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Abstract
This paper presents a mathematical/Artificial Intelligence (AI) model for the prediction of price outcomes in markets with
the presence of lobbying, whose outputs are pricing trends that aggregate the opinions of lobbies on future prices. Our
proposal succeeds in unraveling this complex real-world problem by reducing the solution to straightforward probability
computations. We tested our method on real olive oil prices (Andalusia, Spain) with encouraging results in a challenging sec-
tor, where opacity in the entry of oil shipments which are stored while waiting for the price to rise, makes it very difficult to
forecast the prices. Specifically, understanding by minimum price that the price level is at least reached, specific formulas for
computing the likelihood of both the aggregate and the minimum market price are provided. These formulas are based on the
price levels that lobbies expect which in turn, can be calculated using the probability that each lobby gives to market prices.
An innovative quantitative study of the lobbies is also carried out by explicitly computing the weight of each lobby in the pro-
cess thus solving a problem for which there were only qualitative references up until now. The structural model is based on
Time Dynamic Markov random fields (TD-MRFs). This model requires significantly less information to produce an output
and enjoys transparency during the process when compared with other approaches, such as neural networks (known as black
boxes). Transparency also ensures that the internal structures can be fine tuned to fit to each context as well as possible.

Keywords Price outcomes · Aggregate and minimum market price · Networks · Time Dynamic Markov Random Fields ·
Olive Oil sector

1 Introduction and literature review

Price is what a consumer must pay in order to receive a
product. It it also known as a charge or fee when referring to
services. Although price is often related to the maximization
of a company’s profits, it can also compete for or change
market share. In any case, knowing the price of a product (or
as close to this as possible) confers an advantageous position
on companies that trade with it in one way or another.

Price prediction is a complicated task when it relates to
products in markets where there are pressure groups with
intricate interrelated interests. Indeed, price is the output
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of a complex process which combines both factors and
conflicting interests amongst related agents. While factors
influencing price are known (production costs, profit-
margins, market demand, consumer purchasing power,
competitors and regulation amongst others), the interests
(interrelationships) between lobbies are not. And even
if these interests were known, it would not be easy to
quantify them to know exactly what weight (i.e., how much
influence) each lobby has in this process.

This paper presents a mathematical/artificial intelligence
(AI) model that calculates price outcomes in markets with
lobbies by capturing prices using a time-varying Markov
random field over an underlying graph which represents
the market. Our main contribution is to use this method
to successfully solve the complex problem of what kinds
of market prices emerge when there are multiple agents
pushing for their prices. Our contribution is not only to
solve the problem but also to do it in a clear and direct
way through a set of straightforward formulas, based on
the price levels expected by lobbies which in turn, can be
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calculated by using the probability that each lobby gives to
market prices. More specifically, if the minimum price is
understood as being the price level at least reached, specific
formulas for computing the likelihood of both the aggregate
and minimum market price of a product are provided.

An additional contribution is to give an expression to
compute the weight of each lobby. A quantitative study of
this type on the importance of lobbies in the process of
pricing outcomes sheds light on a problem for which there
were only qualitative references up until now. Actually, to
the best of our knowledge, this is the first quantitative study
of the lobby’s importance in processes of pricing outcomes.
This would complete the information necessary to develop
adequate pricing strategies that allow price negotiation
processes to be conducted from a vantage point. Such help
in decision-making would allow practitioners to anticipate
and seize market opportunities.

In the final section, this paper also explores the
connections between the key problem (what kind of price
outcome appears in a market with multiple agents that push
for its price) and thermoeconomics, an emerging discipline
(involving concepts such as ensemble average of machine
learning, see [10]) which provides a novel approach to the
problem being studied.

The structural model is based on Markov random
fields (MRFs) considered in their dynamic version (Time-
Dynamic Markov Random Fields, TD-MRFs) to adjust
to reality. Our approach has several advantages over
previous ones: a model of the interrelationships and
objectives of the agents (as pricing factors, stakeholder’s
interests, interactions amongst agents) is provided allowing
the complex process process to be visualized using a
suitable dynamic graphical model (DGM). Moreover, a
joint probability distribution (associated to a TD-MRF) is
given that gathers the perspectives of all the related agents
and translate them into expressions with simple and clear
formulations. In this way, the use of TD-MRFs clearly
shows how the variables involved interact by displaying
the relationships amongst them. This is in contrast with
other approaches that are classified as opaque because
their internal structures remain hidden [18], [24]. As a
result, all the processes can be fine-tuned by varying the
variables of the model using suitable sensitivity tests to
better suit the changing dynamics of the sector. Thanks
to the notable computational properties of DGMs, our
approach can also be easily translated into coding-terms
thereby providing extra support. Furthermore, the use
of TD-MRFs for building the structural model has two
additional advantages: first, TD-MRFs require significantly
less information to produce an output (only the information
from cliques is required) compared with existing approaches
such as Bayesian or neural networks, which need large
amounts of data (one of their major disadvantages). This

also means a higher computing speed and lower storage
capacity requirements. And second, the use of TD-MRFs
means that there is no need to use a given distribution
function, as required when using neural networks and
related statistical methods, which strongly rely on a given
distribution.

Generally speaking, interest groups which compete for
influence are called lobbies whether they are fully organized
or not. They are pressure groups which try to exercise
their influence on policymaking processes, government
decisions or the economic course of action, particularly
on pricing processes. We illustrate our analysis of price
outcomes under the influence of lobbying with the olive
oil sector, where lobby pressure along with a lack of
transparency in certain links of the value chain, make price
prediction difficult. It is important to note that, in this
sector, determining the weight of each lobby (i.e., how
much influence they come to exert) is challenging since
each group exerts pressure in a different way. Moreover,
some of the lobbies have extra support that adds to their
specific weight. We are referring to agricultural producers
-at the lowest link in the chain- who apply pressure
with public displays of discontent, in contrast with the
more private actions of other parts of the olive oil value
chain. Furthermore, the demonstrations held by agricultural
producers enjoy public support. The consequence of this
extra weight is enormous influence as evidenced by the
ability of the producers to impact on the process of
reforming the EU(European Union)’s agricultural policy
(Agriculture is the EU’s largest policy area in budgetary
terms, see [2] and [23]). Therefore, our approach clarifies
this panorama by providing explicit computation of the
weights of the lobbies in price outcomes. Importantly, both
the model designed and its findings can be applied , with
minor adjustments to other lobbying. As mentioned, our
analysis of price outcomes in the presence of lobbying
uses Markov random fields, which are stochastic models
that generalize the well-known Markov chains. While both
stochastic models and Markov decision processes have been
previously used for studies on price outcomes, see [4] for
instance, to the best of our knowledge, our approach is the
first study of price outcomes under the influence of lobbying
that explicitly aggregates the interests of pressure groups in
a single final output.

In the literature review, we shall address two points:
price prediction and those papers which specifically deal
with the olive oil sector. There are several studies which
address price outcomes. Instead of trying to mention them
all, we shall make a brief summary regarding the different
techniques used. Let us start with probabilistic forecasting:
autoregression (AR), moving average (MA), autoregressive
moving average (ARMA), autoregressive integrated moving
average (ARIMA) and seasonal autoregressive integrated
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moving-average (SARIMA), which are all known as time
series analysis. While time series techniques can help
to clean data by filtering out the noise, one of their
major drawbacks in price prediction is that they are
strongly dependent on past history: they are unable to
forecast anything that has not previously happened (see
[25], which contains a systematic literature review on
financial time series forecasting, covering the period 2005-
2019). For these reasons, these are valuable tools when
combined with other methodologies, see the paper [20]
which examines performance of traditional time series
models, ROBUST models and ARIMA models together
with generalized regression neural networks (GRNNs) and
multi-layer feedforward networks (MLFNs) in forecasting
prices.

According to [21], probabilistic forecasting has been one
of the areas that has made significant advances in the last
decade against all odds. Our proposal can also be considered
to be one of the probabilistic forecasting methodologies
inasmuch as it employs joint probability distributions. It has
a high degree of novelty as it relies on MRFs for predicting
purposes, see [11], [12], while MRFs are tools known in AI
as instruments that have traditionally been used in image
processing or pattern recognition and, more recently in
activity detection (see [8] for an application of MFRs for the
detection of spammers).

Artificial neural networks (ANN) are widely used in price
prediction, see [6] and [17] to mention more recent papers.
The latter includes an ANN model which tests the model
effectiveness for the prediction of perishable vegetable price
series. Vector Support Machines (VSM) are neural network
techniques used in solving nonlinear regression estimation
problems. They also have been successfully used to predict
price, see [28] for instance, where the authors combine
VSM with the firefly algorithm (FA) to enhance the global
convergence speed. Another example is the more recent
paper [13], where time series forecasting of agricultural
product prices are used together with a Wavelet-Support
Vector Machine (W-SVM) model in forecasting palm oil
price. In this type of model, wavelet transform is used to
decompose data series into two parts which are then used as
the input for the SVM model to forecast the palm oil price,
thereby enhancing the forecasting performance (compared
with the traditional ANN). A mixture of ANN or VSM
with other methodologies are also used, as in [26] which
combines an ensemble empirical mode decomposition
(EEMD) into a wavelet neural network with a random
time effective (WNNRT) to design a hybrid neural network
prediction model for energy prices. A further example is
the paper [27], where a novel random deep bidirectional

gated recurrent unit neural network is constructed in order
to obtain accurate forecasts of crude oil prices, which also
integrates historical data into the training process of the
model.

