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Abstract: Timely and reliable information about crop management, production, and yield is consid-
ered of great utility by stakeholders (e.g., national and international authorities, farmers, commercial
units, etc.) to ensure food safety and security. By 2050, according to Food and Agriculture Organiza-
tion (FAO) estimates, around 70% more production of agricultural products will be needed to fulfil
the demands of the world population. Likewise, to meet the Sustainable Development Goals (SDGs),
especially the second goal of “zero hunger”, potential technologies like remote sensing (RS) need to
be efficiently integrated into agriculture. The application of RS is indispensable today for a highly
productive and sustainable agriculture. Therefore, the present study draws a general overview of
RS technology with a special focus on the principal platforms of this technology, i.e., satellites and
remotely piloted aircrafts (RPAs), and the sensors used, in relation to the 5th industrial revolution.
Nevertheless, since 1957, RS technology has found applications, through the use of satellite imagery,
in agriculture, which was later enriched by the incorporation of remotely piloted aircrafts (RPAs),
which is further pushing the boundaries of proficiency through the upgrading of sensors capable of
higher spectral, spatial, and temporal resolutions. More prominently, wireless sensor technologies
(WST) have streamlined real time information acquisition and programming for respective measures.
Improved algorithms and sensors can, not only add significant value to crop data acquisition, but
can also devise simulations on yield, harvesting and irrigation periods, metrological data, etc., by
making use of cloud computing. The RS technology generates huge sets of data that necessitate the
incorporation of artificial intelligence (AI) and big data to extract useful products, thereby augment-
ing the adeptness and efficiency of agriculture to ensure its sustainability. These technologies have
made the orientation of current research towards the estimation of plant physiological traits rather
than the structural parameters possible. Futuristic approaches for benefiting from these cutting-edge
technologies are discussed in this study. This study can be helpful for researchers, academics, and
young students aspiring to play a role in the achievement of sustainable agriculture.

Keywords: agriculture 5.0; drones; remotely piloted aircrafts (RPAs); precision agriculture; remote
sensing; Internet of Things (IoT); digital agriculture; sustainable development goals; sensors;
agricultural robots

1. Introduction

Constant industrial innovation has made it possible that 2021 has been officially
marked by the European Commission as the beginning of the era of “Industry 5.0” [1].
The industrial world, including the agricultural sector, is starting this year by getting
a bit closer to digitalized and automated systems. Although, agriculture began in the
Copper Age, after the Neolithic period, when man started cultivation by making use of
wooden instruments and domesticating animals, this was then revolutionized through the
use of metallic equipment for crop cultivation and this time was categorized as the first
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and second agricultural revolutions. The third and fourth industrial revolutions brought
robotics, machines, telecommunication systems, genetic decoding, etc., to agriculture. The
fifth and current revolution is based on artificial intelligence (AI) and cloud computing,
applied to agricultural remote sensing (RS). A simple illustration of all the principal
industrial revolutions, with respect to agriculture, is presented in Figure 1.Appl. Sci. 2021, 11, x FOR PEER REVIEW 4 of 28 

 

 

Figure 1. An illustration of industrial revolutions, with respect to agriculture, over time. Representative events/technologies
are mentioned in each respective technological era, although they are not limited to only these.
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The increasing world population, climate change, and sustainable development goals
require the agriculture sector to be efficient and sustainable: thereby ensuring food safety
and security. According to the Food and Agriculture Organization (FAO), current agricul-
tural production must increase by 70 % by 2050 considering the increasing demand for high
quality and environmentally friendly food [2]. Similarly, on 25 September, 2015, the United
Nations (UN) general assembly approved the agenda “Transforming our world: the 2030
Agenda for Sustainable Development”, which is an action plan for the prosperity of people
and the planet [3]. Under this agenda, 17 Sustainable Development Goals (SDGs) were
embodied, replacing the previously established Millennium Development Goals (MDGs),
with a timeframe of completion from 2015 to 2030. Out of these 17 SDGs, the second SDG
is “zero hunger”, i.e., eradicating the hunger, as it was estimated that, in 2015, around
690 million people were suffering from hunger [3,4]. This situation has worsened with the
COVID-19 pandemic by affecting food transport systems and threatening people’s access
to food due to the associated loss of income or increased food prices. In this context, FAO
considers that agriculture can contribute to achieving the SDGs, particularly SDG-2, by
providing healthy food that is directly related to better health and a productive life. The
aims of SDG-2, to eliminate hunger and ensure access for all people, particularly the poor
and in vulnerable situations, including infants, to healthy, nutritious, and sufficient food
all year round (goal 2.1: SDG-2), are very ambitious. Nevertheless, agriculture has the
potential to fulfil these objectives by enhancing the income of small-scale farmers (goal
2.2: SDG-2), strengthening the capacity to combat climate change, extreme weather events
(e.g., droughts, fires, floods and other disasters), and progressively improving soil and land
quality (goal 2.4: SDG-2). However, in order to do all of the above, a change is required
in the way in which all stakeholders in the agri-food ecosystem approach the production
process. The first and perhaps the most important step towards this goal is to change the
way decisions are made at all levels of agricultural production, from the most primary
level of the farmer who is called upon to make decisions every day on his cultivation to
the agronomists and decision makers in large agri-food enterprises. Storage and analyses
of large volumes of data (big data) for predictions (e.g., production or spread of diseases)
but also for the possibility for agri-food companies to produce, from the data collected
by digitization of production, information that is relevant to the value of their products
and services. Therefore, a promising technology like RS can be an efficient tool to support
agricultural sustainability. As an example, having RS as a novel tool to face adversities in
agriculture, especially in developing countries, will produce positive effects in the global
economy (maintaining the cost of agricultural products), will reduce the scale of economic
emigration (often due to one or several years of low crop yield), and will help distribute
richness more evenly across the planet [5,6].

In this 5th industrial revolution, RS has the potential of being one of the most impor-
tant technologies for today’s agriculture. This is why RS, in the context of “agriculture 5.0”,
is discussed in this article. RS sprouted in the 19th century (specifically in 1858) through
the use of air balloons for aerial observations [7]. At present, it occupies a central position
in precision agriculture (PA) and soil studies. It is also important to mention some of the
interchangeable terms most commonly used include “precision farming”, “precision ap-
proach”, “remote sensing”, “digital farming”, “information intensive agriculture”, “smart
agriculture”, “variable rate technology (VRT)”, “global navigation satellite system (GNSS)
agriculture”, “farming by inch”, “site specific crop management”, “digital agriculture”,
“agriculture 5.0”, etc.

RS is a vast term that covers various technological systems, such as satellites, RPAs,
GNSS, geographic information systems (GIS), big data analysis, the Internet of Things
(IoT), the Internet of Everything (IoE), cloud computing, wireless sensors technologies
(WST), decision support systems (DSS), and autonomous robots. A remarkable break-
through in RS technology occurred approximately fifty years ago with the advent, and
later with launch, of Landsat-1 in 1972 [8]. Given the importance of such technologies, a
rapid increase in investigations in the agricultural domain has been witnessed in terms
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of the number of publications. For example, in the last five years (2015–2019) the highest
number of publications regarding the use of RPAs in agriculture belonged to Europe at
34%, followed by United States and China at 20% and 11%, respectively [6]. Primary work
on RS has mainly been focused on the reflection mechanism, absorption, and diffusion
of light rays from plant leaves, which differ based on the leaf thickness, structure, and
pigment content of plant species [9]. Nevertheless, during the last decade, the scenario has
changed and RS technology has been entirely revolutionized. Current studies are more
related to designing novel algorithms, improving sensor technology, and the incorporation
of artificial intelligence. In addition, agricultural RS is now experiencing a shift from
structural parameter monitoring to functional trait monitoring, e.g., nitrogen contents,
foliar and canopy functional traits, pigments, etc. For example, a profound character-
ization of spatiotemporal variability of chlorophyll a and b contents has been recently
undertaken [10]. The “SmartAgro” project is a Romanian national project with the aim of
developing a self-diagnosing and self-configuring telemetry system, enabling the use of
IoT for areas with limited global system for mobile communication (GSM) signals [11], and
is an example of improving the potential of RS by filling in research gaps. Similarly, various
projects by the European Union (EU), such as “VIRTUOUS”, “NEWBIE”, “SWAMP”, etc.,
are also oriented to strengthen modern precision agriculture by utilizing state-of-the-art
computational technologies [12–14]. In the same way, the creation of new AI-enabled
software and applications is underway, which can verbally communicate with users and
receive commands, e.g., AgroHub [15].

Quite a number of review articles, with respect to RS, are also available now—
discussing or comparing particular aspects of these novel technologies. For example,
a few of the reported studies, just in past three years (2018–2020), have discussed topics
like plant biodiversity, monitoring of a particular crop, highlighting various applications,
discussing substantial improvements to different platforms or technologies, use of par-
ticular technology, weed management, data management, underlining limitations, and
hinting towards opportunities in this field [7,11,16–40]. Such a huge number of publications
emphasize the tenacious necessity of using RS technologies in agriculture. Similarly, this
increasing number of studies also depicts the significant progress of RS technology in the
agricultural sector.

The persistent need for food safety and security [9] is a driving factor for the incorpo-
ration of RS technologies into farms. Furthermore, the restriction of free movement and
transport due to the current COVID-19 pandemic are impeding agricultural growth, which
necessitates the implementation of RS technology for a better, economical, secure, efficient,
and profitable industry. Therefore, the scope of this article is, not only to incite future
research in this sphere, but also to highlight the importance of RS in ensuring food safety
and security given the rapidly increasing world population. Similarly, the potential of RS to
ensure sustainable agriculture is also described with its respective products. Correspond-
ingly, research gaps are emphasized, based on the current status of these technologies,
along with possible opportunities and the enabling technologies of this era.

This work has four sections. The first section highlights the prominent features of RS
technology (i.e., RS technology products, data retrieving approaches, most commonly used
vegetation indices, and spectral bands) and identifies current research efforts. The second
section indicates the potential and applications of artificial intelligence to complement
RS technology with respect to the 5th industrial revolution. In this regard, research gaps
and challenges are also discussed. The third section deals with sensors used in RS; novel
technologies and opportunities that this new technological era offers are also discussed.
Similarly, the most common platforms of RS technology (i.e., satellites and RPAs) with
practical examples in agriculture are presented in this section. Finally, the fourth section
highpoints the research gaps and future potentials of RS technology, with examples, where
possible, for guaranteeing agricultural sustainability and making the best use of the 5th
industrial revolution.
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2. Agricultural Remote Sensing

Agricultural remote sensing is a very useful technology that allows us to observe crops
on a large scale in a synoptic, remote, and non-destructive manner. Usually, it involves
a sensor mounted on a platform, which could be a satellite, RPA, unmanned ground
vehicles (UGV), or a field robot. The sensor collects the reflected or emitted electromagnetic
radiation from plants, which is then further processed to produce useful information and
products. This information consists of traits of the agriculture system and their variations
in space and time. Functional traits have been defined as the biochemical, morphological,
phenological, physiological, and structural physiognomies that regulate organism (plant)
performance or fitness [18]. These traits vary from one plant to another and from one
location to other, and can be categorized as typological-, biological-, physical-, structural-
, geometrical-, or chemical-based in terms of their respective natures. RS provides an
effective relation between the radiance of plants and the respective traits to extract useful
information, e.g., leaf area index (LAI), chlorophyll content, soil moisture content, etc.
Nevertheless, a number of factors, like the crop phenological stage, crop type, soil type,
location, wind speed, precipitation, humidity, solar radiation, nutrient supply, etc., need to
be known to generate accurate information from RS products. Among others, plant density,
organ computing, LAI, green cover fraction, leaf biochemical content, leaf orientation,
height, soil and vegetation temperature, and soil moisture are prominent informational
products that RS delivers. This information is further processed and used to interpret crop
health, disease infraction, irrigation period, nutrient deficiency, and yield estimations.

