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ABSTRACT Classification tasks often include, among the large number of features to be processed in
the datasets, many irrelevant and redundant ones, which can even decrease the efficiency of classifiers.
Feature Selection (FS) is the most common preprocessing technique utilized to overcome the drawbacks
of the high dimensionality of datasets and often has two conflicting objectives: The first function aims to
maximize the classification performance or reduce the error rate of the classifier. In contrast, the second
function is designed to minimize the number of features. However, the majority of wrapper FS techniques
are developed for single-objective scenarios. Multi-verse optimizer (MVO) is considered as one of the
well-regarded optimization approaches in recent years. In this paper, the binary multi-objective variant of
MVO (MOMVO) is proposed to deal with feature selection tasks. The standard MOMVO suffers from
local optima stagnation, so we propose an improved binary MOMVO to deal with this issue using the
memory concept and personal best of the universes. The experimental results and comparisons indicate that
the proposed binary MOMVO approach can effectively eliminate irrelevant and/or redundant features and
maintain a minimum classification error rate when dealing with different datasets compared with the most
popular feature selection techniques. Furthermore, the 14 benchmark datasets showed that the proposed

approach outperforms the stat-of-art multi-objective optimization algorithms for feature selection.

INDEX TERMS Wrapper feature selection, multi-verse algorithm, optimization, classification.

I. INTRODUCTION

Data mining is the process of extracting valuable knowledge,
and interesting patterns embedded in different data sources
(e.g., databases and data warehouses) [1]. Data mining tech-
niques are mainly classified into supervised (e.g., classifi-
cation) and unsupervised (e.g., clustering) techniques [2].
Supervised learning techniques, such as kernel extreme learn-
ing [3], k-nearest neighborhood (KNN) [4], and support vec-
tor machines (SVM) [5], [6] tend to learn a model to be
able map a data instance to a specific category or class.
Unsupervised learning techniques, such as clustering, on the
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other hand, infer the structure of the data without having a
piece of prior knowledge about their categories of classes [7].

Classification methods have been widely used in different
real-world applications such as health informatics [5], [8],
medical systems [9], [10], image processing [11], [12],
protein classification [13], and feature fusion [14]. The
main challenge with these applications is that the datasets
become very large due to the advancements in data collection
tools [15]. The high-dimensional datasets may include,
in addition to the valuable features, some irrelevant and
redundant features that may reduce the efficiency of the learn-
ing algorithms [16]. Therefore, preprocessing and preparing
the datasets became a crucial step in determining the success
or failure of the learning algorithms [17].
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Dimensionality reduction (i.e., Feature Selection (FS) and
Feature Extraction (FE)) is one of the most common pre-
processing techniques used to overcome the challenges of
high-dimensional datasets [18]-[20]. This paper focuses on
FS for classification tasks, where FS methods aim to deter-
mine the most informative features in a dataset during a
reasonable training time for a specific classifier, simplify
the learned models, and improve the performance of the
searching and classification engines [21]. However, searching
for the most informative features is challenging due to the
large feature space as there are 2" possible feature subsets in
adataset with n features. A specific feature may be considered
an important and beneficial one for the classification model,
yet it might be considered redundant when combined with
other features. By contrast, a feature may be classified as
irrelevant when considered individually while being relevant
and beneficial for the learning performance in conjunction
with other features. Therefore, for a large n, it is impractical
to exhaustively evaluate all feature subsets to get the best
performing one. Under those circumstances, FS is considered
as an NP-hard combinatorial problem [22]-[24].

Different search strategies have been used for FS, such
as greedy-based strategies (i.e., sequential forward selec-
tion (SFS) and sequential backward selection (SBS) [25]).
However, those methods typically have high computational
complexity or suffer from premature convergence prob-
lems [26]. To overcome these problems, metaheuristics
have been widely applied as search strategies in FS meth-
ods [27]. Evolutionary computation (EC) algorithms are
population-based metaheuristics that have been successfully
applied to tackle FS problems due to their superior global
search ability. The most popular EC algorithms commonly
used for dealing with FS are Genetic Algorithms (GA) [28],
[29] and Particle Swarm Optimization (PSO) [30].

Paying attention to the number of objectives considered
when evaluating a solution for the optimization problem,
metaheuristics can be classified into two categories. As the
name implies, single-objective methods deal with one objec-
tive, while multi-objective techniques deal with two or more
objectives, which are often in conflict [31]-[34]. The critical
point in the EC techniques is that they manipulate a set
of solutions at each iteration of the optimization process.
In other words, EC can produce multiple trade-off solutions
in a single run, which enables them to show good efficacy on
multi-objective optimization [35].

FS methods can be categorized into two main categories
when considering how they evaluate the generated feature
subsets [36], [37]: Filter approaches consider the correlations
between features and the class without evolving any learning
algorithm. In contrast, wrapper approaches consider the per-
formance of a learning algorithm (e.g., classification) in the
evaluation process. Wrapper FS methods try to optimize two
contradictory objectives when evaluating a feature subset: to
obtain the minimum number of features and the minimum
classification error rate. Hence, FS problems can be treated as
multi-objective problems with contradictory cost functions.
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Most of the existing FS methods in the literature deal with a
single objective, while a few multi-objective FS studies have
been reported.

Multi-Verse optimization (MVO) is a new swarm-based
approach that has shown its exploratory and exploitative per-
formance in dealing with several real-life engineering and
science problems [38]. MVO algorithm was proposed by
Mirjalili e al. [39] to mathematically model the philosophy of
multi-verse in astrophysics. However, most binary problems
such as feature selection normally have more variables than
continuous variables, which requires more efficient optimiza-
tion approaches to handle this challenge. This paper proposes
an efficient binary Multi-objective MVO optimizer with per-
sonal best to improve the efficacy of the basic MVO to handle
the feature selection tasks for the first time in literature.

In this paper, we have made the following key
contributions:

o Two enhancements of Multi-objective MVO are pro-
posed. In the first approach, a binary approach using
an efficient transfer function is developed. In the second
approach, the personal best location and “‘local best” is
embedded in MOMVO.

o The hybrid MOMVO and personal best is proposed for
the first time to solve the feature selection tasks.

o The proposed approaches have been tested on fourteen
real benchmarks datasets with different settings and
characteristics to show their efficiency for feature selec-
tion tasks.

o The efficacy and qualitative results of the proposed tech-
nique are compared to the several well-regarded and
state-of-the-art multi-objective optimizers in the FS field
from different aspects. The multi-objective versions
of the PSO (MOPSO), non-dominated sorting genetic
algorithm (NSGA-II), multiobjective evolutionary algo-
rithm based on decomposition (MOEAD), improved
strength Pareto evolutionary algorithm (SPEA2), and
Pareto envelop-based selection algorithm (PESA2).

The rest of this paper is organized as follows:
Section 2 presents the review of the related works about
multi-objective feature selection algorithms. Section 3
describes the preliminaries of the feature selection and
multi-objective optimization, and the MVO algorithm.
Section 4 presents the details of the proposed approaches. The
experiments and results are presented in Section 5. Finally,
Section 6 discusses the concluding remarks and future works.

Il. REVIEW OF RELATED WORKS

Feature selection techniques have been widely used in dif-
ferent computational applications including but not limited
to medical science [40]-[42], sales forecasting [43], face
recognition [44], and customer churn prediction [45]. When
designing a machine learning technique [46], reducing the
number of features in a dataset contributes to decreasing the
required learning time by removing the redundant features.
Also, it enhances the performance of the employed learning
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technique by removing the irrelevant, misleading, and inap-
propriate features [25].