While effective in predicting prices, these techniques
have some limitations regarding issues related to price
outcomes due to the complex dimensionality of this
problem, not only because of the large number of factors
that affect the final output but also, above all, for the
intricate relationships between them. Another limitation of
these techniques is that they are data-intensive requiring
huge amounts of data. Nonetheless, in the opinion of some
authors, [18] or [24], their main drawback is that they
implicitly involve a high levels of opacity in their reasoning
(they are called black boxes). This makes them difficult to
fine tune, hindering the incorporation of the characteristics
of each scenario into the models.

Unlike with qualitative analysis, there is very little
literature on olive oil sector-specific papers that study
the subject from a quantitative perspective. Amongst the
most recent ones is the paper [16], referred to as adaptive
learning forecasting, where forecast revisions are made
from previous forecasting errors. The paper also applies
this to agricultural prices. In [22] the interrelationship
between olive oil price dynamics and pollen emission as a
price determinant are studied by using a pollen monitoring
methodology to predict olive yields. . Moreover this paper
explores the difficulties of defining marketing strategies
for oil prices due to the complex nature of the olive
oil market. Furthermore, the paper [5], which explores
the price determinants of extra-virgin olive oil using a
mathematical model based on three price levels (production,
intermediation and sales) and states the relationships
amongst price factors such as the purchase cost of olives
and the production cost of olive oil. Finally, the paper [1]
econometrically considers olive oil price formation aimed
at identifying the trader’ behaviour in the olive oil market.
In this paper, for prediction purposes, the artificial neural
network (ANN) approach is used.

The remainder of the paper is organized as follows.
Section 2 contains the fundamentals on TD-MRFs. In
Section 3 the structural model of price outcomes in the
presence of lobbying is designed. Section 4 is devoted
to developing the procedure for price prediction. In
Section 5, an analysis of energy functions is performed.
The application of the model to the olive oil market
is fully detailed in Section 6, including both a model
validation with real data and a complementary study from
the perspective of thermodynamics. Finally, conclusions are
stated in Section 7.
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2 Dynamic graphical models. Time-Dynamic
Markov random fields

Any group of random variables X = {Xsi |si ∈ S, i ∈ N}
can be viewed as a spatial stochastic process inasmuch as
they may take concrete values Xsi = xsi for each site
si of a given space S. For them, terms like node, site or
vertice are used interchangeably throughout the literature.
These processes are also known as graphical models and
their main feature is that they express the probabilistic
conditional dependence between random variables. For
them, let us pay attention to notions of neighbourhood
and clique. On one hand, two vertices si and sj are said
to be adjacent, denoted by si ∼ sj , if there is an edge
connecting them. There is an equivalence between defining
edges and the defining neighbourhood of a node si , N(si),
in the following sense: for two nodes si, sj there is an edge
connecting them si ∼ sj if and only if sj ∈ N(si). On the
other hand, cliques are maximally connected subgraphs of
the underlying graph.

Graphical models are commonly categorized into
Bayesian and Markov random fields (MRFs) where Markov
random fields are particular graphical models that use an
undirected graph to represent a distribution, see (Kinder-
mann 1980) [15] . These have been (only) used in the
image-processing scenario (denoising and vision), where
only a static model is needed. The local Markov prop-
erty which characterizes MRFs is defined as follows: if
P[X] = P[{Xsi |si ∈ S, i ∈ N}] = {P[Xsi = xsi ]|si ∈
S, i ∈ N} denotes the joint distribution of random variables
X = {Xsi |si ∈ S, i ∈ N}, thus

P[Xsi = xsi |XS−{si } = x] = P[Xsi = xsi |XN(si ) = x],
where P denotes probability in order to avoid confusion with
the P reserved for the variable “price”. The Hammersley-
Clifford theorem establishes that an MRF of non-negative
random variables (“positivity condition”) has an associated
joint distribution function which can be described in terms
of some functions f on the cliques C ∈ C ⊂ S (i.e., in terms
of some functions of the given random variable X taking
values only on the cliques). These functions f are called
energy functions1 or clique potentials when considered as
product factors. Thus, the joint distribution function is of
the form P[X] = 1

Z
exp

[− ∑
C∈C f (XC)

]
, where Z is a

normalizing constant2 which ensures that the distribution
sums to 1. This is known as a Gibbs distribution.

Time-dynamic (or time-variying) Markov Random
Fields (TD-MRFs) are the plain extension of MRFs for

1In a term borrowed from physics.
2In literature Z is also known as “the partition function”.

dynamic scenarios (see [19]). These are a special sort of
dynamic graphical models (DGMs) which explicitly model
the correlations in space and in time as dependencies
amongst the random variables such that the corresponding
joint distribution function can be written by means of func-
tions of the corresponding time-varying random variable
over the cliques C ∈ C:

P[X] = 1

Z
exp

[

−
∑

C∈C
f (Xt

C)

]

where t represents the time step.

(1)

As mentioned before, TD-MRFs have been chosen as the
theoretical structure for our model in order to both reflect
the dynamic nature of the reality of price outcomes and to
reduce the amount of information needed.

3 The structural model of price outcomes
using TD-MRFs (the TD-MRFmodel)

This section is devoted to developing the fundamentals
of price outcomes in the presence of lobbying. Hereafter
“price” will be denoted by P while P will stand for
“probability”. There are many agents who are pushing to
obtain their price: agents will be denoted by ai while Pai

is the price they are pushing for. Let A be the set A =
{ai, i ∈ N} which gathers all the agents pushing for a certain
price, no matter whether they agree on the price they want to
reach or not (which we will refer to as target price). Agents
are interconnected by common relationships (commercial,
agreement on the target price etc.) which interconnect them.
All this information can be visualized jointly with a graph
(A, E) whose nodes are the agents ai and whose edges are
represented by such links amongst agents.

Price is a variable that can take positive values in all cases
up to a upper bound maxP : i.e., the range of P is [0, maxP ].
Since Pai

is the target price that each agent ai pushes for,
each Pai

can be viewed as a random variable as it can take
different numerical values depending on each agent ai ∈ A.
Thus, the previous graph (A, E) shall be the underlying
graph of a graphical model with nodes the random variables
P = {Pai

, ai ∈ A} whose values vary depending on each
agent ai ∈ A. Once the edges between the nodes have been
specified (which we will do shortly), we shall have a joint
graphical representation (and therefore a graphical model)
of statistical relationships between non-negative random
variables P = {Pai

, ai ∈ A}.
Importantly, price outcomes are the result of a time-

varying process. For this reason, we make the transition
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from a static scenario (graphical models) to dynamic
graphical models (DGMs) by incorporating the time step
as superscript t . Hence, nodes in a dynamic graphical
model DGM are the random variables P t = {P t

ai
, ai ∈ A}

whose values vary depending on both each agent ai ∈ A

and time t . Additionally, in order to capture the huge
variety of factors that influences price outcomes, we shall
describe the random variable “ai’s target price”, P t

ai
,

as an array (or column) of features pt
aki

, k = 1, . . . , n

that gathers all the factors associated with price: P t
ai

�
(pt

a1i
, pt

a2i
, . . . , pt

ani)
t (here, superscript t means transpose).

For the sake of simplicity we will identify each agent ai with
their target price P t

ai
, i.e., ai � P t

ai
� (pt

a1i
, pt

a2i
, . . . , pt

ani
).

Once the nodes have been fully described, the edges
amongst the nodes must be defined. To this end, it is
important to note that there is an equivalence between the
edges and the neighbourhoods of a graphical model,3 i.e.,
there is an edge connecting two nodes P t

ai
, P t

aj
, denoted by

P t
ai

∼ P t
aj

, if and only if P t
ai

∈ N(Paj
)t . Thus, we define

the neighbourhood of a node as follows:

N(P t
ai

) = {P t
aj

such that the random variables P t
ai

, P t
aj

are equivalent},
in the usual sense: random variables P t

ai
, P t

aj
are equivalent

if and only if their distribution functions are the same:
P[P t

ai
≤ p] = P[P t

aj
≤ p] for a numerical price p.

From this definition it should be noted that, in particular,
agents in the same neighbourhood have the same marginal
distribution. Thus, the neighbourhood of a node may be
easily identified as follows:

Lemma 1 All agents in the same neighbourhood have an
equal conditional distribution.

Proof In order to prove this result, let P t
ai

, P t
aj

be two
nodes in the same neighbourhood. The definition taken
implies that their marginal distributions are equal, P[P t

ai
] =

P[P t
aj

]. The result follows from applying Bayes’s theorem:

P[P t
ai

|P t
aj

] = P[P t
aj

|P t
ai

] · P[P t
ai

]
P[P t

aj
] = P[P t

aj
|P t

ai
].

Proposition 1 The neighbourhood of a node consists of all
the agents who have the same pricing interests. That is, the
neighbourhoods are the lobbies.

3This way of describing edges is particularly suitable when there is
no order on the set of nodes as is the case with the set of agents
A = {ai , i ∈ N}.

Proof On one hand, from the definition of neighbourhood
of a node ai , agents aj who belong to this set have the same
marginal distribution function, that is, their corresponding
achievement prices shall take the same values. On the
other hand, previous lemma states that their corresponding
conditional distributions are equal which means that their
mutual interests are the same on their target price. This
implies that agents in a neighbourhood shall jointly push for
the same price. This means that the neighbourhoods are the
lobbies.

