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ABSTRACT This paper presents an efficient equivalent circuit approach (ECA), based on a Floquet modal
expansion, for the study of the co- and cross-polarization in frequency selective surfaces (FSS) formed by
periodic arrays of patches/apertures in either single or stacked configurations. The ECA makes it possible the
derivation of analytical expressions for the generalized scattering parameters associated with the proposed
circuit networks. Furthermore, the proposed circuit approach is an efficient surrogate model that can be
combined with optimization techniques and artificial intelligence algorithms for the efficient design of FSS
structures, saving efforts in the computation compared to time-consuming full-wave simulators and tedious
synthesis (simulation-assisted) techniques. Due to the simplicity of the topology of the involved networks,
the ECA can also be advantageously used to gain physical insight. The proposed approach is applied and
validated in different FSS configurations where the cross-pol component plays a fundamental role in the
design, as in circular polarizers, polarization rotators, and reflectarray cells.

INDEX TERMS Frequency selective surface, equivalent circuit approach, co- and cross-polarization terms,

metamaterials.

I. INTRODUCTION
Controlling the behavior of the electromagnetic (EM) waves
is a traditional challenge of the microwave and antenna
engineering community [1], [2], which still raises a lot of
attention [3], [4]. The modification of the transmission and
reflection responses of an impinging EM wave on a periodic
structure has been studied for different frequency ranges,
with some examples from microwave to terahertz regimes
found in [5]-[13]. In these works, the selected structure to
provide the desired control of the incident EM is the so-called
frequency selective surface (FSS) [14], [15]. The FSS can be
classified into two categories depending of the implemented
geometry of the unit cell; namely, FSS based on either aper-
tures or patches [14].

One of the most appreciated functionalities in the design of
FSS is the control of the cross-polarization. This capability
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enables the design of polarization-converter devices
[16], [17] because both the co-polarized and cross-polarized
components of the EM wave have to be tuned in order
to obtain the desired polarization (horizontal, vertical, cir-
cular or elliptical). Polarization converters based on aper-
tures [18]-[22] and based on patches [23]-[25] are reported
in the literature. In most of the previous works, the incident
wave is transmitted along the FSS structure, although there
are also FSSs where the incident wave is totally reflected.
This fact is taken into advantage in radar cross section (RCS)
applications in order to rotate the polarization of the incoming
wave towards its orthogonal polarization and, thus, achieve a
RCS reduction [26]-[29].

Given the importance of controlling the cross polariza-
tion in transmission and/or in reflection by means of FSS,
an efficient design of these structures is imperative. The
optimization of the FSS design can be carried out by using
an EM simulator. However, its computational cost is very
high because hundreds of full-wave simulations are generally
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needed to reach the desired goals. An alternative strategy
to substantially reduce the computational cost is replacing
the full-wave simulations by equivalent circuit models that
represent the performance of the FSS in a cost-effective
way [30]-[35]. These circuit models can then be combined
with optimization and artificial intelligence algorithms for
an efficient design of the device, especially when a large
number of iterations are required in the process. Among
the different techniques to obtain a circuit model of peri-
odic structures [25], [36]-[41], the equivalent circuit models
based on Floquet analysis [42]-[45] have shown remarkable
outcomes even for intricate structures [43], [46]-[50]. One
of the most relevant characteristics of this method comes
from its analytical (or quasi-analytical) nature. It means
that no previous full-wave frequency-sweeping simulations
are needed in order to accurately take into account the
effects of higher order harmonics and couplings in single
and stacked FSS structures in a very extended frequency
band [42], [43], [49].

In this work, we present analytical expressions for both co-
pol and cross-pol scattering parameters of single and stacked
aperture- and patched-based FSSs. In order to have com-
plete independence of full-wave simulators, the formulation
is based on Floquet modes in contrast with other state-of-
the-art synthesis techniques [25], [32], [37]. Furthermore,
as discussed in our previous work [49], the analytical nature
of the approach makes that linear transformations of the
scatterers (such as displacement, rotation, and/or scaling)
can easily be introduced to model in a simple and efficient
manner complex FSS stacks. The present work goes one
step further in that direction and includes the treatment of
the cross-pol component in both aperture- and patch-based
FSS structures. This provides a great advantage by allowing
the aperture/patch scatterers can be different between layers.
It represents an improvement with respect to [50], where
only patch-based FSSs with the same base geometry are
studied.

The paper is organized as follows. Section II presents the
derivations and the analytical expressions for the co- and
cross-polarization in aperture-based FSS. In Section III,
the calculation of the generalized scattering parameters for
patched FSS is given. Both sections discuss the applica-
tion of the formulation for both single and stacked FSS.
Section IV shows several examples of FSS based on either
apertures or patches that are characterized using the devel-
oped analytical expressions. Finally, in Section V, the main
conclusions of the work are drawn.