Many works applied FS methods as an improvement of
the machine learning models. One example for the FS study
is the work in [47], where the authors discussed various
types of evaluation measures for feature selection. Another
example investigated the FS for supervised classification
approaches [48], whereas. [49] proposed an FS model
based on Shapley value embedded genetic algorithms and
support vector machine. While the recent work [50] pre-
sented an improved feature selection using Harris Hawks
optimizer for gene expression data. [51] introduced
An efficient FS approach using Modified Social Spider
Optimization (MSSO) algorithm and [52] investigated the
unsupervised feature selection for enhancing the performance
of classification models. Further, the authors of [53] applied
FS combined with CGA-NN classifier for the optimal solu-
tion. Also, more various studies employed the FS methods in
the literature such as [54]-[58].

As FS methods tend to improve the learning performance
of the algorithm (e.g., classifier) by using the minimal number
of features, the use of multi-objective optimization methods
to tackle the FS methods has significantly grown in recent
years [59], [60]. In this section, we explain the most crucial
multi-objective FS approaches.

Recently, multi-objective EC algorithms (e.g., GA and DE)
have been utilized to address the FS problem. In this sense,
[61] proposed a multi-objective micro GA to form an ensem-
ble optimizer that optimizes the FS problem in addition
to optimizing the neural network classifier. Nondominated
sorting-based multi-objective GA II (NSGA-II), is a GA vari-
ant that was initially proposed by [62] to solve multi-objective
optimization problems. NSGA-II was used in [45] as a
multi-objective FS approach, with Decision Tree C4.5 classi-
fier as an evaluator to design a customer churn predictor. [63]
proposed a novel multi-objective FS approach that considers
both the feature weights and a number of selected features as
two objectives to be achieved for a facial recognition appli-
cation. Another NSGA-II based multi-objective FS approach
was proposed in [64], where the classification accuracy and
the number of selected features were treated as two objec-
tives, and the user is allowed to choose a subset in the Pareto-
front. NSGA-III is another variant of the multi-objective
GA used as a search strategy in several FS methods. [65]
proposed an improved NSGA-III with niche preservation
procedure for multi-objective FS problem, where the number
of selected features and the sum weight were used as two
different objectives to be achieved in the selected subset.

Besides, more works utilized the multi-objective FS tech-
nique; for instance, a hyperparameter tuning based on the
multi-objective FS method is also proposed by [66]. [67] pre-
sented a survey about multi-Objective FS and their applica-
tions. While, [68] employed multi-objective FS for bacterial
foraging optimization.

Concerning the DE algorithm, a multi-objective
FS approach was proposed in [69], where maximizing
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the classification accuracy and minimizing the number of
selected features were considered as two opposing objectives.
In addition, [44] proposed a multi-objective FS approach
based on the DE algorithm. The authors used their approach
for Facial Expression Recognition (FER) method. Therefore,
they applied the modified multi-objective DE to select the
best subset of features and the support vector machine classi-
fiers for emotion recognition accuracy.

Recently, many multi-objective PSO-based FS approaches
were proposed in the literature. [70] introduced the use of a
multi-objective PSO algorithm for the FS problem. In that
paper, two variants of PSO were proposed to generate the
Pareto front of non-dominated feature subsets. [71] proposed
a multi-objective PSO FS approach, called RFPSOFS, where
the features are ranked based on their frequencies in the
archive set, and then they are used to guide the particles
and for the archive refinement. [72] proposed an enhanced
multi-objective PSO-based FS approach by employing an
adaptive uniform mutation operator to enhance the explo-
ration capability of the PSO algorithm, in addition to adopting
a local learning strategy to enhance the algorithm’s exploita-
tion capability. A similar multi-objective PSO approach was
proposed by [73] to optimize both the parameters of the
SVM classifier and the number of selected features. In [74],
an enhanced multi-objective PSO was used to search for the
Pareto front feature subsets that satisfy different objectives.
Another multi-objective PSO-based FS approach was pro-
posed in [75], where the reliability and the classification accu-
racy were considered as two objectives to be achieved, and a
bare-bones-based PSO with reinforced memory strategy and
a hybrid mutation operator was used to search the Pareto-front
feature subsets.

Moreover, other multi-objective swarm-based metaheuris-
tic algorithms were used to tackle the FS problem. For exam-
ple, a multi-objective variant of Artificial Bee Colony (ABC)
was used as a searching strategy in a multi-objective
FS method in [26] and [76]. In addition, a multi-objective
version of the Gravitational Search Algorithm (GSA) was
proposed and used to tackle the FS algorithm in [77].

Therefore, our work differs from other techniques in
proposing two different versions of Multi-objective MVO.
In the first version, we applied a binary method utilizing
the transfer function-based approach, while in the second
version, the local neighborhood local space is discovered,
as well as the personal best location in this space is utilized
with the MOMVO.

Ill. PRELIMINARIES

A. MULTI-OBJECTIVE OPTIMIZATION

In Multi-objective (MO) problems, it is required to deal with
two or more opposing objectives to obtain the best set of
solutions. In MO optimization, the purpose is to optimize
several conflicting objective functions to attain the optimum
solutions. The mathematical formulation of a MO minimiza-
tion is as follows:

minimize F(X) = [f] Xx), LX), ... ,fk()?)] (D
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subject to

gi(x) <0,
hi(x) = 0,

i=1,2,....m (2)
i=1,2,...,1 3)

where X shows the decision variables, f;(X) denotes the func-
tion of X, kK show how many functions is to be minimized, and
gi(%) and h;(X) are the constraints for the intended problem.
In MO optimization, we measure the quality of solutions
according to trade-offs between considered objective func-
tions. If x; and x; be two solutions of the above k-objective
problem, when the conditions in Eq. (4) are satisfied, it means
that x; dominates x,:

Vi fix) < fitxa) and 3 : fi(x1) < fi(x2),
Ljefl,2,3,....k} 4

In the case that the rest of the solutions cannot dominate a
solution, it is recognized as a Pareto-optimal solution. These
solutions generate a trade-off surface, which is called the
Fareto front. In a MO optimization technique, it is intended
to find a set of non-dominated solutions.

B. MULTI-VERSE OPTIMIZER (MVO)

Multi-Verse optimization (MVO) is a kind of swarm-based
approach that has shown its exploratory and exploitative per-
formance in dealing with several real-world engineering and
science problems.

MVO algorithm was inspired to mathematically simulate
the multi-verse in astrophysics [39]. This physical theory
describes the role of the big bangs in forming multiple uni-
verses. It also explains that universes can interact with other
peers based on hypothetical classes of holes such as white,
black, and wormholes. The black and white holes can inter-
connect using a tunnel, indicating a transmission between
paired universes. The black holes can attract other masses,
while the white holes can emit other objects. Wormholes also
can create tunnels for connecting paired universes in line
with the time dimension. Each universe is matched with an
inflation rate, which assists it in expanding over space.

These concepts are inspired by a population-based algo-
rithm, which we have called MVO, to develop and efficient
exploration and exploitation mechanisms. For this purpose,
some initial random universes (search agents) are generated
inside the search space. In MVO, each variable/feature in the
solution vector corresponds to an object in that universe. Fur-
thermore, each solution has an inflation rate (fitness value)
to measure the quality of solutions. Like other metaheuristic
methods [78], [79], MVO obtains the fitness values based
on the corresponding objective function of the problem. For
example, a better fitness value is assigned to a search agent
when white holes are observed, whereas an inferior objective
value is given to an agent if the black holes are generated.
Furthermore, if more communications between white and
black holes happen, the variable values of better agents are
sent to poorer agents.
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The core mathematical formulation of MVO is obtained
based on Egs. (5) and (6):

le: Xé, ry <NI(U,’) (5)
X;, r > NI(U)

where X{ is the j’h object of it agent (universe), r1 indicates a
random value inside (0,1), NI(U;) is the normalized fitness
value (inflation rate) of the i agent (universe) and Xi is
the j” object of the k universe selected by a roulette wheel
selection mechanism.

