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Prefacio 

El cerebelo es un área cerebral crítica para funciones sensomotoras y no motoras como 
son los procesos cognitivos y emocionales. Las lesiones cerebelares contribuyen a síndromes 
patológicos como el autismo o la esquizofrenia. Sin embargo, aún se desconocen las primitivas 
bajo las que el cerebelo, y el cerebro en general, operan tanto a nivel funcional como 
disfuncional.  

Para abordar la complejidad del sistema cerebral “enfermo” es necesario extraer los 
mecanismos moleculares relevantes que lo subyacen. La disponibilidad de grandes volúmenes 
de datos biomédicos a veces dificulta la extracción de esta información relevante y su 
interpretación completa. En esta tesis, hemos llevado a cabo una experimentación preliminar 
para analizar las correlaciones genéticas entre enfermedades con distintas sintomatologías 
clínicas y/o prognosis clínicas (y aún basadas en mecanismos moleculares similares). Para este 
fin, hemos desarrollado una metodología de identificación y anotación funcional de los genes 
más relevantes de enfermedad. Esta metodología integra métodos actuales de la biología de 
sistemas, como son las redes de interacción proteína-proteína (PPI), junto con conjuntos de 
datos multidimensionales de diferentes niveles biológicos. Los objetivos de esta primera parte 
de la tesis son: la identificación de biomarcadores diagnósticos potenciales (que corresponden 
a los nodos clave en los procesos biológicos y moleculares del interactoma); el análisis 
deductivo de datos multidimensionales como alternativa a otros sistemas de búsqueda; y la 
extracción de conexiones entre enfermedades (comorbilidades) que a priori no están 
relacionadas y que suele escapar a estos sistemas tradicionales. Aunque la metodología es de 
propósito general, la hemos aplicado a un conjunto de enfermedades denominado 
canalopatías, donde los canales iónicos se ven alterados y que generan una amplia variabilidad 
fenotípica. Concluimos que nuestra metodología es flexible, rápida y fácil de aplicar. Además, 
es capaz de encontrar más correlaciones entre los genes relevantes que otros dos métodos 
tradicionales.  

Para entender la operación cerebelar en el procesamiento de la información se necesita 
decodificar las dinámicas funcionales intrínsecas de sus neuronas sanas. Las herramientas que 
nos brinda la neurociencia computacional permiten desarrollar modelos computacionales a 
gran escala para el estudio de estas primitivas de procesamiento de información. Las neuronas 
más abundantes y pequeñas no solo en la capa de entrada cerebelar, sino también en el 
cerebro completo, son las neuronas granulares cerebelares (GrCs). Estas neuronas juegan un 
papel determinante en la creación de representaciones de información somatosensorial. Sus 
características de disparo están relacionadas con la sincronización, ritmicidad y aprendizaje en 
el cerebelo. Una de estas características es la frecuencia de ráfagas de disparo mejorado (esto 
es, resonancia de disparo). Este patrón de disparo complejo se ha propuesto como clave para 
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facilitar la transmisión de señal de entrada en la banda de frecuencia theta (4-12Hz). Sin 
embargo, aún no está claro cuál es el rol funcional de esta característica en la operación de la 
capa granular (capa de entrada del córtex cerebelar). Además, estas dinámicas complejas 
inherentes, como es la resonancia, normalmente son ignoradas en la mayoría de modelos 
computacionales eficientes. El objetivo principal de esta tesis es la creación de diferentes 
modelos matemáticos de GrCs cerebelares que cumplan con dos requisitos: que sean 
suficientemente eficientes para poder simular redes neuronales a gran escala, y que sean lo 
suficientemente plausibles biológicamente para permitir la evaluación del impacto funcional 
de sus dinámicas no lineales en la transmisión de información. De hecho, un alto grado de 
realismo biológico en modelos eficientes permite investigar a niveles en los que la biología 
experimental in vivo o in vitro está limitada.  

Metodológicamente, en esta tesis hemos elegido el modelo de tipo “adaptativo 
exponencial integrador-y-disparador“(AdEx) como el modelo de neurona simplificado (posee 
sólo dos ecuaciones diferenciales y pocos parámetros) que reúne tanto realismo como bajo 
coste computacional. Este modelo se ajusta bastante bien a las características de disparo de 
células reales, pero algunos de sus parámetros no pueden ajustarse de forma directa con los 
valores experimentales medibles. Por ello se necesita de un método de optimización para que 
ajuste mejor los parámetros a los datos biológicos. Nos hemos enfocado en abordar este 
problema de optimización complejo. 

En primer lugar, hemos desarrollado una metodología de optimización paramétrica 
basada en algoritmos genéticos (GA) aplicado al caso de la GrC. Hemos presentado los 
modelos de neurona AdEx obtenidos y hemos demostrado su validez para reproducir no solo 
las propiedades de disparo principales de las GrCs reales (incluyendo la resonancia), sino 
también características emergentes no definidas en el GA (dentro dela función coste a 
optimizar).  

En segundo lugar, nosotros evaluamos cuatro algoritmos alternativos, que son los más 
usados y exitosos en otros campos como la ingeniería.  

Por último, en la última parte de este tesis hemos presentado una metodología de 
optimización avanzada basada en algoritmos multimodales. La ventaja de esta estrategia 
radica en que, tras un único proceso de optimización, en lugar de obtener un único candidato 
ganador numéricamente al resto de candidatos, como en los casos anteriores (solución única), 
obtenemos una población dispersa de diferentes modelos de neurona. Esto es, una población 
heterogénea de neuronas del mismo tipo con variaciones intrínsecas en sus propiedades. De 
entre este conjunto de modelos neuronales prometedores, el investigador puede elegir y filtrar 
en base a la plausibilidad biológica deseada (y configuración paramétrica neuronal). Así, 
hemos también estudiado cómo las propiedades diana de la neurona podrían obtenerse con 
estas diversas configuraciones de parámetros internos. Nosotros exploramos el espacio de 
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parámetros y su impacto en el subconjunto de propiedades de neurona que buscamos 
reproducir.  

Estructura de la memoria de la tesis doctoral 

Este prefacio termina resumiendo la estructura de esta tesis para orientar al lector: 

• El primer capítulo describe el contexto en el que este trabajo ha sido realizado
desde el principio del proyecto hasta su finalización.
• El segundo capítulo incluye la propuesta de investigación que dirigió esta tesis,
describiendo la motivación, objetivos iniciales y explicando brevemente las
contribuciones de este trabajo y el marco de proyecto en el que esta tesis está definida.
• El tercer capítulo contiene las publicaciones que conforman el núcleo de la
investigación llevada a cabo. Cada uno de estos trabajos aborda una de las principales
contribuciones indicada resumidamente en el capítulo anterior.
• El cuarto capítulo analiza los objetivos de la tesis y destaca las principales
contribuciones de acuerdo a estos objetivos. Asimismo esboza el trabajo futuro a
abordar y recoge las conclusiones que se derivan de esta tesis.
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Preface 

The cerebellum is a critical brain area for sensorimotor and also non-motor functions 
such as cognitive and emotional processes. Cerebellar lesions contribute to pathological 
syndromes such as autism or schizophrenia. However, the primitives under which the 
cerebellum, and the whole brain, operate at a functional and dysfunctional level are still 
unclear.  

To address the complexity of the "diseased" brain system, it is necessary to extract the 
relevant underlying molecular mechanisms. The availability of large volumes of biomedical 
data usually makes it difficult to extract this relevant information and interpret it 
comprehensively. In this thesis, we have made a preliminary experimentation to analyze 
genetic correlations between diseases with different clinical symptomatologies and/or clinical 
prognosis (and still based on similar molecular mechanisms). For this purpose, we have 
developed a methodology for the identification and functional annotation of the most relevant 
genes in disease. This methodology integrates current systems biology methods, such as 
protein-protein interaction (PPI) networks, together with multidimensional data sets from 
different biological levels. The objectives of this first part of the thesis are: the identification of 
potential diagnostic biomarkers (corresponding to key nodes in the biological and molecular 
processes of the interactome); the deductive analysis of multidimensional data as an 
alternative to other search systems; and the extraction of connections between disorders 
(comorbidities) that are a priori unrelated and that usually escape these traditional systems. 
Although the methodology is of general purpose, we have applied it to a set of diseases called 
channelopathies, where ion channels are altered and which generate a wide phenotypic 
variability. We conclude that our methodology is flexible, fast and easy to apply. Furthermore, 
it is able to find more correlations between relevant genes than other two traditional methods. 

Understanding the cerebellar operation in information processing requires decoding 
the intrinsic functional dynamics of healthy neurons. The tools provided by computational 
neuroscience allow developing large-scale computational models for the study of these 
information processing primitives. The most abundant and smallest neurons not only in the 
cerebellar input layer, but also in the whole brain, are the cerebellar granule cells (GrCs). These 
neurons play a crucial role in the creation of somatosensory information representations. Their 
firing characteristics are related to synchronization, rhythmicity and learning in the cerebellum. 
One of these features is the frequency of enhanced bursting (i.e., spiking resonance). This 
complex firing pattern has been proposed to facilitate input signal transmission in the theta-
frequency band (4-12Hz). However, the functional role of this feature in the operation of the 
granular layer (the input layer of the cerebellar cortex) is still unclear. Moreover, inherent 
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complex dynamics such as resonance are usually ignored in most efficient computational 
models. The main goal of this thesis is the creation of different mathematical models of 
cerebellar GrCs that meet two requirements: to be efficient enough to allow the simulation of 
large-scale neuron networks, and to be biologically plausible enough to enable the evaluation 
of the functional impact of these nonlinear dynamics on the information transmission. Indeed, 
a high degree of biological realism in efficient models allows research at levels where in vivo 
or in vitro experimental biology is limited.  

Methodologically, in this thesis we have chosen the "adaptive exponential integrate-
and-fire" (AdEx) type of model as the simplified neuron model (it has only two differential 
equations and few parameters) that meets both realism and low computational cost. This 
model fits quite well the firing characteristics of real cells, but some of its parameters cannot 
be directly fitted with measurable experimental values. Therefore, an optimization method is 
necessary to best fit the parameters to the biological data. We have focused on addressing 
this challenging optimization problem.  

First, we have developed a parametric optimization methodology based on genetic 
algorithms (GA) applied to the case of GrC. We have presented the obtained AdEx neuron 
models and demonstrated their suitability to reproduce not only the main firing properties of 
real GrCs (including resonance), but also emergent features not defined in the GA (within the 
cost function to be optimized).  

Second, we evaluated four alternative algorithms, which are the most widely used and 
successful in other fields such as engineering.  

Finally, in the last part of this thesis we have presented an advanced optimization 
methodology based on multimodal algorithms. The advantage of this approach is that, after a 
single optimization process, instead of obtaining an only one candidate numerically 
outperforming the other candidates, as in the previous cases (a single solution), we obtain a 
sparse population of different neuron models. That is, a heterogeneous population of neurons 
of the same type with intrinsic variations in their properties. From this set of promising neuron 
models, the researcher can choose and filter based on the desired biological plausibility (and 
neuronal parameter configuration). Thus, we also studied how the target properties of the 
neuron could be obtained with diverse internal parameter configurations. We explored the 
parameter space and its impact on the subset of neuronal properties that we aim to reproduce. 
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Structure of the Ph.D. thesis manuscript 

This preface ends by summarizing the structure of this thesis to orientate the reader: 

• The first chapter describes the context in which the work has been performed
from the beginning of the project to its finalization.
• The second chapter includes the research proposal that led this thesis,
describing the motivation and initial objectives and briefly explaining the contributions
of this work and the project framework on which this thesis is defined.
• The third chapter contains the publications that form the core of the research
carried out. Each of these works addresses one of the main contributions briefly
indicated in the previous chapter.
• The fourth chapter analyses the thesis objectives and highlights the main
contributions according to these objectives. It also outlines future work to be addressed
and draws the conclusions that result from the thesis.
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Chapter 1 

 Introduction

A neurological disease affects more than one-third of European citizens along their lifetime. 
Understanding the biological principles of brain and associated disorders have a high impact 
on the quality of life of a significant part of the population. It is associated to an overall cost 
of approximately 800 billion euros per year at the European level (estimated data for 2010). All 
this has motivated a strong research effort on the brain. One of the ultimate challenges for the 
current century is the decoding of the biological basis of consciousness and the mental 
processes by which we perceive, act, learn, and remember. Although this long-term challenge 
remains active, deep knowledge of the biological essence of the brain can lead us to several 
advances. Firstly, understanding the brain functions as a complex neural system can favor a 
deepening of its dysfunction in disease. This accumulative knowledge allows identifying the 
biological keys of neuropathophysiology for the design of innovative treatments and potential 
therapeutic interventions for disease. Secondly, one of the best and more complex dynamical 
systems of information processing is the brain, with low power consumption and reliability 
against gradual degradation of the system (with age or some neuronal diseases). An example 
of this situation would be the low-frequency oscillatory rhythms of certain brain areas that are 
fundamental for the inherent processes of learning, motor control or sleep (Buzsáki, 2006; 
Wang et al., 2019). Finally, emulating the way of representing somatosensory information by 
specific neuron types could develop new generations of processing architectures able to 
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replicate this massively-parallel computing performance. In this context, this thesis follows two 
of the aforementioned main open questions by the scientific community:  

(1) Shedding light on the comprehension of relevant molecular mechanisms underlying
related complex diseases, such as the extensive group of disorders that affect the ion
channels.

(2) Understanding the brain operation with respect to the impact that potential intrinsic
dynamics of neurons could take part in the information processing primitives of a
specific brain area, the cerebellum

Computational approaches allow discovering the impact of neuronal behavior in the
brain performance. However, other methods based on systems biology also allow addressing 
the complexity of the biological system of the brain (as detailed in the next subsection “1.1. A 
preliminary study towards understanding the pathomechanisms of neurological 
disorders”. Molecular data-driven networks become powerful analytical tools in the 
identification of the most relevant components directly tied to biological functions. These 
structural aspects of gene relationships help to better understand the etiopathogenesis of 
disease. It should be emphasized that the complexity of disease comprises a combination of 
different symptoms, evolution, and it is the result of the effects of many genes. In this scenario, 
the identification of the most relevant molecular foundations of disease from integrating 
massive biomedical information available might become an arduous and complex task. 
Especially if the set of disorders to be analyzed has hundreds of genes involved. As mentioned 
above and in order to cope with the huge amount of current knowledge, it would be of utmost 
usefulness to explore valid association procedures beyond the current traditional search 
sources (typically based on exhaustive or systematic search systems). This thesis finds essential 
to develop a methodology for non-experts in systems biology approaches based on 
biologically data-driven networks (i.e., protein-protein interaction networks) as a preliminary 
experimentation towards understanding altered cellular dynamics of neurological disease.  

The cerebellum (Latin for “little brain”) is a structure located at the back of the brain, 
underlying the occipital and temporal lobes of the cerebral cortex. The cerebellum occupies 
10% of the brain’s volume and it contains approximately 50% of the overall amount of neurons 
in the brain (Welsch and Welsch, 2006). Historically, it has been known well for its role in motor 
coordination and cognitive functions, as was noted by Ramon y Cajal and Camillo Golgi in their 
histological analyses of brain tissues (Ramon Cajal, 1894; Golgi, 1906; De Carlos and Borrell, 
2007). However, the cerebellum is gaining increasing attention for its involvement in other 
motor and non-motor skills of cognitive processing, such as language, and emotion 
(Schmahmann, 2019; Guevara et al., 2021). The cerebellum is considered as a time machine 
and it has expanded this concept to clinical disorders (Eccles, 1973; Bareš et al., 2019). Serious 
damage in this organ impairs its learning and results in motor disturbances. Recent work has 
evidenced its implication in motor disorders (e.g., ataxia, dystonia, epilepsy, Huntington, 
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Parkinson’s disease, or Alzheimer’s disease) and non-motor conditions (e.g., autism spectrum 
disorders, alcohol fetal syndrome, medulloblastoma, schizophrenia, visceral functions, or sleep 
apnea) (figure 1) (Reeber et al., 2013; Computational Models of Brain and Behavior, 2017). 
However, in spite of the increasing evidence of the operational primitives inside the cerebellum 
and their involvements in disease, its biological mechanisms and their possible dysfunctions 
are not yet being sufficiently explored. 

Figure 1. Representation of some of the cerebellar roles in motor and non-motor disturbances. 
The cerebellum is a key brain structure for the sensorimotor control and non-motor functions including 
cognitive and emotional processes such as attention, language, emotional behavior, sleep and even 
non-somatic visceral responses. Cerebellar lesions contribute to pathological syndromes such as autism, 
schizophrenia and ataxia. Images of the cerebellum are from Anatomography maintained by Life Science 
Databases (LSDB) (URL: https://commons.wikimedia.org/wiki/File:Cerebellum.png). 

Regarding the understanding of the cerebellar operation, there is a significant number 
of studies on the cerebellar roles in motor learning and neuronal plasticity (D’Angelo et al., 
2009). Current studies suggest that the cerebellum predict optimal movements by recognizing 
neuron patterns (Reeber et al., 2013). In addition, populations of neurons in several brain areas 
reflect complex synchronized temporal patterns typically modulated by coherent oscillations 
(Buzsáki, 2006). These oscillatory patterns are usually evidenced by the study of a complex 
neuronal behavior named resonance, i.e. a preferred neuronal frequency in response to 
oscillatory inputs (Hutcheon and Yarom, 2000). The cerebellum is one of the brain areas where 
the neuronal feature of resonance has received more attention (D’Angelo et al., 2009, 2011; 
Dugué et al., 2009; Gandolfi et al., 2013). The cerebellum is thought to generate low frequency 
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(5-30Hz) and higher-frequency activity rhythms, but its function for overall cerebellar 
information processing remains elusive. Nevertheless, new pieces of evidence suggested that 
somatosensory information representations might be determined by the cerebellar granule 
cells. The cerebellar granule cells are the most numerous cells in the entire mammalian brain 
(Herculano-Houzel, 2010). An intrinsic mechanism of resonance in these cells was evidenced 
at a concrete low-frequency band (i.e., the theta-frequency band, around 4-10Hz in rodents) 
and was proposed as facilitating the input signal transmission (which will be expanded in the 
later subsection “1.2. The information processing in the granular layer of the cerebellum”). 
However, the functional role of this cell feature in the operation of the cerebellar input layer 
remains largely unclear. The focus of this thesis concerns on how to facilitate the study of this 
fundamental research question by efficiently integrating this property (intrinsic resonance of 
burst frequencies) on efficient neuron models. 

It is worthy to introduce the current in silico tools that are widely used in neuroscience 
(and more specifically in computational neuroscience). The field of computational 
neuroscience emerged in the mid-20th century with the purpose of studying the underlying 
mechanisms of brain function, behavior, and disease. This field strongly began to expand in 
the past few decades at the same time as the increasing capabilities of computational 
resources and computers. From this perspective, computational neuroscience developed into 
a promising discipline within system neuroscience through theoretical and computational 
modeling in the research of complex brain dynamics. That is, computational neuroscience 
challenges to link the structure, dynamics, and response properties of neural systems. 
However, this challenge is complicated since: (1) the human brain contains approximately 86 
billion neurons each with an average of 7000 synapses per neuron, representing a complex 
biological system to untangle, and (2) the amount of data in experimental neuroscience, and 
overall in science, has enlarged. That implies, on the one hand, that the current computer 
power is limited in order to model the whole brain at this level of interconnectedness. On the 
other hand, a comprehensive interpretation of this current biological knowledge is needed in 
order to cope with these levels of biological complexity.  

In this sense, a simpler approach has been adopted to face the biological complexity 
of the brain: the integration of different data sets into computer simulations as close 
approximations to biological data. Computational neuroscience provides a coherent 
framework involving many diverse methodological approaches, being all interconnected. As 
represented in figure 2, simulations take place at various separate organizational scales of 
experimental neuroscience, ranging from the molecular level, through the subcellular and to 
cellular levels, and up to the whole organ. With a constrained computing power, the level of 
detail decreases as the level rises towards the whole brain, i.e., from neuron models of the 
neurobiological substrate, network models of microcircuits, to high-level computation 
principles and models of behavior or even models of disease (D’Angelo et al., 2013a). In more 
detail, in the cellular level and below, neurophysiologists record the neuronal activity from 
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which they evidence possible neuronal characteristics that describe the cell dynamics. These 
characteristic response patterns are the result of a combination of membrane ion channels 
and specific interneuron synapses that are embedded in the neurons and microcircuits. These 
experimental findings are the starting point for the simulation of these neuronal dynamics 
through detailed biophysical models of neurons. Simplifying these complex neuron models 
but identifying and keeping functional characteristics is a sophisticated process on which this 
research has been focused (it is detailed in subsection “1.3. Computational modeling of 
neurons”). The simulations are multi-scale, ranging from a single-neuron with certain channels 
or specific synapses, to complex neuronal networks of a bunch of neurons. In silico simulators 
such as NEURON (Hines and Carnevale, 1997) or NEST (Peyser et al., 2017) allow dealing with 
neuron- and network- models at different levels of abstraction (molecular level, multi-
compartmental level, point-neuron level, etc.). At this point, these simulations allow evaluating 
the behavioral impact of the neurobiological substrate, e.g. specific neuron characteristics, 
network topology or adaptation mechanisms. In consequence, studying the neuron behavior 
in a multiscale framework allows discovering functional characteristics of neurons behind basic 
brain functions (such as awareness, memory and stress) as well as addressing diagnosis and 
treatment of neurological disorders. Therefore, from detailed neuron models which involve 
small-scale simulations, to simplified neuron models that allow large-scale simulations, and 
from these neuron networks to even embodied simulations of behavior (behavioral 
experimental set ups in which neuronal simulations are done in the framework of an 
experimental task).  

5 
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Figure 2. Conceptual framework for understanding the computational principles of the brain. At 
the molecular level, neurophysiology allows discovering characteristics that describe neuron dynamics, 
embedding a combination of channels and specific interneurons synapses in the neuron layer. 
Simulations are multiscale, from a single neuron with certain channels or specific synapses, to complex 
neuron networks of millions of neurons. This approach allows creating complex neuron models that can 
be simulated in detail. Simplifying these detailed models but identifying and keeping the most relevant 
spiking characteristics is a complex process. In silico simulators such as NEURON or NEST allow dealing 
with neuron models at different abstraction levels (molecular level, multi-compartmental models, point-
neuron level, etc.). A higher abstraction level allows evaluating the behavioral impact of the neurological 
substrate (cell characteristics, network topologies and adaptation mechanisms). Finally, the study of the 
neuronal behavior in a multiscale framework allows discovering cell functional characteristics behind 
awareness, memory, stress, etc., and addressing diagnosis and treatment of neurobiological diseases.  

This thesis is contextualized in the molecular and cellular scales, deepening in the study 
of the complex feature of resonance of cerebellar granule cells that could have a functional 
role in the information processing primitives. For this aim, part of the methodology addressed 
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in this research work is encompassed in the creation and simulation of mathematical models 
of these types of cells. Since the cerebellar granule cells show compact and simple morphology 
(D’Angelo et al., 2001; Delvendahl et al., 2015), it is appropriate to consider a mono-
compartment model. In this thesis, we have deepened in the exploration of methodological 
approaches regarding the creation of neuron models that maintain biological realism and 
computational efficiency whilst capturing essential aspects of single-neuron processing. We 
have gone into detail about the development of refined methods of automatic parameter 
tuning of these neuron model configurations replicating from the neurophysiological data 
evidenced in the literature.  

Hence, this thesis has interest in diverse research fields and topics of interest of 
international level by projects as the Human Brain Project (HBP in Europe, and where the Ph.D. 
candidate has been involved since 2019) or the Brain Research through Innovative 
Neurotechnologies (BRAIN Initiative in USA). These projects are among the largest initiatives 
that have caused greater expectation in recent years, and where huge economic resources to 
this research are dedicated. The HBP initiative is focused on an integrated effort and the 
development of various general platforms that facilitate research in different fields related to 
the human brain. The main goal of these platforms are based on giving scientists from all over 
the world a single point of access to neuroscience data, multi-omics clinical data and analysis 
tools.  The American BRAIN Initiative is more focused on the development of new technologies 
that will enable disruptive advances in the research fields related to the brain. For further 
details on the early research and current frameworks, the reader is referred to the review by 
(Prieto et al., 2016). The interdisciplinary thematic, needed for both understanding the brain 
and treating neurological diseases, ranges from the alteration of the gene and its effect in the 
neuron behavior, in the network, through thousands of synapses, and even reproducing 
symptomatology and rehabilitation with an agent (that can be a robot avatar). Thus, the 
interdisciplinary nature of the field of this thesis ranges throughout various levels of biological 
organization (genetics, proteomics, micro- and macro-circuits and even behavioral and clinical 
level), integrating multidimensional data according to diverse up-to-date methodological 
approaches from different fields (such as neuroscience, biomedicine, physiology, molecular 
and systems biology, together with electrical engineering, computer science, mathematics and 
biophysics).  

The general goal of this thesis is intended to provide some pieces of knowledge 
(contributions) to some of the questions that remain elusive about the brain and more 
specifically the cerebellum: 

 Firstly, as a preliminary approach we look for a better understanding of
the etiopathogenesis of neurological diseases. We propose to identify the most 
common polygenic influences and their associated manifestations (and still based on 
similar molecular mechanisms) throughout a set of diseases contributing to the overall 
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understanding of their pathomechanisms. This goal is intended to shed some light on 
the up-to-date knowledge of neurological disorders and related manifestations. 
Furthermore, we proposed a generic workflow that can be applied to other disorders. 

 Secondly, we aim to develop a methodology for the simulation and 
simplification of mathematical neuron models. The intention is to be able to create 
computationally efficient neuron models that reproduce non-linear cellular dynamics. 
It is worthy to mention that we expect to maintain biological realism and computational 
efficiency in the neuron models whilst capturing essential aspects of single-neuron 
processing. We use the mentioned methodology to perform the study of a potential 
cellular mechanism in the somatosensory information representations, i.e. the intrinsic 
resonance of the cerebellar granule cells. The methodology to generate different 
computationally efficient models of granule cells with intrinsic resonance and other 
features considered functionally relevant is our contribution to this aim. Future 
simulations of microcircuits with these neuron models will allow evaluating how these 
complex neuronal dynamics support neuronal information processing at a system level. 

1.1 A preliminary study towards understanding the 
pathomechanisms of neurological disorders 

Many complex diseases, such as neurological disorders, are known to be an interplay of 
multifactorial conditions that are greatly influenced not only by genetic variants but also by 
environmental signals. Therefore, it is of utmost importance to identify their causal agents for 
the detection of suitable targets, the management of their diagnosis and the selection of the 
most adequate therapies.  

Channelopathies are a group of genetically and phenotypically heterogeneous 
disorders that result from genetically determined defects in ion-channel function. Ion channels 
are transmembrane proteins that allow the passive flow of ions, both in and out of cells or 
cellular organelles, following their electrochemical gradients. This flux of ions across the 
membrane results in electrical currents, for which ion channels play an important role in 
generating membrane potential and function in diverse cellular activities. Ion channels are 
fundamental in neuronal signaling and thus, channelopathies are mainly considered as a group 
of neurologic disorders (e.g., generalized epilepsy with febrile seizures plus, episodic ataxia 
and familial hemiplegic migraine). However, its heterogeneity is due to mutations in the same 
gene that can cause different diseases and mutations in different genes can result in the same 
disease phenotype. Therefore, other manifestations of channelopathies also affect other 
systems such as the cardiovascular, the respiratory, the endocrine, the immune and the urinary 
systems (Knupp and Brooks-Kayal, 2017). The field of channelopathies is expanding rapidly, as 
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is the utility of molecular-genetic and electrophysiological studies. There are remarkable causal 
heterogeneity (especially genetic) and phenotypic variability in channelopathies, which make 
the diseases challenging to classify and thus to be effectively treated.  

The increasing availability of large bibliographic data volumes lays the foundations for 
the identification of candidate genes as causal agents of a complex disease. However, the 
integration of all this knowledge requires understanding the diverse biomedical information 
sources available. The extraction of data performed by valid association procedures and the 
comprehensive interpretation of all this current knowledge is complex.  

Traditionally, brain complexity has been addressed following a reductionist 
perspective, studying the anatomical regions of the brain and focusing on characterizing its 
cellular components and basic functions in isolation. Even though research endeavors are still 
focused on finding gene variants related with consciousness, memory and social capabilities, 
neuroscientists admit that the information processing skills and, in the last instance, brain 
behavior, are caused by the dynamic interaction of intricate synapse networks. However, this 
traditional perspective has not helped fully to clarify the mechanisms of interaction between 
components and has been unable to predict the effects of alterations in components upon the 
dynamics of the entire system (Diaz-Beltran et al., 2013).  

Alternatively, the interdisciplinary research is developing new technologies and 
integrative computational methodologies in order to better understand pathogenesis. 
Systems biology emerged as a field of study aiming to understand biology at the system level, 
entailing the functional analysis of the structure and dynamics of cells and organisms and 
focusing on the interactions between isolated components. Most researchers agree that 
systems biology complements the classic reductionist approaches in biomedical research and 
represents one of the best strategies to understand the underlying complexity of biological 
systems (Diaz-Beltran et al., 2013). These new tools are able to manage deductive analyses by 
gaining insight into the connections among diseases, even between those a priori not related 
by the traditional bibliographic searches (such as exhaustive or systematic search systems), 
which usually tend to be subjective, time-consuming or not reproducible. However, the large 
range of diverse new tools created within different focuses hinders the existence of a unique 
approach to or a consensus on their usage. Thus, data extraction through ad-hoc approaches 
using specific tools may again be complex, not reproducible or subjective and would not allow 
discovering interconnections among genes involved in complex disease that would have 
utmost relevance and utility. In this way, network analyses and functional annotation tools 
from systems biology represent some of the best strategies for objective interpretation of 
biomedical data and cope with higher levels of biological complexity.  

In this context, this thesis explores as a preliminary research a semi-automatic workflow 
based on the integration of biologically data-driven networks and databases for the 
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identification and functional annotation of the most relevant genes in disease. We planned to 
inspect the integration of different multi-dimensional data from various biological levels 
(genomics, transcriptomics and proteomics) in order to analyze genetic correlations among 
complex diseases with heterogeneous symptomatologies and/or clinical prognoses (and still 
based on similar molecular mechanisms). In order to illustrate the value of this integrative 
approach and demonstrate its usefulness, we select the case of channelopathies as proof-of-
concept since this complex group of diseases is highly related to neurological pathologies and 
remains unexplored.

1.2 The information processing in the granular layer of the 
cerebellum 

In order to better understand the role of the cerebellum as one of the key subsystems in the 
brain for the processing of temporal information, it is important to know its anatomy and 
structure. The cerebellum is organized in three main large-scale networks that involve a 
relatively modest number of cell types with highly-parallel and modular connectivity: the 
cerebellar cortex, deep cerebellar nuclei, and the inferior olive. This structure has inspired many 
theoretical models elaborating the combinatorial properties of this whole network (Eccles et 
al., 1967; Albus, 1971) and also cerebellar models of learning, movement prediction, and a 
timing machine (Eccles, 1973; Computational Models of Brain and Behavior, 2017). Cerebellar 
models help identifying basic research questions required to understand how the brain 
represents information and utilizes time (Bareš et al., 2019). The cerebellum is thought to have 
representations of internal models, transferring relevant information via their inputs and 
outputs (D’Angelo et al., 2013b). Its neuronal properties (at the intrinsic and synaptic levels) 
correlate with learning and memory processes, among others. In the last decade, our research 
group, the Applied Computational Neuroscience (ACN) Group (Applied Computational 
Neuroscience Research Group) at the University of Granada, has developed and applied 
computational tools to gain understanding on cerebellar information processing and motor 
control. The work developed in this thesis within this lab follows the research line in 
Computational Neuroscience about simulating biologically plausible neural systems at 
different levels of detail to contrast working hypotheses related to the cerebellar cortex and 
evaluate how the physiological substrate supports their computational features. 

Introducing the cerebellar cortex, it has a large amount of neurons (estimated to up to 
2010 neurons), with an approximately 1 mm-thick and a similar structure across the cerebellum 
(Computational Models of Brain and Behavior, 2017). Its neuronal circuits include seven types 
of neurons (namely, granule cells, Purkinje cells, basket cells, stellate cells, Golgi cells, Lugaro 
cells and unipolar brush cells). They also involve three types of afferents (i.e., mossy fiber 
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afferents, climbing fiber afferents, and the third type of afferent named beaded fibers through 
the white matter underlying the granular layer) (Rancz et al., 2007; Ito, 2014). The afferents 
lead the input of nerve impulses (spikes) to the cerebellar cortex (i.e., from which the 
cerebellum receives inputs), and the Purkinje cells provide the sole output of this layer (Rancz 
et al., 2007; Ito, 2014). From a histological point of view, the cerebellar cortex is divided into 
three layers (from outside to inside): the molecular layer, the Purkinje cell layer, and the 
granular layer (figure 3) (Welsch and Welsch, 2006).  

Figure 3. Schematic representation of the cerebellar cytoarchitecture. The  cerebellar cortex  is 
composed  of  three  layers:  the  granular  layer,  the  Purkinje  cell  layer  and  the  molecular  layer. 
The  cellular types  present  in  the  cerebellar  cortex  are  the  Purkinje  cells,  granule  cells,  Golgi  cells, 
Lugaro  cells,  unipolar brush  cells  (UBCs),  stellate  cells  and  basket  cell  interneurons.  Climbing 
fibers,  which  synapse  directly  with Purkinje  cells  and  a  subset  of  neurons  in  the  cerebellar  nuclei, 
and  the  mossy  fibers,  which  synapse  with granule cells are the two main afferents to the cerebellum. 
Figure extracted from (Ashida et al., 2018).     

Regarding the granular layer, it is the innermost layer and contains a high number of 
the smallest (5-8 μm in diameter) but the most numerous neurons (2-3 million/mm-3, for a 
total of 1010-1011 neurons in humans) in the brain, named granule cells (Ito, 2014). Each granule 
cell extends four to five short dendrites, each of which receives an excitatory synapse from a 
mossy fiber terminal and relays the input to Purkinje cells via their unmyelinated parallel fibers. 
Granule cell axons supply excitatory synapses to other neurons in the cerebellar cortex. The 
cerebellar granule cells (GrCs), Golgi cells (GoCs), Lugaro cells and unipolar brush cells (UBCs) 
are the interneurons present in this layer. Particularly, GoCs are the main inhibitory 
interneurons in the feedforward inhibition that contributes to the granular layer computations 
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of sensory and tactile inputs (Roggeri et al., 2008). Their specific ionic mechanisms (such as 
pacemaking activity and theta-frequency resonance) (Solinas et al., 2007) may allow the 
adaptation of firing frequency and spike precision (Solinas et al., 2007; Medini et al., 2012). In 
this line, GrCs also show a complex intrinsic mechanism of resonance in the theta range that 
may play a role in the phase-locking of the inhibitory circuit (Maex and De Schutter, 1998; 
D’Angelo et al., 2001). Theta-frequency resonance of GrCs also might be involved in regulating 
the induction of synaptic plasticity in the mossy fiber-granule cell pathway (Armano et al., 
2000; D’Angelo et al., 2001). Given these pieces of evidences, the importance of studying this 
complex dynamics is of utmost importance in this thesis.  