Il. CROSS-POLARIZATION IN APERTURE ARRAYS

A. SINGLE APERTURE PROBLEM

The unit cell for the problem under consideration in the
present section is depicted in Fig. 1, where the scattering of an
impinging time-harmonic (e’) plane wave on an infinite 2-D
periodic structure has been reduced to a classical discontinu-
ity problem in waveguides. For simplicity, we will consider
but suppress the e/’ dependence in the following derivation.
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FIGURE 1. (a): Unit cell in perspective. (b): Unit cell in the yz-plane.

The planar discontinuity consists of a infinitesimally thin
metallic sheet with an arbitrary-shaped aperture. This dis-
continuity is located at z = 0 and embedded between two
semi-infinite homogeneous and isotropic dielectric media
with permittivity eﬁL/R), as shown in Fig. 1(b). The unit cell
is bounded by periodic boundary conditions (PBC) and the
incident plane wave is arbitrarily oriented. The electric field
magnitude of the incident wave is assumed to be unity, thus
letting its magnetic-field magnitude identical to the value of
admittance associated with the wave.

Next we follow the general procedure reported in
[42], [43] although here the necessary derivations to obtain
closed-form expressions associated with the cross-pol com-
ponents will be explicitly shown. Since the interaction of
the incident wave with the discontinuity excites an infinite
number of harmonics/modes in the unit cell, the transverse
electric field at both sides of the discontinuity plane can be
described in terms of the following Floquet expansion:

L
Eg )(x,y; w) .
= (1 +ReDx, ) + Vi Lelbx, y)
7 epy(L / (L
+Y vaPeb e+ Y vahPebhay )
n,m

n,m
R
EN(x, y: ) .
= Tegh(x.y) + Voo Vegh(x. y)

+3 Vet e+ 3 Vb ®eb ) (@)
n,m n,m
where the superscripts “cp” and “xp”” denotes co- and cross-
polarization terms with respect to the polarization of the
incident wave, respectively. For TE incidence, the cross-
polarization superscript becomes TM and vice versa. The
superscript “L/R” denotes the left/right-side dielectric
medium. The factor 1 in (1) accounts for the unit-amplitude of
the incident electric field, here characterized by the harmonic
of order m,n = 0, 0. The coefficients R and T are the cor-
responding copolar reflection and transmission coefficients,
respectively. The coefficient V())%) R i< the amplitude of the
"cross-pol’ harmonic of order m,n = 0, 0 at both sides of
the discontinuity, excited thanks to the interaction between
the incident harmonic and the discontinuity. The coefficients
V,f,l,a/ xp.(L)/(R) are the amplitudes associated with harmonics of
order n, m at both sides of the discontinuity as well. All the
above coefficients are function of the angular frequency ()
of the impinging wave. The prime symbol in the series stands
for summation Vn, m except n, m = 0, 0.
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The spatial profile of the transverse electric field associated

with each harmonic is represented by eﬁ%xP and defined in

terms of TM/TE harmonics as

1 exp[—jtkumx + k R
egrl:z/l(xa y) = W pl J(j;_p Ynly)] ezrl:l/[ 3)
Xy XPy
1 expl—jlkyx + ky R
eZ,E(X, y) = p[ J( X1 ymy)] ez]ﬁ (4)
/PxPy /PxPy
with
oM _ kX + kymi’ (5)
nm
kg, + ki
KX — ken¥ T g
e = 2t [ & x4 ©
kxn + kym
2
kon =/ eMko sin 6 cos ¢ + %
X
2
kym = ) ePko sin 0 sinp + (8)
Py

where px and py are the periodicity along x and y axis,
ko the free-space wavenumber, and 6, ¢ are the elevation and
azimuth incident angles. At the discontinuity plane, the trans-
verse electric field is different from zero only at the aperture
region 2. A key assumption of the present approach is that
the spatial profile, £, of this transverse electric field at the
aperture is considered to be frequency-independent; namely,
the total transverse field, E,p, can be factorized in the follow-
ing way

Eyp(x, y; 0) = A(w)E(x,y) Vx,y e Q )]

where A(w) can be regarded as the amplitude which does
depend on frequency whereas £(x,y) describes the spa-
tial distribution which does not depend on frequency. This
approximation has been found to be valid up to the second
excitable resonance of the considered scatterer. Nonetheless,
this usually leads to a large operation bandwidth for the
ECA, even within the grating-lobe regime [34], [49]. In fact,
the onset of the grating-lobe regime corresponds to the cutoff
frequency of high-order propagating harmonics. In this sense,
the ECA is capable of reproducing very exotic behaviors
where several diffraction orders are present, regardless of the
electrical size of the unit cell under the assumptions described
above.