Another operation used to provide local changes for each
universe is given as follows:

X,
((Xj + TDR x (ub — Ib) x r4 + Ib),
r3 < 0.5
N —morx oty x e+, 2V
r3 > 0.5,
x!, ry > WEP
(6)

where X; is the j™ element of the fittest universe attained so

far, ub is the superior limit, /b is the inferior limit, Traveling
Distance Rate (TDR) plays the role of a coefficient, Worm-
hole Existence Probability (WEP) is another coefficient, r»,
r3 and r4 are random values inside (0, 1). WEP and TDR
are adaptive parameters, which WEP is utilized in MVO to
boost the exploitation power, and TDR is used to improve
exploitation in the vicinity of the best agent found so far. The
adaptive rule for WEP and TDR coefficients can be calculated
as follows:

max — min
WEP = min+ 1 x (T) @)
J1/p
TDR =1 — T ®)

where p shows the exploitation factor, min and max indicate
the minimum and maximum, respectively, / is iteration, and
L denotes the maximum bound of iterations.

In the MVO, the user first sets the maximum iteration num-
ber and number of population. The optimization process is
initialized using a set of randomly distributed universes inside
the upper and lower bounds. At each iteration, variables
in the universes with higher fitness values (higher inflation
rates) will update their locations toward the universes with
lower inflation rates using white/black holes. Temporarily,
each universe runs into a random transfer in its objects over
wormbholes and in the direction of the fittest universe, which
has the minimum fitness value. The whole steps are repeated
until a termination condition is satisfied. MVO keeps the best
agent during iterations and employs it to guide other universes
toward the optimum. The pseudocode of MVO is repre-
sented in Algorithm 1. Note in this algorithm, SU denotes
the sorted universes, NI shows the normalized inflation rate,
i denotes the black hole index, m denotes the white hole index,
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FIGURE 1. Conceptual design of the MVO (/(U;) > I(U,) >

RWS denotes the procedure of Roulette Wheel Selection, and
r1, 12, r3, r4 are random numbers inside interval (0, 1).

Algorithm 1 Pseudo-Code of MVO Algorithm
Input: Total number of universes and number of iterations
(L).
Output: The best universe and the corresponding inflation
rate.
Generate the initial random universes x;(i = 1,2, ..., n),
WEP, TDR, and best universe.
while (Termination condition is not true) do
Calculate the fitness of current universes.
for (each Universe;) do
Update WEP and TDR using Egs. (7) and (8)
for (each Object;) do
if r; < NI(U;) then
m = RWS(—NI), U(i, j) = SU(m, j) > Call

Algorithm 2
end if
Update universes using Eq. (15).
end for
end for
end while
Return: The best universe

1) MULTI-OBJECTIVE MVO (MOMVO)

In MOMVO, similarly to multi-objective Particle Swarm
Optimization (MOPSO) [80] and Pareto Archived Evolution
Strategy (PAES) [81], an archive is utilized to keep the best
non-dominated universes found so far. The exploration and
exploitation processes in MOMVO are very similar to the
core processes in MVO, in which all candidate universes are
evolved based on the interaction between white holes, black
holes, and wormholes [82]. Because of several best universes,
the white holes and particularly wormholes can be selected
from the archive. A leader selection scheme is utilized in
MOMVO to select solutions from the archive and open
tunnels between universes. For this purpose, the crowding
distance between universes in the repository is measured, and
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Algorithm 2 Pseudo-Code of RWS Operator

function RWS
. N F(i)
IS’(chaolce = i) = DEF ST

fori=1, i<N, i++do
S := 8§ + P(choice = i)
if rand < i then return i
end if
end for
end function

the number of universes in the locality is calculated to obtain
the coverage or diversity. In MOMVO, universes are selected
based on a roulette wheel scheme from the less colonized
areas of the archive. For this purpose, Eq. (9) is utilized to
enhance the distribution of universes in the repository through
all objectives:

Pi=— ©)

where ¢ > 1 is a constant, which can be regarded as a strategy
for fitness sharing, and N; is the number of universes located
in the neighborhood of the i-th universe. The archive can
store a limited number of non-dominated universes hence;,
Equation (10) is used to assign higher chances to undesired
universes (one with many neighboring agents) to be elimi-
nated from the archive by the MOMVO.
P = M (10)
e

The MOMVO can store Pareto’s best universes in the
archive and evolve them during iterations with these opera-
tors. This technique satisfies the following rules for compar-
ing and addition of a universe to the archive:

— When a new search agent can dominate any agent
selected from the archive, the algorithm replaces it with
that in the archive immediately.

— When a new search agent cannot dominate any agent
selected from the archive, the algorithm discards it, and
it will not be permitted to be inserted into the archive.
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— When a new search agent is non-dominated concerning
all agents inside the archive, the algorithm adds it to the
archive.

— When the archive is full, the algorithm deletes an unde-
sired search agent and adds a new non-dominated agent
to the archive.

In this method, the ideas of Pareto optimality and Pareto opti-
mal solution are employed to be able to compare all universes.
In this algorithm, exchanging variables between universes
can happen between a universe and an archive universe or
two non-dominated universes in the feature space. This rule
can enhance the algorithm’s exploration tendency, which may
also undesirably affect the algorithm’s convergence behavior.
An equal chance of picking up an archive universe or a
non-dominated universe in the feature space is assigned in
this method to enhance the trade-off between the exploration
and exploitation proclivities.

The MOMVO starts the searching process using a number
of random universes and approximates the true Pareto opti-
mal front for the target problem. Every universe is related
to some objective values. Initially, the algorithm selects all
the non-dominated universes to insert them into the archive.
By the first iteration, MOMVO evolves the universes using
Eq. (15). Based on the rule in Eq. (15), we have equal
chances to exchange variables with an archived agent or one
of the non-dominated universes in the up-to-date swarm. The
former operation deepens the intensification of the fittest
Pareto optimal universes found so far. The latter mechanism
improves the diversification of universes inside the search
space. The optimization by evolving the universes will be
continued in MOMVO to satisfy a termination condition.
In addition, the coverage of universes across all objectives
will be enhanced by choosing universes from the less colo-
nized areas of the archive. The source code of MOMVO is
publicly available .

C. FEATURE SELECTION FOR CLASSIFICATION

A training set often includes some rows, which are also
known as objects, and some columns, known as features.
These rows and columns are associated with a number of
specific classes called decision features. Classification is a
well-studied and highly demanded task in machine learning
and data mining researches. Based on [21], the main mission
of classification is devoted to predicting the possible class of
an unidentified object.

Referring to [83], the redundant and irrelevant features
can negatively affect the quality of classification. The core
reason is that when we face more features in the dataset,
we need to add more instances, which raises the learning
time of the classifier. In addition, learning from irrelevant
features decreases the accuracy of a classifier compared to
the same classifier that only deals with relevant features in a
more reasonable time. Furthermore, the irrelevant features in
the dataset can mislead the classifier, and then, we will face
the over-fitting problem. Another remark, the redundant and
irrelevant features in a dataset may upsurge the complexity of
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the main classifier, which can make it complicated to realize
the learning outcomes.