Weiss et al. [18] categorized agricultural data retrieving approaches from RS into the
following three principal categories:

i. Purely empirical methods: establishing a direct relationship between a measured
RS signal and biophysical variables (linear and nonlinear regressions: machine
learning).

ii. Mechanistic methods: model inversion based on Maxwell’s equations (for radar
interferometry and polarimetry), optical and projective geometry (for LiDAR and
photogrammetry), and radiative transfer theory (for solar and microwave domains).

iii. Contextual methods: processing the spatial and temporal characteristics of captured
images using segmentation techniques.

Another way to describe information treatment using RS technology is the prepara-
tion of vegetation indices (VIs). Most commonly, VIs calculated using RS, among others,
include: normalized difference vegetation index (NDVI) for crop monitoring and empirical
studies; soil-adjusted vegetation index (SAVI) for improving the sensitivity of NDVI to soil
backgrounds; green normalized difference vegetation index (gNDVI) for estimating the
photosynthetic activity; wide dynamic range vegetation index (WDRVI) for enhancing the
dynamic range of NDVI; chlorophyll index–green (CI–G) for determining the leaf chloro-
phyll content; modified soil adjusted vegetation index (MSAVI) for reducing the influence
of bare soil on SAVI; optimized soil-adjusted vegetation index (OSAVI) for calculating
aboveground biomass, leaf nitrogen content, and chlorophyll content; chlorophyll vege-
tation index (CVI) for representing relative abundance of vegetation and soil; triangular
vegetation index (TVI) for predicting leaf nitrogen status; normalized green red differ-
ence index (NGRDI) for estimating nutrient status; visible atmospherically resistant index
(VARI) for mitigating the illuminating differences and atmospheric effects in the visible
spectrum; crop water stress index (CWSI) for measuring canopy temperature changes and
dynamics; and photochemical reflectance index (PRI) for detecting disease symptoms [7].

Normally sensors used in RS that are for crop monitoring detect the following electro-
magnetic wave bands, depending on specific objectives [7]:

• Thermal infrared band;
• Red, green, and blue (RGB) bands;
• Near infrared (NIR) band;
• Red edge band (RE).
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The amplitude of the information retrieved from RS is considerable to support sus-
tainable agriculture capable of feeding a rapidly growing world population. Among the
prominent advantages or applications of RS are the identification of phenotypically better
varieties, optimization of crop management, evapotranspiration, agriculture phenology,
crop production forecasting, ecosystem services (related to soil or water resources) provi-
sion, plant and animal biodiversity screening, crop and land monitoring, and precision
farming [8,18,19,40–42].

3. Artificial Intelligence and RS

In this new era of computing, the pace of technological advancement is reaching peaks
as it never has before. Artificial intelligence (AI) has vast potential in the agricultural field,
although it has not been fully explored in this sphere and is still in its infancy.

One of the subsets of AI is machine learning, which is used for operating definite tasks
using a computer system [43] and is generally divided into supervised and unsupervised
learning techniques. Similarly, neural networks, another basic pillar of AI, provide the
basis for deep learning algorithms by recognizing patterns [44]. Although deep neural
network (DNN) became famous in 2016, due to engineering complexities they are not
very popular today. Instead, convolutional neural networks (CNNs) and recurrent neural
network (RNN) architectures are becoming more popular and their application can be
found in object detection, classification, segmentation, etc. [28].

It has been previously reported that machine and deep learning techniques are playing
pivotal roles in the following three main domains of RS [10]:

• Classification problems [45,46];
• Model emulators development [47,48];
• Complex empirical relationships [49,50].

Nonetheless, there is plenty of room to make the best use of these techniques that
has not previously been undertaken. For example, Weiss et al. [18] reported that despite
the potential to account for contextual information in space and time based on historical
series, machine learning has been mainly exploited to estimate variables at the pixel
and instantaneous level. Likewise, it is also important to consider the limitations of
artificial intelligence tools applied to agricultural RS through the construction of training
databases. The machine learning algorithms, describing the relation of causality between
inputs and outputs, often cannot solidify the full complexity of a diverse relationship
due to oversimplifications in reality [18,40]. Such limitations need to be resolved. The
5th industrial revolution is expected to address the challenges faced in RS to enhance the
proficiency and productivity.

One of the most important areas in agricultural RS is plant stress detection. In this
regard, image classification is the foremost area of deep learning application and gives a
diagnostic decision (healthy or diseased) based on the input (one or two related images).
For example, A CNN was used to detect and classify individual lesions and spots on
a plant leaf, allowing to identify multiple diseases on the same leaf [51]. Researchers
reported an increased accuracy of 12% compared to previously reported methods, which
was over 75% overall. Similar applications to stress (biotic and abiotic) classification using
AI principles have been reported using deep learning principles in apple, cassava, wheat,
maize, tomato, soybean, grapevine, coffee, and rice [51–67]. In the same way, various
studies on segmentation and object detection, subsets of deep learning, include studies
on cucumber diseases [68], fruit crop diseases [69], rice leaf diseases [70], cucumber leaf
disease [71], tomato diseases and pests [57], grapevine esca disease [61], maize disease [72],
strawberry disease [73], and sweet pepper disease [74]. Likewise, AI methods have been
implied in diverse agricultural contexts, including high-throughput phenotyping [5], yield
prediction [75], fruit detection [76], weed detection [77], and biomass studies [78].

Crops undergo a continuous change in their physiological characteristics over their
lifecycles, and these physiological changes are greatly affected by stress (biotic or abiotic).
AI is paving the way to make detection and identification processes of plant diseases faster,
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among other RS applications, but it is only based on obtained images, which hinders earlier
detection of disease. Similarly, most of the commercial hyperspectral imaging sensors used
in RS platforms can only work optimally under laboratory conditions. The other challenge
is a lack of datasets for deep learning-assisted applications.

Another commonly associated product of RS technology in relation to AI is the
decision support systems (DSS). Therefore, it would be important to highlight the potential
and roles of DSS in agricultural RS.

Decision Support Systems (DSS)

Agricultural decision support systems (DSS) can simply be identified as the infor-
mative resources that facilitate farmers in their decision making, based on knowledge
of various crop-growth parameters [79]. DSS involves data collection, organization, and
analysis to provide either short-term or long-term decisions. For example, for pest or weed
control, DSS can establish a list of prospective fertilizers to use, or even suggest integration
of both chemical and non-chemical-based practices, based on the crop type, growth stage,
etc. One such practical example is the recommendation of herbicide use along with the
suggestion of non-chemical weed control by a DSS, which investigated 100 weed species
and more than 30 crops, in Denmark [80].

Since RS provides near-real-time information, it can play a key role in the development
of an efficient DSS, which will further support agricultural sustainability. RS provides the
temporal and spatial attributes of a crop that can be used to improve decision making, as
they can augment various field data and significant parameters [81]. For instance, DSS
may establish a site-specific herbicide application map, predicting specific weed species
or invasive plants [80]. Such technological interventions in this 5th industrial revolution
have the potential to combat climate change (by reducing the use of fertilizers) and reduce
input costs.

Despite the promising uses of DSS, its integration into agriculture is not prominent
due to a number of factors. Examples of these limiting factors include high economic
cost, lack of awareness or lower comprehension by farmers, the gap between the decision-
making style required by DSS and the different types of farmer requirements, restrictions
in capturing and storing environmental or biological data, etc. [79,80].

4. Sensors

The backbone of RS is the sensors that provide all the basic information, not only of
crops, but also of the environment. The quality and yield of the plants is highly dependent
on factors such as temperature, humidity, light, and the level of carbon dioxide (CO2) [82].
These factors, along with a variety of other parameters, can easily be measured using sen-
sors [32]. Sensors usually serve for narrow band hyperspectral or broad band multispectral
data acquisition, and can be space-borne, air-borne, and ground-based in terms of their
respective use in satellites, RPAs, and fields or laboratories, respectively [40]. Currently,
the most commonly used sensors in agricultural RS include synthetic aperture radar (SAR),
near-infrared (NIR), light detection and ranging (LiDAR), fluorescence spectroscopy and
imaging, multispectral, and visible RGB (VIS) sensors; thereby studying a variety of pa-
rameters according to needs. Table 1 lists the RS sensors, grouped under main categories,
with their respective applications in agriculture. For an elaborated use of different sensors
in agriculture, the study by Yang et al. [83] is recommended.
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Table 1. Principal categories of remote sensing (RS) sensors with their respective functions in agricultural studies.

Sensor Purpose Ref.

Synthetic aperture radar (SAR) Crop classification, crop growth monitoring, and soil moisture
monitoring. [84]

Visible RGB (VIS) Vegetation classification and estimation of geometric attributes. [42]

Multispectral and hyperspectral Physiological and biochemical attributes (leaf area index, crop water
content, leaf/canopy chlorophyll content, and nitrogen content). [85]

Fluorescence spectroscopy and imaging
sensors

Chlorophyll and nitrogen content, nitrogen-to-carbon ratio, and leaf
area index. [86]

Laser/light detection and ranging (LiDAR) Horizontal and vertical structural characteristics of plants. [87]

Near-infrared (NIR)
Crop health, water.

Management, soil moisture analysis, plant counting, and erosion
analysis.

[7]

Ground-based sensors have long been in use, i.e., since the third industrial revolution,
and those of the current era are wireless sensor technologies (WSTs). WSTs use radio fre-
quency identification (RFID) and wireless sensor networks (WSN) [88]. The 5th industrial
revolution has also resulted in rapid research and development in terms of smaller sensing
devices, digital circuits, and radio frequency technology. The principal difference between
RFID and WSN is that WSN permits multihop communication and network topologies,
whereas no cooperative capabilities are offered by RFID devices. Now, WSNs are, not only
the base of precision agriculture, but also that of precision livestock farming and precision
poultry farming. RFID, which was basically developed for identification purposes, is cur-
rently being used for developing new wireless sensor devices. These systems comprise of a
number of tiny sensor nodes (consisting of three basic components: sensing, processing,
and communication) and few sinks. Each wireless sensor node can be employed in the
desired crop field and are linked through a gateway unit, communicating with other com-
puter systems via wireless local area networks (WLAN), local area networks (LAN), the
Internet, wireless wide area network (WWAN), or controller area network (CAN), making
use of standard protocols (i.e., general packet radio service (GPRS) or global system for
mobile communication (GSM)) [10]. Given the maturity and potential of these technologies,
they seem to be promising technologies for agricultural remote sensing. Another reason
for WSN implementation in agriculture is a prerequisite of DSS is that it needs processed
information rather than sensor-taken raw data. Therefore, WSNs using a meshed network
of wireless sensors collect, process, and communicate the data for DSS, thus ensuring a
controlled system [45].

WST applications in the agricultural sector have gone through considerable research
and it is found to be very common in greenhouse and livestock monitoring applications.
These applications are becoming more common by the day. Additionally, it is also important
to consider challenges, e.g., weather conditions, reliable link quality above crop canopies,
and coverage, that are faced when implementing radio frequencies in crop fields. It is
also important in remote sensing that there be a mechanism of erroneous measurement
detection, thereby rectifying wrongly collected data. Actual examples of the applications
of WST, although few, include creating a mobile WSN connecting tractors or combining
harvesters with other vehicles, enabling them to exchange data [10]. Recently, a customized
WSN was used to detect fungal disease in a strawberry production using a distributed mesh
network of wireless mini weather stations, equipped with relative humidity, temperature,
and leaf wetness sensors. Similarly, other studies included the implementation of WSN
in vineyards for precision viticulture and addressed heat summation and potential frost
damage [10]. Similarly, various other studies on their application in irrigation, greenhouse,
and horticulture domains have been reported [45]. However, it is important to consider
that there is an immense need for a standard body to regulate agricultural sensor device
development as well as their subsequent implementation in modeling and DSS.
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These technologies have been in constant transition over the past few years, e.g., up-
dating various ISO (International Organization for Standards) standards for RFID (ISO/IEC
18000, ISO 11784, etc.), Bluetooth, Wibree, WiFi, and ZigBee for WSNs [88,89]. Various
studies have reported on the use of these technologies, such as the use of ZigBee for preci-
sion agriculture (elaborated by Sahitya et al. [90]). A substantial improvement in WSN for
subsequent incorporation into satellites and RPAs will certainly augment the efficiency of
these platforms. For a summary of some of the commonly implied sensors in agriculture
that provide data about plant, soil, and climate conditions, the study by Abbasi et al. [89]
is recommended.

