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ABSTRACT
Recently fuzzy interval flexible linear programs have attracted many
interests. These models are an extension of the classical linear pro-
grammingwhich deal with crisp parameters. However, inmost of the
real-world applications, the nature of the parameters of the decision-
making problems is generally imprecise. Such uncertainties can lead
to increased complexities in the related optimisation efforts. Simply
ignoring these uncertainties is considered undesired as it may result
in inferior orwrongdecisions. Therefore, inexact linear programming
methods are desiredunder uncertainty. In this paper,we concentrate
a fuzzy flexible linear programming model with flexible constraints
and the interval objective function and then propose a new solv-
ing approach based on solving an associated multi-objective model.
Finally, numerical example is included to illustrate the mentioned
solving process.
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1. Introduction

Fuzzy sets theory has been extensively employed in linear programming. The main objec-
tive in fuzzy linear programming is to find the best solution possible with imprecise,
vague, uncertain or incomplete information. There are many sources of imprecision in
fuzzy linear programming. The sources of imprecision in fuzzy linear programming vary.
For example, sometimes constraint satisfaction limits are vague and other times coefficient
variables are not known precisely. The research on fuzzy linear programming has risen
highly since Bellman and Zadeh proposed the concept of decision making in fuzzy envi-
ronment. Zimmermann [1] introduced the first formulation of fuzzy linear programming to
address the impreciseness and vagueness of the parameters in linear programming prob-
lems with fuzzy constraints and objective functions. There are generally four fuzzy linear
programming classifications in the literature.

Zimmerman [2] has classified fuzzy linear programming problems into two categories:
symmetrical and non-symmetrical models. In a symmetrical fuzzy decision, there is no dif-
ference between the weight of the objectives and constraints while in the asymmetrical
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fuzzy decision, the objectives and constraints are not equally important and have different
weights [3].

Leung [4] has classified fuzzy linear programming problems into four categories: a pre-
cise objective and fuzzy constraints; a fuzzy objective and precise constraints; a fuzzy
objective and fuzzy constraints; and robust programming.

Luhandjula [5] has classified fuzzy linear programming problems into three cate-
gories: flexible programming;mathematical programmingwith fuzzy parameters and fuzzy
stochastic programming.

Inuiguchi et al. [6] have classified fuzzy linear programming problems into six categories:
flexible programming; possibilistic programming; possibilistic linear programming using
fuzzymax; robust programming; possibilistic programmingwith fuzzy preference relations
and possibilistic linear programming with fuzzy goals.

Delgado et al. [7] studied a generalmodel for fuzzy linear programming problemswhich
simultaneously involved in the constraints set both fuzzy numbers and fuzzy constraints.
Mahdavi-Amiri and Nasseri [8] proposed a fuzzy linear programming model where a lin-
ear ranking function was used to rank order trapezoidal fuzzy numbers. They established
the dual problem of the linear programming problem with trapezoidal fuzzy variables and
deduced some duality results to solve the fuzzy linear programming problem directly with
the primal simplex tableau. Mahdavi-Amiri and Nasseri [9] developed some methods for
solving fuzzy linear programming problems by introducing and solving certain auxiliary
problems. They apply a linear ranking function to order trapezoidal fuzzy numbers and
deduce some duality results by establishing the dual problem of the linear programming
problem with trapezoidal fuzzy variables. Wu [10] derived the optimality conditions for
fuzzy linear programming problems by proposing two solution concepts based on similar
solution concept, called the non-dominated solution, in the multiobjective programming
problem. Inuiguchi and Ramik [6] and Peidro et al. have developed a number of fuzzy linear
programmingmodels to solve problems ranging from supply chain management to prod-
uct development. Then Verdegay in [11] used the duality results to solve the original fuzzy
linear programming. After that, Nasseri et al. in [12] introduced an equivalent fuzzy linear
model for the flexible linear programming problems and proposed a fuzzy primal simplex
algorithm to solve these problems. Recently, Attari and Nasseri [13] introduced a concept
of feasibility and efficiency of solution for the fuzzy mathematical programming prob-
lems. The suggested algorithm needs to solve two classical associated linear programming
problems to achieve an optimal flexible solution.