With respect to the neuronal feature of resonance, it is worthy to introduce some 
theoretical concepts. As mentioned before, resonance is a measurable property that describes 
the ability of neurons to respond selectively to oscillatory inputs at preferred frequencies 
(figure 4) (Hutcheon and Yarom, 2000). The characterization of resonance captures those 
essential properties of neurons that can serve as a substrate for coordinating network activity 
around a particular frequency in the brain. The mechanism of resonance assesses small-signal 
responses of neurons (thus ignoring or approximating their strongly nonlinear properties) in 
order to understand how neurons process oscillatory inputs at to neuron regimes: 
subthreshold potentials, and/or suprathreshold (spiking) potentials (Hutcheon and Yarom, 
2000; Rotstein, 2017). As mentioned above, recent studies on the granular layer have added 
novel implications of its signals encoded for its function (D’Angelo et al., 2009). Specifically, 
most of the findings in this layer have focused on the subthreshold resonance, particularly in 
vivo studies evidenced theta-frequency resonance at 7Hz in rats (Hartmann and Bower, 1998) 
and 7-25Hz in monkeys (Pellerin and Lamarre, 1997; Courtemanche et al., 2009). However, the 
spiking resonance has been considered with less attention in spite of it being proposed to 
strengthen the input signal processing and transmission at the theta-frequency band in the 
granular layer (D’Angelo et al., 2009). More specifically, the spiking resonance has been 
claimed to be an intrinsic property of the cerebellar GrCs (D’Angelo et al., 2001). 

Figure 4. Intrinsic property of spiking resonance. (A) Model simulation in response to sinusoidal 
current injection of 10-pA offset and 6-pA amplitude. (B) Resonance curve (showing burst frequency) 
in response to the same stimulation protocol. These simulations are predicted by the cerebellar granule 
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1.2. The information processing in the granular layer of the cerebellum 

cell (GrC) model obtained in (Marín et al., 2020) included in this thesis. This figure is extracted from 
figure 6 from (Marín et al., 2020). 

Another general concept worthy to mention is the set of biochemical mechanisms that 
underlie the neuronal feature of resonance. This cellular dynamics emerge as a combination 
of low-pass and high-pass filter mechanisms, i.e., the interplay of the passive membrane 
properties and one or more ionic currents and their interaction with the oscillatory inputs 
(Hutcheon and Yarom, 2000; Magistretti et al., 2006; Das and Narayanan, 2017; Fox et al., 2017; 
Rotstein, 2017). A high-pass filter, as a “resonator” current, and a low-pass filter, caused by 
passive membrane properties, determine the resonance curve. In the case of the cerebellar 
GrCs, the pieces of evidence suggest that the core of the slow oscillatory mechanism are IK-slow

and INa-p. The high-pass filter is determined by IK-slow (i.e., a Ca2+-independent TEA-insensitive 
K+ current), which causes delayed repolarization terminating the positive phase of the 
oscillation promoted by INa-p. These interplay of filters is amplified by an “amplifier” current INa-

p, which sustains theta-frequency oscillation and bursting. A resurgent current INa-r facilitates 
bursting and resonance, intensifying the interplay of mechanisms by spike clustering, but not 
sufficient to induce them. The spiking resonance of GrCs selectively enhance low-frequency 
stimulation responses according to some studies (D’Angelo et al., 2001, 2009; Gandolfi et al., 
2013).  

This behavior of cerebellar GrCs is due to a high-pass filtering “resonator” current, 
generating the ascending branch of the resonance curve) in association with a low-pass 
filtering caused by passive membrane properties (generating the descending branch of the 
resonance curve). These mechanisms are amplified by an “amplifier” current (INa-p) and 
intensified by spike clustering (promoted by INa-r).  

The cerebellar granule cells (GrCs) are the main components of the granular layer of 
the cerebellum since they are the smallest and most abundant in the entire brain (Herculano-
Houzel, 2010). Following the above statements, it is suggested that GrCs determine the 
somatosensory information representation in the granular layer facilitating the input signal 
transmission. Nevertheless, the function of the spiking resonance in the theta band of GrCs for 
overall information processing remains elusive. For addressing this research question on the 
possible role of the oscillatory activity in the theta-frequency band of GrCs in the information 
processing capabilities of the granular layer, this thesis explores how to best fit this property 
in computationally efficient neuron models. Possibly, this cellular feature structures the 
information to be co-processed eventually by other components of the layer, such as the GoCs. 

By means of computational neuroscience approaches, the aim of this thesis is to 
evaluate the computational capabilities of the spiking resonance in the granular layer, 
integrating non-linear cellular dynamics, such as the feature of spiking resonance, in efficient 
neuron models. Our contribution addresses the generation of efficient neuron models that 
reproduce accurately the essential properties of the cerebellar granule cells together with the 
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1. Introduction 

spiking resonant behavior in the theta range. This research leads to simulate large-scale 
networks of the granular layer for studying the functional impact of resonance since it is 
suggested to have a main role in the integration of signals in the cerebellar circuitry (Gandolfi 
et al., 2013). 

1.3 Computational modeling of neurons 

The technological advances in computational neuroscience have helped foster new 
insights into the processing of temporal information in the cerebellum. Regarding the 
understanding of neuronal information processing, theoretical approaches are yet be further 
developed. However, the theoretical principles are substantiated in: (1) experiment-dominated 
bottom-up (from biological data to computational models to functional concepts and 
structure-function relationships); and (2) theory-dominated top-down approaches (from 
functional working hypotheses to computational models to testable predictions). This thesis is 
based on this latter principle, where the functional working hypothesis is based on the study 
of unexplored nonlinear cellular dynamics in the information processing of granular layer and 
the methodology is based on the construction of computational models that allows evaluating 
this premise in large-scale networks.     

Simulation approaches from computational neuroscience have proven an invaluable 
tool for turning these mathematical principles, theory, and data into new insights. For building 
a computational model based on biological data there are two different ways: (1) creating 
realistic neuron models based upon realistic information and with the lowest simplification 
possible, with the purpose of finding new structure-function relationships, or (2) creating very 
simplified models that are computationally efficient to predict and demonstrate a 
preconceived concept. It is important to mention that biophysical model predictions can 
simulate results that are not possible, or even replicate experiments on animal models, such 
as the mouse (Human Brain Project (HBP) - Brain Simulation; Computational Models of Brain 
and Behavior, 2017). Finally, it is also worth mentioning that computational neuroscience has 
become an auspicious technology for translational research, developing novel paradigms in 
both intelligent systems and clinical research. The computing environment used for simulation 
offers the possibility of studying disease processes electronically (in silico). Precisely, the study 
of tangled brain pathways would require the simulation of large-scale network models 
integrating the neurons and interconnections involved. However, there is a need to develop 
more comprehensive models and multi-level validations of these models through 
experimental studies to uncover the underlying molecular mechanisms leading to unknown 
dysfunctions.  
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1.3. Computational modeling of neurons 

Several simulation environments have been designed for building and using these 
mathematical classes of neuron- and network- models. On one hand, simulators as NEURON 
(Hines and Carnevale, 1997)  are empirically based simulators of morphologically detailed 
neuron models (they allow describing neuron mechanisms, i.e. mathematical differential 
equations, mimicking the biological cell dynamics at a molecular level) widely used by 
theoreticians and electrophysiologists. On the other hand, NEST is focused on more specific 
neuronal simulations (i.e., dynamics and structure of spiking neuron network models) using 
simplified neuron models (defined by few mathematical equations) rather than including the 
exact morphology as the detailed single-neuron models. This approach is ideal for modeling 
information processing or network activity dynamics, and for models of learning and plasticity. 
Other current simulators at this level of abstraction are BRIAN (Stimberg et al., 2019) and 
EDLUT (Ros et al., 2006; Naveros et al., 2015, 2017). In this thesis, we have mainly used the 
NEST simulator as the modeling tool for our experimentation. 

Detailed neuron models (i.e., integrating a high degree of biological plausibility) 
allowed fine-grained studies about intrinsic cellular dynamics, but the high computational cost 
associated with the simulation of these complex models makes them only suitable for small-
scale models of networks or short simulations. Thus, simplified models appear to be a perfect 
alternative for exploring the functional role of resonant activity in information processing. 
Simplified models (such as point-neuron models) combine computational efficiency and 
realistic neuronal dynamics. Considering this, the adaptive exponential integrate-and-fire 
(AdEx) model (Brette and Gerstner, 2005) only includes two coupled differential equations 
which capture adaptation and resonance properties (Naud et al., 2008). In addition, the AdEx 
model enables large-scale implementations of neuronal circuits, which is key for testing 
predictions in the granular layer. Since the cerebellar GrCs show compact and simple 
morphology (D’Angelo et al., 2001; Delvendahl et al., 2015), it is appropriate to consider a 
mono-compartment model. For these reasons, this thesis models cerebellar GrCs based on 
AdEx neuron templates because of its computational efficiency and realistic firing modes.  

The AdEx model can be seen as a two-dimensional reduction of the spike initiation of 
Hodgkin-Huxley models (the most common detailed models used by electrophysiologists). 
However, some of its parameters lack an experimental (measurable) counterpart (i.e., some 
parameter values to match with electrophysiological measurements cannot be experimentally 
determined). Finding an appropriate set of parameters becomes a challenging problem 
(Barranca et al., 2013; Venkadesh et al., 2018) which makes it being considered a suitable 
optimization problem that remains partially unsolved. Different optimization algorithms for 
tuning the parameters of computationally efficient neuron models and reproducing certain 
biological behaviors have been used (Van Geit et al., 2008). More generically, recently there 
are interesting tools being developed to optimize the parameters of these type of neuron 
models to fit different cell characteristics (Friedrich et al., 2014; Van Geit et al., 2016). But after 
exploring these tools four our parameter study, since, in our case, the burst frequency (spiking 
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resonance) was considered a key feature, we decided to use generic parameter optimization 
approaches. However, since no exact method is known to solve the nonlinear and simulation-
based target problem, this thesis addresses the exploration of a methodology for building 
computationally efficient neuron models of cerebellar GrCs that replicate some inherent 
properties of the biological cell.  

Moreover, the relevance of heterogeneity in neuron populations of the same type with 
variances in their properties, such as the cerebellar GrCs, is sound (Lengler et al., 2013; Migliore 
et al., 2018). The intrinsic variability of neurons in brain areas is thought to crucially change the 
microcircuit dynamics, and thus taking a relevant part in the information processing. However, 
the most used optimization strategies return a single optimal solution (a single neuron model). 
This thesis also aims to explore alternative optimizers that result in heterogeneous populations 
(exploring the parameter space) of promising neuron models whose properties are closely 
matched to the biological target data. 
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Chapter 2 

Thesis Contextualization 

2.1 Motivation 

Currently, it is unknown how neuronal characteristics (and their biological basis at the 
molecular level) affect the representation of somatosensory information, their interaction with 
synaptic plasticity mechanisms and the development of neurological diseases. In this thesis, 
we develop neuron models with intrinsic dynamics that capture key features that we consider 
functionally relevant. In future work, we will study the impact of the characteristic firing 
patterns (spike bursting, resonance, delayed firing, among others) of a certain cerebellar 
neuron (the cerebellar granule cell) on the overall functioning of the cerebellum. By using 
cellular models (which reproduce the inherent dynamics obtained in electrophysiological 
studies), the functional implications on the neuronal system will be explored. This thesis will 
serve as a first step leading to advances in the basic knowledge of the brain, as well as in the 
prevention and treatment of neurological diseases.  

This thesis is of interest in various fields of research and topics of international 
relevance: 



2. Thesis contextualization 

• To understand the brain, we must cover all levels of abstraction: from the
molecular, cellular and synaptic level to micro- and macro-circuitry and even behavioral 
impact. At the same time, dealing with neurological diseases requires a multidisciplinary 
approach: from a mutated gene to its effect on a neuron, on a network, to thousands of 
synapses (D’Angelo et al., 2013a), or even reproducing the symptomatology and 
rehabilitating with an agent (which can be a robot avatar) (Geminiani et al., 2018).  

• This is an ambitious goal and it is already being tackled by international projects
such as the Human Brain Project (HBP in Europe, in which our research group has been 
participating for more than six years) or the BRAIN initiative (in the USA). These 
international projects develop reverse engineering research in an interdisciplinary 
framework with the common aim of unraveling the brain, covering all the different 
possible levels of abstraction. 

• This thesis aims at representing a differential value by addressing the
optimization and modeling of simplified neurons from experimental data, capturing key 
functionally relevant features. This will help, in the future, to evaluate the processing 
capabilities of the granular layer based on specific characteristics of these neurons and 
their adaptation mechanisms. Thus, this work is approached from a thematic 
interdisciplinary perspective. 

• Future implications of this thesis project may expand to the study of 1) the
behavioral impact on biological tasks, understanding cerebellar neurological diseases and 
facilitating their treatments, 2) neuronal rehabilitation schemes, 3) reverse engineering, 
and 4) efficient computing (better understanding new forms of massively parallel 
computing). 

Regarding the field of neuroscience, biological systems have traditionally been studied 
by using in vitro and in vivo experiments. Recently, computational neuroscience with its in 
silico (performed via computer simulation) experiments has emerged as a third approach to 
address the points mentioned above. It is important to also mention that biophysical model 
predictions can simulate results that are not possible experimentally, or even replicate 
experiments on animal models, such as the mouse (Computational Models of Brain and 
Behavior, 2017). This aims to also have an impact on the 3Rs ethics on animal experimentation 
(the principles of the 3Rs, abbreviations for Replacement, Reduction and Refinement): (1) 
Replacement of animals by simulation when possible; (2) Reduction on the need of the number 
of animals required for animal experimentation; and (3) Refinement of the specific experiments 
and pursued results that are needed (and thus reducing the number of experiments required). 
The impact on the 3Rs in animal experimentation can be seen in itself as an important 
motivation for the effort done of pushing the simulation capabilities of neuronal systems in 
this thesis. 
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2.1. Motivation 

Thus, the research in the field of computational neuroscience seeks (1) to reduce the 
need for animal experiments, (2) to exploit reverse engineering (theory-dominated top-down 
approaches) of smart computation primitives, (3) to study diseases in unprecedented in silico 
experiments, and (4) to improve the validation of data and experiments with computational 
validation. Long-term applications together with other interdisciplinary fields such as 
Neurorobotics can also lead to neuronal rehabilitation schemes, efficient computing, and 
acting principles of biologically relevant tasks. However, a deeper knowledge on how the 
biological systems process the information is yet of utmost importance. In this thesis we have 
used the results contained in different bibliographic source volumes, databases and also 
obtained from electrophysiological studies in order to develop novel methodologies (1) that 
ease the identification of relevant components in complex diseases and (2) that create 
computationally efficient neuron models of cerebellar cells. These neuron models will serve to 
simulate large-scale networks that will validate the hypothesis raised by in vitro and in vivo 
experiments and to propose new hypotheses that can be validated by these types of 
physiological experiments. Thus, computational neuroscience experiments are a perfect 
complement for cellular and animal experimentation.  

With respect to the complexity of disease, there are multiple studies on distinct cellular 
dynamics and their associated pathologies (Necchi et al., 2008; Pappalardo et al., 2016; Spillane 
et al., 2016; Sathyanesan et al., 2019; Mitoma et al., 2020). Understanding how these properties 
relate to specific genes is of utmost importance. The large amount of biomedical literature 
sources available today often makes it difficult to integrate all this knowledge to identify the 
genetic causes underlying complex diseases. However, extracting these causal agents becomes 
essential to understand the pathomechanisms of complex diseases. What's more, it also allows 
a richer diagnostic management and exploring possible suitable targets as potential therapies. 
Complex diseases (those that combine a large number of genetic factors) are difficult to 
classify: some reviews deal with categorizations based on organ systems, others by the 
proteins involved or by specific mutations. Some genes involved may be involved in other 
systems that a priori are not related to the main organ system. Current traditional search 
systems (such as the exhaustive or systematic review) allow collecting this significant 
biomedical information (Ferreira González et al., 2011). However, these search systems used 
to be arduous, non-automatic and may not even allow the detection of interconnections 
between the genes involved or outcomes that are not retrievable. Therefore, in this thesis we 
have made a preliminary exploration of valid association procedures that allow coping with 
these levels of biological complexity. The aim of our methodological proposal is the 
comprehensive interpretation of current biological knowledge that acts as a bridge-builder 
between fields and extracts information that a priori may not seem important but which is 
extremely useful (Yang et al., 2015). 

Focusing on the information transmission in the cerebellum, many in vivo studies have 
evidenced subthreshold resonance at theta frequency (Pellerin and Lamarre, 1997; Hartmann 

19 



2. Thesis contextualization 

and Bower, 1998; Courtemanche et al., 2009) and its possible role in the signal encoding from 
the granular layer (D’Angelo et al., 2009). However, according to previous in vitro and in silico 
studies (D’Angelo et al., 2001; Gandolfi et al., 2013), supra-threshold (spiking) resonance of 
single cerebellar granule cells unveils a possible role of this complex non-linear cellular 
dynamics in the processing and transmission of information at theta frequency rhythm. It is 
theoretically known that the spiking resonance feature depends on spiking mechanisms and 
intrinsic properties of single cells in most cases (Rotstein, 2017). Single-neuron responses in 
the granular layer have long been investigated in search of such theta-frequency activity 
patterns (D’Angelo et al., 2009; Gandolfi et al., 2013). However, how these neuronal dynamics 
interact with information processing primitives in terms of long-term plasticity and learning in 
the granular layer remains unclear (Masquelier et al., 2009; Solinas et al., 2010; Garrido et al., 
2013b). In this thesis we have explored the cellular mechanisms underlying this behavior in 
order to generate efficient neuron models that allow us to simulate the granular layer on a 
large scale and thus to assess the impact of theta-frequency spiking resonance on information 
transmission. 

Regarding the mathematical modeling of the information processing in the granular 
layer, it remains unclear how spiking resonance (demonstrated in vitro in GrCs and GoCs) 
interacts in a recurrent inhibitory loop with feed-forward excitation of the Golgi cell. Despite 
theoretical models of granular layer have addressed the information processing primitives 
(Solinas et al., 2010; Garrido et al., 2013a), these models either have not considered intrinsic 
resonance or they have neglected the role of the long-term plasticity in the GrC inputs. In 
addition, and from a functional perspective, mathematical models have demonstrated that an 
external oscillatory rhythm provides strong stability as an efficient learning scheme in 
excitatory synapses (Masquelier et al., 2009) and inhibitory recurrent networks (Garrido et al., 
2016). With respect to the cerebellar GrCs, detailed models have suggested that the spiking 
resonance in the theta-frequency band may favor the phase-locking through the recurrent 
Golgi cell inhibitory circuit (Maex and De Schutter, 1998; D’Angelo et al., 2001). Moreover, 
these neuron models have suggested a regulating role in the induction of synaptic plasticity 
in the mossy fiber-granule cell pathway (Armano et al., 2000; D’Angelo et al., 2001). This 
represents a strong motivation towards integrating complex dynamics capturing the resonant 
behavior as a key functional feature of neurons (as has been done in this thesis).  

To this end, in this thesis we have made use of the simulation tools offered by 
computational neuroscience together with optimization strategies. Mathematical models that 
capture "functional" neuron properties (i.e., relevant properties to the computational capacity 
of the neuron and the network) with sufficient biological plausibility while being 
computationally efficient. In order to create such models, parametric optimization methods 
are required to capture the properties that we select as relevant, and that are matched as 
closely as possible to the electrophysiological recordings of real cells. 
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2.2. Objectives 

2.2 Objectives 

The general vision of this thesis is focused on providing some pieces of knowledge (our main 
contributions) to some of the questions that remain elusive about the brain and more 
specifically the cerebellum. The general goals of this thesis are summarized in figure 5 and 
state as follows:  

1. The first aim of this work is a preliminary exploration of complex diseases in a
molecular level from the integration of a huge amount of data available, and extracting 
information and possible conclusions that a priori might not seem relevant, such as 
comorbidities.  

2. The second aim is to create neuron models that capture particular properties
of the of cerebellar granule cells which seem key for the processing of somatosensory 
information in the cerebellum’s granular layer. The specific behavior under study, the 
spiking resonance under theta-frequency synchronization, is a cellular property usually 
ignored in most models.  

Figure 5. Vision and missions of this thesis. 

In this thesis, we aim at modeling the cerebellum at different levels of detail, ranging 
from the computational primitives (simplified efficient behavioral neuron models) to their 
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neurobiological substrate (neuron models from biological measurements at molecular levels 
such as cellular dynamics of ionic channels). Particularly, this thesis addresses the identification 
of the specific properties of neurons from the granular layer of the cerebellum that are 
considered relevant for the somatosensorial information processing. Some of these features 
are the neuron resonance and the synchronization in the theta-frequency band that usually 
are ignored in most of the models. 

That said, the specific objectives that this thesis addresses are: 

2.3 Our contribution 

With respect to the first general goal of this thesis, our contributions are covered in the first 
(Marín et al., 2019) journal article included in this thesis. We have proposed a methodology for 
the objective interpretation of biomedical data and for coping with the higher level of biology 
complexity of complex diseases (Martin-Sanchez and Verspoor, 2014; Peek et al., 2014; 
Coveney et al., 2016). This methodology identifies and functionally annotates the relevant 
genes of complex diseases as molecular targets from the global analysis of multiple 

1. Developing semi-automatic search methodology that allows
integrating biomedical knowledge from different studies in the field.
Deepening in the biochemical and physiological knowledge of the brain

2. Development of a methodology for simulation and simplification of
neuron models

3. Development of computationally efficient neuron models that
integrate nonlinear cellular dynamics

4. Study of the resonance at the cellular level in cerebellar granule cells
and evaluation of its computational capabilities in the brain

5. Development of a model of cerebellar granule cell integrating
nonlinear cellular dynamics (such as the spiking resonance)

6. Evaluation of the capabilities and efficiency in the information
transmission of the granular layer with nonlinear cellular models
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interactions at different levels. We have integrated multidimensional data and used software 
tools of high impact based on protein-protein interaction (PPI) networks as representations of 
the biological complex interactions underlying these disorders. The central position of the 
nodes in the network are key in the main biological and molecular processes, i.e. they tend to 
be potential pharmacological targets (Goñi et al., 2008; Diaz-Beltran et al., 2013; Stoilova-
McPhie et al., 2013; Di Silvestre et al., 2017). The proposed pipeline detects the central nodes 
that maintain the structure and information fluxes into the functional network. The final step 
consists on the exploration of the biological and molecular processes in which these candidate 
genes play a joint key role. In this step it is unveiled if these candidate genes could also be 
related with other diseases as comorbidity, which would provide a more comprehensive view 
of the importance of treatments (Stoilova-McPhie et al., 2013; Sánchez-Valle et al., 2017, 2020). 
We compared the usefulness of the proposal with other annotation and association systems 
such as the traditional bibliographic search systems (which are inefficient, subjective and time-
consuming by hand) (Ferreira González et al., 2011), and with some of the highest impact tools 
for functional annotation (which are objective, quick and reproducible) (Yang et al., 2015). We 
applied this proposal to the case of channelopathies, whose remarkable causal heterogeneity 
is sound (Kim, 2014; Spillane et al., 2016). This application contributes to the overall 
understanding of pathomechanisms underlying these altered-channels diseases, in how 
mutations can modify disease severity (Musgaard et al., 2018), and to shed some light on 
effective treatments (Stoilova-McPhie et al., 2013; Spillane et al., 2016; Schorge, 2018). The 
proposed methodology proved to build as productive results as other non-automatic 
traditional search systems. At the same time, it was shown to work more flexibly, quicker, 
making it a convenient and easy-to-perform first-level approach compared to the methods 
analyzed in the article. This contribution serves as a bridge-builder among fields allowing the 
extraction of information that a priori might not seem relevant or related when the starting 
point is a very large group of genes in disease (i.e. comorbidities). It is worthy to mention that 
the proposed methodology and results obtained in this part of the thesis has helped in further 
studies by other research groups in related research areas such as Alzheimer (Meng et al., 
2020), children obesity (Plaza-Florido et al., 2020), and neuroepithelial tumors in the posterior 
fossa (Wang et al., 2021).   

Regarding the rest of the goals of the thesis, our main contributions are contained 
within the remaining journal articles included in this thesis (Marín et al., 2020, 2021; Cruz et al., 
2021). In the following paragraphs, we will describe the specific contributions of each of these 
articles.  

In (Marín et al., 2020), we developed an automatic parameter tuning method based on 
genetic algorithms (GAs) for adjusting neuron parameters to spiking features of real cells. 
Although it is of general purpose and flexible to be adapted to different neuronal optimization 
problems, we applied it to the case of cerebellar GrCs. Thus, we have contributed proposing 
different neuron models of cerebellar GrCs that are efficient enough to simulate large-scale 

23 



2. Thesis contextualization 

networks (as it is the granular layer). We showed that these GrC models suitably reproduce the 
spiking resonance at the theta-frequency band. This feature is usually ignored in most of the 
efficient models, and it is thought to have a key role in the information transmission. We also 
demonstrate the biological plausibility of these models not only reproducing the main 
electroresponsiveness typical of real GrCs (i.e., spike frequency of I-F curves and spike timing 
to the first spike) explicitly captured in the “cost function” that is minimized with the 
optimization engine, but also other emergent properties not defined in the “cost function” of 
the algorithm. The realism of these models is of utmost importance, and they are proposed as 
valid models in order to evaluate the functional impact of resonance on the information 
transmission. 

In (Cruz et al., 2021), we explore four alternative optimization strategies (MemeGA, DE, 
TLBO, MSASS) in the same context of the previous work. These innovative algorithms are some 
of the most widely used and successful in other fields, such as engineering and technology. 
We compared them to the algorithm of reference from the previous published article, which 
is a standard GA. These alternative algorithms numerically improve the adjustment of the 
models to the neuronal features of interest. Particularly, TLBO obtained the best candidate 
solution (the best-fitted neuron model to the biological values) from all the methods 
compared. This neuron model improves the temporal accuracy to the first spike with respect 
to the reference candidate (the neuron model obtained with GA in the previous article). The 
contribution of this article lies on the proposal of more efficient and effective alternative 
optimization methods. In particular, with this article we propose a more sophisticated 
methodology for the optimization of neuron models. In addition, we propose a neuron model 
that is more closely tuned to the spiking characteristics of GrCs, with more accurate 
reproduction of the latency to the first spike. 

The heterogeneity of neuron populations has been shown to be beneficial for 
improving information processing in network dynamics. In (Marín et al., 2021), we have 
contributed to this by presenting a methodology based on multimodal algorithms to the same 
case of the resonant GrCs. In this way, we would not propose only one best neuron model 
after the optimization process, but rather we provide a population of promising neuron 
models. From this population of models, the researcher can decide based on the filter or 
selection of the desired feature. This represents a powerful tool for studying the parameter 
space. With this work, we contribute with an unfamiliar approach in the field of neuron 
parameter fitting. More precisely, with these sparse population of GrC models (but fitted to 
the same spiking features of one real cell) we are now able to address the research question 
of the functional impact of resonance on the information processing of heterogeneous 
networks.
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2.4 Project framework 

The work described in this document has been developed in the framework of one European 
project, i.e. “Human Brain Project” [HBP, Specific Grant Agreement 2 (SGA2 H2020-RIA 785907) 
and 3 (SGA3 H2020-RIA 945539)], one national project, i.e. “Integración sensorimotora para 
control adaptativo mediante aprendizaje en cerebelo y centros nerviosos relacionados. 
Aplicación en robótica” [INTSENSO (MICINN-FEDER-PID2019-109991GBI00)], as well as one 
regional project, i.e. “Cerebelo y oliva inferior en tareas de adaptación sensori-motora” 
[CEREBIO (J.A. P18-FR-2378)]. 

This thesis has facilitated interdisciplinary collaborations with different groups close to 
systems biology and biomedical applications, such as the University of Jaén (Francisco J. 
Esteban) and the University of Granada (Hilario Ramírez). In addition, part of this thesis has 
been developed in collaboration with the research group of Computer Science and Technology 
led by Pilar Ortigosa at the University of Almería. 

Our research group has been involved in the Human Brain Project (HBP) for more than 
six years, and this international project has partially funded the thesis of the doctoral candidate. 
This is a European Commission Future and Emerging Technologies Flagship that has involved 
in different stages more than 100 research groups. It was launched in October 2013, and it is 
scheduled to run for ten years. The HBP aims to produce a cutting-edge, ICT-based scientific 
Research Infrastructure for brain research, cognitive neuroscience and brain-inspired 
computing. This international project was originally divided in 12 subprojects. Our research 
group at the University of Granada has participated in previous stages of the HBP mainly in 
the framework of the Neurobotics sub-project, in which our role was to validate the different 
platforms that are being built for addressing an in-depth study of the brain. Thus, adapting 
our experiments to the research platforms (neuronal simulations such as NEST (Gewaltig et al., 
2012)), and the Neurorobotics platform (NRP). One of the roles in this project by our research 
group at the University of Granada has been as an early adopter of such platforms, validating 
them for our studies on computational neuroscience. We firstly contributed to the second 
phase of this project (SGA2: H2020-RIA 785907) with a better understanding of the 
pathologies related to the nervous system throughout our proposed methodology for the 
identification of the most relevant genes in complex diseases. We also have explored some of 
the platforms proposed in this project for neuron fitting, i.e. Neurofitter (Van Geit et al., 2007), 
Optimizer (Friedrich et al., 2014) and BluePyOpt (Van Geit et al., 2016). Although these tools 
work appropriately for the optimization of neuron parameters, some of their limitations 
avoided us to create the simplified neuron models that we aim (these tools are more focused 
to detailed neuron models and the optimization of the whole electrophysiological traces). The 
optimization problem on which this thesis is based has required developing alternative 

25 



2. Thesis contextualization 

optimization methodologies. The methods proposed in this thesis address the optimization of 
simplified neuron models under different contexts for which each of them is more suitable. All 
of the proposed methodologies result in efficient neuron models of cerebellar GrCs that can 
be integrated in the cerebellar model to be developed at our research group. Thus, it could be 
connected to detailed simulations of robot bodies and environments. 

The INTSENSO project (funded under the Ministry of Science and Innovation (MICINN-
FEDER-PID2019-109991GB-I00) framework from the National Plan 2019) started in January 
2020 and will finish in December 2022. The main goal of this project is to cerebellar neuron 
models and their impact on the processing capabilities of the cerebellum. This thesis has 
addressed the second main objective of this project namely “O2. Simulation of the cerebellum, 
inferior olive and basal ganglia). Specifically, we have contributed with the creation of cell 
models with internal dynamics (neurophysiological substrate) that could support specific 
computational capabilities.  

The CEREBIO project (funded by Junta de Andalucía, J.A. FEDER P18-FR-2378) started 
in January 2020 and will finish in December 2022. The main goal of this project is the study of 
the computational primitives of the central nervous system during the body-environment 
interaction. With this approach, this project aims to stablish correlations between 
experimentation and simulation. The principal goal is to develop a methodology and a holistic 
vision of the cerebelar modeling. It is tackle ranging from the single-neuron features level, to 
network- and behavioral- levels that helps to understanding the brain computation. This thesis 
has contributed with a better understanding of the complex set of pathologies associated to 
“altered” ion-channels integrating genomics, transcriptomics and proteomics levels with the 
clinical data. In addition, this thesis has contributed to one of the main objectives of this project 
“Objective 2. Development and implementation of cerebellar model that allow testing working 
hypothesis related to neuronal mechanisms”. Specifically, we created efficient cerebellar GrC 
models that capture the complex intrinsic feature of spiking resonance in the theta-frequency 
band. This work serves as a first step in the research of the functional impact of this feature in 
the granular layer.  

Finally, the doctoral candidate has made a collaboration with the Pilar Ortigosa’s group 
at the University of Almería. We have developed an interdisciplinary synergy. In particular, we 
have explored alternative optimization engines that they widely used in their research field 
(engineering and technology), but unfamiliar in our field of computational neuroscience. We 
are working together integrating their advanced algorithms within our biochemical context 
and neuron optimization (i.e. AdEx models of cerebellar GrCs that replicate the typical spiking 
features together with the spiking resonance in the theta-frequency band). With this 
collaborative work, we are seeking to contribute with sophisticated general optimization 
methodologies in the very specific context of optimizing point neuron models. We aim to 
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2.3. Our contribution 

provide innovative methods that meet the requirements of emerging neuron optimization 
scenarios that arise in parallel with the advances in technology and neuroscience. 
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Chapter 3

Results 

Contributions to scientific journals 

Four journal articles support this thesis. All of them are ranked in the Journal Citation Reports 
(JCR): three of them in the first quartile (Q1) of the JCR categories, and one of them in the 
second quartile (Q2). In agreement with the current normative of the University of Granada, 
doctoral theses presented as a compendium of scientific publications must be composed of 
at least three articles published in a journal indexed in the JCR. At least one publication must 
be located in the first tercile of the thematic category. In addition, the Ph.D. candidate must 
sign as first author or corresponding author.  

The aforementioned journal articles have been enumerated, ranked and included in 
this chapter by following the normative for the compendium modality. Please note that each 
of the following articles contains its specific bibliography and methods section. Therefore, the 
references that the reader will find in each journal article do not correspond to the main 
bibliography section but to its particular one. 
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METHODOLOGY ARTICLE Open Access

An integrative methodology based on
protein-protein interaction networks for
identification and functional annotation of
disease-relevant genes applied to
channelopathies
Milagros Marín1,3, Francisco J. Esteban2*, Hilario Ramírez-Rodrigo3, Eduardo Ros1 and María José Sáez-Lara3*

Abstract

Background: Biologically data-driven networks have become powerful analytical tools that handle massive,
heterogeneous datasets generated from biomedical fields. Protein-protein interaction networks can identify the
most relevant structures directly tied to biological functions. Functional enrichments can then be performed based
on these structural aspects of gene relationships for the study of channelopathies. Channelopathies refer to a
complex group of disorders resulting from dysfunctional ion channels with distinct polygenic manifestations. This
study presents a semi-automatic workflow using protein-protein interaction networks that can identify the most
relevant genes and their biological processes and pathways in channelopathies to better understand their
etiopathogenesis. In addition, the clinical manifestations that are strongly associated with these genes are also
identified as the most characteristic in this complex group of diseases.