A lot of renowned companies and institutes, including NASA, are involved in the
production of novel and efficient sensors. For example, the Microsoft Kinect sensor devel-
oped in the last decade shows remarkable potential for rapid characterization of vegetation
structure, as reported previously [91]. For a comprehensive study on the latest advances in
sensor technology applied to the agricultural sector, the study by Kayad et al. is recom-
mended [26].

Joint ventures by governments and academic institutes, apart from those of the private
sector, in the implementation of sensor technology can bear rapid and efficient results,
such as the Center of Satellite Communication and Remote Sensing at Istanbul Technical
University (ITU), and the Turkish Statistical Institute joining hands to realize the sensor-
driven agricultural monitoring and information system (TARBIL) project [92]. Various
sensors are being currently invented and developed, through private firms and joint
ventures, based on wireless technology for subsequent applications in viticulture, irrigation,
greenhouse, horticulture, pest control, fertilization, etc. [89], but this also highlights the
necessity of some regulating and standard bodies.

Similarly, John Deere, a leading farming equipment company, is currently undertaking
various IoT projects, including sensor-fitted autonomous tractors, capable of yield estima-
tion features, among various other features [93]. Apart from the industrial perspective, a
great deal of research in the academic domain is also on the rise in this sphere. These tech-
nologies are promising for efficient and sustainable farming, which is basically expected in
the 5th industrial revolution.

Satellites and RPAs are two prominent platforms of RS technology and therefore, it
is important to consider their use in the 5th industrial revolution, mainly focusing on the
agricultural sector. Various studies have highlighted the limitations of the one or the other,
but both are beneficial in general. In this regard, their current and future roles in on-board
sensors and cameras are reported here.

4.1. Satellite

One of the oldest and main platforms of RS technology is the satellite. In 1957, the first
ever satellite: Sputnik 1, weighing 183 pounds and the size of a basketball, was launched
into space by the Soviet Union [94]. It has been over 40 years since satellite systems became
operational, but a milestone in RS was achieved with the creation of normalized difference
vegetation index (NDVI) maps, providing information about land cover, phenology, and
vegetation activity, using advanced very high resolution radiometer (AVHRR) [35]. In terms
of improved performance, considering geometric, spectral, and radiometric properties, the
moderate resolution imaging spectroradiometer (MODIS) significantly helped with remote
sensing. MODIS instruments laid the foundation of a new era in remote sensing after their
launch in 1999, providing 1-km spatial resolution GPP products [35].

Numerous satellites had been launched in the past two decades with various spatial
and temporal resolutions [95], which proved to be the basis of the 5th technological revolu-
tion. Today, various privately-held and government-managed satellites harboring versatile
sensors are an efficient foundation to RS, thereby providing huge sets of interpretable data
and information. For example, Spain started its “National Remote Sensing Plan (PNT)”
in 2004, aimed at data provisioning for various Spanish public administrations [96]. Al-
though, it is important to bear in mind that this domain was envisaged with a little boost
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in 2008, when Landsat (US operated satellites) images were set freely accessible (under
open license), and the launch of Sentinel 1A and Sentinel 2A satellites, in 2014 and 2015,
respectively, under the Copernicus Program, further increased the momentum of RS. The
Sentinel constellation is the part of Copernicus program that was launched by the European
Commission and the European Space Agency (ESA). As more than 30 satellites provide
data for this program, it is of great use to scientists to analyze the freely available data
regarding agriculture. In addition, a separate database, titled “Copernicus Academic”,
of the Copernicus program also facilitates the training and better utilization of satellite
data [97]. Similarly, the Landsat program, launched by the United States as a joint venture
between the National Aeronautics and Space Administration (NASA) and the United States
Geological Survey (USGS), also offers free access to high-resolution images. The present
needs are to wisely utilize these free accessible data to achieve ambitious agricultural goals.
Furthermore, space-borne hyperspectral missions, such as ZY1-AHSI, PRISMA, DESIS,
and GF5-AHSI, which launched recently, or are planned to be launched in upcoming years,
such as SBG, CHIME, and EnMAP, are expected to augment agricultural monitoring in
terms of vegetation functions and traits. It is imperative to address recurring limitations,
such as soil background and canopy structure interference, signal variations in optical
vegetation properties, and poor discrimination of functional traits due to lesser narrow
spectral regions [2].

Recently, a cloud-free crop map service utilizing radar and optical data from Sentinel-1
and -2, respectively, was announced under a joint venture by two private companies i.e.,
VanderSat and BASF Digital Farming GmbH, thereby providing daily maps of field-scale
crop biomass [98]. This advancement is a remarkable breakthrough in RS from satellites, as
it has been a great challenge since the beginning of this technology. Recent advances in this
technology are making it a fine and efficient technology through the use of machine learning.
A study conducted by Mazzia et al. [99] reported a novel strategy for refining the freely
available photos from satellites to minimize the errors often encountered by their low or
moderate resolutions. This is an excellent example of the use of blended technology, where
the authors trained a convolutional neural network using high-resolution images from RPA
and then derived the NDVI to interpret the low- or moderate-resolution satellite images
of vineyard vigor maps. Among other uses of this RS platform, one is the construction of
historical maps of crops, as these play a significant role in crop prediction estimation and
related simulations. Recently, a study established the relationship between MODIS-derived
NDVI and the grain yields of wheat, barley, and all cereals for 20 European countries
(including Austria, Belgium, Denmark, France, Germany, Ireland, Sweden, the United
Kingdom, etc.). After analyzing the data from 2010 to 2018, a higher percentage of cereals
was reported; 35% for arable land. The efficacy of yield prediction in relation to NDVI
and cereals was reported as trustworthy over a good time period of 4 months [100]. More
studies of this nature on a global scale are needed to strengthen the agriculture of today.

Implementation of existing technological tools is also very important. For instance,
Google Earth Engine (GEE) offers diverse services in this domain for the agricultural
industry. GEE facilitates product downloading of various satellites imagery (Landsat,
Sentinels, MODIS, etc.) along with cloud-based management, by granting access either
through an academic email or simply a standard Gmail account to their servers. Processing
very large geospatial datasets often makes the process slow and difficult. In this regard,
GEE, a cloud-based platform, facilitates access to high-performance computing resources
without any cost. Systematic data products and interactive applications can be developed
based on GEE once an algorithm is developed—thereby reducing the complexities of
programming and application development [45]. A stepwise illustration for product
downloads from GEE is presented in Figure 2, although the final exported product can be
different from this illustration, based on the needs and preferred format.
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A practical example of benefiting from free services GEE is presented as the con-
struction of vegetation indices (VIs) maps for olive grove trees located at Guadahortuna
(Granada, Spain) (Figure 3). Sentinel-2 images, between July 2020 and February 2021, were
accessed through GEE, at a resolution of 10 × 10, and were processed to generate NDVI (as
indicated in the below formula) vector tiles, followed by their export into GeoJSON format.
The GeoJSON format is user friendly and generates data in the form of a table where each
pixel represents a file with its NDVI value, which is quite handy to work with.
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Likewise, another practical example of this nature is the data acquisition, via GEE, for
a parcel of vineyard crop situated at Reggio Emilia (Emilia-Romagna, Italy) (Figure 4). In
both of these examples, NDVI was calculated using the following formula:

NDVI =
NIR − VIS
NIR + VIS

= [Sentinel2 Bands]
B08 − B04
B08 + B04
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where NIR is the near-infrared band and the VIS is the visible red. Bands 8 and 4 of
Sentinel-2 were used given their desired spatial resolution of 10 m as well as their spectral
range (e.g., bands 8 and 4 measure NIR and red spectral bands, respectively) to calculate
the NDVI. These serve as an example of free data acquisition and processing; the future
promises enormous possibilities. The only need is to make use of such freely available
resources for academic, as well as real-world, applications.
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Another important aspect of using satellite technology is the digital boundaries of
crop fields that are a pre-requisite. Areas with intensive agriculture have solved this, but,
for small crop areas (>1 ha), it persists. The 5th revolution is playing its part here. Recently,
a novel method, “DESTIN”, of crop field delineation was reported with an accuracy of 95–
99%, fusing temporal and spatial information acquired from WorldView and Planet satellite
imagery [101]. Such types of studies are opening up the way for digitalizing agriculture
and making it sustainable. This new era is not just about processing acquired data it
is also about optimizing it for improved-quality products. For example, a recent study
on formulating optimal segmentation parameters to obtain precise spatial information
of agricultural parcels that normally suffer over- or under-segmentation is an evident
demonstration of this idea [102]. This is not just limited to the optimization of satellite
imagery, it is a way to achieve automation and implementation of these technologies on
all scales.

4.2. Remotely Piloted Aircrafts (RPAs)

A rise in the use of this technology has been seen over the past decade given its worth
as an integral part of RS technology. Intensive research has been conducted using RPAs,
considering their application in crop monitoring, disease surveillance, soil analysis, irriga-
tion, fertilization, mechanical pollination, weed management, crop harvest, crop insurance,
tree plantation, etc. [7] (Figure 5), which obviously hints towards their remarkable potential
in the agricultural sector.
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Figure 5. A schematic diagram of RPA application in agriculture.

The first use of RPAs in agriculture was reported as back as 1986 for monitoring
Montana’s forest fires [7]. This 5th revolution is anticipated to make more frequent use of
RPAs in farming. According to an estimate, RPAs and the agricultural robotics industry
could be worth as much as 28 billion dollars by 2028 and up to 35 billion dollars by
2038 [103].

The use of RPA imagery consists of mission or flight planning, data collection, data
processing, and information report generation. Several free resources are available for each
of these purposes. For example, QGroundControl is an open-source software that can act
as a ground control station (GCS) for RPAs. Similarly, several user-friendly open-source
software titles are available in the market for image processing, orthomosaic assembly,
digital surface model (DSM), and digital elevation model (DEM) constructions. Open Drone
Map (ODM) is a prominent example of this, and offers creations and visualizations of
orthomosaic, point cloud, 3D models, and other products [7]. RPAs offer better resolutions
and flexibility of use over satellite imagery. A few such desired features help to monitor
the most important crop parameters: nitrogen (N) and chlorophyll contents [36]. For
example, Figure 6 shows an overview of the practical applications of RPAs to acquire
Vis, such as NDVI, normalized difference red edge (NDRE) and thermal maps. A Yuneec
Typhoon H hexacopter RPA, flown at a 100-m height, equipped with a multispectral camera
(parrot sequoia) and a thermal sensor (Yuneec CGOET) was used to monitor olive crops in
Cordoba, Spain. After processing the images, treatment zones were indicated depending
upon the vegetation vigour, stress, and N content (Figure 7).
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Quite a number of studies have reported on various aspect or uses of RPAs but it is
interesting to learn what this new era means for one of these RS technologies. New research
is being based on artificial intelligence to derive more detailed information about growth,
yield, disease, and automation. For example, use of wireless sensor technology and control
automation is on the rise in agriculture [104–106]. Some of the representative studies with
respect to principal applications of RPAs in agriculture are summarized in Table 2.

One of the prominent features of this technology is its higher resolution than the satel-
lite imagery—offering up to 0.2 m of spatial resolution, which is approximately 40,000 times
better resolution that means more and high-quality information can be extracted from
these images. Furthermore, laser imaging detection and ranging (LiDAR) systems are
using this technology to pave the way towards building 3D maps of plant canopy, soil,
and field analysis, which are crucial factors for yield estimation, irrigation, and nutrients
estimation, such as for N [7]. Nevertheless, impeding metrological conditions, local and
national regulations, limited spatial coverage due to battery or payload limits, along with a
lack of standard procedures for inflight calibration of RPA sensors [18,107] are few of the
constraints of this platform.



