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ABSTRACT 

  

 

Climate change is a topic of great interest around the world because it has serious environmental, 

agricultural, hydrological, and socio-economic consequences. The Levant region, as a part of the 

East Mediterranean, is considered a region particularly vulnerable to current and future climate 

change, which also occurs in the context of other developmental stresses, such as water scarcity, 

fatigue infrastructure, and frequent drought events. Furthermore, political and ethnic conflicts, 

population growth, and increasing demand for water, food, and energy all exacerbate the 

implications of climate change. Additionally, there is a lack of cooperation and sharing of climate 

data among the region's countries, as well as a lack of cooperation in dealing with potential climate 

changes in the region. 

There have been no previous studies or comparisons in the literature assessing changes and 

variability in maximum (Tmax) and minimum (Tmin) temperatures, diurnal temperature range 

(DTR), precipitation, extreme temperature and precipitation indices, and drought in the entire 

Levant region (Syria, Lebanon, Jordan, Palestine, and Israel), using climatic data from ground 

stations. The majority of climate studies in the Levant are limited to specific areas or countries, 

primarily over Israel. Most of them measured climate change in terms of mean values, with low 

spatial and temporal coverage.  

Thus, it is essential to study and investigate the climate variability in the Levant region at multiple 

time and space scales. The thesis aims to uncover and establish the relationships between climate 

variability and the most important climate indicators such as large-scale circulation patterns, Sea 

Surface Temperature (SST), and Sea Level Pressure (SLP) indicators in the Mediterranean Sea 

and North Atlantic Ocean in order to, better understand the causal mechanisms of such climate 

variability. Besides, it also aims to identify the regions that are most vulnerable to drought, and 

assess the dry spells that affected this area and the current trends on multiple drought time scales.  

This thesis fills a real gap in climatic studies in this critical region of the world. It is the first study 

of its kind to focus on the climate of the Levant as a whole, using the largest amount of climate 

data ever collected. It does not focus on a single climate variable, but rather analyzes a number of 



ii 
 

them. For the first time, data have been compiled and long, homogeneous and quality-controlled 

climatic time series have been obtained for temperatures and precipitation, covering as many 

meteorological stations as possible in the Levant. Finally, this thesis serves as the scientific 

foundation for any future joint efforts by Levantine countries to combat climate change through a 

unified scientific strategy. 

The following thesis is divided into ten chapters. The first three chapters discuss and present in 

detail the objectives, geographic and climatic features of the study area, the raw data, data quality 

control methods, handling missing values, outliers, homogenization of data sets, and methodology 

applied in this work. Temperature, extreme temperature indices, precipitation, and extreme 

precipitation indices as well as their relationships with the large-scale circulation patterns are 

examined at multiple time scales in Chapters 4-7, respectively. Chapter 8 has been devoted to co-

variability analysis between the seasonal temperature and precipitation in the Levant and the 

general patterns of the SST and SLP. In Chapter 9, droughts have been analyzed, studying their 

characteristics, and its relationship with large-scale circulation patterns, SST and SLP. Each 

chapter from 4 to 9 consists of three sections, introduction, results, conclusions and discussion. 

Finally, the main conclusions reached in this thesis are summarized in Chapter 10. 

The preliminary records consisted of rainfall data for more than 2000 rain gauges and 89 

temperature stations. All data, station by station, were subjected to a rigorous quality control for 

systematic errors, missing data, and outliers. All stations that did not meet a number of conditions 

were excluded, the most important of which was the homogeneity and continuity of the data up to 

the most recent time period. The time periods were determined based on the best spatial coverage 

(topography, climatic regions) and the highest data quality. The final stations list consisted of 61 

stations for temperature covering the period 1987-2017 and 165 stations for precipitation covering 

the period 1970-2018. Missing data was less than 5% in all cases.       

The thesis demonstrated that the Levant region has experienced rapid warming on multiple time 

scales. With the exception of October, November, December, and January, the Tmax and Tmin 

showed significant warming trends on the remaining time scales. More than 97% of the stations 

exhibited increasing trends in both Tmax and Tmin across all time scales, with the highest 

frequency of significant trends (> 74% of the stations) observed at the annual, spring, February, 

March, and August time scales. The Tmax increased faster than Tmin in winter, summer, and 

spring over the Levant from 1987 to 2018. In the autumn, May, and July, however, Tmin warmed 

faster than Tmax. The DTR for the cold months (December-April) increased, while it decreased 

for the warm months (May-November), being significant only for August and September. The 

south Levant-Tmax increased significantly at a higher rate than of the north Levant-Tmax in the 

annual, spring, summer, and autumn scales. On the contrary, the North Levant-Tmin rose at a 

higher rate than south Levant-Tmin in the annual, winter, and autumn scales. Jordan had the 

highest significant increasing Tmax trends for annual, winter, spring, and summer, while Syria had 
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the highest trend for autumn-Tmax. Furthermore, Syria-Tmin had the highest warming trend in 

the annual, winter, and autumn, while Palestine and Jordan had the highest warming trends in 

spring-Tmin and summer-Tmin. 

Trends towards drier conditions has also been found in the Levant region, particularly in the spring 

and March. Except for Jordan in February, no significant increasing trends were detected for the 

Levant as a whole and for its sub-regions at any time scale. A percent of 55% of stations showed 

significant decreasing trends in spring, with the highest rates for Syria's easternmost locations, 

coastal stations, and northern Palestine. The averaged spring time series for the Levant, 

Palestine/Israel, Jordan, and Syria showed significant decreasing trends. Furthermore, in March, 

all sub-regions showed significant downward trends, and in April for Syria. The study area showed 

more spatial variability based on seasonal rainfall than seasonal temperatures, and it can be divided 

into three homogeneous regions corresponding to central and north Palestine and Jordan (PC-1), 

coastal and western Syria (PC-2), and eastern Syria and Jordan, and southern Palestine and Jordan 

(PC-3). 

A total of 34 extreme rainfall and temperature indices developed by ETCCDI and ET-SCI (a few 

of which were modified to fit the study area) were analyzed for Palestine and Israel in the south 

Levant. Warming and drier conditions are also increasing, according to the results. Extremes 

related to minimum night-time temperature indices denoted more intense trends at annual and 

seasonal scales than those related to maximum day-time temperature indices. The most significant 

increasing trends were detected for summer-TXn, TNn, and TNx, with more than 90% of total 

stations. For TN90p-spring and TN90p-summer, a percent of 61% and 85% of the stations showed 

significant increasing trends. The study area had longer periods of extreme dry spells (CDD) and 

shorter periods of extreme wet spells in the winter, spring, and combined winter-spring (CWD). 

Spring extreme indices showed negative trends for most of the indices, significantly for R1mm, 

R20mm, CWD, RX1day, RX3day, RX5day, and SDII indices.  

Drought has become more frequent and extended, within the region, especially after the mid-

1990s. Drought features have increased significantly in all regions and for all SPI time scales in 

1995-2018, compared to 1970-1994. Significant (at 0.05 level) decreasing trends were detected 

for the SPI-3 spring and SPI-6 spring/summer. The Levant region experienced drought episodes 

in 1999-2001, 2006-2011, and 2014-2018, all of which were more severe on long-term drought 

scales. According to PCA, the study area can be divided into three homogeneous regions at SPI-

3, 6, and 12 month timescales, and into four regions at SPI-24 months timescale.  The PC-1 regions 

(the central and northern locations from Palestine, northern locations from Jordan, and south Syria) 

showed heavy significant increasing trends in the DF and MDS at SPI-3 and 12 month timescales. 

Significant changes will occur in central and northern Palestine, as well as in eastern Syria. The 

PC-2 region (Syrian coast) had the highest DF, TDD, and TDS values but it showed mixed trends 

with no significance in the DF and MDS. 



iv 
 

Regarding the influence of large-scale ocean-atmospheric circulation patterns on seasonal 

temperatures, precipitation and drought, the results strongly support the NCP, NAO, WEMO, and 

ENSO indices as predictors due to their high ability in explaining the interannual temperatures and 

rainfall variability in different seasons. The influence of the NAO, NCP, MO, and EA/WR indices 

is always negative on temperatures and positive on rainfall, except for the NAO, which has an 

inverse effect on rainfall. On the other hand, the effect of the ENSO and WEMO indices is positive 

on temperatures and negative on the rainfall.  

The NCP index is the major influential atmospheric circulation index for the seasonal temperatures 

and rainfall over the Levant region (e.g., winter-Tmax and -Tmin, autumn-Tmax and -Tmin, winter 

rainfall, and winter drought). The effect of the ENSO index was mainly restricted in summer 

temperatures and autumn rainfall and drought. The WEMO index notably exerted influence in 

spring temperatures, rainfall and drought. 

The SST-(winter temperatures and rainfall) coupled modes reflect the SSTs tripolar Atlantic Ocean 

patterns, which are influenced by the NAO atmospheric forces. The SST-(spring temperatures and 

rainfall) coupled modes reflect the SSTs horseshoe Atlantic Ocean patterns, which not resemble 

the NAO signature, but regional atmospheric-ocean interactions (like Mediterranean SLP, and the 

NCP index) because of the NAO's weaker influence in seasons such spring, summer and autumn. 

The SST-autumn temperatures coupled mode clearly showed the regional influence of the east and 

west the Mediterranean Sea, as well as the North Sea, Baltic Sea, and west Europe. This coupled 

mode strongly resemble the NCP negative impact on the autumn temperatures. A similar SST 

structure was found for SST-summer temperatures and SST-autumn rainfall, which is strikingly 

resemble the ENSO's positive and negative effects on summer temperatures and autumn rainfall.  

The role of the Atlantic SLP in explaining temperature and rainfall variability is significantly 

reduced, especially in the central latitudes, compared to winter. In summer and autumn, for 

example, the SLP shifted to the subtropical Atlantic, favoring the ENSO effect on summer 

temperatures and autumn rainfall. In a same line, the strong winter action centers over the Azores 

were completely absent in spring, summer, and autumn. On the other hands, the center action over 

the Europe, North Africa, and Mediterranean Sea remained constant from spring to autumn. These 

changes in the Atlantic SLP may led to enhance the role of regional interactions related to 

Mediterranean region and west Europe in spring and autumn, like NCP, WEMO, MO indices. 
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RESUMEN 

 

 

 

El cambio climático es un tema de gran interés en todo el mundo debido a sus graves consecuencias 

ambientales, agrícolas, hidrológicas y socioeconómicas. La región de Levante, como parte del 

Mediterráneo oriental, se considera una región particularmente vulnerable al cambio climático 

actual y futuro, también afectada por otros factores del desarrollo, como la escasez de agua, la 

fatiga de las infraestructuras, los conflictos políticos y étnicos, el crecimiento de la población y la 

creciente demanda de agua, alimentos y energía, que exacerban las implicaciones del cambio 

climático. Además, existe una falta de cooperación e intercambio de datos climáticos entre los 

países de la región, así como una falta de cooperación para hacer frente a los impactos del cambio 

climático en la región. 

Hasta el momento, no se cuenta con estudios previos en la literatura que evalúen los cambios y 

variabilidad en la temperatura máxima (Tmax) y mínima (Tmin), rango de temperatura diurna 

(DTR), precipitación, índices de temperatura y precipitación extrema, y sequía en toda la región 

de Levante (Siria, Líbano, Jordania, Palestina e Israel), utilizando datos climáticos obtenidos a 

partir de estaciones meteorológicas. La mayoría de los estudios climáticos en el Levante se limitan 

a áreas o países específicos, principalmente sobre Israel, y analizan la variabilidad climática y/o el 

cambio climático únicamente en términos de valores medios a partir de datos que presentan baja 

cobertura espacial y temporal. 

Por lo tanto, esta tesis tiene como objetivo el análisis de la variabilidad climática en la región de 

Levante a distintas escalas temporales, analizando y estableciendo las relaciones entre el clima de 

la región y los patrones de circulación a gran escala, con el objetivo de comprender mejor los 

mecanismos causales de dicha variabilidad climática.  

Así, esta tesis llena un vacío real en los estudios climáticos en esta región crítica del mundo, puesto 

que es el primer estudio de este tipo que se centra en el clima del Levante en su conjunto, utilizando 

la mayor cantidad de datos climáticos recopilados hasta ahora y analizando un conjunto completo 

de variables climáticas. Por tanto, los resultados de esta tesis podrían servir como base científica 

para cualquier futuro esfuerzo conjunto de los países levantinos para combatir el cambio climático 

a través de una estrategia científica unificada. 

La tesis se divide en diez capítulos. Los primeros tres capítulos presentan en detalle los objetivos, 

las características geográficas y climáticas del área de estudio, los datos brutos, los métodos de 
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control de calidad de los datos, y la metodología aplicada en este trabajo. La temperatura, los 

índices de temperatura extrema, la precipitación y los índices de precipitación extrema, así como 

sus relaciones con los patrones de circulación a gran escala, se examinan en múltiples escalas de 

tiempo en los Capítulos 4-7. El capítulo 8 se ha dedicado al análisis de covariabilidad entre la 

temperatura y la precipitación estacionales en el Levante y los patrones generales de la SST y la 

SLP. En el capítulo 9 se realiza un análisis detallado de las sequías, estudiando sus características 

y su relación con los patrones de circulación a gran escala, la SST y la SLP. Cada capítulo del 4 al 

9 consta de tres secciones: introducción, resultados, conclusiones y discusión. Finalmente, las 

principales conclusiones alcanzadas en esta tesis se resumen en el Capítulo 10. 

Los registros iniciales consistieron en datos de lluvia obtenidos de más de 2000 estaciones 

pluviométricas y 89 estaciones de temperatura. Todos los datos, estación por estación, se 

sometieron a un riguroso control de calidad para detectar errores sistemáticos, datos faltantes y 

valores atípicos. Se excluyeron todas las estaciones que no cumplieron con una serie de 

condiciones, la más importante de las cuales fue la homogeneidad y continuidad de los datos hasta 

el período de tiempo más reciente. Los períodos de tiempo se determinaron en función de la mejor 

cobertura espacial (atendiendo también a factores como la topografía y las regiones climáticas) y 

la mayor calidad de datos. La lista final de estaciones seleccionadas consta de 61 estaciones para 

la temperatura que cubren el período 1987-2017 y 165 estaciones para la precipitación que cubren 

el período 1970-2018. Los datos faltantes fueron menos del 5% en todos los casos. 

Los resultados de esta tesis demuestran que la región de Levante ha experimentado un 

calentamiento rápido en múltiples escalas de tiempo. Con la excepción de octubre, noviembre, 

diciembre y enero, Tmax y Tmin mostraron tendencias de calentamiento significativas en las 

escalas de tiempo restantes. Más del 97% de las estaciones exhibieron tendencias crecientes tanto 

en Tmax como en Tmin en todas las escalas de tiempo, con la mayor frecuencia de tendencias 

significativas (> 74% de las estaciones) observadas en las escalas de tiempo anual, primavera, 

febrero, marzo y agosto. La Tmax aumentó más rápido que la Tmin en invierno, verano y 

primavera en el Levante de 1987 a 2018. En otoño, mayo y julio, sin embargo, la Tmin se calentó 

más rápido que el Tmax. El DTR para los meses fríos (diciembre-abril) aumentó, mientras que 

disminuyó para los meses cálidos (mayo-noviembre), siendo significativo solo para agosto y 

septiembre. La Tmax de la región sur de Levante aumentó significativamente a una tasa mayor 

que la Tmax del norte en las escalas anual, primavera, verano y otoño. Por el contrario, la Tmin 

del norte aumentó a un ritmo mayor que la Tmin del sur en las escalas anual, de invierno y de 

otoño. Jordania tuvo las tendencias de aumento significativo de la Tmax más altas para la escala 

anual, invierno, primavera y verano, mientras que Siria tuvo la tendencia positiva más alta de Tmax 

de otoño. Además, Siria tuvo la mayor tendencia de calentamiento de la Tmin a escala anual, 

invierno y otoño, mientras que Palestina y Jordania tuvieron las mayores tendencias de 

calentamiento de la Tmin en primavera y verano. 

También se han encontrado tendencias hacia condiciones más secas en la región de Levante, 

particularmente en primavera y en marzo. A excepción de Jordania en febrero, no se detectaron 

tendencias crecientes significativas para la precipitación del Levante en su conjunto y para sus 
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subregiones en ninguna escala de tiempo. Un porcentaje del 55% de las estaciones mostró 

tendencias decrecientes significativas en la precipitación de primavera, con las tasas más altas para 

las ubicaciones más orientales de Siria, las estaciones costeras y el norte de Palestina. La serie de 

tiempo de primavera promediada para el Levante, Palestina/Israel, Jordania y Siria mostró 

tendencias decrecientes de precipitación significativas. Además, en marzo, todas las subregiones 

mostraron importantes tendencias a la baja, y en abril para Siria.  

En general, el área de estudio mostró más variabilidad espacial basada en las precipitaciones 

estacionales que en las temperaturas estacionales, y se puede dividir en tres regiones homogéneas 

correspondientes al centro y norte de Palestina y Jordania (PC-1), la costa y oeste de Siria (PC-2) 

y el este de Siria y Jordania, y el sur de Palestina y Jordania (PC-3). 

Respecto al análisis de extremos, se han analizado un total de 34 índices de temperatura y 

precipitaciones extremas desarrollados por ETCCDI y ET-SCI (algunos de los cuales se 

modificaron para adaptarlos al área de estudio) para Palestina e Israel, en el sur del Levante. Las 

condiciones de calor y sequedad también están aumentando, según los resultados. Los extremos 

relacionados con los índices de temperatura mínima nocturna denotaron tendencias más intensas 

en escalas anuales y estacionales que las relacionadas con los índices de temperatura máxima 

durante el día. Las tendencias crecientes más significativas se detectaron para verano en los índices 

TXn, TNn y TNx, con más del 90% del total de estaciones afectadas. Para el índice TN90p de 

primavera y verano, el 61% y el 85% de las estaciones mostraron tendencias crecientes 

significativas, respectivamente. El área de estudio tuvo intervalos más largos con períodos secos 

extremos (CDD) e intervalos más cortos con períodos húmedos extremos (CWD) en el invierno, 

la primavera y para la combinación invierno-primavera. Los índices extremos de primavera 

mostraron tendencias negativas para la mayoría de los índices, significativamente para los índices 

R1mm, R20mm, CWD, RX1day, RX3day, RX5day y SDII. 

Los resultados del análisis de la sequía revelan que la sequía se ha vuelto más frecuente y extendida 

dentro de la región, especialmente después de mediados de los noventa. Los parámetros 

característicos de la sequía han aumentado significativamente en todas las regiones y para todas 

las escalas de tiempo del SPI en el periodo 1995-2018, en comparación con 1970-1994. Se 

detectaron tendencias decrecientes significativas (a un nivel de 0.05) para el SPI-3 meses de 

primavera y SPI-6 meses en primavera/verano. La región de Levante experimentó episodios de 

sequía en los periodos 1999-2001, 2006-2011 y 2014-2018, más severos para escalas de sequía a 

largo plazo. 

Según el PCA aplicado al índice SPI a distintas escalas temporales, el área de estudio se puede 

dividir en tres regiones homogéneas en escalas de tiempo 3-, 6- y 12-meses, y en cuatro regiones 

para el SPI-24 meses. Las regiones asociadas a la PC-1 (el centro y norte de Palestina, el norte de 

Jordania y el sur de Siria) mostraron fuertes tendencias crecientes significativas en la frecuencia 

(DF) y en la severidad (MDS) de la sequía en las escalas de tiempo SPI-3 y -12 meses. La región 

costera de Siria (PC-2) presentó los valores más altos de frecuencia (DF), duración (TDD) y 

severidad (TDS) de la sequía, aunque mostró tendencias mixtas no significativas en DF y MDS. 
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Con respecto a la influencia de los patrones de circulación océano-atmosféricos a gran escala sobre 

las temperaturas estacionales, la precipitación y la sequía, los resultados presentan a los índices de 

teleconexión NCP, NAO, WEMO y ENSO como potenciales predictores debido a su alta 

capacidad para explicar la variabilidad de las temperaturas interanuales y de las precipitaciones. 

La influencia de los índices NAO, NCP, MO y EA / WR es siempre negativa sobre las temperaturas 

y positiva sobre las precipitaciones, a excepción de la NAO, que tiene un efecto inverso sobre las 

precipitaciones. Por otro lado, el efecto de los índices ENSO y WEMO es positivo sobre las 

temperaturas y negativo sobre las precipitaciones. 

El índice NCP es el índice de circulación atmosférica más influyente para las temperaturas 

estacionales y las precipitaciones en la región de Levante (por ejemplo, para la Tmax y la Tmin de 

invierno y otoño, y para la precipitación y la sequía de invierno). El efecto del índice ENSO estuvo 

restringido principalmente en las temperaturas de verano y las precipitaciones y sequías otoñales. 

El índice WEMO influyó notablemente en las temperaturas, las precipitaciones y la sequía de 

primavera. 

Los modos acoplados entre la SST y las temperaturas y precipitación de invierno reflejan el patrón 

tripolar de la SST del Océano Atlántico, que está influenciado por el patrón atmosférico asociado 

a la NAO. Los modos acoplados de la SST y de las temperaturas y precipitaciones de primavera 

reflejan un patrón de herradura de la SST del Océano Atlántico,  que no correlaciona con la NAO 

y que parece estar relacionado con otros patrones regionales asociados a la SLP mediterráneo y al 

índice NCP, en acorde con la influencia más débil de la NAO en las estaciones de primavera, 

verano y otoño. 

El principal modo acoplado de la SST y las temperaturas de otoño mostró claramente la influencia 

regional del este y oeste del Mar Mediterráneo, así como del Mar del Norte, el Mar Báltico y el 

oeste de Europa. La influencia de este modo acoplado se asemeja al impacto negativo del NCP en 

las temperaturas otoñales. Se encontró una estructura similar de la SST acoplada a las temperaturas 

de verano y a la precipitación en otoño, relacionada con los efectos positivos y negativos del ENSO 

sobre las temperaturas de verano y las lluvias de otoño. 

El papel de la SLP del Atlántico en la variabilidad de las temperaturas y las precipitaciones del 

Levante se reduce significativamente, especialmente en las latitudes centrales, excepto en invierno. 

En verano y otoño, por ejemplo, los centros de acción de la SLP se desplazan hacia el Atlántico 

subtropical, favoreciendo el efecto ENSO sobre las temperaturas de verano y las precipitaciones 

de otoño. En la misma línea, los fuertes centros de acción invernal sobre las Azores están  ausentes 

en primavera, verano y otoño. Por otro lado, los centros de acción sobre Europa, el norte de África 

y el Mar Mediterráneo se mantienen constantes desde la primavera hasta el otoño. 
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CHAPTER 1 

INTRODUCTION 

 
           In this chapter, the motivations and importance that 

support the research carried out in this work are presented. In 

addition, the objectives and structure of the thesis are described. 

More details of these topics and literatures review are included 

in the introduction to each chapter. 

 

1.1 Overview  

Climate change is an issue of particular interest globally since it involves serious environmental, 

economic, and social implications (Salameh et al., 2018; Wang et al. 2011; Osofsky 2014). Climate 

change refers to “a change in the state of the climate that can be identified by changes in mean or 

variability of its properties, and that persist for an extended period, typically decade or longer, as 

a result of human activity or natural factors” (IPCC, 2007). The Earth’s climate system has 

demonstrably changed on both global and regional scales since the pre-industrial era due to 

increases in greenhouse gases concentration that is probably lead to increase temperatures, changes 

rainfall patterns, and increase the frequency of extreme events (IPCC 2001, 2007, 2013).  

The East Mediterranean (EM) region has been classified as a hot spot of the Earth´s climate 

change. It is expected to experience future climate change above the global means (Giorgi, 2006). 

According to the Intergovernmental Panel on Climate Change (IPCC), the rate of warming in the 

southern and eastern Mediterranean regions over the present century is tending to be larger (drier 

and hotter) than the average global warming by 2.2–5.1 °C (IPCC, 2013). By the middle of this 

century, the temperature will increase between 2.5 to 3.7°C in summer and from 2.0 to 3.1°C in 

winter (Cruz et al., 2007). In addition, the number of warm days will increase by 50–60 additional 

days/year by the end of the 21st century (Lelieveld et al., 2012).  

Regarding precipitation variations over the EM region, it is expected to reduce about 20% from 

the annual rainfall by the year 2050 (Black, 2009; Lelieveld et al., 2012; Smiatek et al., 2011). 

Furthermore, southern and eastern Mediterranean regions suffer from severe water shortages of up 
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to 100 m³/person/year, and some of them reach up to 500 m³/person/year (Simone, 2011; Droogers 

et al., 2012). Despite the fact that the Arab world contributes merely 4.2% to the global GHG 

emissions, the impact of climate change on the region's fragile environment and its people is 

expected to be immense, which demands urgent planning for adaptation measures (AFED, 2009). 

For the last decades, many studies have indicated the decreasing precipitation and increasing 

temperature trends over the Mediterranean and Middle East regions (Salameh et al., 2019; AlSarmi 

and Washington, 2011; Hochman et al., 2018; Alpert et al., 2002; Najafi and Moazami, 2017; 

Hassanean, 2001, 2004; Zhang et al., 2005; Hasanean and Abdel basset, 2006; Rehman, 2010; 

AlSarmi and Washington, 2011).  