Once the nodes and edges have been defined (and
considering former identification ai � P t

ai
), previous

structures enable us to switch from graph (A, E) to the
dynamic graphical model (P t , Nt ), In other words, price
outcomes are the result of a process like the one described
in Fig. 1 that uses a DGM. In this way, this complex
process of relationships between agents is displayed as a
solid graphical representation which clearly shows both the
target price of each agent and the affinity-in-price (or lack
of) between them.

It is important to remember that for any random variable,
the transition from the random variable to a particular value
is known as the realization of the random variable. This
procedure can be carried out using several approaches,
known as rating/scoring processes. As mentioned before,
price outcomes are the result of a dynamical process,
which is time-varying and depend on agents ai , which has
been fully covered by its representation as a former DGM
(P t , Nt ). From this general representation, two kinds of
realizations may be carried out. First, if price outcomes for
a concrete time instant t0 are required, the corresponding
DGM, formed by

– nodes P(t0) = {Pai
(t0), ai ∈ A} and

– edges Pai
(t0) ∼ Paj

(t0) if agents ai, aj belong to the
same lobby,

Fig. 1 Price outcomes as a TD-DGM
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should display the process as time stopped in t0. A second
realization of price outcomes may be performed in (P t , Nt )

when the random variables involved take the same value
simultaneously. Once a random variable decomposed in a
collection of features P t

ai
� (pt

a1i
, pt

a2i
, . . . , pt

ani) has taken
a concrete numerical value, it is renamed as feature vector,
i.e., a vector formed by n numerical scores which represents
an object according to the definition commonly used in AI
literature.

Let us now pay attention to the former DGM. Before
addressing the next theorem, there are some points that
need to be clarified. In Gibbs distribution contexts, the
statement “energy functions f are functions of the random
variable taking values only on the cliques” can have more
than one interpretation: the functions f are equal for
all cliques but they can have different domains (input
values of the price) depending on each clique or the f ’s
can be different depending on cliques with a common
domain for all cliques. Since from the perspective of
mathematical modelling both interpretations are equivalent,
we consider the second one to be:4 thus fCi

will stand for
the energy function corresponding to the ith-clique. Thus,
the following theorem is the most important result in the
paper as it proves that price outcomes are a TD-MRF with
an explicit joint probability distribution expressed in terms
of lobbies. It should be noted that the positivity condition on
the set of variables “price” is always satisfied.

Theorem 1 (Price outcomes are a TD-MRF) Price out-
comes viewed as a DGM are a TD-MRF. Its corresponding
joint distribution P[P t ] is equal to

P[P t ] = 1

Z
e− ∑

i∈N fLi
(P t ) = 1

Z

∏

i∈N
e−fLi

(P t ),

where Li stands for the ith-lobby. (2)

Proof To prove the theorem is equivalent to proving that the
local dynamic Markov property holds. To do so, consider
that the target price of a given agent ai takes a concrete
numerical value P t

ai
= pai

while the target price of the
rest of the agents (A − {ai}) takes a value p. Since the set
of agents that are different from ai may be expressed as
A − {ai} = N(ai) − {ai} ∪ NotN(ai), by the definition of

4Once this premise has been established, the analysis of the
normalizing constant Z in sections 4 and 6 (under the denomination of
“partition function”) will benefit.

neighbourhood N(ai) (where NotN(ai) represents the set
of agents who do not belong to N(ai)) it follows that

P[P t
ai

= pai
|P t

A−{ai } = p] =
P

[
(P t

ai
= pai

) ∩ (P t
A−{ai } = p)

]

P[P t
A−{ai } = p]

=
P

[
(P t

ai
= pai

) ∩ (P t
N(Pai

) = p)
]

P[P t
N(Pai

) = p]

= P[P t
ai

= pai
|P t

N(ai )
) = p].

Hence, price outcomes are a TD-MRF at any time instant.
In consequence, the price outcomes P t = {P t

ai
, i ∈ N}

obey a Gibbs distribution (see (1)) with a joint probability
function depending on the price P over the cliques.

By and large, cliques are fully connected subsets
of the neighbourhood. However, from our definition of
a neighbouring relationship, cliques are equal to the
neighbourhood itself. Hence, the price outcome joint
distribution can be expressed in terms of clique energy
functions, different for each clique but taking the same input
prices (i.e., having the same domain). That is to say, the
price outcome joint distribution is of the form P[P t ] =
1
Z

e− ∑
i∈N fLi

(P t ) with energy functions fLi
where Li is the

ith-looby, according to proposition 1.

4 Deriving themodel of price prediction

The aim of this section is to develop a price prediction
procedure from the previous structural model. Explicit
formulae for computing the likelihood of both aggregate
and minimum market price of a product are provided to this
end. Such information offers as future trends an output that
aggregates the opinions of lobbies on future prices.

Therefore, we will focus on the neighbourhoods of the
TD-MRF model. It is important to remember that, from the
previous proposition 1, the neighborhoods are the lobbies.
Taking into account the fact that the positivity condition on
the variable “price” is always satisfied, the following result
is achieved:

Theorem 2 Any lobby in the market, considered as a DGM,
is a TD-MRF.

Proof It is important to remember that, according to
the definition of neighbourhood all nodes which belong
to this set have the same distribution function. This
implies that (Markov) local property holds and hence, the
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neighbourhood of each node is a TD-MRF. By proposition
1 the result holds.

As mentioned before (see the proof of theorem 1) from
the definition of neighbouring relationship, cliques equal the
neighbourhood. Hence the terms “clique”, “neighbourhood”
or (by proposition 1) “lobby” shall be used interchangeably.
PLi

[P t ] denotes the distribution which expresses the
probability of reaching a (feasible) market price5, according
to the opinion of the Li lobby. Thus, the set of all the
functions PLi

[P t ], i = 1, . . . , n(= number of lobbies)
condenses the opinions of lobbies on future prices.

The next result provides an explicit expression of the
likelihood distribution for the i-th lobby.

Theorem 3 (Joint probability distribution of each lobby)
The joint (i.e., for all agents belonging to the lobby)
likelihood distribution for the ith-lobby is given by the
formula 1

Z
e−fLi

(P t ) where Z is a normalizing constant and
fLi

is the energy function of the ith-lobby. We refers to this
as

PLi
[P t ] = 1

Z
e−fLi

(P t ).

Proof On one hand, recall that cliques in a graphical model
are connected subgraphs where no node may be added
and still be connected (i.e., they are maximally connected).
Moreover, there is only one clique which coincides with
the whole. On the other hand, an specific joint probability
function of the neighbourhood may be derived by applying
the Hammersley-Clifford theorem: PLi

[P t ], which can be
expressed in terms of energy functions f which are clique-
dependent. Hence, the results follows.

A clarification should be made on the notation of the
normalizing constant Z.

Remark 1 For simplicity, in both Theorems 1 and 3 the
normalizing constant Z has been denoted with the same
letter (and continues in this way). However, it is not the
same Z. Let us examine this in greater detail. From both
theorems 1 and 3, Z can be isolated from the fact that the
corresponding probability distributions sums to 1:

1 = ∑
pricespj

P[P t ] =
= ∑

pricespj

1
Z

e− ∑
i∈N fLi

(P t ) =
= 1

Z

∑
pricespj

e− ∑
i∈N fLi

(P t ) ⇒
⇒ Z = ∑

pricespj
e− ∑

i∈N fLi
(P t ).

1 = ∑
pricespj

PLi
[P t ] =

= ∑
pricespj

1
Z

e−fLi
(P t )

= 1
Z

∑
pricespj

e−fLi
(P t ) ⇒

⇒ Z = ∑
pricespj

e−fLi
(P t ).

5Particularly, it would allow the likelihood of achieving the ith-lobby’s
target price price to be computed.

It should be noticed that in both cases the sub-indices set
is the same. This is the result of considering that the energy
functions f can be different depending on cliques but they
have a common domain.

As a consequence of theorems 1 and 3, the following
corollaries shall finally provide explicit formulae to
compute i) likelihood of an aggregate market price and
ii) likelihood of a minimum market price, understanding
that the minimum price is that price level at least reached.
The corresponding probabilities from the perspective of the
lobbies are also given.

Corollary 1 (Likelihood of reaching a market price) Let us
consider a market with lobbies Li and a given market price
p at a time instant t0. Thus,

i) the likelihood of reaching an aggregate market price p

is P[P t0 = p] = 1
Z

e− ∑
i∈N fLi

(p) = 1
Z

∏
i∈N e−fLi

(p).
ii) From the perspective of the ith-lobby, the likelihood of

reaching p is given by PLi
[P t0 = p] = 1

Z
e−fLi

(p).

Finally, by using the cumulative probability, a second
result is derived:

Corollary 2 (Likelihood of reaching a minimum market
price) For a market price p at time instant t0,

i) The likelihood of reaching at least p is given by
P[P t0 ≤ p] = ∑

pi≤p P[P t0 = pi].
ii) From the perspective of the ith-lobby, the likelihood of

reaching at least p is given by

PLi
[P t0 ≤ p] =

∑

pi≤p

PLi
[P t0 = pi].