Feature selection approaches aim to efficiently determine
the irrelevant and redundant features and eliminate them
from the dataset to improve the efficacy of the main clas-
sifier in terms of the time consumed for the learning pro-
cess, the accuracy of classification results, and the clearness
of the output data. As a fact confirmed by literature, it is
very important to choose an efficient searching strategy in
FS methods to augment the efficacy of the learning model.
By applying an efficient FS method and determining the most
informative features, and eliminating the redundant records,
the dimensionality of the searching space will be decreased.
Then, the performance and convergence rate of the learning
algorithm can be boosted [84].

1) SINGLE-OBJECTIVE OPTIMIZATION FOR FS

Feature selection usually is tackled in literature as a
single-objective optimization with two cost functions, includ-
ing accuracy of classification and number of selected fea-
tures [85]. According to the weight of each component and
the importance of each measure, some weighting factors
are carefully selected by the user/practitioner before the FS
process. Usually, more weights are assigned to the accuracy
of the FS rather than the selected features, and accuracy
should be maximized while we seek to find the minimized
value of the second part. To deal with such a fitness function,
every single-objective optimizer can be utilized to detect the
minimum fitness value.

2) MULTI-OBJECTIVE OPTIMIZATION FOR FS

The nature of FS can also be studied as a multi-objective
task. In this case, the cost functions for accuracy and number
of selected features are evolved together, and this allows
feature sets to be assessed concerning various dimensions
simultaneously. The multi-objective formulation can assist
us in negating some of the pitfalls observed when dealing
with fitness-based exploration and exploitation phases, such
as convergence to sub-optimal solutions and early stagnation.
In a multi-objective scenario, multiple factors can be simulta-
neously involved in the cost function, in which some of them
can be potentially more complicated than other parts.

D. K-NEAREST NEIGHBOR (K-NN) CLASSIFIER

The k-NN algorithm is a well-regarded non-parametric and
instance-based classification technique which works based on
categorizing unlabeled instances. k-NN method can evaluate
the distance between a specified instance and the related
neighboring k instances (k neighbors) [86]. The core logic
behind k-NN method is that the label assigned to an object in
the feature space can be probably more similar to its nearby
objects. To measure distance, there are many rules employed
in previous literature. Often, Euclidean distance is used along
with k-NN, which can be obtained by Eq. (11):

DIST(P1. Py) = () (x1,i — x2,)%)? (11)
i=1
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where P and P, show two points with n dimensions. The
well-known KNN is one of the simplest and most recom-
mended approaches to wrapper-based FS methods compared
to other learning models.

IV. THE PROPOSED APPROACH

This subsection describes the proposed BMOMVO-pbest
algorithm. The motivation is to introduce a new feature selec-
tion technique based on a multi-objective MVO algorithm,
which not only has a good classification performance on solv-
ing the feature selection problem but also is minimizing the
number of selected features. The BMOMVO-pbest algorithm
is summarized in the following subsections.

A. BINARY MOMVO FEATURE SELECTION (BMOMVO)

The MOMVO algorithm was initially intended to deal with
complex features of problems in continuous spaces. Due to
FS problems’ nature, the solutions in MOMVO are planned
to change in limited directions within the binary space
(0 and 1 values). We have applied transfer functions (TF) as a
valid work for converting the version to a binary variant [87].
If the feature is selected, we see 1 in the element, otherwise,
it will be zero. In this paper, we used the most popular
TF that suggested by Kennedy and Eberhart in [88] to con-
vert the continuous MOMVO version to a binary version as
in Eq. (12).

1

T(X/(t) = ————
1+ e 26O

(12)

where X{ is the j dimension in the /”* universe, and 7 is the
current iteration. The transfer function T is depicted in Fig. 2.

FIGURE 2. Transfer function.

Depending on the produced probability from Eq. (12),
the universe in the next iteration can be updated
using Eq. (13):

0 Ifrand < T(X)(1))

1 Ifrand > T(X/(1)) (13)

x{(t+1)={
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where Xj-"(t + 1) is the j dimension in the i-th universe, and

X{ is given in the following rule:

X/t +1)
{(xj +IDRx 1), 13 <05
= 1| (X, —TDR x rs), 13> 0.5, (14)
x/, ry > WEP

where X; is the j™ element of the fittest universe attained
so far that selected by ranking mechanism that used in the
standard MOMVO.

B. BMOMVO FEATURE SELECTION WITH PERSONAL BEST
(BMOMVO-PBEST)

This subsection discusses a new approach to FS using binary
multi-objective MVO to explore the Pareto front of feature
subsets. The standard MVO and MOMVO use the fittest
universe/best universe to update all universe’s positions. This
operation supports more exploration behavior of the algo-
rithm. To add more exploitation capability for the universes,
a new term is added to the Eq. (14). This term is called
personal fittest, which is the best position achieved by the
universe itself so far. It can be viewed as the universe’s
memory. The new X{ (t + 1) is given in the following rule:

X/t + 1)

((X; + TDR x (P;'. —X/(1)) x r4),

0.5

3= o ry < WEP
= (Xj — TDR x (Pj — X (1)) X rg),

r3 > 0.5,

X!, ry > WEP
(15)

where P} is the personal best of the i — th universe. The P} is
updated based on the dominance relationship, such as if the
new P;: dominates the old one, then the new one is employed;
otherwise, the old one continues to be used.

In this approach, universes explore the space and store the
best position they have achieved so far. Each universe has
momentum that allows the universe to explore more areas in
the search space. Furthermore, the universe is also attracted
to its personal best location in its memory. The main strength
is that a universe can balance its exploration and exploitation
ability; moreover, diversity can be maintained.

C. FITNESS FORMULATION
The proposed BMOMVO-pbest uses two main objectives,
namely; classification error rate (1- Accuracy) and number
of features. The first objective is the Classification Error Rate
(CER), which is given by Eq. (16):
FP+ FN

TP+ TN + FP + FN
where FP, FN, TP, and TN are false positives, false negatives,
true positives, and true negatives, respectively.

CER =

x 100% (16)
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The second objective considers the number of selected
features (NSF), which is given in the following equation:

l
NSF = — 17
2 (7)

where [ is the number of selected features and A is the total
number of features in the given dataset.

Algorithm 3 represents the pseudo-code of the proposed
BMOMVO-pbest wrapper method for FS problems.

Algorithm 3 Pseudo-Code of BMOMVO-pbest-Based
Wrapper FS Approach
Input: Total number of universes, number of iterations (L),
and divided datasets into training and testing sets.
Output: The best universe and the corresponding inflation
rate.
Generate the initial random universes x;(i = 1,2, ..., n),
WEP, TDR, and best universe.
Archive = {}
Obtain the inflation rates of all universes
Update the Archive using Eq. 4
Remark the best solution (Xj)
Remark the best personal solution for each universe (PH
while (Termination condition is not true) do
for (each Universe;) do
Calculate two objective CER and NSF for current
universes by Egs. (16) and (17) for each Universe
Update the Archive using Eq. 4
Update the best personal solution (P')
Update WEP and TDR using Egs. (7) and (8)
for (each Object;) do
if r; < NI(U;) then
m = RWS(—NI), U(i, j) = SU(m, j) > Call

Algorithm 2
end if
Update universes using Eq. (15)
end for
end for
end while
Return: The best feature sets

V. EXPERIMENTAL RESULTS AND DISCUSSIONS

A. SYSTEM DETAILS

Table 1 reveals the properties of the computing system and
utilized testing environments.

B. DATASETS AND PARAMETER SETTINGS

Table 2 tabulates 14 used datasets for comparative experi-
ments. These datasets are publicly available in UCI machine
learning repository [89]. These well-studied datasets are
chosen to have different numbers of features, classes, and
instances. These representative samples can show how the
proposed MVO-based multi-objective techniques can address
the optimal feature subsets of FS problems.