In general, the Mediterranean region is under intense anthropogenic pressures such as overfishing, 

habitat destruction, alteration of rivers inflow, and pollution (Ballesteros, 2006). The Levant, as a 

part of the EM, is considered a region very vulnerable to the current and future climate change, 

primarily due to its low adaptive capacity and its sensitivity to many of the projected changes (Al-

Quinna et al., 2011; Shadeed, 2013). Furthermore, the climate change occurs in the context of 

other developmental stresses such as water scarcity, weakness of existing infrastructure, and 

frequent drought events (Erian et al., 2011; Kelleya et al., 2015; Mathbouta et al., 2018; Lelieveld 

et al., 2013). Moreover, all of these factors are escalated by political and ethnic conflicts (e.g., 

Arab-Israel conflicts and Arab Spring events) as well as the rapid population growth and demand 

for water, food, and energy (Lange, 2019; Ziv et al., 2006; Al-Qinna et al., 2011; Hammad and 

Salameh, 2018).  

For example, Syria is one of the countries which are especially vulnerable to climate change due 

to the dependence of more than 62% of its agricultural lands (equivalent to about 14258 Km²) of 

rainfall as the main source of irrigation (Cafiero, 2009). In addition, rainfall represents 68.5% of 

all available water resources, and the agricultural water requirements were expected to increase by 

6% in 2020 (ACSAD, 2011). Jordan is considered the fourth poorest country in terms of water 

resources (World Bank, 2013). According to the Ministry of Water and Irrigation (MWI), water 

availability has declined from 3600 m3/person/year per capita in 1946 to 145 m3/person/year per 

capita in 2007 (MWI, 2009). Increasing temperatures also lead to higher rates of 

evapotranspiration and increase the plant water requirements (Snyder et al., 2011). This may be 

particularly important in rainfed areas, like Levant regions (Syria, Lebanon, Jordan, Palestine and 

Israel), due to the lack of irrigation possibilities.  

There are no previous studies in the literature assessing the variability in maximum (Tmax) and 

minimum (Tmin) temperatures, precipitation, extreme temperature and precipitation indices, and 

drought in the entire Levant region, based on climatic data from ground stations, nor comparison 

with other regions. Besides, most of the climate studies in the Levant are focused on limited areas 

or countries, mainly over Israel (Ziv et al., 2014; Shlomi and Ginat, 2009; Freiwan and Kadioǧlu, 

2008; Ben-Gai et al., 1994, 1998; Ghanem, 2011). In addition, most of them identified the climate 

change in term of mean values, using limited time scales and stations. One of the main reason for 

this is the difficulty for obtaining high-quality climate data due to the limitations imposed by many 
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meteorological departments in the Levant region, with the exception of Israel, to exchange data 

sets with different resolutions. 

Understanding climate change necessitates paying attention to changes in climate variability and 

extremes. Thus, it is essential to study and investigate the climate variability in the Levant region. 

The study of climate variability and the establishment of relations between the most significant 

climate variables is crucial for understanding the causal mechanisms of such climate variability 

and for generating prediction models.  

 

1.2 Objectives  

The overall aim of this thesis is to increase the knowledge about climate variability in the Levant 

region in terms of both its determination and causal mechanisms. In particular, this thesis aims to 

provide for the first time a comprehensive spatio-temporal analysis for temperatures (Tmax and 

Tmin), precipitation, extreme temperature and precipitation, and drought variability over the entire 

Levant region, using more data from meteorological stations than ever before. Moreover, this work 

seeks out to explore the atmospheric-oceanic factors driving temperature, precipitation, and 

drought variability in the Levant region. Therefore, the results from this work could provide a 

baseline for the governmental decision makers in the Levant region for topics like water, 

agricultural, urban, transportation planning and also for disaster management. Specifically, the 

main objectives of this thesis are: 

1) To develop a quality-controlled and homogeneous climate database covering the whole of 

the Levant area. 

2) To analyze the spatio-temporal trend variability of Tmax and Tmin over the study area at 

annual, seasonal, and monthly time scales. 

3) To analyze the spatio-temporal trends variability of precipitation at annual, seasonal, and 

monthly time scales. 

4) To identify the impacts of the main teleconnection indices on the maximum and minimum 

temperatures and precipitation variability in the study area, at seasonal scales. 

5) To provide a comprehensive temporal and spatial analysis of the extreme temperature and 

precipitation indices, and their relationships with the main large-scale circulation patterns. 

6) To investigate and evaluate the potential relationship between the seasonal temperature and 

precipitation in the Levant region and two indicators of climate variability, which are the 

sea surface temperatures (SST), and the sea level pressure (SLP). 

7) To analyze the spatio-temporal variability of the drought phenomena over the Levant 

region through the frequency (DF), duration (DD), and severity (DS) drought 

characteristics.  

8) To investigate and evaluate the relationships between main teleconnection indices along 

with the coupled variability between the SST and SLP and the seasonal drought. 
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1.3 Structure of the thesis 

The work is divided into ten chapters, including the introduction and conclusions chapters. An 

outline of the chapters that follow is provided here.  

 Chapter 1 briefly discusses the main motivations and objectives that stand behind this 

work. It highlights some of the general characteristics of climate studies in the Levant 

region.  

 Chapter 2 provides a description of the study area, its geographical and climate features. It 

also includes a description of the original data and the data Quality Control (QC) process.  

 Chapter 3 summarizes the methods used in this work. 

 Chapter 4 presents an overview of the spatial and temporal variability of the annual, 

seasonal, and monthly maximum and minimum temperatures over the Levant region during 

the period 1987-2017. This chapter also studies the relationships between the seasonal 

temperatures and the large-scale circulation pattern. 

 Chapter 5 analyzes the spatio-temporal variability of the extreme temperature indices in 

Palestine and Israel during 1987-2017. It also provides a comprehensive evaluating 

between the extreme temperatures and the large-scale circulation patterns at annual and 

seasonal timescales.  

 Chapter 6 presents an overview of the spatial and temporal variability of the annual, 

seasonal, and monthly precipitation over the Levant region during 1987-2017. This chapter 

also studies the relationships between the seasonal rainfall and the large-scale circulation 

patterns. 

 Chapter 7 analyzes the spatio-temporal variability of the extreme rainfall indices in 

Palestine and Israel during 1987-2017. It also provides a comprehensive evaluating 

between the extreme rainfall and the large-scale circulation patterns at annual and seasonal 

scales.  

 Chapter 8 analyzes the coupled variability between seasonal temperatures (Tmax and 

Tmin) and precipitation and SST and SLP. These couplings are explored using Singular 

Value Decomposition (SVD) technique. 

 Chapter 9 examines the spatial and temporal variability of the drought over the Levant from 

1970 to 2018. The drought characteristics (frequency, duration, and severity) are 

investigated. In addition, the relationships between seven large-scale circulation indices, 

along with the North Atlantic SST and the North Hemisphere SLP, and the seasonal 

drought, are studied. 

 Chapter 10 summarizes the main conclusions and future work.  
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CHAPTER 2 

STUDY AREA AND DATA 

 

           This chapter gives an overview of the geographic and 

climatic features of the Levant. It also contains details on the 

origin of data, sources, time scales, and station locations used in 

this work. The data quality control methods, handling missing 

values, outliers, and homogenization of the data sets are 

discussed. 

 

2.1 The study area  

2.1.1 Geographical features of the Levant 

The study’s geographical domain extends over the Levant region that encompasses Palestine, 

Israel, Jordan, Lebanon, and Syria, placed at the eastern edge of the Mediterranean Sea between 

latitudes 340N-420N, and longitudes 290E-370E. Turkey surrounds the Levant region in the north; 

Saudi Arabia, the Red Sea and the Sinai Peninsula in the south; and the Mediterranean Sea and 

Iraq in the west and east, respectively (Figure 2.1a). The Levant region has an area of about 

311.979 km². Its topography sharply varies, with an elevation ranges from 459 m below the sea 

level at Jericho (Palestine) to 3090 m above the sea level at Qurnat Al-Aswadah (Lebanon). And 

with a big difference between the peaks of mountains (e.g., central Palestine Mountains, eastern 

and western Lebanon Mountains) and the lowlands in Palestine and Jordan (e.g., Arad and Jordan 

valleys), Syria (e.g., Al-Ghab plain), and Lebanon (e.g., Al-Bekaa plain) (Figure 2.1b). From a 

geomorphological point of view, four major geographical units that play an important role in the 

climate diversity for the region can be distinguished (Figure 2.1b) (Baly et al., 1984; Mart et al., 

2005; Zohary, 1982):  

1. The narrow lowlands (elevation: 0-250 m) along the western coastal areas, widening only 

in the southward up to 60 km. They extend from the Iskenderun plains in the north to the 

Sinai Peninsula in the south, with a length of more than 600 km.  
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2. The western highlands, which range between 550-950 m for the Central Palestine 

Mountains and the Upper/Lower Galilee, 550-1400 m for the Syrian coastal Mountains in 

the northwestern, and 550-3093 m for the eastern/western Lebanon Mountains.  

 
Figure 2.1. (a) Study area location, (b) Topography features, and (c) Köppen climate zones classification. 

Source: http://gdem.ersdac.jspacesystems.or.jp and http://koeppen-geiger.vu-wien.ac.at/. 

3. The central Rift valley, which consists of three major segments, the Jordan Rift in the south 

(-495-0 m), that forms the lowest depression of the Earth’s continental surface. The Syrian 

Ghab Rift in the north (100-250 m), and the Lebanese Fault (Al-Bekaa plain). 
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4. The eastern Plateau covers all the eastern areas from Jordan and the southeastern regions 

from Syria. It has several hills and isolated mountains. The Levant desert (Badia) in the 

east covers 60% of the total area, while the mountains formed around 30% of the area. 

 

2.1.2 Climate characteristics of the Levant 

The Levant climate is characterized by a complex interaction between the global air-ocean 

circulation system, the complex topography, and possibly anthropogenic factors. According to the 

Köppen Climatic classification (Figure 2.1c), 85% of the total area is classified as warm and cold 

arid-semiarid climate zones (types BWh, BWk, BSh, and BSk). These regions extend over the 

whole eastern Plateau and the southern provinces, from Palestine and Jordan. On the other hand, 

the Warm Mediterranean Climate (type Csa) corresponds only to 15% of the total area and covers 

the western coastal regions from Syria, Lebanon, and Palestine. The western mountains (Figure 

2.1b), such as Lebanon and Central Palestine Mountains, play an essential role in distributing 

rainfall and temperature across the Levant. In this context, the Mediterranean Sea's humid 

influence diminishes sharply eastwards due to the orographic effects of the western mountains 

(Finkelstein and Langgut, 2014). Therefore, the western mountains and coastal strip are humid, 

while the eastern regions are semi-arid and arid (van Zeist and Bottema, 1991). The moisture that 

is blocked by the western mountains is stored as snowfall or rainfall. Later it runs off the surface 

or seeps into aquifers, which lead to the rise to the Levant Rivers such as Jordan River, Litany, and 

Assi in Lebanon (Assaf, 2014; Jason et al., 2004). 

Climatically, the Levant is classified as a transition region, located between the Afro-Asian desert 

to the south and the temperate, mid-latitude westerly wind to the north (Saaroni et al., 2010; 

Lionello, 2012; Frumkin and Stein 2004). In addition, two large monsoon systems, north African 

and southwest Asia, extend over the region to the southwest and southeast. Both these monsoons 

have a significant impact on the climate of the region. The region's location between these 

hemispheric climate belts and the impact of the nearby Mediterranean Sea makes the region 

sensitive to changes in the global climate system (Kushnir et al., 2017).  

Most rainfall is concentrated in the winter season and early spring (December-March) and is 

mainly caused by the passage of the extratropical cyclones over the east Mediterranean (EM) 

(Sharon and Kutiel, 1986; Alpertet al., 1990; Zivet al., 2006). These cyclones are called Cyprus 

depressions because most of them tend to pass, intensify or even develop over Cyprus and the 

Syrian coast (HMSO, 1962; Alpertet al., 1990; Shay-El and Alpert, 1991; Katsnelson, 1964; 

Shaaroni et al., 2010). The Cyprus lows are responsible for transporting cool air from eastern 

Europe over the warmer Mediterranean where it becomes humid and unstable and may produce 

rainstorms that typically last 2–3 days (Alpert et al., 2004; Shay‐El and Alpert, 1991). About 90% 

of the rainfall occurs by the Cyprus low (Goldreich et al., 2004). The Levant's southern and eastern 

regions are located on the outskirts of these lows; therefore, these areas receive little rainfall.  

In addition, the Red Sea Trough (RST) is another type of synoptic system, which can produce low 

and localized precipitation in the EM region (Heiblum et al., 2011; Enzel et al., 2008). It is a low-

pressure system extending from eastern Africa (Ethiopia and Sudan) along the Red Sea toward the 

EM and the Levant (Armon et al., 2018; Ashbel, 1938; El-Fandy, 1948). The RSTs are most 
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common during fall and spring and are the dominant synoptic feature in the EM in October (Tsvieli 

and Zangvil, 2005; Goldreich, 2003).  

 

2.2 The Original Data  

2.2.1 Temperature and precipitation data 

2.2.1.1 Monthly data  

Monthly Tmax and Tmin temperature time series from 89 meteorological stations distributed 

across the Levant region (Figure 2.2a, Table 2.1) were obtained from the following resources: 1- 

The Meteorological Departments of Syria, Palestine, and Israel; 2- The National Oceanic and 

Atmospheric Administration (NOAA); 3- International Center for Agricultural Research in the 

Dry Areas (ICARDA), and 4- Lebanese Agricultural Research Institute (LARI). For the 

precipitation, the historical archive of monthly precipitation time series from 2482 stations (Figure 

2.2b, Table 2.1) was taken from: 1- The Meteorological Departments of Syria, Palestine, Jordan, 

and Israel; 2- The Agricultural Ministries of Palestine and Syria, and 3- Water Authority of Jordan.  

Country Temperature  Precipitation 

Syria 35 474 

Palestine and Israel 31 1940 

Jordan 12 61 

Lebanon  7 7 

Turkey and Saudi Arabia 4 - 

Total  89 2482 

Table 2.1. Number of temperature and precipitation stations for each country. 

 
Figure 2.2. The spatial distribution of all available meteorological stations for (a) monthly temperature and 

(b) monthly precipitation. 
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2.2.1.2 Daily data 

For this study, the daily data are available only for Historical Palestine, which nowadays is 

composed of Israel and Palestine territories. The historical archive of daily time series Tmax and 

Tmin from 118 stations was taken from the Israeli Meteorological Department 

(https://ims.data.gov.il) (Figure 2.3a). In addition, observed daily precipitation data from an initial 

number of 130 stations in the Israel and Palestine territories were obtained from the Israel and 

Palestine Meteorological Departments (https://ims.data.gov.il http://www.pmd.ps/, respectively) 

(Figure 2.3b).  

 
Figure 2.3. The spatial distribution of all available meteorological stations for (a) daily temperature and (b) 

daily precipitation. 

 

2.2.2 Data Quality Control   

Not all of the monthly/daily temperatures (Tmax and Tmin) and precipitation time series 

mentioned in Section 2.2.1 were used in the analysis. Each station was subjected to a rigorous 

quality control assurance (QC) to reduce data errors and choose the most reliable time series. 

Climate studies related to climate variability, climate change, and climate prediction require high 

quality and homogeneous time series. The QC guarantees that data reflect the climate 

characteristics of the location and time (Von Storch, 2008). In this context, the systematic 

errors/unreasonable values, missing data, and outliers were checked and evaluated (Klein Tank et 
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al., 2009; Alexander et al., 2006; El Kenawy et al., 2013). Generally, stations should be selected 

based on the length, completeness of records, and homogeneity (Trewin 2013; Ahmad et al. 2013).  

Firstly, the available time-series were filtered based on their record lengths. Three types of time 

series were discarded from the final list of stations:  

1- Stations that have generally less than 30 years of monthly time series, based on the World 

Meteorological Organization (WMO) criterion for climate studies.  

2- Stations with records not continuous for recent years.  

3- Stations with more than 10% of missing monthly values (Huang et al. 2014; Meddi et al. 

2014; Tan et al., 2019).  

Although the stations with shorter records were not used for the analysis, they were still useful in 

assessing missing data, outliers, and homogeneity at nearby stations. In addition, stations have to 

be at well-spaced locations across the study area and represent the different climatic zones and 

topography. However, note that there is a lack of meteorological stations in the dryland, such as 

south of Palestine, Jordan, Dead Sea Rift valley, and eastern areas from Syria and Jordan, 

compared to the western coastal regions. The application of the three previous criteria resulted in: 

1- A total of 60 out of 89 stations for monthly temperature time series.  

2- A total of 520 out of 2482 stations for monthly precipitation with a length greater than or 

equal to 30 years. From these, only 316 stations had continuous records until 2018. In 

addition, 167 out of 316 stations had less than 10% of monthly missing data.  

3- A total of 28 out of 118 stations and 66 out of 130 stations for daily temperature and 

precipitation time series, respectively, have passed the first stage.  

To maximize the investigation period, taking into account the best spatial coverage, the periods 

1987-2018 and 1970-2018, respectively, were selected to be the temporal limits for the 

monthly/daily temperatures (Tmax and Tmin) and precipitation analysis. 

In a second stage, the monthly/daily temperature and precipitation time series were plotted to check 

for systematic errors (e.g., Tmin ≥ Tmax, Tmax > 600C, Tmin < - 300C, Rainfall < 0 mm, and 

typographical errors). These systematic errors were manually handled as missing values. 

 

2.2.2.1 Missing data and outliers 

Missing data (MD) is a widespread problem in climatology, and it is essential to estimate them for 

performing the analysis of climatic variables. They can produce biased results, and they can hinder 

the application of required statistical analyzes (Farzana et al., 2019; Vieux, 2001). In the literature, 

there are many approaches to missing data treatments (Aieb et al., 2019; Simolo et al., 2010; Presti 

et al., 2010): 

1- “Internal” temporal interpolation when time series data (such as its long-term average or 

its values before and after the missing value) are used to infill the missing values in the 

same time series. 

2- “External” spatial interpolation when gaps at a target station are calculated by using 

synchronous observations from surrounding stations.  
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The spatial interpolation approach contains many techniques such as the normal ratio (NR), 

arithmetic mean, aerial precipitation ratio, inverse weighting distance (IWD), and correlation 

coefficient (CC) (Silva et al., 2007; Suhalia et al., 2008). The arithmetic means method assumes 

equal weights from all nearby stations, and it is recommended when the annual value at each of 

the station differs by less than 10% from that of the station with the missing data (Singh, 1994; 

Chow et al., 1988; McCuen, 1998). While the NR method gives a weight for each surrounding 

station and is used if any of the surrounding stations has an annual value greater than 10% of the 

station considered. A comprehensive detail about these methods and their calculations is available 

in Tabios and Salas (1985), Singh (1994), and Yozgatligil et al. (2013). 

In this study, three methods were used in infilling missing values: 

1- If a monthly temperature and precipitation time series have only one missing value, it 

was replaced by the long-term average.  

2- If a monthly time series have two or more missing values, the spatial interpolation 

methods, mainly the arithmetic mean and the NR methods were applied. 

3- For a daily time series, only those months and years with more than 3 and 15 missing 

days, respectively, were handled. Note that the RClimDex v1.0 (Klein Tank et al., 2009) 

software used to calculate the extreme temperature and precipitation indices does not 

calculate monthly indices if more than 3 days are missing in a month, and more than 15 

missing days in the annual values. If these missing days were not successive, the temporal 

interpolation was used based on the average of two values of consecutive days (before 

and after the missing day). Furthermore, if these missing days were successive, the spatial 

interpolation method was applied based on neighbouring stations with distance < 20 km 

and correlation value r > 0.8 (Sibson, 1981; Jiang et al., 2012).  

In most cases, the arithmetic mean was used because of the small distance between the target and 

reference stations as well as the high correlation between them (r > 0.85). Special attention was 

given to zero monthly precipitation values in months of winter, spring, and autumn. To distinguish 

among months with no precipitation from those with no observation, the values were compared 

with the observed values at nearby stations. Moreover, the means and standard deviations were 

computed for the complete time series and those incomplete time series. The differences in mean 

and standard deviation did not result statistically significant. 

The percent of missing data were listed for each station in (Tables 1-4, in Appendix A). Based on 

stations, the percent formed less than 5% for monthly temperatures and precipitation time series 

whereas, they comprised less than 1% and 4% for daily precipitation and temperatures time series, 

respectively. 

Outlier values may be considered as errors of measurement or a result of exceptional climatic 

conditions that caused such values actually to occur (Stedinger et al., 1993). Such observations 

will negatively affect the data's compatibility and homogeneity and lead to erroneous and 

inaccurate results (Osbome et al., 2004). Therefore, it is essential to detect and handle them 

(correction, removing, or keep them) in the quantitative analysis's first steps. 



STUDY AREA AND DATA | 2 

12 
 

In this study, the thresholds of outliers were defined within the range of ±3 and ±4 standard 

deviations for the monthly and daily temperature time series, respectively (Hunt, 2007; Harmel et 

al., 2002; Jones et al., 1999; Athar, 2014; Zhang et al., 2005; Brunet et al., 2006). For the monthly 

and daily precipitation time series, the interquartile range (3*IQR) technique was used to identify 

suspicious values (Peterson et al., 1998; González-Rouco et al., 2001).  

After that, the visual comparison among neighbouring stations (spatial coherency) was also used 

to determine whether an outlier resulted from natural factors or systematic errors (Sutarya and 

Mahendra, 2014; Eischeid et al., 1995). All unreasonable outliers were manually edited by 

replacing them with monthly averages. Tables 2.2 and 2.3 summarize the total missing values and 

outliers detected in the monthly and daily temperatures and precipitation time series, respectively. 

 

Country 

Monthly temperature (Tmax, Tmin) Monthly precipitation  

Total 

stations 

Total MD Total 

outlier 

Total 

stations 

Total MD Total 

outliers  

Palestine and Israel 28 101 (0.5%) 33 78 343 (0.7%) 498 

Jordan 9 26 (0.4%) 8 36  102 (0.4%) 523 

Syria 15 83 (0.7%) 21 53 620 (1.9%) 539 

Lebanon 4 74 (3.5%) 4 - - - 

Turkey and Saudi 

Arabia 

4 0  3 - - - 

Total 60 284 (0.6%) 69 (0.1%) 167 1065 (1%) 1560 (1.5%) 

Table 2.2. Summary of missing data and outliers detected in the monthly temperature and precipitation. 

The totals for temperature indicate the missing data and outliers detected in both Tmax and Tmin averages. 

 

Country 

Daily temperature (Tmax, Tmin) Daily  precipitation  

Total  

stations 

Total MD Total  

outlier  

Total 

stations 

Total MD Total 

outliers  

Palestine and Israel 28 1598 (0.3%) 118 (0.02%) 66 797 (0.07%) 791 (0.07%) 

Table 2.3. Summary of missing data and outliers detected in the daily temperature and precipitation. The 

totals for temperature indicate the missing data and outliers detected in both Tmax and Tmin averages. 

 

2.2.3 Homogeneity  

A homogeneous climate time series is defined as one in which variations are caused only by 

variation in the weather and climate (Conrad and Pollak, 1950; Aguilar et al., 2003). 

Homogenization is important because it produces climatic time series that consistently reflect a 

proper assessment of climate variation and change (Venema et al., 2012).  

Long climatological time series often contain variations due to non-climatic factors, such as 

methods of preliminary data treatment, changes in measuring methods, instrumentation, changes 

in station locations, the urban heat island effect, and changes in the surrounding of the stations 

(e.g., urbanization, vegetation) (Peterson et al., 1998; Klok et al., 2009; Štěpánek et al., 2012; 

Hansen et al., 2001). Non-climatic factors make climatic recording unrepresentative of the actual 

climate variation. They may hide the climatic signals and lead to misinterpretation of climatic 

studies' conclusions (Costa and Soares, 2009, 2006).  

Generally, homogeneity tests are classified into two groups as the ‘absolute method’ and the 

‘relative method’. In the first type, the tests are applied to each station separately and based on the 
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station's available historical files to evaluate the change points. Furthermore, such tests are required 

in the low spatial density of stations and low correlation between neighboring stations (González 

et al., 2000; Dhorde et al., 2013; Göktürk 2008). In the second type, the climatic records from 

neighbouring stations are used to construct a reference time series, to be compared with the station 

being tested. This method assumes that stations within a geographical region have identical 

climatic patterns, so observations at any station within the area will reflect this similar pattern 

(Hänsel et al., 2016; Costa and Soares, 2009).  

A comprehensive review of homogenization methods, approaches for developing homogenized 

climatic time series, and causes of inhomogeneities are available in Peterson et al. (1998), Aguilar 

et al. (2003), Venema et al. (2012), Trewin (2010) and Domonkos (2013). 

 

2.2.3.1 Monthly time series  

A total of 60 and 167 monthly temperatures (Tmax and Tmin) and precipitation time series, 

respectively, were subjected to homogeneity tests. It is recommended to apply more than one 

statistical test for detecting inhomogeneities in time series (Wijngaard et al., 2003; Costa and 

Soares, 2009). In this study, the method used follows the approach proposed by Wijngaard et al. 

(2003). Four absolute tests were applied at 5% significance level using XLSTAT tool, a user-

friendly Microsoft Excel add-in, to evaluate the homogeneity of monthly time series, with null 

hypothesis (H0, data are homogeneous), and alternative hypothesis (Ha, data are non-

homogeneous). The tests are: the Pettitt test (Pettitt, 1979), the standard normal homogeneity test 

(SNHT) for a single break (Alexandersson, 1986), the Buishand range test (Buishand, 1982), and 

the Von Neumann ratio test (Von Neumann, 1941). The SNHT is sensitive to change points at the 

beginning and end of the time series, whereas the Pettitt and the Buishand tests are more sensitive 

to detecting breaks in the middle of the time series (Costa and Soares, 2009; Arikan et al., 2019; 

Tan et al., 2019; Suhaila et al., 2008). We labelled time series as ‘useful’ if one or zero tests rejected 

the null hypothesis. If two tests rejected the null hypothesis, we labelled it as ‘doubtful’ and if 

three or four tests rejected the null hypothesis we labelled it as ‘suspect’.  