The fact that price outcomes are TD-MRFs provides
extra-information: it is possible to weight each lobby.
Actually, an instantaneous weight wt

Li
may be attached to

each lobby Li by computing the similarity index between
the joint distribution of a given lobby and the distribution of

the whole process: wt
Li

= PLi
[P t ]

P[P t ]
Let us assume that there are n lobbies in the market.

Thus, the following proposition gives an explicit formula for
computing the weight of the i-th lobby Li :

Theorem 4 wt
Li

= K · efL1 (P t ) . . . e
fLi−1 (P t )

e
fLi+1 (P t )

. . . efLn (P t ) for a constant K .

Proof By substituting the explicit form of P[P t ] as a
product of clique potentials in the definition of weight and
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thus applying theorem 3, the weight of the i-th lobby is
equal to

where, according to remark 1, the quotient of two
normalizing constants (Z’s) is a constant (K).

In real life, it is necessary to compute the value of this
weight as accurately as possible. To this end, the constant
K shall be completely determined, which will be performed
by following the instructions of the remark 1. For this, the
variable price should be regarded as a discrete variable, as
follows:

– first, a finite range of values for price should be
considered, [pmin, pmax].

– Second, exact approximations of the variable price
within the range should be taken (this step reflects the
normal real-life practice of rounding prices up or down
thus avoiding the infinite decimal series).

Once price has been viewed as a discrete variable within
a range of values, using the following expression considered
in the corresponding sub-indices makes sense:

Proposition 2 In the expression wt
Li

= K · efL1 (P t ) . . .

e
fLi−1 (P t )

e
fLi+1 (P t )

. . . efLn (P t ), the constant K correspond-
ing to the ith-lobby weight with energy functions fLi

,
is

K =
∑pmax

pj =pmin
e−∑

i∈N fLi
(pj )

∑pmax
pj =pmin

e−fLi
(pj )

=
pmax∑

pj =pmin

e−∑
i∈N fLi

(pj )

∑pmax
pj =pmin

e−fLi
(pj )

.

Proof The constant K is a quotient of the corresponding
normalizing constants Z, as shown in the proof of theorem
4. The exact values for Z’s are provided by remark 1.

5 Analysis on energy functions/clique
potentials

The significance of theorem 1 as well as that of previous
results is that they delimit a complex problem within
the bounds of some probability computations as long
as the energy functions f are specified. Since energy
functions/clique potentials have a crucial bearing on our
model, we shall examine their significance in depth.

Previous theorems 1 and 3 provide explicit formulae on
how to compute the likelihood of reaching an aggregate
price for the whole market and the corresponding estimation
from the perspective of the lobbies. In both cases, the
corresponding joint probability distributions are transcribed
in terms of energy functions fLi

(P t ) (it is important to
remember that, when expressed as factors, energy functions
fLi

(P t ) are known as clique potentials e−fLi
(P t )), which

play a central role in computations, see Table 1. More
importantly, they strongly determine the performance of the
whole probability distributions.

We will focus here on the construction of the energy
functions. It is very important to make it clear that, to
the best of our knowledge, there is no information in the
literature about energy functions, nor on how to define them

Table 1 Energy functions and
clique potentials Price outcomes Lobbies

In terms of

energy functions P[P t ] = 1

Z
e−∑

i∈N fLi
(P t )

PLi
[P t ] = 1

Z
e−fLi

(P t )

In terms of

clique potentials P[P t ] = 1

Z

∏
i∈N e−fLi

(P t )
PLi

[P t ] = 1

Z

(
efLi

(P t )
)−1
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Table 2 Most commonly used energy functions

Gaussian Log Linear

fLi
(P t ) = (P t − μi)

2

σ 2
i

fLi
(P t ) = exp

(
w0 + ∑

k wikP
t
ik)

)

nor why some have been chosen and others have not. In
any case, the specific clique functionals are given without
providing any further explanations. Therefore it is worth
paying attention here to how they are established and which
appear most frequently in literature.

On how they can be defined, the functionals f can be
arbitrarily taken as long as they meet the “energy constrain”
which sets that the energy functions must be decreasing
functions as for the matching of the features of the cliques
with a given template. That is, if the features in a clique
match the features in a given template, the energy function
should decrease. Otherwise it should increase. Bearing this
in mind, assuming the clique template is 1, a routine for
constructing energy functions f on a clique C could be
f (c) = 1−d(c), c ∈ C, where d is a distance methodology
which measures the similarities between the features of the
clique and those of a given template. SSD (Sum of Squared
Differences) is a further example of functions that meet
the idea of measuring the distance from a given template.
This pattern for defining energy functions is so wide, that
it allows many options. The energy functions that appear
most frequently in literature are Gaussian and log linear
distributions (Table 2):

where μi and σ 2
i are the mean and the variance of the

i-th lobby respectively. It is well-known that the log linear
functional takes its name from the fact that

fLi
(P t ) = exp(w0 +

∑

k

wikP
t
ik) ⇔ log(fLi

(P t ))

= w0 +
∑

k

wikP
t
ik (i.e., its log is linear).

6Model application: The olive oil sector
in Andalusia

The olive, the core product in the olive oil industry, is
classified under Agribusiness Classification Terms as a
non-perishable and long-life agricultural product. However,
olive oil can also be stored for long periods without its
main qualities suffering (there are advanced techniques to
preserve it from deterioration -perishing-6 in long periods

6This refers to the acidic taste which appears in olive oil after long
periods of storage.

of storage). This quality, shared by both the olive and the
olive oil, makes it more difficult to accurately foresee the
price of olive oil since, as a result of a widespread practice
in the sector, part of the oil consignments (which are stored
waiting for the optimal moment for sale) go to market
depending on unexpected decisions that private individuals
(producers/olive oil industry and even distributors) make
based solely on their own particular interests. This reality is
just one example of the complexity of the olive oil sector,
see [9], [22].

The aim of this section is to apply previous results to
the olive oil market. This is an extremely complex sector
and, therefore, it is especially important to develop price
prediction techniques which provide inside information that
can help to achieve an advantageous position in the price
negotiation processes which take place in the olive oil
value chain (e.g., between producers and the oil industry,
between the oil industry and distributors and even directly
between producers and distributors). Our proposal presents
an encouraging solution for such a challenging problem.
Specifically, our proposal succeeds in developing effective
price prediction techniques which reduce the problem to
straightforward probability computations.

Section 6.1 is devoted to the translation of the theoretical
TD-MRF model to the context of olive oil. In Section 6.2,
energy functions for the olive oil sector are analyzed.
This is a necessary intermediate step considering that
(as mentioned before) there is no detailed information
in the literature about how to define/select the energy
functions. Section 6.3 contains an example of how to use
the TD-MRF model designed to produce price outcome
predictions in real-life (model validation with real data)
and finally, a complementary study from the perspective of
thermodynamics is provided in Section 6.4.

6.1 Applying the TD-MRFmodel to the olive oil
market

The term “olive oil lobby” includes all the agents in the
agricultural value chain, from producers to distributors.
Figure 2 displays graphically the olive oil value chain as a
linear structure which consists of three categories in which
agents of different nature participate with a high degree of
specialization, from the first level (producers) to the third
one (distributors). It allows also to visualize that the main
categories are divided into sub-categories (e.g., the olive
oil industry is formed by oil mills and bottling plants).
In closer detail, we can see from Fig. 2 that the different
pressure groups that appear in this sector make up the
following panorama: let us use LPr, LOOI and LD for the
lobbies corresponding to producers, the olive oil industry
and distributors respectively with weights that reflect their
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Fig. 2 Olive oil value chain: lobbies and their corresponding weights

importance within the value chain, wPr , wOOI and wD

respectively.
Another factor of complexity in this sector that prevents

the accurate calibration of the weight of each of the pressure
groups is that each lobby uses different weapons to further
their interests. For instance, agricultural lobbies, at the
bottom of the value chain, apply pressure with public
displays of discontent whereas other olive oil lobbies apply
pressure more privately. For reasons of public well-being,
the protests staged by these types of lobbies (agricultural
producers) enjoy public support in contrast to what happens
with other types of lobbying. Additionally, the power of
intervention held by both oil producers and the oil industry,
is evidenced in every process present in the reform of the
EU’s agricultural policy (see [2]).

Now, we are going to apply the TD-MRF model and the
results obtained in previous sections, to the olive oil market.
From previous results, the olive oil price outcomes can be
viewed as a dynamic graphical model (see Fig. 1) where the
neighbourhoods are the lobbies:

Proposition 3 The neighbourhood of any agent ai is its
lobby: N(ai) = LPr orLOOI orLD .

Moreover, our model provides the joint probability dis-
tribution of each lobby, thereby expressing the expectation
of each lobby with regard to the price of olive oil.

Theorem 5 Each of the three lobbies LPr, LOOI , LD

considered to be a DGM, is a TD-MRF. Thus, the
corresponding joint distribution function which gives the

likelihood of reaching a price from the perspective of each
lobby is

PLPr
[P t ] = 1

Z
e−fLPr

(P t ), PLOOI
[P t ]

= 1

Z
e−fLOOI

(P t ) and PLD
[P t ] = 1

Z
e−fLD

(P t ),

where Z denotes a normalizing constant and the f ’s are the
corresponding energy functions of each lobby.