100016

TABLE 1. The settings of the system.

Name Setting

Hardware

CPU Intel Core(TM) i5 processor
Frequency 3.1GHz

RAM 4GB

Hard drive 500 GB

Software

Operating system  Windows 7

Language MATLAB R2018a

All evaluations and plans of tests are performed based on
fair comparison rules in deep learning [90]-[92]. The com-
pared methods are all wrapper-based multi-objective algo-
rithms, i.e., requiring a learning method to be used within the
training stage to assess the resulting feature subset’s classi-
fication efficacy. The well-known KNN is one of the sim-
plest and most recommended methods used within wrapper
FS techniques compared to other learning models. In these
experiments, we employed KNN with K = 5 to simplify the
evaluation procedure.

As atraining/testing methodology, we randomly have man-
aged all of the instances in each dataset to be processed
under two sets: 70% are considered inside the training set and
30% for the test set. Then, we have utilized 5-folds cross-
validation, where the training data set is divided into five
equal parts. Note that 5-fold cross-validation is achieved as an
internal loop in the training procedure inside the fitness func-
tion to assess the classification error of nominated features
on the training set. After this process, the selected features
are assessed on the test set to attain the testing classification
error proportion.

The experiments are repeated for 30 runs to minimize
random effects and test the results if they statistically have
significant differences compared with other methods. Each
run is set to 100 iterations as stopping criteria with a 30 pop-
ulation size. For the proposed BMOMVO-based approaches,
we used the same parameters and setting that used in [82].

C. RESULTS AND DISCUSSIONS

1) RESULTS OF BMOMVO AND BMOMVO-PBEST

Table 3 compares the average (AVG), standard deviation
(STD), best (BEST), and worst (WORST) error rate results
for the proposed BMOMVO-pbest and BMOMVO on all
datasets. As per AVG results in Table 3, we see that the
BMOMVO-pbest can outperform the BMOMVO on 85.71 %
of datasets. According to STD, BEST, and WORST val-
ues, the proposed BMOMVO-pbest provides competitive and
better classification error rate results compared to the basic
binary BMOMVO on several datasets.

Experimental results of BMOMVO and the pro-
posed BMOMVO-pbest in tackling BreastEW, Exactly,
HeartEW, SonarEW, CongressEW, and KrvskpEW, Tic-tac-
toe, Vote, WineEW, Zoo, Semeion, and Leukemia cases are
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TABLE 2. List of used datasets from UCI repository.

#  Dataset No. of Features No. of instances No. of classes

1 BreastEW 30 569 2

2 Exactly 13 1000 2

3 HeartEW 13 270 2

4 SonarEW 60 208 2

5  CongressEW 16 435 2

6 KrvskpEW 36 3196 2

7  Tic-tac-toe 9 958 2

8 Vote 16 300 2

9 WineEW 13 178 3

10 Zoo 16 101 6

11 Semeion 256 1593 2

12 Leukemia 7129 72 2

13 GLIOMA 4434 50 4

14 Nci9 9712 60 9

TABLE 3. Error rate results obtained by MOMVO-pbest and BMOMVO.
BMOMVO BMOMVO-pbest

Measure AVG STD | BEST | WORST | AVG STD | BEST | WORST
BreastEW 7.510 | 1.095 | 5.044 9.795 9.472 | 0.835 | 8.070 11.436
Exactly 31.627 | 1.922 | 28.933 37.000 | 21.768 | 4.149 | 15.333 31.889
HeartEW 27.494 | 1.786 | 22.222 30.159 23.593 | 1.357 | 21.164 26.543
SonarEW 22.600 | 2.594 | 18.413 | 28.118 | 23.805 | 2.653 | 14.286 | 30.159
CongressEW | 8.628 | 3.663 | 6.107 23.282 4392 | 2.136 | 2.290 12.595
KrvskpEW 10.573 | 2.314 | 4.901 14.937 10.506 | 2.837 | 5.869 17.901
Tic-tac-toe 26.855 | 0.629 | 25.738 | 29.253 | 26.413 | 0.630 | 25.174 | 28.704
Vote 6.000 | 1.712 | 4.000 10.556 5.635 | 1.543 | 4.444 10.000
WineEW 13.084 | 1.798 | 8.995 16.667 12.040 | 1.799 | 8.951 15.556
Zoo 19.294 | 3.311 | 14516 | 25.806 | 16.281 | 2.842 | 11.290 | 22.581
semeion 3.001 | 0.383 | 2.022 3.882 2.283 | 0.243 | 1.674 2.836
Leukemia 17.402 | 1.149 | 13.636 18.182 16.088 | 1.862 | 11.364 18.182
GLIOMA 31.243 | 2.129 | 26.667 | 33.333 8.028 | 2.747 | 3.333 16.667
Nci9 63.931 | 2.207 | 60.185 | 66.667 | 41.674 | 2.682 | 37.500 | 47.222

Note: The values in bold indicate the best results.

demonstrated in Fig. 3. Figure 6 also shows the experimental
results for BMOMVO-pbest and BMOMVO algorithms in
dealing with GLIOMA and Nci9 datasets. In these figures,
each sub-figure corresponds to one of the studied datasets.
Please note that the numbers in the brackets located at the
top of each sub-figure indicate the number of available
features and the related classification error values based on
all features. The horizontal axis in these charts shows the
number of selected features, while the vertical axis indicates
the related error values. The curves in these figures show
the average Pareto front obtained by BMOMVO-pbest and
BMOMVO algorithms over 30 independent runs. Note that,
in some test cases, the conventional and improved optimizers
may optimize an identical subset in several runs, and the
same points in the plots can be observed. Consequently, while
30 results are shown, we can see less than 30 separate points
in the plots of average Pareto fronts.
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As shown in Figs. 3 and 6, we see that the BMOMVO-
pbest can efficiently explore the Pareto front and find fea-
ture subsets, which covers a smaller number of features and
reveal better classification rates than MOMVO. For almost all
datasets, except BreastEW and SonarEW, BMOMVO-pbest
includes two or more subsets, which effectively obtained
a smaller number of features and attained a better error
value than the rate obtained based on all features. For
KrvskpEW and Tic-tac-toe cases, we see the classification
efficacy of both methods are very competitive, while there
still is a slight superiority in the results of BMOMVO-pbest
algorithm.

Table 4 compares the computational time recorded for
the BMOMVO and the MOMVO-pbest in dealing with all
datasets. As per results in Table 4, in the same condition,
the BMOMVO uses relatively less time than the proposed
BMOMVO-pbest approach.
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FIGURE 3. Comparison of BMOMVO-pbest and BMOMVO on BreastEW, Exactly, HeartEW, SonarEW, CongressEW, and KrvskpEW,

Tic-tac-toe, Vote, WineEW, Zoo, Semeion, and Leukemia datasets.