Results: In particular, a set of nine representative disease-related genes was detected, these being the most
significant genes in relation to their roles in channelopathies. In this way we attested the implication of some
voltage-gated sodium (SCN1A, SCN2A, SCN4A, SCN4B, SCN5A, SCN9A) and potassium (KCNQ2, KCNH2) channels in
cardiovascular diseases, epilepsies, febrile seizures, headache disorders, neuromuscular, neurodegenerative diseases
or neurobehavioral manifestations. We also revealed the role of Ankyrin-G (ANK3) in the neurodegenerative and
neurobehavioral disorders as well as the implication of these genes in other systems, such as the immunological or
endocrine systems.

Conclusions: This research provides a systems biology approach to extract information from interaction networks
of gene expression. We show how large-scale computational integration of heterogeneous datasets, PPI network
analyses, functional databases and published literature may support the detection and assessment of possible
potential therapeutic targets in the disease. Applying our workflow makes it feasible to spot the most relevant
genes and unknown relationships in channelopathies and shows its potential as a first-step approach to identify
both genes and functional interactions in clinical-knowledge scenarios of target diseases.

(Continued on next page)
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Methods: An initial gene pool is previously defined by searching general databases under a specific semantic
framework. From the resulting interaction network, a subset of genes are identified as the most relevant through
the workflow that includes centrality measures and other filtering and enrichment databases.

Keywords: Channelopathies, Protein-protein interaction networks, Genotype-phenotype relationships, Translational
bioinformatics, Behavioural diagnosis, Genetic diseases, Systems medicine

Background
The genetic aetiology of many complex diseases com-
prises different specific clinical symptoms and evolution.
The identification of their causal agents becomes essen-
tial for the detection of suitable targets, the management
of their diagnosis and the selection of the most adequate
therapies [1–3]. The increasing availability of large bib-
liographic data volumes lays the foundations for the
identification of these candidate genes [2, 4]. However,
the integration of all this knowledge requires under-
standing the diverse biomedical information sources
available. The extraction of data performed by valid as-
sociation procedures and the comprehensive interpret-
ation of all this current knowledge is complex. This is in
and of itself an issue of utmost importance for the pur-
pose mentioned above [4–6].
Traditional reductionist strategies that deal with this

diverse wealth of information focus on the study of par-
ticular molecules or signalling pathways that are useful
for the identification of diagnostic biomarkers. Neverthe-
less, it does not seem enough to approach all the system
complexity [2, 4]. Alternatively, interdisciplinary research
is developing new technologies and integrative computa-
tional methodologies in order to better understand path-
ogeneses [7, 8]. Some studies that use these current
integrative methodologies allow the discovery of co-
morbidities between Alzheimer’s disease and some types
of cancers [9] where genetic factors can play an import-
ant role along with other factors such as the environ-
ment, lifestyle, and drug treatments. They are also being
used to perform a genome-wide search for Autism gene
candidates [1]. These new tools are able to manage de-
ductive analyses by gaining insight into the connections
among diseases, even between those a priori not related
by the traditional bibliographic searches, which usually
tend to be subjective, time-consuming or not reprodu-
cible [10]. However, the large range of diverse new tools
created within different focuses hinders the existence of
a unique approach to or a consensus on their usage.
Thus, data extraction through ad-hoc approaches using
specific tools may again be complex, not reproducible or
subjective. In this way, network analyses and functional
annotation tools represent some of the best strategies
for objective interpretation of biomedical data and cope
with higher level of biological complexity [1–3, 11].

The identification of relevant genes is being addressed
from the global analysis of multiple interactions at dif-
ferent levels, usually employing networks as representa-
tions of the biological complex interactions underlying
clinical disorders [11–13]. A way to systematically de-
code the cellular signalling networks consists in the
identification of interactome for the detection of the
central nodes which maintain the structure and informa-
tion fluxes into the functional network [11, 14]. Despite
some limitations, protein-protein interaction (PPI) net-
works have been suitably applied to the definition of bio-
logical mechanisms by integrating PPI data with
transcriptional changes [1, 13–15]. It is evidenced that
in disease networks in which the alteration is produced
by mutations, the node or nodes mutated play a primary
role in the development of diseases and thus have a
central position in the network [16]. In the case of
multifactorial diseases, the nodes which seem to be the
causal factor could be located in the periphery. However,
the key nodes in the main biological and molecular
processes affected, i.e. potential pharmacological targets,
tend to have a central position in the network [1, 17–19].
Thus, for the identification of the most significant genes
in a disease as molecular targets there are useful software
tools of high impact [20–24]. One of them is STRING
[22], a database used to build predicted and well-known
PPI networks. The interactions in STRING are mainly
derived from automated text-mining and databases of
previous knowledge, among other resources. Other well-
known tool is Cytoscape [23], an open-source software
platform which has being designed for the purpose of
visualizing, analysing and modelling complex biological
networks and pathways.
Furthermore, in a system biology approach it is highly

important to know the biological and molecular pro-
cesses in which the complex set of genes involved play a
joint key role. Though, if the aim were to identify
pharmacological targets, it would also be mandatory to
unveil if these candidate genes could also be related with
other diseases as comorbidity [9, 25]. These annotations
and associations can be performed through traditional
bibliographic search systems, which are inefficient, sub-
jective and time consuming by hand [10], or by using
some of the highest impact tools from the large number
of platforms developed for functional annotation in
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objective, quick and reproducible ways [26]. This is the
case of DAVID [24], which has been shown to provide
an automatic comprehensive set of functional annotation
tools for biological interpretation of large gene lists as
pharmacological targets [7]. It is also very useful in
unveiling other related diseases, providing a more com-
prehensive view of the importance of treatments [9, 19].
In this regard, the aim of this study is to present a

semi-automatic workflow using PPI networks for the
identification and functional annotation of the most rele-
vant genes in diseases. This new contribution to the ex-
tant methods is based on the integration of a set of
multidimensional data from different biological levels
(genomics, transcriptomics and proteomics) in order to
analyse genetic correlations among diseases with differ-
ent clinical symptomatologies and/or clinical prognoses
(and still based on similar molecular mechanisms). In
order to illustrate the value of this integrative approach
and demonstrate its usefulness, we applied this method-
ology to the case of channelopathies as proof-of-concept
in order to understand their most common polygenic in-
fluences, which contributes to the overall understanding
of pathomechanisms underlying these altered-channels
diseases, in how mutations can modify disease severity
[27] and to shed some light on effective treatments [19,
28, 29]. We showed that this proposed workflow is able
to mine current available databases and platforms in the
context of channelopathies.

Results
In this section, we illustrate the experimental application
of the semi-automatic workflow (Fig. 1) to the case of
channelopathies.

Semi-automatic workflow applied to channelopathies
Gene dataset of the disease under study
First, the gene dataset of channelopathies was created by
introducing the term “channelopathies” in the first stage
of the present workflow (Fig. 1 Stage 1), which generated
a list of 42 genes involved in this complex group of
disorders: SCN5A, KCNH2, KCNQ1, HLA-B, RYR2,
SCN2A, SCN4A, CACNA1C, KCNE1, KCNE2, CACN
A1S, ATP8B4, DCHS1, SCN4B, SCN2B, SCN9A, SNTA1,
CDKL5, STK11, STXBP1, TGFB1, TGFB2, TRPC4,
SCN1A, SCN1B, HLA-DRB5, HSPB2, KCNQ2, LOXL2,
CNGB3, SCN3B, PCDH19, KCNE3, AKAP9, PRRT2,
CLCN1, ASB10, ARX, DMPK, SPESP1, ANK3, HLA-A.

Identification of the most relevant genes
Then, the list of gene names was the input for Stage 2
(Fig. 1. Stage 2). Our target organism was H. sapiens, and
a PPI network was generated through the STRING data-
base (interactome network presented in Additional file 1)
and then analysed by the Cytoscape platform (Fig. 2). We
employed the main features used as centrality parameters,
degree and betweenness (as described in methods) for the
identification of the most important vertices within the

Fig. 1 Semi-automatic workflow for the identification and functional annotation of the most relevant genes in a pathology. Stage 1) Phenopedia
[30] is a disease-centered view of genetic association studies summarized in the online Human Genome Epidemiology (HuGE) encyclopedia. It
provides a list of genes involved in the disease of interest. It is in this stage that a complex disease, a set of diseases or a certain disease can be
chosen to be studied. Stage 2) STRING [22] is a database of known and predicted protein-protein interactions that allows the discovery of
relationships across disease genotype and thus the creation of the PPI network. Cytoscape [23] is an open source software platform for the
visualization and analysis of complex networks that measures each gene and identifies network nodes. Stage 3) DAVID database [24] works as a
semi-automatic functional annotation tool of the genes obtained after Stage 2
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graph. Thus, starting from 42 genes involved in chan-
nelopathies, nine genes with the highest degree of interac-
tions and betweenness in their gene expressions were
stemmed as the most relevant in channelopathies: SCN9A,
ANK3, SCN5A, SCN2A, KCNQ2, SCN1A, KCNH2,
SCN4B and SCN4A. This same set of nine relevant genes
was also obtained using other connectivity features, such
as closeness, EigenVector and radiality (Fig. 3). The result
proves to be robust and concordant with that from Stage
2 of the workflow using only betweenness and centrality.

Gene functional annotation
Finally, the functional annotation of each gene was auto-
matically generated in Stage 3 using DAVID search tool
(Fig. 1. Stage 3). All the functional annotation results are
detailed in section 4.1 in Additional file 4.

Validation of the workflow
To measure the quality of the results obtained, we car-
ried out an alternative more conventional search with a
view to comparing the workflow annotation results to
the results offered by two other widespread family of
bibliographic methods, such as systematic review and
exhaustive review.

Comparison criterion
Using “MeSH” ontology [33], we selected four upper-
level categories with their corresponding lower-level
ones. Each of these lower-level categories refers to one
or more diseases linked to these genes. We used “health
disorder” as the specific comparator which contains up
to four upper-level categories: 1) cardiovascular diseases,
2) nervous system diseases, 3) mental diseases, and 4)
other diseases. This frame comprises all the phenotypes

Fig. 2 Protein-protein interaction (PPI) network of channelopathies analysed in Stage 2. Each network node represents the protein produced by
each single, protein-coding gene locus from the gene dataset of channelopathies. The representation is a circular layout based on the
betweenness attribute with undirected edges (other layouts shown in Additional file 10). The node size marks the level of degree and therefore
neighbourhood (the larger nodes represent proteins with a higher number of interactions). The node colour shows the level of betweenness and
therefore the level of centrality (the warmer the colour of the protein, the shorter path between the two which indicates how important the
node is within the wider context of the entire network) [31]. HLA proteins are discarded due to their disconnection from the principal
component. The image was generated by Cytoscape [23]
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of each relevant gene in channelopathies to facilitate the
visualization and comparison of functional annotation
results (as specified in Table 1). In Additional file 3 we
can find the “MeSH”-based terminological hierarchies of
the selection of the lower-level categories.
From the functional annotation results through the

last stage of the proposed workflow (using DAVID)
(Table 4.1.8 in Additional file 4) and applying “health
disorder” as the specific-domain category, we obtained
the results (consigned in Table 4.2.1 in Additional file 4)
that will be visually represented in the final results of
this work (Figs. 5, 6 and 7).

Systematic review and exhaustive review as other
traditional search systems
In the systematic review we searched by phenotype no-
menclatures, filtered by H. sapiens as the target organism
and removed duplicate entries (Fig. 4). Finally, we
extracted nine gene entries from the OMIM and Gene da-
tabases and 32 evidences of diseases from the MedGene
database (Table 2; all the diseases extracted through the
systematic review can be found in Additional file 5).
Following the same four upper-level categories, we created
an equivalent table containing each disease or clinical

manifestation related with its corresponding genes. We
used “health disorder” as the specific-domain category and
obtained the results shown in Additional file 6. We also
compared DAVID against other phenotype-oriented data-
bases of high impact, proving again the selection of this
tool in Stage 3 (information included in Additional file 9).
As our third step, exhaustive review was performed by

using the query words “gene product nomenclature” +
“diseases” in the search box of PubMed and MEDLINE
resources, the evidence filtering being the most time-
consuming task. We took the same categories and
created an equivalent table containing each disease or
clinical manifestation related to the corresponding genes,
its “health disorder” as the specific-domain category, and
its bibliographic references (Additional file 7). While
performing this traditional review, we could also expand
the functional annotation of the most relevant genes
with further information, detailed in Additional file 8.

Representation through genotype-phenotype association
networks
From the genotype-phenotype relationships found by
the three search systems used in this work – the last
stage of the workflow (Table 4.2.1 in Additional file 4),

Fig. 3 Nine genes as the most relevant in Stage 2 using different centrality statistics. Venn diagram representing the intersections calculated
through the use of other statistics for the proposed centrality measures such as closeness, Eigenvector and radiality. The same set of genes
identified with degree and betweenness only still turned out to be the most relevant in channelopathies: SCN1A, SCN2A, SCN4A, SCN4B, SCN5A,
SCN9A, KCNH2, KCNQ2 and ANK3. Venn diagram was obtained using a free available tool provided by Ghent University [32]. All the statistics
information is included in Additional file 2
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the systematic review (Additional file 5), and the ex-
haustive review (Additional file 7) — and considering all
the categories selected for every phenotype, we repre-
sented association networks for cardiovascular diseases
(Fig. 5), nervous system diseases (Fig. 6), and mental dis-
eases and other disorders (Fig. 7).
For cardiovascular diseases, DAVID search (Fig. 5a)

found more diseases than the systematic review (Fig. 5b)
and the exhaustive review (Fig. 5c), with the exception
of a connection between the gene SCN4B and “other
heart diseases” category retrieved by the exhaustive re-
view but not by DAVID or systematic searches. This is
due to the fact that the gene product of SCN4B is an

Fig. 4 Systematic review procedure for the genes of interest through OMIM, Gene and MedGen databases

Table 2 Gene accession numbers filtered through systematic
review

GENE OMIM ID Gene ID

SCN1A 182389 6323

SCN2A 182390 6326

SCN4A 603967 6329

SCN4B 608256 6330

SCN5A 600163 6331

SCN9A 603415 6335

KCNQ2 602235 3785

KCNH2 152427 3757

ANK3 600465 288

Table 1 “MeSH”-based categories selected. A total of four
upper-level categories and their corresponding lower-level
categories capture all the phenotypes manifested by more than
one of these genes. We resorted to “MeSH” terminological-
based hierarchical networks that include all the phenotypes as
referred in the third column (included in Additional file 3)

Upper-level
category

Lower-level category Hierarchical network

Cardiovascular
diseases

Vascular diseases Figure 3.1 in
Additional file 3

Cardiac arrhythmias

Other diseases (heart arrest,
cardiomyopathies, myocardial
ischemia or cardiomegaly)

Nervous system
diseases

Neurobehavioral
manifestations

Figure 3.2 in
Additional file 3

Febrile seizures

Epilepsy

Headache disorders

Neurodegenerative diseases

Neuromuscular diseases

Mental disorders Tobacco use disorder Figure 3.3 in
Additional file 3

Other mental disorders
(bipolar disorder,
Alzheimer disease, autism,
depression or schizophrenia)

Other disorders Sudden death Figure 3.4 in
Additional file 3

Diabetes Mellitus type 2

Periodic paralyses
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auxiliary subunit, hence it influences but not directly
causes the disease. In fact, it has been found to be asso-
ciated with various inherited arrhythmia syndromes
(Brugada syndrome, long-QT syndrome type 3, progres-
sive cardiac conduction defect, sick sinus node syn-
drome, atrial fibrillation, and dilated cardiomyopathy)
[34]. For nervous system diseases, DAVID search (Fig. 6a)
provided many more phenotypic connections among
genes than systematic review (Fig. 6b) or exhaustive re-
view (Fig. 6c), which obtained the same amount of infor-
mation. In fact, we could observe that the only gene with
a lack of disease association is the SCN4B which, as men-
tioned above, is associated with cardiovascular diseases
only. Finally, for mental and other disorders we only found
phenotypic connections for the most relevant genes in
DAVID (Fig. 7a), but not through systematic review
(Fig. 7b) nor exhaustive review (Fig. 7c).

Discussion
In the present study, we addressed the prediction of the
most relevant genes in the context of a group of path-
ologies not necessarily homogeneous but linked by a
common term, as is the case of channelopathies. The

identification of those genes may present several short-
comings: 1) finding key genes through scientific litera-
ture might be a burdensome task due to the fuzzy and
textual nature of information, 2) completely objective
criteria are hard to define, and 3) the comparison and
validation of different search methodologies might not
be objectively carried out. To tackle limitation 1), we de-
veloped an integrative methodology using a workflow
which departs from genes linked to particular diseases.
Then we built a protein-protein interaction network
from which key genes are identified through the deter-
mination of the centrality measures. Finally, we pro-
ceeded to functionally annotate these key genes through
the application of widely used data analysis tools in the
bibliography.
Although the proposed methodology is of general

purpose, in this study it was applied to the set of
diseases termed channelopathies. In this clinical context,
our method allowed the identification of the most
relevant genes (with the highest degree of intermediation
and centrality) related to channelopathies. The products
of these genes are mostly channels of two different types,
namely voltage-gated sodium channels — SCN1A,

Fig. 5 Genotype-phenotype association network for cardiovascular diseases category. Association networks created for cardiovascular diseases
category from the evidences obtained by a) last stage of the workflow, b) systematic review and c) exhaustive review. The “MeSH”-based
categories include each pathophysiological evidence shared by two or more genes. Other heart diseases include heart arrest, cardiomyopathies,
myocardial ischemia or cardiomegaly
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SCN2A, SCN4A, SCN4B, SCN5A, and SCN9A — that are
involved in the rapid depolarisation in the cardiac conduc-
tion (Reactome ID: R-HSA-5576892, Table 4.1.6 in Add-
itional file 4), and voltage-gated potassium channels —
KCNQ2 and KCNH2 — responsible for the activation of
the voltage-gated potassium channels family in the neur-
onal system (Reactome ID: R-HSA-1296072, Table 4.1.6.
in Additional file 4) [35–37]. KCNH2 is also involved in
the rapid repolarisation of the cardiac conduction (Reac-
tome ID: R-HSA-5576890, Table 4.1.6. in Additional file
4). On the other hand, Ankyrin-G (ANK3) is a protein
which deals with the vesicle-mediated transport of the
membrane trafficking (Reactome ID: R-HSA-374562,
Table 4.1.6. in Additional file 4) and is also responsible for
linking integral membrane proteins such as the voltage-
gated sodium channel with the spectrin-based membrane
skeleton [38]. Particularly, all the genes except KCNH2
contribute to the interaction between cytoskeleton
adaptor ankyrins and a type of adhesion receptor (L1)
which inhibits the nerve growth at the neural development
pathway (Reactome ID: R-HSA-445095, Table 4.1.6. in
Additional file 4) [35, 39].
Defects in the ion channels throughout the human

body have been involved in a wide phenotypic variability

in channelopathies. This remarkable causal heterogen-
eity makes the diseases hard to classify [40]. Some re-
views deal with the categorization of channelopathies
based on the organ system with which they are mainly
associated in both clinical and pathophysiological aspects
[28, 40–43]. Other reviews opt to classify channelopa-
thies according to the ion channel proteins in order to
improve the understanding of how their specific muta-
tions can be linked to diseases [27, 44–46]. In current
reviews the implication of voltage-gated sodium chan-
nels with cardiac pathologies (such as long-QT syn-
drome and fatal arrhythmias) and epilepsies is easily
retrievable [27]. The role of some voltage-gated potas-
sium channels with cardiac pathologies (heart arrhyth-
mias, dilated cardiomyopathies), epilepsies and chronic
pain is also well studied [27]. On the contrary, we do
not know much about the clustering of Ankyrin-G at
the axonal initial segments in the nervous system with
voltage-gated sodium channels [47, 48] and some potas-
sium channels [49]. In our work we found this implica-
tion of voltage-gated sodium and potassium channels in
cardiovascular diseases (SCN2A-SCN9A-KCNH2 cluster
for vascular diseases, SCN2A-SCN5A-KCNH2 cluster
for cardiac arrhythmias and SCN5A-SCN4B-KCNH2

Fig. 6 Genotype-phenotype association network for nervous system diseases category. Association networks created for nervous system diseases
category from the evidences obtained by a) last stage of the workflow, b) systematic review and c) exhaustive review. The “MeSH”-based
categories comprise each pathophysiological evidence shared by two or more genes
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cluster for other heart diseases) (Fig. 5). We also discov-
ered a very high interconnection and participation of the
genes selected not only in epilepsies, but also in febrile sei-
zures, headache disorders, neuromuscular and neurode-
generative diseases and neurobehavioral manifestations
(Fig. 6). It is interesting to highlight that in our results the
above mentioned participation of Ankyrin-G in the
nervous system (Fig. 6) is also reflected, specifically in
neurobehavioral manifestations (ANK3-SCN5A-KCNH2
cluster) and neurodegenerative diseases (ANK3-SCN2A-
SCN4A-SCN9A cluster). Finally, our results showed the
implication of the genes obtained in other types of dis-
eases, such as tobacco use disorder, diabetes mellitus type
2 or sudden death (Fig. 7), which consequently means the
involvement of these genes in other systems, such as the
immunological system [50] or the endocrine system [40].
As discussed above, we found that these results corrobor-
ate the conclusions collected by current literature about
channelopathies, even outcomes which are not retrievable
in comparative terms with respect to other traditional lit-
erature mining.

Approaching the above-mentioned validation of the
proposed methodology by statistical comparison with
other extant methods would be difficult due to their very
different nature and properties. For that reason, we com-
pared our proposal with two traditional and widespread
family of methods, these being systematic review and ex-
haustive review. Among the three methods employed,
our workflow and the systematic review proved to be the
most objective approach when compared to the exhaust-
ive review. Our results indicate that our methodology is
actually able to find more correlations among the nine
genes selected than any of the other two methods. Par-
ticularly, the present approach allows the detection of
many more correlations than the systematic review (as
seen in Figs. 5, 6 and 7).
Therefore, the proposed methodology is able to gather

as much significant information as any other traditional
literature search system mentioned in this work. At the
same time, it was shown to work more flexibly, making
it a convenient and easy-to-perform first-level approach
compared to the above-mentioned methods.

Fig. 7 Genotype-phenotype association network for mental and other diseases categories. Association networks created for mental and other
diseases categories from the evidences obtained by a) last stage of the workflow, b) systematic review and c) exhaustive review. The “MeSH”-
based categories comprise each pathophysiological evidence shared by two or more genes. Other mental disorders include bipolar disorder,
Alzheimer disease, autism, depression or schizophrenia
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Conclusion
We showed the usefulness of a semi-automatic integra-
tive workflow with regard to successful, currently avail-
able mining databases and platforms based on protein-
protein interaction networks applied to channelopathies.
This workflow builds as productive results as a non-
automatic research but in a quicker way, functioning as
a bridge-builder among fields and allowing the extrac-
tion of information which a priori might not seem
relevant when the starting point is a very large group of
genes in disease. We encourage future line of research
to focus on the full automatization of the workflow and
the use of more specific statistical resources such as
principal component analysis or machine learning
classifiers.

Methods
In this section, we present the semi-automatic workflow
(Fig. 1) and describe the current systems biology tools
and processes used. Thus, the course of action runs as
follows: first, a gene dataset of disease under study is ex-
tracted; second, a protein-protein interaction network is
built and analysed and the most significant genes in dis-
ease are selected; third, the functional annotation for
each relevant gene is performed.

Semi-automatic workflow
Gene dataset of the disease under study
In the first step of the workflow (Fig. 1, Stage 1), the
“MeSH” term [33] of the disease at issue was obtained to
know the unequivocal medical concept and introduced
in Phenopedia [30]. Phenopedia is an online tool pro-
vided by the Center for Disease Control and Prevention
(CDC) which allows linking genomic discoveries with
health care and disease prevention. Through Phenopedia
we extracted the list of genes which have been demon-
strated to be involved in the disease so far.

Identification of the most relevant genes
The next step (Fig. 1, Stage 2) consisted in the generation of
a protein-protein interaction (PPI) network from the list of
genes through STRING [22]. We considered Homo sapiens
as the target organism and extracted the PPI network. Then,
the NetworkAnalizer available in Cytoscape [23] allows to
compute and analyse a comprehensive set of topological pa-
rameters. The most highly connected proteins with a central
role in the network are three times more likely to be essential
than those with peripheral role, while at the same time being
more associated with alterations that have a primary role in
the development of diseases [51]. The identification of rele-
vant genes in a disease has been addressed using two central-
ity parameters for the detection of the central nodes which
maintain the structure and information fluxes into the func-
tional network [17, 52, 53]. The network centrality features

considered in the proposed workflow are degree and be-
tweenness, two fundamental parameters in graph theory [17,
51–53]. Centrality degree is defined as the number of inter-
actions in which a protein is involved. Betweenness is the
number of shortest paths between all pairs of other proteins
that pass through a certain protein [52, 53]. We set a thresh-
old on both centrality parameters by their means and, after
sorting them, those gene expressions exceeding this thresh-
old were selected as the most relevant genes
(Additional file 2).

Gene functional annotation
The last stage employed DAVID search (Fig. 1 Stage 3) for
the functional annotation of genes, allowing the description
of their main biological processes and the development of a
functional enrichment analysis (providing information about
Gene Ontology, protein interactions, functional protein do-
mains, diseases associations, and signalling pathways, among
others) from a list of genes (as official gene symbols) for the
target organism Homo sapiens.

Validation of the workflow
Genotype-phenotype relationships of genes were obtained
through the classification of the pathophysiological manifes-
tations and diseases associated to the genes at issue. For the
validation of the present workflow, we mapped those
genotype-phenotype relationships of the genes obtained from
the functional annotation onto phenotypic networks. We
considered specific-domain category “health disorder” as our
choice of interest from all the functional annotation results.
This category was taken from the Medical Subject Headings
(“MeSH”), a terminological database that captures biomed-
ical information through ontological hierarchies [33]. MeSH
offers a hierarchical organization of different pathological
categories of every clinical manifestation that facilitates the
representation of genotype-phenotype relationships. The
pathophysiological implications shared by the most signifi-
cant genes can thus be easily identified by means of their
grade of intermediation and interaction.
Hence, we could compare the results of this workflow

with the clinical manifestations associated to these genes
through the use of two current traditional bibliographic
search systems, systematic and exhaustive reviews (and
other phenotype-oriented resources, Additional file 9).
We followed the guidelines of the International Union of
Pharmacology [54, 55] for the gene products nomencla-
ture. Then we created genotype-phenotype association
networks for each disease to clearly illustrate their rela-
tionships, helping visualize at a glance the different phe-
notypes found for every gene and thus to be able to
validate the efficiency in the extraction of significant in-
formation by the presented methodology. Those diseases
with no more than one gene associated were purpose-
fully omitted in the network.
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DAVID bases its disease annotation search on two
human gene databases: Online Mendelian Inheritance in
Man (OMIM, URL: /www.omim.org/) and Genetic
Association Database from complex diseases and disor-
ders (GAD DISEASE, URL: /geneticassociationdb.nih.
gov/). The systematic review was performed using data-
bases that focus on the relationships found between hu-
man genotypes and phenotypes of genetic alterations.
Web resources for data presented herein are Online
Mendelian Inheritance in Man (OMIM, URL: www.
omim.org/); Gene, which integrates information about
phenotypes and associated conditions (URL: www.ncbi.
nlm.nih.gov/gene/); and MedGene, which offers search
results about human medical genetics and conditions re-
lated to the genetic contribution (URL: www.ncbi.nlm.
nih.gov/medgen/) (Fig. 4). The exhaustive review is
sometimes an evidence-based review, more extensive
and also takes much more time and significant effort
than the systematic review, making it a tedious process
in terms of filtering and selection of information. It is
usually carried out by using a search equation with key
words defining an unspecific question of interest [10].

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12859-019-3162-1.

Additional file 1. Protein-protein interaction (PPI) network obtained
from the list of gene names involved in channelopathies. Each network
node represents the protein produced by each single, protein-coding
gene locus (Image generated by STRING). All the nodes are coloured to
show that they are the query proteins used as input for the STRING plat-
form. The nodes which are filled represent that some 3D structure is
known or predicted; empty nodes do not present any 3D structure dis-
covered as yet. The edges indicate protein-protein associations (full le-
gend available in STRING).

Additional file 2. Connectivity statistics calculated from the PPI network.
Raw statistics values of the two main centrality measures (degree and
betweenness) are considered in Stage 2 of the workflow. Other
connectivity features (closeness, Eigenvector and radiality) are included as
evidence of the efficiency of the workflow and robustness of the results.
The same nine genes identified as the most relevant are obtained from
the average calculation of all these features. This intersection was
represented in Fig. 3. HLA proteins were discarded due to their
disconnection from the principal component, as shown in Additional file
1 and Fig. 2.

Additional file 3. Description of the upper-level and lower-level cat-
egories selected for the creation of “MeSH”-based terminological net-
works. Hierarchical trees of the upper-level categories (cardiovascular
diseases, nervous system diseases, mental diseases, and other diseases)
are described in detail. Lower-level categories are based on disease evi-
dences obtained through DAVID search, systematic review and exhaust-
ive review. The categories selected for the genotype-phenotype
representations are highlighted in grey.

Additional file 4. Functional annotation results obtained through Stage
3 of the workflow. Section 1 refers to all the raw functional annotation
results of the most relevant genes in channelopathies directly extracted
from the last stage of the workflow (DAVID search). Section 2 refers to
the extraction of the diseases from this source of information. The
diseases then were classified by their lower-level categories according to
the “MeSH” criterion described in methods. Some evidences could not be

classified due to lack of enough information. These categories will allow
the visual representation of genotype-phenotype associations obtained
through DAVID search.

Additional file 5. Procedure and data extracted through the systematic
review of the most relevant genes in channelopathies. Detailed
procedure for the filtering and extraction of the relevant information of
each gene and its diseases involved in channelopathies after the
application of the systematic review.

Additional file 6. Dataset of genotype-phenotype relationships found
through systematic review of the most relevant genes in channelopa-
thies. Diseases related to the nine relevant genes through the systematic
review based on three databases (Gene, OMIM and MedGen). Each
phenotype is classified according to its MeSH category, as described in
methods.

Additional file 7. Dataset of genotype-phenotype relationships found
through exhaustive review of the most relevant genes in channelopa-
thies. Diseases linked to the nine relevant genes through the exhaustive
review. Each phenotype is classified according to its MeSH category, as
described in methods. Some evidences cannot be classified due to lack
of information.

Additional file 8. Further functional annotation results after the
exhaustive review of the most relevant genes in channelopathies.
Summary of the localization, distribution and functions of the genes after
the exhaustive review, as well as a summary of further information found
in this review. CNS: Central Nervous System; PNS: Peripheral Nervous
System; DRG: dorsal root ganglion.

Additional file 9 Quantitative validation by significance analysis of
DAVID search against other phenotype-oriented resources. We searched
the nine relevant genes resulted from the workflow in PheGenI [56],
ToppGene [57] and g:Profiler [58]. We quantitatively evaluated this search
selecting those terms with a significance less than 0.05 using Benjamini-
Hochberg FDR statistic. We obtained a minor result in DAVID search
(OMIM search did not offer the phenotypes p-values, unlike GAP DISEASE
database). Even so, results are useful to develop a quantitative compari-
son between semiautomatic platforms and bibliographic search systems
(sheet 1). From these results we represented the genotype-phenotype as-
sociation networks to compare easily each p-value phenotype obtained
(sheet 2). It should be noted that p-values of clinical phenotypes could
be only obtained from one of the two databases explored through DA-
VID (GAP DISEASE database), and so the genotype-phenotype association
network is sparser than the network of the manuscript (section A in Figs.
5, 6, 7). Yet, it is demonstrated that the workflow results are statistically
significant and are as valid as or even better than systematic or exhaust-
ive reviews. Then, we created three Boolean tables (in sheets 3, 4, 5) com-
paring each phenotype obtained from each search; these tables were
then converted to binary matrices and clustering multivariate statistical
analyses and bootstrap validations were carried out. This approach dem-
onstrated that the results provided in the manuscript, obtained from DA-
VID (DAVID_m) and systematic and exhaustive reviews, clustered
together in a robust and significant way (sheets 3, 4, 5). Hence, this work-
flow builds as productive results as a non-automatic research but in a
quicker way allowing the extraction of information which a priori might
not seem relevant when the starting point is a very large group of genes
in disease. Moreover, the results obtained using just significant FDR cor-
rected p-values also cluster in particular branches.

Additional file 10. Protein-protein interaction (PPI) network of chan-
nelopathies analysed in Stage 2 represented by other layouts. The PPI
network of channelopathies is represented as a circular layout with the
betweenness attribute (Fig. 2), or with the degree attribute in the first
page of this file. We also included this network with a hierarchical layout
in the second page of this file as other type of representation of the
same dense network. Both types of representations present each node
with undirected edges. The node size marks the level of degree and
therefore of neighbourhood (the larger nodes represent proteins with a
higher number of interactions). The node colour shows the level of be-
tweenness and therefore the level of centrality. HLA proteins are dis-
carded due to their disconnection from the principal component. The
images were generated by Cytoscape [23].
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Biologically relevant large-scale computational models currently represent one of the
main methods in neuroscience for studying information processing primitives of brain
areas. However, biologically realistic neuron models tend to be computationally heavy
and thus prevent these models from being part of brain-area models including thousands
or even millions of neurons. The cerebellar input layer represents a canonical example
of large scale networks. In particular, the cerebellar granule cells, the most numerous
cells in the whole mammalian brain, have been proposed as playing a pivotal role in
the creation of somato-sensorial information representations. Enhanced burst frequency
(spiking resonance) in the granule cells has been proposed as facilitating the input signal
transmission at the theta-frequency band (4–12 Hz), but the functional role of this cell
feature in the operation of the granular layer remains largely unclear. This study aims to
develop a methodological pipeline for creating neuron models that maintain biological
realism and computational efficiency whilst capturing essential aspects of single-neuron
processing. Therefore, we selected a light computational neuron model template (the
adaptive-exponential integrate-and-fire model), whose parameters were progressively
refined using an automatic parameter tuning with evolutionary algorithms (EAs). The
resulting point-neuron models are suitable for reproducing the main firing properties
of a realistic granule cell from electrophysiological measurements, including the spiking
resonance at the theta-frequency band, repetitive firing according to a specified intensity-
frequency (I-F) curve and delayed firing under current-pulse stimulation. Interestingly,
the proposed model also reproduced some other emergent properties (namely, silent at
rest, rheobase and negligible adaptation under depolarizing currents) even though these
properties were not set in the EA as a target in the fitness function (FF), proving that
these features are compatible even in computationally simple models. The proposed

Abbreviations: AdEx, Adaptive exponential integrate-and-fire; AP, Action potential; EA, Evolutionary algorithm; FF, Fitness
function; GrC, Granule cell; GrL, Granular layer; HH, Hodgkin-and-Huxley; I-F, Intensity-frequency; I-V, Intensity-voltage.