Since the electric field is continuous in the aperture region,
we can write

E @y 0) =B, y;0) =By Vx,yeQ. (10)

If this continuity of the electric field is forced for the pro-
jection of the fields onto the modal functions e /TE it allows
us to calculate the amplitudes of the harmonics V,f,%/Xp  WR) by

means of the following expressions:

(1+R) = A@)E (kso, kyo) - & (11)
L(L/R - ~
Ve R — A()E (kv ko) - € (12)
/ = ~cp/
Vb 2R — A(@)E (ks kym) - G (13)
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It should be noted that the expressions for V;,%/XP’(L/R) at

the left- and right-hand side coincide, which allows us to
remove the superscript (L/R) in the following. In the above
expressions we have made use of the fact that

/ £, y) - [€2/® (x, 1) = Ekns Kym) - €25 (1)
Q

where
1

/PxPy
can be recognized as the 2-D Fourier transform of the spa-
tial profile £(x,y) at (ky, kyn). Thus, if we now define a

Ekun, kym) = / E(x,y) b thm) gQ  (15)
Q

frequency-independent parameter N,f,%/ *P given by
Nab!™® = E K ym) - &1 (16)

the expressions (11)—(13) can be rewritten in general as

Ve (14+R)
= —%
N;P/XP Ny

m

7)

what indicates that each amplitude is actually proportional
to the voltage factor (1 4+ R). As already discussed in [43],
the factors relating each amplitude and (1 + R) can be
interpreted, from a circuit point of view, as the value of the
turns ratio corresponding to transformers. It is worth noting
here that these transformer ratios turn out to be frequency
independent, which will be very relevant from an operational
standpoint.

If we now force the continuity of the power through the
aperture:

f E,p x [HP]dQ = / E, x [HYdQ (18
Q Q

it is then possible to obtain the reflection coefficient R after
considering that the transverse magnetic fields at both sides
of the discontinuities are given by the following Floquet
expansions:

L
HE )(x,y; )
(L (L
= (1 - RYPPRPx,y) — VPV, y)
/ - !
= Vv b e ) = > Vv Ol e )
n,m n,m
(19)
R
H®(x, y; 0)
(R (R
= TY PR 0x, ) + Vo Yo ®nx, )
4 (R 4 (R
+ 3 VY Oy + Y Van vk b e, y)
n,m n,m

(20)
where hf,l,),{ Px,y) =7 x e,C,%Xp (x,y) and Y;,E,/Xp LR s the
admittance associated with the harmonics of order (n, m):

(L/R)
yTEWR) _ Prm 21
nm "oy 21
wsoe(L/R)
TM,(L/R) _ T
Ynm - (L/R) (22)
nm
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with the longitudinal wavenumber, ,B,SEIR), given by

L/R
B = \/sﬁ 3 — k2, — k2, (23)
Thus, introducing (19) and (20) into (18), the reflection
coefficient is found to be
,L (R ,L (R
(L R (L R
|N0P|2<Y°é’( )+Yo°§( >>+|N5‘5|2<Y55( )+Yo*é’( )>+qu
(24)

with

L (R
Yeq = Z NG P ® + vih )
(L (R
+ 3 IR PR ® 4 rn ™). (25)

Notice that Yeq corresponds to an infinite summation of
admittances connected in parallel. Each individual admit-
tance, Yy PApLR) 4 ,1s associated with a semi-infinite transmis-
sion line section that is connected to the input line (corre-
sponding to the incident harmonic) through a transformer of
turns ratio N,f,%/ *P_Electromagnetic coupling between adja-
cent cells is taken into consideration by the multi-modal
nature of the present equivalent approach; namely, Floquet
harmonics of lower and higher order are coupled together
through the parallel connections appreciated in Fig. 2.

For the sake of simplicity, Yeq will be considered as a
single admittance (it includes the contribution of all the
harmonics except the ones corresponding to m,n = 0, 0).
The corresponding 4-port equivalent circuit can therefore be
schematically represented as the one in Fig. 2. Four transmis-
sion lines connected in parallel are distinguished: two lines in
green that describe the propagation of the incident harmonic
through the media (L/R) and two lines in pink that describe
the propagation of the (0, 0) cross-polarized harmonic in both
dielectric media. All these lines are connected to Yeq via
transformers with turns ratio N cp/xp .

Standard circuit rules can now be employed to calculate
the scattering parameters of the above network. As shown
in Fig. 2, the nodes n1 and n, share the same voltage, given by
(1 + R) = T (coming from the superposition of the incident
and reflected waves at the discontinuity plane). The voltages
in the rest of the lines are then

Vor = (1+R) = (26)
N"p
Voo = (1 + R~ (27)
NOO
with associated currents given by
Iggs(R) _ TYCP,(R) (28)
p
00
b ® _ 7 Nob L xp®)
Xp, Xp,
Ly =T N Yoo o (30)
00
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FIGURE 2. (a): Multi-modal equivalent circuit for a single 2-D slot-like
periodic array when assuming the incidence of the harmonic n,m = 0, 0.
The interaction of the incident harmonic and the discontinuity excites all
the higher-order harmonics, represented by their corresponding
transmission lines. (b): Same equivalent circuit, with the higher-order
harmonics grouped in the term Yeq.