Interval linear programming, based on interval analysis, was proved to be an effective
approach in dealing with uncertainties. Interval linear programming did not require distri-
butional information and would not lead to complicated intermediate models. However,
it was to be noted that the outputs of Interval linear programming were with lower and
upper bounds, and thus could not reflect the distribution of uncertainty within the lower
and upper bounds [14]. In some methods, Interval Linear Programming (ILP) model trans-
formed into two sub-model whereas their optimal solutions formed a set which is called
solution space of ILP model. The optimal solution set of ILP is determined by the best and
worstmodel constraints,when the feasible solution components of bestmodel arepositive.
In the Best and Worst Cases (BWC) method presented by Tong, the ILP model transformed
into two sub-models [15,16], which consist of the largest and smallest feasible regions,
so the BWC method introduces exact bounds of objective function values. A given point
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is feasible of ILP model, if it is satisfies in best model constraints and it is optimal of ILP
model, if it is optimal solution of arbitrary characteristic model of ILP model. Chinnec and
Ramadan developed BWC method when ILP model includes equality constraints [17], and
a new method for solving proposed by Huang and More [18]. Part of solution space of
BWC and ILP methods may be infeasible. To ensure that solutions are absolutely feasible,
Zhou et al. exhibited Modified Interval Linear Programming (MILP) method, by adding an
extra constraint to the second sub-model. Some of the solutions which are obtained by the
MILPmethodmay be non-optimal. Also, amongmethods for solving ILPmodel, a Two-Step
Method (TSM) had been presented by Huang et al. [18]. Solution space of the TSMmethod
may be included infeasible solutions. To eliminate infeasible solutions from solution space
of the TSMmethod, somemethods are proposed.Wang andHuang addedextra constraints
to the second sub-model of TSM to ensure feasibility of solutions (namely ITSM). Part of
solution space of ITSM is not optimal. Recently, Mishmast Nehi and Allahdadi [17,19] mod-
ified and improved the Tong method, which was unable to get optimal response on some
issues. In this study, we give a generalised form of these problems in two ways: in first way,
we consider the flexibility condition for the constraints, and in secondway we consider the
multi-objective case for the objective. In this sense, we introduce a new extended model
and then propose a method for solving the proposed model.

The rest of this paper is organised as follows: In Section 2, we review the basic definitions
and results on interval linear programming problem. Section 3 gives the definition of FFLP
problem and proposes parametric approach to solve it. We give a new method for solving
FFLP problemwith multi-objective and interval objective function in Section 4. Section 5 is
assigned to the illustrated example. Finally, conclusion is discussed in Section 6.

2. Interval Linear Programming Problems

In many real-word models, these coefficients are uncertain, so that they are bounded
between upper and lower bounds. Therefore, in the formulation of research question in
operations, if the data are in form of interval numbers, then the problem is an interval lin-
ear programming problem. In first time, Ben and Robbers presented the first interval linear
programming model for interval constraints. Subsequently Huang and Moore introduced
a new linear programmingmodel in which all parameters and variables were interval. Gen-
erally, the solution method in these cases is the application of concepts that can turn the
interval problem into problems with ordinary coefficients [14,18,19].

Definition 2.1: Given x− and x+ ∈ R such that x− ≤ x+, we define a closed interval
x = [x−, x+] as the set {x ∈ R : x− ≤ x ≤ x+}.

The values x− and x+ are called the lower bound and upper bound of the interval x,
respectively.

Definition 2.2: An interval [x, x̄] with x− = x+ is said to be degenerate.
Since a degenerate interval [x−, x+] only contains a single number, it is often identified

with the number x itself, therefore it holds that x = [x, x].

Definition 2.3: Given two matrices A− and A+ ∈ R
m×n such that A− ≤ A+, we define a

real interval matrix A = [A−,A+] as the set {A ∈ R
m×n : A− ≤ A ≤ A+}. Thematrices A−,A+



4 S. NASSERI ET AL.

are called the lower bound matrix and the upper bound matrix of the interval matrix A,
respectively.

The radius and centre of A are AΔ = 1
2 (A

+ − A−) and AC = 1
2 (A

+ + A−), respectively.
Thus A = [A−,A+] = [AC − AΔ,AC + A].
An interval vector I is introduced as the set {I : I− ≤ I ≤ I+} where I, Ī ∈ R

n are crisp
vector [20].

Definition 2.4: A general form of the Interval Linear Programming (ILP) model is defined
as follows:

max Z± =
n∑
j=1

C±
j x

±
j

s.t.
n∑
j=1

a±
ij x

±
j ≤ b±

i , i = 1, 2, . . . ,m,

x±
j ≥ 0, j = 1, 2, . . . , n,

(1)

where C±
j ε[C−

j , C
+
j ], a

±
ij ε[a

−
ij , a

+
ij ] and b±

i ε[b−
i , b

+
i ] are interval numbers and xjε[x

−
j , x

+
j ] is an

n-dimensional interval decision vector.

Theorem 2.1: In the ILP model (1), the largest and smallest feasible regions are

n∑
j=1

aij
+xj ≤ bi

−, i = 1, 2, . . . ,m, xj ≥ 0, j = 1, 2, . . . , n and

n∑
j=1

aij
−xj ≤ bi

+, ∀i, xj ≥ 0, j = 1, 2, . . . , n, respectively.

Proof: The proof is straightforward by the common interval arithmetic. �

Definition 2.5: A point y = (y1, y2, . . . , yn) is said to be a feasible point of ILP model (1) if

n∑
j=1

aij
+y ≤ bi

−, i = 1, 2, . . . ,m, and yj ≥ 0, j = 1, 2, . . . , n.