Such this approach was used in many studies worldwide such as Turkey (Arikan et al., 2019; Firat 

et al., 2010; Dikbas et al., 2010), Peninsular Malaysia (Kang and Yusof, 2012; Suhaila et al., 2018), 

Pakistan (Ahmed et al., 2018), Portugal (De Lima et al., 2010), Brazil (Hänsel et al., 2016), and 

Iran (Salehi et al., 2020). In addition, time series plotting and comparison (spatial coherence) with 

neighboring stations (distance < 20 km, r > 0.8) were used in some cases to evaluate the change 

points. Finally, all non-climatic change points were fitted using software package AnClim v5.025. 

Table 2.4 shows the total stations that showed change points in their monthly temperatures and 

precipitation time series. The results indicated that 455 (31.5%) out of 1440 monthly Tmax and 

Tmin time series exhibited significant change points in two, three, or four tests. A total of 328 

(72%) of them have occurred in March, June, July, and August. All change points were subjected 

to spatial evaluation. March exhibited significant change points in 59 and 41 stations for Tmax 

and Tmin, respectively. All change points in March were considered a result of climatic factors 

because they occurred in 2000. In addition, August exhibited significant change points in 38 and 
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50 stations for Tmax and Tmin, respectively. All of them were also considered a result of climatic 

factors because they occurred in 1997. However, note that many studies have indicated the 

relationship between the strong El Niño year 1997/1998 and the change points in temperature 

series during this year (Athar, 2014; AlSarmi et al., 2011). For this reason, the correlation 

coefficients between the ENSO pattern and the extreme temperature indices at annual and seasonal 

scales were calculated. 

 

Month  

Temperatures  Precipitation  

Tmax Tmin 

January 1 6 3 

February  12 23 2 

March  59 41 4 

April 0 15 2 

May  0 16 1 

June  20 44 - 

July  33 43 - 

August  38 50 -  

September  8 40 3 

October  0 6 2 

November  1 2 0 

December  1 1 0 

Total  173 287 17 

Table 2.4. Total stations in each month that showed change point in monthly temperature and rainfall time 

series.  

 

2.2.3.1 Daily time series  

Data homogeneity is assessed using the R-based RHtest software for the daily temperatures time 

series. This software can be used to detect and adjust multiple change points that could exist in a 

data series that may have first-order autoregressive errors (Tao, 2014; Wang et al., 2007; Wang, 

2008). Software and user guide are available 

fromhttp://cccma.seos.uvic.ca/ETCCDMI/software.shtml. Furthermore, the R‐based 

‘RHtests_dlyPrcp’ software, based on the transPMFred algorithm (Wang and Feng, 2013, 

available at http://etccdi.pacificclimate.org/software.shtml), was used to detect multiple change 

points in the daily precipitation time series, and adjust them using the ‘quantile‐matching’ 

algorithm (Wang et al., 2010). These methods have been widely used to detect change points in 

daily time series (Wang et al., 2015; Wu and Huang, 2016; Villafuerte et al., 2014). Finally, 16 

breakpoints were detected in 15 out of 66 daily precipitation time series (Table 5 in Appendix A). 

For the daily temperatures, a total of 5 and 16 out of 28 stations exhibited inhomogeneities in their 

daily maximum and minimum temperatures, respectively (Table 6 in Appendix A).   

 

2.2.4 Final list of meteorological stations   

For monthly temperatures time series, available Lebanon´s stations only cover the period (1994-

2017), and for representing it, four stations (Kfardan, Beyrouth, Tripoli, and Houche-Oumara) 

were included in this study. Furthermore, four stations from Turkey and Saudi Arabia were 

included in the stations' final list because of their geographical vicinity. Unfortunately, many 
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Syrian´s stations have long time series with good quality, but they stopped working in 2012 

because of the war. Furthermore, there were no stations from Lebanon has passed the selection 

criteria for monthly precipitation. Only two specific stations in the database (Hazeva and Ariel) 

cover a shorter period (1988–2017 and 1990–2017, respectively) for the daily Tmax and Tmin 

time series. Two stations (Elqana and Karmel) from the West Bank cover a shorter period 1982-

2018 for the precipitation dataset. The location of the final stations is shown in Figures 2.4, 2.5, 

and 2.6. The numbers indicating the stations and the metadata (names, coordinates, elevation, and 

percent of missing values) are listed in Tables 1-4 in Appendix A. 

 
Figure 2.4. The location of the considered stations for monthly Tmax and Tmin averages. The numbers 

indicating the stations and the metadata (names, coordinates, elevation and percent of missing values) are 

listed in Table 1 in Appendix A.  
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Figure 2.5. The location of the considered stations for monthly rainfall averages. The numbers indicating 

the stations and the metadata (names, coordinates, elevation and percent of missing values) are listed in 

Table 2 in Appendix (A). 
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Figure 2.6. The location of the final stations for daily Tmax and Tmin values (a), and daily precipitation 

totals (b). The numbers indicating the stations and the metadata (names, coordinates, elevation and percent 

of missing values) are listed in Tables 3 and 4 in Appendix A.  

 

2.3 The teleconnection indices  

Seven teleconnection indices that can account for the influence of large-scale circulation patterns 

on temperatures and precipitation in the study region namely, North Atlantic Oscillation (NAO), 

East Atlantic pattern (EA), East Atlantic Western Russian pattern (EA-WR), Western 
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Mediterranean Oscillation (WEMO), El Niño Southern Oscillation (ENSO), North Sea Caspian 

Pattern (NCP) and Mediterranean Oscillation Indices (MOI) were selected.  

Monthly values of these teleconnection indices for the period 1970–2018 were collected from the 

Climate Prediction Center of the National Oceanic and Atmospheric Administration 

(http://www.cpc.ncep.noaa.gov/data/teledoc/telecontents.shtml), from Climatic Research Unit of 

the University of Norwich (https://crudata.uea.ac.uk/cru/data/moi/) for MOI and NCP, and from 

the Group of climatology of the University of Barcelona (http://www.ub.edu/gc/en/2016/06/ 

08/wemo/) for WEMO. A brief definition of each index, together with a schematic map indicating 

its location (Figure 2.7) is provided.  

The North Atlantic Oscillation (NAO) was first identified in the 1920s by Sir Gilbert Walker 

(Walker, 1924; Walker et al., 1932), and it is one of the most prominent and recurrent patterns of 

atmospheric circulation variability over the northern hemisphere (NH, Greatbatch, 2000). It 

describes a large-scale meridional oscillation between the subtropical anticyclone, near the Azores, 

and the subpolar low pressure system, near Iceland (Wanner et al., 2001). It influences the climate 

variability extended from the United States' eastern seaboard to western/central Europe and Siberia 

and from the Arctic to the subtropical Atlantic, especially during the winter season. The NAO's 

positive phase reflects below normal geopotential heights and pressures across the high latitudes 

of the north Atlantic and above normal over the central north Atlantic, the eastern United States, 

and western Europe. The negative phase reflects the opposite pattern of height and pressure 

anomalies over these regions. Both phases of the NAO are related to basin-wide changes in the 

north Atlantic jet stream and storm track's intensity and location and with large-scale modulations 

of the normal patterns of zonal and meridional heat and moisture transport (Hurrell, 1995). Which, 

in turn, results in changes in temperature and precipitation patterns, from eastern north America to 

western and central Europe (Walker et al., 1932; Rogers et al., 1979). 

 
Figure 2.7. Approximate location of the main areas associated to the teleconnection indices used in this 

study. 
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The East Atlantic (EA) pattern is the second prominent mode of low-frequency variability over 

the north Atlantic and appears as a leading mode in all months. It was first described by Wallace 

et al. (1981) as positive 500 hPa height anomalies over the subtropical north Atlantic and eastern 

Europe when it is in its positive phase. This atmospheric pattern exhibits a well‐defined SLP center 

of action near [550N, 20–350W]. Some authors describe the EA as a north-south dipole of anomaly 

centers spanning the north Atlantic from east to west (Bastos et al., 2016), while others characterize 

it as a well-defined SLP monopole to the south of Iceland and west of Ireland, near [52.50N, 

22.50W] (Moore et al., 2012; Zubiate et al., 2017).  

The East Atlantic/West Russia (EA/WR) (Barnston et al., 1987) pattern affects Eurasia 

throughout the year. The EA/WR was originally identified through an orthogonally rotated 

principal component analysis (RPCA), which applied to the monthly-mean geopotential height at 

700 hPa. It consists of four main anomaly centers. Additionally, it is characterized by two central 

large-scale anomalies located over the Caspian Sea and western Europe (Barnston et al., 1987). 

And it is important not only because its impact extends across the European mainland, including 

the Mediterranean basin (Xoplaki, 2002; Krichak et al., 2013), but also because this impact reaches 

the Middle East (Krichak et al., 2002), Siberia, and mid-latitude east Asia as a planetary scale 

stationary wave pattern. The positive (negative) phase is associated with positive (negative) height 

anomalies located over Europe and northern China and negative (positive) height anomalies 

situated over the central north Atlantic and north of the Caspian Sea. 

The Western Mediterranean Oscillation (WEMO) (Martin-Vide et al., 2006) is defined by the 

western Mediterranean basin's synoptic framework and its surrounding area. The WEMO index is 

constructed as the difference between normalized sea level pressure data at [350N–50W] (San 

Fernando, Spain) and [450N–100E] (Padova, Italy). The positive phase of this index corresponds 

to the anticyclone over the Azores enclosing the south-west Iberian quadrant and low-pressures in 

the Liguria Gulf. And its negative phase coincides with a central European anticyclone located 

north of the Italian Peninsula and a low-pressure center, often cut off from northern latitudes, in 

the Iberian southwest framework. In the eastern Iberian Peninsula, its effects are dominant 

compared to those from the NAO and the Atlantic Multi-decadal Oscillation (AMO) (Martín‐Vide 

et al., 2006; Mariotti et al., 2012). 

El Niño Southern Oscillation (ENSO) is one of the most important climate phenomena due to its 

ability to change the global atmospheric circulation, which in turn, influences temperature and 

precipitation worldwide (Niedzielski et al., 2014; Wallace et al., 1981). The changes in pressure 

gradient (Southern Oscillation/SO) across the Pacific are associated with changes in temperature 

and precipitation anomalies on the eastern and western Pacific coasts “El Niño” leading to 

worldwide climate variability (IPCC, 2007b). It is inherently caused by the interaction between 

the atmosphere and the ocean (Nicholls, 2015). El Niño refers to unusually warm ocean 

temperature that occurs every 2-7 years around Christmas time along Peruvian coast, extending 

into the equatorial eastern and central Pacific Ocean. The southern oscillation, named by its 

discover -Sir Gilbert Walker- on the other hand, refers to a “seesaw” of the atmospheric pressure 

between the Pacific and Indian oceans. The acronym ENSO has been widely used to describe this 
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interannual climate fluctuation, emphasizing the inherent ocean-atmosphere coupling (Zebiak et 

al., 2015). 

North Sea Caspian Pattern (NCP) index (Kutiel et al., 2002) can be defined as the normalized 

500 hPa pressure difference between averages of North Sea [00E, 550N and 100E, 550N] and north 

Caspian [500E, 450N and 600E, 450N] centers of action. Kutiel et al. (2002) have stated that the 

anomalous circulation in the eastern Mediterranean basin showed an increased southwesterly 

circulation during the NCP in the negative phase and an increased northeasterly circulation during 

the NCP in the positive phase. The negative phase of the NCP was defined for all cases when the 

standard score of the difference between the two poles was less than -0.5, and the positive case 

was defined for all cases when the standard score was greater  than 0.5.  

The Mediterranean Oscillation Index (MOI) can be calculated based on sea level pressure 

differences between Gibraltar northern frontier [36.10N, 5.30W] and Lod Airport Israel [32.00N, 

34.50E] (Palutikof et al., 2003). There are different versions of this index, depending on the 

reference points (Criado-Aldeanueva et al., 2013). Conte et al. (1989) developed the MOI as the 

difference between the standardized 500 hPa geopotential heights of Algiers [36.40N, 3.10E] and 

Cairo [30.10N, 31.40E]. Brunetti et al. (2002) designed a specific MOI version for the central 

Mediterranean using the difference between Marseille's normalized sea level pressure and that of 

Jerusalem. This index was found to present a good correlation between total precipitation and the 

number of wet days in Italy (Brunetti et al., 2002). The MOI applied in this study is based on the 

normalized pressure difference between the Algiers and Cairo dipoles (Conte et al., 1989). 

 

2.4 The SST and SLP data 

The monthly mean data for the Sea Surface Temperature (SST) were obtained from the Hadley 

Centre Global Sea Ice and Sea Surface Temperature (HadISST, Rayner et al., 2003) for the period 

1970-2018, with a spatial resolution of 10x 10 and a geographical domain encompassed between 

[700W-500E, 00N-600N]. On the other hand, monthly mean data for the Sea Level Pressure (SLP) 

were downloaded from the NCEP reanalysis (Kalnay et al., 1996) for the period 1970-2018, with 

a resolution of 2.50x 2.50 and a geographic domain covering [00-900N, 1800W-1800E]. The SST 

data composed a gridded set of 4829 cells and the SLP data of 5329 cells. 
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CHAPTER 3 

METHODOLOGY 

      

           In this chapter, the methodology used in the Thesis is 

explicated. Methods about the calculation of trends, the 

obtaining of extreme temperature and precipitation indices, and 

the co-variability analysis, among other statistical techniques, 

are fully described and discussed.   

 

3.1 Trend detection method 

The trend detection can be carried out using parametric or nonparametric methods. Parametric 

methods are more suitable for normally distributed data (Onoz and Bayazit, 2003). Nonparametric 

methods lead to more reliable results for non-normally distributed data such as the hydrological 

and meteorological data (Hirsch et al., 1992; Salas, 1993). In this Thesis, the trend analysis was 

performed using the Sen's slope estimator (Sen, 1968); meanwhile, the Mann-Kendall (MK) 

nonparametric test (Mann, 1945; Kendall, 1975) was applied to evaluate the trend significance. 

The MK test is a rank-based procedure, less sensitive to the non-normality of the distribution, and 

less affected by outliers in the series (Birsan et al. 2005; Zhang et al., 2000; Ouarda et al., 2014). 

However, some assumptions are associated with this test, such as independent time series data 

(Mulugeta et al., 2019; Razavi et al., 2016). The presence of significant serial correlation in 

hydroclimatic time series affects trend testing resulting, for example, an increased detections of 

trends (Type II errors) or a high rejection rate of the null hypothesis (Type I error) (Mulugeta et 

al., 2019; Yue et al. 2002). All the time series were pre-whitened in order to correctly apply the 

MK test for serial autocorrelation (Pingale et al., 2016; Abeysingha et al., 2016; Wagesho et al., 

2013; Hamed, 2009, Zhang et al., 2000; Wang and Swail, 2001; von Storch, 1995; Vincent, 2006; 

Yue et al. 2002). 

According to the MK test, the null hypothesis indicates no trend (the time series is independent 

and randomly ordered), and the alternative hypothesis indicates a trend (Onoz and Bayazit, 2012). 

The nonparametric MK test has been widely used to assess the monotonic trend in climatic studies 



METHODOLOGY | 3 
 

22 
 

(Salameh et al., 2018; Jain et al., 2012; Rajand, 2012; Alexander et al., 2006, Kunkel et al., 1999, 

Klein Tank and Können, 2003; New et al., 2006; Zhang et al., 2009; Zhang et al., 2015; Gu et al., 

2017; Deng et al., 2018; Sarricolea et al., 2019). The detailed calculation procedure can be found 

in Hirsch et al. (1982) and Yue et al. (2002). The related equations for calculating the MK statistic, 

S, is the following: 

                                                𝑆 = ∑ ∑ 𝑠𝑖𝑔𝑛 𝑛
𝑗=𝑖+1

𝑛−1
𝑖=1 (𝑇𝑗− 𝑇𝑖)                                                                 (3.1( 

where 𝑛 is the length of the time series, 𝑇𝑗 and 𝑇𝑖 are the 𝑖𝑡ℎ and 𝑗𝑡ℎ data point in the time series 

(𝑗 > 𝑖), respectively. The 𝑠𝑖𝑔𝑛() is the sign function which can be defined as: 

                                          𝑠𝑖𝑔𝑛(𝑇𝑗 −  𝑇𝑖) = {

1 𝑖𝑓 𝑇𝑗 −  𝑇𝑖 > 0
0 𝑖𝑓𝑇𝑗 −  𝑇𝑖 = 0

−1 𝑖𝑓 𝑇𝑗 −  𝑇𝑖 < 0
                                         (3.2) 

Under the assumption that the data are independent and identically distributed, the mean of the 𝑆 

statistic is given by (Kendall, 1975):  

                                                                           E(S) = 0                                         (3.3) 

E is the expected value of the S, and the variance (σ2) is obtained as:       

𝜎2 =
𝑛(𝑛−1)(2𝑛+5)−∑ (𝑖)(𝑖−1)(2𝑖+5)𝑚

𝑘=1

18
   (3.4) 

In which 𝑚 is the number of tied groups and 𝑖 is the number of ties for the 𝑘𝑡ℎ value. 

The standard test statistic 𝑍𝑠 is calculated as follows: 

                                                                  𝑍𝑠 = {

𝑠−1

𝜎
 𝑓𝑜𝑟 𝑆 > 0

0 𝑓𝑜𝑟 𝑆 = 0
𝑠+1

𝜎
𝑓𝑜𝑟 𝑆 < 0

         (3.5) 

The 𝑍𝑠 is used as a measure of significance of trend when the sample size 𝑛 > 10. A positive or 

negative value of 𝑍𝑠 indicates an upward or downward trend, respectively. The statistical 

significance of the trends was assessed at the 0.1, 0.05, 0.01, and 0.001 levels. 

 

3.2 Sen’s approach 

The Sen’s estimator is used for determining the magnitude of a trend in climatic studies. It is a 

non‐parametric alternative to linear regression slope and is usually used in conjunction with the 

MK test (Lv et al., 2016). The Sen's slope estimator is the median of all pairwise slopes in the data 

set (Fortin and Hétu, 2014). This method can be calculated as (Some’e et al., 2012; Tabri and 

Aghajanloo, 2013; Xu et al., 2003): 
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                                                           𝑄𝑚𝑒𝑑 = 𝑚𝑒𝑑𝑖𝑎𝑛 (𝑄),     (3.6) 

                                                                   𝑄 =  
𝑋𝑗−𝑋𝑖

𝑗−𝑖
, 𝑖 < 𝑗,                             (3.7) 

where the 𝑋𝑗 and 𝑋𝑖 are data points at time 𝑗 and 𝑖, respectively. 

 

3.3 Analysis of sub-periodical variation 

For analysis of sub-periodical variation, Cramer‘s test (Lawson et al., 1981; WMO, 1966) was 

used to compare the means of the sub-periods with the mean of the entire period. The Cramer’s t-

statistics is defined as the departure of the sub-period mean from the long-term mean, divided by 

the long-term standard deviation (Sahai et al., 2003). The 𝑡𝑘 statistic is computed as: 

                                            𝑡ₖ =  𝑙ₖ [(𝑛 (𝑁 − 2) / {𝑁 − 𝑛 (1 +  𝑙ₖ ² )}]½                                  (3.8) 

where 𝑛 and 𝑁 are the number of years constituting the sub-period and the entire period, 

respectively, and  𝑙ₖ is a standardized measure of difference between the means of sub-period and 

total period obtained as: 

                                                                    𝑙ₖ =  (𝑚ₖ − 𝜇)/𝜎                      (3.9) 

where 𝜇 is the mean and 𝜎 is the standard deviation of the series for the total number of years (𝑁); 

𝑚ₖ is the mean for each successive n-year. For significance of Cramer‘s 𝑡ₖ value at 5% level, the 

required t value is ±1.96 or more (Mooley et al., 1984). 

 

3.4 Change point detection  

In hydroclimatic time series data, identifying the starting period of the significant trends is also of 

great interest. The sequential Mann-Kendall (SMK) test, introduced by Sneyers (1990), is typically 

used to define the start of any notable change or significant trend in the considered time series (Lu 

et al. 2004; Partal and Kahya 2006; Tabari et al. 2011; Shifteh Somee et al. 2012). The SMK test 

is computed using ranked values, 𝑦𝑖 of the original values(𝑋1, 𝑋2, 𝑋3, … … . , 𝑋𝑛). The magnitudes 

of 𝑦𝑖  (𝑖 = 1, 2, 3, . . . , 𝑛) are compared with 𝑦𝑗  (𝑗 = 1, 2, 3, . . . , 𝑖 − 1). For each comparison, the 

cases where 𝑦𝑖   𝑦𝑗 are counted and denoted by 𝑛𝑖. A statistic 𝑡𝑖 can, therefore, be defined as (Bisai 

et al,. 2014; Gerstengarbe and Werner, 1999; Adarsh and Janga Reddy, 2015):    

                                                          𝑡𝑖 = ∑  𝑛𝑖
𝑖
𝑗=1                   (3.10) 

The distribution of test statistic 𝑡𝑖 has a mean as 

                                                           𝐸(𝑡𝑖) =
𝑖(𝑖−1)

4
     (2.11) 

and a variance as 

                                                    𝑉𝑎𝑟(𝑡𝑖) =
(𝑖(𝑖−1)(2𝑖+5))

72
                  (3.12) 
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The  sequential  values  of  a  reduced  or  standardized  variable, called statistic 𝑢(𝑡𝑖) is 

calculated  for  each  of  the  test  statistic variable 𝑡𝑖 as follows:  

                                                             𝑢(𝑡𝑖) =
𝑡𝑖−𝐸(𝑡𝑖)

√𝑣𝑎𝑟(𝑡𝑖)
                               (3.13) 

While  the  forward  sequential statistic, 𝑢(𝑡𝑖) is  estimated  using the original time series 

(𝑋1, 𝑋2, 𝑋3, … … . , 𝑋𝑛), values of the backward sequential  statistic, 𝑢′(𝑡𝑖) are estimated  in  the  

same manner  but starting  from  end  of the series. In estimating 𝑢′(𝑡𝑖) the time series is resorted 

so that last value of the original time series comes first  

When 𝑢(𝑡) and 𝑢’(𝑡) are plotted, the intersection of curves 𝑢(𝑡) and 𝑢’(𝑡) within ±1.96 (that 

corresponds to the bounds at 5% significance level) of the test statistic indicates the approximate 

time of occurrence of the trend (Dipak. et al., 2014). If 𝑢(𝑡) exceeded the confidence line, there 

was a significant upward or downward trend in the time series (Liu et al., 2008; Olmo et al., 1995). 

 

3.5 Principal Component Analysis  

The Principal Component Analysis (PCA) is a multivariate analysis technique that identifies and 

obtains the dominant spatio-temporal patterns of the simultaneous variations of a field or variable 

(Preisendorfer, 1998). Climatologists have widely used this method as a tool in the study of the 

spatial and temporal variability of climatic fields (Cerón et al., 2020; Nair and Mohanty, 2013; 

Santos et al. 2017). Its fundamental objective is to reduce the multidimensional data sets analyzed. 

The purpose of PCA is to transform the highly associated variables in the original data into smaller 

independent or unrelated variables, called Principal Components (PCs), and to use these few 

variables to reflect most of the variability in the original data (Zhang et al., 2020; Keyantash and 

Dracup, 2004). Thus, the PCA consists of an orthogonal linear transformation of the original data 

set to identify new variables, which are linear combinations of the original data set, subject to the 

maximization of covariance or correlation (von Storch and Zwiers, 1999). Each PC explains 

percentage of variance of the original data, with the first PC explaining the greatest amount of 

variance. 

In this study, the PCA is conducted using Varimax rotation on standardized and detrended annual 

and seasonal temperatures and precipitation time series. The Varimax rotation is an orthogonal 

method used to maximize the variance between the PCs, and it is used to identify areas with 

independent temperature and precipitation variability. The number of PCs to retain was determined 

based on the North rule of Thumb (North et al., 1982), based on the degeneration of eigenvalues. 

If the spacing between two consecutive eigenvalues is smaller than the error of the first one, they 

cannot be considered different true eigenvalues. The loading corresponding to each data set was 

mapped to show the spatial patterns of variability across the Levant region. A brief outline of the 

important features of PCA is given below: 

If the data matrix is defined as: 

                                                  𝑍 =  (𝑧ij: 𝑖 = 1, … . . 𝑛, 𝑗 =  1, … . . 𝑝)             (3.14) 
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And the symmetric correlation matrix as (Preisendorfer, 1988): 

                                                                    𝑅 =  𝑍𝑇𝑍                           (3.15) 

The `𝑝' PCs of 𝑍 are the columns of an (𝑛(𝑡𝑖𝑚𝑒) 𝘹 𝑝(𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑠)) matrix 𝐹 containing PC scores 

obtained by linear combination of the original variables with conditions of mutual orthogonality 

and maximum variance and given by: 

                                                                               𝐹 =  𝑍𝐴     (3.16) 

where `𝑖' and `𝑗′ represent individuals or cases and variables, respectively, superscript `𝑇' 

represents the transpose of the matrix, and matrix 𝐴 contains unit length eigenvectors providing 

PC loadings. The eigenvectors are uncorrelated and they are orthogonal to each other. Because of 

this, they are commonly named Empirical Orthogonal Function (EOFs).  