Frontiers in Cellular Neuroscience | www.frontiersin.org 1 July 2020 | Volume 14 | Article 161



Marín et al. Efficient Neuron Model Optimization

methodology represents a valuable tool for adjusting AdEx models according to a
FF defined in the spiking regime and based on biological data. These models are
appropriate for future research of the functional implication of bursting resonance at
the theta band in large-scale granular layer network models.

Keywords: neuron model, granule cell, cerebellum, model simplification, spiking resonance, point neuron,
adaptive exponential integrate-and-fire

INTRODUCTION

Neuronal populations in the brain reflect complex synchronized
temporal patterns typically modulated by coherent oscillations
(Buzsáki, 2006). This oscillatory behavior is usually evidenced
by the study of resonance as the preferred frequency in
response to oscillatory inputs (Hutcheon and Yarom, 2000).
In particular, one of the brain centers where resonance has
received more attention is the cerebellum (Dugué et al.,
2009; D’Angelo et al., 2009, 2011; Gandolfi et al., 2013). The
cerebellum is thought to generate low-frequency (5–30 Hz) and
higher-frequency activity rhythms, depending on the circuit
sections or the neurons involved (D’Angelo et al., 2009;
Dugué et al., 2009). Previous findings suggest that theta-
frequency activity (around 4–10 Hz in rodents) contributes to
signal integration in the cerebellum (Gandolfi et al., 2013),
but its function for overall cerebellar information processing
remains elusive.

The cerebellar granular layer (GrL) represents one of the
main inputs to the cerebellar cortex and low-frequency rhythms
at this layer is fundamental for motor control, learning, and
sleep (Buzsáki, 2006; D’Angelo et al., 2009; Wang et al., 2019).
Most studies have focused on subthreshold (membrane potential
oscillations) resonance. In particular, in vivo studies of cerebellar
GrL evidenced theta-frequency resonance at 7 Hz in rats
(Hartmann and Bower, 1998) and 7–25 Hz in monkeys (Pellerin
and Lamarre, 1997; Courtemanche et al., 2009). However,
much less attention has been paid to the suprathreshold
(spiking) resonance (Rotstein, 2017). The spiking resonance has
been proposed to strengthen input signal processing and data
transmission at the theta-frequency band in the GrL (D’Angelo
et al., 2001, 2009). In most cases, this feature depends on the
spiking mechanisms and the intrinsic properties of single cells
(Rotstein, 2017).

Single-neuron responses in the GrL have long been
investigated in search of theta-frequency activity patterns
(Ros et al., 2009; Gandolfi et al., 2013). Spiking resonance has
been claimed to be an intrinsic property of the cerebellar granule
cells (GrCs), the most abundant cells not only in the cerebellum
but also in the whole mammalian brain (Herculano-Houzel,
2010). Although many experimental studies have registered the
electrophysiological activity of single GrCs from rat cerebellar
recordings, both from slices in vitro (Brickley et al., 2001;
Diwakar et al., 2009; Osorio et al., 2010; Delvendahl et al., 2015;
Masoli et al., 2017) and in vivo (Chadderton et al., 2004; Jörntell
and Ekerot, 2006), they have traditionally neglected the presence
of spiking resonance. However, only in vitro recordings have

reported spiking resonance (as enhanced bursting activity) at
theta-frequency band of single cerebellar GrCs in response to
low-frequency sinusoidal stimulation (D’Angelo et al., 2001;
Gandolfi et al., 2013). According to these studies, the spiking
resonance could emerge from an intrinsic property of the
neurons that selectively enhance low-frequency stimulation
responses due to a combination of passive and active membrane
properties (Hutcheon and Yarom, 2000; Magistretti et al., 2006;
Das and Narayanan, 2017). However, the functional role of
resonance at the theta band in the processing of the cerebellar
GrCs remains largely unclear.

Computational modeling has demonstrated to be an effective
strategy in exploring the origin of resonant behavior in the
GrCs. Detailed models (i.e., integrating a high degree of
biological plausibility) allowed fine-grained studies about the
intrinsic mechanisms involved at isolated GrCs (D’Angelo et al.,
2001). Additionally, a conductance-based Hodgkin-and-Huxley
(HH) mono-compartmental GrC model evidenced that the
subthreshold voltage-dependent potassium current (IKSlow) is at
the core of the intrinsic resonance during sinusoidal stimulation
(Nieus et al., 2006; Solinas et al., 2010; Gandolfi et al., 2013;
Rössert et al., 2014; Masoli et al., 2017). However, the high
computational cost associated to the simulation of this type of
detailedmodelmakes them only suitable for small scalemodels of
the GrL network or short simulations (Nieus et al., 2006; Diwakar
et al., 2009; Solinas et al., 2010; Gandolfi et al., 2013).

Thus, simplified models appear to be an exceptional
alternative for exploring the functional role of resonant
activity in information processing. Simplified models combine
computational efficiency and realistic neuronal dynamics.
Considering this, the adaptive exponential integrate-and-fire
(AdEx) model (Brette and Gerstner, 2005) only includes two
coupled differential equations that capture adaptation and
resonance properties (Naud et al., 2008), while enabling large
scale implementations of neuronal circuits. Although the AdEx
model can be seen as a two-dimensional reduction of the
spike initiation in HH models, the specific parameter values
of the model configuration to match with electrophysiological
measurements (Jolivet et al., 2008; Hanuschkin et al., 2010;
Barranca et al., 2013; Venkadesh et al., 2018) cannot be
experimentally determined as they require an automatic
parameter tuning algorithm.

In this article, we present a methodology for the development
of simplified neuron models based on the AdEx generic
model template that consider both biological relevance and
computational efficiency. Evolutionary algorithms (EAs) have
been used to find suitable sets of parameters to capture specific
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firing dynamics. The application to the use case of cerebellar GrC
models allows the replication of the most essential properties
of the biological cell that are key for the frequency and timing
of firing patterns in the neural code. We particularly focus on
the spiking resonance of bursts in the theta-frequency band that
has been experimentally evidenced in previous studies in the
literature. We also address how the inclusion of different spiking
properties in the fitness function (FF) affects the behavior of the
optimized neuron configuration.

MATERIALS AND METHODS

Neuron Model
The proposed mathematical model of the cerebellar GrC aims
to maintain biological realism (to capture important aspects of
single-neuron processing) as well as a low computational cost.
We have selected the AdEx neuron model (Brette and Gerstner,
2005) as the generic template model. Since GrCs have a compact
and simple morphology (D’Angelo et al., 1995, 2001; Delvendahl
et al., 2015), a mono-compartment model, such as an AdEx
point neuron model, represents a reasonable approach. Previous
studies have addressed how this model can be tuned to capture
biological realism and compared to more detailed models (Brette
and Gerstner, 2005; Nair et al., 2015) as well as recordings in
pyramidal neurons, in which this model has been demonstrated
to fit, at least qualitatively, a rich set of observed firing patterns
(Brette and Gerstner, 2005; Jolivet et al., 2008; Naud et al., 2008).

The AdEx model accounts for only two coupled differential
equations and a reset condition regulating two state variables,
the membrane potential (V) and the adaptation current (w),
according to the following equations:

Cm
dV
dt
= −gL(V − EL)+ gL1T exp

(
V − VT

1T

)
+ I(t)− w

(1)

τw
dw
dt
= a(V − EL)− w (2)

Equation (1) describes the evolution of the membrane potential
(V) during the injection of the current [I(t)]. When the
membrane potential is driven beyond the threshold potential
(VT), then the exponential term of the slope factor (∆T) models
the action potential (AP). This depolarization ends when the
membrane potential reaches the reset threshold potential (Vpeak).
Then, the membrane potential (V) is instantaneously reset to Vr
and the adaptation current (w) is increased a fixed amount (b).

The first term in equation (1) models the passive membrane
mechanisms dependent on the total leak conductance (gL), the
leak reversal potential (EL), and the membrane capacitance (Cm),
all regulating the integrative properties of the neuron. The second
(exponential) term represents the activation of the sodium
channel in a Hodgkin-Huxley type neuron model (Naud et al.,
2008), whose dynamics are determined by the parameters∆T and
VT. Equation (2) describes the evolution of the recovery variable
(w). It depends on the adaptation time constant parameter (τw)
and the subthreshold adaptation (a), while (b) defines the spike-
triggered adaptation. In our simulations, the refractory period

(τref) was set to 1 ms. The membrane potential was initially set
to the same value as the leak reversal potential (Vinit = EL).

To sum up, 10 parameters define the dynamics of the AdEx
neuron model that need to be tuned to reproduce the firing
properties of the cerebellar GrCs.

Model Optimization With Evolutionary
Algorithms
Our optimization method is based on an EA that allows multiple
parameter exploration to fit the experimentally recorded firing
behavior (Jolivet et al., 2008; Hanuschkin et al., 2010; Barranca
et al., 2013; Venkadesh et al., 2018). After the execution of the
EA, it provides sets of parameters that minimize the FF, i.e., the
function which associates each parameter set with a single value
quantifying the goodness of such a neuron configuration. Our
FF (score) includes a weighted sum of specific features related to
spike firing that we consider biologically relevant, according to
equation (3).

score =
n∑

i = 1

[abs(feati − expi) · wi] (3)

The score is defined as the sum of every firing pattern
feature (i) in response to the corresponding experimental
stimulation protocols. The score of each feature is calculated
as the absolute value (abs) of the difference between the
feature value extracted from the simulated neuron trace with
the parameter configuration of the individual (feati) and the
feature value extracted from the experimental recordings (expi).
This is multiplied by the weight associated with each feature
(wi; see ‘‘Simulations’’ section below). The EA will perform
progressive parameter optimization to select the individual (set
of parameters) that minimizes the fitness value (score). Thus,
each individual represents a set of GrC model parameters and
the FF quantifies the similarity between the firing pattern in the
simulated neuron model and the experimental recording of the
neuron in response to the same stimulation protocols.

We also explore an alternative method which aims to evaluate
the variability of the burst frequency over successive oscillatory
cycles. The score of the burst frequency has been complemented
with an additional multiplicative term related to the standard
deviation of the burst frequency over consecutive oscillatory
cycles, according to equation (4). By using this method as the FF
of the burst frequency feature, the EA will prefer neuron model
configurations whose burst frequency not only keep close to the
target (experimentally recorded) value but are also stable over
oscillatory cycles.

scoreBF =
N∑

j = 1

[abs(BFsimj − BFexpj) · wBF · (std(BFsimj)+ 1)]

(4)
According to this formula, the score of the burst frequency
feature (scoreBF) is defined as the sum of each score for all the
sinusoidal stimulation frequencies (N; 14 sinusoidal frequencies,
see Table 3). The individual score for each stimulation frequency
is calculated as the absolute difference (abs) between the burst
frequency (averaged over 10 oscillatory cycles) of the simulated
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TABLE 1 | Parameters boundaries used for the neuron optimization procedures.

Parameter name (unit) Fixed boundaries Parameter name (unit) Fixed boundaries

Cm (pF) [0.1, 5.0] VT (mV) [−60, −20]
∆T (mV) [1, 1000] a (nS) [−1, 1]
EL (mV) [−80, −40] b (nA) [−1, 1]
Vr (mV) [−80, −40] gL (nS) [0.001, 10.0]
Vpeak (ms) [−20, 20] τw (ms) [1, 1000]

The minimum and maximum values of the parameters are indicated in square brackets.

neuron (BFsimj ) and the experimental value at that stimulation
frequency (BFexpj ). This term is multiplied by the weight of the
burst frequency feature (wBF) and the standard deviation of the
simulated neuron burst frequency [std(BFsimj)] plus one.

For every execution, the EA runs for 50 generations and
1,000 individuals in the population. The initial generation is set
with 1,000 simulated neurons with parameters created according
to a uniform distribution ranging between the boundaries
indicated in Table 1. During each generation of the EA,
each model configuration (individual) is simulated and ranked
according to the FF (equation 3). The next generation is
created using basic genetic operators, such as crossover and
mutation. The one-point crossover operator was used with a
60% probability and the uniform mutation operator was used
with a 10% probability. In those individuals randomly selected to
mutate, each parameter was mutated with a probability of 15%.
To select those individuals to be included in the population in the
next generation, the selection was carried out by three-individual
tournaments. Therefore, the new population is composed of
the winners (minimum score) resulting from 1,000 tournaments
with randomly-chosen individuals. Finally, the individual with
the minimum score obtained during each complete EA execution
is selected as the best neuron model (the most suitable parameter
configuration to the target behavior).

Fitness Functions and Feature
Quantification
Biological Data Used as Reference
The experimental data used as a reference for EA optimization
are taken from two different sources (D’Angelo et al., 2001;
Masoli et al., 2017). In particular, the burst frequency in
response to sinusoidal current stimulation is obtained from
D’Angelo et al. (2001). The authors recorded cerebellar GrCs in
acute cerebellar slices obtained from 20± 2-day-old rats. The
slice preparation and whole-cell patch-clamp were performed
as reported previously (see their references). The presence
of bicuculline prevented GrC rhythmic inhibition by Golgi
cells and that spontaneous EPSPs were too rare to affect
spike generation. Injection of sinusoidal currents at various
frequencies (0.5–40 Hz) revealed resonance in burst spike
frequency in correspondence with the positive phase of the
stimulus. Spike frequency within bursts increased and then
decreased according to the injected current frequency showing
spiking resonance. The preferred frequency was 6 Hz with
sinusoidal currents of 6-pA amplitude, and 8 Hz with 8-pA
amplitude (reference dots in Figures 1B, 2B, 4A, 6). It is
important to highlight that in these in vitro recordings, the burst

frequencies with stimulation frequencies beyond 10.19 Hz in
6-pA amplitude and 14.23 Hz in 8-pA amplitude fell to zero as
one or no spikes were obtained.

On the other hand, the average firing rate and first-spike
latency in response to current pulses were obtained from
Masoli et al. (2017). In this case, the authors performed
in vitro patch-clamp recordings under step current injections.
They recorded cerebellar GrCs in acute cerebellar slices from
21-day-old rats.

EA Fitness Functions (FFs)
The FF described in equation (3) weights the similarity of
different quantified features with the experimental recordings
(i.e., the value of the feature extracted from the traces).
Since our models aim to reproduce the spiking resonance of
bursting, it is required to estimate this resonance as a set
of values. Thus, the burst frequency under sinusoidal current
injection was calculated as the inverse of the average inter-
stimulus interval (ISI) of the output neuron (the cerebellar
GrC) during each stimulation cycle. Then, the average burst
frequency was measured throughout 10 consecutive cycles of
sinusoidal stimulation. The total simulation timewas set to 22.5 s.
Sinusoidal amplitude values of 6 pA and 8 pA (in addition to
12-pA offset) were used according to the available experimental
data (specified in the subsection above), generating spike bursts
in correspondence with the positive phase of the stimulus
(sinusoidal phase of 270◦). To reproduce the differential effect
of the oscillatory stimulation frequency, the burst frequency in
response to its stimulation frequency was included in the EA
as an individual feature (all of them equally weighted). As it
occurred in the in vitro recordings [see ‘‘Biological Data Used as
Reference’’ section above], we have set the burst frequency to zero
when the same firing pattern (one or no spike per cycle) has been
obtained in the simulated neurons.

Although the firing dynamics of cerebellar GrCs are
complex, these cells implement a mechanism of linear frequency
encoding through repetitive firing discharge under current
stimulation which might help to sustain the spiking resonance
of burst frequency at the theta-frequency band (D’Angelo
et al., 2001, 2009). Recent literature has characterized the
fast repetitive discharge in the GrCs based on the mean
frequency (the number of spikes divided by the stimulation
time) and the latency to first spike (time of the first
spike firing) in response to three different step-current
injections (10 pA, 16 pA, and 22 pA) of 1-s stimulation
(Masoli et al., 2017).

The optimizations were carried out with FFs that considered
different combinations of the minimal number of features that
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FIGURE 1 | Burst frequency analysis. (A) Membrane potential (V; top, black line, left axis), burst frequencies (top, red line, right axis), stimulation current (middle)
and adaptation current (w; bottom) of a neuron model instance stimulated with the sinusoidal current of 8-pA amplitude, 12-pA offset current and 14.23-Hz
frequency. Two strategies for measuring the average burst frequency are shown: (i) during the initial 10 cycles (yellow shadow); and (ii) 10 cycles after 2 s of initial
stabilization (red shadow). (B) Burst frequency in response to sinusoidal stimulation with different stimulation frequencies (in steps of 0.5 Hz) up to 30 Hz, 12-pA
offset current and 6-pA (green), or 8-pA (purple) amplitude measured during the initial cycles (top) and after 2-s stabilization period (bottom). The solid lines represent
the average burst frequency from the simulated neuron model configuration and the shaded area shows the standard deviation. The arrows indicate the average
burst frequency corresponding to the stimulation frequency shown in (A) during the initial cycles (yellow arrow, 49.74 ± 25.81 Hz) and after 2 s of stabilization (red
arrow, 55.04 ± 0.38 Hz). The dots correspond to the burst frequency data obtained from in vitro recordings of cerebellar GrCs in D’Angelo et al. (2001) with the
same stimulation protocols (Table 2). The black star indicates the point further explored in plot C. (C) Simulated membrane potential (V; black line, left axis) during
10 oscillatory cycles selected after 2-s initial stabilization in response to 12-Hz sinusoidal stimulation. The red line (right axis) represents the stimulation current signal
(8-pA amplitude and 12-pA offset).

characterize the typical firing of cerebellar GrCs: (1) burst
frequency in response to different sinusoidal current stimulations
(stimulation at different frequencies of the sinusoidal current);
(2) burst frequency feature (as in point 1) in addition to the
average mean frequency in response to step-currents; (3) the
burst frequency (as in point 1) and the latency to the first spike
under step-current stimulations; and (4) all the previous features
(burst frequency under sinusoidal stimulation, mean frequency
and latency to the first spike under current stimulations; Table 3).
Later on, we will refer to these combinations of features as FFs
from 1 to 4.

Simulations
The score of each individual approaches zero as the measured
firing features approximate target values. We ran each
optimization protocol (EA algorithm) with five different
seeds and selected the individual with a minimal score from
those executions. The weight of the burst frequency and the
mean frequency features were set to 1 (as they both were
measured in Hz and present values in comparable scales). The

latency to the first spike feature was weighted to 1,000 as it
was measured in seconds. Thus, our algorithm equally weights
1 Hz-error in the average mean frequency feature and 1 ms-lag
in the latency to the first spike feature.

The EA algorithm was implemented using the DEAP library
(Fortin et al., 2012) for Python (version 2.7.12). The GrC model
was simulated using NEST (version 2.14.0; Peyser et al., 2017).
The model uses the embedded 4th order Runge-Kutta-Fehlberg
solver with adaptive step-size to integrate the differential
equations. The simulations were run in parallel with SCOOP
on a 6-cores 3.30 GHz CPU (32 GB RAM) PC allowing each
optimization protocol to run (five simulations with different
seeds) in around 7 h.

RESULTS

Bursting Frequency Optimization
We conducted preliminary experimentation to determine the
best strategy to measure the burst frequency in response
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TABLE 2 | Feature and scores obtained with simulated neurons after EA optimization with different fitness functions.

Burst frequency 6 pA (Hz) Burst frequency 8 pA (Hz)

Simulation Simulation

Sinusoidal Stim. Freq. (Hz) Experimental FF1 FF2 FF3 FF4 Experimental FF1 FF2 FF3 FF4

0.58 41.43 36.77 37.66 35.73 35.19 45.00 45.62 42.63 45.78 42.68
2.12 49.29 47.36 46.29 47.52 46.15 55.71 55.42 55.75 56.70 53.97
4.04 54.00 51.78 52.82 51.81 50.74 60.00 59.03 61.01 59.84 60.39
5.96 59.29 55.22 54.32 52.36 53.28 65.71 63.16 65.57 63.83 63.07
8.08 55.00 55.04 53.93 55.25 54.74 66.43 64.43 66.23 64.94 64.52
10.19 45.71 50.51 57.97 50.48 55.25 64.29 69.44 68.94 69.93 67.57
12.31 - - - - - 58.57 66.23 58.62 66.94 66.01
14.23 - - - - - 50.00 49.30 71.43 50.02 51.74
Score 20.71 26.26 21.61 28.45 19.94 29.90 19.33 21.45

Mean frequency (Hz) First spike latency (ms)

Simulation Simulation

Step-current amp. (pA) Experimental FF1 FF2 FF3 FF4 Experimental FF1 FF2 FF3 FF4

10 30 (1) 30 (2) 19 31.90 (45.8) (9.9) 36.10 14.90
16 45 (35) 49 (35) 45 19.00 (12.8) (6.4) 12.40 9.00
22 60 (72) 67 (73) 66 14.65 (8.5) (5.0) 8.40 6.70
Score (51) 11 (51) 17 (26.25) (44.25) 17.05 34.95

The score corresponding to different features (burst frequency, IF curve, and latency to the first spike) of the best-performing individuals are shown against the target experimental
values. Mean frequency and latency to the first spike experimental values were extracted from Masoli et al. (2017), and experimental recordings of burst frequency from D’Angelo et al.
(2001). Note that, although the standard deviation of the burst frequency is considered by the EAs, they are not included in the burst frequency scores to obtain an overall view of
the distance between the simulated and experimental values of every feature. The values in brackets correspond to the features not included in the FFs (and are just evaluated for
comparison). In bold are the closest values and minimal scores.

TABLE 3 | Parameter values of the best-performing neuron models.

Parameter name (unit) FF1 FF2 FF3 FF4

Cm (pF) 3.10 4.21 3.36 2.80
∆T (mV) 5.42 1.09 7.01 22.07
EL (mV) −64.06 −51.42 −59.92 −58.00
Vpeak (mV) −13.49 6.80 −12.24 −17.56
Vr (mV) −70.28 −73.66 −64.86 −71.31
VT (mV) −40.59 −38.00 −40.31 −24.01
a (nS) 0.26 0.36 0.36 0.23
b (nA) 0.19 0.65 0.15 0.37
gL (nS) 0.49 0.17 0.67 0.25
τw (ms) 327.25 338.75 365.41 619.07

Parameter values of the individuals resulting from the optimization process with different FFs. Membrane capacitance (Cm), slope factor (∆T), leak reversal potential (EL), reset value
for membrane potential after a spike (Vr, map to resting potential Vinit), spike detection threshold (Vpeak), spike initiation threshold (VT), subthreshold adaptation (a), spike-triggered
adaptation (b), leak conductance (gL) and adaptation time constant (τw).

to sinusoidal stimulation. As a first approach, we calculated
the average burst frequency during the 10 initial cycles of
the simulation (as explained in the Methods section). The
EA was set to minimize only the error of the average
burst frequency in response to all the available data. The
resulting neuron model configuration (individual) showed high
instability (i.e., highly variable burst frequency) during the
initial cycles (Figure 1A, yellow shaded area in the top plot).
The same optimization was carried out with five different
random seeds and all the individual winners showed similar
behavior. Particularly, it can be observed that in response
to high stimulation frequencies (namely, 10–14 Hz), the
burst frequency remained unsteady for eight oscillatory cycles
(Figure 1A, red dots in the top plot). This observation can
be explained based on: (i) the model configuration emerging
from the EA combines high membrane capacity (Cm ranging

between 2.63 and 4.87 pF), low leakage conductance (gL
ranging between 0.49 and 4.31 nS) and low initial membrane
voltage (Vinit equal to EL as specified in the ‘‘Materials
and Methods’’ section; both ranging between −58.18 and
−49.88 mV), so that the membrane potential required between
cycles 1 and 4 until stable values were reached for several
consecutive cycles (Figure 1A, yellow shaded area in the
top plot); and (ii) the neuron configuration included long
adaptation time constants (τw) so that the adaptation current
(w) required six cycles to reach steady-state (Figure 1A,
yellow shaded area in the bottom plot). Although the average
burst frequency stays close to the experimental measures for
every stimulation frequency, the standard deviation of the
burst frequency over the measuring cycles is higher than
desired, especially for high stimulation frequencies (Figure 1B,
top plot).
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FIGURE 2 | Neuron model optimization with different strategies. (A) Average burst frequencies in response to low (0.58 Hz), medium (5.96 Hz), or high (10.19 Hz)
sinusoidal stimulation frequencies. The mean value over 10 oscillatory cycles and the standard deviation from the best performing individual are represented for each
considered fitness function (FF). Corresponding in vitro values from D’Angelo et al. (2001) for each stimulation frequency and amplitude (6 pA, green and 8 pA,
purple) are shown as dashed-dotted lines. (B) Spiking resonance curves in response to 6 pA and 8 pA of sinusoidal stimulation. The stimulation frequency of the
individuals ranges from 0.5 Hz to 30 Hz with 0.5-Hz steps. Standard deviation is shown shaded in yellow for individuals optimized with initial cycles FF, and in red for
individuals optimized with the stabilization FF. Those individuals optimized including the standard deviation in their score (namely, initial cycles + SD and stabilization +
SD) obtained near-zero standard deviation (this is indeed represented in the green and dark red shaded areas but are hardly visible). The available in vitro data
extracted from D’Angelo et al. (2001) and specified in Table 3 are shown with colored dots.

Aiming to overcome the instability produced during the
initial period of simulation, we tested whether averaging over
10 bursts (oscillatory cycles) after 2 s of initial stabilization
produced different results. This period was chosen as it
corresponds to twice the maximum allowed adaptation time
constant (τw; see Table 1). In this way, the neuron membrane
potential reached steady state (Figure 1A, red shaded area at
top plot) before measuring and averaging the burst frequency.
Not unexpectedly, the EA set with this second estimation
method resulted in neuron configurations whose average
burst frequencies closely matched the experimental measures
(Figure 1B, green and purple lines in the bottom plot). However,
the standard deviation of the burst frequencies remained higher
than desired (although remarkably lower than using the first
estimation method) in response to high stimulation frequencies
(Figure 1B, green, and purple shaded areas in the bottom plot).
E.g., when stimulated with 14.23 Hz (Figure 1B, red arrow in the
bottom plot) the average burst frequency is stable with almost

no standard deviation (55.04 ± 0.38 Hz; Figure 1A). On the
contrary, when stimulated with 12 Hz (Figure 1B, a black star at
bottom plot) the simulated neuron showed an increased standard
deviation of the average burst frequency (74.96 ± 5.99 Hz). It
occurred because the neuron did not fully recover from one
oscillatory cycle to the next one (Figure 1C). This situation
produces enhanced variability in the burst frequency values
for some neuron configurations. To prevent this issue, we set
the EA with a third method for calculating the score of each
individual based on the 2-s-stabilization method (described in
the ‘‘Materials and Methods’’ section).

Four implementations of FFs were considered once defined
the period considered for burst frequency calculation and
the inclusion of penalization for instability: (1) average burst
frequency calculation over initial cycles (shortly, initial cycles);
(2) average burst frequency calculation over initial cycles with
the penalization of the standard deviation (shortly, initial
cycles + SD); (3) average burst frequency calculation after
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FIGURE 3 | Score evolution during Evolutionary algorithm (EA) optimization. Evolution of the minimal score from the individuals considered at each generation
during the optimization processes of EAs configured with different fitness functions (FFs; as described in Methods section): (A) FF1 (Resonance), (B) FF2 (Resonance
+ I-F curves), (C) FF3 (Resonance + Latency to the first spike), (D) FF4 (Resonance + I-F curves + Latency to the first spike). The score was calculated as the
weighted sum of the individual feature scores considered for each FF (equations 3 and 4).

2-s simulation (shortly, stabilization); and (4) average burst
frequency calculation after 2-s stabilization period with the
penalization of the standard deviation (shortly, stabilization +
SD). The score was calculated according to equation (3) in the
cases of initial cycles and stabilization (cases 1 and 3), and
according to equation (4) in the cases of initial cycles + SD and
stabilization + SD (cases 2 and 4).

The EA was executed five times for each case considering
different random seeds to obtain the neuron model
configurations that best matched the experimental values of
average burst frequencies (Table 3). The individuals with the
lowest score were selected. Not unexpectedly, all the individuals
presented similar values to the experimental data (Figure 2A),
validating the operation of the EA. In response to low (0.58 Hz)
stimulation frequency, negligible standard deviations were
obtained with all the considered FFs (left plot in Figure 2A).
However, higher stimulation frequencies (i.e., 5.96 Hz and
10.19 Hz) resulted in increased standard deviations for those
functions which did not include SD penalization (namely,
initial cycles and stabilization; Figure 2A, middle and right
plots, respectively).

We then compared the spiking resonance curves of the
individuals obtained using each FF (Figure 2B). When the
penalization of standard deviation is not included in the FF
(namely, initial cycles and stabilization), the average burst
frequencies (Figure 2B, yellow and orange lines) are near
the experimental values (the sum of the distances between
simulated and experimental burst frequency features are
19.44 Hz and 43.15 Hz in initial cycles and stabilization,

respectively; Figure 2B, colored dots), but with large
standard deviation (the sum of the SDs of burst frequency
features are 104.62 Hz and 43.44 Hz in initial cycles and
stabilization, respectively; Figure 2B, yellow and orange
shadow). Additionally, resonance curves fall to zero (indicating
one or zero spikes per oscillatory cycle) with remarkably
higher stimulation frequencies (beyond 25 Hz), especially
with the stabilization function. Thus, the model configuration
resulting from the usage of the initial cycles FF appropriately
reproduced spiking resonance at theta-frequency band but
with considerable variability. Differently, the stabilization
FF drove to the neuron models whose resonance peaks
were beyond the theta-frequency band (around 20 Hz).
This situation makes these two neuron models unsuitable
for our aim.

When the penalization of standard deviation is included in the
FF (namely, initial cycles + SD and stabilization + SD), average
burst frequencies are also close to the experimental data (the
sum of the distances between simulated and experimental burst
frequency features are 50.79Hz and 41.50Hz in initial cycles + SD
and stabilization + SD, respectively; Figure 2B, green and dark
red lines) and they are stable, with almost negligible standard
deviations (the sum of the SDs of burst frequency features are
0.69 Hz and 1.05 Hz in initial cycles + SD and stabilization +
SD, respectively; Figure 2B, green and dark red shadow areas
representing the standard deviations that are almost negligible
and hardly visible in the plots). Interestingly, the neuron models
resulting from these individuals show resonance curves falling to
zero just above the last stimulation frequency points (10.19 Hz
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FIGURE 4 | Spiking dynamics of the individuals resulting from different EA implementations. Simulated features of the selected (best fitted) neuron models obtained
from the EAs configured with different FFs: only burst frequency (yellow), burst frequency and intensity-frequency (I-F) curve (green), burst frequency and first-spike
latency (blue), and burst frequency, I-F curve and first-spike latency (purple). The target in vitro data from D’Angelo et al. (2001) and Masoli et al. (2017); specified in
Table 3) are represented as black dots. (A) Burst frequency in response to 6-pA (left) or 8-pA (right) sinusoidal stimulation with varying frequencies (in steps of
0.5 Hz). The lines represent the simulated average burst frequency over 10 cycles after 2 s of initial stabilization, and the standard deviations are shown as shaded
areas. (B) I-F curves of the neuron models obtained from the EAs configured with different FFs. The Y-axis represents the average firing frequency in response to
1 s-step-currents. (C) Latency to the first spike in response to 1-s-step-currents.

at 6-pA and 14.23 Hz at 8-pA sinusoidal stimulations) as was
experimentally tested in real GrCs, generating one or no spikes
per cycle at higher frequency sinusoidal stimulations (Figure 2B,
green and dark red lines; D’Angelo et al., 2001). Thus, these
model configurations are considered to better reproduce the
spiking resonance at the theta-frequency band.

According to these preliminary results, it is preferable to
calculate the burst frequency after the 2-s-stabilization period
and including the standard deviation as part of the FF
(stabilization + SD; named FF1 in the next subsection). This FF
drives our EA to penalize unstable configurations, resulting in
neuron model configurations that match the spiking resonance
at the theta-frequency band of biological cerebellar GrCs and
maintain stable neuronal behavior during the oscillatory cycles.

Parameter Fitting With Other
Suprathreshold Dynamics
Once, we had explored the most convenient definition of
FF for burst frequency feature optimization, we aimed to

demonstrate whether additional electrophysiological properties
could also be optimized and reproduced by the neuron
model. Thus, we considered other representative firing
properties of GrCs that are seemingly relevant in neural
transmissions such as the intensity-frequency (I-F) curve
and the latency to the first spike in response to different
stimulation currents. We carried out additional optimization
experiments with different combinations of features in the
FF: burst frequency under sinusoidal stimulation (namely,
FF1), burst frequency under sinusoidal stimulation and
mean frequency (I-F) under step current injection (namely,
FF2), burst frequency under sinusoidal stimulation and
latency to the first spike in response to step current injection
(namely, FF3), and all the three mentioned features together
(namely, FF4).

The evolution of the minimum score of the individuals in the
explored population from these EAs showed fast convergence
during the optimization processes among generations (Figure 3).
We aim to determine whether the usage of different FFs
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FIGURE 5 | Intrinsic properties predicted by the cerebellar granule cell (GrC) model. (A) Neuron model simulation in response to sinusoidal current injection of
10-pA offset and 6-pA amplitude. Bursts are shown after 2 s of stimulation (stabilization). (B) Resonance curve (showing burst frequency) in response to the same
stimulation protocol. (C) Membrane potential evolution in response to 1-s step-current injections with variable amplitude. (D) Step pulse hyperpolarizing and
depolarizing currents in the subthreshold regimen (from −8 pA to 3 pA in steps of 1 pA from 100 ms to 1500 ms) cause the membrane potential to reach an early
peak followed by a decayed (sag response) at a stable level. Current-voltage relationship plots (I–V plots) from the voltage peak (sag; green colored) and from the
steady-state (considered at 1,000 ms; orange-colored) demonstrate the absence of inward rectification in the model during the polarization with both hyperpolarizing
and depolarizing currents.

affect the capability of the resulting neuron models to resonate
in the theta-frequency band as well as determining whether
the proposed AdEx model can reproduce all these different
firing features in a single parameter configuration. The scores
obtained from the evaluation of all the features (included or
not in its EA implementation) simulated by the individuals
are shown in Table 2, and the corresponding parameters of
the best performing individuals with each EA configuration are
in Table 3.