There are several methods for solving interval linear programming problems, one of which
the Best and Worst Cases (BWC) method. The BWC method for solving linear interval pro-
gramming problems in such a way that in general the linear programming problem with
interval parameters turns into two optimistic and pessimistic linear programming models,
where their solutions are the optimal interval of the main problem. This method examines
the answers to the linear programming problems derived from the standard form [10,17].

Mentioned method transforms the ILP problem (1) into pessimistic and optimistic sub-
problems, which are summarised as follows:
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The pessimistic sub-problem:

max Z− =
n∑
j=1

C−
j xi,

s.t.
n∑
j=1

a+
ij xi ≤ b−

i , i = 1, 2, . . . ,m,

xj ≥ 0, j = 1, 2, . . . , n.

(2)

The optimistic sub-problem:

max Z+ =
n∑
j=1

C+
j xi,

s.t.
n∑
j=1

a−
ij xi ≤ b+

i , i = 1, 2, . . . ,m,

xj ≥ 0, j = 1, 2, . . . , n.

(3)

The optimal solutions to sub-problems (2) and (3) are in box form as follows: x± =
(x±

1 , x
±
2 , . . . , x

±
n ), where for all j = 1, 2, . . . , n, x±

j = [x−
j , x

+
j ]. This box is the solution area

which is introduced by Tong.

Theorem 2.2: In solving process of the ILP model, if Z∗ is the optimal objective value of
model (1), and Z−∗, Z+∗ are the optimal objective value of the model (2) and model (3),
respectively, then Z∗ ∈ [Z−∗, Z+∗].

Proof: Let us consider the problem (1), we prove that the solution of this model is in the
interval [z

′
, z̄′′]. If x0 is a solution givenby the abovemodel, thenwewill have it

∑n
j=1 aijx

0 ≥
bi, i = 1, 2, . . . ,m. On the other hand,

aij ≤ aij
x0j ≥0
→ aijx

0
j ≤ aijx

0
j ∀i →

n∑
j=1

aijx
0
j ≤

n∑
j=1

aijx
0
j .

Given the above phrases and bi ≥ bi we have bi < bi ≤
∑n

j=1 aijx
0
j ≤ ∑n

j=1 aijx
0
j ,

i = 1, 2, . . . ,m. �

Therefore, every solution to the problem (3) is a solution to themodel (1). So, the feasible
area for the problem (1) includes the feasible area of problem (3). We now prove that the
optimal value of the model (3) is less than the optimal value of the model (1). If x∗ is the
optimal solution for the model (3):

cj ≤ cj
x∗
j ≥0
→ cjx

∗
j ≤ cjx

∗
j ∀j →

n∑
j=1

cjx
∗
j ≤

n∑
j=1

cjx
∗
j .

If z′ = ∑n
j=1 cjx

∗
j is the objective value of model (1), then we have z′ ≤ z∗ and if z′ is opti-

mal solution of model (2), then z′ < z and so z′ < z∗. Similarly, if x̃ is a solution of model
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(3), then
∑n

j=1 aijx̃j ≥ bi and aij ≤ aij∀j →x̃j≥0 aijx̃j ≤ aijx̃j∀j →
∑n

j=1 aijx̃j ≤
∑n

j=1 aijx̃j, and

since bi ≥ bi. Thus we will have bi ≤ bi ≤
∑n

j=1 aijx̃j ≤
∑n

j=1 aijx̃j.
Therefore, each feasible solution of model (2) is a feasible solution of model (3), or, in

other words, the feasible area of the model (3) including the feasible area of the model (2).
Now, we prove that the optimal value of the model (2) is greater than the optimal model
(3). Nowconsider x′′ be theoptimal solutionof problem (2). cj ≤ cj ∀j →x′

j≥0 cjx′
j ≤ cjx′

j∀j →∑n
j=1 cjx

′
j ≤ ∑n

j=1 cjx
′
j . If z is the value of the objective function model (3) for the feasible

solution, z < z̄′′ and since x∗ is the solution of model (2), should be z∗ ≤ z, as a result z∗ ≤
z̄′′. So we’ll have it z′ ≤ z∗ ≤ z̄′′ and the theorem is completed.

3. Fuzzy Flexible Linear Programming

Let us consider a case where the decision maker assumes that there is a certain tolerance
in the fulfillment of constraints. In other word, a certain degree of violation is allowed and
this is created by the decision makers. The general form of the Fuzzy Flexible Linear Pro-
gramming (FFLP) problems with fuzzy resources can be formulated as follows (see in [21]
too):

max z = f (x, C) =
n∑
j=1

cjxj

s.t. gi(x) =
n∑
j=1

aijxj 	 bi, i = 1, 2, . . . ,m,

xj ≥ 0, j = 1, 2, . . . , n.

(4)

In the above model, the relation ′ 	′ is called ‘ fuzzy less than or equal to’ and it is assumed
that the tolerance pi for each constraint is given [22]. This means that the decision maker
can accept a violation of each constraint up to degree pi. In this case, constraint gi(x) 	 bi
is equivalent to gi(x) ≤ bi + θpi, (i = 1, 2, . . . ,m), where θ ∈ [0, 1].