Defining now the corresponding arrays of power wave
amplitudes [51], the following generalized scattering param-
eters are obtained:

SPTP =R (31)
Sy =1 (32)
N N
s =q +R)N (33)
NP
Cp—>Xp 00
S =Tyw (34)

00

B. STACKS OF APERTURES

Stacks of two (or more) identical or nonidentical cou-
pled apertures can also be analyzed via the equivalent cir-
cuit approach, provided that they have the same p, x p,
dimensions (namely, the size of the unit cell should be
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FIGURE 3. (a): Unit cell in perspective. (b): Unit cell in the YZ-plane.

the same). An example of this scenario is shown in Fig. 3(a).
Two metallic perforated screens are separated by a dielec-
tric material with relative permittivity SEM) and thickness d.
The unit cell now contains two semi-infinite dielectric slabs
of relative permittivity e(L R) and the finite slab with 8(M),
as illustrated in Fig. 3(b).

Following a similar rationale as in [52], the obtaining of
the circuit network for this structure is based on the single-
array case. Each individual aperture taking part in the stack
admits to be represented by the circuit in Fig. 2. Both indi-
vidual circuits can be joined by connecting the transmission
lines associated with each one of the harmonics inside the
finite dielectric slab (namely, connecting all the lines asso-
ciated with harmonics of the same order). By means of this
operation and after several manipulations, the final equiv-
alent circuit can be represented by the classical m-network
shown in Fig. 4. Again, we have separated the co- and cross-
polarized terms in the leftmost and rightmost dielectric media
by its corresponding transmission lines. The admittances
forming the m-block can be split into two contributions.
On the one hand, the external contribution given by the
harmonics n, m # 0, 0 in the leftmost and rightmost dielectric
media,

<L> Z N D 2yep@L) Z DDy @) 35
R ,(2 (R / ,(2 ,(R
i = Z N @ Py ® + Z N P PYan ) (36)

where the transformers now include the superscript (1/2),
referring to the leftmost or rightmost aperture, respectively.
On the other hand, the internal block includes the information
about all the possible electromagnetic couplings between the
two aperture arrays. This is due to the multi-modal nature of
the elements that form both the internal and external blocks.
In this case, the internal block can be expressed as a m-
network topology whose elements are given by
yP (M)}

M 1 ,M 1
Yé,l)—J[ZWCP() YO L S ROy,

vn,m Vn,m
X @n(Byd/2) a7
. @ ™ o ™
W =i WP+ X P |
Vi,m Vn,m
x tan(BMd /2) G38)
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FIGURE 4. Equivalent circuit for stacked aperture arrays.

Yo — _ [ZNcp (D [y P-@) ey en.OD
Vn,m
+YNE D[P Q) 3. (M)} esc(BMa).  (39)
Vn,m

The topology of the circuit for the stack is slightly more
complex than the circuit for the single case. The expres-
sions for the scattering parameters are those in (32), (33)
and (34). However, it can be inferred from Fig.4 that the
nodes n1 and ny do not share now the same voltage, that
is, (1 + R) # T. A simple circuit analysis reveals that
the voltages (1 + R) and T are related by the following
expression:

(M)

T=((+R) - (40)
y™

(R)
Y, in
with

YlEqR)_Y(M) + Y(R) |NCP (2)| ch’(R)+| Xp, (2)| Yxé)’(R).

(41)

This new value of T can be introduced in (32) and (34)
in order to achieve the final expressions for the generalized
scattering parameters.

Er E(L) (M)..5*
® T Er //
- / 2/ d

(a) Eb)

FIGURE 5. Unit cell for (a): a single-patch array, (b): a pair of coupled
arrays of patches.

lIl. PERIODIC PATCH ARRAYS SINGLE AND STACK

Problems involving patches arrays can be conceived as
complementary to the aperture case and, thus, its treat-
ment can follow the general guidelines given above.
Figs. 5(a) and (b) illustrate the unit-cell problem for single
and coupled patch arrays, respectively. Focusing on the
single-array case, the derivation of the reflection coefficient
is achieved after imposing the following two conditions
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at the discontinuity plane, specifically in the area of the
metallic patch €:

2 x HPx, y; 0) —H (x, y; 0)] = Jpalx, y; @) (42)
EﬁL)(x, V) = O=E§R)(x,y; w) (43)

where Jp, is the surface current density on the patch.

The transverse magnetic and electric fields are described in
terms of Floquet harmonics as in (1), (2), (19) and (20). The
surface current is assumed to be given by a spatial distribution
independent from frequency, namely,

Jpa(x, y; @) = B(@)T (x. ). (44)

After manipulating (42) and (43), taking into account (44),
the following expression relating the amplitudes of the har-
monics and the reflection and transmission coefficients of the
incident one is found:

cp/xp, (L) cp/xp, (R) cp,(L) cp,(R)
Y, + Yum —(1 —R)Yy 7+ TYy,

ch/xp nm
nm -
p Noo
(45)
where T = (1 + R), and
/ ~cp/
Nam > = T (ks hym) - € * (46)

with J (kxn» kym) being the 2-D Fourier transform of J (x, y)
at (kyy, kym). The reflection coefficient R can be written as

cp,(L) cp,(R) Xp,2 —1
Yoo — Yoo . |: INoo | +Zeq:|
|N(():(I))|2 YXP (L) + Y&g”(R)
= 47)
CP (L) + ypR) N |2 -1
00
+Z
NP 5 By ]
with
© Nl © o Naml?
Zeq = ——— ————. (48)
an: Y,f,g[(L) + Y;fr% (R) ;n: Y;P (L) + YXP ,(R) "

As in the aperture-array case, Zeq includes all the harmon-
ics of orders n, m except those with n, m = 0, 0. Similarly,
electromagnetic coupling between adjacent cells is taken
into consideration by the multi-modal nature of the circuit
in Fig.6(a). However, at the light of (48), the connection
among all these elements is now in series in contrast to the
parallel connections observed in the aperture case. The cross-
polarization elements of order n, m = 0, 0 also take part in the
group of elements connected in series.