Appl. Sci. 2021, 11, 5911 15 of 26

Appl. Sci. 2021, 11, x FOR PEER REVIEW 16 of 28 
 

 
Figure 6. Vegetation index (VIs) maps generated through Parrot Sequoia (a multispectral camera) and Yuneec CGOET (a 
thermal sensor) mounted on Yuneec Typhoon H hexacopter RPA. (A) Crop area studied. (B) Map of “chlorophyll a” 
content based on NDRE. (C) Map for vegetation status generated based on NDVI. (D) Thermal map established using 
Yuneec CGOET. (Images facilitated by MCBiodrone). 
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Table 2. A summary of a few representative studies for principal agricultural applications of RPAs.
(The purpose of citing these references is impartial and is not confined to these studies only).

RPA Application Area Reference

Crop growth and monitoring [7,108–111]
Crop scouting [7,112]

Disease detection [113–116]
Bird pest surveillance [117,118]

Irrigation and fertilization [111,112,115,116,119–124]
Soil and field analysis [7,108,112,125]
Weeds management [112,116,120,126]

Crop harvest [112,127,128]
Crop insurance [112,114,116]

Mechanical pollination [7,116,129,130]
Forestry [131–135]

Livestock [112,114,116,120,130,136,137]

Likewise, it is also important to consider regional and national regulations for operat-
ing RPAs, although agricultural applications of RPAs do not invoke substantial risks for
people. Government bodies are trying to cope with such regulations, but there is plenty of
room for growth. In Europe, the European Union Aviation Safety Agency (EASA) presented
legislative framework: “Easy Access Rules for Unmanned Aircraft Systems” (Regulations
(EU) 2019/947 and (EU) 2019/945), in 2019, for RPA operations and it went into effect from
31 December 2020 [138]. The three principal categories established under this legislation
are presented in Table 3. Safety of people, security, privacy, and data protection were the
principal parameters considered for establishing these regulations. Nevertheless, most
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countries are struggling to establish standard regulations, and this requires urgent attention.
A general list of RPA laws and regulations can be consulted in [139].

Table 3. Three categories established by European Union Aviation Safety Agency (EASA) for operat-
ing RPAs.

Sr. Category Description

1 Open Not requiring any prior operational declaration or authorization.

2 Specified Requiring an authorization by the competent authority except for
standard scenarios.

3 Certified Requiring certification by the competent authority.

This new era is of the Internet of Drones (IoD), where a fleet of drones is deployed,
controlled through a ground station server (GSS) via a wireless channel, to harvest the
desired data. Currently, research is being undertaken to explore these possibilities for
remote areas, where there is no Internet connection. For example, a recent study reported
on the possibility of using a cellular network for this purpose [140]. An interesting study by
Prasanna and Jebapriya [141] on the use of RPAs in smart agriculture, based on IoT, is highly
recommended, where the possibilities of this novel technology with their practical examples
are discussed. Similarly, novel applications of RPAs can also enrich RS technologies; for
example, very recently, an RPA was used as a mobile gateway for a wireless sensor network
(WSN), establishing a 24-m flying height and a 25-m antenna coverage provided maximum
node density [142]. In the same way, the benefits of drone centimeter-scale multispectral
imagery were investigated in sugar beet crop to improve the assessment of foliar and
canopy parameters; five important structural and biochemical plant traits were reported,
highlighting the importance of drone imagery for centimeter-scale characterization [4].
RPAs are already used for capturing videos and photos under specific flight plans, as such,
setting an RPA as a node for a WSN is an efficient way to fully benefit from this RS tool.

Despite the appeal of IoD, security may be a recurring issue in upcoming years; large
companies are already at the brink of this issue. For this reason, thorough research in this
domain is recommended to ensure a reliable application of RS. A recent study undertaken
on this aspect of technology offers the implementation of blockchain and smart contracts
to safeguard data, which are then archived through IoT-enabled RPAs and sensors, with
their respective deployment considerations [143]. Alternative and economical solutions are
urgently required to address these issues.

4.3. Satellite and RPAs: A Complementing System

The use of RPAs versus satellites is often debated in the context of their agricultural
applications. Nevertheless, the choice of any of these RS platforms is highly subjective to
the needs of farmer and the crop to be studied. However, a minor comparison of these is
presented considering their usefulness in RS.

Limited battery life and flight time hinder extensive spatial coverage using RPAs,
despite being regarded as optimal for providing robust, reliable and efficient crop pheno-
typing [144]. RPAs offer lower operational costs; however, for large amounts of data (to
cover larger areas), data processing costs increase exponentially. Similarly, flexibility with
flying times and the significant resolution of RPA imagery are desirable characteristics over
satellite imagery [7].

On the other hand, freely accessible satellite data are gaining popularity. Even so,
these freely available data come with coarser spatial and temporal resolutions (with the
exception of a few commercial satellites), and is being used to generate VIs. In this
regard, AI offers leverage to fine-tune coarser satellite data based on high-resolution drone
data [5]. Moreover, a large dataset for training AI models, despite poor quality or noisiness,
generates substantial results compared to smaller datasets, indicating the importance
of huge datasets obtained through satellite imagery [5]. This is why big data holds a
remarkable position in this regard. For example, a previously reported study demonstrated
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the effectiveness of deep learning associated with the availability of large and high-quality
training samples [145]. Furthermore, crop simulation models can be generated beforehand
from these data for respective agronomic measures and crop yield estimations. Therefore,
a complementing system based on these two RS platforms can supplement the efficiency
of RS products.

5. Future Perspective

RS technology is anticipated to maximize the potential of the agricultural sector to
feed future generations. Integration of modern science is greatly needed. A few possible
future studies, with regard to the 5th industrial revolution, are hinted at below (Figure 8).

− Satellites, RPAs, and sensors seek a vast amount of data in a raw form, which requires
tiresome pre-processing, processing, and data evaluation procedures. This is where
big data comes in play and ML can be applied to handle this difficult task as an
effective tool for managing and processing huge data sets, as has also been previously
reported [42]. Although traditional ML methods (i.e., artificial neural networks,
random forests, and support vector machines) provide the characteristics of a subject
under study, these prove to be subjective and cumbersome processes when dealing
with the problems of a complex domain, e.g., yield estimation of a crop or highly
dimensional datasets [42]. Therefore, selection of key features is very important to
further train models for a higher accuracy. Furthermore, such machine and deep
learning models for various crop characteristics (i.e., stress, disease, ripeness, etc.) are
urgently required for almost all of crops. For example, postharvest grading processes
can be easily regulated by the implementation of quality-based ML fruit classification
models. Similarly, an image offers a great deal of information, such as chlorophyll,
plant canopy, size, color, fruit number, etc., which can be analyzed using various ML
networks with the potential of minimizing input costs and making the crop yield
more profitable.

− Incorporation of GIS-enabled biosensors into plants cannot only help to reveal plant
molecular processes, e.g., nutrients assimilation, production of antioxidants, etc., but
also the location of pathogenic attack, drought stress, and other valuable growth
parameters.

− Novel low-cost sensors are highly in demand and can certainly complement the
efficiency of RS technology. For example, novel sensors detecting ethylene gas levels,
which is an indicator of fruit ripening [146], can help farmers to make essential
management decisions before harvest. Similarly, durable ground-based sensors can be
incorporated with cellular and WST technology for real time information gathering,
as well as programing for respective measures. Further novel applications of sensor,
as well as new sensors measuring a variety of parameters, can certainly take RS
technology to another level.

− An integrated and complementing system for satellites, automatically guided land
vehicles (AGVs), and RPA imagery could be quite beneficial to overcome physical
hurdles in data acquisition and improving the efficiency and accuracy of these tech-
nologies. Novel algorithms can also fill in this gap and, therefore, research should be
focused on this domain.

− Given the tremendous potential of LiDAR, it could be used to extract architectural
information of crops, as well as of forests. Such morphological information can pave
the way to unveil growth processes, phenotypic explorations, structural patterns,
establishing biomass–yield relationships, etc. Using AI, this information could be
amplified for various other plant species and even to simulate plants developmental
behavior in space.

− Freely available satellite imagery with coarse temporal and spatial resolutions have
not been exploited for scale-appropriate precision agriculture applications [147]. These
free resources can be manipulated in a number of ways to extract desired information;
for example, historical and current field data can be a game changer for estimating
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soil fertility status, which immensely influences crop yield. Similarly, distanced and
under-nourished plants in a field patch indicate inadequate growth conditions, e.g.,
salinity stress, drought stress, shallow patch, etc. This is quite valuable information
for assuring precision.

− The maturity of 5th generation (5G) technology is increasing the possibilities of au-
tomation of field processes and the acquisition of real-time information. During this
5th industrial revolution, 5G is a substantial performer that has the potential, not
only to facilitate high speed connectivity, but also faster data acquisition followed by
analysis. For example, Google Earth, a free geolocation search engine, facilitates access
to satellite imagery and integrates a processing code that could generate NDVI in
turn [148], subsequently producing desired analytics in a mobile application or web-
page. A practical example is the private company Graniot, operating in Spain [149].
Another interesting implementation of 5G could be the real time streaming of ultra-
high definition images (4K–8K), taken by RPAs along with its potential to overcome
the severe regulations on beyond visual line of sight (BVLOS) flight challenges. These
tools are not limited to these kinds of applications, but rather to the unlimited oppor-
tunities. Further startups of this kind can help to achieve sustainable agriculture.

− Masking all the data analyzing processes and protecting the end user, especially
farmers, from the perplexity of technical processes in the form of graphical user
interfaces (GUIs) could greatly boost the incorporation of these technologies among
small-scale farmers. Only a limited number of studies have been reported where a user
can visualize and interpret data in the form of mobile or tablet applications [150–152].
The invention of such types of GUIs can further ease sustainability and the profitability
of the sector.

− Benefiting from radio signals, television communication systems and cellular data
are also appealing aspects of RS applications in rural areas. Another attractive option
is the use of hotspot satellites for the determined range and area. RS technology is
quite mature in developed countries, but, for developing countries, these tools can
outweigh resource scarcity.

− An anticipated model considering this 5th revolution can be envisioned as one where
data acquisition resources (e.g., sensors, RPAs, WSN, etc.) operate in synergy with
field actors (e.g., tractors, AGVs, irrigation systems, spray systems, robots, etc.).
Acquired crop data are then processed by cloud computing platforms, and ultimately
generate insightful results. Thus, enabling the end user to interpret, make a reasoned
decision or program a regulated activity through the corresponding GUI. Figure 9
shows this anticipated model.

− The incorporation of RS technologies into agriculture can facilitate sector sustainability,
but the associated costs could be a hindering factor. Today, most sensors applied in
agriculture are quite expensive, along with the hiring of third party services for data
interpretation. This is quite a big hurdle that need to be resolved.

− Similarly, providing farmers with the basic skills needed for RS technology and
training a fleet of young scientists can ease frustrations among people directly related
to agriculture, like farmers, agronomists, extension workers, etc. The rate of adoption
of a technology can be augmented using such measures. Private and public bodies
can equally contribute to this sphere.

− RS technology is no longer in its nascent phase and, therefore, a framework of proper
vocabulary and standardization is urgently needed. Various terminologies are in use
today that only create more confusion. An example of this problem is the naming of
RPA technology—unmanned air vehicle (UAV) is the proper term for drones for few
scientists, whereas others consider this term obsolete [7].
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ultimately produce infographics and other useful information in (E).
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6. Conclusions

The study aimed to convey an overview of the principal players of RS technology,
including satellites, RPAs, and sensors, in this new era of the 5th industrial revolution (of
agriculture 5.0); thus, highlighting its importance in achieving SDG-2. Satellites occupy a
prominent place in RS technology that can be appended with IoD to maximize its potential
in assuring sustainable agriculture. Satellite imagery data are freely accessible, and RPA
technology becoming more and more economical with each passing day. Integrated
application of these RS components and training ML models is what is expected from
this 5th revolution. Few studies have been done on cohesive applications of AI in this
field, such as automation in the fruit grading process, crop variety identification, visual
representation of data analysis in the mobile applications, etc. Moving forward, the aim is
to improve resource use efficiency. Similarly, there is a need to address the limitations of AI
in terms of model training, standardization, and oversimplifications of reality.