Thus problem (4) can be equivalently considered as the following fuzzy inequality
constraints (see also in [16]):

max z = f (x, C) =
n∑
j=1

cjxj

s.t. gi(x) =
n∑
j=1

aijxj ≤ b̃i, i = 1, 2, . . . ,m,

xj ≥ 0, j = 1, 2, . . . , n.

(5)

In model (5), b̃i is a fuzzy number with the following membership function:

μb̃i
(x) =

⎧⎨
⎩
1, x ≤ bi,
1 − (x − bi)/pi , bi ≤ x ≤ bi + pi ,
0, x ≥ bi + pi .

(6)
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Verdegay [11] proved that Problem (4) is equivalent to the crisp parametric LP prob-
lem when the membership functions of the fuzzy constraints are continuous and non-
increasing functions. According to this non-symmetric approach, themembership function
of fuzzy inequality constraints of problem (4) can be modelled as follows:

μi(gi(x)) =
⎧⎨
⎩
1, gi(x) ≤ bi,
1 − (gi(x) − bi)/pi , bi ≤ gi(x) ≤ bi + pi ,
0, gi(x) ≥ bi + pi ,

(7)

In this case, the membership function of all constraints of the problem (4) according to the
Bellman and Zadeh operator is given by

μ(g(x)) = min{μ1(g1(x)),μ2(g2(x)), . . . ,μm(gm(x))}. (8)

Assuming, α = min{μ1(g1(x)),μ2(g2(x)), . . . ,μm(gm(x))}, then Problem (4) is
equivalent to

max z = f (x, C) =
n∑
j=1

cjxj

s.t. μi(gi(x)) ≥ α, i = 1, 2, . . . ,m,

xj ≥ 0, j = 1, 2, . . . , n, α ∈ [0, 1].

(9)

Consider the circumstances that the decision maker seeks to achieve the optimal answer
with different degrees of validity in different constraints, according to a priority among
the constraints. Clearly, the Verdegay’s approach or single-parametermethod is rejected in
this case. By introducing various parameters for different constraints and using this multi-
parameter approach, the decision-maker’s need and appeal will be easily resolved. The
following is a description of this method [13].

Consider the linear programming problem (9), the general form of the fuzzy linear
programming problem is modified in this way:

max z = f (x, C) =
n∑
j=1

cjxj

s.t. μi(gi(x)) ≥ αi, i = 1, 2, . . . ,m,

xj ≥ 0, j = 1, 2, . . . , n, αi ∈ [0, 1].

(10)

Now, by substituting membership function (7) into problem (10), the following crisp para-
metric LP problem is achieved:

max z = f (x, C) =
n∑
j=1

cjxj

s.t. gi(x) = (Ax)i − bi ≤ (1 − αi)pi, i = 1, 2, . . . ,m,

xj ≥ 0,αi ∈ (0, 1], j = 1, 2, . . . , n.

(11)

Note that for each αi ∈ (0, 1], i = 1, 2, . . . ,m, an optimal solution is obtained. This indicates
that the solution with α grade of membership function is actually fuzzy.
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Let’s start with the following definitions below to continue the article.

Definition 3.1: Let ᾱ = (α1, . . . ,αm) ∈ (0, 1]m be a vector, and

Xᾱ = {x ∈ R
n|x ≥ 0,μi{gi(x, ai) 	 0} ≥ αi, i = 1, 2, . . . ,m.}.

Then, a vector x ∈ Xᾱ is called an ᾱ -feasible solution of model (5).
Following proposition enables us to define feasible set of model (5) as an intersection of

all α -cuts corresponding to fuzzy constraints.

Proposition 3.1: Let ᾱ = (α1, . . . ,αm) ∈ (0, 1]m, then Xᾱ =
m⋂
i=1

Xiαi , where

Xiαi = {x ∈ R
n|x ≥ 0,μi{gi(x, ai) 	 0} ≥ αi}, for i ∈ I = {1, . . . ,m} (namely, Xiα is the α -

cuts of the i th constraint).

Proof: For ᾱ = (α1, . . . ,αm) ∈ (0, 1]m,, let x ∈ Xᾱ . Therefore, μi{gi(x, ai) 	 0} ≥ αi and
from Xiαi = {x ∈ R

n|x ≥ 0,μi{gi(x, ai) 	 0} ≥ αi}, we have x ∈ Xiαi , i ∈ I.

Therefore, x ∈
m⋂
i=1

Xiαi . Also, if x ∈
m⋂
i=1

Xiαi , we have x ∈ Xiαi , i ∈ I, thusμi{gi(x, ai) 	 0} ≥ αi

and hence, x ∈ Xᾱ .
Therefore, the proof is completed. �

Proposition 3.2: Let α′ = (α′
1, . . . ,α′

m) and α′′ = (α′′
1, . . . ,α′′

m), where α′
i ≤ α′

i ′ for all i.
Then, α′′ -feasibility of x implies the α′ -feasibility of it.