Concrete energy functions for lobbies shall be studied in
short (see next subsection). Additionally, the likelihood of
reaching an aggregate olive oil price (corresponding to the
price outcomes) is stated by the following theorem:

Theorem 6 (The olive oil price outcomes are a TD-MRF)
The olive oil price outcomes, viewed as a DGM, are a TD-
MRF. Its corresponding joint distribution P[P t ] is equal
to

P[P t ] = 1

Z
e
−[(f (P t

LP r
)+f (P t

LOOI
)+f (P t

LD
)] = P[P t ]

= 1

Z
e
−f (P t

LP r
)
e
−f (P t

LOOI
)
e
−f (P t

LD
)

as the product of the expectations of lobbies with regard to
the olive oil price up to a constant.

The importance of each stakeholder involved in the olive
oil price outcomes shall be detailed here from a quantitative
perspective using of the specific weigh w. Although in
general terms, the olive oil industry has more weight than
the rest of the agents (the olive oil industry has a greater
ability to influence the institutional course of actions than
other agents) the producers enjoy implicit public support
to further increase their specific weight. As an application
of theoretical developments of Sections 3 and 4, a precise
form of calculating these specific weights w is provided
by theorem 4 (together with proposition 4) which, in
short, states that a weight may be defined for each lobby
LPr, LOOI , LD by comparing its joint distribution to the
distribution of the price outcomes:

wt
LPr

= PLPr
[P t ]

P[P t ] , wt
LP

= PLOOI
[P t ]

P[P t ] , wt
LP

= PLD
[P t ]

P[P t ] . (3)

These properties, derived from the DGM model, have
been expressed in terms of a Gibbs distribution but they
can be expressed in terms of a slightly more general
function: the Bolztmann distribution, which is a key tool in
thermodynamics. Hence, in order to reach more conclusions
about the price outcomes in the presence of lobbying, we
will proceed by studying this considering thermodynamics
where notions and results shall be properly applied to our
scenario with a specific economic meaning. This analysis
will be carried out in Section 6.3, after the appropriate
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energy functions for the influence groups of the oil sector
are studied in depth, in Section 6.2.

6.2 Energy functions in the study of the olive oil

Gaussian distribution describes those data sets in which
most values cluster around the centre of the range.
Compared with the previously described pattern that energy
functions should follow, Gaussians measure the distance
between price and average price (the template). These
are suitable for those products whose price takes values
within a small range, in an interval [pmin, pmax] of
short length pmax − pmin. That is, products whose price
takes approximately the same values. Further, a Gaussian

distribution fits well with those products whose price
suffers from small, smooth variations. Meanwhile, the
log-linear distribution is used to manage output-contexts
where an analysis of the simultaneous effects of several
inputs is needed. This could be useful for describing
the associations and interrelationships amongst numerous
inputs and, therefore, also useful for the price of those
products which depends on many interrelated factors.

The olive oil varieties most commonly used for human
consumption are (in decreasing order of quality) extra virgin
olive oil EVOO, virgin olive oil VOO, lampante olive oil
LOO and refined olive oil ROO. They are categorized
according to their acidity levels and other characteristics
which are regulated by the corresponding competent body:

In Southern Spain (Andalusia), one of the fundamental
pillars of the Andalusian economy is the agri-food sector
(olive oil and its derivatives, wine products, meat, fruits
and vegetables and seafood) which accounts for 10% of the
Andalusian Gross Domestic Product (GDP) by contributing
10% of the total labour force. It is not surprising that olive
oil prices are periodically displayed on official platforms
of the Government of Spain. Under normal economic and
environmental conditions, olive oil in all its varieties is an
example of product whose price has very few fluctuations
as shown in Fig. 2.

Another argument that supports the choice of Gaussians
as energy functions and not the log linear ones, is that,
despite the fact that several interconnected factors affect
the price of all the varieties of olive oil, in a simplification
of the model made by experts in olive oil production, it
is only the weather conditions that are considered to be
really determining factors: the water index and to a lesser
degree, temperature. Hence, Gaussian distribution shall be
used (as energy functions) for predicting the prices from the
perspective of the lobbies and, consequently, for forecasting
the aggregate price.

These Gaussian functions will be different for each
lobby, that is, with a mean and a specific variance for each
one. In these types of distributions, in general the standard
deviation represents the degree of deviation with regard to
the mean (the higher the standard deviation is, the further
from the mean it is and thus, the more spread out it is).
In the context we are using (with a mean and a specific
variance for each lobby) it represents how much the olive oil
price deviates from the expected mean in the opinion of the
lobby. These opinions about the price given by the lobbies
are often a combination of economic reality (the price they

actually expect to reach under the economic circumstances)
and political aspirations (the target price for which they
push).

As mentioned, there are various platforms that reflect the
variations in the price of olive oil varieties. In Andalusia
(Southern Spain), one of the most popular amongst olive
producers and oil producers is PoolRed (see http://www.
poolred.com/) which is used to predict the right moment
(that is, when prices are rising) to sell the harvests to the oil
companies. Both olive and oil producers use this platform
to try to answer the following two questions, which are key
when conducting price negotiation processes:

Thus, Table 3 provides an overview for computing the
price outcome prediction by using the TD-MRF model.

6.3 An example of price outcome prediction
by using the TD-MRFmodel

The aim of this section is to develop an example in order to
illustrate how our model of price prediction works. For this,
data have been extracted from https://www.olimerca.com/
precios/tipoInforme/3 in a time period from 2017 to 2020
consisting of the monthly average price of certain variety
of olive oil (extra virgin EVOO) for 7 major specialist
retailers/hypermarkets. Thus, we assume that there are 7
lobbies L1, L2, L3, L4, L5, L6, L7 corresponding to these 7
big stores with data displayed in Table 4:

http://www.poolred.com/
http://www.poolred.com/
https://www.olimerca.com/precios/tipoInforme/3
https://www.olimerca.com/precios/tipoInforme/3
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Table 3 Aggregate and minimum market and lobby’s price in the Gaussian case

On one hand, the probability distribution for each lobby
Li is given by

PLi
[P t0 = p] = 1

Z

(
e

(p − μi)
2

σ 2
i

)−1

with p representing a certain price at a time instant t0.
We know that the probability distribution PLi

provides the
price prediction from the perspective of the lobbies and this
prediction is based on the mean μi and the variance σ 2

i ,
which are specific for each lobby. These parameters can be
derived from Table 4.

On the other hand, the price of each variety of olive oil
oscillates within a specific range (see Fig. 3). From the
perspective of each lobby, there are minimum and maximum
thresholds for prices as part of the price wars between
the supermarkets. These are pmin

i and pMax
i . In order to

reach a common domain, let p = inf {pmin
i |i = 1, . . . , 7}

and p = sup{pMax
i |i = 1, . . . , 7} be the infimum and

supremum respectively so that p ≤ p ≤ p. For each lobby
Li , the probability of EVOO price reaching values p which
exceed the upper threshold, p ∈ [p − pMax

i , p] must be
close to zero, as actually happens when computed by using
Gaussian energy functions since the further the deviation,
the greater the exponent and the lower the quotient (which
is the probability). The mean and variance of each lobby as
well as other related parameters are displayed in Table 5:

In order to carry out the necessary computations, let us
apply some properties of Gaussian functions to the joint

probability whose output are the minimum price p0 at time
t0:

P[P t0 ≤ p] = 1

Z

∑

pj ≤p

∏

i∈N

(
e

(pj − μi)
2

σ 2
i

)−1

= 1

Z

∑

pj ≤p

e

−∑

i∈N

(pj −μi)
2

σ 2
i = 1

Z

∑

pj ≤p

e
−

(pj −μ)2

σ 2 ,

for μ = ∑n
i=1 μi, σ

2 = ∑n
i=1 σ 2

i . This property
can also be applied to the partition function Z, whose
explicit expression was given at remark 1 as Z =
∑

prices pj
e− ∑

i∈N fLi
(P t ). According to the selected energy

functions fLi
(P t ), Z is

Z =
∑

prices pj

e

−∑

i∈N

(pj − μi)
2

σ 2
i =

∑

prices pj

e
−

(pj − μ)2

σ 2 ,

μ =
n∑

i=1

μi, σ
2 =

n∑

i=1

σ 2
i

The calculation of Z entails certain difficulties in
practice. This example is intended to be illustrative, in
addition to the use of our TD-MRF model prediction, of how
to proceed in the calculation of the partition function.