Spiking Resonance in the Theta-Frequency Band
Cerebellar GrCs have been demonstrated to resonate in a rather
broad theta-frequency band. The spiking resonance peak has
been described around 6–12 Hz (D’Angelo et al., 2001) in
experimental measurements, and around 4–10 Hz in previous
detailed GrC models (D’Angelo et al., 2001, 2009; Magistretti
et al., 2006; Gandolfi et al., 2013; Masoli et al., 2017). The
proposed EAs selected neuron models matching the burst
frequency of the experimental curves when the configured FFs
included only the burst frequency (FF1; preferred resonance
frequency within 7–11 Hz), the burst frequency and the latency
to the first spike (FF3; preferred resonance frequency within
7–11 Hz) and all the three features considered in this work

(FF4; preferred resonance frequency within 8–12 Hz; Figure 4A).
The simulation of the selected individuals closely fitted the
experimental data with stable burst frequencies (between
0.5–1.5 Hz SD) and burst frequency falling to zero (one or zero
spikes per cycle) with stimulation frequencies beyond 10.19 Hz
(6-pA amplitude) and 14.23 Hz (8-pA amplitude), respectively.

The best-fitted individuals for the experimental spiking
resonance were the neuron model resulting from the EA
with FF1 (the sum of the distances between simulated and
experimental burst frequency features is 40.65 Hz) and the
neuron model from the EA with FF3 (the sum of the distances
between simulated and experimental burst frequency features
is 40.94 Hz), closely followed by the neuron model from the
EA with FF4 (the sum of the distances between simulated and
experimental burst frequency features is 49.90 Hz) and, finally,
the neuronmodel from the EAwith FF2 (the sum of the distances
between simulated and experimental burst frequency features is
56.16 Hz). Not unexpectedly, the EAs with FFs which included
only burst frequency features resulted in neuron models with
the best fitting of the resonance to the experimental data. On
the contrary, the individuals resulting from EAs with the FF that
included all the features (FF4) showed a shifted resonance curve
only with 6-pA-amplitude sinusoidal stimulation (Table 2 and
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FIGURE 6 | Spiking and subthreshold resonance properties obtained with the models resulting from different EA implementations. Simulated resonance properties
under suprathreshold and subthreshold regimes of the selected (best fitted) neuron models obtained from the EAs configured with different FFs: (A) only burst
frequency, (B) burst frequency and I-F curve, (C) burst frequency and first-spike latency, and (D) burst frequency, I-F curve, and first-spike latency. Burst frequencies
are shown in response to 6-pA (green) or 8-pA (pink) sinusoidal stimulation with varying frequencies (in steps of 0.5 Hz). The pink and green lines represent the
simulated average burst frequency over 10 cycles after 2 s of initial stabilization (left axis). The target in vitro data, from D’Angelo et al. (2001), of the burst
frequencies, are represented as dots. Subthreshold resonance properties are represented as the module of the impedances that were calculated with the FFT
algorithm in response to 2-pA (blue lines) sinusoidal current stimulation with varying frequencies (in steps of 0.5 Hz; right axis). The cut-off frequency of the high-pass
filter is represented as a vertical dashed line in the form of 1/(2πτw ), while the cut-off frequency corresponding to the low-pass filter is represented as a vertical
dashed line in the form of 1/(2πτm).

Figure 4A, purple line). The individuals resulting from the EAs
with the FF including burst frequency and I-F curve (but not
first spike latency; FF2) showed resonance beyond the theta range
(Figure 4A, green-shaded lines) with unstable behavior (large
standard deviations).

I-F Curve
We also evaluated themembrane voltage response while injecting
step currents of increasing amplitude. Beyond specific thresholds
of injected current fast repetitive firing was reproduced
(Figure 4B). The individual resulting with FF1 and FF3 showed
rheobases (understood as theminimum current injected required

to fire a single AP) at 10 pA, the individual resulting with FF2 at
3 pA, and the individual resulting with FF4 at 4 pA. This is in
agreement with the experimental rheobases obtained for GrCs
(ranging between 2 pA and 10 pA; D’Angelo et al., 2001; Bezzi
et al., 2004; Gandolfi et al., 2013; Masoli et al., 2017). The best
fitting to the experimental frequency values were obtained, as
expected, by the neuron models resulted from those FFs that
included the I-F curve in their features to optimize (FF2 and FF4;
Table 2 and in Figure 4B, green and purple lines).

Linear coding of stimulus intensity (I-F curve) is usually
used as a measure of the intrinsic excitability of GrCs. I-F plots
were constructed (using 1-s current stimulation with amplitude
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ranging between the rheobase and 25 pA; Figure 4B) and fitted to
a linear function (r > 0.9). The slope of such a linear function is
usually representative of the intrinsic excitability of the neurons.
The output frequency values of the neuron model with the
FF containing all the features (FF4) were slightly further away
from the experimental values (slightly higher score; see mean
frequency in Table 2) than those resulting from the EA with
the FF including burst frequency and mean frequency (FF2).
However, their I-F slopes were very similar (3.83 Hz/pA and
3.39 Hz/pA, respectively) and near the slope of the experimental
points used in the EAs (2.5 Hz/pA, which was calculated from the
experimental frequency values in Table 2). The neuron models
that were not optimized for this frequency (using FF1 and FF3)
resulted in higher scores (their firing frequencies fell far from
the experimental points) and higher I-F slopes (6.27 Hz/pA
and 6.36 Hz/pA, respectively; Figure 4B, yellow and blue lines).
Despite this, their I-F slopes were coherent to those slopes
reported in previous GrC models (7 Hz/pA in D’Angelo et al.,
2001; Bezzi et al., 2004; Masoli et al., 2017). Both the I-F slope
ranges obtained (around 3.5 Hz/pA and around 6.3 Hz/pA)
are then considered biologically plausible since they fall within
the experimentally recorded values (6.5 ± 3.2 Hz/pA in
D’Angelo et al., 1995).

Latency to the First Spike
Another central behavior of biological GrCs is that the latency
to the first spike decreases and spike frequency increases when
the injected current intensity is increased (D’Angelo et al., 2001).
Similar behavior is observed in the neuronmodels resulting when
using all the proposed FFs (Figure 4C). Experimental in vitro
recordings evidenced that the latency to the first spike decreased
from 31.9 ± 16.2 ms with 10-pA step current to 14.65 ± 9.4 ms
with 22-pA current (Masoli et al., 2017). The closest latencies to
these data were obtained by the neuron model resulted from the
EA with the FF that included first-spike latency in its definition
(FF3; Figure 4C, blue line). The neuron model resulting from the
EA with FF1 (Table 2 and Figure 4C, yellow line) obtained fitted
results too. Differently, those individuals from the EA with FFs
that included the step-current firing rate (FF2 and FF4) generated
higher latencies than those reported, mainly with low stimulation
currents (Figure 4C, green and purple lines). The individual from
the EAwith FF2 reproduced the closest fitting to the I-F curve but
the least suitable to fit either the theta-frequency band or latency
to the first spike. However, according to other in vitro recordings
(D’Angelo et al., 1995, 1998; Brickley et al., 1996; Cathala et al.,
2003) and computational GrC models (D’Angelo et al., 2001;
Diwakar et al., 2009;Masoli et al., 2017), latencies to the first spike
decreased from around 100 ms at the rheobase to around 1 ms,
similar to that from the individual resulting from the EA with the
FF4 (see first spike latency in Table 2).

Selecting a Biologically Plausible
GrC Model
Overall, the most accurate neuron model according to all
the features (with the lowest sum of the distances between
experimental and simulated features of burst frequency, mean
frequency and first spike latency) corresponded to the individual

obtained including all the features in the EA (the sum of the
distances is 101.85 using FF4), followed by the neuron model
obtained from the inclusion of the average burst frequency and
latency to the first spike (the sum of the distances is 108.99 using
FF3). The individual resulting from the FF only defined by
the average burst frequency had, unexpectedly, a higher total
score (the sum of the distances is 117.9 using FF1) than the
individual from the FF of average burst frequency and I-F
curve (the sum of the distances is 111.41 using FF2). Therefore,
the simplified model configuration with the best fitting to the
spiking dynamics of a real GrC is the individual resulted from
the EA implementation that contains all the spiking properties
(namely, FF4).

The behavior of this model is presented in Figure 5. When
stimulated by just-threshold sinusoidal stimulation, the model
generated spikes clustered in doublets-triplets or longer bursts
(as in D’Angelo et al., 1998, 2001; Gandolfi et al., 2013;
Figure 5A) with specific tuning in the theta frequency band
(7–10 Hz; Figure 5B). In response to step-current stimulations,
the model resulted in regular spike discharge (Figure 5C) with
latency compatible with the experimental data in real cells.
Additionally, the model exhibited other emergent properties
(i.e., not selected during the EA optimization). First, the neuron
is silent at rest (Figure 5C). When stimulated by depolarizing
step-current injections, the neuron model elicited a single spike
with 4 pA as in D’Angelo et al. (2001). The firing rate showed
no adaptation with 0, 4, and 6 pA and little adaptation with
16 pA which is similar to the experimental recordings (Masoli
et al., 2017; Figure 5C). However, we evaluated some other
emergent properties from the subthreshold regime typical of a
cerebellar GrC, such as the inward rectification (D’Angelo et al.,
1995). The model did not reproduce the inward rectification
during the application of current steps in the hyperpolarizing
direction neither its I-V relationships (Figure 5D). Simulations
using detailed neuron models based on in vitro recordings
suggested that some well-demonstrated features of the intrinsic
excitability of cerebellar GrCs—namely fast repetitive firing,
oscillations, bursting and resonance in theta-range—had in
common the dependence upon the same mechanism (a slow
K+ current component; D’Angelo et al., 2001; Gandolfi et al.,
2013). However, the inward rectification of a cerebellar GrC was
fully explained by another type of current (a fast K-dependent
inward rectifier; D’Angelo et al., 2001). Despite there is evidence
that an exponential integrate and fire model can fit and
reproduce deflective I-V curves in the near-threshold range
(Badel et al., 2008), it seems complicated to obtain an AdEx
model configuration able to fully reproduce all these different
behaviors in different regimes (suprathreshold and subthreshold,
respectively) with a single set of parameters configuration (and
especially considering that the optimization algorithm only fitted
the spiking dynamics).

Bursting Resonance vs. Subthreshold
Resonance in AdEx Neuron Models
The formal analysis of the resonance in integrate-and-fire
neuron models represents a well-studied field. However, how
this resonance extends to the suprathreshold regime is still under
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exploration. The subthreshold intrinsic resonance in a biological
neuron is shaped by the dynamics of voltage-gated ionic currents,
which can be expressed in variable levels but may have a stable
resonant frequency (Fox et al., 2017). The resonant frequencies
result from a combination of low-pass and high-pass filter
mechanisms produced by the interplay of the passive membrane
properties and one or more ionic currents and their interaction
with the oscillatory inputs (Hutcheon and Yarom, 2000; Fox
et al., 2017). The slow resonant currents (or currents having
resonant gating variables) oppose voltage changes and act as
high-pass filters. Finally, fast amplifying currents (or currents
having amplifying gating variables) favor voltage changes and
can make resonance more pronounced (Hutcheon and Yarom,
2000; Fox et al., 2017).

One of the main advantages of the AdEx model is the
low computational requirements derived from accounting only
two differential equations (and state variables; equations 1 and
2). The AdEx model describes a capacitive current (CdV/dt)
balanced by membrane currents compressed in three terms:
(1) the leak current describes the passive membrane properties
and determines an equivalent low-pass filter according to
the membrane time constant (Hutcheon and Yarom, 2000);
(2) the exponential term describes the activation-dependent on
the Na+ voltage; and (3) the adaptation current, which has
proven effective in reproducing more complex subthreshold
dynamics such as resonance (Richardson et al., 2003; Brette
and Gerstner, 2005; Badel et al., 2008; Naud et al., 2008).
The adaptation current could implement a high-pass filter
(representative of slow voltage-gated current). This high-pass
filter needs to have slow activation according to the adaptation
time constant (τw), which drives it to turn on or off with a relative
delay with respect to the passive membrane charge.

Many types of neurons show membrane potential resonance
through a peak in the impedance in contrast with the frequency
curve (Z-profile; Fox et al., 2017). The resonance frequency peak
can be estimated depending on the adaptation time constant
from the high-pass filter [cut-off frequency defined as 1/(2πτw)]
and the membrane time constant from the low-pass filter [cut-off
frequency defined as 1/(2πτm), where τm = Cm/gL].

To better understand the oscillatory behavior of our resulting
AdExmodels, we have explored how resonance frequencies relate
in both the subthreshold and suprathreshold regimes. To analyze
the subthreshold resonance, we used the impedance profile
measured as the amplitude of the membrane voltage response
to sinusoidal current stimulation with different frequencies
(applying the Fast Fourier Transform algorithm). We have
compared both (subthreshold and suprathreshold) resonant
peaks and evaluate if both falls within the cut-off frequencies
range of the high-pass and low-pass filters that control
subthreshold resonance.

In all the models under study, the resonance peaks
resulting from the subthreshold regime fall remarkably far
from the preferred frequency in the suprathreshold regime.
In the case of individuals optimized using FF1 and FF3
(Figures 6A,C), spiking resonance peaks around theta-band
(10 Hz) while subthreshold resonance peaks are under 3 Hz.
Both types of resonance fall into the wide window between their

low-pass and high-pass filters. Even further, the neuron models
obtained from the optimizations using FF2 and FF4 showed
subthreshold resonance profiles notably sharper. However,
the neuron model FF2 showed a spiking resonance peak
markedly shifted to higher frequencies (as it was highlighted in
Figure 4A and addressed in the ‘‘Discussion’’ section), which
falls out of the band between low-pass and high-pass cut-off
frequencies (Figure 6B). On the other hand, the neuron model
FF4 showed spiking resonance peak around theta-band that
falls into the interval between the low-pass and high-filter
cut-off frequencies.

DISCUSSION

Computational models represent an essential strategy in
neuroscience for researching the function of certain neuronal
properties which remain insufficiently explored, as is the
case of cerebellar resonance in the theta frequency band
(4–12 Hz; Buzsáki, 2006). The convenience of having
single-compartment GrC models (point neuron models)
reconstructing this behavior with both biological realism and
computational efficiency represents an initial step towards
understanding these firing dynamics and their involvement in
the cerebellar synchronization and learning. This study develops
a methodological workflow and explores the best alternatives (in
terms of FFs and biological features defined in them) for creating
simplified models through optimization of their parameters
using EAs. As a result, a set of efficient cerebellar GrC models
that closely reflect realistic spiking dynamics are proposed.

The suggested methodology has shown to be successful in
generating efficient neuron models capturing the fundamental
properties of firing in real cells (e.g., cerebellar GrCs).
Interestingly, just the inclusion of the burst frequency as an
optimization criterion resulted in neuron models essentially
reproducing the main properties of a biological GrC neuron.
This seems to suggest that this property is dependent on the
main parameters of the cell model and can thus be considered
a pivotal property that integrates the main features of the
GrC. In addition to this, the optimized neuron models proved
suitable against a set of properties that could be relevant in
neural information transmission and can be used as features
for neuron model optimization. They include linear frequency
coding (implemented as repetitive firing under step-current
stimulation; D’Angelo et al., 2001, 2009) and the latency to the
first spike upon current injection (D’Angelo et al., 1995, 2001;
Masoli et al., 2017).

The resulting simplified model evidenced electrical properties
characteristic in a biological GrC that were not explicitly
integrated into the FF. These are rare spontaneous activity
(Chadderton et al., 2004; Jörntell and Ekerot, 2006; Rössert
et al., 2014) with high attainable spike frequency (low current
needed for the spike generation; D’Angelo et al., 1995, 2001)
and non-adapting spike discharge with high firing frequencies
(D’Angelo et al., 1995, 1998; Brickley et al., 1996; Chadderton
et al., 2004). The proposed model also reproduced properties
not so closely related to the firing pattern, such as a
strong inward rectification [as in the detailed models of

Frontiers in Cellular Neuroscience | www.frontiersin.org 13 July 2020 | Volume 14 | Article 161



Marín et al. Efficient Neuron Model Optimization

D’Angelo et al., 2001; Masoli et al., 2017, in vivo (Chadderton
et al., 2004) and in vitro (D’Angelo et al., 1995) experiments].
These emergent properties were predicted uniquely from the
suitability of the whole set of AdEx parameter values. This
reinforces the biophysical plausibility (in terms of realistic firing
dynamics) of the model with very low computational costs.
These results make this neuron model of cerebellar GrC a good
candidate for large-scale simulations of realistic networks and
analysis of these spiking properties.

According to our results, a single set of parameters (specific
configuration) of the AdEx model can reproduce a variety of
spiking features (wrapped in the FF), but also some emergent
behaviors (not explicitly integrated into the FF) since they are
governed by compatible suprathreshold dynamics. However,
the resulting model failed to reproduce other subthreshold
properties like inward rectification (as observed in the I-V
relationships). The oscillatory behavior of the cerebellar GrCs
is governed by a slow K+ current component (D’Angelo et al.,
2001; Gandolfi et al., 2013), while the inward rectification of the
subthreshold regime strongly depends on a fast K+-dependent
component (D’Angelo et al., 2001). Thus, since the AdEx neuron
model only includes an additional current component (the
adaptation current), we do not have to expect a single set of AdEx
parameters fitted to certain spiking properties to also describe
both regimes appropriately. Given the computational efficiency
but complex adjustment (following a formal analysis) of bursting
behaviors of the AdEx model (Brette and Gerstner, 2005),
the proposed methodology is presented as a valuable tool to
generate a single combination of these few but highly-interrelated
parameters for the spiking resonance. The application of this
methodology further extending the FF with additional properties
from the subthreshold regime would be of interest in helping us
to understand how intrinsic properties could affect at the neuron-
and also network- level.

The proposed model parameters selected by the EAs
(Table 3) are consistent with those equivalent values of
biological cerebellar GrCs reported both through the literature
and the electrophysiological database (Tripathy et al., 2015;
NeuroElectro database, 2019). The resting membrane potential
(EL) in our models are within the experimental range from the
electrophysiological database (−73.91 ± 9.46 mV from Storm
et al., 1998; Brickley et al., 2001; Cathala et al., 2003; Gall et al.,
2003; Goldfarb et al., 2007; Prestori et al., 2008; Osorio et al.,
2010; Usowicz and Garden, 2012; NeuroElectro database, 2019)
and further bibliography (from −60 to −85 mV in D’Angelo
et al., 1995, 2001; Brickley et al., 1996; Armano et al., 2000),
and they are closer to the mono-compartmental detailed model’s
values (−65 mV in D’Angelo et al., 2001; Masoli et al., 2017).
The spike emission (VT) values are triggered close to the mean
value from the database [at around −41.50 ± 6.43 mV (Brickley
et al., 2001; Cathala et al., 2003; Goldfarb et al., 2007; Prestori
et al., 2008; Usowicz and Garden, 2012; NeuroElectro database,
2019)] and the computational model of D’Angelo et al. (2001),
with a spike peak (Vpeak) near the experimental evidence [around
20.23 ± 7.04 mV (NeuroElectro database, 2019) from D’Angelo
et al., 1998; Osorio et al., 2010; Usowicz and Garden, 2012]. The
membrane capacitance (Cm) values appear low as it is notably

characterized in a typical GrC (D’Angelo et al., 1995, 2001;
Gandolfi et al., 2013) within the range of experimental evidence
[3.46 ± 0.82pF (NeuroElectro database, 2019) from D’Angelo
et al., 2001; Cathala et al., 2003; Gall et al., 2003; Goldfarb et al.,
2007; Prestori et al., 2008; Osorio et al., 2010; Usowicz and
Garden, 2012; Gandolfi et al., 2013; Masoli et al., 2017].

It should be noted that the proposed models resulting from
EAs with the I-F curve featured in their FFs (FF2 and FF4) show
resonance curves in response to sinusoidal current shifted out of
the theta band (higher preferred frequencies). Also, the latencies
to the first spike remain longer than those experimentally
reported, mainly with low stimulation currents. These differences
are more severe to the case of the individual from the FF2. This
fact may indicate an incompatibility of both firing properties
(mean frequency under step-current pulses vs. burst frequency
resonance under sinusoidal currents) within the simplified AdEx
model. Thus, the GrC behavior complexity being beyond the
capabilities of these AdEx models with a single parameter
configuration (GrCs have different functioning modes).

Based on the analysis of resonance in subthreshold and
suprathreshold (spiking) resonance, it seems clear that the
preferred frequencies in these two regimes fall in notably
different ranges (while spiking resonance tends to fall between
8 and 10 Hz, as driven through the FF in the EA processes,
subthreshold preferred frequency peaks about 2 Hz because
this regime was not explicitly selected in the FF that drove the
parameter tuning). These results may reassert the possibility that
the complexity of the spiking resonance in the AdEx model
cannot be directly addressed through the analytical adjustment
of the parameters. It has to be noted that the subthreshold
resonance analysis considers the neuron as the composite of a
capacitive current, a passive current, and an adaptive current,
neglecting in this way the influence of exponential current of
spike firing and the effect of the dynamics of the refractory
period. For this reason, the proposed optimization methodology
represents a valuable tool to obtain neuron models fitted to
complex features. The EA allowed us to tune the two differential
equations of the AdEx model according to a complex set of
spiking patterns (spiking resonance, regular firing, and delayed
firing) under different stimulation protocols (sinusoidal and step
current injections).

Realistic modeling based on recent experimental data
has provided novel insights on how intrinsic and extrinsic
mechanisms interact in other neural systems as the inferior
olive (Negrello et al., 2019). According to these results, strong
synaptic activity in the awake brain of mice could vanish the
functional impact of subthreshold oscillations. Our methodology
provides an initial but fundamental tool for the construction of
computationally tractable but realistic computational models for
future large-scale studies of the functional impact of neuronal
resonance in information processing in the GrL. In the particular
case of the cerebellar input layer, it remains unclear how
spiking resonance (demonstrated in vitro in the granule cells
and the Golgi cells) interacts in a recurrent inhibitory loop
with feed-forward excitation of the Golgi cell. In this sense,
theoretical models have addressed information processing in the
GrL (Solinas et al., 2010; Garrido et al., 2013), but these models
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either have not considered neuronal intrinsic resonance or they
have neglected the role of the long-term plasticity in the GrC
inputs. In addition to this, theoretical models have demonstrated
that external oscillatory activity strongly facilitates learning in
excitatory synapses (Masquelier et al., 2009) and inhibitory
recurrent networks (Garrido et al., 2016). In any case, further
experimental data will be required to fit future computational
models to address the functional impact of oscillations in
GrL operation.

Based on our results, the AdEx model has shown to be a
computationally light approach for the close reproduction of the
firing patterns reported from cerebellar GrCs. Recent articles
in the literature have proposed modified GLIF point-neuron
equations (the so-called Extended Generalized Leaky Integrate-
and-Fire model) for the reproduction of experimental traces
recorded in different cerebellar cells (Geminiani et al., 2018;
Casali et al., 2019). That model allowed the direct application
of some experimentally testable parameters together with other
optimized ones. We, however, propose a methodology based on
automatic parameter tuning through an EA-based exploration
(all the behavioral target is integrated through FF definition).
It has shown to be effective in fitting the model parameters to
diverse spiking responses. Therefore, the optimization process
is fast, versatile, and able to capture relevant firing features.
Contrary to themethodology proposed in Geminiani et al. (2018)
where the optimization algorithm fitted the recorded voltage
traces, our approach aims to reproduce the firing characteristics
(namely, the burst frequency, the firing rate, and the first-spike
latency) of the biological neuron.

To sum up, in this study we present an automatic
optimization strategy for the development of computationally
efficient neuron models that reproduce realistic firing properties
under different stimulation protocols. This methodology was
applied to the case of the cerebellar GrC. As a result, a simplified
GrC model is proposed, suitable for predicting the main
suprathreshold dynamics, such as the spiking resonance at the
theta range and the linear frequency coding. This contribution
serves as an initial step towards a better understanding of the

functional implication of the theta-frequency-band resonance
for information processing at the cerebellar cortex. This model
provides both efficiency and biological plausibility which will
facilitate further computational work in the reconstruction of
large-scale models of microcircuits to better understand the
computational role of the suprathreshold dynamics of the cell on
a large scale.
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Abstract. This work compares different algorithms to replace the genetic optimizer used in a re-
cent methodology for creating realistic and computationally efficient neuron models. That method
focuses on single-neuron processing and has been applied to cerebellar granule cells. It relies on the
adaptive-exponential integrate-and-fire (AdEx) model, which must be adjusted with experimental
data. The alternatives considered are: i) a memetic extension of the original genetic method, ii) Dif-
ferential Evolution, iii) Teaching-Learning-Based Optimization, and iv) a local optimizer within a
multi-start procedure. All of them ultimately outperform the original method, and the last two do it
in all the scenarios considered.
Key words: granule cell, neuron model, model tuning, optimization, meta-heuristics.

1. Introduction

One of the main pillars in Computational Neuroscience is understanding the brain oper-
ation by studying information processing primitives of brain areas. For this purpose, it is
necessary to simulate brain microcircuits using large-scale neural networks with thou-
sands or millions of neurons. Neuron computational models aim to reproduce neuronal
firing patterns as well as the information contained in electrophysiological recordings.
However, biological realism frequently requires high computational resources. Thus, neu-
ron models for large-scale simulations need to be computationally efficient.

The adaptive-exponential integrate-and-fire (AdEx) model (Brette and Gerstner, 2005)
is a simplified neuron model that meets both requirements of realism and efficiency. It
consists of only two differential equations and performs reasonably well in fitting real
electrophysiological recordings with a few parameters and low computational cost (Naud

∗Corresponding author.
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et al., 2008). Nevertheless, some of the parameters in the AdEx model lack an experi-
mental (measurable) counterpart, and finding an appropriate set of parameters becomes
a challenging problem (Barranca et al., 2014; Hanuschkin et al., 2010; Venkadesh et al.,
2018). Fitting mathematical neuron models to real electrophysiological behaviour can be
considered a suitable optimization problem that remains partially unsolved.

The cerebellum is a centre of the nervous system involved in fine motor control, so-
matosensory processing, and non-motor control (emotional, cognitive, and autonomic
processes such as attention and language) (Schmahmann, 2019). In its anatomical struc-
ture, there exists one input layer named granular layer (GrL), and it is compounded of
cerebellar granule cells (GrCs). The GrCs are the smallest and the most numerous neu-
rons in the human brain (Lange, 1975; Williams and Herrup, 1988). The cerebellar GrCs
are thought to regulate the information processing through the main afferent system of
the cerebellum (Jörntell and Ekerot, 2006). These neurons show regular repetitive spike
discharge in response to a continuous direct stimulus, and their first-spike latency un-
der direct stimulation is well characterized (D’Angelo et al., 2009; Masoli et al., 2017).
Besides, previous findings suggest that the theta-frequency oscillatory activity (around
4–10 Hz in rodents) contributes to signal integration in the GrL. Indeed, the spiking reso-
nance (as enhanced bursting activity) at the theta-frequency band of single cerebellar GrCs
in response to low-frequency sinusoidal stimulation has been proposed to strengthen in-
formation transmission in the GrL (D’Angelo et al., 2009, 2001; Gandolfi et al., 2013).
However, the functional role of resonance at the theta band in the information processing
of cerebellar GrCs remains elusive.

Previous work by Marín et al. (2020) proposed a methodology for building computa-
tionally efficient neuron models of cerebellar GrCs that replicate some inherent properties
of the biological cell. Since the cerebellar GrCs show compact and simple morphology
(D’Angelo et al., 2001; Delvendahl et al., 2015), it is appropriate to consider a mono-
compartment model. Thus, the cerebellar GrC was modelled with the AdEx neuron model
because of its computational efficiency and realistic firing modes. This fact has been sup-
ported by several comparisons with detailed models and experimental recordings (Brette
and Gerstner, 2005; Nair et al., 2014; Naud et al., 2008). As part of their method, Marín et
al. (2020) tuned the parameters of the AdEx model to fit the neuronal spiking dynamics of
real recordings. In this context, the authors model the tuning procedure as an optimization
problem and study different objective functions to conduct the optimization. These func-
tions combine the accumulated difference between the set of in vitro measurements and
the spiking output of the neuron model under tuning. However, their evaluation involves
launching computer simulations with uncertainty and nonlinear equations. For this reason,
the authors proposed a derivative-free, black-box or direct optimization approach (Price
et al., 2006; Storn and Price, 1997). Namely, they successfully implemented a standard
genetic algorithm (Boussaïd et al., 2013; Cruz et al., 2018; Lindfield and Penny, 2017) to
face the parametric optimization problem.

This work focuses on the optimization component of the methodology proposed by
Marín et al. and evaluates alternative algorithms. Since no exact method is known to solve
the nonlinear and simulation-based target problem, the choice of Marín et al. is sound.
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Genetic algorithms are widely-used and effective meta-heuristics, i.e. generic problem
resolution strategies (Boussaïd et al., 2013; Lindfield and Penny, 2017). Nevertheless,
the optimization part of the referred work has been tangentially addressed, and this paper
aims to assess the suitability of some alternative meta-heuristics that perform well in other
fields. More precisely, this paper compares four more meta-heuristics in the context of the
reference work. One of them is Differential Evolution (DE) (Storn and Price, 1997), which
is arguably one of the most used methods for parametric optimization in Engineering.
Another option is the Teaching-Learning-Based optimizer (TLBO) (Rao et al., 2012),
which features configuration simplicity, low computational cost and high convergence
rates. A third option is the combination of a simple yet effective local optimizer, the Single-
Agent Stochastic Search (SASS) method (Cruz et al., 2018) by Solis and Wets (1981),
with a generic multi-start component (Redondo et al., 2013; Salhi, 2017). This compound
optimizer will be referred to as MSASS. The last method, which will be called MemeGA,
is an ad-hoc memetic algorithm (Cruz et al., 2018; Marić et al., 2014) that results from
replacing the mutation part of the genetic method by Marín et al. (2020) by the referred
local search procedure, SASS.

The rest of the paper is structured as follows: Section 2 describes the neuron model
with the parameters to tune and the corresponding optimization problem. Section 3 ex-
plains the optimizers considered as a potentially more effective replacement of the genetic
method. Section 4 presents the experimentation carried out and the results achieved. Fi-
nally, Section 5 contains the conclusions and states some possible future work lines.

2. Neuron Model

This section starts by describing the neuron model, whose parameters must be adjusted,
and by defining the tuning process as an optimization problem to solve. After that, the
section explains both the neuron simulation environment and how the experimental pieces
of data have been recorded according to the reference paper.

2.1. Model Structure and Problem Definition

The adaptive exponential integrate-and-fire (AdEx) model consists of two coupled differ-
ential equations and a reset condition that regulate two state variables, i.e. the membrane
potential (V ) and the adaptation current (w):

Cm

dV

dt
= −gL(V − EL) + gL�T exp

(
V − VT

�T

)
+ I (t) − w, (1a)

τw

dw

dt
= a(V − EL) − w. (1b)

Equation (1a) describes how V varies with the injection of current, I (t). When V ex-
ceeds the threshold potential (VT ), the slope factor (�T ) models the action potential. This
depolarization persists until V reaches the reset threshold potential (Vpeak), which de-
fines the reset condition aforementioned. At that point, V resets to Vr , and w increases the
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Table 1
Parameters to tune for configuring the AdEx model including the

boundaries and units.

Parameter Boundaries Parameter Boundaries

Cm (pF) [0.1, 5.0] VT (mV) [−60, −20]
�T (mV) [1, 1000] a (nS) [−1, 1]
EL (mV) [−80, −40] b (pA) [−1, 1]
Vr (mV) [−80, −40] gL (nS) [0.001, 10]
Vpeak (mV) [−20, 20] τw (ms) [1, 1000]

fixed amount b. The first term models the passive mechanisms of the membrane potential
that depend on the total leak conductance (gL), the leak reversal potential (EL) and the
membrane capacitance (Cm), which regulate the integrative properties of the neuron. The
second exponential term models the spike generation and shape, whose dynamics depend
on �T and VT (Naud et al., 2008).

Equation (1b) models the evolution of w. It depends on the adaptation time constant
parameter (τw), the sub-threshold adaptation (a), and the spike-triggered adaptation pa-
rameter (b).

There are ten parameters to tune for reproducing the firing properties or features of the
cerebellar GrCs with the AdEx neuron model. Table 1 contains the list of model parame-
ters to tune including their units and the range in which they must be adjusted.

Roughly speaking, the tuning process is equivalent to minimizing the accumulated
difference between each firing feature for the studied parameter set and the corresponding
experimental recordings. Let f be the function that models this computation. It is defined
in (2) as an abstract function that depends on the ten model parameters included in Table 1.
This configuration is that tagged as FF4 in Marín et al. (2020), and it is further explained
below.

f (Cm, . . . , τw) =
∑

i∈[MF,LF]

(|f eati − expi | · wi

)

+
N∑

j=1

(|BFsimj
− BFexpj

| · WBF · (
std(BFsimj

) + 1
))

. (2)

In practical terms, f implies a neuron simulation procedure gathering the output of
the behaviour of interest. In order to obtain a neuron model that reproduces the properties
of the cerebellar GrCs, the following features were integrated into f : i) repetitive spike
discharge in response to continuous direct stimulation (measured as the mean frequency
of spike traces) (MF), ii) first-spike latency under direct current stimulation (measured as
the time to the first spike) (LF), iii) spiking resonance in the theta range under sinusoidal
current stimulation (measured as the average burst frequency with different oscillation
frequencies) (BF).

MF and LF are included in the first term of f , where the score of each feature is
the accumulative absolute difference between the model output of the i feature (f eati)
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under different step-current amplitudes, and its experimental equivalent (expi), for i ∈
{MF, LF}. In order to integrate several components in this function, this term is multiplied
by a weighting factor (wi) as described in the next section.

Regarding BF, it is considered in the second part of f . This term accumulates the
summation of each separate absolute difference for j = 1, . . . , N sinusoidal stimulation
frequencies. The score for each one results from the absolute difference between: i) the
average burst frequency of the simulated neuron after a certain number of oscillatory cy-
cles, BFsimj

, and ii) the experimental value, BFexpj
, at that stimulation frequency, j . This

term is multiplied by the weight of this particular feature, wBF (as detailed in the sec-
tion below). It is also multiplied by the standard deviation of the simulated neuron burst
frequency (std(BFsimj

)) plus one. This additional multiplicative term promotes configu-
rations both close to the target and stable.

The lower the value of f is for a given set of parameters, the more appropriate it is for
replicating the desired neuronal behaviour. It is hence possible to formally define the target
optimization problem according to (3). The constraints correspond to the valid range of
every parameter, which is generally defined by the max and min superscripts linked to the
parameter symbol referring to the upper and lower bounds, respectively. The numerical
values considered are those shown in Table 1.

minimize
Cm,...,τw

f (Cm, . . . , τw)

subject to Cmin
m � Cm � Cmax

m

. . .

τmin
w � τw � τmax

w .