Proof: The proof is straightforward.
For a given α ∈ (0, 1], let a solution x ∈ R

n be ordinary α− feasible to problem (4)
a solution in which has the same satisfaction degree in all of constraints. It means that
μi{gi(x, ai) 	 0} ≥ αi, or x ∈ Xiα , for all i ∈ I. If ᾱ = (α1, . . . ,αm) ∈ (0, 1]m, then x ∈ Xᾱ , which
implies that the ᾱ− feasibility of problem (5) can be understood as a special case of the ᾱ−
feasibility. Therefore, we have the next result. �

Remark 3.1: If problem (5) is not infeasible, we immediately conclude that Xᾱ is not empty.

Definition 3.2: Let ′ 	′ be a fuzzy extension of relation ′ ≤′ and a solution
X = (x1, . . . , xn)T ∈ R

n be an ᾱ− feasible to problem (5), where ᾱ = (α1, . . . ,αm) ∈ (0, 1]m

and let f (x, C) be an objective function in the form of maximisation. Then, X = (x1, . . . , xn),
where xj ∈ R

n is an ᾱ− efficient solution to problem (5), if there is no x′ ∈ Xᾱ so that
f (x, C) < f (x′, C).

Clearly, any ᾱ− efficient solution to the FFLP is a ᾱ− feasible solution to the FFLP with
some additional properties.

4. Solve FFLP Problemwith Interval Multi-objective Function

In this section, we will present a new approach to solve the Fuzzy Flexible Linear Program-
ming (FFLP) problemwhich is defined in (4) with interval multi-objective functions. We first
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need to denote the form of mentioned problem as follows:

max Z±(x) = {z±1(x), z±2(x), . . . , z±p(x)}

s.t. gi(x) =
n∑
j=1

aijxj 	 bi, i = 1, 2, . . . ,m,

xj ≥ 0, j = 1, 2, . . . , n,

(12)

where x = (x1, x2, . . . , xn)T is a real vector of decision variables, andwhere Z±(x) is an inter-
valmulti-objective function that is the objective coefficients is interval numbers. aij shows a
coefficient matrix as A = [aij], where A is anm × n -dimensional matrix of interval technical
coefficients. Objective functions and constraints where i ∈ {1, . . . ,m} possess continuous
property up to the secondderivatives. Also, ′ 	′ denote a fuzzy extension of ′ ≤′ onRwhich
is used to compare the left and right sides of fuzzy constraints [13].

In general, model (12) is not well defined due to the following reasons:
We cannot maximise the interval and multi-objective quantity Z±(x).
The constraint gi(x) = ∑n

j=1 aijxj 	 bi, i = 1, 2, . . . ,m, do not result in a crisp feasible set.
We first need to solve fuzzy flexible linear programming problem with multi-objectives.

We show that this problem will reduce to one objective function by use of weighted tech-
nique for objective function. In the weighted method as well as used in [9], we assign k th
value function equal to wk that thesewk should be positive [23].

In other words, to find efficient solutions to the following multi-objective issues.

max Z± =
p∑

k=1

wkZ
±
K(x)

s.t. gi(x) =
n∑
j=1

aijxj 	 bi, i = 1, 2, . . . ,m,

xj ≥ 0, j = 1, 2, . . . , n,

(13)

where 0 ≤ w1,w2, . . . , wp ≤ 1 such that w1 + w2 + · · · + wp = 1 are the weights of the
mentioned functions, which are determined by the decision maker.

It’s important to have a few points in weighting:
The weight of each targetwi is between 0 and 1 and the total weight must be 1.
All target functions are Max or Min.
The coefficients of the decision variables in each objective function with the other

objective function must be both scalable and therefore of a large category.
Now, by using BWC method transformed the ILP problem (13) into pessimistic and

optimistic sub-problems, which are summarised as follows (see in [24] for more details):
The optimistic sub-problem:

max Z+ =
p∑

k=1

wkZ
±
K(x)

s.t. gi(x) =
n∑
j=1

aijxj 	 bi, i = 1, 2, . . . ,m,

xj ≥ 0, j = 1, 2, . . . , n,

(14)
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The pessimistic sub-problem:

max Z− =
p∑

k=1

wkZ
±
K(x)

s.t. gi(x) =
n∑
j=1

aijxj 	 bi, i = 1, 2, . . . ,m,

xj ≥ 0, j = 1, 2, . . . , n.