With the novel technologies come the novel challenges; initiating novel research
projects addressing challenges of data privacy, slow data processing, lack of historical
maps, cost of sensors, standardization, processing complexity, training, etc., can effectively
contribute to, not only the dissemination of novel technologies, e.g., IoT, IoE, IoD, ML, etc.,
but also adoption, thereby promising a sustainable agriculture 5.0.

Author Contributions: V.M. conceptualized the idea. V.M. and A.A. contributed in the design,
preparation, and writing of the manuscript, followed by revisions from P.C. and J.O. All authors have
read and agreed to the published version of the manuscript.

Funding: This work was supported by the projects: “VIRTUOUS” funded by the European Union’s
Horizon 2020 Project H2020-MSCA-RISE-2019. Ref. 872181, “SUSTAINABLE” funded by the Eu-
ropean Union’s Horizon 2020 Project H2020-MSCA-RISE-2020. Ref. 101007702 and the “Project of
Excellence” from Junta de Andalucia 2020. Ref. P18-H0-4700. The funders had no role in study design,
data collection and analysis, decision to publish, or preparation of the manuscript.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Acknowledgments: Images facilitation by Graniot, an agricultural remote-sensing-based firm in
Spain, is acknowledged (Figures 3 and 4). Similarly, cooperation from MC Biodrone, an agricultural
company in Spain, is highly appreciated in terms of facilitating vegetation indeices maps for olive
crops (Figures 6 and 7).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Comission, E. Industry 5.0: Towards More Sustainable, Resilient and Human-Centric Industry. Available online: https://ec.

europa.eu/info/news/industry-50-towards-more-sustainable-resilient-and-human-centric-industry-2021-jan-07_en (accessed
on 10 January 2021).

2. FAO. Available online: http://www.fao.org/3/cb1000es/cb1000es.pdf (accessed on 9 April 2021).
3. UN. Available online: https://www.un.org/sustainabledevelopment (accessed on 9 April 2021).
4. FAO Sdgs. Available online: http://www.fao.org/3/I9900ES/i9900es.PDF (accessed on 8 April 2021).
5. Jung, J.; Maeda, M.; Chang, A.; Bhandari, M.; Ashapure, A.; Landivar-Bowles, J. The potential of remote sensing and artificial

intelligence as tools to improve the resilience of agriculture production systems. Curr. Opin. Biotechnol. 2021, 70, 15–22. [CrossRef]
6. Khanal, S.; KC, K.; Fulton, J.P.; Shearer, S.; Ozkan, E. Remote sensing in agriculture—Accomplishments, limitations, and

opportunities. Remote Sens. 2020, 12, 3783. [CrossRef]
7. Ahmad, A.; Ordoñez, J.; Cartujo, P.; Martos, V. Remotely Piloted Aircraft (RPA) in Agriculture: A Pursuit of Sustainability.

Agronomy 2021, 11, 7. [CrossRef]
8. Wulder, M.A.; Loveland, T.R.; Roy, D.P.; Crawford, C.J.; Masek, J.G.; Woodcock, C.E.; Allen, R.G.; Anderson, M.C.; Belward, A.S.;

Cohen, W.B. Current status of Landsat program, science, and applications. Remote Sens. Environ. 2019, 225, 127–147. [CrossRef]
9. Joint, F.; World Health Organization; WHO Expert Committee on Food Additives. Evaluation of Certain Contaminants in Food: Eighty-

Third Report of the Joint FAO/WHO Expert Committee on Food Additives; World Health Organization: Geneva, Switzerland, 2017.
10. Lary, D.J.; Alavi, A.H.; Gandomi, A.H.; Walker, A.L. Machine learning in geosciences and remote sensing. Geosci. Front. 2016, 7,

3–10. [CrossRef]

https://ec.europa.eu/info/news/industry-50-towards-more-sustainable-resilient-and-human-centric-industry-2021-jan-07_en
https://ec.europa.eu/info/news/industry-50-towards-more-sustainable-resilient-and-human-centric-industry-2021-jan-07_en
http://www.fao.org/3/cb1000es/cb1000es.pdf
https://www.un.org/sustainabledevelopment
http://www.fao.org/3/I9900ES/i9900es.PDF
http://doi.org/10.1016/j.copbio.2020.09.003
http://doi.org/10.3390/rs12223783
http://doi.org/10.3390/agronomy11010007
http://doi.org/10.1016/j.rse.2019.02.015
http://doi.org/10.1016/j.gsf.2015.07.003


Appl. Sci. 2021, 11, 5911 21 of 26

11. Marcu, I.; Suciu, G.; Bălăceanu, C.; Vulpe, A.; Drăgulinescu, A.-M. Arrowhead Technology for Digitalization and Automation
Solution: Smart Cities and Smart Agriculture. Sensors 2020, 20, 1464. [CrossRef] [PubMed]

12. SWAMP. Available online: http://swamp-project.org/ (accessed on 17 February 2021).
13. VIRTUOUS. Available online: https://cordis.europa.eu/project/id/872181 (accessed on 14 February 2021).
14. NEWBIE. Available online: https://cordis.europa.eu/project/id/772835 (accessed on 17 February 2021).
15. AGRO.COM. Available online: https://profesionalagro.com/noticias/drones-e-inteligencia-artificial-en-agricultura-mejor-

rendimiento.html (accessed on 18 February 2021).
16. Zhang, Y.; Migliavacca, M.; Penuelas, J.; Ju, W. Advances in Hyperspectral Remote Sensing of Vegetation Traits and Functions; Elsevier:

Amsterdam, The Netherlands, 2021.
17. Zhang, N.; Yang, G.; Pan, Y.; Yang, X.; Chen, L.; Zhao, C. A Review of Advanced Technologies and Development for Hyperspectral-

Based Plant Disease Detection in the Past Three Decades. Remote Sens. 2020, 12, 3188. [CrossRef]
18. Weiss, M.; Jacob, F.; Duveiller, G. Remote sensing for agricultural applications: A meta-review. Remote Sens. Environ. 2020, 236,

111402. [CrossRef]
19. Sishodia, R.P.; Ray, R.L.; Singh, S.K. Applications of remote sensing in precision agriculture: A review. Remote Sens. 2020,

12, 3136. [CrossRef]
20. Singh, P.; Pandey, P.C.; Petropoulos, G.P.; Pavlides, A.; Srivastava, P.K.; Koutsias, N.; Deng, K.A.K.; Bao, Y. Hyperspectral

remote sensing in precision agriculture: Present status, challenges, and future trends. In Hyperspectral Remote Sensing; Elsevier:
Amsterdam, The Netherlands, 2020; pp. 121–146.

21. Saiz-Rubio, V.; Rovira-Más, F. From smart farming towards agriculture 5.0: A review on crop data management. Agronomy 2020,
10, 207. [CrossRef]

22. Pascucci, S.; Pignatti, S.; Casa, R.; Darvishzadeh, R.; Huang, W. Special Issue “Hyperspectral Remote Sensing of Agriculture and
Vegetation”. Remote Sens. 2020, 12, 3665. [CrossRef]

23. Messina, G.; Peña, J.M.; Vizzari, M.; Modica, G. A Comparison of UAV and Satellites Multispectral Imagery in Monitoring Onion
Crop. An Application in the ‘Cipolla Rossa di Tropea’(Italy). Remote Sens. 2020, 12, 3424. [CrossRef]

24. Maimaitijiang, M.; Sagan, V.; Sidike, P.; Daloye, A.M.; Erkbol, H.; Fritschi, F.B. Crop Monitoring Using Satellite/UAV Data Fusion
and Machine Learning. Remote Sens. 2020, 12, 1357. [CrossRef]

25. Lu, B.; Dao, P.D.; Liu, J.; He, Y.; Shang, J. Recent advances of hyperspectral imaging technology and applications in agriculture.
Remote Sens. 2020, 12, 2659. [CrossRef]

26. Kayad, A.; Paraforos, D.S.; Marinello, F.; Fountas, S. Latest Advances in Sensor Applications in Agriculture. Agriculture 2020,
10, 362. [CrossRef]

27. García, L.; Parra, L.; Jimenez, J.M.; Lloret, J.; Lorenz, P. IoT-Based Smart Irrigation Systems: An Overview on the Recent Trends on
Sensors and IoT Systems for Irrigation in Precision Agriculture. Sensors 2020, 20, 1042. [CrossRef]

28. Gao, Z.; Luo, Z.; Zhang, W.; Lv, Z.; Xu, Y. Deep learning application in plant stress imaging: A review. AgriEngineering 2020, 2,
430–446. [CrossRef]

29. Escamilla-García, A.; Soto-Zarazúa, G.M.; Toledano-Ayala, M.; Rivas-Araiza, E.; Gastélum-Barrios, A. Applications of Ar-
tificial Neural Networks in Greenhouse Technology and Overview for Smart Agriculture Development. Appl. Sci. 2020,
10, 3835. [CrossRef]

30. Cardim Ferreira Lima, M.; Damascena de Almeida Leandro, M.E.; Valero, C.; Pereira Coronel, L.C.; Gonçalves Bazzo, C.O.
Automatic Detection and Monitoring of Insect Pests—A Review. Agriculture 2020, 10, 161. [CrossRef]

31. Bolfe, É.L.; Jorge, L.A.d.C.; Sanches, I.D.A.; Luchiari Júnior, A.; da Costa, C.C.; Victoria, D.d.C.; Inamasu, R.Y.; Grego, C.R.;
Ferreira, V.R.; Ramirez, A.R. Precision and Digital Agriculture: Adoption of Technologies and Perception of Brazilian Farmers.
Agriculture 2020, 10, 653. [CrossRef]

32. Astill, J.; Dara, R.A.; Fraser, E.D.; Roberts, B.; Sharif, S. Smart poultry management: Smart sensors, big data, and the internet of
things. Comput. Electron. Agric. 2020, 170, 105291. [CrossRef]

33. Armenta-Medina, D.; Ramirez-delReal, T.A.; Villanueva-Vásquez, D.; Mejia-Aguirre, C. Trends on Advanced Information
and Communication Technologies for Improving Agricultural Productivities: A Bibliometric Analysis. Agronomy 2020,
10, 1989. [CrossRef]

34. Shafi, U.; Mumtaz, R.; García-Nieto, J.; Hassan, S.A.; Zaidi, S.A.R.; Iqbal, N. Precision agriculture techniques and practices: From
considerations to applications. Sensors 2019, 19, 3796. [CrossRef]

35. Ryu, Y.; Berry, J.A.; Baldocchi, D.D. What is global photosynthesis? History, uncertainties and opportunities. Remote Sens. Environ.
2019, 223, 95–114. [CrossRef]

36. Maes, W.H.; Steppe, K. Perspectives for remote sensing with unmanned aerial vehicles in precision agriculture. Trends Plant Sci.
2019, 24, 152–164. [CrossRef] [PubMed]

37. Cao, L.; Liu, H.; Fu, X.; Zhang, Z.; Shen, X.; Ruan, H. Comparison of UAV LiDAR and digital aerial photogrammetry point clouds
for estimating forest structural attributes in subtropical planted forests. Forests 2019, 10, 145. [CrossRef]

38. Tripodi, P.; Massa, D.; Venezia, A.; Cardi, T. Sensing technologies for precision phenotyping in vegetable crops: Current status
and future challenges. Agronomy 2018, 8, 57. [CrossRef]