(3)

2.2. Model Context and Feature Measurement

According to Marín et al. (2020), the initial membrane potential starts with the same value
as the leak reversal potential, i.e. Vinit = EL. The burst and mean frequency have been
weighted by 1 because they are measured in hertz and are in comparable ranges. In contrast
to them, since it is measured in seconds, the weight of the first spike feature was set to
1000. Consequently, for instance, an error of 1 Hz at burst frequency is weighted as an
error of 1 Hz at repetitive spike discharge and a lag of 1 ms at latency to the first spike.

For the experimental measurements of the spiking resonance, the burst frequency is
computed as the inverse of the average inter-spike interval (ISI) of the output neuron (the
cerebellar GrC) during each stimulation cycle. Then, the average burst frequency is mea-
sured from 10 consecutive cycles during a total of 22.5 seconds of stimulation. The sinu-
soidal amplitude is of 6 and 8 pA (including a 12 pA offset), and the spike bursts are gen-
erated corresponding with the positive phase of the stimulus (sinusoidal phase of 270◦).
The burst frequencies with stimulation frequencies beyond 10.19 Hz in amplitude of 6 pA
and 14.23 Hz in amplitude of 8 pA are set to zero because either one or no spikes were
observed in the experimental measurements (D’Angelo et al., 2001).

The typical behaviour of the cerebellar GrCs implements a mechanism of repetitive
spike discharge in response to step-current stimulation. It could help to support the spiking



6 N.C. Cruz et al.

resonance of burst frequency at the theta-frequency band (D’Angelo et al., 2001). Accord-
ing to recent literature (Masoli et al., 2017), the fast repetitive discharge in the GrCs has
been characterized based on the mean frequency and the latency to the first spike in re-
sponse to three different step-current injections (10, 16 and 22 pA) of stimulation of 1 s.

3. Optimization Methods

As introduced, five numerical optimization algorithms have been considered for solving
the problem stated in Section 2.1: i) the genetic algorithm used in the reference paper
(GA) (Marín et al., 2020), ii) a memetic optimizer based on it (MemeGA), iii) Differential
Evolution (DE), iv) Teaching-Learning-Based Optimization (TLBO) (Rao et al., 2012),
and v) Multi-Start Single-Agent Stochastic Search (MSASS). The first four cover the two
main groups of population-based meta-heuristics (Boussaïd et al., 2013): Evolutionary
Computation and Swarm Intelligence. The optimizers in the first group are inspired by
the Darwinian theory, while those in the second rely on simulating social interaction.
Namely, GA, MemeGA, and DE belong to the first class, and TLBO can be classified into
the second one. Regarding MSASS, it is a single-solution-based meta-heuristic (Boussaïd
et al., 2013) that iteratively applies a local search process to independent random starts.

Since all the algorithms rely on randomness, they can be classified as stochastic meth-
ods. The following subsections describe these optimizers for the sake of completeness.
However, the interested reader is referred to their corresponding references for further
information.

3.1. Genetic Algorithm (GA)

Genetic algorithms, popularized by Holland (1975), were developed as an application of
artificial intelligence to face hard optimization problems that cannot be rigorously solved
(Boussaïd et al., 2013; Salhi, 2017). Roughly speaking, genetic algorithms work with a
pool of candidate solutions. Although they are randomly generated at first, the solutions
are ultimately treated as a population of biological individuals that evolve through sexual
reproduction (involving crossover and mutation). Based on these ideas, genetic algorithms
define a general framework in which there are different options for every step and are used
in a wide range of problems (Boussaïd et al., 2013; Salhi, 2017; Shopova and Vaklieva-
Bancheva, 2006). The problem addressed in this work has also been previously faced with
a genetic algorithm in Marín et al. (2020). It will be referred to as GA, and it is described
next as one of the methods compared.

GA starts by creating as many random candidate solutions as required by the parameter
that defines the population size. Every one of these so-called ‘individuals’ is represented
by a vector in which the i component corresponds to the i optimization variable. Random
generation in each dimension follows a uniform distribution between the boundaries indi-
cated in Table 1. After generating the initial individuals, they must be evaluated according
to the objective function and linked to their resulting fitness. As the problem at hand is
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Fig. 1. Single-point crossover between two individuals.

a minimization one, the lower the fitness is, the better it is. The population size remains
constant during the search even though individuals change due to evolution.

After creating the initial population, GA simulates as many generations as required
by the parameter that defines the number of cycles. Each of them consists of the ordered
execution of the following steps or genetic operators:

Selection: This step selects those individuals from the current population that might be-
come the progenitors and members of the next one. It chooses as many individuals
as defined by the population size according to a tournament selection process (Salhi,
2017; Shopova and Vaklieva-Bancheva, 2006). This strategy consists in choosing ev-
ery individual as the best out of a random sample whose size is another user-given
parameter. In contrast to other selection approaches, this one tends to attenuate strong
drifts in the population because the scope of selection is limited by the tournament
size (Salhi, 2017). Thus, not only the top best are selected, but also more regular ones,
which increases variability and avoids premature convergence to local optima.

Crossover: This step simulates sexual reproduction among those individuals previously
selected to explore new regions of the search space based on the information provided
by the progenitors. The process iterates through the selected individuals and pairs those
at even positions with those at odd ones. For each pair, there is a user-given probability
of performing single-point crossover (Salhi, 2017; Shopova and Vaklieva-Bancheva,
2006). It consists in randomly selecting a dimension of the individuals and swap-
ping the rest of the vector between the two involved. Figure 1 depicts the single-point
crossover procedure. As shown, the two progenitors (left) result in the two descendants
(right) after having selected the fourth as the splitting dimension.

Mutation: This step tries to randomly alter the offspring that comes from the two pre-
vious ones. While crossover explores in depth the area of the search space covered by
progenitors, mutation aims to allow reaching new regions of it, which avoids stagnation
at local optima. The mutation procedure has a user-given probability to be launched
for every individual of the offspring. Every time that it happens to apply, the individ-
ual is traversed, and each of its components has another user-given probability to be
randomly reset.
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After the three evolutionary steps described, the individuals involved are evaluated
according to the objective function (only those that changed after being selected) and
replace the current population for the next cycle. It is also relevant to highlight that the
algorithm keeps a record with the best individuals found through the process. The solution
to the problem is taken as the best one among them.

3.2. Memetic Algorithm Derived from GA (MemeGA)

Memetic algorithms (Cruz et al., 2018; Marić et al., 2014) are an extension of standard ge-
netic methods formalized by Moscato (1989). Their name comes from the term ‘meme’,
defined by Dawkins (1976) as an autonomous and cultural entity similar to biological
genes. However, while the individuals of genetic algorithms are mainly passive, those of
memetic methods can be seen as active agents that improve their aptitude autonomously.
In practical terms, this is achieved by adding the use of complementary local search tech-
niques to the underlying process of Darwinian evolution. This approach, which is useful
to avoid premature convergence while improving the exploitation of the search space, is
popular in many different fields. For instance, in Marić et al. (2014), the authors design an
effective and efficient parallel memetic algorithm for facility location, an NP-hard combi-
natorial optimization problem. A memetic algorithm is also the best-performing method
for parametric heliostat field design in the study published in Cruz et al. (2018). Similarly,
the optimization engine of the recent framework for drug discovery extended in Puertas-
Martín et al. (2020) is a memetic method.

Considering the theoretical capabilities and the previous success cases of this kind of
algorithms, a memetic method has been specifically designed and included in the present
study. As introduced, the referred method is MemeGA, and it is based on the genetic
method designed by Marín et al. (2020) for the problem at hand. The algorithm maintains
the same structure as GA with the only exception of the mutation stage, which is replaced
by the use of a local search algorithm. Namely, the original mutation probability is treated
as the percentage of individuals to be randomly selected for the local search to improve
them at each cycle. This approach is aligned with the proposal in Marić et al. (2014) since
the local search is applied to a random subset of the population rather than to all of them,
which increases diversity. As introduced, the local optimizer used is SASS, by Solis and
Wets (1981), which is also the local method included in the memetic algorithms applied
in Cruz et al. (2018), Puertas-Martín et al. (2020). Thus, every individual is a potential
starting point for an independent execution of SASS.

As a method, SASS is a stochastic hill-climber with an adaptive step size that starts at a
certain point of the search space, x. At the beginning of every iteration, SASS generates a
new point, x′, according to (4). The term ξ is a random perturbation vector in which every
component i (there is one for each decision variable) follows a Gaussian distribution with
component-specific mean bi and common standard deviation σ (assuming a normalized
search space), i.e. ξi = N (bi, σ ). Both, the b vector (also known as the bias) and σ ,
will be varied during the search. However, b starts as a zero vector, and σ is a user-given
parameter.

x′ = x + ξ. (4)
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Having generated x′, SASS computes the value of the objective function at it. If x′
represents a better solution, the algorithm moves its focus from x to x′, and the iteration
is considered successful. The b vector is then recomputed as b = 0.2b + 0.4ξ for the next
iteration. Otherwise, SASS explores the opposite direction by computing an alternative
new point, x′′ = x−ξ . Again, if the evaluation of x′′ returns a better value for the objective
function, SASS moves from x to x′′, and the iteration is also considered successful. Under
this circumstance, b is updated as b = b − 0.4ξ . However, if neither x′ nor x′′ were better
than x, the iteration is supposed to be failed, and b is recomputed as b = 0.5b.

In contrast to the bias vector, the standard deviation of perturbation is not modified after
every iteration but considering consecutive failures or successes for stability. Namely, if
the number of consecutive successful iterations reaches a user-given parameter, Scnt, σ

is expanded by a factor ex, which is also user-defined and supposed to be greater than 1,
i.e. σ = ex · σ . Analogously, if the number of consecutive failed iterations reaches a
user-given parameter, F cnt, σ is contracted by a factor c, which is also user-defined in
(0, 1) ∈ R, i.e. σ = c · σ . However, notice that σ is also bounded by the user, and if it
goes out from the valid range, σ is automatically reset to its upper bound.

SASS executes as many iterations, i.e. attempts to modify its current solution, as it can
perform according to the number of objective function evaluations allowed by the user.
After this process, the current solution of the method is finally returned. Under no circum-
stance will it move to a worse solution in the search space. Hence, the result of SASS will
be the same initial point or a better one in the worst and best scenarios, respectively.

3.3. Differential Evolution (DE)

DE is a simple yet powerful genetic-like numerical optimizer that was proposed by Storn
and Price (1997) and has become widely used (Dugonik et al., 2019; Price et al., 2006).
It maintains a user-defined number (NP) of randomly-generated candidate solutions (in-
dividuals) and progressively alters them to find better ones. Like GA, every individual is
a vector with a valid value for each optimization variable. The workflow of this method
does not try to imitate aspects such as the selection of progenitors and sexual reproduc-
tion as closely as standard genetic methods like GA. However, the terminology of DE also
comes from traditional Genetic Algorithms, so each iteration applies mutation, crossover,
and selection stages to every individual.

The step of mutation follows (5) to compute for each individual Sj (j = 1, . . . , NP),
a mutant vector vSj . Both r2 and r3 are different and random integer indexes in the range
[1, . . . , NP]. Regarding r1, it can be either another random population index or that of
the best candidate solution in the population. The former is known as ‘rand’ strategy, and
the latter is called ‘best’. Regarding F , which controls the amplification of the differential
variation, it is a user-given real and constant factor in the range [0, 2] in the traditional
method. However, it can be randomly redefined in the range [0.5, 1] either for each itera-
tion or for every mutant vector during the search. This approach is known as ‘dither’ and
improves the rate of convergence with noisy objective functions. Finally, notice that the
term Sr2 −Sr3 defines a single difference vector between candidate solutions, but it is pos-
sible to use more than one. The most popular alternative uses two instead, which results in
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Sr2 − Sr3 + Sr4 − Sr5 (assuming that r4 and r5 are two random population indices more).

vSj = Sr1 + F
(
Sr2 − Sr3

)
. (5)

The step of crossover merges each candidate solution, Sj , with its mutant vector, vSj .
The result is a mutated version of Sj , Sj ′ , which is known as ‘trial vector’. The compu-
tation follows (6), which is in terms of the i component of the trial vector. According to
it, S

j ′
i can come from either the current individual Sj or its mutant vector. The compo-

nent selection is controlled by the user-given crossover probability, CR ∈ [0, 1], which is
linked to uniform random number generation between 0 and 1. Regarding k, it is the index
of one of the components defining the individuals, i.e. one of the optimization variables.
This index is randomly selected for each computation of (6) to ensure that at least one of
the components of the trial vector comes from the mutant one.

S
j ′
i =

{
v
S

j
i

if rand() � CR or i = k,

S
j
i otherwise.

(6)

Additionally, there exists an additional stage that can be linked to crossover. It is a prob-
abilistic random-alteration process proposed by Cabrera et al. (2011) to define a variant
of DE aimed at mechanism synthesis. However, the addition is not limited to that field but
is of general-purpose in reality. It entails an in-breadth search component that increases
variability and is similar to the traditional mutation phase of genetic algorithms such as
GA. This addition aims to help the algorithm to escape from local optima, especially when
working with small populations. In practical terms, it follows (7) to make more changes
to each trial vector. According to it, each i component of the input trial vector can be
randomly redefined around its current value with a user-given probability. The origin of
the components, i.e. the current individual or its associated mutant vector, is not relevant.
Therefore, this stage only adds two expected parameters: the per-component mutation
probability, MP, and the modification range, range.

S
j ′
i =

{
rand() ∈ [Sj ′

i ± range] if rand() � MP,

S
j ′
i otherwise.

(7)

After the previous steps, DE evaluates each trial vector as a solution according to the
objective function. Only those trial vectors that outperform the candidate solutions from
which they come persist and replace the original individuals. This process defines the pop-
ulation for the next iteration. DE concludes after having executed the user-defined number
of iterations. At that point, the algorithm returns the best individual in the population as
the solution found.

3.4. Teaching-Learning-Based Optimization (TLBO)

TLBO is a recent numerical optimization method proposed by Rao et al. (2012). As
a population-based meta-heuristic, this algorithm also works with a set of randomly-
generated candidate solutions. However, instead of representing a group of individuals
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that evolve through sexual reproduction like the previous method, TLBO treats the set of
solutions as a group of students. The algorithm simulates their academic interaction, con-
sidering a teacher and plain pupils, to find the global optimum of the problem at hand.
This optimizer has attracted the attention of many researchers in different fields, from
Engineering to Economics, because of its simplicity, effectiveness and minimalist set of
parameters (Cruz et al., 2017; Rao, 2016).

The algorithm only requires two parameters to work, namely, the population size and
the number of iterations to execute. Based on this information, TLBO first creates and eval-
uates as many random candidate solutions or individuals as indicated by the population
size. As it occurs with the previous method, every individual is a plain vector containing a
valid value for each optimization variable of the objective function. After this initial step,
TLBO executes as many iterations as required, and every one consists of the teacher and
learner phases.

The teacher phase models the way in which a professor improves the skills of his/her
students. In practical terms, this step tries to shift each candidate solution towards the
best one in the population, which becomes the teacher, T . After having identified that
reference solution, TLBO computes the vector M . Every i component in M results from
averaging those of the individuals in the current population. This information serves to
create an altered or shifted solution, S′, from every existing one, S, according to (8). The
computation is defined in terms of every component or optimized variable, i. ri is a random
real number in range [0, 1] and linked to component i. Similarly, TF , known as ‘teaching
factor’, is a random integer that can be either 1 or 2. Both, ri and TF , are globally computed
for the current step. Finally, every S′ is evaluated and replaces S if it obtains a better value
from the objective function (S′ is discarded otherwise).

S′
i = Si + ri(Ti − TF Mi). (8)

The learner phase simulates the interaction between students to improve their skills.
At this step, TLBO pairs every student, S, with any other different one, W . The goal is to
generate a modified individual, S′, which will replace S if it is a better solution according
to the objective function. Every i component of S′ results from (9), where ri is a random
number in range [0, 1] linked to component i and globally computed for the current step.
According to it, the movement direction in every pair goes from the worst solution to the
best.

S′
i =

{
Si + ri(Si − Wi) if error(S) < error(W),

Si + ri(Wi − Si) otherwise.
(9)

Additionally, although it is usually omitted, there is also an internal auxiliary stage
to remove duplicate solutions in the population (Waghmare, 2013). At the end of every
iteration, duplicity is avoided by randomly altering and re-evaluating any of the involved
candidate solutions. Finally, after the last iteration, TLBO returns the best solution in the
population as the result of the problem at hand.
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3.5. Multi-Start Single-Agent Stochastic Search (MSASS)

The Multi-Start Single-Agent Stochastic Search, as introduced, consists in the inclusion
of the SASS algorithm (already described as part of MemeGA in Section 3.2) within
a standard multi-start component (Redondo et al., 2013; Salhi, 2017). The former is a
simple yet effective local search method that will always try to move from a starting point
to a nearby better solution. The latter is in charge of randomly generating different initial
points, provided that the computational effort remains acceptable.

Considering the local scope of SASS, the multi-start component serves to escape from
local optima by focusing the local exploration on different regions of the search space.
Namely, at each iteration, the multi-start module randomly defines a feasible point. It then
independently starts SASS from there. Once the local search has finished, so does the
iteration, and the process is repeated from a new initial point while keeping track of the best
solution found so far, which will be finally returned as the result. As a compound method,
MSASS works until consuming a user-given budget of objective function evaluations.

The multi-start component expects from the user the total number of function evalu-
ations allowed. It will always launch SASS with its maximum number of evaluations set
to the remainder to consume all the budget, and the rest of its traditional parameters as
defined by the user (see Section 3.2). However, in this context, SASS is enhanced with an
extra parameter, i.e. the maximum number of consecutive failures that force the method to
finish without consuming all the remaining function evaluations. By proceeding this way,
once SASS has converged to a particular solution, the method will not waste the rest of
the evaluations. Instead, it will be able to return the control to the multi-start component
to look for a new start. This aspect is of great importance to increase the probabilities of
finding an optimal solution.

4. Experimentation and Results

4.1. Environment and Configuration

The present study inherits the technical framework defined by the reference work in Marín
et al. (2020). Consequently, the GrC model is simulated with the neural simulation tool
NEST (Plesser et al., 2015), in its version 2.14.0, and using the 4th-order Runge-Kutta-
Fehlberg solver with adaptive step-size to integrate the differential equations. The cost
function, known as FF4 in the reference work as introduced, is implemented in Python
(version 2.7.12) and linked to the NEST simulator. The simulation environment uses a
common and fixed random-generation seed to define a stable framework and homogenize
the evaluations. In this context, the GA method by Marín et al. (2020) was also imple-
mented in Python 2.7.12 using the standard components provided by the DEAP library
(Kim and Yoo, 2019).

Marín et al. configured their GA method to work with a population of 1000 individ-
uals for 50 generations and selection tournaments of size 3. They adjusted the crossover,
mutation, and per-component mutation probabilities to 60%, 10%, and 15%, respectively.
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Table 2
Varied parameters for each population-based method and computational cost.

Computational cost (f.e.)

Method Parameters 15k 22.5k 30k 60k

GA Population 1500 1500 1000 1000
Cycles 16 25 50 100

MemeGA Population 500 500 300 300
Local f.e. 10 12 20 35
Cycles 20 26 40 50

DE Population 250 250 200 150
Cycles 60 90 150 400

TLBO Population 250 250 200 150
Cycles 30 45 75 200

Approximately, this configuration results in 30 000 evaluations of the objective function
(f.e.) and also defines a general reference in computational effort. This aspect is espe-
cially relevant since the development and execution platforms differ from the original
work. Namely, the four new optimizers compared (MemeGA, DE, TLBO, and MSASS)
run in MATLAB 2018b after having wrapped the objective function of Marín et al. to be
callable from it. The experimentation machine features an Intel Core i7-4790 processor
with 4 cores and 32 GB of RAM.

The comparison takes into account four different computational costs in terms of the
reference results: 50%, 75%, 100%, and 200% of the function evaluations consumed by
GA, i.e. 15 000, 22 500, 30 000, and 60 000, respectively. Nevertheless, before launching
the final experiments, the population-based optimizers have been tested under different
preliminary configurations to find their most robust set of parameters. After having ad-
justed them, the focus was moved to those parameters directly affecting the overall com-
putational cost, i.e. function evaluations. In practical terms, those are limited to the pop-
ulation sizes and the number of cycles for DE and TLBO. Similarly, they are the only
parameters of the reference method, GA, that have been ultimately re-defined to encom-
pass the new execution cases. However, for its memetic version, MemeGA, the number
of objective function evaluations for each independent local search (local f.e.) has also
been varied with the computational cost. In contrast to them, MSASS is directly config-
ured in terms of function evaluations. Its local search component has kept the constant
configuration explained below.

Table 2 shows the previous information for each population-based optimizer and com-
putational cost. Concerning the population sizes, the general paradigm followed opted for
spawning larger populations with the lower computational costs to increase and speed up
the exploration. More precisely, when the computational cost is below 100% of the refer-
ence method, the population is larger to accelerate the identification of promising regions
in the search space and to compensate for the impossibility of allowing the optimizer to
run more cycles. Numerically, the population sizes of GA remain in the range of the ref-
erence paper for the most demanding cases and get an increment of 50% for the others.
Those of MemeGA come from GA but are approximately divided by 3 to allow for the
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function evaluations of its independent instances of SASS, which grow from 10 to 35 for
the 60k configuration. The population sizes of DE are in the range of multiplying by ten
the number of variables, as suggested by the authors, and doubled to maximize diversity.
TLBO successfully shares the same strategy.

Regarding the number of cycles, it is adapted from the corresponding population size
to achieve the desired computational effort. GA has statistical components, but its approx-
imate number of function calls is 60% of the population size each cycle. MemeGA keeps
the crossover and mutation probabilities of GA and redefines the latter as the percentage
of individuals to be locally improved. Hence, it approximately executes 60% of the pop-
ulation size plus 10% of the referred value multiplied by the number of local evaluations
each cycle. DE consumes as many f.e. as individuals per cycle, and TLBO takes twice.
The cost of evaluating the initial populations is neglected.

Concerning the rest of the parameters that have been fixed, the internal SASS com-
ponent of MemeGA considers Scnt = 5, Fcnt = 3, ex = 2.0, and c = 0.5 with
σ ∈ {1e−5, 0.25}. This is mainly the configuration recommended by Solis and Wets
(1981) with the only exception of the upper bound of sigma being 0.25 instead of 1. It
is because preliminary experimentation revealed that when allowing few function evalu-
ations, most individuals were directly moved to the bounds by big perturbations without
the possibility to improve. Thus, the smaller upper bound of σ allows for a better local
exploration within MemeGA. However, for MSASS, all the parameters of SASS coin-
cide with the recommended values because its execution approach does not have to share
resources. That said, every instance of SASS will be stopped after 50 non-improving or
failed iterations to save function evaluations for later independent starts. Regarding DE,
after preliminary experimentation, it has been configured to use ‘rand’ selection, a single
difference vector, and per-generation dither. Notice that the latter aspect avoids adjusting
the F parameter of the optimizer and takes into account its potential convergence advan-
tages. Finally, the crossover rate has been fixed to 0.8, which is in the general-purpose
range and between the values used in the extension proposed in Cabrera et al. (2011).

4.2. Numerical Results

Table 3 contains the results achieved by each method. There is a column for every opti-
mizer, and each one consists of groups of cells that cover the different scenarios of com-
putational cost. The algorithms have been independently launched 20 times for each case
considering their stochastic nature, i.e. their results might vary even for the same problem
instance and configuration. The referred table includes the average (ave.) and standard
deviation (STD) of each case. Since the problem addressed is of minimization, the lower
the values are, the better result they represent. The best average of each computational
cost is in bold font. Notice that the results of GA and 30 000 f.e. (i.e. 100%) combine the
five ones obtained by Marín et al. (2020) plus the remaining executions to account for
20 cases in total. Finally, to orientate the readers about the real computational cost, it is
interesting to mention that completing each cell of 15 000 f.e. approximately takes 9 hours
in the experimentation environment and scales accordingly.
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Table 3
Objective function values achieved for each compared optimizer.

Effort (f.e.) GA MemeGA DE TLBO MSASS

15 000 (50%) Ave.: 115.38 Ave.: 113.51 Ave.: 115.78 Ave.: 105.76 Ave.: 106.88
STD: 4.19 STD: 10.83 STD: 7.38 STD: 5.90 STD: 4.50

22 500 (75%) Ave.: 110.32 Ave.: 111.46 Ave.: 112.18 Ave.: 104.61 Ave.: 104.71
STD: 5.98 STD: 8.03 STD: 5.96 STD: 7.09 STD: 5.29

30 000 (100%) Ave.: 108.70 Ave.: 103.45 Ave.: 107.98 Ave.: 98.63 Ave.: 101.20
STD: 6.59 STD: 4.47 STD: 4.74 STD: 5.97 STD: 3.52

60 000 (200%) Ave.: 104.17 Ave.: 100.06 Ave.: 99.44 Ave.: 97.67 Ave.: 100.52
STD: 6.70 STD: 5.60 STD: 4.08 STD: 3.37 STD: 3.04

4.3. Discussion

From the results in Table 3, it is possible to make several overall appreciations. Firstly,
none of the optimizers stably converges to a single global solution even after doubling the
computational effort allowed in the reference paper. This aspect indicates that the search
space is hard to explore and features multiple sub-optimal points. For this reason, ensuring
stable and global convergence might not be feasible in a reasonable amount of time. Fortu-
nately, it is not a requirement in this context as long as the found configurations make the
simulated neurons behave as expected. Secondly, all the optimizers tend to improve the
average quality of their results when the computational cost increases, but TLBO always
achieves the best average quality. It is also the method that has found the best individual
solution known so far, with a value of 87.45. Thirdly and last, the reduction in standard
deviations is not as regular as that of the averages, but for most methods, the standard de-
viation of the results after 60 000 f.e. is approximately half of that observed for 15 000 f.e.
The only exception is the reference optimizer, GA, whose STD was better for the lightest
configuration than for the heaviest. Hence, in general, the probability of obtaining particu-
larly divergent results in quality is reduced when the optimizers are provided with enough
computational budget.

As previously commented, all the methods provide better average results after increas-
ing the computational budget, but they effectively evolve at different rates. Certainly, the
average quality achieved by a certain optimizer with a particular computational cost turns
out to be nearly equivalent to that of another one. Nevertheless, some of the algorithms re-
quire more computational effort to be at the same level as others. For instance, the average
of GA for 60 000 f.e. is very similar to those of MSASS and TLBO for 22 500 f.e. In fact,
between 15 000 and 30 000 f.e., MSASS and TLBO are a step beyond the rest. Moreover,
not all the methods ultimately achieve the same degree of quality. More specifically, for
60 000 f.e., MemeGA, DE and MSASS perform similarly, but GA is worse than them,
and TLBO remains numerically ahead. Thus, according to the computational cost, some
of the methods stand out from the rest. TLBO and MSASS do it positively with the best
averages, and GA does it negatively considering the two heaviest configurations. Regard-
ing MemeGA and DE, the former starts to outperform the reference method with 30 000
f.e., and the latter does it after doubling this value.
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After the preliminary analysis, it is necessary to test whether the methods exhibit sta-
tistically significant differences considering the impact of uncertainty. For this reason, the
individual results have been studied according to the Kruskal-Wallis test (Kruskal and
Wallis, 1952; Mathworks, 2021), which is a non-parametric method for testing whether
the samples come from the same distribution. By proceeding this way, it is possible to as-
sess if the results registered for each optimizer and cost seem to significantly differ from
each other with reduced datasets and without making distribution assumptions. The over-
all significance of the tests is 0.05, i.e. the corresponding confidence level is 95%.

Observing in depth the results in Table 3 for the lightest computational cost, it seems
that there are two groups. Specifically, TLBO and MSASS exhibit the best performance
with close values between them, while GA, MemeGA, and DE show worse averages (and
also numerically similar between them). According to the Kruskal-Wallis test, there is no
significant statistical difference within each group either. Thus, for 15 000 f.e., TLBO and
MSASS return indistinguishable results within a significance of 0.05. In other words, for
half of the computational budget of the reference work, TLBO and MSASS are equiva-
lent according to the results achieved. Moreover, both perform better than the rest with a
statistically significant difference, including the reference method, GA. Analogously, the
performances of GA, MemeGA, and DE are equivalent in this context, so there is no more
expected difference than the effect of uncertainty between the three. Additionally, the fact
that the memetic variant of GA, MemeGA, does not significantly outperform it can be
attributed to the lack of computational budget to let local search be effective.

For 22 500 f.e., the previous situation persists: TLBO and MSASS define the group
of the best-performing optimizers, without significant difference between using one or
the other. GA, MemeGA, and DE remain the worst-performing methods without practical
difference between them. However, for 30 000 f.e., the situation changes: MemeGA moves
from the group of GA and DE to that of TLBO and MSASS, which feature the best average.
At this point, the methods achieving the worst results are GA and DE, which keep being
statistically indistinguishable. Those with better performance are now TLBO, MSASS,
and MemeGA. Among them, TLBO and MSASS keep being statistically indistinguishable
within a significance of 0.05, but the same occurs between MemeGA and MSASS. Finally,
the previous trend is confirmed with 60 000 f.e: another method, DE, separates from the
reference one, GA, and outperforms it. Therefore, GA persists as the only member of
worse-performing methods in the end, while MemeGA, DE, TLBO, and MSASS become
statistically indistinguishable between them and achieve better results than the reference
method.

Based on the previous analysis, TLBO and MSASS are the best choices for 50 and
75% of the function evaluations allowed in the reference paper. For the same computa-
tional budget considered by Marín et al. (2020), the performance of MemeGA reaches
the level of those two referred methods, which remain ahead. Finally, with the highest
computational cost, MemeGA, DE, TLBO, and MSASS significantly outperform the ref-
erence method, and there is no meaningful difference between the four. Thus, the reference
method, GA, is always outperformed by at least TLBO and MSASS. MemeGA and DE
also tend to separate from it to join the other two at 30 000 and 60 000 f.e., respectively.
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Additionally, for the sake of completeness, the significance of the difference between
the results of each method has also been systematically assessed with the Kruskal-Wallis
test under the previous significance level. According to the study, there is no statistically
significant difference between the results of GA after 22 500 and 30 000 f.e. Hence, it
seems possible to reduce the computational effort in the reference work by 25% without
expecting worse results for any cause apart from stochasticity. TLBO, MemeGA and DE
experience the same phenomenon, but they do between 15 000 and 22 500 f.e, while the
performance of the last two is still similar to that of GA. Finally, MSASS stagnates between
30 000 and 60 000 f.e., which is well aligned with its conceptual simplicity and lack of
sophisticated components to globally converge.

4.4. Insight into the Best Solution

To conclude this section, the best result found will be analysed with further details in
Fig. 2. The best-fitted neuron model according to all the features (with the lowest score)
is an individual obtained by TLBO featuring a quality of 87.45 (blue lines). The neuron
model from the reference work (GA optimizer) (Marín et al., 2020) with a score of 104.24
is also compared (orange lines). Finally, the in vitro data used to define the fitness function
are also represented (black dots) (D’Angelo et al., 2001; Masoli et al., 2017).

The selected neuron model has successfully captured the well-demonstrated features
of the intrinsic excitability of cerebellar GrCs, i.e. repetitive spike discharge in response
to injected currents (implemented as the mean frequency), latency to the first spike upon
current injection (implemented as the time to the first spike), and spiking resonance in
the theta-range (implemented as the average burst frequencies in response to sinusoidal
stimulations). The neuron model resonates in the theta frequency band as expected, i.e.
8–12 Hz (Fig. 2(A)). The model practically reproduces identical resonance curves as the
model of reference (GA model) (Marín et al., 2020). These resonance curves are the graph-
ical representation of doublets, triplets, or longer bursts of spikes generated when stim-
ulated by just-threshold sinusoidal stimulation at different frequencies (Fig. 2(B)). The
main behaviour of biological GrCs is the increase of spike frequency when the latency to
the first spike decreases as current injections increase. A sample of the neuron behaviour
from which these features are calculated is shown in Fig. 2(E). The repetitive spike dis-
charge of the TLBO model is similar to that of the model of reference and in accordance
with the experimental measurements in real cells (Fig. 2(C)). The real improvement ob-
tained by the neuron model of the proposed optimizer lies in the first-spike latency feature.
The model from the reference work exhibited longer latencies than those experimentally
reported, mainly with low stimulation currents (Fig. 2(D)). However, the TLBO model
achieves an adjustment in its score of 7.95 ms compared to the 34.95 ms-error obtained
by the GA model, both with respect to the in vitro data. Thus, the TLBO optimizer proves
not only to be effective in fitting the model parameters to diverse spiking features, but
also to improve both the quantitative and qualitative predictions of these supra-threshold
characteristics against the methodology of reference (GA).
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Fig. 2. Spiking properties predicted by the best-fitted cerebellar granule cell (GrC) model obtained by TLBO
optimizer. Simulated features and electrophysiological traces of the best solution from TLBO (blue) and com-
pared to the neuron model from the reference work (orange) and the target in vitro recordings used in the fitness
function (black dots). A) Spiking resonance curves of the models computed as average burst frequencies in re-
sponse to sinusoidal stimulation of 6 pA (left) and 8 pA (right) with increasing frequencies (in steps of 0.5 Hz).
B) Membrane potential evolution of the TLBO model generates spike bursts in response to sinusoidal current
injections with offset of 10 pA and amplitude of 6 pA. This is shown after 2 s of stimulation (stabilization).
C) Repetitive spike discharge (intensity-frequency curves) of the models computed as the mean frequency in
response to step-currents of 1 s. D) Latency to the first spike in response to step-currents of 1 s. E) Membrane
potential traces of the TLBO model in response to step-current injections of 1 s with various amplitudes.

5. Conclusions and Future Work

This article has studied the optimization component of a recent methodology for realistic
and efficient neuron modelling. The referred method focuses on single-neuron process-
ing, relies on the use of the adaptive-exponential integrate-and-fire (AdEx) model, and
has been applied to cerebellar granule cells. It requires fitting its parameters to mimic
experimental recordings, which can be defined as an optimization problem of ten vari-
ables. The original paper implemented a traditional genetic algorithm (GA) to address
the resulting problem. This work has compared that optimizer to four alternatives: an ad-
hoc memetic version of the referred genetic algorithm (MemeGA), Differential Evolution
(DE), Teaching-Learning-Based Optimization (TLBO), and a multi-start method built on
the same local optimizer used for MemeGA (MSASS).
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All of the methods are stochastic heuristic algorithms based on solid principles that
exhibit high success rates in different problems, which is why they have been selected. The
comparison has been performed in terms of the context defined by the reference paper. It
has considered four computational budgets for the problem resolution: 50, 75, 100, and
200% of that invested in the referred work. The effect of stochasticity at optimization has
been considered by making 20 independent executions for each method and computational
budget. Moreover, the assessment has not been limited to comparing their average quality.
It has been complemented by studying whether the different sets of results significantly
differ according to the Kruskal-Wallis test.