(15)

Now, since constraints of problem are flexible, first, we select one of the above subprob-
lems and describe the solving process, and then solve the following problem using the
approach outlined below. Let us select sub-problem (14) for solving process. Therefore, in
order to obviate those mentioned restrictions, we introduce the following problem:

max Z+ =
p∑

k=1

wkZ
±
K(x)

s.t. μi{gi(x) 	 bi} ≥ αi, i = 1, 2, . . . ,m,

xj ≥ 0, 0 ≤ αi ≤ 1, j = 1, 2, . . . , n,

(16)

where Z+ means the corresponding crisp value of interval function Z±. To motivate for a
meaningful choice of membership function for each fuzzy constraints, it is argued that if
gi(x) ≤ bi, then the ith constraint is absolutely satisfied, where as if gi(x) ≥ bi, where pi the
predefinedmaximum tolerance from zero, as determined by the decision marker, then the
ith constraint is absolutely violated. For gi(x) ∈ (0, pi), the membership function is mono-
tonically decreasing. If this decrease is along a linear function, then itmakes sense to choose
the membership function of the ith constraint (i = 1, 2, . . . ,m) as

μi(gi(x)) =

⎧⎪⎪⎨
⎪⎪⎩

1, gi(x) ≤ bi,

1 − (gi(x) − bi)/pi , bi ≤ gi(x) ≤ bi + pi ,

0, gi(x) ≥ bi + pi .

(17)

Now, in order to find maximum efficient solution, i.e. an ᾱ -efficient solution with ᾱ ≥ α,
i = 1, 2, . . . ,m, we perform the following two-phase approach. To express this two-phase
approach to the above problem, let us consider the problem (13) and implement a two-
phase approach for this sub-problem, and then, with the resumption of the approach
discussed below, we solve the second problem. In the two phase approach, Equation (7)
is solved in Phase I, while in Phase II a solution is obtained which has higher satisfaction
degrees than the previous solution. Thus by using this two-phase approach, we achieve
a better utilisation of available resources. Further the solution resulting by this approach
is always an ᾱ -efficient solution. Let us consider the definition and substituting in the
problem (13) achieve the parametric linear programming that solved by linear techniques.
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By substitutingmembership function (7) into problem (14), the following crisp paramet-
ric LP problem is achieved:

max Z+ =
p∑

k=1

wkZ
+
K(x)

s.t. gi(x) = (Ax)i − bi ≤ (1 − αi)pi, i = 1, 2, . . . ,m,

xj ≥ 0, 0 ≤ αi ≤ 1, j = 1, 2, . . . , n.

(18)

Let us call the problem (15) as Phase I problem.
Let α0 = (α0

1, . . . ,α0
m) and (x+∗, C±x+∗) be the optimal solution of pessimistic

sub-problem of Phase I with α0 degree of efficiency. Set αi
∗ = μi{gi(x∗, ai) 	 0} ≥ α0

i ,
i = 1, 2, . . . ,m.

In Phase II, we solve the following problem:

max
m∑
i=1

αi

s.t.
p∑

k=1

wkZ
+
K(x) ≥

p∑
k=1

wkZ
+
K(x

+∗)

xj ≥ 0,αi
∗ ≤ αi ≤ 1, j = 1, 2, . . . , n.

(19)

Theorem 4.1: The optimal solution x∗∗ to problem (19) is a maximum ᾱ -efficient solution
to problem (16).

The process of the parametric approach for implementing the second sub-problem and
the final solution is obtained.

Due to theorem, and optimal value and optimal solution of two sub-problems, interval
solution of problem (12), is equal to:

Algorithm 4.1:

Assumption 4.1: Consider a Fuzzy Flexible Linear Programming (FFLP) problem is given
to solve and obtain optimise Z such as problem (12).

Step 1: Using weighted method for problem (13) that transformed the multi-objectives
into one target for objective function.

Step 2: By use of the best and worst cases (BWC) method, obtained the corresponding
crisp objective function for the objective function of model (13), and achieved two sub-
problems.

Step 3: Consider one of the two sub-problems and go to step 4.
Step 4: In Phase I, obtain the corresponding Multi-Parametric Linear Programming

(MPLP) problem for problem (16) based on Equation (7).
Step 5: Solve the MPLP problem (18) and obtain optimal solution of problem.
Step 6: Based on the optimal solution of MPLP problem in step 5, obtain the MPLP

problem of Phase II such as problem (19), and solve it.
Step 7: Consider second sub-problem (15) and go to step 4.
Now, we are a place to illustrate our suggested algorithm in the next section.
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5. Numerical Examples

In this section, we solve the FFLP problem which is multi-objective and has interval coeffi-
cients in objective function by use of the proposed approachwhich is introduced in the last
section.

Example 5.1: Consider the following interval multi-objective linear programming prob-
lems with flexible constraints.

max z1 = [1, 3]x1 + [−1, 1.5]x2

max z2 = [0.5, 2]x1 + [−1.5,−1]x2

s.t. 1.5x1 + 2x2 	 4,

2x1 + 3x2 	 1,

x1 ≥ 0, x2 ≥ 0,

(20)

where p1 = 2 and p2 = 5 are predefined maximum tolerance.