The basic eigen-structure of the correlation matrix can be represented as  

                                                                         𝐴𝐷𝐴𝑇      (3.17) 

where 𝐷 is the diagonal matrix of eigenvalues of 𝑅 arranged in descending order of magnitude. It 

can be shown that variances of column vectors of 𝐹 are numerically equal to the elements of 

matrix 𝐷.  

The sum of variances is thus 𝑡𝑟𝑎𝑐𝑒(𝐷) or 𝑡𝑟𝑎𝑐𝑒(𝑅) and the proportion of the total variance 

attributed to each PC is  

                                                 [{𝑑𝑖/𝑡𝑟𝑎𝑐𝑒(𝐷)}𝘹100] percent,      (3.18) 

where𝑑𝑖 is 𝑖th elements of 𝐷. 

 

In PCA, the matrices 𝐴 and 𝐹 are further rescaled according to: 

                                                                  𝐿 = 𝐴𝐷1/2      (3.19) 

                                                                           𝐹 = 𝐹𝐷1/2     (3.20) 

so that elements of matrix 𝐿 provide correlation between PCs and original variables and matrix 𝐹 

contains standardised PC scores having zero means and unit variances. 

 

3.6 The K-means clustering algorithm  

The K-means algorithm (Mac Queen, 1967; Hartigan and Wong, 1979) is used to reveal structures 

in the data set and minimize large dimension data sets. It is an indirect clustering method relies on 

the similarity measure between observations based on the nearest neighbor method (Xiong et al. 

2011; Tan et al. 2019). This algorithm distributes 𝑛 observations into k clusters in which each 

observation belongs to the cluster with the nearest centroid, and the similarity between clusters is 

lower. In this algorithm, the number of clusters (K) is randomly selected among 𝑛 observations, 

each of which represent the centroid of a cluster. The 𝑛 remaining observations are allocated to 
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the closest cluster based on the distance between the observation and each cluster’s centroid. After 

that, the centers or centroids are recalculated, and observation reallocates until the criterion 

function converges or remain constant (Jinming et al., 2015; Kim and Ahn 2008; Salehnia et al., 

2019). More details about this method are in (Fränti and Sieranoja, 2018; Everitt et al. 2011; Jain, 

2010).  

In practice, the most popular similarity measure is Euclidean distance due to its computational 

simplicity and sum-squared error (SSE) is used as the objective function. The error for each 

observation that represents the Euclidean distance to the nearest centroid are calculated, and then 

the sum of squared errors (𝑆𝑆𝐸) are calculated as follow (Liu et al., 2013; Zeng et al., 2020):   

                                                            𝑆𝑆𝑇 = ∑ ∑ 𝑑𝑖𝑗(𝑥𝑖 , 𝑐𝑗)𝑛
𝑖=1

𝑘
𝑗=1     (3.21) 

where 𝑑 is the Euclidean distance. The centroid of the 𝑖𝑡ℎ cluster is defined by formula 

                                                                           𝑐𝑖 =
1

𝑛𝑖
∑ 𝑥𝑖

𝑛𝑖
𝑗=1      (3.22) 

where 𝑥 = (𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑑). 

It was mainly used to identify the thresholds that separate stations into homogeneous regions. The 

K-means clustering technique was applied to the rotated PC scores (Mills, 1995). The homogeneity 

of each cluster was studied by the ratio value of between-classes variance and total variance. If the 

ratio is high, the corresponding cluster must be considered homogeneous and vice versa. The 

optimal number of clusters was decided using the R “NbClust” Package (Charrad et al., 2014). It 

provides 30 indexes for determining the optimal number of clusters in a data set, and it offers the 

best clustering scheme from different results to the user. 

  

3.7 Extreme temperature and precipitation indices  

In this study, 16 extreme indices derived from daily maximum and minimum temperatures (Table 

4.1), and 15 extreme precipitation indices (Table 4.2) were selected from a total of 27 temperature 

and precipitation indices recommended by the Expert Team on Climate Change Detection 

Monitoring and Indices (ETCCDI) (Folland et al., 1999; Alexander and Herold, 2015; Peterson et 

al., 2001).  

The extreme temperature indices can be divided into four categories (Fonseca et al., 2016; Scorzini 

et al., 2018): 1. Absolute extreme temperature (TXx, TXn, TNx, TNn and ETR); 2. Percentile-

based extreme temperature (TX90p, TX10p, TN90p and TN10p); 3. Duration-based (warm spell 

duration index (WSDI) and cold spell duration index (CSDI)); and 4. Fixed threshold (SU25/30, 

TR20/25 and frost days). Similarly, the extreme precipitation indices can be divided into five broad 

categories (Alexander et al., 2006): 1. Threshold indices (R1mm, R10mm, R20mm, and R50mm), 

2. Absolute indices (e.g., Rx1day, Rx3day, and Rx5day), 3. Extreme percent (R95P and R99P), 4. 

Duration indices (CDD and CWD), and 5. Other indices (PRCPTOT, SDII, R95Ptot and R99Ptot). 

For the study area, the thresholds 30ºC and 25ºC were applied for very summer days (SU30) and 

very tropical nights (TR25) indices, respectively, based on the long-term summer averages for 
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Tmax and Tmin, and in a detailed review of the literature for the surrounding regions such as the 

Arabian Peninsula and Saudi Arabia (Athar, 2014; Attada et al., 2019), Iran (Rahimzadeh et al., 

2009; Rahimi and Hejabi, 2018) or Turkey (Erlat and Türkes¸, 2013). In addition, the derived 

extreme precipitation indices such as consecutive dry days (CDD) and consecutive wet days 

(CDD) were performed for the wet months (e.g., CDD/CWD-DJF, CDD/CWD-MAM, and 

CDD/CWD-DJFMAM).  

All extreme temperature indices were computed at annual time scale, and at seasonal scale for 

absolute and percentile indices as well as for SU25/30 and TR20/25 indices. For extreme rainfall 

indices, the indices were computed at annual time scale, and at seasonal scale for PRCPTOT, 

R1mm, R10mm, R20mm, RX1day, RX3day, RX5day, and SDII indices. Days from December 1 

to the end of February were considered for winter (win), March–April–May for spring (spr), June–

July–August for summer (sum), and from September to November for autumn (aut).  

A brief description and definition of each index with acronyms are given in Tables 4.1 and 4.2, 

and further details are available in Zhang et al. (2011) and http:// 

etccdi.pacificclimate.org/list_27_indices.shtml. Extreme indices were performed using the 

software package RClimDex v1.0 (Zhang and Yang, 2004) developed at the Climate Research 

Branch of the Meteorological Service of Canada. The software and documentation are available at 

http://etccdi.pacificclimate.org. Such software performs the calculations using daily data and 

provides monthly and annual data of the indices 

Index  Indicator 

name 

Description Index type Unit 

TXx Max Tmax Maximum value of daily maximum temperature Absolut ºC 

TXn Min Tmax Minimum value of daily maximum temperature Absolut ºC 

TNx Max Tmin Minimum value of daily minimum temperature Absolut ºC 

TNn Min Tmin Maximum value of daily minimum temperature Absolut ºC 

ETR Range MaxTmax – MinTmin Absolut ºC 

TX90p Warm days    Count of days when Tmax >90th percentile Percentile Day 

TX10p  Cold days Count of days when Tmax < 10th percentile Percentile Day 

TN90p  Warm nights    Count of days when Tmin >90th percentile Percentile  Day 

TN90p  Cold nights Count of days when Tmin < 10th percentile Percentile  Day 

WSDI Warm spell 

duration index 

Count of days with at least six consecutive days when 

Tmax >90th percentile 

Percentile  

Duration  

Day 

CSDI Cold spell 

duration index 

Count of days with at least six consecutive days when 

Tmin <10th percentile 

Percentile  

Duration 

Day 

SU Summer days Count of days when Tmax >25 ∘C Threshold Day 

SU30 very summer 

days 
Count of days when Tmax >30 ∘C Threshold Day 

FD Frost days Count of days when Tmin <0 ∘C Threshold Day 

TR  Tropical nights Count of days when Tmin >20 ∘C Threshold Day 

TR25 very tropical 

nights 
Count of days when Tmin >25 ∘C Threshold Day 

Table 3.1. Definition of extreme temperature indices used in this study. 
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Index Indicator name Definition Unit 

PRCPTOT Annual total wet-day 

precipitation 

Annual total precipitation from days ≥1 mm Mm 

R1mm Number of wet days Annual count of days when precipitation ≥1 mm Days  

R10mm Number of heavy 

precipitation days 

Annual count of days when precipitation ≥10 mm Days  

R20mm Number of very heavy 

precipitation days 

Annual count of days when precipitation ≥20 mm Days   

R50mm Number of days above 

50 mm 

Annual count of days when precipitation ≥50 mm Days  

R95P Very wet days Annual total precipitation when RR > 95th percentile mm 

R99P Extremely wet days Annual total precipitation when RR > 99th percentile mm 

R95Ptot Contribution from very 

wet days 

100*R95P/PRCPTOT % 

R99Ptot Contribution from 

extremely wet days 

100*R99P/PRCPTOT % 

RX1day Max 1-day precipitation 

amount 

Monthly maximum 1-day precipitation mm 

RX3day Max 3-day precipitation 

amount 

Monthly maximum consecutive 3-day precipitation mm 

RX5day Max 5-day precipitation 

amount 

Monthly maximum consecutive 5-day precipitation mm  

SDII Simple daily intensity 

index 

Annual total precipitation divided by the number of 

wet days (defined as precipitation ≥1 mm) in the year 

mm/day 

CWD Consecutive wet days Maximum number of consecutive days when 

precipitation ≥1 mm 

Days  

CDD Consecutive dry days Maximum number of consecutive days when 

precipitation <1 mm 

Days  

CDD-DJF Consecutive dry days Maximum number of consecutive days when 

precipitation <1 mm, between December to February 

Days  

CDD-NDJFM Consecutive dry days Maximum number of consecutive days when 

precipitation <1 mm between November to March 

Days  

Table 3.2. Description of extreme precipitation indices used in this study. 

 

3.8 The teleconnection patterns influence  

The influence of teleconnection indices on the Levant’s seasonal Tmax and Tmin and precipitation 

was examined by mean of Pearson correlation as in other studies (Efthymiadis et al., 2011; 

Unkaševic and Tošic, 2013; Popov et al., 2018) based on detrended series for each station. In 

addition, the seasonal averaged time series for temperatures and precipitations were calculated for 

entire Levant and its sub regions “Jordan, Palestine/Israel, Syria and Lebanon”. After that, the 

correlation was also applied between these averaged time series and the teleconnection patterns. 

The statistical significance of the correlations was assessed at the 5% significance level.  

The teleconnection maps, which describes the linkage between a region of interest and other points 

in the domain that are farther than the de-correlation length scale of the variable were constructed 

and analyzed. Teleconnection maps thus provide information about the structure of recurrent 

climate variability that is characterized by the correlation at a distance feature.  

In addition, the frequency of significant correlations and their magnitudes between teleconnection 

patterns and the seasonal averaged time series for entire Levant and its sub regions were also 

calculated and analyzed. Those teleconnection indices excluded from teleconnection maps did not 
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show significant concurrent correlations with any of the meteorological stations or they showed 

very small frequency of significant correlations. RStudio (version 3.6.2) and ArcMap (version 

10.4.1) software were used to perform all calculations and to produce teleconnection maps, 

respectively. 

 

3.9 Co-variability analysis 

To determine the mechanisms governing climatic variations, it is essential to characterize the 

large-scale interactions between the ocean and the overlying atmosphere. In this thesis, the possible 

relationship between the seasonal temperatures and precipitation in the Levant region and two 

indicators of climate variability, sea surface temperatures (SST) and sea level pressure (SLP), will 

be evaluated to identify significant associated regions have a coupled variability. The coupled 

relationships between two spatial-temporal fields (such as SST-winter Tmax, SLP-spring rainfall) 

were examined using Singular Value Decomposition (SVD).  

The use of SVD in the meteorological context is quite recent. Prohaska (1976) was the first to use 

it to study the relationship between two meteorological fields. After that, not many studies using 

SVD to relate geophysical fields were published until Bretherton et al. (1992) and its companion 

paper, Wallace et al. (1992). After that, the use of SVD for climatological purposes increased 

considerably. It has been used in numerous studies to identify coherent spatial patterns of climate 

variability in regions around the world for several variables such as drought (Rajagopalan et al., 

2000), Precipitation (Wang et al., 2000; Uvo et al., 1998; Enfield et al., 1999), streamflow (Soukup 

et al., 2009; Sagarika et al., 2015), runoff (McCabe et al., 2014).  

The SVD has usually been applied to two data fields together by using the cross-covariance matrix 

to identify modes that explain the greatest covariance between such fields (Martín et al., 2011, 

Venegas et al 1995). Detailed discussions on SVD analyses can be found in Bretherton et al. 

(1992), Wallace et al. (1992), von Storch and Navarra (1995), and Newman and Sardeshmukh 

(1995). In this study, the calculations related to SVD followed these steps:-  

1- A matrix of standardized and detrended SST, SLP, seasonal (Tmax, Tmin) and 

precipitation were developed.  

2- The cross-covariance matrix “𝐶” was then computed for each coupled spatio-temporal 

matrices (such as SST-summer Tmax, SLP-winter rainfall). Let’s 𝑋 and 𝑌 be the left and 

right data fields representing the climatic variable, SST/SLP and seasonal 

temperatures/precipitation, respectively. The dimension of 𝑋 is 𝑁 𝘹 𝑚ᵪ and the dimension 

of 𝑌 is 𝑁 𝘹 𝑚ᵧ, where 𝑁 represents times (years), 𝑚ᵪ the number of grid points and 𝑚ᵧ the 

number of gauging stations. The temporal cross-covariance matrix can be constructed as: 

 

                                                𝐶 = 𝑋𝑌 = [

𝑋1𝑌1 ⋯ 𝑋1𝑌𝑚ᵧ
⋮ ⋱ ⋮

𝑋𝑚ᵪ𝑌1 ⋯ 𝑋𝑚ᵪ𝑌𝑚ᵧ
]                    (3.23) 
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Which has 𝑚ᵪ x 𝑚ᵧ dimension, with each element of the matrix, <𝑋𝑖𝑌𝑗>, corresponding 

to the spatial cross-covariance between the time series 𝑋𝑖 and 𝑌𝑗 at grid 𝑖 and station 𝑗, 

respectively. 

3- After that, the SVD was applied to the cross-covariance matrices and physical information 

or SVD coefficients regarding the relationship between the coupled fields was obtained. 

The resulting SVD of the cross-covariance matrix created two matrices of singular vectors 

“𝑈 and 𝑉” and one matrix of singular values “𝐿”. Based on the cross-covariance matrix, 

matrices 𝑈, 𝑉 𝑎𝑛𝑑 𝐿 are related by:  

                                                                          𝐶 = 𝑈𝐿𝑉ᵀ         (3.24) 

The singular vectors for 𝑋 are the columns of 𝑈 (often-called left patterns), and the singular 

vectors of 𝑌 are the columns of 𝑉 (right patterns). Each pair of singular vectors is a mode 

of co-variability between the fields 𝑋 and 𝑌.  

These vectors, a set of 𝑁𝑥 dimensional orthogonal vectors 𝑈ₖ (𝑘 = 1, . . , 𝑁𝑥) for 𝑋, and a 

set of 𝑁𝑦 dimensional orthogonal vectors 𝑉𝑞  (𝑞 = 1, … , 𝑁𝑦) for 𝑌, are determined so the 

covariance between the projections of the fields on them is maximized, subjected to 

orthogonalty:  

                                                                      𝑈𝑈ᵀ =  𝐼      (3.25) 

                                                                          𝑉𝑉ᵀ =  𝐼      (3.26) 

4. The matrix 𝐿 is an 𝑚ᵪ 𝘹 𝑚ᵧ diagonal matrix holding the singular values. Each pair of 

singular vectors (𝑢𝑖, 𝑣𝑖) corresponds to a singular value in 𝐿. Bretherton et al. (1992) 

defines the squared covariance fraction (𝑆𝐶𝐹ₖ) as a useful measurement for comparing the 

relative importance of modes in the decomposition. The relative importance of each SVD 

mode is indicated by the percentage of square covariance (𝑆𝐶) for the associated mode. For 

each singular value. This quantity is defined by: 

                                                                          𝑆𝐶𝐹ₖ =
𝐼ₖ²

∑ 𝐼ᵢ²𝑅
𝑖=1

                  (3.27) 

The modes are ordered with respect to their singular values so that the first pair accounts 

for the largest 𝑆𝐶𝐹ₖ and the remaining pairs describe a maximum fraction unexplained by 

the previous pairs. 

5. As mentions before, the two matrices of singular vectors “𝑈” and “𝑉” generally referred 

to as the left (SST/SLP) matrix and the right (seasonal temperatures or rainfall) matrix. The 

columns of the left matrix was projected onto the standardized (SST/SLP) matrix and the 

columns of the right matrix was projected onto the standardized (seasonal temperatures or 

rainfall) matrix. These are  the temporal expansion series of the left "𝐴" and right "𝐵" fields, 

respectively, , which describe the time variability of each mode, and are given by 

                                                                      𝐴 =  𝑋𝑈      (3.28) 

                                                                            𝐵 =  𝑌𝑉                                       (3.29) 
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The Kth columns of the 𝐴 and 𝐵 matrices contain the expansion coefficients for the kth SVD 

mode for fields 𝑋 and 𝑌, respectively. Since both 𝑈 and 𝑉 are orthogonal, the original fields 

can be easily reconstructed as:  

                                                                         𝑋 =  𝐴𝑈ᵀ      (3.30) 

                                                                                   𝑌 =  𝐵𝑉ᵀ                 (3.31) 

Hence, using equations (1), (2), (7) and (8), the temporal covariance between the two fields 

can be expressed in terms of the expansion coefficients as follows:  

                                                                                  𝐴ᵀ 𝐵 =  𝐿        (3.32) 

That is, an expansion coefficient of the left field is correlated only with the time series of 

the same mode in the right field.   

6. After that, the correlation between the expansion coefficients corresponding to the left and 

right fields, called string of coupling, (𝑆𝑇𝑅ₖ) was calculated. For example, in case of the 

kth mode:  

                                                                        𝑆𝑇𝑅ₖ = r𝐴ₖ𝐵ₖ                                    (3.33) 

Moreover, the total variance of individual field, explained by each mode, was also 

calculated by determine the eigenvalues of the covariance matrix for the left/right 

expansion coefficient and divided by its trace. 

7. The left homogeneous correlation values (for the 1st mode) were determined by correlating 

the left matrix values (here SST/SLP) with the left field's 1st temporal expansion series. 

The right heterogeneous correlation values (for the 1st mode) were determined by 

correlating the right matrix (seasonal temperatures or rainfall) with the left field's 1st 

temporal expansion series. The homogenous correlation map is an indicator of the 

geographic localization of covering parts of the field. In contrast, the heterogeneous 

correlation map indicates how well the grid points of one field relate to the other's kth 

expansion coefficient. In this study, special; attention is given to the heterogeneous 

correlation maps as we seek the influence of SST or SLP over temperature and 

precipitation. 

8. The SCF and STR are only meaningful when they are associated with significant SC. 

Newman and Sardeshmukh (1995) suggest, from a different perspective, that SVD modes 

are physically meaningful only if they explain significant portions of the variance of their 

respective fields. We assess the statistical robustness of the results obtained from the SVD 

analysis, with a significance test using a Monte Carlo approach focusing on the square 

covariance (SC) rather than the SCF or correlation coefficient (Venegas et al., 1997). The 

SC is a direct measure of the relationship between SST/SLP-rainfall and temperature; 

whereas, the SCF and the correlation coefficient indirectly measure the relationship 

between the coupled SVD patterns. To test the significance of the SVD analysis, a Monte 

Carlo simulation is performed by randomizing the SST/SLP in time. After that, the SVD 
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analysis is performed 100 times. The randomized SVD analyses exceed the number of 

times the original squared covariance (SC) indicates its significance level. For example, if 

the randomized SC exceeds the original SC less than five times, then the significance level 

would be 95%. 

 

3.10 Standardized Precipitation Index (SPI) 

This study uses the SPI to understand meteorological droughts in the study region. There are  many 

drought indices available, such as the Palmer drought severity index (PDSI), China Z index (CZI), 

effective drought index (EDI), and the Standardized Precipitation Evapotranspiration index (SPEI) 

(Palmer 1965; Kendall and Stuart, 1977; Byun and Wilhite, 1999; Vicente-Serrano et al., 2010; 

Tian et al. 2018). The SPI is a multi-timescale drought index developed by McKee et al. (1993) 

that uses the monthly precipitation aggregates over a range of time scales (1, 3, 6, 12, 18, and 24 

months, etc.) to describe precipitation changes. The SPI values refer to the strength of the anomaly, 

with positive values indicating water surpluses due to above-normal rainfall and negative values 

indicating water shortages due to below-normal precipitation (Brito et al., 2018; Yenigun and 

Ibrahim, 2019). It was chosen because it has been widely used and recommended for characterizing 

meteorological droughts by the World Meteorological Organization (WMO), as well as by 

international meteorological and drought monitoring centers (WMO, 2012; Vogt et al., 2011; 

Svoboda et al., 2002). It is also a flexible indicator with robust underlying probability functions 

that can be calculated for many timescales, has high spatial coherence, only requires precipitation 

data, and SPI values from different climatic regions can be easily and directly compared (Kim et 

al., 2014; Ford and Labosier, 2014; Spinoni et al., 2014).  

The first step entails estimating the parameters for a specific distribution of precipitation totals for 

the observed stations and over the desired timescale. Despite the fact that no single distribution is 

optimal, the Gamma distribution has proven to be the most reliable and is thus the most commonly 

used (Guttman 1999; McKee et al., 1993; Wilks, 1995):  

                                                    𝐺 (𝑥) =  
1

ꞵ
γℾ(γ) 

∫ 𝑥𝑦−1𝑒
−

𝑥

ꞵ
 𝑥

0
 𝑥 > 0       (3.34) 

where γ is the shape parameter, ꞵ is the scale one, 𝑥 is the precipitation amount, and ℾ(γ) is the 

Gama function. The γ and ꞵ can be obtained by the maximum likelihood estimation method, as 

follow. 

                                                                  γ =  
1+√1+4𝐴/3

4𝐴
                 (3.35) 

                                                        𝐴 = ln(𝑥) −
1

𝑛
∑ ln 𝑥𝑖

𝑛
𝑖=1      (3.36) 

                                                               ꞵ  =  �̅�/γ      (3.37) 

Where �̅� is the mean value of the precipitation, 𝑛 is the number of observations, and 𝑥𝑖 is the 

quantity of precipitation in the sequence of data. The gamma distribution is undefined for 𝑥 = 0, 

so the cumulative probability distribution given a zero value is derived as follows:  
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                                                      𝐻(𝑥) = 𝑞 + (1 − 𝑞)𝐺(𝑥)       (3.38) 

Where 𝑞 is the probability of no precipitation.  

The cumulative probability distribution is then transformed into the standard normal distribution 

to calculate SPI (Türkeş and Tatlı, 2019). More detailed descriptions of the SPI calculation are 

provided in (McKee et al., 1993; Wu et al., 2005; Guttman, 1999; Gumus and Algin, 2017). McKee 

et al. (1993) have classified the SPI values into seven levels as shown in Table 3.3. 

SPI value Class 

SPI ≥2.0 Extremely wet 

1.5 ≤ SPI < 2.0 Severe wet 

1.0 ≤ SPI < 1.50 Moderately wet 

0 < SPI < 1 Slightly wet 

−1.0 < SPI < 0 Slightly dry 

−1.50 < SPI ≤ −1.0 Moderately drought 

−2.0 < SPI ≤ −1.5 Severe drought 

SPI ≤ −2.0 Extremely drought 

Table 3.3. Classification used for SPI by McKee et al. (1993). 

For this study, the drought event is defined as a period in which the SPI is continuously negative 

and reaches a value of −1.0 or less (McKee et al., 1993). The drought frequency (DF) is defined 

by the number of drought events (SPI≤ -1) per time period (49 years) (Tian and Quiring, 2019). 

The drought duration (DR) is the period length in which the SPI is continuously negative, starting 

when the SPI values is equal to -1 and ending when the SPI values turn out to be positive, in this 

analysis for at least two consecutive months (Mishra et al., 2009; Spinoni et al., 2014). The drought 

severity (DS) was defined as the sum of the absolute monthly SPI values when they are ≤−1(Tan 

et al., 2015; Spinoni et al., 2014). 
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CHAPTER 4 

         TREND ANALYSIS OF MAXIMUM AND 

MINIMUM TEMPERATURES 
 

           This chapter aims to analyze the spatial and temporal 

changes in the annual, seasonal, and monthly trends of the 

maximum, minimum, and diurnal temperatures range as 

indicators of climate change over the entire Levant in 1987-

2018. The trends are analyzed based on observational data from 

60 stations at multiple time and space scales. The relationships 

between seven large-scale circulation patterns and seasonal 

temperature are also investigated where the correlation maps are 

constructed and analyzed. 

 
 

4.1 Introduction  

At the global and continental scales, most of the warming observed in recent decades is attributed 

to anthropogenic influences (Houghton et al., 2001; Stott, 2003; IPCC, 2007, 2013). During the 

1906-2005 and 1850-2012 periods, global mean temperature has increased by 0.74°C and 0.85°C, 

respectively, and the rate of warming during the last 55 years of the 1906-2005 period is nearly 

twice that of the first half (0.12±0.03°C/decade vs. 0.07±0.02°C/decade) (Trenberth et al., 2007; 

IPCC, 2013). Moreover, global warming has been remarkably rapid since the mid-1970s (WMO 

2006). 