The original hypothesis for this work was that the optimization engine defined for the
referred method could be improved, and it has been confirmed. The reference optimizer
is outperformed by some of the candidates in all the scenarios, while the others equal it at
least. Moreover, they tend to positively differentiate from GA as the computational budget
increases. Namely, either TLBO or MSASS is equally the best choice for 15 000 and 22 500
function evaluations. Once the computational budget is the same as in the reference work,
i.e. 30 000 function evaluations, MemeGA joins TLBO and MSASS. Before that point,
there were no enough function evaluations to fully exploit the theoretical advantage of
using a dedicated local search component over its original version. Then, no unambiguous
evidence support one of them over the other two, but the three outperform GA and DE
in that scenario. Ultimately, with 60 000 f.e., DE also achieves better results than GA and
merges itself with TLBO, MSASS and MemeGA.

The real benefit of increasing the computational cost has also been separately stud-
ied. According to the analysis performed, the results achieved by the reference method do
not significantly vary between 22 500 and 30 000 function evaluations, so the computa-
tional cost of just applying GA can be reduced by 25% without expecting a reduction in
its performance. Regarding MemeGA, DE, and TLBO, they experience the same situation
between 15 000 and 22 500 function evaluations. Similarly, the computational effort if us-
ing any of them could be reduced by 25% without executing more than 15 000 evaluations
(logically, unless the budget can reach 30 000). Concerning MSASS, this phenomenon oc-
curs between 30 000 and 60 000 evaluations. In this situation, 50% of the computing time
could be saved by not doubling the budget for this method.

Additionally, the best configuration known so far has been found at experimentation.
TLBO is the method that achieved it, and the resulting model features higher temporal ac-
curacy of the first spike than that of the reference paper. This aspect is key for the reproduc-
tion of the relevant properties that could play a role in neuronal information transmission.
This finding supports the relevance of using an effective and efficient optimization engine
in the referred methodology. The gain in biological realism in simple neuron models is
expected to allow the future simulation of networks compounded of thousands of these
neurons to better mimic the biology. Obtaining more realistic yet efficient neuron models
also allows research at levels in which in vitro or in vivo experimental biology is limited.
Thus, simulations of sufficiently realistic neuronal network models can become valid to
shed light on the functional roles of certain neuronal characteristics or on the interactions
that may have various mechanisms among each other.
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In future work, the existence of multiple sub-optimal solutions will be further studied.
For that purpose, the aim is to use a state-of-the-art multi-modal optimization algorithm
that can keep track of the different regions throughout its execution. That study might
identify patterns that allow reducing the search space proposed in the reference work.
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This article extends a recent methodological workflow for creating realistic and
computationally efficient neuron models whilst capturing essential aspects of single-
neuron dynamics. We overcome the intrinsic limitations of the extant optimization
methods by proposing an alternative optimization component based on multimodal
algorithms. This approach can natively explore a diverse population of neuron model
configurations. In contrast to methods that focus on a single global optimum, the
multimodal method allows directly obtaining a set of promising solutions for a single
but complex multi-feature objective function. The final sparse population of candidate
solutions has to be analyzed and evaluated according to the biological plausibility and
their objective to the target features by the expert. In order to illustrate the value of
this approach, we base our proposal on the optimization of cerebellar granule cell
(GrC) models that replicate the essential properties of the biological cell. Our results
show the emerging variability of plausible sets of values that this type of neuron can
adopt underlying complex spiking characteristics. Also, the set of selected cerebellar
GrC models captured spiking dynamics closer to the reference model than the single
model obtained with off-the-shelf parameter optimization algorithms used in our previous
article. The method hereby proposed represents a valuable strategy for adjusting a varied
population of realistic and simplified neuron models. It can be applied to other kinds of
neuron models and biological contexts.

Keywords: granule cell, cerebellum, neuron model, optimization, adaptive exponential integrate-and-fire,
multimodal evolutionary algorithm

Abbreviations: AdEx, Adaptive exponential integrate-and-fire; EA, Evolutionary algorithm; GLIF, Generalized leaky
integrate-and-fire; GA, Genetic algorithm; GoC, Golgi cell; GrC, Granule cell; HH, Hodgkin-Huxley; PSO, Particle swarm
optimization; I-F, Intensity-frequency.

Frontiers in Neuroinformatics | www.frontiersin.org 1 June 2021 | Volume 15 | Article 663797



Marín et al. Multimodal Optimization of Neuron Models

INTRODUCTION

Large-scale neural network simulations composed of thousands
or millions of neurons are useful for better understanding
brain information processing primitives. Simplified single-
neuron models of low computational cost and based on a few
parameters have been proposed to reproduce neuronal firing
patterns to encode and decode the information contained
in electrophysiological recordings (Izhikevich, 2004; Shan
et al., 2017; Marín et al., 2020). These models are required
to meet efficiency and biological realism for hypothesizing
the functional impact of relevant neuron properties within
large-scale simulations. Since most simplified models (e.g.,
the integrate-and-fire neuron model family) contain abstract
parameters that prevent direct adjustment with the biological
counterpart biophysical features, optimization algorithms
represent an attractive approach for precisely setting the
parameters in this kind of neuron models (Druckmann et al.,
2007; Jolivet et al., 2008; Friedrich et al., 2014; Pozzorini et al.,
2015). However, accurately fitting their parameters to reproduce
biological data can be considered a challenging optimization
problem that still remains partially unsolved.

The cerebellum is a major center of the nervous system
involved in fine motor control, somatosensory processing, and
many other non-motor tasks (Schmahmann, 2019). One of
the cerebellar neuron types, the granule cells (GrCs) are the
most abundant neurons in the human brain (Lange, 1975;
Williams and Herrup, 1988). The GrCs are thought to regulate
the information transmission through the main afferent system
of the cerebellum (Jörntell and Ekerot, 2006). Experimental
recordings have characterized two of their main firing features,
such as regular repetitive firing and latency to the first spike
under injected step currents (D’Angelo et al., 1995, 1998,
2001; Masoli et al., 2017). Also, previous findings suggest
intrinsic spiking resonance (as enhanced bursting activity during
low-frequency sinusoidal current injections) preferentially in the
theta-frequency band (around 5–12 Hz in vitro recordings of
cerebellar GrCs in rodents; D’Angelo et al., 2001). This complex
behavior has been proposed to strengthen the transmission of
information in the cerebellar input layer (D’Angelo et al., 2001,
2009; Gandolfi et al., 2013). The definition of cerebellar GrC
models that replicate these complex patterns represents an initial
step towards understanding the functional role of resonance in
information processing and the involvement of the GrCs in the
synchronization and learning of the cerebellum.

The relevance of heterogeneity in the population of neurons
of the same type with variances in their properties has
been highlighted in computational experimentation (Lengler
et al., 2013; Migliore et al., 2018). However, the benefits
of high variance in terms of biodiversity of neurons in the
signal processing of the brain remain largely unexplored.
The variances in the neuron properties were demonstrated to
enhance the speed, responsiveness and robustness of the spiking
neuron networks. Thus, the intrinsic variability of neurons
in the brain is proposed to crucially change the network
dynamics and could have a role in information processing. The
generation of heterogeneous populations of spiking neurons

whose properties are closely matched with biological data is
of utmost necessity as a first-step in the demonstration of this
novel assumption.

As the complexity of neuron models and the available
computational power have increased, the use of different
optimization algorithms for tuning this kind of simple models
has also grown (Van Geit et al., 2008). Consequently, there
have been used optimizers for tuning the parameters of
computationally efficient neuron models and reproducing
certain biological behaviors in previous works. Some authors opt
for algorithms with a solid mathematical component, such as
the Sequential Quadratic Programming (SQP) method used to
tune the modified generalized leaky integrate-and-fire (E-GLIF)
model of a cerebellar Golgi cell (GoC; Geminiani et al., 2018).
Other examples are the Downhill simplex method and L-
BFGS-B, which are included in the open-source optimization
framework ‘‘Optimizer’’ (Friedrich et al., 2014). However,
the use of optimizers relying on randomness and nature-
inspired principles with generic and minimal mathematical
components (Lindfield and Penny, 2017) is also very popular
among authors (Van Geit et al., 2008). For instance, the
referred ‘‘Optimizer’’ framework offers Evolutionary algorithms
(EAs) and Simulated Annealing too (Friedrich et al., 2014).
The ‘‘BluePyOpt’ framework also relies on multi-objective EAs
such as Non-dominated Sorting Genetic Algorithm-II (NSGA-
II), Multi-Objective Covariance Matrix Adaptation Evolution
Strategy (MO-CMA-ES), and IBEA (Van Geit et al., 2016).
Similarly, Nair et al. (2015) fits the AdEx model of a cerebellar
GrC using Particle Swarm Optimization (PSO), and Masoli et al.
(2017) opts for the IBEA Genetic Algorithm (GA) to tune the
detailed Hodgkin-Huxley (HH) model of a cerebellar GrC with
the maximum ionic conductances.

Our previous work (Marín et al., 2020) proposed a tuning
procedure based on traditional GAs (EAs based on basic genetic
operators, such as crossover and mutation) for creating an
adaptive exponential integrate-and-fire (AdEx) model of the
cerebellar GrC. We proposed a complex objective function
defined by the inherent properties mentioned above and
measured as the accumulated distance between the in vitro
recordings and the simulated responses of the neuron model that
is being tuned. Finally, we selected and proposed a GrC model (a
specific set of parameters of an AdEx generic neuron model) as
the result of the process.

According to the previous literature review and independently
of their class, the most used optimization strategies are either
multi-objective (which by definition return a set of candidate
solutions considering several criteria concurrently) or single-
objective yet aimed at converging to a single optimal solution.
However, the application of multimodal optimizers (Sareni and
Krähenbühl, 1998; Jelasity et al., 2001; Shir et al., 2010) does
not seem to be popular even though it has been found that it
is possible to find real neurons and neuron models with very
similar behavior but different parameters (Van Geit et al., 2008).
Multi-Objective algorithms require working in parallel with
different objective functions. They can find large sets (Pareto
fronts) of equally valuable configurations at the expense of higher
conceptual complexity than single-objective methods. On the
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contrary, standard single-objective methods work in a simpler
background and aim at converging to a single solution, but this
behavior can be problematic since evaluations rely onmodels and
some of them might not be as valid as estimated. In this context,
the use of a multimodal optimizer arises as a mid-term solution
between the algorithms designed for converging to a single
solution and those considering different objective functions and
returning a set of equally valuable options for an expert to
decide. More precisely, a multimodal algorithm will focus on
a single objective function, but it will also identify different
equivalent solutions that should be ultimately filtered by an
expert on the neuron model. Moreover, taking into account
potential problems such as noise in the experimental data, low
model accuracy, and degenerate cases of the selected objective
function, experts might prefer some promising solutions over
those theoretically better (strictly in terms of the referred
objective function).

The present workflow aims to overcome the intrinsic
limitations of the current optimization approaches by identifying
a sparse population of different optimal solutions in the search
space for a single objective function integrating various features.
In this regard, this article extends the methodology presented
in Marín et al. (2020) proposing an alternative optimization
component based on a multimodal EA for building realistic and
computationally efficient neuron models. We base our proposal
on the same complex parametric optimization problem as in
Marín et al. (2020): optimizing cerebellar GrC models that
replicate the essential firing properties of the biological cell,
which are essentially the decrease of latency to the first spike
and spike frequency increase when the injected step-current
intensity is raised [intensity-frequency (I-F) curves], and spiking
resonance at the theta-frequency band during sinusoidal current
injections. The final population of candidate solutions has to be
analyzed and evaluated according to the biological plausibility
and their objective to the target features. In order to illustrate
the value of this approach, we explore the resulting diversity of
the population of cerebellar GrC models and their functional
spiking dynamics. Our results show the variability of plausible
sets of values that this type of neuron can adopt underlying these
complex characteristics.

The rest of the article is structured as follows:
‘‘Methodological Workflow’’ section describes the
methodological workflow proposed in this article. ‘‘Materials and
Methods’’ section explains the neuron model whose parameters
must be tuned, the corresponding optimization problem, and
the multimodal optimizer. ‘‘Results’’ section presents the results
achieved and the spiking dynamics simulated by the selected
neuron configurations. Finally, ‘‘Discussion’’ section contains
the conclusions and states some possible future work lines.

METHODOLOGICAL WORKFLOW

In this section, we present the structure of the proposed
optimization workflow. Figure 1 briefly depicts the workflow
chart of the methodology. The course of action runs
as follows:

Data Preparation
Firstly, the user has to select the particular firing properties
of interest of the cell under study extracted from in vitro or
in vivo electrophysiological recordings under specific stimulation
protocols. These features (also named objectives) and their
protocols define the target function that will drive the selection
during the optimization procedure.

Optimization Algorithm
The objective or fitness function, the optimization algorithm
parameters and the neuron model parameters (all described
in the sections below) correspond to the initial set-up of the
optimization architecture. The multimodal algorithm performs
an exploration of the parameter space using a simplified (point-
neuron) model template. The neuron models with specific sets
of parameters which are obtained during the search (also named
candidate solutions) are evaluated according to the objective
function. Those model configurations with the lowest total
score and different enough from the rest are selected in each
iteration and passed to the next optimization iterations during
the optimization process. The output of this stage is a sparse
population of candidate solutions that correspond to different
sets of parameters that stand out in their zone of the search space.

Selection and Interpretation of the
Candidate Solutions
Once the algorithm has selected different promising model
configurations, the user will validate the most suitable neurons
among them. This selection runs in accordance with those
neuron models which show biological plausibility of their
parameters and reproduce with high realism the firing behavior
of the real neuron.

MATERIALS AND METHODS

In order to demonstrate the potential of the optimization
workflow, we applied this methodology to the case of the
cerebellar granule cells (GrCs) as a proof-of-concept. This
approach allows us to validate the sparse population of candidate
solutions obtained and according to the features defined in
the existing literature. This section starts by describing the
computational neuronmodel, defining the optimization problem
to solve and the experimental pieces of single-cell recordings. It
ends with the technical details for simulation reproducibility and
data analysis.

Neuron Model Structure
Since GrCs have a compact electrotonic structure (Silver
et al., 1992; D’Angelo et al., 1995; Delvendahl et al., 2015),
single-compartment modeling is appropriate. One of the
widely used computationally-efficient neuron models is the
adaptive exponential integrate-and-fire (AdEx) model (Brette
and Gerstner, 2005), but other types of point-neuron models
could be considered in this first stage of the workflow (Figure 1).
The AdExmodel is capable of reproducing a diversity of neuronal
dynamics customizing a few parameters (Naud et al., 2008). Its
realism and great computational efficiency have been supported
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FIGURE 1 | Stages of the optimization framework. At the first stage, the experimental recordings of the biological cells are obtained and the characteristics of
interest are selected and calculated. Then, according to these data, a fitness (or objective) function is built and the parameters of the algorithm and the neuron model
are selected. At the second stage, the execution of the multimodal optimizer takes place. The optimization process consists in generating a number of candidates
(i.e., sets of parameter values) which are simulated and evaluated according to the objective function. Finally, as the output of this stage, a population of different
candidate solutions is returned in a single execution of the algorithm. These selected candidates are illustrative of some local optima in the search space of the
objective function. At this point, the expert interprets if the candidate solutions are as numerically valid as their scores estimate. Quantitatively and qualitatively, the
best-ranked candidate solutions are selected as the neuron models proposed.

by several comparisons with detailed models and experimental
recordings (Brette and Gerstner, 2005; Jolivet et al., 2008; Naud
et al., 2008; Nair et al., 2015; Marín et al., 2020). Accurately
fitting the model with respect to experimental measurements is
not straightforward. The adaptation state variable of the AdEx
model allows good fitness with different firing modes (e.g.,
regular discharge, bursting, delayed spiking, etc.) depending
on specific parameters values (Jolivet et al., 2008; Naud et al.,
2008). However, its nonlinearity makes the optimization of its
parameters, challenging.

The AdEx model consists of only two coupled differential
equations and a reset condition.

Cm
dV
dt
= −gL (V − EL)+ gL1T exp

(
V − VT

1T

)
+ I(t)− w (1)

τw
dw
dt
= a (V − EL)− w (2)

if V > Vpeak then V ← Vr and w← w+ b (3)

Equation (1) describes the evolution of the first state variable,
namely membrane potential (V), during current injection (I(t)).
Equation (2) describes the evolution of the second state variable,
namely adaptation current (w). When the current I(t) drives
V beyond the threshold potential (VT), then the exponential
term of the slope factor (∆T) in equation (1) dominates the

action potential until V reaches the reset threshold potential
(Vpeak). Then, the reset condition (3) determines that V is
instantaneously set to Vr and w is increased a fixed amount
named b. Both equations (1) and (2) contain 10 free parameters
that can be optimized in order to minimize an arbitrary
objective function (namely the difference of the obtained
neural model behavior with respect to a ‘‘desired behavior’’ for
instance, reproducing firing characteristics of cell recordings).
These parameters are: the total leak conductance (gL), the leak
reversal potential (EL) and the membrane capacitance (Cm) in
equation (1) that model the passive membrane mechanisms; the
parameters ∆T and VT in the exponential term of equation (1)
model the spike generation and shape; the time constant
parameter (τw), the subthreshold adaptation (a) and the spike-
triggered adaptation parameter (b) define the evolution of the
state variable w in equation (2); the parameters Vpeak and Vr that
drive the reset condition as mentioned above. These parameters
have been set within fixed ranges to constrain the exploring
process (Table 1). The membrane potential was initially set to the
same value as the leak reversal potential (Vinit = EL).

Model Context and Problem Definition
Selection of Features
In order to obtain a neuron model that replicates the behavior
of the cerebellar GrCs we have selected some features which
quantify some of the most characteristic firing properties
of this neuron type: (1) mean frequency through repetitive
firing discharge under direct current stimulation [equation (4)];
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TABLE 1 | Model parameter ranges established for the search space of the optimization process.

Parameters Min. value Max. value Parameters Min. value Max. value

Cm 0.1 pF 5.0 pF VT −60 mV −20 mV
1T 1 mV 1,000 mV a −1 nS 1 nS
EL −80 mV −40 mV b −1 pA 1 pA
V r −80 mV −40 mV gL 0.001 nS 10.0 nS
Vpeak −20 mV 20 mV τw 1 ms 1,000 ms

(2) latency to the first spike under direct current stimulation
[equation (5)]; and (3) burst frequency in response to different
sinusoidal current stimulation (stimulation with different
oscillation frequencies) [equation (6)]. These features will be
combined into a single objective or fitness function to be
considered by the selected multimodal evolutionary optimizer.

Parameter Optimization
The parameter optimization is carried out minimizing the fitness
function by weighting the difference of these quantified features
with a reference taken from real electrophysiological recordings.
Thus, the objective function is defined as the weighted sum
of the scores of the specific features (feature_score) related to
the spiking features, according to equations (4, 5 and 6). The
definition of the objective function that contains all these features
is extracted fromMarín et al. (2020).

feature_scoreMean frequency

=

∑n

i = 1

[
abs(MFsimi −MFexpi) · wMean frequency

]
(4)

feature_scoreFirst−spike latency

=

∑n

i = 1

[
abs

(
LATsimi − LATexpi

)
·wFirst−spike latency

]
(5)

feature_scoreBurst frequency

=

∑n

i = 1

[
abs(BFsimj − BFexpj) · wBurst frequency

·

(
std(BFsimj)+ 1

)]
(6)

The feature score (score function of each feature or objective)
is calculated as the absolute distance (abs) between the feature
values extracted from the in vitro electrophysiological recordings
(expi) and the feature values extracted from the simulated traces
from the neuron model (simi). This is multiplied by the weight
associated with each feature (wMean frequency, wFirst–spike latency
and wBurst frequency). The weights of the burst frequency
(wBurst frequency) and the mean frequency (wMean frequency) were
set to 1 as they both were measured in hertz (Hz) and
show values in comparable scales. The weight of the first-
spike latency (wFirst–spike latency) was weighted to 1,000 as it
was measured in seconds (s). Hence, the algorithm equally
weights 1 Hz-error at mean frequency feature, 1 ms-lag at first-
spike latency and 1 Hz-error at burst frequency. However, the
feature score can be modified (if enhancing the focus on a
particular feature with respect to the others) or extended if some
extra aspect is to be taken into consideration. For instance, a
penalization was used in the definition of the burst frequency

score (featurescore Burst frequency) to assure the stability of bursts [as
proposed in Marín et al. (2020); Equation (6)].

Feature Measurement
The experimental recordings of the repetitive discharge are the
mean frequency (defined as the number of spikes divided by
the stimulation time) during 1-s length step-current injections
of 10, 16 and 22 pA. The latency to the first spike is defined
as the time the neuron takes to elicit its first spike upon
current stimulation. Both features are extracted from in vitro
patch-clamp recordings performed from acute cerebellar slices
of a population of cerebellar GrCs (Masoli et al., 2017). The
spiking resonance in the theta-frequency range is a complex
behavior determined by the burst frequency [as the inverse of the
average inter-spike interval (ISI) of the output neuron] during
each stimulation cycle. Then, the average burst frequencies
are measured throughout 10 consecutive cycles of sinusoidal
stimulation. As it occurred in the in vitro recordings, we have
set the burst frequency to zero when one or no spike per cycle
has been obtained in the simulated neurons. The stimulation
protocol consists of sinusoidal current injections with 6-pA and
8-pA amplitudes, sustained by a 12-pA offset during 22.5 s. They
generate spike bursts in correspondence with the positive phase
of the stimulus (sinusoidal phase of 270◦). These features are
extracted from in vitro patch-clamp recordings performed from
acute cerebellar slices of a single cerebellar GrC (D’Angelo et al.,
2001). It is worth mentioning that since the number of cells
differ in both reference sources (the former from a population
of cells and the latter from a single cell), and for the sake
of equality, we selected the mean feature value of the mean
frequency and the first-spike latency as a target type of neuron.
On the other hand, the reference data points for the resonance
frequency used in the fitness function are based on a single
neuron measurement.

Optimization Method
As introduced, the problem stated in ‘‘Model Context and
Problem Definition’’ section has been addressed with a
multimodal optimizer, i.e., an optimization algorithm designed
to concurrently obtain multiple different global and local
solutions to a problem (Sareni and Krähenbühl, 1998; Shir et al.,
2010). It is the Universal Evolutionary Global Optimizer (UEGO)
proposed by Jelasity et al. (2001).

As can be deduced from its name, UEGO is an evolutionary
optimization algorithm (Lindfield and Penny, 2017), so
it works with a population of solutions and simulates
their Darwinian evolution to progressively achieve better
solutions. However, it belongs to the memetic category
of EAs (Moscato, 1989; Molina et al., 2011). This kind of
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method is characterized by promoting the autonomous
behavior of candidate solutions as self-evolving agents in
conjunction with the underlying evolutionary environment.
Thus, in practical terms, a memetic method combines
a generic evolutionary stage of global scope with a
replaceable local search component. UEGO meets this
requirement, which makes it highly adaptable to different
optimization problems (Ortigosa et al., 2007; Redondo, 2009;
Cruz et al., 2018).

The population of UEGO consists of different species, which
is a fundamental concept for this method. Species are not plain
candidate solutions as it occurs with standard GAs. Instead, every
species combines a feasible and ranked candidate solution with
an assigned radius around it in the search space. The radius is
defined as a Euclidean distance to study the separation between
different candidate solutions, i.e., to assess their similarity. Thus,
a species defines a (hyper)sphere in the search space, and it
is treated as an exploration window to center the independent
local search component. Figure 2A depicts a sample species for
a hypothetical optimization problem of two variables. As can
be seen, the species represents both a candidate solution and a
region in the search space on which the local search will focus.
Since the referred example assumes two variables, the species can
be easily visualized as circumferences. This is not the case for the

problem at hand because the search space has 10 dimensions,
i.e., the parameters to fit, and species will be hyperspheres in
a 10-dimensional Euclidean space. Nonetheless, the underlying
idea remains unaltered, and species will be generally depicted
as circumferences for practical reasons. Figure 2B shows the
structure of every species for the target problem and how UEGO
perceives it.

As an algorithm, UEGO focuses on managing a population of
different species, which defines its evolutionary part. It executes
the steps shown in Algorithm 1. They are summarized next
for the sake of self-completeness, but the interested reader is
referred to Jelasity et al. (2001) and Ortigosa et al. (2001) for
further details.

The algorithm takes the following parameters as input: (1) the
maximum number of species to keep in the population (M);
(2) themaximumnumber of evaluations of the objective function
(N); (3) the minimum radius to keep between different species
(r); and (4) the number of search levels or full cycles (l). After
preliminary experimentation, these parameters have been set to
M = 100,N = 10,000,000, r = 0.7, and l = 50 for the present study.
The maximum number of species and function evaluations agree
with the reference values proposed by Ortigosa et al. (2001), radii
below 0.7 resulted in too many almost-equivalent solutions in
this case, and the number of levels was progressively increased up

FIGURE 2 | Species in UEGO. (A) Species in the search space for a hypothetical bi-dimensional problem. The candidate solution is a feasible point, and it is linked
to a particular radius around it to define a region to center the search. Both define a circumference in a two-dimensional Euclidean space, but the concept can be
extended to any dimensions through hyperspheres. (B) Structure of a species for the problem at hand (on the left) and its conceptual meaning (on the right). As
shown on the left, in practical terms, a species consists of three parts: (1) a feasible point in the search space with a component for each optimization variable
(colored in orange); (2) the fitness of the referred point according to the objective function (colored in green); and (3) the radius linked to this species (colored in blue).
UEGO will use the referred information to build a hypersphere from every species, and they will be ultimately treated as exploration windows in the search space. This
aspect is shown on the right side of the figure using a plain circumference due to the impossibility of showing the corresponding hypersphere.
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to ensure that the search lasts enough, and the best-performing
solutions are competitive.

Having gathered the input, the first step of UEGO is the
initialization of its population. For this purpose, it randomly
selects a point in the search space, evaluates it, and assigns
the first radius to it. By definition, the radius of the first
species is equal to the diameter of the search space, which
is computed as the Euclidian distance between the lower and
upper bounds. Therefore, the region defined by the initial
species covers the whole search space, and no solution will be
unreachable. After that, the radii assigned to species at creation,
and hence the region that they cover, will decrease. They do
in geometrical progression with the number of levels until the
last one, which is linked to the minimum radius specified
by the user (see Figure 3A). This strategy of progressively
reducing the mobility at search is known as cooling in the
field of Optimization, and it is inspired by the process of
annealing metal (Lindfield and Penny, 2017). It promotes

exploration at the beginning to find the best zones of the search
space, avoids premature stagnation, and forces convergence at
the end.

The second step in Algorithm 1 shows the memetic nature
of UEGO. Namely, it consists of launching the local search
component. This stage, also seen in step 8, independently affects
every species in the population, but at this point there only
exists the initial one. As introduced, local search is treated as an
isolated component, and the method selected is briefly described
at the end of this section. It is only required to start at the
center of the species and find a better point in its region after
several movements. Theoretically, the local search algorithm is
limited by the region of the species, i.e., the radius linked to
its starting point. Thus, no single step made by the optimizer
in a given species can be larger than the radius. However,
every time that the local search component finds a better point
in the region, it becomes the new center of that species, so
they are countinously moving in the search space. Figure 3B

FIGURE 3 | Dynamics in UEGO. (A) Evolution of the radius length linked to the species created at every level or cycle. The radius of the first level, i.e., that assigned
to the initial species, is equal to the diameter of the search space. Subsequent radii decrease in geometrical progression until the last one, which corresponds to the
minimum radius defined by the user to consider different solutions. By proceeding this way, species of the first cycles have more mobility, which promotes
exploration of the search space, and those of the last levels have more exploitation, which helps convergence. (B) Movement of a species in a hypothetical
single-dimension search space after an iteration of the local search method. The whole species is moved after finding a better center. Notice that the new point falls
within the original region defined by the species, but its new position also moves the search focus. (C) Fusing species. On the left two overlapping species, A and B,
with radii Radius A and Radius B, respectively. On the right, the species A&B that results from their fusion. This new species keeps the largest radius of both,
i.e., Radius A, which aims to keep the regions to explore as broad as possible to avoid premature convergence. Additionally, take into account that since the center
of Species A&B is that of B, it can be concluded that Species B has a better, i.e., lower value of the cost function. Finally, notice how the new species has slightly
moved from the original zones, so it will be possible to explore a new zone of the search space.
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illustrates this concept. Aside from defining the initial point and
the maximum step size for the local search method, UEGO also
controls its computational budget, i.e., its number of function
evaluations. The details about how UEGO distributes the total
function evaluations allowed are out the scope of this work, but
they are covered in depth in Jelasity et al. (2001) and Ortigosa
et al. (2001). Regardless, the principle followed is to allow more
function evaluations for later search levels, when it should be
more interesting to explore the promising regions previously
found. Also, notice that the local search algorithm should try to
save function evaluations by early terminating when it finds itself
unable to locate a better solution, so not all the allowed function
evaluations might be consumed.

The two previous steps form the first level of search for
UEGO. For this reason, the loop in Step 3 counts from 2. Notice
that if the number of levels were set to 1 by the user, the
algorithm would be mainly equivalent to launching the local
search method from a random point. The result would hence
be the single species after being locally optimized. Nonetheless,
this situation is mostly theoretical. A standard configuration of
UEGO is expected to execute several levels of search or cycles.
Each of them consists of Steps 4–9.

Step 4 defines the computation of the radius that will be
assigned to any new species created at the current level. As
introduced, they decrease in geometrical progression. This step
also involves determining the number of function evaluations
that can be consumed for creating and locally optimizing species
in Steps 5 and 8, respectively. The budget for creation is always
three times the maximum number of species allowed, but that
of local optimization increases with the number of levels as
summarized above. See Jelasity et al. (2001) and Ortigosa et al.
(2001) for further information.

Step 5 is where UEGO tries to increase its population. It
first divides the creation budget among the existing species
to calculate how many points will be allowed to evaluate.
After that, within the region defined by every species, the
algorithm randomly takes the permitted number of candidate
solutions. Then, the points of every species are systematically
paired with each other, and their middle points are evaluated.
If the solution at any of the middle point is worse than
that at its extremes, both members of the pair define new
species. This is done under the assumption that they are on
different sub-areas in the search space. The radius assigned
to these new species will be the one that corresponds to the
current level, which should be lower than any previous one. By
proceeding this way, multiple new species will appear within
the limits of every existing one and focusing on smaller regions
to concentrate the search. Additionally, notice that UEGO will
update the center of the initial species if any of the candidate
points considered in their regions is a better solution, so they
can move.

Step 6 scans the current population to check if the center
of any pair of species is closer to each other than the radius
of the current level. The goal is to avoid spending too much
computing time separately exploring the same region. Species
that overlap according to this criterion are fused into a single one.
More specifically, the center of the resulting one is that which

represents a better solution. The radius will be the largest one
of them, which aims to keep the scope of search as broad as
possible to avoid premature convergence. Figure 3C depicts this
step assuming that species B is better than A, but it has a shorter
radius. Notice that this definition ensures that there will always
be a species whose radius covers the whole search space derived
from the initial one, so it is always possible to reach any point in
the search space.

Step 7 checks the length of the current population. If there
are more species than allowed by the user through parameter M,
those with the shortest radius are removed until the population
size is in the valid range again. The removal criterion is aligned
with the previous idea of maintaining species that allow escaping
from low-performing local optima. The last two steps are both
procedures already described. Namely, Step 8 will independently
launch the local search component from every existing species,
which will make them move around the search space. Step
9 rescans the population to identify and fuse any species that
overlap after having been moved. The UEGO algorithm ends
with step 11 by returning the surviving species. According to the
process described, they are expected to be different promising
solutions. The separation between them in the search space,
i.e., degree of difference, will be the minimum radius defined
by the user at least. Therefore, as intended, the users of this
method and framework (Figure 1) have several options to
study (final candidate selection) in case those solutions with the
best numerical fitness do not appropriately meet the qualitative
requirements that can be further analyzed in a subsequent stage.

Regarding the local search component previously referred
to, the SASS or Solis and Wets’ method (Solis and Wets, 1981;
Molina et al., 2011) has been used. It is a stochastic hill-climber
that starts at the center of the given species and randomly decides
a direction to move. The amplitude of every jump cannot exceed
the radius of the species, and it is scaled depending on the
number of positive (improving) and negative (non-improving)
movements. This optimizer has been selected because it does not
require any specific properties of the objective function. Besides,
it has already been successfully used within UEGO (Ortigosa
et al., 2007; Redondo, 2009). The configuration of this method
is the recommended one. Namely, movements are made by
adding a normally-distributed random perturbation vector with
a standard deviation between 1e-5 and 1, starting at the upper
bound and ultimately rescaled by the radius of the species. The
standard deviation is doubled after five consecutive successful
movements or halved after three consecutive failed ones. Notice
that the local search method will terminate after 32 consecutive
failed or discarded movements, no matter the remaining budget.

Data Analysis
Multidimensional Scaling
To further illustrate the multimodal distribution of the
different optimal solutions, we have applied the Classical
Multidimensional Scaling (MDS) method (using scikit-learn
Python library; Pedregosa et al., 2011). The distribution of the
parameter values of the solutions through n dimensions (in
our case, n = 10 parameters that define a neuron model, also
named candidate solution) is denoted as landscape. Using MDS,

Frontiers in Neuroinformatics | www.frontiersin.org 8 June 2021 | Volume 15 | Article 663797



Marín et al. Multimodal Optimization of Neuron Models

the differences among landscapes were visualized as distances
in the bi-dimensional plane. The input vector of distance to
the MDS is calculated as a simple Euclidean distance between
landscapes (as in other analysis works, such as in Rongala et al.,
2018). Given a distance dot matrix, this algorithm recovers a
representation of D-dimensional coordinates of data (in our
case, D = 2 dimensions). This method allows studying the
different landscapes chosen during the algorithm execution and
represents their values in a 10-dimensional space embedded in a
2D plot.