Step 1: By considering the weights as w1 = 1
2 and w2 = 1

2 for the objective function,
where

∑3
i=1 wi = 1, and then by use of weighted method reduce above multi-objective

in one objective function in form of Z = w1z1 + w2z2 = [ 3
4 ,

5
2

]
x1 + [−5

4 , 14
]
x2, and we can

rewrite problem (20) as follows:

max Z± = [ 3
4 ,

5
2

]
x1 + [−5

4 , 14
]
x2

s.t. 1.5x1 + 2x2 	 4,

2x1 + 3x2 	 12,

x1 ≥ 0, x2 ≥ 0,

(21)

Step2: By useof thebest andworst cases (BWC)method convert the interval linear problem
(21) into two sub-problems as follow:

max Z+ = 5
2x1 + 1

4x2

s.t. 1.5x1 + 2x2 	 4,

2x1 + 3x2 	 12,

x1 ≥ 0, x2 ≥ 0,

(22)

max Z− = 3
4x1 + −5

4 x2

s.t. 1.5x1 + 2x2 	 4,

2x1 + 3x2 	 12,

x1 ≥ 0, x2 ≥ 0,

(23)

Step 3: Consider the sub-problem (22) and continue.
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Table 1. Requirement per automobile.

M1 M2 M3

A1 [2000, 2100] [8000, 9000] [4000, 4500]
A2 [3000, 3200] [1000, 1200] 0
A3 [4000, 5000] [4000, 4600] [2000, 2400]

Table 2. Unit profit.

A1 A2 A3

Profit/unit [5000, 5120] [10,000,12,100] [12,000,13,500]

Step4: Obtain the correspondingmulti-parametric linear programming (MPLP) problem
for problem (22) based on Equation (7)

max Z+ = 5
2x1 + 1

4x2

s.t. 1.5x1 + 2x2 ≤ 4 + 2(1 − α1),

2x1 + 3x2 ≤ 12 + 5(1 − α2),

x1 ≥ 0, x2 ≥ 0, α1,α2 ∈ [0, 1],

(24)

Step 5: By solving the above problem achieve x∗ = (3.333, 0) be an (0.5, 0.4)− efficient
solution with CTx∗ = 8.333 as an optimal value of problem (24).

Step 6: Obtain the MPLP problem of Phase II such as problem (25) based on optimal
solution of problem (24).

max α1 + α2

s.t. 5
2x1 + 1

4x2 ≥ 8.333,

1.5x1 + 2x2 ≤ 4 + 2(1 − α1),

2x1 + 3x2 ≤ 12 + 5(1 − α2),

x1 ≥ 0, x2 ≥ 0, 0.5 ≤ α∗
1 ≤ 1, 0.4 ≤ α∗

2 ≤ 1,

(25)

An optimal solution to the above problem is x∗∗ = (3.332, 0), also CTx∗ = CTx∗∗ = 8.333,
and we have

μ1(g1(x
∗∗, a1)) = 1,μ2(g2(x

∗∗, a2)) = 0.5.

Step 7: Consider second sub-problem (23) and solve it. Then we achieve that an opti-
mal solution to the above problem is x∗∗ = (3.332, 0), also CTx∗ = CTx∗∗ = 2.5, and
μ1(g1(x

∗∗, a1)) = 1,μ2(g2(x
∗∗, a2)) = 0.5.

Finally, with regard to Theorem 2.2, we can obtain Z∗ = [2.5, 8.333] that is an interval
optimal value of problem (20), and higher satisfaction in membership function in μ1.

Example 5.2 An automobile factory produces three models A1, A2 and A3. Three types
of raw materialsM1,M2 andM3 are required to manufacture them. The amounts (in kg) of
the materials are given in Table 1.

Based on market analysis, the expected unit profits of A1, A2 and A3 are given in
Table 2.
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Table 3. Per unit harmful pollutant.

A1 A2 A3

Pollutant/unit [1000, 1050] [2000, 2100] [1000, 1150]

Table 4. Unit cost.

A1 A2 A3

Cost/unit [1000, 1120] [3000, 3090] [4000, 4140]

According to the monthly production report, the per unit harmful pollutant is given in
Table 3.

The unit cost of the automobile is listed in Table 4.
The decision makers of the factory attempt to achieve three goals on a weekly basis as

follows:

To maximise the profit.
To minimise the generation of the harmful pollutant.
To minimise the production cost.