In the eastern Mediterranean, temperature showed a negative trend during 1950-1990 (e.g., this 

decrease exceeds -0.2°C/decade in southeastern Turkey) (Sahsamanoglou and Makrogiannis, 

1992; Repapis and Philandras, 1988; Proedrou et al., 1997; Domroes and El-Tantawi, 2005). In 

addition, Ben Gai et al. (1999), analyzed the trends of maximum and minimum temperatures in 

Israel using data from 40 stations for the period 1960-1994, and the results showed a significant 

(p < 0.1) decreasing trend in annual maximum and minimum temperatures by -0.03 and -

0.05°C/decade, respectively. Hasanean et al. (2001), investigated the surface air temperature 
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variations in eastern Mediterranean using the annual temperature data from 8 stations before 1991, 

and the decreasing temperature trends were observed in Amman, Lattakia, and Alexandria stations 

by -0.16 (Sig.), -0.13 and -0.10°C/decade, respectively. Over Turkey, the mean annual maximum 

and minimum temperatures showed decreasing trends of -0.04 and -1.33°C/decade during 1955-

1989 (Kadiog˘lu, 1997). Freiwan and Kadioglu et al. (2008), analyzed the maximum and minimum 

temperatures at the annual and seasonal scales in Jordan, using data from 14 stations during the 

period 1950-2000, and found a decreasing trend in maximum temperature with the highest rate in 

Amman (-2.03°C/decade). 

On the other hand, the warming trend has been generally observed since the early 1990s for the 

eastern Mediterranean (Repapis et al., 2007; Saaroni et al., 2003). In Israel, Kafle and Bruins 

(2009) investigated the mean annual temperature for the period 1970-2002, and they found that 

the last 6 years from 1994 to 2002 were among the warmest years within the period 1970-2002 for 

almost all 12 weather stations, which shows the increasing warming effects in the last decade from 

1970-2002. In addition, Tangborn (2003) analyzed daily maximum and minimum temperatures 

observations for the 1932-1999 period at 74 weather stations in the United States, Europe, Asia, 

and Australia. The results suggested that abrupt climate change occurred in the 1980s, and since 

1990, positive temperature anomalies have been observed at almost all stations during the winter 

season. 

Indeed, the smallest changes in maximum (Tmax) and minimum (Tmin) temperatures can cause 

noticeable changes in physical, hydrological, and biological systems, as well as in crop yields, 

plant growth, water resources, drought, and human health (Parmesan, 2006; IPCC, 2001; Walther 

et al., 2002; Zhang et al., 2015). Changes in global mean surface temperature are a useful indicator 

of climate change and variability, but these changes may be due to changes in maximum and 

minimum temperatures (Braganza et al., 2004) with different impacts. In addition, the difference 

between Tmax and Tmin, defined as the diurnal temperature range (DTR), is also a good indicator 

of climate variability and change. 

On the other hand, teleconnection indices indicate the degree to which these patterns are modes of 

atmospheric variability and allow the study of their temporal variations and their effects on 

regional climate (Quadrelli et al., 2004; Brunettiet et al., 2002). They have a direct impact on 

human activities, as they are often associated with floods, droughts, heat or cold waves, and other 

factors that can directly influence and disrupt agriculture and water supplies (Jerez et al., 2013; 

Bastos et al., 2016). They are also often responsible for the occurrence of abnormal weather 

patterns (Barnston et al., 1987). Some of these indices are expected to increase under increased 

anthropogenic pressure (Zheng et al., 2013; Cai et al., 2014). 

Numerous studies indicate that temperature and precipitation variations at the global and regional 

level are controlled by different large-scale teleconnection patterns, such as North Atlantic 

Oscillation (NAO), North Sea Caspian Pattern (NCP), and El Niño Southern Oscillation (ENSO). 

The relationship between climate and teleconnection patterns has been well documented in many 

regions of the world, including Europe (Hurrell, 1995; Ulbrich and Cristoph, 1999; Trigo et al., 

2002; Zanchettin et al., 2008; Gámiz-‐Fortis et al., 2011), and in various parts of Middle East such 
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as Turkey (Türkes and Erlat, 2009; Kutiel and Türkes, 2005; Unal et al., 2010), Iran (Nazemosadat 

et al., 2006; Sabziparvar et al., 2011; Araghi et al., 2017; Ghasemi and Khalili, 2008), Egypt 

(Hasanean et al., 2004; Hasanean et al., 2006), and Saudi Arabia (Almazroui et al., 2020; Hasanean 

and Almazroui, 2016; Attada et al., 2018).  

Very few previous studies in the literature evaluate changes in air temperature in the Levant as a 

whole. All studies have used individual countries (especially Israel), a very small number of 

stations, small areas or basins, and a limited time scale (Al Qatarneh et al., 2018; Matouq et al., 

2013; Ben Gai et al., 1999; Kafle and Bruins 2009; Freiwan et al., 2008). On the other hand, the 

changes in air temperature in many other countries were well documented in the Middle East and 

north Africa. For example, in Turkey (Türkeş et al., 2002; Toros, 2012), Iran (Ghasemi, 2015; 

Soltani et al., 2016), Saudi Arabia (Almazroui et al., 2012; AlSarmi et al., 2011), Egypt (Tonbol 

et al., 2018; Domroes et al., 2005; Hassanean, 2006), and Libya (Kenawy et al., 2009).  

Concerning the teleconnection patterns, till now, the relationships between atmospheric circulation 

indices and the Levant temperature have not been completely identified. There are few studies on 

this topic, and all of them have dealt with limited areas, seasons, meteorological stations, 

teleconnection patterns, climate variables, and periods of investigation. The vast majority of these 

studies focused on Israel (Yosef et al., 2009; Ben Gai et al., 2001; Ziv et al., 2006), and very few 

studies were for the Levant as a whole. This study uses seven teleconnection patterns for the period 

1987-2018. Details on the data of the large-scale circulation patterns, resources, locations, and 

definitions are given in Chapter 2, Section 2.3.  

This chapter aims to analyze the spatial and temporal changes in the annual, seasonal, and monthly 

trends of the maximum (Tmax), minimum (Tmin), and diurnal temperature range (DTR) in the 

Levant region over the period 1987-2018. In addition, it will be determined which of the large-

scale variability modes influence the Levant seasonal temperatures (Tmax and Tmin). The 

temporal averages for the annual and seasonal (Tmax, Tmin, and DTR) were calculated based on 

monthly data for 60 stations distributed over the study area. Figure 2.4.1a shows the geographical 

distribution of the stations, while Table 1 in Appendix (A) contains the names, coordinates, and 

elevations of the stations. Details on the Data Quality Control (QC), the data, and homogeneity are 

available in Chapter 2, Section 2.2. 

The analysis was conducted for the entire Levant and its countries (Palestine/Israel, Jordan, 

Lebanon, Syria, north Levant, and south Levant). The spatial and temporal trends for the three 

variables were calculated on the annual, seasonal, and monthly scales using the nonparametric 

Mann-Kendall test (Mann, 1945; Kendall, 1975) and Sen's slope estimator (Sen, 1968). In addition, 

the mean difference between the two sub-periods (1987-2000 and 2001-2011), and the change 

points detection was assessed at the three temporal scales. For the seasonal analysis, each year was 

divided into four climatic seasons, namely winter (December-February), spring (March-May), 

summer (June–August), and autumn (September–November). 

The temporal mean values calculated on the annual and seasonal scales were plotted. They were 

also fitted by using the non-parametric Lowess smoothing technique (Appendix C.1) to smooth 

the temperature variability during the period under study (Cleveland, 1979, 1981). This method is 
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useful for tracking changes in temporal behavior in climatic time series (Costa and Soares, 2009; 

Kvamstø et al., 2012; Cioffi et al., 2015). In addition, the K-mean cluster algorithm was used to 

analyze the trends in annual and seasonal Tmax, Tmin, and DTR according to the clusters obtained. 

Observations in the same cluster were jointly analyzed according to certain characteristics, such 

as their geographical distribution and the rates of temperature warming. Finally, correlation maps 

between the teleconnection indices and the seasonal temperatures were constructed and analyzed. 

 

4.2 Results  

4.2.1 Temporal behavior for the annual and seasonal averages 

Table 4.1 shows some descriptive statistics for the annual, seasonal, and monthly averaged time 

series for Tmax, Tmin, and DTR for the period 1987-2018. The temporal behavior for the annual 

and seasonal averages is shown in Figure 4.1. The long-term annual mean values (Tmax, Tmin, 

and DTR) reached 25.5°C, 13.9°C, and 11.6°C, respectively. In winter/summer, they reached 

16.1/33.7°C, 6.7/20.7°C, and 9.4/12.9°C, respectively. It is noticeable that the long-term autumn 

averages of Tmax and Tmin are higher than those for spring by 3–3.5°C, where they ranged for 

spring/autumn 24.6/27.6°C for Tmax and 12.2/15.7°C for Tmin (Table 4.1).  

Scale  Tmax (°C) Tmin (°C) DTR (°C) 

Max Min Mean Stdv. Max Min Mean Stdv. Max Min mean Stdv. 

Annual 27.5 23.6 25.5 0.70 15.5 12.3 13.9 0.63 12.1 11.2 11.6 0.25 

Winter 18.9 12.1 16.1 1.2 8.6 4.4 6.7 0.84 10.8 7.9 9.2 0.6 

Spring 26.3 22.3 24.6 1.1 13.7 10.5 12.2 0.81 13.2 11.7 11.9 0.4 

Summer 34.7 32.3 33.7 0.67 22.1 19.6 20.7 0.70 13.5 12.2 12.5 0.3 

Autumn 30.1 26 27.6 0.87 17.5 14.3 15.7 0.82 12.6 10.9 11.5 0.4 

January 18.0 11.5 14.9 1.5 8.4 3.0 5.8 1.3 10.2 7.7 9.1 0.7 

February 20.1 11.8 16.4 1.7 8.9 3.8 6.5 1.3 11.8 7.8 9.9 0.9 

March 23.9 16.2 19.8 2.1 11.2 6.2 8.8 1.5 12.7 9.5 11.0 0.8 

April 28.4 21.9 24.7 1.6 14.3 10.0 12.1 1.1 14.8 11.2 12.6 0.8 

May 31.5 26.8 29.0 1.1 17.5 14.5 15.8 0.9 14.5 12.2 13.2 0.6 

June 34.1 30.8 32.2 0.8 20.6 17.6 18.9 0.7 13.9 12.2 13.3 0.5 

July 36.4 32.4 34.2 0.9 24.5 19.8 21.5 0.9 14.0 11.6 12.7 0.5 

August 36.7 32.1 34.4 0.9 23.9 20.0 21.7 0.9 13.4 11.7 12.6 0.4 

Sept. 34.2 31.0 32.2 0.7 21.9 18.1 19.6 0.9 13.5 11.7 12.6 0.5 

October 30.4 25.8 28.4 1.3 18.6 14.3 16.3 1.2 13.8 11.2 12.1 0.6 

November 26.2 18.8 22.2 1.6 13.1 8.3 11.2 1.3 13.3 8.4 11.0 0.9 

December 20.0 13.2 16.9 1.7 10.1 4.7 7.4 1.4 11.6 7.6 9.5 1.1 

Table 4.1. Some fundamental statistics for the annual, seasonal, and monthly Tmax and Tmin averages 

over the Levant in the period 1987-2018. 

In 1987-2018, the warmest/coldest annual mean values in 2010/1992 were 27.5/23.6°C for Tmax 

and 15.5/12.4°C for Tmin (Table 4.1, Figure 4.1). January is the coldest month with averages of 

14.9 and 5.9°C for Tmax and Tmin, while August is the hottest month with 34.4 and 21.7°C, 

respectively. The standard deviation values shown in Table 4.1 indicate a greater variability of 

Tmax than Tmin for all time scales, except for summer. The highest variability was observed in 

March with standard deviation values reached 2.1°C for Tmax and 1.5°C for Tmin. The highest 
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annual mean values in 2010 were at Elat station (southernmost of Palestine) by 33.6°C for Tmax 

and at Sedom station (southeast of the Negev desert) by 23.7°C for Tmin (not shown). 
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Figure 4.1. Temporal behavior for the annual and seasonal averages of Tmax, Tmin, and DTR over the 

study area. The red line indicates the Lowess smoothing, dashed line indicates the long-term average of the 

whole period 1987-2018. 

As shown in Figure 4.1, the annual, spring, and autumn averages of Tmax and Tmin have generally 

undergone three major stages: a marked increase below their long-term averages from 1987 until 

2000, followed by a decrease near the long-term averages in 2000-2006, and then, a rise above the 

long-term averages from 2006 onward. The general behavior for winter and summer Tmax and 

Tmin followed a similar pattern, except in 1987-1992, when they decreased below the long-term 

means.  

Over the study area, annual and seasonal Tmax and Tmin tended to increase in the last decade of 

the 20th century. Interestingly, annual DTR generally decreased as both Tmax and Tmin tended 

to decline in 2000-2006, while it tended to remain constant, although both Tmax and Tmin 

increased in 2006-2018, which can be attributed to the higher annual Tmin warming than Tmax in 

that period by 0.90 and 0.71°C/decade, respectively. 
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4.2.1.1 Analysis of the means difference  

The mean differences for the annual, seasonal, and monthly averages for the two sub-periods 1987-

2000 and 2001-2018 are listed in Table 4.2. The results confirmed the tendency toward warming 

in the period 2001-2018 compared to the period 1987-2000. For Tmax, the study area exhibited a 

high and significant (p < 0.05) increase of spring and winter mean values by 0.9 and 1.1ºC, 

respectively. For the Tmin, a strong and significant increase in spring and summer means by 1.1ºC 

was found for both. The results also showed that winter showed a non-significant increase in the 

mean DTR by 0.6°C. In contrast, summer and autumn showed a non-significant decrease of -0.3 

and -0.2ºC, respectively. 

 

Level  

Tmax (°C)  

Diff. 

Tmin (°C)  

Diff. 

DTR (°C)  

Diff. Period 

(1) 

Period 

(2) 

Period 

(1) 

Period 

(2) 

Period 

(1) 

Period 

(2) 

Annual 25.1 25.9 0.8*** 13.4 14.3 0.9*** 11.6 11.6 0 

Winter 15.6 16.5 0.9* 6.5 6.8 0.3 9.1 9.7 0.6 

Spring 24 25.1 1.1*** 11.6 12.7 1.1*** 12.4 12.4 0 

Summer 33.3 34 0.7*** 20.1 21.2 1.1*** 13.1 12.8 -0.3 

Autumn 27.4 27.9 0.5 15.4 16 0.6* 12 11.8 -0.2 

January 15.0 15.8 0.8 6.0 6.5 0.5 9.0 9.3 0.3 

February 16.1 17.5 1.4* 6.3 7.4 1.2* 9.9 10.1 0.2 

March 18.9 21.4 2.4*** 8.2 9.9 1.7** 10.7 11.4 0.7* 

April 24.8 25.4 0.6 12.1 12.8 0.7+ 12.8 12.6 -0.2 

May 29.2 29.4 0.1 15.8 16.3 0.5+ 13.4 13.0 -0.4+ 

June 31.9 32.6 0.7* 18.5 19.5 0.9*** 13.4 13.1 -0.3+ 

July 33.8 34.5 0.7* 21.0 22.0 0.9*** 12.8 12.5 -0.2 

August 33.9 34.7 0.8** 21.2 22.4 1.2*** 12.7 12.3 -0.3* 

September 32.1 32.5 0.4 19.4 20.2 0.8** 12.7 12.3 -0.4** 

October 28.3 28.9 0.6 16.2 17.0 0.7+ 12.1 11.9 -0.2 

November 22.5 22.8 0.3 11.5 11.9 0.5 11.0 10.9 -0.1 

December 17.2 17.7 0.5 7.8 7.9 0.1 9.4 9.8 0.4 

Table 4.2. The means difference for temporal annual, seasonal, and monthly averages of Tmax, Tmin, and 

DTR, and their significance level over the study area between the periods 1987-2000 (1) and 2001-2018 

(2). *** indicates significant differences at 0.001 level, ** at 0.01 level, and * at 0.05 level, + indicate 

positive differences at 0.1 level of significance. 

Over the period 2001-2018, Tmax and Tmin averages increased in all months compared to 1987-

2000 (Table 4.2). The maximum increase was significant in March, by 2.4°C for Tmax, 1.7°C for 

Tmin, and 0.7°C for DTR. In addition, the monthly averages of Tmax for February, June, July, 

and August showed significant increases of 1.4, 0.7, 0.7, and 0.8°C, respectively. For Tmin, the 

February, June, July, August, and September mean values showed significant increases of 1.2, 0.9, 

0.9, 1.2, and 0.8°C, respectively. The results also showed that the Tmin averages for April, May, 

and October increased significantly by 0.7, 0.5, and 0.7°C at a significance level of 0.1. For DTR, 

all monthly averages in the second period showed decreases, except for the winter months 

(December, January, and February) and March, with increases ranging from 0.2°C for February to 

0.7°C (Sig.) for March. The significant mean decreases were in August (-0.4°C) and September (-

0.4°C). 



TREND ANALYSIS OF MAXIMUM AND MINIMUM TEMPERATURES | 4 

 

41 
 

4.2.2 Temporal trends for the annual, seasonal, and monthly averages 

Table 4.3 shows the trends estimated by the Sen’s slope and their significance for Tmax, Tmin, 

and DTR. The annual and seasonal averages showed significant warming trends for Tmax and 

Tmin, with the warming in the Tmax being slightly stronger than for the Tmin, except for autumn. 

In the analyzed region, significant warming was observed at the level of 0.001 for annual Tmax 

and Tmin, with values of 0.33 and 0.30°C/decade, respectively. The annual DTR average showed 

a weak and non-significant decreasing trend by -0.03°C/decade.  

Among the seasons, spring exhibited a very strong and significant warming trend of 0.53°C/decade 

for Tmax and 0.51°C/decade for Tmin. Winter showed a strong warming trend in Tmax by 

0.50°C/decade, while it was of little significance for Tmin. In particular, it showed a rising trend 

in DTR by 0.30°C/decade, although it was not significant. On the other hand, autumn showed 

strong warming in Tmin by 0.52°C/decade, whereas it showed a low significance for Tmax. The 

results also revealed the warming in winter (0.50°C/decade) is notably stronger than in summer 

(0.34°C/decade), especially for Tmax. 

Level  Tmax (°C/decade) Tmin (°C/decade) DTR (°C/decade) 

Annual 0.33*** 0.30*** -0.03 

Winter 0.50** 0.27+ 0.30 

Spring 0.53** 0.51** -0.07 

Summer 0.34** 0.29*** -0.21 

Autumn  0.36* 0.52*** -0.27 

January 0.49 0.26 0.26+ 

February 0.83* 0.63* 0.31 

March 1.05* 0.72* 0.33+ 

April 0.55 0.42+ 0.06 

May 0.16 0.43* -0.15 

June 0.48* 0.27* -0.012 

July 0.41* 0.45*** -0.12 

August 0.47*** 0.45*** -0.20* 

September 0.35+ 0.46*** -0.17* 

October 0.12 0.36 -0.05 

November 0.32 0.40 -0.01 

December  0.49 0.26 0.21 

Table 4.3. The temporal trends for the annual, seasonal, and monthly averages of Tmax, Tmin, and DTR 

over the study area during (1987-2018), and their significance level. *** indicates significant differences 

at 0.001 level, ** at 0.01 level, and * at 0.05 level, + indicate positive differences at 0.1 level of significance. 

Table 4.3 also shows the monthly trends across the Levant for the period 1987-2018. There are 

more months significantly affected by warming trends in Tmin than in Tmax. Of all months, March 

showed the highest rising trends with 1.05°C/decade for Tmax, 0.72°C/decade for Tmin, and 

0.33°C/decade for DTR. In the other spring months, the significant warming was only observed in 

the Tmin averages of 0.42°C/decade (Sig. at 0.1 level) for April and 0.43°C/decade for May. In 

addition, only February for the winter months exhibited significant warming tendencies by 

0.83°C/decade for Tmax and 0.63°C/decade for Tmin. In addition, the months of October and 

November showed weak and insignificant warming trends, while September showed significant 
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trends with values of 0.35°C/decade (Sig. at 0.1 level) for Tmax, 0.46°C/decade for Tmin, and -

0.17°C/decade for DTR. Interestingly, all summer months (June, July, and August) witnessed 

significant rising trends with values of 0.48, 0.41, and 0.74°C/decade for Tmax and 0.27, 0.45, and 

0.45°C/decade for Tmin. In addition, August showed a significant downward trend for DTR of -

0.2°C/decade. 

 

4.2.2.1 Trend change points detection   

The sequential Mann-Kendall (SMK) test was applied to estimate the qualitative changes in the 

trends for the annual, seasonal, and monthly averaged time series. The results are listed in Table 

7, Appendix A, which shows the significant change points detected, and some of these are shown 

in Figure 4.2. The SMK test results show the statistically significant change points in the annual, 

seasonal, and monthly time series (Table 7, Appendix A). Figure 4.2 shows that the annual and 

seasonal Tmax and Tmin average series show strongly increasing trends. The decreasing trends 

corresponded to very short periods, especially in 1987-1992 for winter, spring, and summer.  

 
Figure 4.2. Graphical representation of the forward, U(t) and the backward, U’(t) series of the Sequential 

Mann-Kendall test for annual (a), winter (b), spring (c), and summer(d) Tmax and Tmin averaged time 

series. The computed U(t) and U’(t) values are depicted respectively by solid and dashed lines, while the 

horizontal dotted lines demonstrate confidence limits at the 5% significance level.   
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The significant turning points for the Tmax averages were observed in 1997 for the annual and 

summer series (Figures 4.3 a and d), and in 2002 for winter and spring (Figure 4.2 b and c). 

Furthermore, the increasing trends have become significant in 2010 for winter and spring Tmax 

and Tmin, in which U(t) is placed outside the 95% confidence band, whereas they became 

significant in the second half of the 1990s for the yearly and summer Tmax averages. 

For the averaged Tmin time series (Figure 4.2, bottom), the curves significantly intersect each 

other in 2007, 1998, 2007, 2004, 2006 for winter, spring, summer, and autumn. In general, the 

significant change points of the Tmin series were concentrated in the years 2005 and 1997 (Table 

7, Appendix A). For example, the months of February, March, August, and September had a 

significant change point in 2005, and the months of June and July in 1997 had significant change 

points in their Tmin averages (Table 7, Appendix A). 

 

4.2.3 Spatial analysis of annual, seasonal, and monthly trends 

In this section, the frequency and strength of trends were spatially analyzed at the regional and 

local scales. The annual, seasonal, and monthly Tmax, Tmin, and DTR time series were averaged 

for each country (Palestine/Israel, Jordan, Lebanon, and Syria). After that, the trends were 

calculated for all countries. We have followed this subjective division or non-climatic criterion 

because it helps us make comparisons with other works done on a local level in the Levant region. 

The results are presented in Figure 4.3 (a and b), Table 4.4, and Table 8 (Appendix A) for the trend 

magnitudes and significance. Furthermore, each station's annual, seasonal, and monthly Tmax, 

Tmin, and DTR trends were calculated. Figures 4.4 (a-c) and Table 9 (Appendix A) show the total 

number of stations that showed positive (significant positive) and negative (significant negative) 

trends for the annual, seasonal, and monthly Tmax, Tmin, and DTR. Figures 4.5 and 4.6 represent 

the spatial distribution for the annual and seasonal trends. Figure 4.7 and the attached Table 9 

(Appendix A) show some fundamental statistics for the annual and seasonal Tmax and Tmin 

trends. The spatial distribution of the monthly Tmax, Tmin, and DTR trends are shown in Figures 

4.8 (A) to 4.8 (C). Note that the results for Lebanon are not shown in Figure 4.3, but they were 

listed in Table 8 (Appendix A) because the Lebanon time series covers a shorter period 1994-2018 

compared to Palestine/Israel, Jordan, and Syria. 

 

4.2.3.1 Trends analysis for the Levant´s countries   

The results shown in Figure 4.3a revealed all countries, except Lebanon, were significantly 

affected by the warming trends in annual Tmax and Tmin. Tmax trends ranged from 0.32ºC/decade 

for Palestine to 0.39ºC/decade for Jordan. In comparison, Tmin trends ranged from 0.23ºC/decade 

for Jordan to 0.28ºC/decade for Syria. Although all counties showed significant warming trends in 

annual Tmax and Tmin, their annual-DTR trends were weak (less than -009ºC/decade) (Figure 

4.3a, Table 8 in Appendix A).  

For seasonal trends, spring trends contribute to the highest percentage of annual warming trends 

for Tmax and Tmin. They ranged from 0.49ºC/decade (Lebanon) to 0.59ºC/decade (Jordan) for 

Tmax, and from 0.47ºC/decade (Syria and Jordan) to 0.48ºC/decade (Palestine and Lebanon) for 
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Tmin. Moreover, the highest seasonal warming trends were observed in spring for all countries, 

except Syria-Tmax, where the warming was slightly stronger in winter (0.51ºC/decade) than in 

spring (0.50ºC/decade), and in autumn-Tmin (0.58ºC/decade) than in spring-Tmin 

(0.47ºC/decade). It should be noted that the increasing trends for autumn-Tmin were higher than 

those for summer and winter for all counters (Figure 4.3a, Table 8 in Appendix A). The winter- 

Tmax increased at higher rates than the summer for all regions, with higher rates for Jordan (0.53 

ºC/decade).   

 
Figure 4.3. Annual and seasonal Tmax, Tmin and DTR trends (°C/decade) calculated for countries (a), 

and those for the monthly trends (b). The significance level are in Table 7, Appendex A.  