Algorithm 1.- UEGO Algorithm

Input: M, N, r, l //Max. species, max. evaluation, min. radius,
levels

1.- Initialize_List_Of_Species //Create the first species
2.- Optimize_Species //Launch the local search on it
3.- for i = 2 to l do: //Main loop (Steps 1 and 2 are define the first

level)
4.- Compute_Level_Config //Manage the use of function evaluations and

radii
5.- Create_Species //Create species in the zones of the exising

ones
6.- Fuse_Species //Avoid that species overlap each other at this

level
7.- Shorten_Species_List //Remove species if there are more than

allowed
8.- Optimize_Species //Launch the local search on every existing

species
9.- Fuse_Species //Avoid that species overlap each other at this

level
10.- end for
11.- Return_Surviving_Species //The remaining species become the set of

results

Technical Details for Reproducibility
Python (version 2.7.12) and MATLAB (version 2018b)
implementations were used to launch the second stage of
the workflow (the exploration processes of the multimodal
algorithm). The proposed pipeline allows simulating the
neuron models and calculating the features scores through
the Python-NEST environment (Python Software Foundation
Python 2.7.12, 2016; van Rossum, 1995) and NEST simulator
2.14.0 (Peyser et al., 2017) and evaluating and exploring different
candidate solutions in optimization cycles through Python-
MATLAB implementations. After considering 10 independent
executions with different seeds, UEGO executes 50,000 function
evaluations on average. The one selected for further analysis
in ‘‘Results’’ section used 47,951, which approximately results
in 32 h of run time in the execution platform. In the last
stage of the workflow, the reproduction and validation of
the resulting neuron models (candidate solutions) were
analyzed using Python-NEST scripts. The Figures were
generated using Matplotlib (version 2.2.5; Hunter, 2007;
Caswell et al., 2020) and Numpy (version 1.16.6; Harris et al.,
2020) libraries. The simulations were run with an Intel Core
i7–4790 processor with 4 cores and 32 Gb of RAM. The
source code and data are available in this public repository:
https://github.com/MilagrosMarin/Multimodal-optimization-
for-fitting-cerebellar-GrCs.

RESULTS

Analytical Results
The results achieved by the optimization stage consist of a
population of up to 100 candidate solutions, which is a user-given
parameter. More accurately, the multimodal optimizer tries to
find different yet promising parameter sets in the search space,
and it uses a minimum user-given separation radius for this
purpose (see the ‘‘Materials and Methods’’ section). For this
purpose, through the search, the optimizer manages a population
of feasible configurations that are distributed over the search
space, can produce new ones, move, and absorb others when they
are considered to represent the same parameter set. Thus, the
number of candidate solutions that ultimately survive as results
for further consideration by an expert might vary. Since the
optimizer is stochastic, its results might vary between different
executions, so it has been launched 10 times as mentioned in
‘‘Technical Details for Reproducibility’’ section. Supplementary
Figure 1 shows that the results are similar between executions in
terms of search space coverage and overall numerical quality. The
one selected for further analysis in this section resulted in a final
population of 25 different candidate solutions.

These candidate solutions are minimized to the target multi-
feature objective function and their scores are represented in
Figure 4. The candidate solutions show different combinations
of feature adjustments in order to reach the minimal total score,
which reveals a well-balanced definition of the multi-feature
objective function. Not unexpectedly, the spiking resonance
feature contributed the most to the score (pink bars in Figure 4;
as this is the feature with the highest number of in vitro reference
points). Although they were selected by their well-ranked
solutions, some of them (from 18 to 25) have low-performing
configurations for some of the considered properties (mostly for
the feature of latency to the first spike, green bars in Figure 4).

The different solutions in the search space expected to
be returned by the algorithm are visualized using the MDS
algorithm, evidencing the multimodality of the search space
(Figure 5A). The candidate solutions with the lowest scores
(under 250 units, which are the solutions from 1 to 12 and
in warmer reddish colors) correspond to different high-quality
solutions. They are sparsely located along the 2-dimensional
display (zoom of the most representative candidates, and colored
based on the total score of each candidate solution, in Figure 5A).
The parameter configurations that define each of these solutions
explored a variety of values from within their boundaries (e.g.,
Vreset, EL, τw), which means that the algorithm successfully went
over the parameter space (i.e., landscapes; Figure 5B).

Reproduction of Spiking Dynamics
In the section above, the candidate solutions of most interest
(from 1 to 12) showed quantitative fitting to the supra-threshold
characteristics defined in the multi-feature objective function
with minimized scores. In this section, the top-ranked solutions
are qualitatively analyzed regarding their accuracy in capturing
this intrinsic excitability of cerebellar GrCs, i.e., firing discharge
with amean frequency increased whereas latency to the first spike
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FIGURE 4 | Scores of the candidate solutions. The total scores obtained
from minimizing the features of the candidates according to the objective
function are represented in black dots joined together by a black line. These
total scores are unwrapped by the scores of each single feature (feature
scores) for every candidate solution and represented in stacked bars. The
feature calculations are explained in “Model Context and Problem Definition”
section. The feature of burst frequency (pink bar plots) has been divided
based on the sinusoidal stimulation amplitude of 6 pA or 8 pA (the standard
deviation has not been included in the stacked bar).

firing decreased under injected currents and spiking resonance in
the theta range under sinusoidal currents.

Although the top-ranked solutions achieved lower score
values, this fact might not imply reproducing the complex
firing dynamics of the neuron. The case of the spiking
resonance is an appropriate example of this possibility: although
the experimental points are suitably adjusted to the graphic
curve, the neuron responses are larger when the neuron
behavior is extrapolated to higher sinusoidal frequencies. That
is, as mentioned in ‘‘Feature Measurement’’ in ‘‘Materials
and Methods’’ section, the burst frequencies generated with
stimulation frequencies beyond 10 Hz fell to zero because the
in vitro measurements contained either one or no spikes. Since
there are no points of burst frequencies in higher frequencies in
the biological measurements, we have avoided including them in
the objective function.

The whole subset of interesting candidates (from 1 to 12)
reproduced the complex spiking behaviors within the limits
of our electrophysiological observations. The parameter values
obtained for the set of solutions are contained in Table 2.
Candidates 1–8 manage to reproduce all the three spiking
features mentioned above (Figure 6). The spiking resonance
curves (left plots in Figure 6) were successfully replicated
(with preferred frequencies around 6–20 Hz) by the whole
subset of candidates. The intensity-frequency (I-F) plots (middle

plots in Figure 6) were almost linear between 0 and 100 Hz
and the latencies to the first spike were also replicated (right
plots in Figure 6) as in the biological piece of evidence
(D’Angelo et al., 2001).

With respect to the qualitative adjustment of the best-ranked
solutions, the top-four candidates reproduce all the three spiking
behaviors. More specifically, candidate 2 reproduces the spiking
behaviors according to experimental registers of real cells
(Figure 6A). Other best-ranked candidates, such as 1, 3 and
4, also reproduce qualitatively these behaviors as the reference
reports, but with resonance curves (around 5–20 Hz, as seen
in left plots in Figure 6A) slightly shifted out of the concrete
theta band of in vitro cerebellar GrCs (around 6–12 Hz in
D’Angelo et al., 2001).

Regarding the quantitative comparison of these best-ranked
solutions (the distance of the feature values from the
experimental measurements defined in the integrated objective
function), candidate 2 obtained the highest score for the concrete
points of the mean frequency feature (yellow bar in the dashed
box in Figure 6A), but the lowest score for the first-spike
latency feature (green bar in the dashed box in Figure 6A). That
is, candidates 1, 3 and 4 obtained lower scores for the mean
frequency feature than candidate 2.

This fact together with the shifted resonant curves in higher
preferred frequencies may indicate an incompatibility of both
firing properties (i.e., the repetitive spike discharge and the
spiking resonance), within the AdEx models, as we previously
hypothesized in Marín et al. (2020). Thus, the GrC behavior
complexity in reproducing these features, being beyond the
capabilities of these AdEx models with a single parameter
configuration (GrCs have different functioning modes).

Similarly, candidates 5, 6, 7 and 8 reproduce all the features
but with the resonance curves in slightly higher preferred
frequencies (around 6–15 Hz; left plot in Figure 6B). In addition,
candidates 5, 6 and 7 showed larger initial latencies (around
100, 80 and 300 ms, respectively) than the candidates mentioned
before (i.e., 1,2,3,4 and 8, with initial latencies around 50–60 ms)
which are closer to the experimental recordings used as reference
(right plots of Figure 6B). Example traces generated from two
of the best candidate solutions are shown in Figure 6C. In
particular, the left plots of Figure 6C show the generation of
spike bursts clustered in triplets or longer bursts in time slots
corresponding to the positive phase of the sinusoidal current,
as described in the reference report (D’Angelo et al., 2001). It is
worth mentioning that the ISI during the burst duration (i.e., the
oscillatory burst frequency defined in the fitness function) is
very similar to that from real traces. In addition, the repetitive
spike discharge, experimentally evidenced in cerebellar GrCs
(D’Angelo et al., 1995, 2001), generated by these candidates are
shown in the right plots of Figure 6C.

DISCUSSION

The present study illustrates the application of a novel
optimization framework to the case of the cerebellar GrCs:
the automated identification of different and promising
configurations of the neuron model parameters to reproduce
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FIGURE 5 | Distribution of the candidate solutions and their respective parameter values. (A) Representation of the population of solutions (n = 25) using Classical
Multidimensional Scaling (MDS). The colormap shows the total score of each candidate solution, red-colored being the solutions with the lowest scores (best
solutions). In zoom, the most representative candidates (those with scores under 250 units; n = 12). (B) Parameter distribution of the candidate solutions. Each dot
corresponds to the parameter value that defines every candidate solution with the lowest scores (those with scores under 250 units; n = 12). The colormap reflects
the total score obtained by each parameter. The boxes correspond to the interquartile ranges (IQR) between the first (Q1) and the third (Q3) quartiles. The green line
represents the median among the values obtained for each parameter. The whiskers correspond to the 5- and 95- percentile respectively.

TABLE 2 | Parameter configurations of the best-ranked candidate solutions and their total score.

Candidate Parameter configuration

solution a (nS) Vpeak (mV) VT (mV) b (pA) Cm (pF) EL (mV) gL (nS) ∆T (mV) τw (ms) Vr (mV) Total score

1 0.123 −19.981 −20.446 −0.999 4.226 −79.225 0.333 55.881 7.138 −76.638 93.992
2 0.202 −7.078 −38.149 0.140 4.400 −67.194 0.001 54.382 73.441 −43.458 102.906
3 0.223 −19.984 −54.527 −0.429 4.408 −66.527 0.003 653.468 1.700 −71.568 106.522
4 0.139 −15.731 −20.000 1.000 4.998 −76.037 0.001 792.296 12.717 −56.917 108.708
5 0.244 7.841 −24.830 −0.946 4.741 −79.985 7.413 55.820 1.039 −79.972 116.652
6 −0.010 3.859 −24.929 0.081 4.324 −63.421 3.742 36.480 790.811 −55.069 121.169
7 −0.069 −18.914 −24.208 0.089 4.303 −51.501 0.342 1.116 273.243 −77.872 126.610
8 0.126 8.171 −25.613 −0.267 3.423 −73.981 0.005 631.309 8.875 −67.973 130.303

complex spiking behavior through multimodal algorithms for
an expert to decide. The solutions produced by the multimodal
optimization process represent a valuable analysis tool that
facilitates better understanding of how certain neural model
properties are supported by a specific parameter configuration.
Two challenges were addressed: (1) the optimization of efficient
neuron models that allow the replication of complex dynamics
such as the spiking resonance in the theta frequency band while
maintaining other typical GrC dynamics such as the regular
repetitive firing and the spike timing; and (2) the generation
of a diverse population of neuron models with widely explored
configurations in sparse local minima. These challenges were
addressed by optimizing a multi-feature fitness function defined

with the distinctive characteristics of cerebellar GrCs. In this
case, the spiking resonance in the theta-frequency band of the
GrCs is a complex behavior believed to improve the information
processing in the cerebellum (D’Angelo et al., 2001, 2009;
Gandolfi et al., 2013). The mean frequency of repetitive firing
and the spike timing (latency to the first spike) are the main
properties of the GrC used to measure their intrinsic excitability.
Addressing this approach through the optimization workflow
resulted in the full-fledged exploration of a population of
efficient neuron models that sufficiently reproduce highly
realistic dynamics. Finally, it is also important to take into
consideration a validation of the neuronal firing dynamics in
order to analyze in detail the behavior of the obtained neuron
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FIGURE 6 | Intrinsic excitability of the top-ranked neuron models of cerebellar GrCs. The optimal candidate solutions are qualitatively analyzed according to the
features defined in the objective function, i.e., spiking resonance in the theta range under sinusoidal stimulation (left plots), mean frequency (middle plots) and latency
to the first spike (right plots), the last two under direct current stimulation. Black dots represent the experimental data used as reference in the optimization process.
(A) Spiking dynamics of the top-four candidate solutions of the final population. Their accumulated scores of each feature are represented as bars in the dashed box.
(B) Spiking dynamics of the candidate solutions ranked 5–8 of the final population. Their accumulated scores for each feature are represented as bars in the dashed
box. (C) Example traces from two of the best candidate solutions (top plots from candidate 5 and middle plots from candidate 6) show: on the left, spike bursts from
both neurons under sinusoidal current injection of 10-Hz frequency, 6-pA amplitude and 12-pA offset, as it is represented in the bottom plot; on the right, repetitive
spike discharge from both neurons during a step-current injection of 10 pA, which is represented in the bottom plot.

models and how the parameter diversity can be steered to
adapt the model to specific purposes or studies. The selected
neuron models are presented as efficient tools that can formulate
biological network hypotheses and shed some light on future
neuroscientific research.

To solve neuron model tuning problems, it is possible
to opt for methods based on robust mathematical principles

whenever the objective function has some properties, such as
being expressed by a particular type of analytical formulation
and being differentiable. For instance, the point-neuron model
of a cerebellar GoC proposed by Geminiani et al. (2018) was
modified in order to optimize part of its parameters using a
SQP algorithm from spike voltage traces under input current
steps. The SQP algorithm uses differential calculus in locating
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the optimum points and allows to simultaneously minimize the
objective function and the constraint function. An alternative to
these methods are the EAs, such as GAs, and the PSO, which
allow solving parameters tuning problems that classical methods
might fail for multidimensional non-linear systems, such as
the AdEx model. These algorithms provide high flexibility,
universality (being able to be applied to different cases) and
proved to be fast and efficient strategies to take into consideration
for fitting neuron models (Cachón and Vázquez, 2015; Van
Geit et al., 2016; Shan et al., 2017). This is the case of the
optimization of an AdEx model of a cerebellar granule cell
(GrC) and a Golgi cell (GoC) proposed in Nair et al. (2015).
The fitness function measured the similarity between spike
trains from spiking traces. However, the PSO algorithm was
modified since all the solutions of the search did not result
in a feasible solution due to the non-linear dynamics of the
AdEx equations. In our previous study (Marín et al., 2020), we
optimized an AdEx neuron model of a cerebellar GrC based
on specific features (not whole traces) from in vitro recordings
using ‘‘simple GA’’. In Marín et al. (2020), we proposed a
single final candidate solution as the best approximation of the
multi-feature fitness function of the cerebellar GrCs. However,
in this work we take a step further in finding and fitting
multiple neuron model configurations in a single run based
on such a complex fitness function. This allows a detailed
analysis of how neuron properties are supported by specific
parameter configurations.

The objective of the present study is not to promote UEGO
as the most effective algorithm in plain values of the objective
function. Instead, the aim is to define an alternative framework
that relies on this multimodal method for gathering and studying
heterogeneous model configurations with independence of
strictly being the best ranked. However, notice that UEGO can
numerically compete with the results achieved by the GA used
in the reference work (Marín et al., 2020). For the sake of
completeness, the mean results of the GA proposed in Marín
et al. (2020), which was the initial option for solving the
problem at hand, have been compared to the mean results of
the best-ranked solutions of the UEGO execution described in
this article (Table 3). The referred GA took 30,000 function
evaluations, but UEGO executes 50,000 on average with the
configuration proposed, which is almost twice. For this reason,
the number of cycles of the genetic method has been doubled
to increase its exploration possibilities and take comparable
computational effort. While the GA allows obtaining a unique
best solution (low score), a multimodal algorithm such as UEGO
allows generating multiple candidate solutions that reproduce
reasonably well the neuron behaviors with wider parameter
configurations (Figure 7).

Our aim is to provide a set of feasible, promising,
and well-distributed solutions that result from numerical
optimization for an expert to select the most appropriate one.
The multimodal algorithms allow adjusting the exploration and
consequent extraction of more than one candidate solution
through the parameter landscapes (understood as the ‘‘space’’
of possible parameter values that a solution can take after the
optimization process). An advantage of using a multimodal

TABLE 3 | Comparative table of best solutions from UEGO and regular GA.

Method a (nS) Vpeak (mV) VT (mV) b (pA)

UEGO 0.12 ± 0.10 −3.06 ± 14.25 −34.48 ± 14.67 −0.22 ± 0.59
GA 0.34 ± 0.09 −1.69 ± 11.24 −28.96 ± 7.23 0.48 ± 0.20

Cm (pF) EL (mV) gL (nS) ∆T (mV)

UEGO 4.23 ± 0.72 −64.87 ± 12.61 1.18 ± 2.35 353.29 ± 357.56
GA 3.49 ± 0.45 −48.59 ± 4.95 0.63 ± 0.48 15.53 ± 7.33

τw (ms) Vr (mV) Total score

UEGO 166.41 ± 236.07 −66.93 ± 11.04 127.43 ± 30.13
GA 346.13 ± 177.24 −69.26 ± 7.06 107.61 ± 5.04

The table shows the mean values and standard deviations of each neuron parameter
from the best candidate solutions of UEGO (candidate solutions from 1 to 10) and each
of the single best solutions from 10 independent executions of regular GA (with different
seeds). Note that the dispersion of the parameters is considerably wider in UEGO.

optimization method is that it results in a population of
candidate solutions which is diverse in terms of parameters
values as they best fit the target features at different areas in the
parameter space. This allows using the candidate solutions as
the substrate for a detailed parameter analysis with respect to the
neuron model desired properties. In addition, the algorithm can
adjust the parameter exploration according to different working
ranges (wide exploration within the parameter boundaries). This
population of final candidate solutions characterizes the behavior
of the neuronal dynamics across the parameter space, i.e., how
neuronal dynamics change as the parameters are modified
(they can complement or conflict with each other towards
optimizing a multi-feature fitness function, finding trade-offs
among parameters in a solution). The expert is able to match the
best parameter set ups towards optimizing one specific feature
or another, or rather select a parameter set up to fit all the
different target features at the same time (avoiding one feature to
dominate against other ones within the combined cost function).
The exploration and extraction of a diverse population of
solutions facilitate the analysis process of how specific parameters
ranges help to adjust particular features (the algorithm might
perform an unbalanced adjustment of features, focusing more
on some of them and distances to others). The multimodal
optimization, in spite of being a more specific and robust
engine (and so, more laborious), implies a suitable alternative
for detailed exploration and analysis of the neuronal dynamics
against the single candidate solution obtained by other simpler
algorithms whichmight lose biological information necessary for
the subsequent study.

Future Implications
The novel workflow presented here constitutes a flexible
and versatile tool that can be generally applied to this
level of complexity with other commonly used point-neuron
models, such as the GLIF or integrate-and-fire neuron models,
and with other types of spiking dynamics, as long as
the electrophysiological data is available. The multimodal
optimization algorithm is only led by the value of the objective
function, but this approach does not determine the goodness
of the solution (the minimized score), although it is capable
of exploring a biodiverse population of solutions according
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FIGURE 7 | Parameter distribution of candidate solutions from UEGO and GA. Comparison between the parameter values obtained from the best-ranked candidate
solutions (from 1 to 10) in the execution of UEGO (left—blue circles) and from the best single solution of 10 independent executions of the GA (right—red circles).
Each dot corresponds to the parameter value that defines every candidate solution. The boxes correspond to the IQR between the first (Q1) and the third (Q3)
quartiles. The orange line represents the median among the values obtained for each parameter. The whiskers correspond to the 5- and 95- percentile respectively.

to pre-optimized solutions with interrelated parameters. The
pre-optimization allows filtering the solutions according to
numerically promising configurations. This facilitates the
analysis of the parameter space in relation to the desired
neuron properties. The post-optimization is based on the
decision of the user. This proposal is an automatization of the
population diversity of plausible neuron models for complex
spiking behaviors.

In our results we already have seen certain biodiversity
in the parameter configurations of the final population that
can lead to a specific behavior shown by biological cells. If
the heterogeneity of GrCs is a real fact in the biology of
granule cells, then it could be also reflected in the variability
of neuronal dynamics of the neuron models that reproduce
the same target behavior (Lengler et al., 2013; Migliore et al.,
2018). Regarding the biological data used as reference, in this
article we generate a heterogeneous population of neurons
based on different parameter configurations of the AdEx model
and mimicking the neuronal behavior extracted from biological
data. In future work, it would be of outstanding interest to
optimize from a population of real cerebellar neurons that
show variations in the target behaviors so that diversity can be
explicitly captured. The construction of a multi-objective fitness
function, compounded by several error functions that all have to
be optimized simultaneously, could be a future extension of the
presented workflow in order to analyze the Pareto front of all the
possible parameter configurations. This would allow exploring
the direct relationships among parameters and single features.

Concluding Remarks
In this article, we present a novel and robust optimization
framework integrating amultimodal algorithm that co-optimizes

the spiking resonance in the theta-frequency band, the repetitive
spiking discharge and the latency to the first spike in efficient
models of cerebellar GrCs. The validity of the framework is
confirmed by analyzing the electrophysiological predictions of
the biological characteristics. The proposed methodology will be
reflected as ease-of-use through the following workflow, even
though a multimodal algorithm usually requires high knowledge
of the field and it is difficult to use for non-expert users.
The UEGO algorithm exhibits its strength in adapting to the
complex data structure associated with the neuron dynamics. The
optimization workflow helps to easily generate a population of
functional neuron models. In addition, employing a multimodal
algorithm plays a key role in the proposed workflow to help
the exploration of different local minima. The outcomes of
the optimization study show promising results that successfully
establish the solution repository considering multiple features in
the function. Such results are verified by presenting the spiking
resonance, repetitive firing and timing curves and the dominated
solutions. According to the analytical results, the candidate
solutions exhibit a consonant relationship between the features,
meaning that the algorithm does not need to make a decision
to balance the trade-off benefits (equilibrated distributions). The
efficient models and features obtained in this work are mainly
to demonstrate the feasibility of the proposed optimization
workflow. It can be easily modified by other types of point-
neuron models (such as GLIF) or other neuron characteristics
in future work. The application to the case of cerebellar GrCs
implies taking a step further towards advanced exploration
of candidate solutions. It facilitates the evaluation of models
based on different neuronal parameters which represent various
internal neuronal mechanisms to achieve the target spiking
behaviors defined in a complex fitness function.
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Chapter 4 

General Discussion 

This chapter shows a summary of the main contributions presented in this thesis and a 
proposal of future work. 



4. General discussion 

4.1 Revisiting the thesis objectives 

We specify the journal articles included in this thesis that have addressed the initially-planned 
specific objectives, as follows: 

Due to time constraints, the specific aims regarding the evaluation of the learning 
capabilities in the information processing of nonlinear cellular properties are the next steps to 
address in our future research (as we detail in the next section of this chapter “4.3 Future 
Work”).  

It is also worthy to mention that this thesis included an additional experimentation 
regarding a preliminary exploration of the connection between nonlinear neuronal dynamics 

•Marín et al. (2019)
•Marín et al. (2020)

1. Deepening in the biochemical and physiological
knowledge of the brain

•Marín et al. (2020)
•Marín et al. (2021)
•Cruz et al. (2021)

2. Development of a methodology for simulation and
simplification of neuron models

•Marín et al. (2020)
•Marín et al. (2021)
•Cruz et al. (2021)

3. Development of computationally efficient neuron models
that integrate nonlinear cellular dynamics

•Marín et al. (2020)
•Marín et al. (2021)
•Cruz et al. (2021)

4. Study of the resonance at the cellular level in cerebellar
granule cells and evaluation of its computational
capabilities in the brain

•Marín et al. (2020)
•Marín et al. (2021)
•Cruz et al. (2021)

5. Development of a model of cerebellar granule cell
integrating nonlinear cellular dynamics (such as the spiking
resonance)

•Future work
6. Evaluation of the capabilities and efficiency in the
information transmission of the granular layer with
nonlinear cellular models
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4.1. Revisiting the thesis objectives 

and their potential clinical manifestations and genetic causes. Particularly, this thesis has aimed 
two complementary specific objectives: 

4.2 Main contributions 

The preliminary experimentation of this thesis is headed for a better understanding of the 
etiopathogenesis and treatment of neurological diseases. Our first main contribution is the 
presentation of a semi-automatic integrative workflow that identify the most common 
polygenic influences and their associated manifestations (and still based on similar molecular 
mechanisms) throughout a set of diseases, contributing to the overall understanding of their 
pathomechanisms. This contribution allows shedding some light on the up-to-date knowledge 
of pathomechanisms of neurological disorders and related manifestations, and their diagnosis 
and potential therapies. Particularly, the set of complex disorders to analyze is the case of 
channelopathies.  

Methodologically, the proposed workflow mines multi-dimensional databases and 
platforms based on systems biology approaches, as protein-protein interaction networks. This 
pipeline aims to be easy-to-use for a non-expert user in systems biology. It also allows 
extracting the most relevant genes of complex disease and interpreting its biological processes 
and possible comorbidities with other diseases.  

This contribution establishes a new bridge-builder among fields that extract as 
productive results as other traditional search systems (such as exhaustive or systematic 
searches) and software tools for functional annotation. Moreover, the proposed workflow even 

•Marín et al. (2019)

7. Deepening in the knowledge of cerebellar diseases.
Particularly, exploring the possible neurological diseases
that could allow connecting the different levels of genetics,
electrophysiology, neuron level and network level.

•Marín et al. (2019)

8. Development of a methodology for the identification of
the most relevant genes and manifestations of a
neurological complex disease and its potential
pharmacological targets. This aim will allow extracting
features reproducible at a computational level.
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extracts information that a priori does not seem relevant when the starting point is a very large 
group of genes in disease.  

The second main contribution that this thesis has achieved is directed towards the 
understanding of the brain operation with respect to the impact that potential intrinsic 
dynamics of neurons could take part on them. Thus, we contributed by developing a 
methodology for the simulation and simplification of mathematical neuron models. 
Specifically, the aim of the methodology is to create computationally efficient neuron models 
that reproduce non-linear cellular dynamics. That is, to find suitable sets of model parameters 
in order to capture specific firing dynamics under different stimulation protocols (including 
different spiking properties in the setup of the algorithms used). These models will facilitate 
further in silico simulations of large-scale microcircuits to better understand the computational 
role of the suprathreshold dynamics of the cell on a large scale. 

In this regard, we have studied automatic parameter exploration strategies in order to 
develop simplified neuron models based on the AdEx generic model template. Considering 
both biological relevance and computational efficiency, the proposed strategies aim to capture 
essential aspects of single-neuron processing. We have also compared alternative and 
sophisticated optimization methods widely used in other fields such as Engineering. 

The third main contribution in this thesis is focused on the application of these 
methodologies to the case of cerebellar granule cells (GrCs) in order to replicate the most 
essential properties of the biological cell. That is, the neuronal dynamics that are key for the 
frequency and timing of firing patterns in the neuronal code. This contribution involves 
studying different mathematical definitions of the neuron electroresponsiveness (named 
objective functions) experimentally evidenced in previous studies to conduct the optimization 
of this spiking activity.  

Finally, we have contributed by studying different mathematical definitions of the 
neuron electroresponsiveness (in what is called objective functions) experimentally evidenced 
in previous studies to conduct the optimization of the spiking activity. More specifically, the 
part of the thesis has been directed towards the study of a potential cellular mechanism in the 
somatosensory information representations and processing at the cerebellar cortex, i.e., the 
intrinsic resonance in the theta-frequency band of the cerebellar GrCs. Thus, the last main 
contribution is the generation of different computational neuron models of cerebellar GrCs 
replicating this complex behavior. We have complemented this contribution by also presenting 
heterogeneous populations of GrC models that replicate the intrinsic variances in their 
properties.   
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4.3 Future work 

As future work, it is possible to define new goals in the two main research lines covered. 

 Regarding the presentation of an integrative methodology to identify relevant genes 
in complex diseases, long-term applications are directed towards the exploration of the 
dysfunctional dynamics of neurons. Particularly, those cell dynamics resulted from the 
alteration of these relevant genes. The replication of the resulting behavior of these alterations 
would allow simulating models of disease at cellular and network levels. 

With respect to the study of the functional implication of the theta-frequency-band 
resonance for information processing at the cerebellar cortex, the first step after this thesis is 
to address the evaluation of the computational capabilities of this complex behavior. For this 
aim, we will simulate a neuron network layer composed of several cerebellar GrCs using the 
neuron models proposed in this thesis. We expect to demonstrate that the intrinsic resonance 
in theta-band of GrCs regulates the information transfer by enhancing the signal transmission 
and learning capabilities in the granular layer, as hypothesized in previous works  (D’Angelo et 
al., 2001, 2009; Solinas et al., 2007; Gandolfi et al., 2013; Garrido et al., 2016). Thus, the 
integration of realistic firing regimes in the neuron models presented (such as bursting and 
resonance) into complex learning tasks would improve the understanding of the mechanisms 
of learning. 

4.4 Conclusions 

1. We have shown the usefulness of a semi-automatic integrative workflow that
successfully mines current available databases and platforms based on protein-protein
interaction networks applied to channelopathies. This workflow has demonstrated to
be able to produce as significant results as a non-automatic research system but in a
more efficiently way, functioning as a bridge-builder among fields. It is also able to
extract information that a priori might not seem relevant when the starting point is a
very large group of genes potentially related to a disease.

2. We have presented an automatic optimization strategy based on traditional GAs for
the development of computationally efficient neuron models that reproduce realistic
firing properties under different stimulation protocols. We have proposed cerebellar
GrC models that suitably predict the main suprathreshold dynamics, such as the spiking
resonance at the theta-frequency band, the repetitive spiking discharge and the latency
to the first spike. These models provide both efficiency and biological plausibility,
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facilitating further studies about the computational role of these cells in the framework 
of large-scale neuron networks. 

3. The previous optimization context has been further studied to find more effective
methods. Four different meta-heuristics optimizers, some of them successfully used in
diverse problems of other fields, have been compared to the GA originally proposed.
According to the results, they outperform quantitatively and qualitatively the reference
method. The resulting model gains in biological realism, featuring higher temporal
accuracy of the first spike than that obtained in the previous article. This finding
supports the relevance of using an effective and efficient optimization engine in the
referred methodology.

4. We have also studied the existence of multiple sub-optimal solutions using a
multimodal optimization algorithm that can keep track of the different regions. This
work has been presented as a novel and robust optimization framework integrating a
multimodal algorithm applied to the same challenge of optimizing efficient cerebellar
GrC models. The proposed workflow is reflected as ease-of-use even though a
multimodal algorithm usually requires high knowledge of the field and it could be
difficult to use for non-expert users. This workflow have explored different local minima
and easily generated a population of functional neuron models that achieve successful
biological realism in the selected target features using different parameter
configurations. Thus, multimodal optimization represents an efficient optimization
strategy for the exploration of the parameter space of these kind of neuron model.

5. According to the analytical results, the resulting neuron models exhibit a significant
relationship between the features, meaning that the algorithm achieves a good trade-
off between the different target features. The efficient models and features obtained
in this work demonstrate the viability of the proposed optimization workflow, which
can be customized for other types of point-neuron models (such as GLIF) or other
neuron features. It facilitates the evaluation of models based on different neuronal
parameters that represent various internal neuronal mechanisms to achieve the target
spiking behaviors defined in a complex fitness function.

4.5 Conclusiones 

1. Hemos demostrado la utilidad de un flujo de trabajo integrador semi-automático que
explota con éxito las bases de datos y plataformas disponibles en la actualidad basadas
en redes de interacción proteína-proteína aplicadas a las canalopatías. Este flujo de
trabajo ha demostrado ser capaz de producir resultados tan significativos como un
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sistema de búsqueda no automático, pero de una manera más eficiente, funcionando 
como un constructor de puentes entre campos de investigación. También es capaz de 
extraer información que a priori podría no parecer relevante cuando el punto de 
partida es un grupo muy grande de genes potencialmente relacionados con una 
enfermedad.  

2. Hemos presentado una estrategia de optimización automática basada en GAs
(algoritmos genéticos) tradicionales para el desarrollo de modelos de neurona
computacionalmente eficientes y que reproducen propiedades de disparo realistas
bajo diferentes protocolos de estimulación. Hemos propuesto modelos de GrCs
cerebelares que predicen adecuadamente las principales dinámicas supra-umbrales,
como la resonancia de disparo en la banda de frecuencia theta, la descarga repetitiva
de disparo y la latencia al primer disparo. Estos modelos proporcionan tanto eficiencia
como plausibilidad biológica, facilitando nuevos estudios sobre el papel
computacional de estas células en el marco de las redes neuronales a gran escala.

3. El contexto de optimización anterior se ha estudiado más a fondo para encontrar
métodos más eficaces. Se han comparado cuatro optimizadores meta-heurísticos
diferentes, algunos de ellos utilizados con éxito en diversos problemas de otros
campos de investigación, con el algoritmo genético (GA) propuesto anteriormente.
Según los resultados, superan cuantitativa y cualitativamente al método de referencia.
El modelo resultante gana en realismo biológico, presentando una mayor precisión
temporal al primer disparo que aquélla obtenida en el artículo anterior. Este hallazgo
apoya la relevancia de utilizar un motor de optimización eficaz y eficiente en la
metodología referida.

4. También hemos estudiado la existencia de múltiples soluciones sub-óptimas utilizando
un algoritmo de optimización multimodal que puede rastrear las diferentes regiones.
Este trabajo ha sido presentado como un marco de optimización novedoso y robusto
que integra un algoritmo multimodal aplicado al mismo reto de optimizar modelos
eficientes de GrCs cerebelares. El flujo de trabajo propuesto destaca por la facilidad de
uso a pesar de que un algoritmo multimodal suele requerir un alto conocimiento de la
materia y podría ser difícil de utilizar para usuarios no expertos. Este flujo de trabajo
ha explorado diferentes mínimos locales y ha generado fácilmente una población de
modelos de neurona funcionales que consiguen un logrado realismo biológico en las
características objetivo seleccionadas utilizando diferentes configuraciones de
parámetros. Así, la optimización multimodal representa una estrategia de optimización
eficiente para la exploración del espacio de parámetros de este tipo de modelos
neuronales.

119 



4. General discussion 

5. En función de los resultados analíticos, los modelos de neurona resultantes muestran
una relación significativa entre las características, lo que significa que el algoritmo logra
un buen equilibrio entre las diferentes características objetivo. Los modelos de neurona
eficientes y las características obtenidas en este trabajo demuestran la viabilidad del
flujo de trabajo de optimización propuesto, que puede personalizarse para otro tipo
de modelos de neurona punto (como el modelo GLIF) u otras características
neuronales. Este flujo de trabajo facilita la evaluación de modelos basados en
diferentes parámetros neuronales que representan varios mecanismos neuronales
internos para lograr los comportamientos de disparo objetivo definidos en una función
fitness compleja.
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