Following the theory in [51] and using the expression
for V,f,%/ P obtained after manipulating (45), the generalized
scattering parameters for the case of a single patch-based FSS
are found to be

ST =R (49)

SYTP=1+R) (50)
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FIGURE 6. (a): Equivalent circuit for the single array. (b): Equivalent

circuit including voltages when assuming the incidence of an harmonic
(labelled as the co-polarized one).

xp (L), yen®) [ xpL)
Nog (R — DYob ™ + 170 |yl

SCp*)Xp — (51)
11 cp XP (L) xp, (R) cp,(L)
Noo + Yg0 \ Yoo
(L (R (R
crono _ Mo (R — DY ™ + v ™ |y ®
S - NCP xp, (L) YXP, (R) YCp’a-‘) (52)
00 + Yy N Yoo

The couple of patch-arrays separated by a distance d
depicted in Fig.5(b) also admits to be represented by an
equivalent circuit. Similarly as in the aperture-case, we pro-
ceed by connecting transmission lines associated with indi-
vidual harmonics. Fig.6(b) shows the final topology. The
transmission lines related to the cross-pol term of order
n=m =0 in inner medium (M) are connected. This pro-
cedure is also realized by the rest of higher order harmon-
ics (all of them included in Zq in Fig.6(a)). The resulting
topology is not appropriate to construct individual blocks
and derive a final w-network. Furthermore, the complexity
of calculating the scattering parameters for the cross-pol
term increases considerably. A possible way to address this
calculation appeals to transfer-matrix notation. In particu-
lar, the composition of scattering (S) matrices has been the
method employed. Each S-matrix describes and represents
the coupling between all the harmonics excited in an individ-
ual patch array. The final S-matrix of the system is the result
of the composition of all the individual matrices. The trans-
mission/reflection coefficients of the cp- and xp-components
are directly extracted from this final scattering matrix. It is
worth remarking that the calculation is still cumbersome and
no physical insight is inferred from the process.
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IV. NUMERICAL EXAMPLES

In this section, some numerical examples of FSS structures
are given in order to validate the analytical circuit approach
and show its accuracy and computational efficiency. We com-
pare the results with commercial full-wave simulators as
well as with previously published works in the literature.
Examples of aperture and patch arrays (single and stacked
layers) are reported.

(b) (©

===y-pol [Circuit]
G © y-pol [Clendinning]
45 "‘L._k ——x-pol [Circuit] c
= “=a. O x-pol [Clendinning] =}
) oS a2
~o, 2]
% o S £ -
8 ~o 20407 —==y-pol [Circuit]
T © © y-pol [Clendinning]
-45 = ——x-pol [Circuit]
0.2 O x-pol [Clendinning]
-90 - ' ’ : 0
8 9 10 1" 12 8 9 10 1" 12

Frequency (GHz) Frequency (GHz)

(@)

FIGURE 7. (a) Linear-to-circular polarization converter. (b) Single-layer
aperture-based FSS presented in [22] acting as a circular polarizer.

(c) Spatial profile considered at the aperture, computed with (53).

(d) Phase and amplitude of the transmission parameters (x-pol and y-pol
waves). The shadowed area indicates the frequency range where the
transmitted wave is circularly polarized (AR< 3 dB). Losses are
considered in the dielectric, & = er(1 —jtané), ey = 2.95, tan$ = 0.025.

A. APERTURE-BASED CIRCULAR POLARIZER

The first structure under analysis is the aperture-based linear-
to-circular polarizer presented in [22]. The operation of the
structure as well as its forming layers can be visualized
in Figs.7(a) and (b), respectively. The FSS is formed by
a periodic array of cross-shaped apertures lying on a lossy
dielectric substrate. When a 45° linearly-polarized plane
wave impinges the structure, the transmitted x-pol and y-pol
components are delayed by m/2 radians while maintain-
ing the same level of amplitude. This is due to the dif-
ferent lengths that the two magnetic dipoles forming the
cross have, which leads to a circularly-polarized wave at the
output.

VOLUME 9, 2021

The analytical spatial profile of the electric field
assumed in the cross-shaped aperture, displayed in Fig. 7(c),
is mathematically modeled as [53]

cos(my/ly) . cos(mx/lLy)

R+
\/1 — (2x/wy)? \/1 — (29/w,)’

In the above expression, the horizontal (y-oriented E-field)
and vertical (x-oriented E-field) magnetic dipoles are inde-
pendently modeled.