Under certain circumstances, Z can be considered equal
to 1. For this, let us remind the reproductive property (see
[14]):
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Table 4 Monthly average price of EVOO for specialist major retailers

Date Ahorramas Alcampo Carrefour Dia Hipercor Lidl Mercadona

Jan17 3.99 4.29 3.99 4.25 4.99 3.99 3.99

Feb17 3.99 4.29 3.99 4.25 4.99 3.99 3.99

Mar17 3.99 4.24 3.95 4.25 4.75 3.99 3.99

Apr17 4.35 4.34 4.35 4.25 5.49 4.35 4.35

May17 4.35 4.34 4.35 4.25 5.49 4.35 4.35

Jun17 4.34 4.35 4.35 5.49 4.35 4.35

Jul17 4.5 4.34 4.35 4.35 5.49 4.49 4.5

Aug17 4.34 3.99 4.35 4.59 4.49 4.35

Sep17 4.35 4.29 4.3 4.35 4.35 4.35

Oct17 4.35 4.29 4.3 4.35 5.59 4.49 4.35

Nov17 4.35 4.29 3.99 4.35 5.59 4.29 4.35

Dic17 3.99 4.29 3.99 4.35 4.69 4.29 4.35

Jan18 3.99 3.98 4.3 4.35 4.69 4.29 4.35

Feb18 4.35 4.29 4.3 4.35 4.29 4.35

Mar18 4.35 4.29 4.3 4.35 5.59 4.29 4.35

Apr18 4.35 4.49 4.3 4.35 4.69 4.29 4.35

May18 4.35 4.24 4.05 4.35 4.95 4.25 4.1

Jun18 4.35 4.24 4.24 3.99 4.59 4.1

Jul18 3.9 4.24 3.85 3.99 3.75 3.89 3.9

Augo18 4.1 4.24 3.85 3.99 3.75 3.89 3.9

Sep18 3.9 3.84 3.85 3.99 4.09 4.09 3.9

Oct18 3.9 4.24 3.85 3.99 4.09 4.09 3.9

Nov18 3.9 4.2 3.85 3.99 4.09 4.09 3.9

Dic18 3.9 3.84 3.59 3.99 4.09 3.89 3.9

Jan19 3.9 4.24 3.7 3.9 4.09 3.89 3.75

Feb19 3.75 4.24 3.7 3.99 4.09 3.75 3.75

Mar19 3.75 3.74 3.39 3.75 3.69 3.69 3.75

Apr19 3.75 3.74 3.7 3.75 3.69 3.69 3.75

May19 3.59 3.74 3.55 3.75 3.69 3.69 3.59

Jun19 2.99 3.54 3.3 3.59 3.69 3.69 3.59

Jul19 3.59 3.54 3.55 3.59 3.89 3.59 3.59

Aug19 3.59 2.98 3.55 3.59 3.75 3.59 3.59

Sep19 3.59 3.54 3.55 3.59 3.75 3.59 3.59

Oct19 3.59 3.54 3.23 3.69 3.75 3.59 3.59

Nov19 3.59 3.54 3.15 3.59 3.75 3.55 3.59

Dic19 2.99 3.54 3.45 3.59 3.75 3.49 3.5

Jan20 3.5 3.54 3.45 3.49 3.75 3.49 3.5

Feb20 3.5 3.54 3.45 3.49 3.75 3.45 3.5

Mar20 3.5 3.54 3.45 3.5 3.75 3.45 3.5

Apr20 3.5 3.54 3.45 3.5 3.75 3.49 3.5

May20 3.5 3.19 3.45 3.5 3.71 3.49 3.5

Jun20 2.99 3.44 3.45 3.99 3.5 3.49 3.5

Jul20 3.5 3.44 3.45 3.5 3.75 3.49 3.5

Proposition 4 If two independent random variables which
follow a certain distribution are added together, the
resulting random variable has a distribution of the same
type as that of the summands.

By applying this property to Z itself, we can conclude
that Z has an exponential distribution, Z = e−λ for some
parameter λ. Therefore, Z can be considered equal to 1
when λ = 0.
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Fig. 3 Olive oil price in Spanish
market. Source: Government of
Spain, at https://www.mapa.gob.
es/es/agricultura/temas/
producciones-agricolas/
aceite-oliva-y-aceituna-mesa/
Evolucion precios AO
vegetales.aspx

In this example however, we will consider that this is not
the case and a detailed calculation of Z shall be performed.
The necessary information for computing P[P t0 ≤ p] =

1
Z

∑

pj ≤p

e
−

(pj − μ)2

σ 2 is given in Table 6:

According to the values p = 2.98 and p = 5.59, let
us consider the sample S = {2.9, 3, 3.1, 3.2, 3.3, 3.4, 3.5,

3.6, 3.7, 3.8, 3.9, 4, 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9,

5, 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7}. Thus, the probability of
reaching a minimum market price p = 5.7 is given by the
formula

Table 5 Mean and variance for each lobby

Mean, p p

Variance

μi 3.988 3.884 3.851 3.858 4.343 3.878 3.916

σ 2
i 0.172 0.156 0.143 0.108 0.472 0.134 0.117

pmin
i 2.99 2.98 3.15 3.49 3.5 3.45 3.5 2.98

pMax
i 4.5 4.49 4.35 4.35 5.59 4.49 4.5 5.59

P[P t0 ≤ p] = 1

Z

∑

pj ≤p

e
−

(pj − μ)2

σ 2 = 1

Z

∑

pj ∈S

e
−

(pj − 27.718)2

1.302 =

= 1

Z

(
e
− (2.9 − 27.718)2

1.302 + e
− (3 − 27.718)2

1.302 + e
− (3.1 − 27.718)2

1.302 + e
− (3.2 − 27.718)2

1.302 + e
− (3.3 − 27.718)2

1.302 +

e
− (3.4 − 27.718)2

1.302 + e
− (3.5 − 27.718)2

1.302 + e
− (3.6 − 27.718)2

1.302 + e
− (3.7 − 27.718)2

1.302 + e
− (3.8 − 27.718)2

1.302 +

e
− (3.9 − 27.718)2

1.302 + e
− (4 − 27.718)2

1.302 + e
− (4.1 − 27.718)2

1.302 + e
− (4.2 − 27.718)2

1.302 + e
− (4.3 − 27.718)2

1.302 +

e
− (4.4 − 27.718)2

1.302 + e
− (4.5 − 27.718)2

1.302 + e
− (4.6 − 27.718)2

1.302 + e
− (4.7 − 27.718)2

1.302 + e
− (4.8 − 27.718)2

1.302 +

e
− (4.9 − 27.718)2

1.302 + e
− (5 − 27.718)2

1.302 + e
− (5.1 − 27.718)2

1.302 + e
− (5.2 − 27.718)2

1.302 + e
− (5.3 − 27.718)2

1.302 +

e
− (5.4 − 27.718)2

1.302 + e
− (5.5 − 27.718)2

1.302 + e
− (5.6 − 27.718)2

1.302 + e
− (5.7 − 27.718)2

1.302
)

= 1

Z
2.0314E − 162,

supported by the information given in Table 7:

https://www.mapa.gob.es/es/agricultura/temas/producciones-agricolas/aceite-oliva-y-aceituna-mesa/Evolucion_precios_AO_vegetales.aspx
https://www.mapa.gob.es/es/agricultura/temas/producciones-agricolas/aceite-oliva-y-aceituna-mesa/Evolucion_precios_AO_vegetales.aspx
https://www.mapa.gob.es/es/agricultura/temas/producciones-agricolas/aceite-oliva-y-aceituna-mesa/Evolucion_precios_AO_vegetales.aspx
https://www.mapa.gob.es/es/agricultura/temas/producciones-agricolas/aceite-oliva-y-aceituna-mesa/Evolucion_precios_AO_vegetales.aspx
https://www.mapa.gob.es/es/agricultura/temas/producciones-agricolas/aceite-oliva-y-aceituna-mesa/Evolucion_precios_AO_vegetales.aspx
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Table 6 Mean and variance for each lobby

Mean, p p μ = ∑n
i=1 μi σ 2 = ∑n

i=1 σ 2
i

Variance

μi 3.988 3.884 3.851 3.858 4.343 3.878 3.916 27.718

σ 2
i 0.172 0.156 0.143 0.108 0.472 0.134 0.117 1.302

pmin
i 2.99 2.98 3.15 3.49 3.5 3.45 3.5 2.98

pMax
i 4.5 4.49 4.35 4.35 5.59 4.49 4.5 5.59

Similar computations must be accomplished in order to
determine the “partition function” Z, for which the main
difference is the range of prices pj considered. In general
terms, all possible values for the EVOO price should be

considered (pj ≥ 0). To be more realistic, by using a
record of market EVOO price data, the range could be
further scoped: in this way, we shall consider that 2 ≤
pj ≤ 6.5. Thus, Table 8 gathers all the information required

Table 7 Calculation of the numerator of P[P t0 ≤ p] for p = 5.7

pj (pj − 27.718) (pj − 27.718)2 (pj − 27.718)2

1.302
-
(pj − 27.718)2

1.302
e
−

(pj − 27.718)2

1.302

2.9 −24.818 615.933124 473.0669155 −473.0669155 3.5453E-206

3 −24.718 610.979524 469.2623072 −469.2623072 1.5921E-204

3.1 −24.618 606.045924 465.4730599 −465.4730599 7.0407E-203

3.2 −24.518 601.132324 461.6991736 −461.6991736 3.0662E-201

3.3 −24.418 596.238724 457.9406482 −457.9406482 1.3149E-199

3.4 −24.318 591.365124 454.1974839 −454.1974839 5.5531E-198

3.5 −24.218 586.511524 450.4696805 −450.4696805 2.3094E-196

3.6 −24.118 581.677924 446.7572381 −446.7572381 9.4579E-195

3.7 −24.018 576.864324 443.0601567 −443.0601567 3.8143E-193

3.8 −23.918 572.070724 439.3784363 −439.3784363 1.5149E-191

3.9 −23.818 567.297124 435.7120768 −435.7120768 5.9245E-190

4 −23.718 562.543524 432.0610783 −432.0610783 2.2817E-188

4.1 −23.618 557.809924 428.4254409 −428.4254409 8.6536E-187

4.2 −23.518 553.096324 424.8051644 −424.8051644 3.2319E-185

4.3 −23.418 548.402724 421.2002488 −421.2002488 1.1887E-183

4.4 −23.318 543.729124 417.6106943 −417.6106943 4.3051E-182

4.5 −23.218 539.075524 414.0365008 −414.0365008 1.5354E-180

4.6 −23.118 534.441924 410.4776682 −410.4776682 5.3928E-179

4.7 −23.018 529.828324 406.9341966 −406.9341966 1.8652E-177

4.8 −22.918 525.234724 403.406086 −403.406086 6.3528E-176

4.9 −22.818 520.661124 399.8933364 −399.8933364 2.1307E-174

5 −22.718 516.107524 396.3959478 −396.3959478 7.0376E-173

5.1 −22.618 511.573924 392.9139201 −392.9139201 2.289E-171

5.2 −22.518 507.060324 389.4472535 −389.4472535 7.3317E-170

5.3 −22.418 502.566724 385.9959478 −385.9959478 2.3125E-168

5.4 −22.318 498.093124 382.5600031 −382.5600031 7.1829E-167

5.5 −22.218 493.639524 379.1394194 −379.1394194 2.1971E-165

5.6 −22.118 489.205924 375.7341966 −375.7341966 6.6178E-164

5.7 −22.018 484.792324 372.3443349 −372.3443349 1.963E-162

2.0314E-162
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Table 8 Computing Z