2) COMPARISON WITH EVOLUTIONARY MULTI-OBJECTIVE
ALGORITHMS

In this section, the efficacy of the proposed approach
in terms of classification error rates, number of fea-
tures, and computational time are compared with other
popular multi-objective techniques. Namely, Nondomi-
nated Sorting-based Multi-objective Genetic Algorithm II
(NSGAID) [93], Strength Pareto Evolutionary Algorithm 2
(SPEA2) [94], Pareto Archived Evolutionary Strategy
(PAES2) [95], Multiobjective Evolutionary Algorithm Based
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on Decomposition (MOEA/D) [96], and MOPSO [97]. These
well-studied algorithms have shown excellent performance
in dealing with many multiobjective problems in literature.
Hence, we compared the performance of BMOMVO-pbest
with these well-known methods in solving all datasets. Fur-
thermore, all settings and parameters that are used in the
experiments for all popular multi-objective techniques are
obtained from [93]-[97]

Table 5 compares the error rates returned by the pro-
posed BMOMVO-pbest with those obtained by other
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FIGURE 4. Comparisons between BMOMVO-pbest and other methods for BreastEW, Exactly, HeartEW, SonarEW, CongressEW, and

KrvskpEW, Tic-tac-toe, Vote, WineEW, Zoo, Semeion, and Leukemia benchmark datasets.

compared methods. The F-test statistic is also provided at
the last raw of Table 5. Experimental results of the proposed
BMOMVO-pbest in solving BreastEW, Exactly, HeartEW,
SonarEW, CongressEW, and KrvskpEW, Tic-tac-toe, Vote,
WineEW, Zoo, Semeion, and Leukemia cases are compared
to other peers in Fig. 4. Figure 7 also shows the experimental
results of all multi-objective methods in realizing GLIOMA
and Nci9 datasets. Boxplots of error rates are also shown
in Figs. 5 and 8. Note that in these figures, BMOMVO-pbest
is denoted by MVOpb due to the limited space.
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As per AVG results in Table 5, the BMOMVO-pbest
can archives better error rates in dealing with 64.28 % of
datasets. The minimum value of BMOMVO-pbest for F-test
results also supports this observation. According to STD
rates, we see the BMOMVO-pbest has shown a relatively
more stable performance than other competitors in dealing
with the majority of cases. A similar pattern in the supe-
riority of BMOMVO-pbest can also be observed accord-
ing to BEST and WORST results. According to the F-test
results in Table 5, we see that NSGAII, SPEA2, MOPSO,
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FIGURE 5. Boxplot of error results for BreastEW, Exactly, HeartEW, SonarEW, CongressEW, and KrvskpEW, Tic-tac-toe, Vote, WineEW, Zoo,
Semeion, and Leukemia benchmark datasets.

PESA2, and MOEAD have obtained the next overall cases, which contain a smaller number of features and show
ranks. better error rates than other peers. Inspecting the Pareto

According to average Pareto front in Figs 4 and 7, we can fronts of NSGAII and SPEA2, we observe that these methods
detect that the proposed BMOMVO-pbest can efficiently have shown a similar classification performance in most test
explore the Pareto front and obtain subsets on most of the datasets such as BreastEW, Exactly, SonarEW, KrvskpEW,
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TABLE 4. Comparisons of computational time (seconds) obtained by BMOMVO-pbest and BMOMVO method for all datasets.

BMOMVO BMOMVO-pbest
Measure AVG STD BEST | WORST AVG STD BEST | WORST
BreastEW 99.755 | 1.594 | 96.202 | 101.961 | 119.851 3.349 108.269 | 125.074
Exactly 117.945 | 0.531 | 116.351 | 119.108 | 127.048 2.954 119.180 | 132.315
HeartEW 76.325 | 0.429 | 75.485 77.330 78.670 0.406 78.049 79.779
SonarEW 74.790 | 0.300 | 74.151 75.673 92.275 2.447 85.216 96.564
CongressEW | 84.022 | 0.315 | 83.538 84.742 92.076 0.861 89.539 93.733
KrvskpEW 530.506 | 8.388 | 515.713 | 548.602 | 645.533 17.341 | 596.584 | 679.468
Tic-tac-toe 105.262 | 0.622 | 104.018 | 106.808 | 114.598 1.744 108.607 | 117.164
Vote 77.452 | 0.328 | 76.699 78.133 81.035 0.483 80.052 82.010
WineEW 72.480 | 0.299 | 71.937 73.389 76.477 0.422 75.648 77.574
Zoo 79.547 | 0.358 | 78.890 80.475 80.328 0.499 79.419 81.460
semeion 923.988 | 9.329 | 896.818 | 937.850 | 1025.448 | 17.083 | 983.794 | 1052.187
Leukemia 352.138 | 3.125 | 346.238 | 359.054 | 436.758 16.283 | 384.381 | 467.675
GLIOMA 174.191 | 0.719 | 172.166 | 175.419 | 495.267 | 122.815 | 275425 | 616.384
Nci9 413.306 | 1.680 | 409.043 | 417.716 | 480.315 6.570 | 467.186 | 494.330

Note: The values in bold indicate the best results.
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FIGURE 6. Comparisons of BMOMVO-pbest with the BMOMVO on
GLIOMA and Nci9 datasets.

Tic-tac-toe, Vote, and WineEW. This observation is also con-
firmed by the same F-test’s results for both algorithms, which
can be seen in Table 5. For most of the datasets, BMOMVO-
pbest contains two or more subsets, which successfully nomi-
nated a smaller number of features and maintained or attained
a better error value than that revealed using all features and
other competitors.
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FIGURE 7. Comparisons between BMOMVO-pbest and other methods for
GLIOMA and Nci9 benchmark datasets.

The computational time of BMOMVO-pbest is compared
to those recorded for NSGAII, PESA2, SPEA2, MOEAD,
and MOPSO approaches in Table 7. As per records in Table 7,
we see that the BMOMVO-pbest has shown the fastest per-
formance on HeartEW, Vote, WineEW, and Zoo. We observed
that the PESA2 is the fastest method on six datasets, includ-
ing Exactly, SonarEW, CongressEW, Leukemia, GLIOMA,
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TABLE 5. Comparison of error rate results for BMOMVO-pbest versus NSGAII, PESA2, SPEA2, MOEAD, and MOPSO methods for all datasets.