39. Liakos, K.G.; Busato, P.; Moshou, D.; Pearson, S.; Bochtis, D. Machine learning in agriculture: A review. Sensors 2018,
18, 2674. [CrossRef]

http://doi.org/10.3390/s20051464
http://www.ncbi.nlm.nih.gov/pubmed/32155934
http://swamp-project.org/
https://cordis.europa.eu/project/id/872181
https://cordis.europa.eu/project/id/772835
https://profesionalagro.com/noticias/drones-e-inteligencia-artificial-en-agricultura-mejor-rendimiento.html
https://profesionalagro.com/noticias/drones-e-inteligencia-artificial-en-agricultura-mejor-rendimiento.html
http://doi.org/10.3390/rs12193188
http://doi.org/10.1016/j.rse.2019.111402
http://doi.org/10.3390/rs12193136
http://doi.org/10.3390/agronomy10020207
http://doi.org/10.3390/rs12213665
http://doi.org/10.3390/rs12203424
http://doi.org/10.3390/rs12091357
http://doi.org/10.3390/rs12162659
http://doi.org/10.3390/agriculture10080362
http://doi.org/10.3390/s20041042
http://doi.org/10.3390/agriengineering2030029
http://doi.org/10.3390/app10113835
http://doi.org/10.3390/agriculture10050161
http://doi.org/10.3390/agriculture10120653
http://doi.org/10.1016/j.compag.2020.105291
http://doi.org/10.3390/agronomy10121989
http://doi.org/10.3390/s19173796
http://doi.org/10.1016/j.rse.2019.01.016
http://doi.org/10.1016/j.tplants.2018.11.007
http://www.ncbi.nlm.nih.gov/pubmed/30558964
http://doi.org/10.3390/f10020145
http://doi.org/10.3390/agronomy8040057
http://doi.org/10.3390/s18082674


Appl. Sci. 2021, 11, 5911 22 of 26

40. Huang, Y.; Chen, Z.-x.; Tao, Y.; Huang, X.-z.; Gu, X.-f. Agricultural remote sensing big data: Management and applications. J.
Integr. Agric. 2018, 17, 1915–1931. [CrossRef]

41. Deery, D.; Jimenez-Berni, J.; Jones, H.; Sirault, X.; Furbank, R. Proximal remote sensing buggies and potential applications for
field-based phenotyping. Agronomy 2014, 4, 349–379. [CrossRef]

42. Zheng, C.; Abd-Elrahman, A.; Whitaker, V. Remote Sensing and Machine Learning in Crop Phenotyping and Management, with
an Emphasis on Applications in Strawberry Farming. Remote Sens. 2021, 13, 531. [CrossRef]

43. Koza, J.R.; Bennett, F.H.; Andre, D.; Keane, M.A. Automated design of both the topology and sizing of analog electrical circuits
using genetic programming. In Artificial Intelligence in Design’96; Springer: Dordrecht, The Netherlands, 1996; pp. 151–170.

44. Gu, J.; Wang, Z.; Kuen, J.; Ma, L.; Shahroudy, A.; Shuai, B.; Liu, T.; Wang, X.; Wang, G.; Cai, J. Recent advances in convolutional
neural networks. Pattern Recognit. 2018, 77, 354–377. [CrossRef]

45. Heung, B.; Ho, H.C.; Zhang, J.; Knudby, A.; Bulmer, C.E.; Schmidt, M.G. An overview and comparison of machine-learning
techniques for classification purposes in digital soil mapping. Geoderma 2016, 265, 62–77. [CrossRef]

46. Shelestov, A.; Lavreniuk, M.; Kussul, N.; Novikov, A.; Skakun, S. Exploring Google Earth Engine platform for big data processing:
Classification of multi-temporal satellite imagery for crop mapping. Front. Earth Sci. 2017, 5, 17. [CrossRef]

47. Gómez-Dans, J.L.; Lewis, P.E.; Disney, M. Efficient emulation of radiative transfer codes using Gaussian processes and application
to land surface parameter inferences. Remote Sens. 2016, 8, 119. [CrossRef]

48. Yuzugullu, O.; Marelli, S.; Erten, E.; Sudret, B.; Hajnsek, I. Determining rice growth stage with X-band SAR: A metamodel based
inversion. Remote Sens. 2017, 9, 460. [CrossRef]

49. Ali, I.; Greifeneder, F.; Stamenkovic, J.; Neumann, M.; Notarnicola, C. Review of machine learning approaches for biomass and
soil moisture retrievals from remote sensing data. Remote Sens. 2015, 7, 16398–16421. [CrossRef]

50. Verrelst, J.; Malenovský, Z.; Van der Tol, C.; Camps-Valls, G.; Gastellu-Etchegorry, J.-P.; Lewis, P.; North, P.; Moreno, J. Quantifying
vegetation biophysical variables from imaging spectroscopy data: A review on retrieval methods. Surv. Geophys. 2019, 40,
589–629. [CrossRef]

51. Barbedo, J.G.A. Plant disease identification from individual lesions and spots using deep learning. Biosyst. Eng. 2019, 180,
96–107. [CrossRef]

52. Liu, B.; Zhang, Y.; He, D.; Li, Y. Identification of apple leaf diseases based on deep convolutional neural networks. Symmetry 2018,
10, 11. [CrossRef]

53. Ramcharan, A.; Baranowski, K.; McCloskey, P.; Ahmed, B.; Legg, J.; Hughes, D.P. Deep learning for image-based cassava disease
detection. Front. Plant Sci. 2017, 8, 1852. [CrossRef] [PubMed]

54. Lu, J.; Hu, J.; Zhao, G.; Mei, F.; Zhang, C. An in-field automatic wheat disease diagnosis system. Comput. Electron. Agric. 2017,
142, 369–379. [CrossRef]

55. DeChant, C.; Wiesner-Hanks, T.; Chen, S.; Stewart, E.L.; Yosinski, J.; Gore, M.A.; Nelson, R.J.; Lipson, H. Automated identification
of northern leaf blight-infected maize plants from field imagery using deep learning. Phytopathology 2017, 107, 1426–1432.
[CrossRef] [PubMed]

56. Kaneda, Y.; Shibata, S.; Mineno, H. Multi-modal sliding window-based support vector regression for predicting plant water
stress. Knowl. Based Syst. 2017, 134, 135–148. [CrossRef]

57. Fuentes, A.; Yoon, S.; Kim, S.C.; Park, D.S. A robust deep-learning-based detector for real-time tomato plant diseases and pests
recognition. Sensors 2017, 17, 2022. [CrossRef]

58. Rangarajan, A.K.; Purushothaman, R. Disease classification in eggplant using pre-trained vgg16 and msvm. Sci. Rep. 2020,
10, 1–11.

59. Ghosal, S.; Blystone, D.; Singh, A.K.; Ganapathysubramanian, B.; Singh, A.; Sarkar, S. An explainable deep machine vision
framework for plant stress phenotyping. Proc. Natl. Acad. Sci. USA 2018, 115, 4613–4618. [CrossRef]

60. Too, E.C.; Yujian, L.; Njuki, S.; Yingchun, L. A comparative study of fine-tuning deep learning models for plant disease
identification. Proc. Natl. Acad. Sci. USA 2019, 161, 272–279. [CrossRef]

61. Rançon, F.; Bombrun, L.; Keresztes, B.; Germain, C. Comparison of SIFT encoded and deep learning features for the classification
and detection of Esca disease in Bordeaux vineyards. Remote Sens. 2019, 11, 1. [CrossRef]

62. An, J.; Li, W.; Li, M.; Cui, S.; Yue, H. Identification and classification of maize drought stress using deep convolutional neural
network. Symmetry 2019, 11, 256. [CrossRef]

63. Cruz, A.; Ampatzidis, Y.; Pierro, R.; Materazzi, A.; Panattoni, A.; De Bellis, L.; Luvisi, A. Detection of grapevine yellows symptoms
in Vitis vinifera L. with artificial intelligence. Comput. Electron. Agric. 2019, 157, 63–76. [CrossRef]

64. Liang, W.-j.; Zhang, H.; Zhang, G.-f.; Cao, H.-x. Rice blast disease recognition using a deep convolutional neural network. Sci.
Rep. 2019, 9, 1–10. [CrossRef] [PubMed]

65. Esgario, J.G.; Krohling, R.A.; Ventura, J.A. Deep learning for classification and severity estimation of coffee leaf biotic stress.
Comput. Electron. Agric. 2020, 169, 105162. [CrossRef]

66. Brahimi, M.; Mahmoudi, S.; Boukhalfa, K.; Moussaoui, A. Deep interpretable architecture for plant diseases classification. In
Proceedings of the 2019 Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA), Poznan, Poland,
18–20 September 2019; pp. 111–116.

67. Jin, X.; Jie, L.; Wang, S.; Qi, H.J.; Li, S.W. Classifying wheat hyperspectral pixels of healthy heads and Fusarium head blight
disease using a deep neural network in the wild field. Remote Sens. 2018, 10, 395. [CrossRef]

http://doi.org/10.1016/S2095-3119(17)61859-8
http://doi.org/10.3390/agronomy4030349
http://doi.org/10.3390/rs13030531
http://doi.org/10.1016/j.patcog.2017.10.013
http://doi.org/10.1016/j.geoderma.2015.11.014
http://doi.org/10.3389/feart.2017.00017
http://doi.org/10.3390/rs8020119
http://doi.org/10.3390/rs9050460
http://doi.org/10.3390/rs71215841
http://doi.org/10.1007/s10712-018-9478-y
http://doi.org/10.1016/j.biosystemseng.2019.02.002
http://doi.org/10.3390/sym10010011
http://doi.org/10.3389/fpls.2017.01852
http://www.ncbi.nlm.nih.gov/pubmed/29163582
http://doi.org/10.1016/j.compag.2017.09.012
http://doi.org/10.1094/PHYTO-11-16-0417-R
http://www.ncbi.nlm.nih.gov/pubmed/28653579
http://doi.org/10.1016/j.knosys.2017.07.028
http://doi.org/10.3390/s17092022
http://doi.org/10.1073/pnas.1716999115
http://doi.org/10.1016/j.compag.2018.03.032
http://doi.org/10.3390/rs11010001
http://doi.org/10.3390/sym11020256
http://doi.org/10.1016/j.compag.2018.12.028
http://doi.org/10.1038/s41598-019-38966-0
http://www.ncbi.nlm.nih.gov/pubmed/30814523
http://doi.org/10.1016/j.compag.2019.105162
http://doi.org/10.3390/rs10030395


Appl. Sci. 2021, 11, 5911 23 of 26

68. Ma, Y.-W.; Chen, J.-L. Toward intelligent agriculture service platform with lora-based wireless sensor network. In Proceedings of
the 2018 IEEE International Conference on Applied System Invention (ICASI), Chiba, Japan, 13–17 April 2018; pp. 204–207.

69. Khan, M.A.; Akram, T.; Sharif, M.; Awais, M.; Javed, K.; Ali, H.; Saba, T. CCDF: Automatic system for segmentation and
recognition of fruit crops diseases based on correlation coefficient and deep CNN features. Comput. Electron. Agric. 2018, 155,
220–236. [CrossRef]

70. Das, S.; Roy, D.; Das, P. Disease Feature Extraction and Disease Detection from Paddy Crops Using Image Processing and Deep
Learning Technique. In Computational Intelligence in Pattern Recognition; Springer: Berlin/Heidelberg, Germany, 2020; pp. 443–449.

71. Zhang, S.; Zhang, S.; Zhang, C.; Wang, X.; Shi, Y. Cucumber leaf disease identification with global pooling dilated convolutional
neural network. Comput. Electron. Agric. 2019, 162, 422–430. [CrossRef]

72. Stewart, E.L.; Wiesner-Hanks, T.; Kaczmar, N.; DeChant, C.; Wu, H.; Lipson, H.; Nelson, R.J.; Gore, M.A. Quantitative phenotyping
of Northern Leaf Blight in UAV images using deep learning. Remote Sens. 2019, 11, 2209. [CrossRef]

73. Nie, X.; Wang, L.; Ding, H.; Xu, M. Strawberry verticillium wilt detection network based on multi-task learning and attention.
IEEE Access 2019, 7, 170003–170011. [CrossRef]

74. Lin, T.-L.; Chang, H.-Y.; Chen, K.-H. The pest and disease identification in the growth of sweet peppers using faster R-CNN and
mask R-CNN. J. Internet Technol. 2020, 21, 605–614.