pj (pj − 27.718) (pj − 27.718)2 (pj − 27.718)2

1.302
-
(pj − 27.718)2

1.302
e
−

(pj − 27.718)2

1.302

2 −25.718 661.415524 507.9996344 −507.9996344 2.3909E-221

2.1 −25.618 656.281924 504.0567773 −504.0567773 1.2329E-219

2.2 −25.518 651.168324 500.1292811 −500.1292811 6.2606E-218

2.3 −25.418 646.074724 496.2171459 −496.2171459 3.1306E-216

2.4 −25.318 641.001124 492.3203717 −492.3203717 1.5416E-214

2.5 −25.218 635.947524 488.4389585 −488.4389585 7.4758E-213

2.6 −25.118 630.913924 484.5729063 −484.5729063 3.5699E-211

2.7 −25.018 625.900324 480.7222151 −480.7222151 1.6788E-209

2.8 −24.918 620.906724 476.8868848 −476.8868848 7.7742E-208

2.9 −24.818 615.933124 473.0669155 −473.0669155 3.5453E-206

3 −24.718 610.979524 469.2623072 −469.2623072 1.5921E-204

3.1 −24.618 606.045924 465.4730599 −465.4730599 7.0407E-203

3.2 −24.518 601.132324 461.6991736 −461.6991736 3.0662E-201

3.3 −24.418 596.238724 457.9406482 −457.9406482 1.3149E-199

3.4 −24.318 591.365124 454.1974839 −454.1974839 5.5531E-198

3.5 −24.218 586.511524 450.4696805 −450.4696805 2.3094E-196

3.6 −24.118 581.677924 446.7572381 −446.7572381 9.4579E-195

3.7 −24.018 576.864324 443.0601567 −443.0601567 3.8143E-193

3.8 −23.918 572.070724 439.3784363 −439.3784363 1.5149E-191

3.9 −23.818 567.297124 435.7120768 −435.7120768 5.9245E-190

4 −23.718 562.543524 432.0610783 −432.0610783 2.2817E-188

4.1 −23.618 557.809924 428.4254409 −428.4254409 8.6536E-187

4.2 −23.518 553.096324 424.8051644 −424.8051644 3.2319E-185

4.3 −23.418 548.402724 421.2002488 −421.2002488 1.1887E-183

4.4 −23.318 543.729124 417.6106943 −417.6106943 4.3051E-182

4.5 −23.218 539.075524 414.0365008 −414.0365008 1.5354E-180

4.6 −23.118 534.441924 410.4776682 −410.4776682 5.3928E-179

4.7 −23.018 529.828324 406.9341966 −406.9341966 1.8652E-177

4.8 −22.918 525.234724 403.406086 −403.406086 6.3528E-176

4.9 −22.818 520.661124 399.8933364 −399.8933364 2.1307E-174

5 −22.718 516.107524 396.3959478 −396.3959478 7.0376E-173

5.1 −22.618 511.573924 392.9139201 −392.9139201 2.289E-171

5.2 −22.518 507.060324 389.4472535 −389.4472535 7.3317E-170

5.3 −22.418 502.566724 385.9959478 −385.9959478 2.3125E-168

5.4 −22.318 498.093124 382.5600031 −382.5600031 7.1829E-167

5.5 −22.218 493.639524 379.1394194 −379.1394194 2.1971E-165

5.6 −22.118 489.205924 375.7341966 −375.7341966 6.6178E-164

5.7 −22.018 484.792324 372.3443349 −372.3443349 1.963E-162

5.8 −21.918 480.398724 368.9698341 −368.9698341 5.7337E-161

5.9 −21.818 476.025124 365.6106943 −365.6106943 1.6493E-159

6 −21.718 471.671524 362.2669155 −362.2669155 4.6717E-158

6.1 −21.618 467.337924 358.9384977 −358.9384977 1.3031E-156

6.2 −21.518 463.024324 355.6254409 −355.6254409 3.5796E-155

6.3 −21.418 458.730724 352.327745 −352.327745 9.6829E-154

6.4 −21.318 454.457124 349.0454101 −349.0454101 2.5793E-152

6.5 −21.218 450.203524 345.7784363 −345.7784363 6.766E-151

7.034E-151
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for the computation of Z =
∑

prices pj

e
−

(pj − μ)2

σ 2 =

∑

2≤pj ≤6.5

e
−

(pj − 27.718)2

1.302 . Hence, P[P t0 ≤ p] =

1

Z
2.0314E − 162 = 2.0314E − 162

7.034E − 151
= 2.88797E − 12.

6.4 Analysis from thermoeconomics

Econophysics is a novel discipline (from the physicist
E. Stanley in 1996) which interrelates economics and
physics by applying statistical and mathematical techniques,
particularly from thermodynamics (with methodologies
around the Boltzmann-Gibbs distributions amongst others,
see (Dimitrijevic 2015) . This mixture of principles
and methods is called thermoeconomics, where physical
standards like energy and temperature find an economic
analogy. Actually, from this perspective, thermodynamic
and economic processes run in parallel. This section is
divided into two main parts. The first one is devoted to
key notions and results from thermodynamics. The second
part is an application of thermodynamic principles to our
proposal of price outcomes from which significant market
properties shall be derived.

6.4.1 Key notions from thermodynamics

The concepts and results in this paragraph may be found in
[3] for instance.

– The partition function Z. First, we pay attention to the
normalizing constant Z whose basic role has so far been
to ensure that the probability distribution sums to 1. In
thermodynamics, Z is called the “partition function”.
Far from simply being a constant (we shall see in short
how a constant can also be a function), the analysis
of Z shall allow us to reach conclusions about some
properties of our economic process.

Before giving the definition of Z, we must refer
to the Boltzmann distribution, see [3]. While the most
common form of joint probability distribution in MRF
contexts is the Gibbs distribution (which has been
used in this paper up until now) the one used in
thermodynamics is called the Boltzmann distribution
and it is simply a Gibss distribution depending on one

parameter β with β = 1

kβT
where kβ is the Bolztmann

constant and T is the temperature. In most contexts, β is
considered to be a Lagrange multiplier. Hereinafter, the
Bolztmann constant kβ will be taken as being equal to
1 and β shall be referred to as the inverse temperature.

According to this, the Boltzmann distribution of
olive oil price outcomes is

P[P t ] = 1

Z
e−β[(fLPr

(P t )+fLOOI
(P t )+fLD

(P t )]

forβthe inverse of temperature, β = 1

T
,

and that of lobbies is

PLPr
[P ] = 1

Z
e−β(fLPr

(P t ), PLOOI
[P ]

= 1

Z
e−β(fLOOI

(P t ), PLD
[P ] = 1

Z
e−β(fLD

(P t ).

In general, the partition function is defined as
Z(β) = ∑

e−βH(x1,x2,...) where H(x1, x2, . . .) is the
Hamiltonian operator associated to random variables
xi (i.e., it is the Legendre transformation of the
corresponding Lagrangian operator). In the context of
our work, the normalizing constant Z was explicitly
isolated in remark 1. In this way, the partition function
associated to a Bolztmann distribution is

Z = e−βfLPr
(P t ) + e−βfLOOI

(P t ) + e−βfLD
(P t ),

or equivalently, in its log-form, as

logZ = log

(
e−βfLPr

(P t ) + e−βfLOOI
(P t ) + e−βfLD

(P t )

)
.

As can be seen, Z may be considered as function of β,
Z(β) and function of the temperature, Z(T ).

– Expected value and ensemble average. Let A be any
magnitude (mainly energy in thermodynamics) and let
Ai be some A-microstates. Both the expected value
and the ensemble average (these are actually the same
concept) are tools for studying global properties from
local (micro)states. The expected value (also termed as
expectation value) of a magnitude A with microstates
Ai is defined as usual:

< A >=
∑

j

P[A = Aj ] · Aj , whereP[A = Aj ]

is the likelihood of A to take the microstateAj .