Benchmark Measure | BMOMVO-pbest | NSGAII | PESA2 | SPEA2 | MOEAD | MOPSO
AVG 9472 8.833 6.799 8.709 9.342 9.757
STD 0.835 0.749 1.359 0.900 1.845 1.110
BreastEW BEST 8.070 7.602 4.289 7.018 7.018 7.937
WORST 11.436 11.014 | 10.819 | 11.028 14.766 12.939
AVG 21.768 27.927 | 32417 | 25975 35.893 25.162
STD 4.149 3.522 5.044 2.160 5.285 2.469
Exactly BEST 15.333 22.111 | 23.750 | 21.556 22.778 20.333
WORST 31.889 37.000 | 45.417 | 30.111 44.889 33.333
AVG 23.593 24.073 | 28.008 | 24.298 27.493 23.702
STD 1.357 1.748 2.560 1.853 3.736 1.658
HearEW BEST 21.164 19.753 | 22.222 | 20910 | 21914 19.929
WORST 26.543 26.337 | 31.852 | 26.984 36.111 27.160
AVG 23.805 25.173 | 23.129 | 23.710 | 25.168 19.226
STD 2.653 2.769 3.896 2432 4.659 2.263
SonarEW BEST 14.286 20.370 | 15.873 | 20.833 12.698 13.228
WORST 30.159 32.143 | 30.159 | 31.481 36.735 23413
AVG 4.392 5.335 9.046 5.107 13.764 7.212
STD 2.136 0.413 4.527 0.375 4.688 3712
CongressEW BEST 2.290 4.580 6.107 4.326 4.962 3.817
WORST 12.595 5.954 23.282 | 5.725 24.427 16.794
AVG 10.506 9.586 7.313 9.608 24.868 9.779
STD 2.837 1.220 4.181 2.945 4.971 3.301
KrvskpEW BEST 5.869 7.238 3.354 3.163 11.783 5.065
WORST 17.901 12.135 18.144 | 16.302 34.393 16.934
AVG 26.413 26.798 | 28.730 | 27.002 28.404 28.203
STD 0.630 1.079 1.361 1.100 2.715 1.171
Tic-tac-toe BEST 25.174 24.653 | 25.139 | 24.236 24.537 26.042
WORST 28.704 28.958 | 31.875 | 28.958 35.880 30.729
AVG 5.635 7.278 8.111 7.210 15.686 6.816
STD 1.543 0.841 6.438 0.944 4.907 3.619
Vote BEST 4.444 5.556 3.333 5.556 7.778 4.444
WORST 10.000 8.889 31.667 | 8.889 26.667 22.778
AVG 12.040 8.167 13.923 | 8.377 16.697 12.290
STD 1.799 0.396 5.111 1.049 5.600 2.968
WineEW BEST 8.951 7.099 3.704 7.407 6.667 5.185
WORST 15.556 8.642 27.037 | 13.426 29.167 18.981
AVG 16.281 18.558 | 23.797 | 22.417 26.515 19.695
STD 2.842 3.325 7.832 3.248 5.376 3.105
Zoo BEST 11.290 14.952 7.527 16.852 17.972 11.828
WORST 22.581 26.602 | 38.710 | 27.247 | 40.323 28.226
AVG 2.283 4.283 3.016 3.532 2.642 3.330
STD 0.243 0.489 0.616 0.453 0.315 0.343
semeion BEST 1.674 3.222 1.813 2.766 1.953 2.563
WORST 2.836 5.083 4.498 4.538 3.301 4.059
AVG 16.088 16.061 17.576 | 15.676 26.131 15.202
STD 1.862 3.240 1.572 2.173 2.112 1.713
Leukemia BEST 11.364 9.091 13.636 | 12.121 22.727 11.688
WORST 18.182 22.727 18.182 | 20.455 29.545 18.182
AVG 8.028 13.525 | 13.439 | 20.048 36.870 21.251
STD 2.747 2.540 0.324 0.185 3.569 1.386
GLIOMA BEST 3.333 6.667 13.333 | 20.000 | 26.667 18.667
WORST 16.667 20.000 | 14.444 | 20.833 40.000 24.444
AVG 41.674 52.727 | 61.286 | 66.962 50.716 72.633
STD 2.682 1.551 0.645 2.480 4.071 2.045
Neio BEST 37.500 47.794 | 61.111 | 62.031 47.059 67.593
WORST 47.222 55.556 | 64.444 | 71.376 58.824 76.389
F-test 2.1429 3.2143 | 3.9286 | 3.2143 5.0714 3.4286

and Nci9. The computational time results show that the
MOPSO has the slowest exploratory and exploitative trend
compared to other methods, including BMOMVO-pbest.
The experimental results on 14 datasets show that
the proposed BMOMVO-pbest approach can effectively
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eliminate irrelevant and/or redundant features with a partic-
ular classification rate compared to other competitors. Fur-
thermore, the proposed BMOMVO-pbest improves a set of
non-dominated feature subsets that contain better error rates
and smaller feature subsets than employing the full features.
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TABLE 6. P-values of the Wilcoxon test of BMOMVO_/best vs other algorithms (p > 0.05 are underlined).

Dataset NSGAII PESA2 SPEA2 MOEAD MOPSO
BreastEW 0.0022619  3.0378e-09  0.001404 0.1579 0.28708
Exactly 2.7346e-07 1.1645¢-09 4.21e-06 2.1213e-10  7.8522e-05
HeartEW 0.12937 5.8405e-08  0.086145 1.0393e-05 0.75594
SonarEW 0.18075 0.53433 0.22248 0.1037 1.9213e-08
CongressEW  0.0003341  7.3325e-09  0.00083871 2.8489e-10  0.00022084
KrvskpEW 0.14127 9.2113e-05 0.42896 7.3891e-11  0.34783
Tic-tac-toe 0.13909 2.5792¢-09  0.0079234  0.0010542 1.0579e-07
Vote 1.1483e-05 0.19808 1.4278e-05  7.83%-11 0.022032
WineEW 9.2771e-12  0.088865 1.5849¢-10  0.00036519 0.95871
Zoo 0.015534 8.6783e-06  2.7318e-08  5.25e-10 6.0796e-05
Semeion 3.0104e-11  5.9984e-07 3.685le-11  1.1593e-05  5.1996e-11
Leukemia 0.98783 0.00020419  0.41009 1.561e-11 0.054116
GLIOMA 8.9219¢-09 1.8636e-10  1.7285e-12  1.56e-11 2.2478e-11
Nci9 2.6774e-11  3.108e-12 2.9785e-11  8.5306e-11  2.9229e-11
40 — . . . - . The P-values less than 0.05 designate that the results of
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Boxplots of error results for GLIOMA and Nci9 benchmark

The comparative results emphasize the validity and enhanced
efficacy of the proposed multi-objective wrapper FS model.
To measure the overall efficacy, we have utilized a
Wilcoxon statistical examination with a 5% significance
level. We performed this test on the gained average classifi-
cation error results. Table 6 exposes Wilcoxon’s test P-values
between the BMOMVO_pbest and other approaches.
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the BMOMVO_pbest have statistically significant variances
compared with other methodologies. Values greater than 0.05
(underlined) are not significant concerning the other peers.
According to this table, the results of the BMOMVO_pbest
are statistically significant in dealing with most of the data
sets.

The memory term in the proposed method can facilitate
the exchange of search information more coherently and
preserves a more stable balance between exploration and
exploitation trends in the MOMVO-based FS method.

In addition, some performance merits of the proposed
BMOMVO-pbest compared to NSGAII, PESA2, SPEA2,
MOEAD, and MOPSO techniques are because of the
exploratory and exploitative advantages of conventional
MOMVO. For instance, using wormholes, some variables of
agents can be re-spanned around the best universe attained so
far over the optimization stages. This can guarantee sufficient
exploitation around the promising zones of the feature space.
Furthermore, adaptive WEP values can smoothly emphasize
exploitation trends within more iterations, and adaptive TDR
values increase the accuracy of exploitative tendencies over
the iterations while abrupt changes also help the algorithm to
resolve LO stagnation.

3) COMPARISON WITH CONVENTIONAL FILTER FS
METHODS

In this part of experiments, we compared the perfor-
mance of the proposed BMOMVO-pbest in terms of
error rates to well-established filter-based approaches [98]:
correlation-based (Correlation) [99], ReliefF, InfoGain [100],
and symmetrical [101]. Filter methods can select features
independent of the used classification algorithm. However,
the main drawback of these methods is that it methodically
disregards the impacts of the obtained feature subset on the
efficacy of the induction engine. The best subset depends
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TABLE 7. Comparisons of computational time (seconds) obtained by BMOMVO-pbest with those recorded for NSGAII, PESA2, SPEA2, MOEAD, and

MOPSO methods on all datasets.