The phase and amplitude coefficients of the transmitted
x-pol and y-pol waves are plotted in Fig. 7(d) and compared
with the measurements shown in [22]. As observed, there is
a good agreement between the ECA results and the exper-
imental data. For the computation of 501 frequency points,
the circuit approach took only 2.28 seconds. This demon-
strates the efficiency of the present model. Furthermore,
it should be remarked the ability of the equivalent circuit
to easily account for dielectric losses in the substrate. Slight
differences are seen in the amplitude coefficient at the end of
the displayed frequency range. This is attributed to the large
size of the cross-shaped apertures as well as the field coupling
between horizontal and vertical dipoles, not considered in
expression (53). The shadowed area in Fig. 7(d) highlights the
frequency range where the axial ratio is below 3 dB; namely,
where the transmitted wave is circularly polarized from a
practical point of view.

E(x,y) = y. (53)

B. ASYMMETRIC LOADED MAGNETIC DIPOLES

The second example is inspired by the synthesis method
of anisotropic FSS reported in [37], based on the use of
equivalent circuits. The FSS structure is formed by asym-
metric loaded magnetic dipoles, as can be seen in Fig. 8(a).
As discussed in [54] for meander-line gratings, a frequency-
independent sine-shaped (half sine) spatial profile can be
assumed to be excited at the aperture. The considered profile
is constant along the slot width w and is mathematically
modeled as

E(x,y) = Esec(x, y) + Ecor(x, ¥) (54
where
. TTX L . .
sm(f) y., in region S1
. + L], . .
Eseclx, y) = sm(%) X, inregionS2 (55)
L
sin(@)y , inregion S3

takes into account the sinusoidal variation along the differ-
ent longitudinal sections [see Fig. 8(a)] of the loaded dipole
(L1 =Ils1 +w, Ly = Is1 + 2w + Is3), and

Ecort“V(x,y), incorner Cl

56
gcor(C2)(x’ y), (56)

Ecor(x, y) =
cor(X. ) in corner C2
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FIGURE 8. (a) Front view of the unit cell containing the asymmetrical
loaded magnetic dipoles. (b) Spatial profile considered at the aperture,
computed with (54), and a detail of a corner section. (c) Single array.
(d) Two-layer stack whose plates are rotated 20 degree. TE normal
incidence is assumed. Geometrical parameters: py = py = 10mm,

Is;y =2mm, I, = 6mm, Iz = 1mm, w = 0.5mm, o = 20°, and
h=25mm.

includes the boundary conditions at the corner sections, with

L
gcor(Cl)(x’ y) = (1 _ 1) Sin(ﬂ) X
w L

+ (1 — f—v) sin(%) y (57

L)
gcor(cz)(x, )’) = (1 — Z) Sin( 2) X
w L

+ (1 - f—v) sin<”TL2> § (58

and Lé = lg1 +w+Is2. Note that the total length of the loaded
dipole is L = Ig1 + Is2 + Is3 + 2w. The magnitude of the
spatial profile can be observed in Fig. 8(b). As appreciated
in (57),(58), a linear decay that maintains the continuity of
the fields has been assumed at the corner sections. The same
consideration is valid when dealing with currents in patch
structures, as in Fig. 9. Although this approach may seem
simple, it has proven to give accurate results [54].

Fig. 8(c) illustrates the transmission parameters (amplitude
and phase) of the co-pol (cp—cp) and cross-pol (cp—xp)
terms for a single, free-standing layer when a TE-polarized
plane wave illuminates the FSS. An excellent agreement
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FIGURE 9. (a): Unit cell in perspective and under front view.
(b): |S¢7| data obtained by the ECA and CST for TE normal incidence.
Structure parameters (lengths in mm): p=4.5,d = 1.2,
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xP = 0.625, x® =2.225, y® = —0.9,y® = 0.7, &, = 10.

is observed between our ECA results and the commercial
software CST. It should be noted that the length of the hori-
zontal arms of the dipoles control the cross-pol level; namely,
the larger the horizontal arms are, the higher the cross-pol
term is.

A variant of the above structure is formed when the pre-
vious layer is stacked together with a second rotated layer
of equal dimensions (angle of rotation « = 20°). In our
equivalent circuit approach, the incorporation of this second
layer to account for the spatial profile of the rotated aper-
ture simply demands a linear transformation of the original
spatial profile (54), as pointed out in [49]. The transmission
parameters (amplitude and phase) of the stack are plotted
in Fig. 8(d), where a good agreement of our ECA results
is observed with CST data, despite the complexity of the
FSS under analysis. Using the same computer, the circuit
model took 2.02 and 3.18 seconds to compute the scattering
parameters at 501 frequency points of the single array and
the two-layer stack, respectively, while CST (default mesh
size, 60 Floquet harmonics) took 6 and 8 minutes in these
calculations. It is then apparent that, within its validity range,
the ECA is a very efficient procedure to study the scattering
properties of FSSs as well as an excellent tool for optimiza-
tion tasks where many computations are required.