The three goals are constrained by the following capacities on a weekly basis:
Considering the cost of M1 is very high, the usage of M1 is required to be less than

40,000 kg and this amount is ultimately allowed in a rate of 50,000 kg.
Since the shortage of M2 is often a concern, the usage of M2 only is required to be less

than 50,000 kg and the maximum amount can be increased to 5000 kg.
The usage ofM3 cannot be more than 50,000 kg.
By the demand of automobiles in the market, it is required to produce at least 3 units of

A1 and 5 units of A3 per week.
In order to find theoptimal quantities ofA1,A2 andA3 perweek, this problem ismodelled

as the following MOILP problem:

max z1 = [5000, 5120]x1 + [10000, 12100]x2 + [12000, 13500]x3

min z2 = [1000, 1050]x1 + [2000, 2100]x2 + [1000, 1150]x3

min z3 = [1000, 1120]x1 + [3000, 3090]x2 + [4000, 4140]x3

s.t. [2000, 2100]x1 + [3000, 3200]x2 + [4000, 5000]x3 	 40000,

[8000, 9000]x1 + [1000, 1200]x2 + [4000, 4600]x3 	 50000,

[4000, 4500]x1 + [2000, 2400]x2 ≤ 50000,

x1 ≥ 3,

x3 ≥ 5,

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0,

(26)
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Table 5. Some typical ᾱ -efficient solution of sub-problem1.

a b c d e f

ᾱ (0.5,0.6) (0.8,0.2) (0.5,0.8) (0.2,0.8) (0.5,0.2)
cx 44,997 41,657 44,997 47,224 44,997
x1 3 3 3 3 3
x2 6.3333 5.33 6.3333 7 6.3333
x3 5 5 5 5 5

Takew1 = 0.4,w2 = 0.3 andw3 = 0.3. Then the intervalweighted sumsecularisation of the
MOILP problem with respect to ′ 	′ is as follows:

max Z = [1349, 1448]x1 + [2443, 3340]x2 + [3213, 3900]x3

s.t. [2000, 2100]x1 + [3000, 3200]x2 + [4000, 5000]x3 	 40000,

[8000, 9000]x1 + [1000, 1200]x2 + [4000, 4600]x3 	 50000,

[4000, 4500]x1 + [2000, 2400]x2 ≤ 50000,

x1 ≥ 3,

x3 ≥ 5,

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0,

(27)

Now, we solve the problem (27) by using the solving technique of interval problems and
solving algorithm in this paper and the given tolerances p1 = 10000, p2 = 5000. We will
simplify the first sub-problem based on mentioned solving algorithm steps in (4.1) as
follows:

max Z+ = 1448x1 + 3340x2 + 3900x3

s.t. 2000x1 + 3000x2 + 4000x3 ≤ 40000 + 10000(1 − α1),

8000x1 + 1000x2 + 4000x3 ≤ 50000 + 5000(1 − α2),

4000x1 + 2000x2 ≤ 50000,

x1 ≥ 3,

x3 ≥ 5,

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0,α1,α2 ∈ [0, 1],

(28)

Some ᾱ -efficient solution with satisfaction degrees which decision maker can be found in
Table 5.

Let x∗ = (3, 6.3333, 5) be (0.5, 0.6)-efficient solution with CTx∗ = 44997 as an optimal
value of problem (28). In step 6, we need to solve the following linear problem:

max
2∑

i=1

αi

s.t. 1448x1 + 3340x2 + 3900x3 ≥ 44997,

2000x1 + 3000x2 + 4000x3 ≤ 40000 + 10000(1 − α1)
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8000x1 + 1000x2 + 4000x3 ≤ 50000 + 5000(1 − α2)

4000x1 + 2000x2 ≤ 50000,

0.5 ≤ α1 ≤ 1, 0.6 ≤ α2 ≤ 1,

x1 ≥ 3,

x3 ≥ 5,

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, (29)

An optimal solution to the above problem is x∗∗ = (3, 6.3332, 5), also CTx∗ = CTx∗∗ =
44997 we have

μ1(g1(x
∗∗, a1)) = 0.5,μ2(g2(x

∗∗, a2)) = 1.

Using the approach, we can get an optimal solution x∗ which not only achieves the optimal
objective value but also give a higher value in μ2.

Now, we use all these steps to solve the second sub-problem. Finally, by solving the
second sub-problem obtain that if x∗ = (3, 3.33, 5) be (0.5, 0.4)-efficient solution with

CTx∗ = CTx∗∗ = 26219 and x∗ = (3, 0, 6.2784),

μ1(g1(x
∗∗, a1)) = 1,μ2(g2(x

∗∗, a2)) = 1. Finally, with regard to Theorem2.2 optimal objec-
tive value of problem (27) is Z∗ = [18595, 44997].

6. Conclusion

In this paper, two main contributions are appeared. First, considering the feasibility for the
constraints and second, an extra condition for the objective function where we assumed
a multi-objective cases. Based on the generalised form of the problem, we suggested a
new two-phase method. We saw that it was observed that using this concept as a gen-
eralisation of parametric the approach in linear programming provides amore appropriate
tool for modelling real problems and improving the solving process. Also, in the process
of solving a weighty technique for themulti-objective linear programming problem, it was
suggested. This approachwill be useful in obtaining flexible responseswith a degree of sat-
isfaction determined by the decision maker for fuzzy mathematical programming. There
are still other approaches, such as for instance Rough Sets (see in [25]), to deal with the
problem approached in the research. The second to indicate that readers interested in new
Fuzzy Optimisation problems could consult that paper (see in [26]).
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