The sharply rising winter-Tmax trend for Jordan has led to a significantly increasing winter-DTR 

trend by 0.34ºC/decade (Figure 4.3a, Table 8 in Appendix A). The results shown in Figure 4.3 

indicated that all countries witnessed higher warming of their annual and seasonal Tmax than 

Tmin, except for autumn. Furthermore, all countries showed declining trends in autumn-DTR, 

which were significant only for Palestine at -0.19ºC/decade. The analysis for the south (Palestine 

and Jordan) and north (Lebanon and Syria) Levant trends (Table 4.4) indicated the south Levant-

Tmax increased at a higher rate than the north Levant-Tmax in the annual (0.34ºC/decade), spring 
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(0.57ºC/decade), summer (0.38ºC/decade), and autumn (0.36ºC/decade). Only in winter, the north 

Levant-Tmax rise at a higher rate than south Levant by 0.50ºC/decade. On the contrary, the Tmin 

of the north Levant increased at higher rates than south Levant in annual (0.32ºC/decade), winter 

(0.34ºC/decade), and autumn (0.35ºC/decade). Both the south and north Levant significantly 

exhibited increasing winter-DTR trends at 0.24 and 0.26ºC/decade, respectively. In addition, south 

Levant showed a significant declining trend in summer DTR by -0.15ºC/decade, whereas the north 

Levant exhibited a significant declining trend in autumn-DTR by - 0.27ºC/decade.   

Month  Southern Levant 

Tmax/Tmin/DTR (°C/decade) 

North Levant 

Tmax/Tmin/DTR (°C/decade) 
Ann. 0.34**/0.28**/-0.01 0.32**/0.32**/0 

Win. 0.47+/0.27+/0.24* 0.50*/0.34+/0.26+ 

Spr.  0.57*/0.48**/0.091 0.49*/0.43*/0.018 

Sum. 0.38*/0.36**/-0.15* 0.20/0.23*/-0.08 

Aut.  0.36*/0.41*/-0.13 0.31/0.53**/-0.27* 

Table 4.4. The annual and seasonal Tmax, Tmin, and DTR trends for the south and north Levant in (1987-

2018).  

Overall, the significant upward trends in Tmax and Tmin for all countries were mainly observed 

in February, March, and August (Figure 4.3b). On the other hand, they were not observed for any 

region and temperature variable in January, October, November, and December, except for Jordan 

in January-DTR by 0.46ºC/decade (Table 8, Appendix A). For all countries of the Levant, the 

maximum monthly warming trends Tmax and Tmin occurred in the cold months, especially for 

February and March (Figure 4.3b). For Palestine and Jordan, a gradually increasing Tmax trend 

was observed from October to March, from 0.15 to 1.1ºC/decade for Palestine and 0.23 to 

1ºC/decade for Jordan. In addition, warming Tmax gradually increased from May to August for 

Jordan and Syria, from 0.18 to 0.62ºC/decade and from 0.11 to 0.49ºC/decade, respectively (Figure 

4.3b, Table 8 in Appendix A). For Tmin, the countries showed the maximum upward trends in 

February and March. Upward trends for February-Tmin ranged from 0.56ºC/decade for Jordan to 

0.75ºC/decade for Syria, and all countries showed similar upward trends for March-Tmin 

(0.71ºC/decade). 

 

4.2.3.2 Trend analysis at the local scale 

4.2.3.2.1 Annual and seasonal scales 

The results provide strong indications of significant warming trends in the entire Levant region 

(Figures 4.5a, Table 9 in Appendix A). The decreasing trends showed a very isolated and random 

pattern compared to the broad, intense, and coherent warming trends in Tmax and Tmin (Figures 

4.6 and 4.7). The maximum frequency of significant increasing trends was found for annual and 

spring with 84% and 74% of the stations (60 stations) for Tmax and 84% and 79% for Tmin (Figure 

4.4a, Table 9 in Appendix A). 

For the annual Tmax (Figure 4.5), the highest warming trends (0.32-0.47°C/decade) were observed 

significantly at most Jordanian stations, and in the central (31ºN and 32ºN) and northern (31.8ºN 

and 32.3ºN) locations from Palestine. The Syrian coastal area showed a lower value of significant 
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warming trends (0.23-0.27°C/decade). Annual Tmax trends ranged from 0.01°C/decade at Kfardan 

in Lebanon to 0.48°C/decade at Ayelet Hashahar in northwestern Palestine, with a mean of 

0.30°C/decade and a standard deviation of 0.09°C/decade, indicating very highly concentrated 

trends around the mean (Figure 4.7, Table 10 in Appendix A). 

 
Figure 4.4. (a) Frequencies of warming and significant warming trends for the annual and seasonal Tmax 

and Tmin averages. (b) Frequencies of trends for the annual and seasonal DTR averages. The panels (c) 

and (d) are for the monthly Tmax and Tmin averages. 

The annual Tmin trends ranged from -0.23°C/decade to 0.45°C/decade, with an average value 

slightly less than for Tmax (0.27°C/decade) and a standard deviation of 0.12°C/decade (Figure 

4.7, Table 10 in Appendix A). For most Syrian and Lebanon stations, the rate of Tmin warming 

was slightly higher than that of Tmax. In contrast, most Palestine and Jordan stations notably 

exhibited higher values of warming trends in Tmax than in Tmin. For example, Palestine's central 

and northern locations showed less warming trends in Tmin than in Tmax, where their Tmin trends 

were less than 0.30°C/decade (Figure 4.5). 

For the seasonal Tmax trends (Figure 4.6), the strong significant warming trends (0.60-

0.74°C/decade) occurred in winter and spring and spatially covered the entire Jordan, central and 

northern locations from Palestine. Note that the strong warming trend extended to cover more sites 

in spring for central, north Palestine, and Syrian areas in the south and north. The summer and 

autumn seasons exhibited less significant warming trends (with values lower than 0.60°C/decade) 

for all locations.  
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Figure 4.5. Spatial trends for the annual averages of Tmax, Tmin, and DTR over the study area during 

(1987-2018). Trends for Lebanon stations were calculated during (1994-2018). 

At the seasonal Tmin scale, the strong significant warming trends (0.45-0.88°C/decade) were 

observed in autumn and spring, whereas winter and summer exhibited less value of significant 

warming trends (< 0.50°C/decade) for all locations. In autumn, the high band of trends mainly 

covered the sites between 33ºN-35ºN.  

In spring, the same regions were affected by the strong warming trend and the eastern and northern 

areas of Jordan and the West Bank's southern areas. The highest significant increase trend was in 

autumn at Hama station by 0.94°C/decade. The frequency of significant decreasing DTR trends 

ranged from 2% in winter to 30% in autumn, whereas the significant increasing trends ranged from 

8% in autumn to 37% in winter (Figure 4.4b). Spatially, the significant annual-DTR upward trends 

(0.14-0.24°C/decade) covered some locations in the central and northern parts of Palestine and the 

Syrian coastal area.  

In summer and autumn, most stations were affected by decreasing trends, except in few cases, such 

as the Syrian coastal area and some central and northern Palestine locations. The important and 

significant decreasing trends (-0.45 to -0.88°C/decade) occurred in autumn, mainly in Syria 

between 33ºN-35ºN. The same areas were affected by significant decreasing trends but with lower 

rates (from -0.14 to -0.32°C/decade) during summer and spring. Note that six stations in Palestine's 

central area exhibited significant increasing spring-DTR trends by an average of 0.30°C/decade. 

In winter, most stations revealed increasing trends with significant in the northern locations from 

Jordan and Palestine and Palestine's central stations by 0.26-0.63°C/decade. 
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Figure 4.6. Spatial trends for the seasonal averages of Tmax, Tmin, and DTR over the study area during 

(1987-2018). Trends for Lebanon stations were calculated during (1994-2018). 
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      Figure 4.7. Boxplots for the annual and seasonal Tmax and Tmin trend. 

 

4.2.3.2.1 Monthly trends 

In all cases, the significant decreasing trends formed less than 2% (one station) of total stations, 

such as the Qunitera station in December-Tmin by -0.61°C/decade. On the other hand, more than 

89% (53 stations) exhibited warming trends in the Tmax and Tmin for all months, except for May-

Tmax and December-Tmin, which showed warming trends in 80% and 74% of the stations, 

respectively (Figure 4.4c, Table 9 in Appendix A). The findings showed most months exhibited 

more frequencies of a significant warming trend in Tmin than Tmax, especially for the hot months 

May-November (Figure 4.4c). The cold months (December-April) generally exhibited equal 

frequencies in Tmax and Tmin, except for January and December (Figure 4.4c).  

Although the minimum temperature exhibited equal or higher percentages of the warming trend 

than the maximum temperature, it showed fewer magnitudes at most stations for the most months. 

In this context, a percentage of 88%, 78%, 88%, 71%, 58%, 58%, 58%, 51%, and 83% of the 

stations had higher trend values in the Tmax than Tmin, for January, February, March, April, June, 

July, August, November, and December, respectively. Only in May, September, and October, most 

stations displayed higher warming trends in the Tmin than Tmax by 68% of the stations for the 

three months.   

The analysis of the monthly DTR trends reflected the results obtained from the monthly Tmax and 

Tmin. When the Tmin is decreasing, or the Tmax is increasing, the DTR is expected to increase. 

As mentioned before, the Tmax trends for December, January, February, March, and April 

exhibited higher values of warming than Tmin at most locations. This led to a much higher 

frequency of increasing DTR trends by 82%, 77%, 77%, 82%, and 58% of the stations, respectively 

(Figure 4.4d, Table 9 in the Appendix A). On the contrary, the Tmin trends for May, September, 

and October displayed higher values of the warming than Tmax at most locations, which led to a 

much higher frequency of decreasing DTR trends by 90%, 77%, and 58% of the stations, 

respectively. 
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Figures 4.8 (A) to 4.8 (C) show the spatial distribution of the monthly trends from 1987 to 2018. 

We mainly discuss here the February and March trends due to their vast and strong warming 

compared to other months. The February trends were higher than for other winter months 

(December and January) at more than 92% (55 stations). In addition, the February Tmax trends 

increased with higher rates than those for the Tmin for all locations, except for very few cases in 

the North Levant (Lebanon and Syria). The highest  warming trends (0.90-1.70°C/decade) mainly 

and extensively covered the southern Levant region (Palestine and Jordan), between 29ºN-34ºN, 

while the northern regions showed fewer magnitudes of warming trends (< 0.75°C/decade).  

For the February-Tmin trends, much fewer frequencies for the high band (0.90-1.70°C/decade) 

were observed for the southern Levant, although the same areas still show high rates of trends 

between (0.7-0.85°C/decade). For the DTR, Jordan's northern areas were affected by the highest 

significant increasing trends (from 0.50 to 0.70°C/decade).  

 
Figure 4.8 (A). Spatial trends for the January, February, March, and April averages of Tmax, Tmin, and 

DTR over the study area during the period 1987-2018. Trends for Lebanon stations were calculated for 

the period 1994-2018. 
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A comparison between spring months (March, April, and May) reveals that March-Tmax and Tmin 

trends were higher than May at 100% (60 stations), and at 92% (4 stations) for April. In addition, 

the March-Tmax increased with higher rates than those for the Tmin for all locations. Among all 

monthly Tmax trends, the March-Tmax exhibited the highest warming trend values at more than 

92% (55 stations) of the stations. Similar to February, with more intensive and spread significant 

warming trends, the high band of the March-Tmax trends (0.90-1.70°C/decade) covered the 

southern Levant region (Palestine and Jordan), while the most Syrian areas showed fewer 

magnitudes of warming trends (< 0.75°C/decade). The high band of warming trends covered the 

northern locations from Jordan, southern locations from Syria, central and north locations from 

Palestine between 31ºN-32ºN and 31.5ºN-32.5ºN, and the Lebanon locations. 

 
Figure 4.8 (B). Spatial trends for the May, June, July, and August averages of Tmax, Tmin, and DTR over 

the study area during the period 1987-2018. Trends for Lebanon stations were calculated for the period 

1994-2018. 

For the March-Tmin trends, much fewer frequencies for the high band of trend were observed for 

the southern Levant, although the same areas still show high trends (0.70-0.85°C/decade) (Figure 

4.8 (A)). The highest significant increasing trends in the DTR (from 0.59 to 0.72°C/decade) 
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occurred in Jordan's northern areas. Moreover, southern locations from the Palestinian coastal area 

showed a significant increasing trend (0.45 – 0.66°C/decade). 

In June (Figure 4.8B), warming Tmax trends increased compared with May-Tmax, especially over 

the southern regions (Palestine and west of Jordan). On the contrary, the June-Tmin trends 

decreased compared with May-Tmin, especially over entire Palestine and between 31ºN-35ºN 

from Syria and Lebanon. High warming trends (0.30 – 0.45°C/decade) covered northern areas in 

Jordan and Palestine's central regions for June-Tmax. All stations showed rising trends in June-

Tmin (less than 0.25°C/decade), except for some north location in Jordan and Damascus from 

Syria by up to 0.35°C/decade. In September (Figure 4.8 (C)), locations showed low warming Tmax 

rates compared with August and July. The majority of stations exhibited warming trends ranged 

from 0.16 to  0.43°C/decade. They had higher warming trends in Tmin than Tmax. High increasing 

trends were found in western areas from Syria and entire Lebanon (0.52 to 0.61°C/decade). 

 
Figure 4.8 (C). Spatial trends for the September, October, November, and December averages of Tmax, 

Tmin, and DTR over the study area during the period 1987-2018. Trends for Lebanon stations were 

calculated for the period 1994-2018. 
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4.2.4 Clustering analysis for the annual and seasonal trends  

The K-means clustering algorithm was used to identify and represent the regional aggregation in 

the temperature trends discussed before. It was applied to the annual and seasonal Tmax, Tmin, 

and DTR trends. Figure 4.9 shows that the resulting clustering leads to three categories, each 

identified by a color, for both the annual and seasonal variables. The optimal number of clusters 

was decided based on 30 indices available in the R NbClust Package (Charrad et al., 2014). The 

high number of these indices indicated the 2 and 3 clusters are the best number of groups.  

Most of the Jordan stations, northern and central locations of Palestine, and Hama and Damascus 

stations from Syria formed a cluster characterized by very high warming trends by rates of 

0.37°C/decade for annual Tmax, and seasonal Tmax trends ranged from 0.39°C/decade in autumn 

to 0.59°C/decade in spring. 

In addition, eastern Syrian locations (east to 37ºE), southern Palestinian locations (south to 

31.2ºN), and the locations between 31ºN-31.8ºN from the Palestinian coastal area showed the 

second cluster with lower rates of warming trends for annual and seasonal series between 

0.18°C/decade (for autumn), to 0.46°C/decade (for spring). The third cluster contains only three 

stations from Lebanon. They exhibited decreasing trends in winter-Tmax (-0.22°C/decade) and 

increasing trends in spring, summer, autumn, and annual Tmax by 0.41, 0.19, 0.30 0.25°C/decade, 

respectively.  

 
Figure 4.9. The clustering of annual and seasonal Tmax, Tmin and DTR in 1987-2018. 

Most of the Jordan stations also formed the high cluster trend in the annual and seasonal Tmin, 

whereas only four stations from central and northern Palestine were included in this cluster. On 

the other hand, the most southern locations from Palestine, Damascus, Maze Airport, Tadmur, 

Hama from Syria, and Tripoli and Kfardan from Lebanon were also included in this cluster trend. 

These regions showed increasing trends by 0.34, 0.31, 0.48, 0.36, and 0.52°C/decade, for annual, 

winter, spring, summer, and autumn-Tmin, respectively. Other regions such as Syrian coastal areas 

and most Palestine locations, except the most southern sites, formed the second cluster with less 

increasing trends by 0.24, 0.25, 0.38, 0.23, and 0.31°C/decade. The third cluster contains two 
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stations from Syria, Kamishli and Basil Airport, with low decreasing trends (less than -

0.1°C/decade) for the annual and seasonal Tmin.  

The DTR's increasing trend cluster was spatially grouped in Palestine's central and northern 

locations, the coastal and northern areas from Syria, and the Beyrouth Airport and Houche Oumara 

stations from Lebanon. These locations showed increasing trends of 0.15, 0.27, 0.24, 0.13, and 

0.09°C/decade, for annual, winter, spring, summer, and autumn, respectively. On the other hand, 

the Syrian locations situated in the Damascus and Hama governorates formed a cluster of 

decreasing trends, by notably high rates of reducing in their annual, spring, summer, and autumn 

by -0.26, -0.36, -0.32, and -0.55°C/decade, respectively, whereas they showed a lower value in 

winter by -0.06°C/decade. The results also showed that Jordan, southern locations from Palestine 

(< 31ºN), and the stations of Tadmur and Deir Ezzor from Syria formed a cluster of increasing 

trend in winter-DTR by 0.23°C/decade and a decreasing trend on their summer and autumn-DTR 

by -0.11 and -0.16°C/decade, respectively. 

 

4.2.5 Influence of the large-scale circulation patterns on the seasonal temperatures  
Based on the frequency of significant correlation (Table 4.5), the NCP index showed the highest 

frequency with the Levant seasonal temperatures, where its impact extends to all seasons compared 

to other patterns by more than 91%, 67%, 38%, and 94% of the stations, for winter, spring, 

summer, and autumn, respectively. The results indicate the EA/WR and NAO indices come second 

place in terms of significant correlations except for autumn. Furthermore, the rest of the patterns 

showed notable correlations in some cases, such as ENSO/summer-Tmin (55% of the stations), 

WEMO/autumn-Tmax (67% of the stations), MO/winter (Tmax, Tmin) (> 90% of the stations).   

  WEMO EA/WR NAO EA MO NCP ENSO 

Winter Tmax 0 59 46 0 58 60 0 

Tmin 0 50 53 0 54 55 1 

Spring Tmax 55 33 32 3 7 56 16 

Tmin 41 51 36 7 1 40 7 

Summer Tmax 3 18 22 15 14 37 23 

Tmin 4 11 15 12 9 23 33 

Autumn Tmax 40 0 7 7 0 59 1 

Tmin 4 0 4 6 0 56 3 

Table 4.5. The total stations that showed significant (𝑝 < 0.05) correlation with the large-scale circulation 

patterns based on each season.  

Figure 4.10 exhibits the correlation coefficients calculated between the indices and one single 

averaged seasonal (Tmax and Tmin) time series for the Levant and sub-countries. In the first place, 

it must be announced that the NCP index significantly and negatively correlated with all Levant´s 

seasonal Tmax and Tmin, with higher values than other patterns. These correlations ranged from 

-0.49 for summer-Tmax to -0.79 for winter-Tmax, and from -0.40 for summer-Tmin to -0.74 for 

winter-Tmin. Moreover, the NCP index showed negative correlations with all Levant countries' 

seasonal temperatures that are always significant except for three cases, Palestine and Syria 

summer-Tmin and Lebanon spring-Tmax. The maximum values were found in autumn (Tmax and 
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Tmin) for all countries by > -0.57 for Tmax and > -0.45 for Tmin. Among the indices, only the 

NCP index had significant correlations with the autumn Tmin for the Levant and countries.  

Indices EA/WR, NAO, and MO also showed strong negative correlations with the Levant’s winter 

Tmax and Tmin between -0.44 for NAO-winter-Tmax and -0.53 for MO-winter-Tmin. In winter, 

these three indices also had a significant correlation for all countries by values ranged from -0.35 

for NAO-winter-Tmax at Syria to -0.59 for the MO-winter-Tmax at Palestine and from -0.34 for 

NAO-winter-Tmin at Lebanon to -0.60 for MO-winter-Tmin at Syria. In general, it can be 

concluded that the MO index is the second most influential index, after NCP, which affects the 

Levant’s winter Tmax and Tmin (Figure 4.10).  

 
Figure 4.10. Correlation coefficients between the teleconnection patterns and seasonal temperature 

averaged series for the Levant and countries. Bold Horizontal line refers the significant limits.  
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For the Levant’s spring Tmax and Tmin, a significant and negative correlation was found with the 

EA/WR, NAO indices, ranging from -0.38 to -0.45. Furthermore, the WEMO index highly 

correlated with the Levant´s spring temperatures by 0.51 for Tmax and 074 for Tmin. The 

significant influence of WEMO has included all countries of Levant, except for Lebanon-Tmin, 

by 0.36 for Lebanon-Tmax and 0.54 for Palestine-Tmax, and 0.24 for Lebanon-Tmin to 0.46 for 

Jordan-Tmin. Consequently, the WEMO index is the second most important index that affects 

spring temperatures. In some cases, it affects the spring temperatures more than the NCP index, 

such as Palestine-Tmax and Jordan-Tmin. It is also the second most important index that affects 

the autumn-Tmax for all regions by correlations values ranging from 0.37 to 0.45.   

  

4.2.5.1 Correlation maps for the winter temperatures 

Figure 4.11 represents the patterns of the correlations between the four-teleconnection indices 

EA/WR, NAO, MO, and NCP and winter Tmax and Tmin. For both Tmax and Tmin, the spatial 

correlation patterns with NCP are similar, although its influence on Tmin for Lebanon and some 

locations in the Palestinian coastal area (up to -0.47) is relatively less than Tmax (up to -0.79) 

(Figure 4.11). For Tmax (Figure 4.11, upper panels), the NCP index showed significant negative 

correlations (𝑟 < -0.70) for all locations, reaching values of 𝑟 < -0.77 for some stations.  

 
Figure 4.11. Spatial distribution of correlation coefficients between winter Tmax (top panels) and Tmin 

(bottom panels) and most significant teleconnection indices in the period 1987-2018. 

A comparison between the EA/WR, NAO, and MO indices show that the MO had more influence 

than the NAO and EA/WR indices, especially in Palestine's southern locations (-0.57 to -0.66). 

For the EA/WR index, the high values of correlations (between -0.57 and -0.66) were mainly 
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concentrated in the south and west locations of Jerusalem and the upper Negev desert. For the 

NAO index, its influence ranged from -0.33 to -0.46 for all sites in north Palestine and Jordan and 

between -0.57 and -0.66 for Palestine's southeastern areas. The NAO and MO indices generally 

exerted more influence on the south Levant than the Northern Levant.  

For Tmin (Figure 4.11, bottom panels), the MO index presented higher correlations with the winter 

Tmin, especially for Syria's areas compared with its influence on Tmax and compared to other 

indices. While EA/WR index generally showed a lower influence on Tmin than Tmax for most 

locations. The results also pointed to the high correlation coefficients (-0.50 to -0.69) for the 

EA/WR, NAO, and MO indices, which mainly covered Palestine's northern locations and locations 

located to the west and south Jerusalem. 

 

4.2.5.2 Correlation maps for the spring temperatures 

As shown in Figure 4.12 (upper panels), considerable positive correlations were recorded for 

WEMO index and negative for the NCP index. In this context, the strongest effect of WEMO on 

spring-Tmax was observed in Palestine, especially in the northern locations, with correlation 

coefficients between 0.51 and 0.69. In contrast, the NCP index showed the highest negative 

correlations (from -0.51 to -0.69) in the northern regions of Jordan and Palestine, southern regions 

of Jerusalem, and Syria's southern and eastern regions. The EA/WR and NAO indices generally 

showed a lower significant correlation ranging from -0.40 to -0.49 for all locations and mainly 

concentrated over Palestine and Jordan. The ENSO's effect was pronounced on Syria, north 

Lebanon, and Jordan by correlations from -0.33 to -0.47. 

 
Figure 4.12. Spatial distribution of correlation coefficients between spring Tmax (top panels) and Tmin 

(bottom panels) and teleconnection indices in the period 1987-2018. 
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For spring-Tmin (Figure 4.12, bottom panel), the highest effect was found for the WEMO index 

on the northern regions of Palestine due to high correlations (0.57 to 0.66). The NCP index showed 

a high negative correlation (-0.57 to -0.66) for Syria's eastern locations. On the other hand, it 

obviously showed a low correlation for southern Levant (Palestine and Jordan) for most sites (r < 

-0.47), compared with its effect on Tmax. It is also noticed that the EA/WR´s influence was more 

pronounced on the southern Levant than the NCP´s impact. In this context, most locations, 

especially the Syrian locations (-0.37 to -0.57), eastern locations from Jordan (-0.57), and upper 

parts of the Negev desert in Palestine correlated strongly (-0.57 to -0.67) with the EA/WR. On the 

contrary, its influence was lower on Lebanon-Tmin (< -0.27) than its impact on Tmax. The NAO 

index also showed a high effect on Tmin for Syrian coastal stations (-0.57), and similar to EA/WR, 

its influence was lower on Tmin for Lebanon locations (< -0.27) than Tmax. 

 

4.2.5.3 Correlation maps for the summer temperatures 

Figure 4.13 shows the correlation maps between the EA/WR, NAO, EA, MO, NCP, and ENSO 

indices and summer-Tmax/Tmin for 60 stations distributed across the study area. It can be seen 

that the relations between NCP and ENSO indices and summer-Tmax are stronger compared to 

other indices. The significant negative correlation coefficients between the NCP index and 

summer-Tmax are generally homogeneous in the Levant. However, for some places in east and 

south Jerusalem, they show high values.  

 
Figure 4.13. Spatial distribution of correlation coefficients between summer Tmax (top panels) and Tmin 

(bottom panels) and teleconnection indices in the period 1987-2018. 
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For Syria, the NCP index exerted an effect on the central and eastern stations (-0.47 to -0.57). The 

results also revealed that the NCP index's impact was generally lower on Tmin than Tmax, 

especially in Palestine's northern/central regions and in Syria's northwestern areas (< -0.37). The 

ENSO index showed a remarkably influence on summer-Tmax for the eastern sites more than for 

the western sites. In general, its influence was weaker (< 0.37) between 34ºE-35.5ºE than its 

influence between 35.5ºE-42.3ºE (0.37< 𝑟 <0.57). 