75. Fu, Z.; Jiang, J.; Gao, Y.; Krienke, B.; Wang, M.; Zhong, K.; Cao, Q.; Tian, Y.; Zhu, Y.; Cao, W. Wheat growth monitoring and yield
estimation based on multi-rotor unmanned aerial vehicle. Remote Sens. 2020, 12, 508. [CrossRef]

76. Apolo-Apolo, O.; Martínez-Guanter, J.; Egea, G.; Raja, P.; Pérez-Ruiz, M. Deep learning techniques for estimation of the yield and
size of citrus fruits using a UAV. Eur. J. Agron. 2020, 115, 126030. [CrossRef]

77. Huang, H.; Deng, J.; Lan, Y.; Yang, A.; Deng, X.; Zhang, L. A fully convolutional network for weed mapping of unmanned aerial
vehicle (UAV) imagery. PLoS ONE 2018, 13, e0196302. [CrossRef]

78. Näsi, R.; Viljanen, N.; Kaivosoja, J.; Alhonoja, K.; Hakala, T.; Markelin, L.; Honkavaara, E. Estimating biomass and nitrogen
amount of barley and grass using UAV and aircraft based spectral and photogrammetric 3D features. Remote Sens. 2018,
10, 1082. [CrossRef]

79. Adebayo, S.; Ogunti, E.O.; Akingbade, F.K.; Oladimeji, O. A review of decision support system using mobile applications
in the provision of day to day information about farm status for improved crop yield. Period. Eng. Nat. Sci. (PEN) 2018, 6,
89–99. [CrossRef]

80. Kanatas, P.; Travlos, I.S.; Gazoulis, I.; Tataridas, A.; Tsekoura, A.; Antonopoulos, N. Benefits and limitations of decision support
systems (DSS) with a special emphasis on weeds. Agronomy 2020, 10, 548. [CrossRef]

81. Barnes, E.; Baker, M.; Pinter, P.; Jones, D. Integration of Remote Sensing and Crop Models to Provide Decision Support for Precision
Crop Management. Geospat. Inf. 1998. Available online: https://www.ars.usda.gov/research/publications/publication/?seqNo1
15=91023 (accessed on 9 April 2021).

82. Ahonen, T.; Virrankoski, R.; Elmusrati, M. Greenhouse monitoring with wireless sensor network. In Proceedings of the 2008
IEEE/ASME International Conference on Mechtronic and Embedded Systems and Applications, Beijing, China, 12–15 October
2008; pp. 403–408.

83. Yang, G.; Liu, J.; Zhao, C.; Li, Z.; Huang, Y.; Yu, H.; Xu, B.; Yang, X.; Zhu, D.; Zhang, X. Unmanned aerial vehicle remote sensing
for field-based crop phenotyping: Current status and perspectives. Front. Plant Sci. 2017, 8, 1111. [CrossRef] [PubMed]

84. Steele-Dunne, S.C.; McNairn, H.; Monsivais-Huertero, A.; Judge, J.; Liu, P.-W.; Papathanassiou, K. Radar remote sensing of
agricultural canopies: A review. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 2249–2273. [CrossRef]

85. Mishra, P.; Asaari, M.S.M.; Herrero-Langreo, A.; Lohumi, S.; Diezma, B.; Scheunders, P. Close range hyperspectral imaging of
plants: A review. Biosyst. Eng. 2017, 164, 49–67. [CrossRef]

86. Corp, L.A.; McMurtrey, J.E.; Middleton, E.M.; Mulchi, C.L.; Chappelle, E.W.; Daughtry, C.S. Fluorescence sensing systems: In vivo
detection of biophysical variations in field corn due to nitrogen supply. Remote Sens. Environ. 2003, 86, 470–479. [CrossRef]

87. Wallace, L.; Lucieer, A.; Watson, C.; Turner, D. Development of a UAV-LiDAR system with application to forest inventory. Remote
Sens. 2012, 4, 1519–1543. [CrossRef]

88. Ruiz-Garcia, L.; Lunadei, L.; Barreiro, P.; Robla, I. A review of wireless sensor technologies and applications in agriculture and
food industry: State of the art and current trends. Sensors 2009, 9, 4728–4750. [CrossRef]

89. Abbasi, A.Z.; Islam, N.; Shaikh, Z.A. A review of wireless sensors and networks’ applications in agriculture. Comput. Stand.
Interfaces 2014, 36, 263–270.

90. Sahitya, G.; Balaji, N.; Naidu, C.D.; Abinaya, S. Designing a wireless sensor network for precision agriculture using zigbee.
In Proceedings of the 2017 IEEE 7th International Advance Computing Conference (IACC), Hyderabad, India, 5–7 January
2017; pp. 287–291.

91. Azzari, G.; Goulden, M.L.; Rusu, R.B. Rapid characterization of vegetation structure with a Microsoft Kinect sensor. Sensors 2013,
13, 2384–2398. [CrossRef]

92. Iban, M.C.; Aksu, O. A model for big spatial rural data infrastructure in Turkey: Sensor-driven and integrative approach. Land
Use Policy 2020, 91, 104376. [CrossRef]

93. INSIDER. Available online: https://www.businessinsider.com/smart-farming-iot-agriculture (accessed on 7 February 2021).
94. NASA. NASA Knows. Available online: https://www.nasa.gov/audience/forstudents/5-8/features/nasa-knows/what-is-a-

satellite-58.html (accessed on 17 January 2021).

http://doi.org/10.1016/j.compag.2018.10.013
http://doi.org/10.1016/j.compag.2019.03.012
http://doi.org/10.3390/rs11192209
http://doi.org/10.1109/ACCESS.2019.2954845
http://doi.org/10.3390/rs12030508
http://doi.org/10.1016/j.eja.2020.126030
http://doi.org/10.1371/journal.pone.0196302
http://doi.org/10.3390/rs10071082
http://doi.org/10.21533/pen.v6i2.183
http://doi.org/10.3390/agronomy10040548
https://www.ars.usda.gov/research/publications/publication/?seqNo115=91023
https://www.ars.usda.gov/research/publications/publication/?seqNo115=91023
http://doi.org/10.3389/fpls.2017.01111
http://www.ncbi.nlm.nih.gov/pubmed/28713402
http://doi.org/10.1109/JSTARS.2016.2639043
http://doi.org/10.1016/j.biosystemseng.2017.09.009
http://doi.org/10.1016/S0034-4257(03)00125-1
http://doi.org/10.3390/rs4061519
http://doi.org/10.3390/s90604728
http://doi.org/10.3390/s130202384
http://doi.org/10.1016/j.landusepol.2019.104376
https://www.businessinsider.com/smart-farming-iot-agriculture
https://www.nasa.gov/audience/forstudents/5-8/features/nasa-knows/what-is-a-satellite-58.html
https://www.nasa.gov/audience/forstudents/5-8/features/nasa-knows/what-is-a-satellite-58.html


Appl. Sci. 2021, 11, 5911 24 of 26

95. Al-Yaari, A.; Wigneron, J.-P.; Dorigo, W.; Colliander, A.; Pellarin, T.; Hahn, S.; Mialon, A.; Richaume, P.; Fernandez-Moran, R.; Fan,
L. Assessment and inter-comparison of recently developed/reprocessed microwave satellite soil moisture products using ISMN
ground-based measurements. Remote Sens. Environ. 2019, 224, 289–303. [CrossRef]

96. Institute, N.G. National Remote Sensing Plan. Available online: https://pnt.ign.es/que-es-pnt (accessed on 21 January 2021).
97. Copernicus. Available online: https://www.copernicus.eu/es (accessed on 21 January 2021).
98. ESA. Available online: https://www.esa.int/Applications/Observing_the_Earth/Copernicus/Sentinel-1/Cloud-free_crop_

maps_foster_sustainable_farming (accessed on 21 January 2021).
99. Mazzia, V.; Comba, L.; Khaliq, A.; Chiaberge, M.; Gay, P. UAV and Machine Learning Based Refinement of a Satellite-Driven

Vegetation Index for Precision Agriculture. Sensors 2020, 20, 2530. [CrossRef] [PubMed]
100. Panek, E.; Gozdowski, D. Relationship between MODIS Derived NDVI and Yield of Cereals for Selected European Countries.

Agronomy 2021, 11, 340. [CrossRef]
101. Cheng, T.; Ji, X.; Yang, G.; Zheng, H.; Ma, J.; Yao, X.; Zhu, Y.; Cao, W. DESTIN: A new method for delineating the boundaries of

crop fields by fusing spatial and temporal information from WorldView and Planet satellite imagery. Comput. Electron. Agric.
2020, 178, 105787. [CrossRef]

102. Tetteh, G.O.; Gocht, A.; Conrad, C. Optimal parameters for delineating agricultural parcels from satellite images based on
supervised Bayesian optimization. Comput. Electron. Agric. 2020, 178, 105696. [CrossRef]

103. Research, E.V. Available online: https://www.electricvehiclesresearch.com/articles/13908/agricultural-robotics-and-drones-
diversity-of-functions-forms (accessed on 25 February 2021).

104. Tzounis, A.; Bartzanas, T.; Kittas, C.; Katsoulas, N.; Ferentinos, K. Spatially distributed greenhouse climate control based
on wireless sensor network measurements. In Proceedings of the V International Symposium on Applications of Modelling as an
Innovative Technology in the Horticultural Supply Chain-Model-IT 1154; ISHS Acta Horticulturae: Wageningen, The Netherlands,
2017; pp. 111–120.

105. Keerthi, V.; Kodandaramaiah, G. Cloud IoT based greenhouse monitoring system. Int. J. Eng. Res. Appl. 2015, 5, 35–41.
106. Tzounis, A.; Katsoulas, N.; Bartzanas, T.; Kittas, C. Internet of Things in agriculture, recent advances and future challenges.

Biosyst. Eng. 2017, 164, 31–48. [CrossRef]
107. Barsi, J.A.; Schott, J.R.; Hook, S.J.; Raqueno, N.G.; Markham, B.L.; Radocinski, R.G. Landsat-8 thermal infrared sensor (TIRS)

vicarious radiometric calibration. Remote Sens. 2014, 6, 11607–11626. [CrossRef]
108. Pino, E. Los drones una herramienta para una agricultura eficiente: Un futuro de alta tecnología. Idesia (Arica) 2019, 37,

75–84. [CrossRef]
109. Oré, G.; Alcântara, M.S.; Góes, J.A.; Oliveira, L.P.; Yepes, J.; Teruel, B.; Castro, V.; Bins, L.S.; Castro, F.; Luebeck, D. Crop growth

monitoring with drone-borne DInSAR. Remote Sens. 2020, 12, 615. [CrossRef]
110. Panday, U.S.; Shrestha, N.; Maharjan, S.; Pratihast, A.K.; Shrestha, K.L.; Aryal, J. Correlating the plant height of wheat with

above-ground biomass and crop yield using drone imagery and crop surface model, a case study from Nepal. Drones 2020,
4, 28. [CrossRef]

111. DEVI, G.; Sowmiya, N.; Yasoda, K.; Muthulakshmi, K.; BALASUBRAMANIAN, K. Review on Application of Drones for Crop
Health Monitoring and Spraying Pesticides and Fertilizer. J. Crit. Rev. 2020, 7, 667–672.

112. Rani, A.; Chaudhary, A.; Sinha, N.; Mohanty, M.; Chaudhary, R. Drone: The green technology for future agriculture. Har. Dhara
2019, 2, 3–6.

113. Santos, L.M.d.; Barbosa, B.D.S.; Andrade, A.D. Use of remotely piloted aircraft in precision agriculture: A review. Dyna 2019,
86, 284–291.

114. Stehr, N.J. Drones: The newest technology for precision agriculture. Nat. Sci. Educ. 2015, 44, 89–91. [CrossRef]
115. Psirofonia, P.; Samaritakis, V.; Eliopoulos, P.; Potamitis, I. Use of unmanned aerial vehicles for agricultural applications with

emphasis on crop protection: Three novel case-studies. Int. J. Agric. Sci. Technol. 2017, 5, 30–39. [CrossRef]
116. Ren, Q.; Zhang, R.; Cai, W.; Sun, X.; Cao, L. Application and Development of New Drones in Agriculture. In Proceedings of IOP

Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2020; p. 052041.
117. Wang, W.; Paschalidis, K.; Feng, J.-C.; Song, J.; Liu, J.-H. Polyamine catabolism in plants: A universal process with diverse

functions. Front. Plant Sci. 2019, 10, 561. [CrossRef]
118. Iost Filho, F.H.; Heldens, W.B.; Kong, Z.; de Lange, E.S. Drones: Innovative technology for use in precision pest management. J.