C. DOUBLE L-SHAPED DIPOLE

A first example of a patch-array periodic structure to be
analyzed with the circuit model is inspired in the structure

VOLUME 9, 2021



C. Molero et al.: Cross-Polarization Control in FSSs by Means of ECA

IEEE Access

reported in [55]. The unit cell, shown in Fig. 9(a), comprises
two identical L-shaped metallic dipoles printed on a grounded
dielectric slab. Each individual dipole will be labelled as
(L) or (R), referring to the left- or right-side position in
the cell. The (L)-dipole is rotated 180° with respect to the
(R)-dipole, thus creating an asymmetric unit-cell pattern.
The presence of the ground plane ensures full-reflection
operation.

In the frame of the circuit model approach described in
Sec. I11, the ground plane is included in the circuit in Fig. 6
just by short-circuiting the lmes associated with the rightmost
medium with permittivity er ). The length of all these short-
circuited transmission lines coincides with the dielectric-slab
thickness. As required by the ECA, the spatial profile of the
surface current distribution, J (x, y), in each of the L-shaped
dipoles is assumed to be frequency independent. The longitu-
dinal component of the current is taken to have the form of a
half-sine function, distributed along the corresponding strip,
and constant along the strip width. Likewise the example in
the previous section, the surface-current function is mathe-
matically expressed in two parts:

TR, y) = TERG, y) + TER(x, ) (59)

where
nx )
sin L (L) in S1
L
Tiealw ) = n(d‘” S b 150 ) WSRO
LO y. m
(60)
sm(L ® in S1
R
jgeg(xf y) = n(d(R) + W(R) +x — (R)) . .
X, inS2
LR
(61)
and

o e (L) xéL)
T eqi(x,y) = sin L(L) WX

(@ )\ y = o —wh)
+sin JZ0) i) y
(62)

d(R) (R)
R) _ T Y=Y 4
Feor ¥ 7) = Sm( L® | T,®
R
( (R)

. n(d§R)+W(R)) X — (g —
+sin Q) (R

with
d}EL/R) _ x}(:L/R) _ x(()L/R)
(LR) _ _(L/R) (L/R)
dy" =Yg =Y

LR _ gMLR) | g(LR) 4 |\ (LR)
X y *
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The corresponding transformer ratios N,f}f,/xP are given
in terms of the 2-D Fourier Transform of J (L/R); namely,
according to (46)

N = [T K k) + T k)| - &80, (64)

It is worth remarking that if the dipoles are very close each
other, some degree of mutual coupling is expected, affecting
the excitation of individual surface-current distribution in
each dipole. Therefore, the individual currents in the left-and
right patches are not expected to be identical to the ones of
each patch acting separately. Since the proposed current pro-
files assume no mutual coupling, the accuracy of the surface-
current profiles deteriorates as both dipoles get closer.

In order to validate the circuit-model approach as well as
the surface-current functions, Fig.9 reproduces one of the
results reported in [55, Fig. 7] where a wideband polarizer
is presented. Both the left and right dipoles are identical
(dimension in the caption of Fig. 9). The dielectric substrate is
1.2 mm thick with relative permittivity SER) = 10. The struc-
ture is excited by TE normal incidence (electric field directed
along the y-axis). The reflection of this field component (cp)
and the orthogonal field component (xp) are both plotted
in Fig.9(c). The cell configuration is such that wideband
field rotation is achieved, as shown by the high reflection
magnitude of the xp-component from 14.5 GHz to 23 GHz
in contrast with the small reflection magnitude of the cp-
component. The agreement between results provided by CST
and those given by the circuit model is quite acceptable, with
some slight differences caused by the approximated nature
of the surface-current functions employed for this example.
Possible sources of inaccuracies can be associated with the
modelling of the current in corners, realized by including a
simple linear decay in the sine function. The neglecting of
mutual-coupling effects in the surface current functions is
also expected to yield some inaccuracies. In turn, the compu-
tation time required by the ECA is very short in comparison
to the CPU time of CST. The ECA employed 1.13 seconds
to reproduce the solution, whereas CST needed 5 minutes
approximately. Hence, ECA stands out as a very quick and
efficient analysis tool if a small degree of inaccuracy is
acceptable.

D. SPLIT-RING DIPOLE

A second case study of the circuit model for patch arrays is
the structure whose unit cell is shown in Fig. 10(a)-(b). The
patch is a circular ring section, defined by the arc comprised
between the angles ¢9 and ¢r. The width of the patch is
defined between the inner and outer radii R| and R;. As the
ring section is printed on a grounded dielectric slab, the cor-
responding equivalent circuit is topologically identical to the
one employed in the previous example. The surface current
is now assumed to be directed along the ring section; namely,
the longitudinal component of the current takes the direction
of the polar unit vector ¢ (the current is null at the ends of
the patch). A half-since function, adapted to the geometry of
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FIGURE 10. TM normal and oblique incidence. (a) Unit cell.