on some biased terms and the induction method. Concerning
this assumption, wrapper approaches employ a classifier to
assess the excellence of nominated features. Regardless of the
used learning machine, wrappers aim to propose a simple and
influential way to tackle FS tasks.
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Benchmark Measure | BMOMVO_pbest | NSGAIl | PESA2 | SPEA2 | MOEAD | MOPSO
AVG 119.851 133.573 | 114.268 | 124.657 | 104.889 | 157.362
STD 3.349 1.252 2.685 0.979 2.865 1.805
BreastEW BEST 108.269 129.932 | 106.252 | 122.811 | 100.437 | 153.340
WORST 125.074 135.425 | 119.056 | 126.143 | 109.510 | 160.906
AVG 127.048 151.683 | 112.830 | 140.030 | 115.443 141.450
STD 2.954 3.106 1.412 3.203 3.318 1.868
Exactly BEST 119.180 145.489 | 110.208 | 132.874 | 108.300 | 137.644
WORST 132.315 157.048 | 115.888 | 143.953 | 120.163 145.288
AVG 78.670 117.840 | 86.501 | 115.130 | 86.495 379.106
STD 0.406 0.865 0.708 0.541 3.509 106.811
HearEW BEST 78.049 115.532 | 85.177 | 113.824 | 80.584 144.921
WORST 79.779 119.030 | 87.565 | 116.135 | 91.733 472.226
AVG 92.275 113.647 | 83.843 | 108.715 | 88.783 161.811
STD 2.447 0.805 0.557 0.813 2.551 1.730
SonarEW BEST 85.216 111.818 | 82.826 | 107.230 | 85.256 157.003
WORST 96.564 114926 | 84.882 | 110.130 | 95.518 163.719
AVG 92.076 120.557 | 90.184 | 111.501 91.063 117.918
STD 0.861 0.667 0.884 1.212 2.403 1.351
CongressEW BEST 89.539 119.103 | 88.173 | 107.722 | 87.682 113.774
WORST 93.733 121.926 | 91.660 | 113.147 | 98.516 119.885
AVG 645.533 508.060 | 399.165 | 406.094 | 372.800 | 625.808
STD 17.341 22.687 38.096 | 21.048 54.882 10.587
KrvskpEW BEST 596.584 462.537 | 325.703 | 381.441 | 266.820 | 602.971
WORST 679.468 543.807 | 454.428 | 461.784 | 467.000 | 645.376
AVG 114.598 152.871 | 113.592 | 134916 | 107.781 125.750
STD 1.744 1.682 1.575 1.967 4.107 1.934
Tic-tac-toe BEST 108.607 149.732 | 109.886 | 131.522 | 101.890 | 121.563
WORST 117.164 155.965 | 118.922 | 140.791 | 115.612 | 128.278
AVG 81.035 113.497 | 83.536 | 105.890 | 298.940 | 101.956
STD 0.483 0.377 0.573 0.779 80.935 0.876
Vote BEST 80.052 112.568 | 81.973 | 103.774 | 183.399 | 100.677
WORST 82.010 114.118 | 84.557 | 107.451 | 404.279 | 105.780
AVG 76.477 109.957 | 81.772 | 105.225 | 84.378 93.786
STD 0.422 0.434 0.775 0.551 3.385 0.449
WineEW BEST 75.648 109.120 | 79.887 | 104.205 | 80.663 92910
WORST 77.574 110.699 | 84.539 | 106.379 | 90.651 95.312
AVG 80.328 113.334 | 90.482 | 125.571 | 90.262 100.242
STD 0.499 0.490 0.489 1.028 3.800 0.451
700 BEST 79.419 111.891 | 89.585 | 123.364 | 84.627 99.411
WORST 81.460 114.249 | 91.483 | 127.581 | 95.796 102.011
AVG 1025.448 914917 | 663.784 | 662.001 | 755.691 | 1074.858
STD 17.083 21.567 30.307 14.648 44.250 13.470
semeion BEST 983.794 878.434 | 596.159 | 625.965 | 661.211 | 1045.683
WORST 1052.187 958.875 | 715.050 | 688.606 | 819.110 | 1104.238
AVG 436.758 408.313 | 299.533 | 329.817 | 347.249 | 7239.272
STD 16.283 13.078 3.216 9.157 11.702 85.296
Leukemia BEST 384.381 384.044 | 290.480 | 308.033 | 327.390 | 6926.832
WORST 467.675 427.125 | 306.724 | 346.134 | 365.748 | 7420.000
AVG 495.267 186.143 | 168.688 | 179.555 | 205.567 | 413.765
STD 122.815 2.832 6.175 5.934 5.938 6.416
GLIOMA BEST 275.425 179.207 | 148.458 | 164.437 | 188.864 | 400.102
WORST 616.384 190.429 | 174.134 | 188.303 | 213.405 | 424.431
AVG 480.315 438.787 | 343.928 | 357.847 | 378.667 | 810.332
STD 6.570 3.312 5.665 5.581 6.613 5.847
Neci9 BEST 467.186 430.944 | 326.044 | 344.692 | 358.630 | 795.950
WORST 494.330 443.598 | 350.473 | 364.997 | 386.634 | 821.645

The error rates of BMOMVO-pbest versus other filter
methods are compared in Table 8.

As per the rates in Table 8, it is observed that the
BMOMVO-pbest optimizer can beat other filter methods on
64.28 % of datasets, whereas the ReliefF and symmetrical
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TABLE 8. Comparison between BMOMVO-pbest error rates and filter based feature selection methods.

Datasets RelifF  InfoGain Correlation Symmetrical BMOMVO-pbest
BreastEW 5.724 6.521 7.171 6.528 9.472
Exactly 32.165  31.313 32.042 31.313 21.768
HeartEW 22.395 18.494 19.679 18.198 23.593
SonarEW 23.756  26.034 26.930 26.034 23.805
CongressEW  4.452 4.452 4.452 4.452 4.392
KrvskpEW 4.828 5.733 6.204 5.778 10.506
Tic-tac-toe 19.523  19.523 19.523 19.523 26.413
Vote 5.720 5.720 5.720 5.720 5.635
WineEW 20.680  16.195 15.816 18.071 12.040
Z00 26.707  20.836 26.707 20.711 16.281
semeion 3.312 2.729 2.720 2.743 2.283
Leukemia 11.241 8.647 6.907 8.602 16.088
GLIOMA 22956  24.200 22.795 24.057 8.028
Nci9 55.041  63.702 55.058 63.702 41.674
techniques have attained the best rates only for 3 and REFERENCES

2 datasets, respectively. For the Tic-tac-toe case, we see that
all filter methods have obtained the same error. These results
indicate that wrapper-based BMOMVO-pbest can offer more
improvements in the rates compared to filter-based tech-
niques. The reason is that the BMOMVO-pbest-based wrap-
per can consider both labels and dependencies throughout the
selection process of related subsets. The results show that
wrapper FS can enhance the quality of feature sets compared
to filter-based methods. The main reason is that the wrapper
methods can use either labels or dependencies when selecting
the relevant subsets. Based on these results, it can be deter-
mined that the developed MOMVO-based wrapper shows
performance merits compared to other well-known methods
and outperforms/competes with studied filter methods as
well.

VI. CONCLUSION AND FUTURE WORKS

In this work, a binary multi-objective variant of Multi-Verse
Optimizer (MOMVO) was proposed for the feature selec-
tion task in machine learning. The MOMVO algorithm was
designed as a wrapper-based feature selection approach based
on utilizing three cosmology concepts: white hole, black hole,
and wormhole. In addition, a variant of the MOMVO that
incorporates the personal best solution in its updating was
proposed as well. Unlike most of the evolutionary wrapper
approaches, the proposed MOMVO-based approaches dealt
with an accuracy of the model and the reduction in the
dimensional as a multi-objective optimization problem. The
results of the conducted experiments based on 14 benchmark
datasets showed that the BMOMVO-pbest approach outper-
forms BMOMVO in the majority of the datasets. Moreover,
BMOMVO-pbest showed superior results when compared
with the state-of-art multi-objective optimization algorithms
for feature selection. We are considering employing more
objectives such as parameter optimization and fitness selec-
tion and employing different metaheuristic algorithms for the
multi-objective problem in future work.
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