For Tmin, the effect of the ENSO index was more pronounced than its impact on Tmax. In 

this context, its significant influence was greatly expanded, encompassing more locations 

between 34ºE-35.5ºE, especially the coastal areas of Syria, Lebanon, and Palestine (0.37 < 

r < 0.47). In addition, it showed more frequency of high correlations band (r < 0.57) with 

some locations in the upper part of the Negev desert in Palestine and east Jordan. The EA's 

effect was more pronounced on Tmax than Tmin, and mainly concentrated in the southern 

Levant (Jordan, northern and central locations from Palestine) by correlation from 0.37 to 

0.47. 

 

4.2.5.4 Correlation maps for the autumn temperatures 

The NCP index (Figure 4.14) showed a high and negative correlation with most of the study area 

locations. The correlations varied from -0.57 to -0.66 for Palestine and Syria's coastal regions and 

Palestine's northern locations. Furthermore, it showed very high correlations (> -0.67) with ten 

stations, such as Jerusalem, and Amman. The significant effect of WEMO index on the autumn-

Tmax was homogeneous for locations between 29.5ºN-35ºN by 0.33 to 0.46, while it reached 

values from 0.33 to 0.56 for north Syria between 35ºN-37.5ºN. The results confirmed the NCP 

index as the main driver of the autumn-Tmin. For most places, such as the Palestinian coastal 

region and north Jordan, it showed relatively less impact on Tmin than Tmax. The highest 

correlations (up to -0.77) were found with some places in northern Palestine. 

 
Figure 4.14. Spatial distribution of correlation coefficients between autumn Tmax (top panels) and Tmin 

(bottom panels) and teleconnection indices in the period 1987-2018. 

 



TREND ANALYSIS OF MAXIMUM AND MINIMUM TEMPERATURES | 4 

 

60 
 

4.3 Conclusions and discussion  
The aim of this study was to identify the spatial and temporal changes in annual, seasonal, and 

monthly trends of maximum, minimum, and diurnal temperature range over the entire Levant 

region during the period 1987-2018. In addition, it was to determine which of the large-scale 

variability modes influence the seasonal temperatures of the Levant. The conclusions can be drawn 

as follows: 

1. The annual and seasonal Tmax and Tmin have shown an increase below long-term 

averages from 1987 to 2000. After that, they showed a decrease near long-term averages 

in 2000-2006, and they began to increase above long-term averages from 2006 onward. A 

different behavior was observed in 1987-1992 for winter and summer when the averages 

decreased below long-term means. The annual and seasonal Tmax and Tmin have 

increased since the last decade of the 20th century. In the Levant, the warmest/coldest 

annual averages were in 2010/1992 for Tmax and Tmin. 

Such tendency was also found in Turkey, Saudi Arabia, Egypt, Iran, Spain, and eastern 

Mediterranean (Repapis et al., 2007; Saaroni et al., 2003; Türkeş et al., 2002; Almazroui et al., 

2012; Domroes et al., 2005; Gonzalez-Hidalgo et al., 2016; Asakereh et al., 2020). Interestingly, 

the warmest year was globally also in 2010 (WMO, 2011) as well as at the regional scales in Saudi 

Arabia, Egyptian Mediterranean coast, Turkey, Spain, Iraq, and Iran (Nazrul Islam et al., 2015; 

Tonbol et al., 2018; Hadi et al., 2018; Gonzalez‐Hidalgo et al., 2016; Ghasemi, 2015; Muslih et 

al., 2017). Furthermore, the world was also cold during 1991/1992, probably due to the eruption 

of Mt. Pinatubo (Jones, 1994). 

2. During the period 2001-2018, the means of Tmax and Tmin for annual, spring, summer, 

January, February, June, July, and August have significantly increased over the Levant 

region compared to the period 1987-2000. The highest Tmax and Tmin significant 

increases were registered for spring and March. Moreover, the means of Tmax and Tmin 

for the 10-years non-overlapping periods, 1987-1996, 1997-2006, and 2007-2018 have 

gradually increased. The last decade 2007-2018, significantly was the hottest decade for 

all Tmax and Tmin temporal scales.  

These increases are in the same line as those of the global temperature. The rise of 0.21°C in the 

decadal temperature averages of global, from 1991–2000 to 2001–2010, is larger than for any other 

two successive decades since the beginning of instrumental records (WMO, 2013). Based on the 

WMO Statement on the State of the Global Climate in 2019, the last five-year (2015–2019) and 

ten-year (2010–2019) averages are also the warmest on record. In Jordan, Matouq et al. (2013), 

analyzed the mean annual Tmax and Tmin in 1979-2008. The results showed the mean maximum 

annual temperature was around 30.65°C during the first decade (1979–1988), and then increased 

to 34.7°C during the second decade (1989–1998). 

3. In 1987-2018, the significant warming trends affected both daytime (Tmax) and nighttime 

(Tmin) temperatures in the Levant, but at a higher rate for Tmax than Tmin in winter 

(December-February), summer (June and August), and spring (Mach-April). On the 

contrary, the Levant-Tmin has experienced a higher warming rate than Tmax in autumn 
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(September-November), May, and July. The highest monthly warming trends for Tmax 

and Tmin were observed in February and March. Only September-Tmin from autumn 

months showed a significantly increasing trend. Furthermore, a very strong and significant 

seasonal warming trend (> 0.50ºC/decade) was observed for spring-Tmax and spring-

Tmin, winter-Tmax, and autumn-Tmin. Note that the summer-Tmax trend (0.34ºC/decade) 

in particular showed a less strong warming trend than the winter-Tmax.  

4. The DTR of the cold months (December-April) increased, while it decreased for the warm 

months (May-November), being significant only for August and September. The highest 

monthly increase in DTR was in March, although non-significant. A strong and widespread 

significant decrease in March rainfall (Chapter 7) could be associated with a decrease in 

cloud cover and an increase in the March-DTR. Many authors pointed to the inverse effect 

of changes in cloud cover (New et al., 2000; Geerts, 2003).  

These results are consistent with studies from many regions of the Levant and the world. The trend 

towards a warmer climate has been reported in Mediterranean countries such as Spain (0.15-

0.35ºC/decade), Italy (0.2ºC/decade), and Romania (0.15 to 0.28°C/decade) (del Rio et al., 2012; 

Toreti and Desiato, 2008; Viola et al., 2013; Micu D et al., 2015). Furthermore, it has been well 

documented in Europe over the last three decades (Stott, 2003; Luterbacher et al., 2007), with 

warming in most regions being stronger in winter than in summer (Micu D et al., 2015; Vogelsang 

and Franses, 2005). Ghasemi (2015) analyzed the annual and seasonal Tmax and Tmin mean 

values over Iran based on data from 38 stations during the period 1961-2010, and the results 

showed significant warming trends in the mean values. They also indicated that the spring-Tmax 

average showed a strong significant warming of 0.42°C/decade. Malekian and Kazemzadeh (2016) 

analyzed regional trends in southwestern Iran based on data from 15 stations in the years 1972-

2011 and found that the mean temperature series on the monthly scale for February and March 

showed the highest magnitude of warming trends. Robaa and AL -Barazanji (2013) investigated 

the annual mean temperature at 11 stations in Iraq, using time series of different lengths over the 

period 1941-2010. The results confirmed a warming trend at all stations at an increased rate of 

0.50°C/decade, with the highest warming trend occurring after 1995. Toros (2012) examined the 

variation of extreme daily temperatures over Turkey during the period1961-2008, and the results 

showed that a total of 69% of the stations (165 stations) showed positive trends in annual Tmax 

averages and 66% positive trends in annual Tmin averages. AlSarmi et al. (2011) analyzed the 

trends in temperature and precipitation parameters for Arabian Peninsula based on data from 21 

stations during the years 1980-2008. They found significant increasing trends in annual and 

seasonal Tmax and Tmin mean values and decreasing trends at the DTR level, where annual Tmax 

and Tmin significantly increased at a rate of 0.32 and 0.55°C/decade, respectively, and the autumn 

showed very strong warming trends in Tmin average by 0.70°C/decade. Kenawy et al. (2009) 

found a significant warming trend in the annual minimum temperature as well as in DTR over 

Libya by 0.23°C/decade and -0.28°C/decade, respectively, and spring showed the highest 

significant warming trend by 0.29°C/decade for Tmin. 
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5. In all seasonal temperatures, the Tmax warming was higher than Tmin for all countries, 

except for the autumn. Spring showed the highest increasing trends for all countries. 

Moreover, the Tmax of south Levant increased significantly at a higher rate than north 

Levant in the annual, spring, summer, and autumn. Only in winter, the Tmax of north 

Levant rise at a higher rate than south Levant. On the contrary, the Tmin of the North 

Levant rose at a higher rate than south Levant in the annual, winter, and autumn. Of all 

countries, Jordan had the highest significant increasing trends in Tmax for annual, winter, 

spring, and summer, whereas Syria had the highest trend for autumn-Tmax. In addition, 

Syria-Tmin had the highest warming trend in the annual, winter, and autumn, while 

Palestine and Jordan showed the highest trends in spring-Tmin and summer-Tmin. 

6. On a monthly basis, in January, October, November, and December, no country showed 

significantly increasing trends of Tmax and Tmin. The Jordan-Tmax and Tmin showed the 

highest increase in the summer months of June, July, and August. It also showed the highest 

increasing trends in autumn Tmax and Tmin months, of September and October. Palestine-

Tmax and Tmin showed the highest trend values in March, November, and December, 

although they were significant only for March.  

7. The widespread significant warming trends (> 80% of the stations) were mainly observed 

during the course of the year, in March, February, and August, both in Tmax and Tmin. 

Spatially, most stations from Jordan and northern and central areas of Palestine showed 

very high warming trends for annual, winter, spring, summer, and autumn Tmax with the 

highest value for spring. These regions also showed very high warming trends for the 

summer-Tmin and winter-DTR. 

Fallah-Ghalhari et al. (2019) examined the effects of climate change on the Tmax and Tmin over 

Iran using data from 45 stations in the years 1976-2005. They showed more than 80% of the 

stations with warming trends in their Tmax and Tmin, and only one station showed a significantly 

decreasing trend. The trend slope for maximum and minimum temperature was 0.23 and 0.39°C 

/decade, respectively. Al Qatarneh et al. (2018) studied the impact of climate change on water 

resources in the Azraq Basin in Jordan using data for only two stations in the years 1980-2014. 

The results showed that the mean maximum temperature increased significantly with an average 

of 1°C/decade, while an increase in the mean minimum temperature of 0.5°C/decade was 

observed. The mean annual temperature above the Azraq Basin increased by 0.75°C/decade during 

the 46 years studied. 

8. The NCP index was the major influential atmospheric circulation index for the seasonal 

temperatures in the Levant. In this context, it showed more significant negative correlations 

compared to other patterns. For winter Tmax and Tmin, more than 55 stations showed 

significant correlations with this index by mean values of -0.77 and -0.56, respectively. For 

autumn Tmax and Tmin, the NCP index showed significant correlations with more than 56 

stations and mean correlations of -0.64 and -0.56. Furthermore, it was the main regulator 

in summer Tmax with 37 stations that correlated significantly with a mean value of -0.47. 

Significant negative correlations reached more than 40 stations for spring Tmax and Tmin. 
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Its strong influence on the spring Tmin mainly covered the northern Levant areas in 

Lebanon and Syria. The NCP index was also the second most important pattern affecting 

the summer-Tmin. In contrast, the ENSO pattern with an average correlation of 0.46 and 

significant correlations with 33 stations was the most important driving force for the 

summer minimum. All other patterns showed no particularly significant correlations for 

summer temperatures, with the exception of the EA/WR index on the Lebanon-Tmin. 

9. The WEMO index was the second most important index, affecting autumn-Tmax and 

spring-Tmax and Tmin. Apart from the NCP and WEMO indices, the other patterns did 

not have a major impact on autumn and spring temperatures, except for some cases in 

spring-Tmin such as the EA/WR on the eastern locations from Jordan and Syria and for 

the northern stations from the Negev desert. The highest impact of the EA/WR, NAO, and 

MO indices occurred in winter. For example, the MO index influenced the winter-Tmax 

for the southern regions of Palestine. The NAO index had a significant influence on the 

winter-Tmax and Tmin for the southern Levant.  

Kutiel et al. (2002), who found, on the basis of monthly temperatures and precipitation from 33 

stations across Greece, Turkey, and Israel, that the temperature were significantly higher during 

the NCP in its negative phase as compared with the NCP in its positive phase. Their results placed 

the NCP as the most influent of the teleconnections over the Middle East. The NAO and Southern 

Oscillation (SO) present an ability to differentiate between below-normal or above normal 

temperatures, and as one of the main teleconnections affecting the climate of the Balkans, the 

Anatolian Peninsula and the Middle East. Ghasemi and Khalili (2008) investigated the relationship 

between the NCP and winter temperature variability in Iran, showing that the NCP has a strong 

negative correlation with winter temperatures. Furthermore, it was found that the positive phase 

of the NCP is associated with strong cyclonic activity over Iran, causing enhanced cloudy 

conditions and precipitation. Ben-Gai et al. (2001) analyzed the temperature and surface pressure 

anomalies in Israel and the NAO using data of maximum and minimum monthly temperatures 

from 6 stations, covering a period of 45 years (1950-1994). The result revealed a high negative 

correlation between the NAO index and temperature variation in Israel. This result are also 

confirmed in this study, where NAO showed negative correlation with all seasonal temperatures 

in Palestine and Israel, although with high rates in winter-Tmax and Tmin as well as in summer-

Tmax. Hasanean (2004) studied the wintertime surface temperature in Egypt in relation to the 

associated atmospheric circulation, using data for 18 stations. The results indicated very weak 

correlations between ENSO and EA patterns and winter temperature for all stations. On the other 

hand, the highest significant effect occurred between the EA/WR pattern and all stations. The NAO 

also showed significant negative correlations with 10 out of 18 stations. Ramadan et al. (2011) 

studied the sensitivity of the temperature and precipitation response over the Litani basin in 

Lebanon to 13 different global and regional climate circulation patterns. In their study used satellite 

data during the period 1950-2008, and the result showed temperature variability over the entire 

Litani Basin shows an overall annual negative correlation with NAO index. Meanwhile, mean 

temperature shows to be negatively correlated with NAO in all seasons. The EA/WR pattern did 
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not showed significant correlation with the Litani precipitation with any temporal and spatial data 

used. However, the connection with temperature variation is evident. An annual negative 

correlation between the Litani's temperature and EA/WR pattern is detected.  

Abualnaja et al. (2015) analyzed the impacts of climate modes on air–sea heat exchange in the Red 

Sea and they found that the Red Sea climate was strongly and negatively influenced by the NAO 

and the EA/WR indices with maximum impact on the northern part of the Red Sea, especially in 

winter. The negative heat flux anomalies generated by the NAO and EA/WR indicate that these 

modes are associated with a greater heat loss by the sea during winter. This is because of the 

transfer of colder air masses from higher latitudes during the positive phase of the NAO and 

EA/WR over a broader region including the eastern Mediterranean Sea.  
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CHAPTER 5 

ANALYSIS OF EXTREME TEMPERATURE 

   INDICES 
 

          This chapter aims to analyze the spatial and temporal 

changes in the annual and seasonal extreme temperature indices 

over the southern Levant for the period (1987-2018) Also, the 

influence of the seven large-scale circulation patterns on the 

extreme temperature indices is spatially and temporally 

analyzed.  

 

5.1 Introduction  

Climatic extreme events can have serious impacts on environment and society compared with the 

changes in the average climate (Vörösmarty et al., 2000; Parmesan et al., 2000). Furthermore, 

extremes are more sensitive to climate change than mean values (Katz and Brown, 1992). 

However, most analyses of long-term global climate change using observational temperature and 

precipitation data have focused on changes in mean values (Alexander et al., 2006), and there are 

few studies about climate extremes, especially in a region like Levant. The analysis of changes in 

extremes depends on daily data, which are generally difficult to access in countries like Jordan, 

Lebanon, Syria and Palestine, which impose restrictions on the accessibility of climatic data. 

According to the studies of the IPCC, the warming in southern and eastern Mediterranean over 

this century will be larger than the global average warming and the annual precipitation is very 

likely to decreases (IPCC, 2007, 2013). For example, Lelieveld et al. (2012) predict a continual, 

gradual and relatively strong warming of about 3.5-7C between the period 2070-2099 and the 

1961-1990 reference period and under an intermediate IPCC SRES scenario. The IPCC’s scenarios 

for the eastern Mediterranean indicate that average summer temperatures will gradually increase 

around 0.5-0.9˚C/decade, and the number of warm days will increase by 20-40 additional 

days/year by the end of the 21st century (Lelieveld et al., 2012). Note as was indicated by Lelieveld 

et al. (2012), the expected changes in precipitation could be associated with a reduction of 
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cloudiness, which allows more solar radiation to be absorbed at the surface, being able to 

contribute to the increase of temperature. In addition, the Levant region in general, and Historical 

Palestine (Israel and Palestine) in particular, are considered more vulnerable and sensitive to the 

negative impacts of climate change, because these regions are affected by many developmental 

stresses such as the water resources shortage, weakness of existing infrastructure, low adaptive 

capacity, and frequent drought events. Moreover, all of these factors are escalated by the political 

conflicts and the rapid population growth (Hammad and Salameh, 2018; Al-Qinna et al., 2011; 

Ziv et al., 2006; Lelieveld et al., 2012; Sowers et al., 2011; Terink et al., 2013). 

For Levant region, there are very few studies focused on changes in climate extremes indices. 

Zhang et al. (2005) analyzed changes in several indices over the Middle East region for the period 

1964-1999, using data from 52 stations of 15 countries, but only 4 stations belonged to Levant 

region. Donat et al. (2014) examined changes in extreme temperature and precipitation in the Arab 

region, but their study did not include stations from the Historical Palestine. However, changes in 

the frequency and intensity of climate extreme indices have been already well documented in other 

countries such as Saudi Arabia (Islam et al., 2015; Almazroui et al., 2014; Athar, 2014), Arabian 

Peninsula (AlSarmi and Washington, 2014), Iran (Rahimi and Hejabi, 2018; Rahimzadeh et al., 

2009) and Turkey (Toros, 2012; Erlat and Türkeş, 2013).   

Therefore, the present study has a dual objective. Firstly, it tries to fill the gap in the studies related 

to extreme temperature indices in the Levant region. Secondly, it provides a comprehensive 

temporal and spatial analysis of extreme temperature indices and their relationships with the main 

large-scale circulation pattern in the northern Atlantic and the Mediterranean Basin, i.e., the North 

Atlantic Oscillation (NAO), the East Atlantic (EA) pattern and the EA/Western Russia (EA/WR) 

pattern, the Western Mediterranean Oscillation (WEMO), the Mediterranean Oscillation (MO), 

and the North Sea-Caspian pattern (NCP).  

The study also includes an analysis of the El Niño-Southern Oscillation (ENSO) influence over 

Levant extreme temperature indices, as the main global climate variability pattern. The 

methodology and the list of extreme temperature indices used in this work along with their 

definition are in Section 3.7 and Table 3.1, respectively. In addition, Figure 2.6a shows the 

geographical distribution of the stations used for this analysis, while Table 3 in the Appendix A 

provides names, coordinates, and elevations of the stations. Details related to data, Quality Control 

(QC), and homogeneity are available in Chapter 2, Section 2.2. 

 

5.2 Results 

5.2.1 Annual trends of extreme temperature indices averaged over the study area  

Figure 5.1 depicts the time series of anomalies for the annual extreme temperature indices averaged 

over the whole study area during the period 1987-2018, and Table 5.1 shows their temporal trends. 

Although the absolute extreme indices (TXx, TNx, TXn and TNn) showed increasing trends by 

0.17, 0.40, 0.05 and 0.18ºC/decade, respectively, only TNx trend resulted significant at the 90% 

confidence level (Table 5.1). It is also noted that, meanwhile hot absolute extreme indices (TXx, 

TNx) were found to increase with rates higher than those of their corresponding cold extreme 
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indices (TXn, TNn), the hot percentile TX90p and TN90p indices increased with rates lower than 

the decreasing rates of the TX10p and TN10p indices. Furthermore, in all absolute and percentile-

based extreme temperature indices the increasing trends related to minimum temperature (night-

time) indices were higher than those of maximum temperature (daytime) indices (Table 5.1). 

Figures 5.1c and 5.1d depict the percentile-based extreme temperature indices TX90p, TX10p, 

TN90p and TN10p, where the temporal behaviors for TX10p and TN10p clearly pointed to a 

decreasing trend along the period 1987-2018. Increasing trends by 2.20 and 3.17 days/decade were 

found, significant at the 99% confidence level, for TX90p and TN90p, respectively; while TX10p 

and TN10p showed non-significant decreasing trends by -3.94 and -5.52 days/decade, respectively. 

These results strongly confirmed the general tendency toward the warming over the study area.   

 
 

 
Figure 5.1. Time series of anomalies for the annual extreme temperature indices averaged over the study 

area during the period 1987–2018. 
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The tendency towards warming in the analyzed region was also confirmed by the duration and 

fixed threshold extreme temperature indices SU25/30 (summer and very summer days), TR20/25 

(tropical and very tropical nights), WSDI (warm spell duration) and CSDI (cold spell duration) 

(Figures 5.1e, f, and g). The temporal behavior for SU25/30 and TR20/25 indices showed 

increasing trends along the period 1987-2018. The SU25 and TR20 indices displayed significant 

increasing trends at 0.001 significance level by 8.15 and 14.4 days/decade, respectively. Moreover, 

very summer days (SU30) and very tropical nights (TR25) indices exhibited significant increasing 

trends at the 95% and 99.9% confidence levels by 7.10 and 3.74 days/decade, respectively. 

Furthermore, WSDI index showed significant increasing trend at the 95% confidence level by 0.63 

days/decade, whereas the CSDI index had a significant decreasing trend at the 99% confidence 

level by -1.79 day/decade (Table 5.1). 

Index Trend Index Trend 

TXx 0.17 (0C/decade) TN10p -5.52 (days/decade) 

TXn 0.05 (0C/decade) WSDI 0.63* (days/decade) 

TNx 0.40+ (0C/decade) SU25 8.15*** (days/decade) 

TNn 0.18 (0C/decade) SU30 7.10* (days/decade) 

ETR -0.01 (0C/decade) FD 0 (days/decade) 

TX90p 2.20** (days/decade) CSDI -1.79** (days/decade) 

TX10p -3.94 (days/decade) TR20 14.40*** (days/decade) 

TN90p 3.17*** (days/decade) TR25 3.74** (days/decade) 

Table 5.1. Trends for the annual extreme temperature indices averaged over the study area. Symbols ***, 

**, * and +, indicate a significant trend at α = 0.001, α = 0.01, α = 0.05 and α = 0.1 level, respectively.  

 

5.2.2 Annual trends of extreme temperature indices at local scale 

5.2.2.1 Absolute extreme temperature indices 

Table 5.2 and Figure 5.2 show the results of the trend analysis for the absolute extreme temperature 

indices, at annual scale. In general, most stations in the central and southern regions exhibited 

increasing trends for all absolute indices, although except for TNx trends, they did not show 

significant increasing trends at the 95% confidence level. The hot absolute extremes (TXx and 

TNx) were found to increase at more stations compared to cold extremes (TXn and TNn). In 

addition, the number of locations that were affected by increasing trends in the minimum 

temperature indices (TNx and TNn) was larger than those of the maximum temperature indices 

(TXx and TXn). In detail, maximum values of minimum temperatures (TNx) intensively exhibited 

increasing trends in 89% (25 stations) of total stations, and 36% (10 stations) with significant 

increasing trends by values ranging between 0.45 and 1.14ºC/decade. High and significant 

increasing trends (up to 0.68ºC/decade) were mainly distributed over the Palestinian Coastal Plain 

regions (Lod Airport, Bet Dagan and En Hahoresh stations) and at some stations in the north (Kefar 

Blum and Elon stations) and in the south (Elat and Hakfar Hayarok). The results did not detect any 

significant decreasing trend in the five absolute indices, except for one station (Hazeva) in ETR 

index. 
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Figure 5.2. Spatial distribution of trends (ºC/decade) for absolute extreme temperature indices. 

Table 5.2. Number of stations showing positive and negative trends for each extreme temperature index at 

annual scale. In bracket the number of stations showing significant trends at the 95% confidence level. 

Right column shows the percentage of stations with significant increasing/decreasing trends. 

 

5.2.2.2 Percentile-based extreme temperature indices  

The results shown in Table 5.2 and Figure 5.3 clearly indicated homogeneous patterns of the 

increasing/decreasing trends for all percentile-based extreme temperature indices. The results also 

confirmed the tendency toward warming over the study area where all locations exhibited 

decreasing trends in their cold extreme (TX10p and TN10p) indices whereas they showed 

increasing trends in their hot extreme (TX90p and TX10p) indices. In this context, 100% of total 

stations exhibited increasing trends in their TX90p and TN90p, with 89% (25 stations) and 93% 

(26 stations), respectively, showing significant trends with values up to 2.74 and 3.20 days/decade, 

respectively. The high band of increasing trends higher than 2.39 days/decade affected more 

locations for TN90p than those for TX90p, such as some stations in the Palestinian Coastal Plain 

Index Positive Negative Percentage of stations (%) 

TXx 23 (2) 4 (0) 7.1 / 0 

TXn 13 (0) 6 (0) 0 / 0 

TNn 17 (2) 9 (0) 7.1 / 0 

TNx 25 (10) 2 (0) 36 / 0 

ETR 14 (1) 11 (1) 3.5 / 3.5 

TX90p 28 (25) 0 89 / 0 

TX10p 0 28 (1) 0 / 3.5 

TN90p 28 (26) 0 93 / 0 

TN10p 0 28 (3) 0 / 10.7 

WSDI 13 (11) 0 39 / 0 

CSDI 2 (1) 8(6) 0 / 21 

SU25 27 (23) 1 (0) 82 / 0 

SU30 26 (16) 1 (0) 57 / 0 

FD 3 (0) 16 (1) 0 / 5) 

TR20 28 (24) 0 86 / 0 

TR25 12 (8) 0 28.5 / 0 
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region (En Hahoresh, Galed, Lod Airport and Bet Dagan) (Figure 5.3). Coherently, TX10p and 

TN10p indices displayed decreasing trends in 100% of total stations but with a smaller number of 

significant stations, only 1 and 3 stations, respectively (Table 5.2).  

