305  1.1625  0.815625 
New Deaths 7-day IR  2.230575  2.3831  2.56875  2.0219  2.50665  1.22895  
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time series data might change as time passes. Therefore, to keep the 
models accurate, we are forced to incur the cost of training the models 
on the newly observed data. 

Conclusion 

In this research, six different models were compared for predicting 
the number of new cases and deaths in the next 100 d. The prediction 
was made for each day, every 3 d and every 7 d. The conducted ex
periments showed that most of the time, the bidirectional models 
outperform their non-bidirectional counterparts. 

In the future research, the plan is to use a combination of other 
machine learning and deep learning methods to achieve better results. In 
particular, experimenting with nonparametric models such as Gaussian 
Process (GP) to perform time series forecasting seems interesting since 
GP can provide uncertainty about its predictions. We might be able to 
determine the appropriate prediction horizon based on the uncertainty 
provided by GP. 
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[29] Ministère de la Santé, 2021, Corona, <https://www.sante.gov.ma/Pages/corona. 
aspx> (accessed on 24 May 2021). 

[30] World Health Organization, 2021, WHO Coronavirus (COVID-19) Dashboard, 
<https://covid19.who.int/> (accessed on 28 June 2021). 

[31] Singh H, Srivastava HM, Hammouch Z, Sooppy Nisar K. Numerical simulation and 
stability analysis for the fractional-order dynamics of COVID-19. Results Phys 
2021;20:103722. https://doi.org/10.1016/j.rinp.2020.103722. 

[32] Gao W, Veeresha P, Prakasha DG, Baskonus HM. Novel Dynamic Structures of 
2019-nCoV with Nonlocal Operator via Powerful Computational Technique. 
Biology. 2020;9(5):107. 

[33] Gao W, Veeresha P, Baskonus HM, Prakasha DG, Kumar P. A new study of 
unreported cases of 2019-nCOV epidemic outbreaks. Chaos, Solitons Fractals 2020; 
138:109929. https://doi.org/10.1016/j.chaos.2020.109929. 

[34] Boudaoui A, El hadj Moussa Y, Hammouch Z, Ullah S. A fractional-order model 
describing the dynamics of the novel Coronavirus (COVID-19) with nonsingular 
kernel. Chaos, Solitons Fractals 2021;146:110859. https://doi.org/10.1016/j. 
chaos.2021.110859. 

[35] Tang B, Wang X, Li Q, Bragazzi NL, Tang S, Xiao Y, et al. Estimation of the 
Transmission Risk of the 2019-nCoV and Its Implication for Public Health 
Interventions. Journal of Clinical Medicine. 2020;9(2):462. https://doi.org/ 
10.3390/jcm9020462. 

[36] Zamir M, Nadeem F, Abdeljawad T, Hammouch Z. Threshold condition and non 
pharmaceutical interventions’s control strategies for elimination of COVID-19. 
Results Phys 2021;20:103698. https://doi.org/10.1016/j.rinp.2020.103698. 

[37] Sahoo P, Mondal HS, Hammouch Z, Abdeljawad T, Mishra D, Reza M. On the 
necessity of proper quarantine without lock down for 2019-nCoV in the absence of 
vaccine. Results Phys 2021;25:104063. https://doi.org/10.1016/j. 
rinp.2021.104063. 

[38] Gao W, Baskonus HM, Shi L. New investigation of bats-hosts-reservoir-people 
coronavirus model and application to 2019-nCoV system. Advances in Difference 
Equations. 2020;2020(1):391. 

[39] Wang L, Xu X, Dong H, Gui R, Yang R, Pu F, editors. Exploring Convolutional Lstm 
for Polsar Image Classification. IGARSS 2018 - 2018 IEEE International Geoscience 
and Remote Sensing Symposium; 2018 22-27 July 2018. 

[40] Dey R, Salem FM, ed. Gate-variants of Gated Recurrent Unit (GRU) neural 
networks. 2017 IEEE 60th International Midwest Symposium on Circuits and 
Systems (MWSCAS); 2017 6-9 Aug. 2017. 

[41] Di Persio L, Honchar O. Artificial neural networks architectures for stock price 
prediction: Comparisons and applications. International Journal of Circuits, 
Systems and Signal Processing. 2016;2016(10):403–13. 