On its part, the ensemble average < A > is defined

as < A > =
∑

i e−βAi · Ai∑
i e−βAi

=
∑

i e−βAi · Ai

Z
where

Z = ∑
i e−βAi is the partition function as stated before.

– Relationship with partition function. The relationship
between expected energy and the partition function Z

may be obtained from the logZ-expression by first-
order partially deriving logZ with respect to the inverse

temperature β: < A >= − ∂Z

Z∂β
= −∂logZ

∂β
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6.4.2 Our contribution

The insights from thermodynamics could offer a new
perspective on price outcomes in the presence of lobbying
inasmuch as notions and results (see theorem 3 for instance)
have certain parallels with them. Therefore, we proceed
by analyzing the price outcomes using suitable microstates
related to the lobbies. For later interpretations it is important
to remember that the energy E, no matter which scenario
it is referring to, symbolizes a flow rate that changes
the magnitudes. According to some authors ([29]), the
ensemble average of some daily repeated stochastic process
consists of the daily variations in the process. Therefore
here, regarding price outcomes, the energy of price shall
represent the volatility of price as a rate of change.

Specifically, for our analysis we consider the magnitude
price variations at time instant t which shall be termed as
energy of price and denoted as E(P t ) in order to follow the
thermodynamical notation as closely as possible. Moreover,
while price outcomes refer to the whole market price (which
is the global process), their study shall be based on the

price estimates made by lobbies, which shall be taken as
the micro levels. The price variations at the micro-level
states are given by the energy functions of each lobby fLi

.
Particularly, in the olive oil market the energy functions of
the lobbies are fLPr

, fLOOI
, fLD

. In consequence, the total
energy of price at a time instant t is

E(P t ) = fLPr
(P t ) + fLOOI

(P t ) + fLD
(P t ).

Next, both the expected value and the ensemble average
(same concept, different perspectives) of the energy of price
are examined. On one hand, the expected value is

< E(P t ) > = ∑
i P[E(P t ) = ei] ·

ei︷ ︸︸ ︷
fLi

(P t ) =

= PLPr
[E(P t ) = fLPr

(P t )] · fLPr
(P t )+

PLOOI
[E(P t ) = fLOOI

(P t )] · fLOOI
(P t )+

PLD
[E(P t ) = fLD

(P t )] · fLD
(P t ).

On the other hand, the concept known in thermody-
namics as “ensemble average” is more easily identified by
transforming the former expression into the following one:

< E(P t ) >= = ∑
i P[E(P t ) = ei] ·

ei︷ ︸︸ ︷
fLi

(P t )

= e−βfLPr
(P t )

Z
fLPr

(P t ) + e−βfLOOI
(P t )

Z
fLOOI

(P t ) + e−βfLD
(P )

Z
fLD

(P t )

= e−βfLPr
(P t )fLPr

(P t ) + e−βfLOOI
(P t )fLOOI

(P t ) + e−βfLD
(P t )fLD

(P t )

Z

= e−βfLPr
(P t )fLPr

(P t ) + e−βfLOOI
(P t )fLOOI

(P t ) + e−βfLD
(P t )fLD

(P t )

e−βfLPr
(P t ) + e−βfLOOI

(P t ) + e−βfLD
(P t )

.

Now, we shall prove some useful properties of the
expected energy of price.

Proposition 5 1. The expected energy of price is the sum
of all the expected energy of these lobbies:

< E(P t ) > = < EPr(P
t ) >+< EOOI (P

t ) > + < ED(P t ) >

2. < E(P t ) > always takes positive values regardless of
the values of the temperature.

3. The expected energy of price is increasing function of
the temperature.

Proof The result holds from the properties of the expec-
tation values. Moreover, it has been shown in the former
development since

< E(P t ) > = < EPr(P
t ) >+< EOOI (P

t ) > + < ED(P t ) >

= PLPr
[P t ]fLPr

(P t )
︸ ︷︷ ︸

<EPr (P
t )>

+PLOOI
[P t ]fLOOI

(P t )
︸ ︷︷ ︸

<EOOI (P t )>

+PLD
[P t ]fLD

(P t )
︸ ︷︷ ︸

<ED(P t )>

.

The function Z is a decreasing function of β so it is logZ.

Hence, the first partial derivative
∂logZ

∂β
should always be
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negative. In consequence, < E(P t ) >= −∂logZ

∂β
always

takes positive values regardless of the values of β (or of the
temperature).

Using the above property and the corresponding Bolzt-
mann distribution from theorem 5, the first derivative of
< E > with respect to β is

∂ < E >

∂β
= ∂ < EPr >

∂β
+ ∂ < EOOI >

∂β
+ ∂ < ED >

∂β

= ∂PLPr
[P t ]

∂β
fLPr

(P t ) + ∂PLOOI
[P t ]

∂β
fLOOI

(P t ) + ∂PLD
[P t ]

∂β
fLD

(P t )

=
∂

(
e−βfLPr

(P t )

Z

)

∂β
fLPr

(P t ) +
∂

(
e−βfLOOI

(P t )

Z

)

∂β
fLOOI

(P t )

+
∂

(
e−βfLD

(P t )

Z

)

∂β
fLD

(P t ) =

= K

(
− fLPr

(P t )2
PLPr

[P t ] − fLOOI
(P t )2

PLOOI
[P t ] − fLD

(P t )2
PLD

[P t ]
)

< 0,

with K a positive constant (as it is the result of algebraic
operations of the normalizing constant Z). This proves that
the expected energy is decreasing function of the inverse
temperature, and the result follows.

We address the economic interpretation of our former
proposition 5. Regarding price volatility, the next theorem
provides a main market property: the variations that the
market price suffers may be computed separately (as the
algebraic sum) from the variations in the target price of the
lobbies.

Theorem 7 The expected market price volatility is equal
to the algebraic sum of that of lobbies: < E(P t ) >=<

EPr(P
t ) > + < EOOI (P

t ) > + < ED(P t ) > .
Moreover, each of these may be explicitly computed once the
corresponding energy functions have been selected:
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

< EPr(P
t ) > = e−βfLPr

(P t )

Z
fLPr

(P t )

< EOOI (P
t ) > = e−βfLOOI

(P t )

Z
fLOOI

(P t )

< ED(P t ) > = e−βfLD
(P t )

Z
fLD

(P t )

Before concluding the volatility issue, it should be
noticed that, according to the second property of proposition
5, mean volatility is always positive, i.e., market prices
move upwards.

In econophysics, the temperature of an economic system
is linked with money: the income of involved agents, wages

or monetary value of goods and services (particularly with
Gross Domestic Product GDP at a global scale, as a measure
of the system efficiency), see [7]. Thus, we shall assume
here that the temperature of an economic process is its
financial solvency (soundness or economic health). In this
line, higher temperatures are more desirable and higher
differences of temperatures should generate more profit.
Thus, the third property of proposition 5 has the following
economic meaning:

Corollary 3 The expected market price volatility is an
increasing function of the solvency of the olive oil market.
That is, the higher the market solvency, the higher the
volatility of the price.

7 Conclusions

This paper presents a structural model for explaining what
kind of market price emerges when there are multiple agents
pushing for their prices (i.e., markets with the presence of
lobbying). Apart from offering a mathematical/AI model
that successfully unravels a complex real-world problem,
the significance of our approach is that it delimits an
intricate problem within the bounds of some probability
computations providing formulas that allow the calculation
of the price estimates of a product. The model is also
endowed with a quantitative study which determines the
specific weight of 7each lobby in the process of pricing
outcomes thus solving a problem for which up until
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now, there have only been qualitative references. This
study has been complemented with an analysis from
thermoeconomics (econophysis), a relatively young science
that offers a novel perspective from which our model can
offer additional results.

The originality of our model lies in the use of time
dynamic Markov random fields (TD-MRF model) since
this problem has been addressed from the perspective
of Bayesian approaches, neural networks and related
techniques. The use of TD-MRFs means that significantly
less information is required (only from cliques) than for
the aforementioned methodologies. The consequence is
a higher computing speed and a lesser need for storage
capacity. Using TD-MFRs also means breaking free from
the constraint of a given distribution function.

Our TD-MRF model has been tested on real olive oil
prices (the olive oil market in Andalusia, Spain) with
encouraging results for a challenging sector in which
opacity in the entry of oil shipments throughout the season,
with olives/olive oil being stored waiting for the price to
rise, makes it very difficult to forecast the prices. In the
model-validation process, both the base functions (energy
functions) and the partition function have been chosen and
computed in detail when, to the best of our knowledge, there
is a notable absence of discussion on either how to select the
energy functions (to best fit the context) or how to compute
the partition function Z in the literature. As we mean the
value of Z, not an approximation, this could be considered
as a limitation of the model since the final output depends
on how good the estimate of Z is (as previously mentioned,
the literature gives no indication on how to delimit the range
considered in the calculation of Z in reality).

As mentioned in the Introduction section, our TD-MRF
model can be applied to any lobbying context although it
is possible that fine-tunings of the structural model might
be necessary if the lobbies considered have their own
characteristics. Furthermore, understanding the “lobbying
context” in a broad manner would allow the application
of the model to all those scenarios in which the final
goal is to obtain a single output as the result of unifying
different perspectives (such as reaching a consensus). Thus,
the possible extensions of the TD-MRF model should focus
on replacing the numerical datasets with wording ones (or
integrating both types of datasets).
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