Econ. Entomol. 2020, 113, 1–25. [CrossRef] [PubMed]
119. Daponte, P.; De Vito, L.; Glielmo, L.; Iannelli, L.; Liuzza, D.; Picariello, F.; Silano, G. A review on the use of drones for precision

agriculture. In Proceedings of IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2020; p. 012022.
120. Natu, A.S.; Kulkarni, S. Adoption and utilization of drones for advanced precision farming: A review. Int. J. Recent Innov. Trends

Comput. Commun. 2016, 4, 563–565.
121. Gómez-Candón, D.; Virlet, N.; Labbé, S.; Jolivot, A.; Regnard, J.-L. Field phenotyping of water stress at tree scale by UAV-sensed

imagery: New insights for thermal acquisition and calibration. Precis. Agric. 2016, 17, 786–800. [CrossRef]
122. Knipper, K.R.; Kustas, W.P.; Anderson, M.C.; Alfieri, J.G.; Prueger, J.H.; Hain, C.R.; Gao, F.; Yang, Y.; McKee, L.G.; Nieto, H.

Evapotranspiration estimates derived using thermal-based satellite remote sensing and data fusion for irrigation management in
California vineyards. Irrig. Sci. 2019, 37, 431–449. [CrossRef]

http://doi.org/10.1016/j.rse.2019.02.008
https://pnt.ign.es/que-es-pnt
https://www.copernicus.eu/es
https://www.esa.int/Applications/Observing_the_Earth/Copernicus/Sentinel-1/Cloud-free_crop_maps_foster_sustainable_farming
https://www.esa.int/Applications/Observing_the_Earth/Copernicus/Sentinel-1/Cloud-free_crop_maps_foster_sustainable_farming
http://doi.org/10.3390/s20092530
http://www.ncbi.nlm.nih.gov/pubmed/32365636
http://doi.org/10.3390/agronomy11020340
http://doi.org/10.1016/j.compag.2020.105787
http://doi.org/10.1016/j.compag.2020.105696
https://www.electricvehiclesresearch.com/articles/13908/agricultural-robotics-and-drones-diversity-of-functions-forms
https://www.electricvehiclesresearch.com/articles/13908/agricultural-robotics-and-drones-diversity-of-functions-forms
http://doi.org/10.1016/j.biosystemseng.2017.09.007
http://doi.org/10.3390/rs61111607
http://doi.org/10.4067/S0718-34292019005000402
http://doi.org/10.3390/rs12040615
http://doi.org/10.3390/drones4030028
http://doi.org/10.4195/nse2015.04.0772
http://doi.org/10.12783/ijast.2017.0501.03
http://doi.org/10.3389/fpls.2019.00561
http://doi.org/10.1093/jee/toz268
http://www.ncbi.nlm.nih.gov/pubmed/31811713
http://doi.org/10.1007/s11119-016-9449-6
http://doi.org/10.1007/s00271-018-0591-y


Appl. Sci. 2021, 11, 5911 25 of 26

123. Song, X.-P.; Liang, Y.-J.; Zhang, X.-Q.; Qin, Z.-Q.; Wei, J.-J.; Li, Y.-R.; Wu, J.-M. Intrusion of fall armyworm (Spodoptera frugiperda)
in sugarcane and its control by drone in China. Sugar Tech 2020, 22, 734–737. [CrossRef]

124. Shaw, K.K.; Vimalkumar, R. Design and development of a drone for spraying pesticides, fertilizers and disinfectants. Eng. Res.
Technol. (IJERT) 2020, 9, 1181–1185.

125. Tripicchio, P.; Satler, M.; Dabisias, G.; Ruffaldi, E.; Avizzano, C.A. Towards smart farming and sustainable agriculture with
drones. In Proceedings of the 2015 International Conference on Intelligent Environments, Prague, Czech Republic, 15–17 July
2015; pp. 140–143.

126. Negash, L.; Kim, H.-Y.; Choi, H.-L. Emerging UAV applications in agriculture. In Proceedings of the 2019 7th International
Conference on Robot Intelligence Technology and Applications (RiTA), Daejeon, Korea, 1–3 November 2019; pp. 254–257.

127. Herrmann, I.; Bdolach, E.; Montekyo, Y.; Rachmilevitch, S.; Townsend, P.A.; Karnieli, A. Assessment of maize yield and phenology
by drone-mounted superspectral camera. Precis. Agric. 2020, 21, 51–76. [CrossRef]

128. Vroegindeweij, B.A.; van Wijk, S.W.; van Henten, E. Autonomous unmanned aerial vehicles for agricultural applications. In
Proceedings of the AgEng 2014, Lausanne, Switzerland, 6–10 July 2014.

129. Gauvreau, P.R., Jr. Unmanned Aerial Vehicle for Augmenting Plant Pollination. U.S. Patent Application No 16/495,818, 23
January 2020.

130. Sun, Y.; Yi, S.; Hou, F.; Luo, D.; Hu, J.; Zhou, Z. Quantifying the dynamics of livestock distribution by unmanned aerial vehicles
(UAVs): A case study of yak grazing at the household scale. Rangel. Ecol. Manag. 2020, 73, 642–648. [CrossRef]

131. Banu, T.P.; Borlea, G.F.; Banu, C. The use of drones in forestry. J. Environ. Sci. Eng. B 2016, 5, 557–562.
132. Torresan, C.; Berton, A.; Carotenuto, F.; Di Gennaro, S.F.; Gioli, B.; Matese, A.; Miglietta, F.; Vagnoli, C.; Zaldei, A.; Wallace, L.

Forestry applications of UAVs in Europe: A review. Int. J. Remote Sens. 2017, 38, 2427–2447. [CrossRef]
133. D’Odorico, P.; Besik, A.; Wong, C.Y.; Isabel, N.; Ensminger, I. High-throughput drone-based remote sensing reliably tracks

phenology in thousands of conifer seedlings. New Phytol. 2020, 226, 1667–1681. [CrossRef]
134. Tu, Y.-H.; Phinn, S.; Johansen, K.; Robson, A.; Wu, D. Optimising drone flight planning for measuring horticultural tree crop

structure. New Phytol. 2020, 160, 83–96. [CrossRef]
135. Sudhakar, S.; Vijayakumar, V.; Kumar, C.S.; Priya, V.; Ravi, L.; Subramaniyaswamy, V. Unmanned Aerial Vehicle (UAV) based

Forest Fire Detection and monitoring for reducing false alarms in forest-fires. Comput. Commun. 2020, 149, 1–16. [CrossRef]
136. Vayssade, J.-A.; Arquet, R.; Bonneau, M. Automatic activity tracking of goats using drone camera. Comput. Electron. Agric. 2019,

162, 767–772. [CrossRef]
137. Wang, D.; Song, Q.; Liao, X.; Ye, H.; Shao, Q.; Fan, J.; Cong, N.; Xin, X.; Yue, H.; Zhang, H. Integrating satellite and unmanned

aircraft system (UAS) imagery to model livestock population dynamics in the Longbao Wetland National Nature Reserve, China.
Sci. Total Environ. 2020, 746, 140327. [CrossRef]

138. Cerro, J.d.; Cruz Ulloa, C.; Barrientos, A.; de León Rivas, J. Unmanned Aerial Vehicles in Agriculture: A Survey. Agronomy 2021,
11, 203. [CrossRef]

139. A Global Directory of Drone Laws and Regulations. Available online: https://uavcoach.com/drone-laws/ (accessed on 14
February 2021).

140. Singh, B.; Singh, N.; Kaushish, A.; Gupta, N. Optimizing IOT Drones using Cellular Networks. In Proceedings of the 2020 12th
International Conference on Computational Intelligence and Communication Networks (CICN), Bhimtal, India, 25–26 September
2020; pp. 192–197.

141. Prasanna, M.S.; Jebapriya, M.J. IoT based agriculture monitoring and smart farming using drones. Mukt Shabd J. 2020, IX, 525–534.
142. García, L.; Parra, L.; Jimenez, J.M.; Lloret, J.; Mauri, P.V.; Lorenz, P. DronAway: A Proposal on the Use of Remote Sensing Drones

as Mobile Gateway for WSN in Precision Agriculture. Appl. Sci. 2020, 10, 6668. [CrossRef]
143. Chinnaiyan, R.; Balachandar, S. Reliable administration framework of drones and IoT sensors in agriculture farmstead using

blockchain and smart contracts. In Proceedings of the Proceedings of the 2020 2nd International Conference on Big Data
Engineering and Technology, Singapore, 3–5 January 2020; pp. 106–111.

144. Singh, K.K.; Frazier, A.E. A meta-analysis and review of unmanned aircraft system (UAS) imagery for terrestrial applications. Int.
J. Remote Sens. 2018, 39, 5078–5098. [CrossRef]

145. Halevy, A.; Norvig, P.; Pereira, F. The unreasonable effectiveness of data. IEEE Intell. Syst. 2009, 24, 8–12. [CrossRef]
146. Lelièvre, J.M.; Latchè, A.; Jones, B.; Bouzayen, M.; Pech, J.C. Ethylene and fruit ripening. Physiol. Plant. 1997, 101,

727–739. [CrossRef]
147. Duveiller, G.; Cescatti, A. Spatially downscaling sun-induced chlorophyll fluorescence leads to an improved temporal correlation

with gross primary productivity. Remote Sens. Environ. 2016, 182, 72–89. [CrossRef]
148. Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial

analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [CrossRef]
149. GRANIOT. Available online: https://graniot.com/ (accessed on 11 February 2021).
150. Ampatzidis, Y.; De Bellis, L.; Luvisi, A. iPathology: Robotic applications and management of plants and plant diseases.

Sustainability 2017, 9, 1010. [CrossRef]

http://doi.org/10.1007/s12355-020-00799-x
http://doi.org/10.1007/s11119-019-09659-5
http://doi.org/10.1016/j.rama.2020.05.004
http://doi.org/10.1080/01431161.2016.1252477
http://doi.org/10.1111/nph.16488
http://doi.org/10.1016/j.isprsjprs.2019.12.006
http://doi.org/10.1016/j.comcom.2019.10.007
http://doi.org/10.1016/j.compag.2019.05.021
http://doi.org/10.1016/j.scitotenv.2020.140327
http://doi.org/10.3390/agronomy11020203
https://uavcoach.com/drone-laws/
http://doi.org/10.3390/app10196668
http://doi.org/10.1080/01431161.2017.1420941
http://doi.org/10.1109/MIS.2009.36
http://doi.org/10.1111/j.1399-3054.1997.tb01057.x
http://doi.org/10.1016/j.rse.2016.04.027
http://doi.org/10.1016/j.rse.2017.06.031
https://graniot.com/
http://doi.org/10.3390/su9061010


Appl. Sci. 2021, 11, 5911 26 of 26

151. Bueno-Delgado, M.V.; Molina-Martínez, J.M.; Correoso-Campillo, R.; Pavón-Mariño, P. Ecofert: An Android application for the
optimization of fertilizer cost in fertigation. Comput. Electron. Agric. 2016, 121, 32–42. [CrossRef]

152. Miyoshi, T.; Ibaraki, Y.; Sago, Y. Development of an android-tablet-based system for analyzing light intensity distribution on a
plant canopy surface. Comput. Electron. Agric. 2016, 122, 211–217. [CrossRef]

http://doi.org/10.1016/j.compag.2015.11.006
http://doi.org/10.1016/j.compag.2016.01.031

	Introduction 
	Agricultural Remote Sensing 
	Artificial Intelligence and RS 
	Sensors 
	Satellite 
	Remotely Piloted Aircrafts (RPAs) 
	Satellite and RPAs: A Complementing System 

	Future Perspective 
	Conclusions 
	References