[42] World Health Organization, WHO Coronavirus Disease (COVID-19) Dashboard. 
https://covid19.who.int/table (accessed 10 May 2021). 

[43] Daniel WW. Friedman two-way analysis of variance by ranks. Applied 
Nonparametric. Statistics. 1990:262–74. 

[44] Friedman M. A comparison of alternative tests of significance for the problem of m 
rankings. Ann Math Stat 1940;11(1):86–92. 

[45] Bazikar F, Ketabchi S, Moosaei H. DC programming and DCA for parametric- 
margin ν-support vector machine. Applied Intelligence. 2020;50(6):1763–74. 

[46] Iman RL, Davenport JM. Approximations of the critical region of the fbietkan 
statistic. Communications in Statistics-Theory and Methods. 1980;9(6):571–95. 

N. Ayoobi et al.                                                                                                                                                                                                                                 

http://refhub.elsevier.com/S2211-3797(21)00606-9/h0085
http://refhub.elsevier.com/S2211-3797(21)00606-9/h0085
http://refhub.elsevier.com/S2211-3797(21)00606-9/h0095
http://refhub.elsevier.com/S2211-3797(21)00606-9/h0095
http://refhub.elsevier.com/S2211-3797(21)00606-9/h0095
http://refhub.elsevier.com/S2211-3797(21)00606-9/h0105
http://refhub.elsevier.com/S2211-3797(21)00606-9/h0105
http://refhub.elsevier.com/S2211-3797(21)00606-9/h0105
https://doi.org/10.1016/j.chaos.2020.110121
https://doi.org/10.1016/j.chaos.2021.110788
https://doi.org/10.1016/j.chaos.2020.110418
http://refhub.elsevier.com/S2211-3797(21)00606-9/h0130
http://refhub.elsevier.com/S2211-3797(21)00606-9/h0130
http://refhub.elsevier.com/S2211-3797(21)00606-9/h0130
https://doi.org/10.1016/j.rinp.2021.103994
http://refhub.elsevier.com/S2211-3797(21)00606-9/h0140
http://refhub.elsevier.com/S2211-3797(21)00606-9/h0140
https://doi.org/10.1016/j.rinp.2020.103722
http://refhub.elsevier.com/S2211-3797(21)00606-9/h0160
http://refhub.elsevier.com/S2211-3797(21)00606-9/h0160
http://refhub.elsevier.com/S2211-3797(21)00606-9/h0160
https://doi.org/10.1016/j.chaos.2020.109929
https://doi.org/10.1016/j.chaos.2021.110859
https://doi.org/10.1016/j.chaos.2021.110859
https://doi.org/10.3390/jcm9020462
https://doi.org/10.3390/jcm9020462
https://doi.org/10.1016/j.rinp.2020.103698
https://doi.org/10.1016/j.rinp.2021.104063
https://doi.org/10.1016/j.rinp.2021.104063
http://refhub.elsevier.com/S2211-3797(21)00606-9/h0190
http://refhub.elsevier.com/S2211-3797(21)00606-9/h0190
http://refhub.elsevier.com/S2211-3797(21)00606-9/h0190
http://refhub.elsevier.com/S2211-3797(21)00606-9/h0205
http://refhub.elsevier.com/S2211-3797(21)00606-9/h0205
http://refhub.elsevier.com/S2211-3797(21)00606-9/h0205
http://refhub.elsevier.com/S2211-3797(21)00606-9/h0215
http://refhub.elsevier.com/S2211-3797(21)00606-9/h0215
http://refhub.elsevier.com/S2211-3797(21)00606-9/h0220
http://refhub.elsevier.com/S2211-3797(21)00606-9/h0220
http://refhub.elsevier.com/S2211-3797(21)00606-9/h0225
http://refhub.elsevier.com/S2211-3797(21)00606-9/h0225
http://refhub.elsevier.com/S2211-3797(21)00606-9/h0230
http://refhub.elsevier.com/S2211-3797(21)00606-9/h0230

	Time series forecasting of new cases and new deaths rate for COVID-19 using deep learning methods
	Introduction
	Related works
	Deep learning and its variations
	Dataset description
	Proposed method
	Experimental results and analysis
	Forecasting performance
	Statistical analysis

	Discussion
	Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgements
	References