(b): Scattering parameters obtained for 6 = 0°. (c): § = 45°. (d): § = 60°.
(e): = 80°. Structure parameters: p = 11.5mm, d = 3mm, R; = 3.9 mm,
R, = 4.75mm, ¢ = 270°, ¢ = 360°, er = 2.55.

the patch, is again a very good option to describe the current
behaviour:

J (R, ¢) = sin (n M) ¢ (65)
9F — ¢o
with ¢ = —sin@ X + cos ¢ §. For simplicity, the current is

taken as constant in the transverse section comprised between
Ry and R».

Analytical results obtained by the ECA and the software
CST are plotted in Fig. 10(c)-(f). The magnitude of the
co- and xp-component is plotted versus frequency for differ-
ent incident angles 6. TM incidence is here considered, that
is, the electric-field vector lies on the (x, z)-plane (along the
x-direction for & = 0). The behavior of the xp-component
varies with frequency and angle. Full power transfer from
the incident to the xp-component is achieved at frequencies
around 14 GHz for normal incidence. By increasing the inci-
dent angle, the spectrum begins to interchange full-reflection
peaks related to the co- and xp-components. This is clearly
manifested for 45°, 60°, 80°. Since the periodicity of the cell
is p = 11.5mm, the onset frequency of grating lobes of
first-orders (n,m = 1,0, nm = 0,1) is f = 26.08 GHz.
This onset frequency goes down to 15.27 GHz, 13.98 GHz
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FIGURE 11. (a) Unit cell of the stack. The position of the ring sections in
the front and back layers is fixed according to the structure parameters
defined in Fig. 10(a). (b)-(c) TE and (d)-(e) TM incidence. Common
structure parameters: p = 11.5mm, d = 3mm, & = 2.55, R} = 3.9mm,
Ry = 4.75 mm. Patch on layer (1): ¢ = 90°, ¢ = 180°. Patch on layer (2):
$o = 225°, ¢ = 315°.

and 13.14GHz for &6 = 45°,60° and 80°, respectively.
The agreement between CST and the ECA is quite good up
to 18 GHz, which is beyond the onset frequencies for the
largest angles. This validates the ECA as a suitable tool to
work in complex scenarios, such as oblique-incidence in the
diffraction zone.

E. STACK OF SPLIT RING DIPOLES
A last example of a stack of a couple of patch-based arrays
is considered in Fig. 11. This example is based on the ring-
section geometry used in the previous section, but replacing
the ground plane by a second array. Figs. 11(a) shows the
complete unit cell, which consists of a stack of two metallic
ring sections printed on opposite faces of a dielectric slab with
permittivity &, and thickness d. The position and length of
each ring section is fixed by the initial and final angle ¢y and
¢F, respectively. The width is again defined in terms of the
inner and outer radii (R and Ry).

Figs. 11(b)-(e) shows the frequency behavior of the trans-
mission parameter (amplitude and phase) for both the co- and
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xp-components for TE and TM normal incidence, respec-
tively. The unit cell has been conceived to be highly asym-
metric (that is, ¢o and ¢r of the left and right ring sections
do not coincide) to force the appearance of cross polariza-
tion. However its amplitude strongly depends on the incident
polarization. TE incidence, with the electric field along the
y-direction, tends to equalize the amplitudes of the cp- and
xp-components from 14 to 16 GHz in transmission. TM inci-
dence does not achieve such an increase of the xp-amplitude,
and most of power that is lost by the cp-component is not
transferred to the xp-component but is reflected back (results
of |S11] are not plotted in the figure). The agreement between
the results obtained by CST and the ECA is quite good in
both cases. It is worth remarking the high complexity of the
corresponding equivalent circuit for this scenario, as can be
appreciated in Fig. 6(b). The CPU time needed for the ECA
was about 3 seconds, contrasting with CST which needed
around 8 minutes to provide a solution.

V. CONCLUSION

In this paper, we have derived an analytical equivalent circuit
approach, based on a Floquet modal expansion, for the char-
acterization of the co-pol and cross-pol scattering compo-
nents in FSS structures formed by periodic arrays of patches
and apertures in single and stacked configurations. We have
also taken advantage of the analytical expressions presented
in our previous work to extended the analysis of the co- and
cross-pol terms to FSS consisting of linearly transformed
(rotated, scaled, misaligned) plates. Then, we have presented
some examples in order to validate the present approach.
We have compared the circuit results with both numerical
and experimental data extracted from the literature, as well as
with data obtained with commercial full-wave simulator CST.
This would be the case of an aperture-based circular polarizer
and patch-based (single and stacked) structures formed by
split-ring resonators and L-shaped dipoles. Good agreement
is observed for all the cases under study, even under extreme
oblique incidence conditions. In light of the results, the pro-
posed ECA proves to be an efficient surrogate model that can
be combined with traditional optimization techniques, meta-
heuristics or artificial intelligence algorithms for the practical
design of FSS structures, polarizers, reflectarray cells and
other microwave and photonic platforms, specifically when
an accurate control of the cross-pol term is imperative.
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