Figure 5.3. Spatial distribution of trends (days/decade) for annual percentile-based extreme temperature 

indices. Significant trends at the 95% confidence level are marked by a dot. 

 

5.2.2.3 Duration and fixed threshold extreme temperature indices  

The tendency toward a warming was also confirmed by the results shown in Table 5.2 and Figure 

5.4 for the annual duration and fixed threshold extreme temperature indices, where decreasing 

trends were not observed for WSDI, SU25/30 and TR20/25 indices, except for Ariel station, 

although was not significant. In addition, the WSDI index showed increasing trends while the 

CSDI index showed decreasing trends.  

Summer days (SU25) and tropical nights (TR20) indices exhibited very intense and significant 

increasing trends in 82% and 86% (23 and 24 stations, respectively). All stations that showed 

significant positive trends in their SU25 index, also showed significant positive trends in their 

TR20 index. Furthermore, most regions in the study area were affected by a high band of 

significant increasing trends (between 6.90 and 11.09 days/decade) in both indices (Figure 5.4). 

For very summer days (SU30) and very tropical nights (TR25) indices, the significant increasing 

trends intensively occurred at more locations for SU30 (57%, 16 stations) than those of TR25 

index (28.5%, 8 stations). The very high and significant increasing trends (between 17 and 22 

days/decade) covered the north-western regions at Elon and Akko stations for SU30, while the 

high and significant increasing trends (from 11 to 14 days/decade) found over the south-eastern 

areas at Elat, Yotvata and Hazeva stations, and the north-eastern areas at Yavne’el and Massada 

for TR25 index (Figure 5.4).The warm spell duration index (WSDI) denoted increasing trends in 

52% (13 stations), and only 39% (11 stations) resulted significant at the 95% significance level 

(Table 5.2). The positive increasing trends (between 1.26 and 2.83 days/decade) were mainly 

distributed over the northern and center regions (Figure 5.4). 
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Figure 5.4. Spatial distribution of trends (days/decade) for annual duration and fixed threshold 

extreme temperature indices. Significant trends at the 95% confidence level are marked by a dot. 

The negative trends for cold spell duration index (CSDI) and frost days (FD) also 

confirmed the tendency toward the warming, with 28.5% of the locations (8 stations) 

showing decreasing trends for CSDI index and 21% of them (6 stations) with significant 

trends. Only one station (Lahav) displayed significant increasing trend by 1.00 day/decade 

for CSDI. High decreasing trends of CSDI between -1.99 and -2.49 days/decade occurred 

in the north-western region. For FD index, most stations (57%) showed negative trends, 

but only 1 station (Akko station) resulted significant with a value of -0.12 days/decade. In 

addition, for this latter index, only few isolated stations presented positive trends although 

non-significant. 
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5.3 Seasonal trends of extreme temperature indices at local scale 

5.3.1 Absolute extreme temperature indices 

Results presented in Table 5.3 and Figures 5.5 and 5.6 did not reveal any significant decreasing 

trend for all the seasonal absolute extreme temperature indices. Furthermore, warming trends 

affected more locations than the decreasing trends for all the seasonal absolute extreme 

temperature indices, except for TXx-spring and TXx-autumn (Table 5.3 and Figure 5.5), when 

non-significant decreasing trends affected more locations, mainly distributed in the northern 

region. The analysis for frequency and intensity of trends also revealed that the total number of 

locations that was affected by significant/non-significant warming trends for the minimum 

temperature indices (TNx and TNn, Figure 5.6) were more than those for the maximum 

temperature indices (TXx and TXn, Figure 5.5), especially for spring and autumn (Table 5.3). 

 
Figure 5.5. Spatial distribution of trends (ºC/decade) for seasonal absolute extreme maximum temperature 

indices. Significant trends at the 95% confidence level are marked by a dot. 
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More than 96% of total stations showed positive trends for all absolute summer extreme 

temperature indices (Table 5.3). Moreover, summer did not show any decreasing trend at all 

stations and for all indices. It is also interesting to note that it exhibited the highest total of stations 

with significant warming trends in 50%, 89%, 96% and 89% of total stations for the TXx, TXn, 

TNn and TNx indices, respectively (Table 5.3). For spring and autumn, they showed dominant 

warming trends (> 96% of total stations) in the minimum values of the absolute temperature indices 

(TXn and TNn), with significant trends for more than 43% of total stations, while winter showed 

dominant occurrence of warming trends for maximum values of temperature indices (TXx and 

TNx), with significant results for more than 29% of total stations.  

 
Figure 5.6. Spatial distribution of trends (oC/decade) for seasonal absolute extreme minimum temperature 

indices. Significant trends at the 95% confidence level are marked by a dot. 

Regarding decreasing trends, spring and autumn displayed decreasing trends in 50% of total 

stations for TXx index. They also displayed decreasing trends in 29% and 11% of total stations for 
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TNx index, respectively. Furthermore, the decreasing trends occurred in TXn-winter and TNn-

winter in 25% and 36%, respectively (Table 5.3). The coherent spatial of decreasing trends, 

although nonsignificant, were found in some cases such as for TXx-spring in the northern regions, 

TNx-spring in the northern and central areas of the West Bank, and TXx-autumn in the regions 

that extended from central West Bank to the most north-eastern regions for the northern regions 

(Figures 5.5 and 5.7). 

 

Index 

Seasonal scale 

Winter Spring Summer Autumn 

Positive Negative Positive Negative Positive Negative Positive Negative 

TXx 28 (8) 0 9 (0) 14 (0) 28 (14) 0 12 (2) 15 (0) 

TXn 12 (0) 7 (0) 28 (12) 0 28 (25) 0 28 (14) 0 

TNn 12 (2) 10 (0) 27 (17) 0 27 (27) 0 28 (12) 0 

TNx 28 (11) 0 18 (5) 8 (0) 28 (25) 0 24 (15) 3 (0) 

TX90p 28 (17) 0 28 (9) 0 28 (21) 0 16 (1) 12 (0) 

TX10p 0 28 (0) 0 28 (2) 3 (0) 25 (5) 0 28 (24) 

TN90p 28 (12) 0 28 (17) 0 28 (24) 0 26 (9) 2 (0) 

TN10p 3 (0) 25 (0) 0 28 (14) 0 28 (5) 0 28 (16) 

SU25 22 (20) 0 27 (21) 0 5 (3) 0 25 (4) 2 (0) 

SU30 1 (1) 0 21 (7) 6 (0)  21 (8) 1 (0) 26 (4) 2 (0) 

TR20 0 0 23 (11) 5 (1) 25 (23) 0 26 (18) 2 (0) 

TR25 0 0 6 (2) 0 20 (15) 0 6 (4) 2 (1) 

Table 5.3. Number of stations with positive and negative trends for each extreme temperature index at 

seasonal scale. In bracket the number of stations with significant positive or negative trends at the 95% 

confidence level. 

The analysis of the intensity of warming trends revealed that summer significantly showed the 

highest warming trends between 0.98 and 1.36ºC/decade for TXx index and spatially covered the 

regions extended eastward and northward of the Gaza strip. It is also exhibited a significant 

warming trend between 0.6 and 1.0ºC/decade in the north-eastern region. In addition, spring and 

autumn exhibited warming trends in TXn index stronger and more pronounced than their trends in 

TXx index. The highest rates of warming trends occurred in autumn for TXn index, from 0.90 to 

1.86ºC/decade, distributed over the northern regions of the study area (Figure 5.5). Furthermore, 

the high significant increasing trends for summer (from 1.0 to 1.22ºC/decade) covered the north-

eastern regions and the upper areas of the Negev desert. 

For the minimum temperature indices (TNx and TNn), the results shown in Figure 5.6 generally 

indicated that spring and autumn exhibited more intense and positive trends for (TNx) index than 

their (TXx) index. Similar conditions were also found in summer, especially for the northern and 

south-eastern regions. Moreover, summer showed more intense increasing trends for TNn index 

than TXn index, especially for all coastal regions that extends from Gaza strip in the south to Akko 

in the north (with rates from 0.98 to 1.47ºC/decade). For TNx index, the highest and significant 

warming trends, in the interval 1.11-1.23ºC/decade, appeared in summer, and spatially distributed 

in the Palestinian Coastal Plain regions (Beit Dagan, Lod Airport and En Hahoresh stations) as 

well as at Kefar Hayarok and Harashim stations in the north. For TNn index, autumn showed high 

increasing trends in the northern regions with some locations reaching 2.33ºC/decade. 
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5.3.2 Percentile-based extreme temperature indices 

In general, all seasons showed significant increasing trends in the TN90p index (Figure 5.8) for 

more locations and with higher intensity than the TX90p index (Figure 5.7), except for winter. For 

the TX90p index, winter and summer displayed higher frequency and intensity of the significant 

increasing trends compared with those for spring and autumn, when 61%, 32%, 75% and 3.5% of 

total stations exhibited significant increasing trend for winter, spring, summer and autumn, 

respectively (Table 5.3). The strongest significant increasing trends (from 3.74 to 4.27 

days/decade) covered the most northern and southern regions in winter and they covered all 

regions, except for very few locations in summer (Figure 5.7). In spring, the area extended 

eastward and northward of the Gaza strip showed a significant increasing trend in their TX90p 

index by 2.70 days/decade on average.  

 
Figure 5.7. Spatial distribution of trends (days/decade) for seasonal percentile-based extreme temperature 

indices. Significant trends at the 95% confidence level are marked by a dot. 

For TN90p index, 43%, 61%, 86% and 32% of total stations had significant increasing trends for 

winter, spring, summer and autumn, respectively (Table 5.3). The strongest significant positive 
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trends were in summer (by 4.79-5.31 days/decade) and spatially covered all the study area. For the 

rest of seasons, the increasing trends were, in general, less intense (< 3.22 days/decade) for all 

regions (Figure 5.8). Regarding TX10p and TN10p indices, all seasons had decreasing trends for 

all locations, except a total of six stations (three in TX10p-summer and three in TN10p-winter) 

which showed very weak and non-significant increasing trends. The results also indicated that 

winter did not show significant decreasing trends in both indices and for all locations. 

Contrariwise, autumn showed the highest occurrence and intensity of decreasing trends, significant 

for the 86% of the total number of stations for TX10p index and the 57% for TN10p index (Table 

5.3). For TX10p-autumn index (Figure 5.7), the highest significant decreasing trends (between -

2.78 and -5.36 days/decade) covered the entire study region. For TN10p-autumn (Figure 5.8) the 

intensity of decreasing trends reached values even higher in general. 

 
Figure 5.8. Spatial distribution of trends (days/decade) for seasonal percentile-based extreme temperature 

indices. Significant trends at the 95% confidence level are marked by a dot. 

Spring, showed significant decreasing trends at more locations and with higher intensity in TN10p 

index than TX10p index (50% and 7% of total stations, respectively, Table 5.3). For TN10p-spring, 

most locations showed significant decreasing trend (from -2.52 to -3.57 days/decade). In addition, 
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the significant decreasing trends showed a generalized pattern in TX10p-summer and TN10p-

summer, but only with five significant results (Figures 5.7 and 5.8). 

 

5.3.3 Duration and fixed threshold extreme temperature indices 

The results presented in Figure 5.9 and Table 5.3 indicated 82% of total stations (23 stations) 

remarkably showed significant and positive trends for TR20 index (between 4.39 and 7.53 

days/decade) in summer. The regions extended eastward and northward of the Gaza strip had the 

highest positive trends in summer, with rates from 6.28 to 7.53 days/decade. Furthermore, 64% 

and 39% of total stations had significant increasing trends respectively in autumn and spring. For 

autumn, the trends ranged between 3.14 and 3.77 days/decade, whereas they were lower than 1.43 

days/decade for most locations in spring. In addition, the northern regions showed decreasing 

trends for TR20-spring by -0.62 days/decade (Table 5.3, Figure 5.9). 

 
Figure 5.9. Spatial distribution of trends (days/decade) for duration and fixed threshold extreme 

temperature indices. Significant trends at the 95% confidence level are marked by a dot. 

For SU25 index, summer did not exhibit remarkably increasing or decreasing trends in 89% of 

total stations, whereas winter showed significant increasing trends in 71% of the cases (20 

stations), autumn in 14% (4 stations) and spring in 75% (21 stations). Spring had the highest 
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significant and generalized increasing trends, up to 4.39 days/decade, which are mainly distributed 

over the whole area (Figure 5.9).  

For autumn and summer, the frequency and intensity of increasing trends related to the minimum 

temperature (TR20) were greater than those of maximum temperature (SU25) at all locations. 

Contrary, the frequency and intensity of increasing trends for winter and spring were greater for 

SU25 than for TR20 at all locations.  

 
Figure 5.10. Spatial distribution of trends (days/decade) for duration and fixed threshold extreme 

temperature indices. Significant trends at the 95% confidence level are marked by a dot. 

For very extreme threshold indices, the increasing trends for SU30-spring were more pronounced 

than those for TR25-spring for all regions, except at Ariel and Jerusalem stations which exhibited 

non-significant decreasing trends (Figure 5.10). In this context, for TR25-spring only 6 stations 

showed increasing trends with 2 stations of them being significant, while 75% (21 stations) showed 

increasing trends for SU30-spring index with 33.4% (7 stations) of them being significant. 
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Spatially, the south-eastern regions along the border with Jordan exhibited increasing trends for 

both indices, but with higher rates (from 2.52 to 3.77 days/decade) for SU30 index (Figure 5.10). 

For winter, the results did not detect any trend for TR25 and SU30, except at Elat station which 

exhibited a significant increasing trend for SU30 by 0.43 days/decade (Figure 5.10).  

In summer, TR25 index significantly showed increasing trends at more locations (53% of total 

stations) than those for SU30 index (28% of total stations), whereas SU30 generally showed higher 

intensity of increasing trends than TR25 in most locations, especially in the Palestinian Coastal 

Plain areas and some locations in the northern regions. Most stations in the Palestinian Coastal 

Plain showed significant increasing trends for TR25 index (from 0.64 to 1.26 days/decade). These 

regions also showed high increasing trends, although nonsignificant, for SU30 index (from 5.65 

to 6.28 days/decade). It is also noticed that the southern regions showed higher rates of increasing 

trends in TR25 index (from 5.02 to 6.28 days/decade). For autumn, TR25 index did not show 

increasing/decreasing trends in 71% of total stations. On the other hand, SU30 index exhibited 

increasing trends in 93% of the cases (26 stations), but only 4 stations of them being significant at 

the 95% confidence level. 

 

5.4 Extreme temperature indices and teleconnection patterns 

In this section, the relationships between the extreme temperature indices and the selected large-

scale circulation patterns were examined, with the aim to identify whether any specific circulation 

pattern could have some influence on the occurrence of the extreme temperatures over the study 

area. Tables 5.4 and 5.5 summarize the number of stations with significant correlations between 

the extreme temperature indices and the NAO, EA, EA/WR, WEMO, MO, ENSO and NCP 

teleconnection indices at annual and seasonal scales, respectively. 

The results listed in Tables 5.4 and 5.5 generally demonstrated the NCP is the main driver of the 

extreme temperature indices over the study area. For the sake of saving space, we present here 

only the correlation coefficients between NCP and the extreme temperature indices at annual and 

seasonal scales (Figures 5.11 and 5.12, respectively). Moreover, we provide four supplementary 

files in the Appendix B (Figures 1, 2, 3 and 4) of the main correlation coefficients for EA/WR, 

NAO and ENSO patterns. In addition, Figure 5.13 shows the temporal variability of the NCP 

standardized index along with some standardized temperature indices time series.  

 

5.4.1 Annual scale  

According to Table 5.4, the NCP pattern intensively showed the most significant influence on 

TXx, TXn, TX90p, TX10p, TN90p, TN10p, WSDI, SU25, SU30, CSDI, TR20 and TR25 indices 

in 28.6%, 57%, 93%, 82%, 86%, 75%, 71.5%, 46%, 64.3%, 71.4%, and 60.7% of total stations, 

respectively. Moreover, all correlation coefficients between the NCP index and all extreme 

temperature indices were negative, except for TN10p and for TX10p, CSDI and FD indices in 

some locations. The highest negative correlation coefficients (between -0.56 and -0.63) were found 

with the TX90p, TN90p and WSDI indices and spatially covered the most southern regions, the 

upper parts of the Negev desert as well as the northern regions (Figure 5.11). High correlation 
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coefficients (between -0.43 and -0.56) covered the northeastern regions and Jerusalem district for 

TXx, while for TXn, correlations up to -0.50, covered the southern areas of the Palestinian Coastal 

Plain and northeastern regions. For TN10p, most stations showed significant and positive 

correlations (up to 0.47) (Figure 5.11). 

Regarding the other patterns, the EA/WR represented the second most important pattern affecting 

the extreme temperature indices over the study area (Table 5.4). Its influence mainly occurred over 

SU25 index in 86% of total stations which presented significant negative correlations with it. High 

and significant correlations (up to -0.63) covered the Palestinian Coastal Plain, Beer Sheva and the 

northeastern districts (Figure 1 in the Appendix B). In addition, it showed significant correlations, 

although lower, with TX10p (43% of total stations), TN10p (39%), SU30 (43%), WSDI (43%) 

and CSDI (46%) indices at more locations than other patterns (Table 5.4). 

The main influence of the EA pattern was on TXx, TNx and TX90p indices in 28.5%, 39% and 

28.5% of the total stations, respectively, and with correlation coefficients ranging from 0.31 to 

0.48 (not shown). The NAO pattern also exhibited significant and positive correlations with TNx 

in 36% of total stations, with correlation coefficients ranging from 0.32 to 0.48. Furthermore, the 

NAO index displayed significant negative correlations with TX90p and TN90p in 61% and 50% 

of total stations, respectively. For TX90p, high correlation between -0.41 and -0.61 occurred in 

the most southern region as well as in the eastward and northward of the Gaza strip. For TN90p, 

the highest significant correlations were reached at the centre region, up to -0.72 (Figure 2 in the 

Appendix B). The significant correlations were very weak between MO, WEMO and ENSO 

patterns and all extremes indices, except the positive correlation in 32% of total stations between 

MO and WSDI, 32% of total stations between WEMO and TN10p and 50% of total stations 

between ENSO and TN10p 

Index NAO EA EA/WR WEMO MO NCP ENSO 

(+) (-) (+) (-) (+) (-) (+) (-) (+) (-) (+) (-) (+) (-) 

TXx 1 0 8 0 0 2 5 0 0 2 0 8 0 0 

TXn 0 1 1 0 0 0 0 3 0 0 0 16 0 0 

TNx 10 1 11 0 1 0 0 0 0 0 0 9 0 0 

TNn 0 1 1 1 0 1 0 1 0 0 0 0 0 3 

TX90p 0 17 8 0 0 12 0 0 0 5 0 26 0 0 

TX10p 1 0 0 0 12 0 0 0 1 0 8 15 4 0 

TN90p 0 14 7 0 0 14 0 0 0 4 0 24 0 0 

TN10p 2 0 0 0 11 0 0 9 0 0 21 0 14 0 

WSDI 0 0 1 0 0 12 1 1 9 0 0 20 0 0 

SU25 0 7 1 0 0 24 3 0 0 0 0 16 0 0 

SU30 0 7 6 0 0 12 5 0 0 0 0 13 0 0 

CSDI 0 1 0 1 12 1 3 0 0 0 0 18 3 0 

TR20 0 8 7 0 0 9 4 0 0 0 0 20 0 2 

TR25 0 8 6 0 0 4 0 0 1 0 0 17 0 0 

FD 0 0 0 0 5 0 5 1 0 0 4 0 0 0 

Table 5.4. Number of stations with significant positive or negative correlations between extreme 

temperature and teleconnection indices at annual scale. Only significant results at the 95% confidence level 

are shown. 
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Figure 5.11. Spatial distribution of Pearson correlation coefficients between the NCP index and the 

extreme temperature indices at annual scale. 
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5.4.2 Seasonal scale  

Table 5.5 summarizes the number of stations with significant correlations between the extreme 

temperature indices and the teleconnection patterns at seasonal scale. The results also indicated 

the NCP pattern was the main driver of extreme temperature indices in winter for 5 out of 12 

indices, and in autumn for 8 out of 12 indices, while EA/WR was the main driver of extreme 

indices in spring for 5 out of 12 indices. In summer, the ENSO pattern showed a big influence on 

5 extreme temperature indices. In general, the main influence seems be exerted by the NCP pattern, 

concentrated over the percentile extreme temperature indices for winter and autumn (for all 

percentile extremes) and in summer (for TX90p and TN90p).  

In winter, the NCP pattern intensively presented the highest correlation coefficients, compared 

with the other patterns, on TXn, TNn, TX90p, TN90p, TX10p and TN10p indices with 100%, 

86%, 75%, 61%, 79%, and 96% of total stations, respectively (Table 5.5, Figure 5.12). High and 

negative correlations (between -0.52 and -0.72) covered mostly the study area for TXn, TNn, 

TX90p and they concentrated in the north-eastern regions for TN90p. For positive correlations 

with TX10p and TN10p, very high and significant values (from 0.63 to 0.72) spatially covered all 

the study area for both indices. Figure 5.13b illustrates the strong positive correlation between the 

temporal variability of the standardized NCP and TN10p indices averaged for all locations along 

the period 1986-2016 in winter.  

In spring, the NCP also had the highest influence on TNn with 39% of total stations showing 

significant correlations as well as it exhibited high occurrence of significant correlations with TXn, 

TX90p and SU25/30 with 68%, 32% and 68/50%, respectively (Table 5.5). The NCP in summer 

was the main controller for TX90p, TN90p and TR25 indices respectively in 61%, 50% and 32% 

of total stations. 

In autumn, the NCP pattern showed high influence on 8 out of 12 indices, TNn, TX90p, TN90p, 

TX10p, TN10p, SU25/30 and TR20 indices, with 79%, 96%, 79%, 32%, 61%, 100/68% and 75% 

of total stations, respectively, with significant correlations. It also showed high occurrence of 

significant correlations with TXn and TNx indices with 61% and 39% of total stations, respectively 

(Table 5.5). For TX90p and TN90p, high correlation coefficients (from -0.59 to -0.67) spatially 

covered the complete study region (Figure 5.12). A similar pattern was found for TNn index, but 

with lower correlations. For TN10p index, the correlation pattern showed positive values extended 

over all the region. The temporal variability of the standardized NCP and TX90p (Figure 5.13a) 

and SU25 (Figure 5.13c) autumn indices showed the strong negative correlations along the period 

1986-2016. 

Regarding EA/WR pattern, it resulted the main controller for TXx, TXn, TN90p and TR20/25 

indices for 96%, 82%, 36% and 50%/29% of total stations, respectively, in spring (Table 5.5). 

Spatially, high correlation coefficients (from -0.42 to -0.50) were found in the Palestinian Coastal 

Plain and north-western areas for TXn index, as well as in all regions of the study area for TXx 

index (Figure 3 in Appendix B). The EA/WR pattern also displayed a high frequency of significant 

correlations with SU25/30 indices in 79%/50% of total stations (Table 5.5).  
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Figure 5.12. Spatial distribution of Pearson correlation coefficients between the NCP index 

and the extreme temperature indices at seasonal scale. 

In summer, the EA/WR pattern was the main controller for all absolute extreme temperature 

indices in 53%, 61%, 100% and 89% of total stations for TXx, TNx, TXn and TNn, respectively. 
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The highest correlation coefficients were found for TXn and TNn indices, between -0.41 and -0.61 

(Figure 3 in Appendix B). On the other hand, in autumn, the EA/WR pattern displayed the highest 

influence on TXx and TNx for 96% and 75% of total stations. All regions showed correlations 

coefficients (between -0.41 and -0.50) for TXx, except for the northeastern region where the 

correlations were lower (Figure 3 in Appendix B). 

Compared with the other patterns, the NAO showed the highest effect on SU25/30 for 71%/68% 

of total stations in winter (Table 5.5). Strong correlation coefficients (between -0.51 and -0.72) 

were found in the area extended from the centre to the south of the region for SU25index. A similar 

pattern was also found for SU30, but showing lower correlations (Figure 4 in Appendix B). In 

autumn, NAO pattern had the highest significant correlations with TXn for 89% (Table 5.5). 

It is noticed that the ENSO pattern showed the highest influence on TX10p and TN10p indices for 

68% and 61% of total stations, respectively, during spring and summer. Spatially, high and 

significant correlations between 0.42 and 0.62, were expanded over the study region (Figure 4 in 

Appendix B). 

 

Indices 

       

Seasons 

Extreme temperature indices 

TXx TNx TXn TNn TX 

90p 

TN

90p 

TX 

10p 

TN

10p 

SU 

25/30 

TR 

20/25 

Tot. 

 

NAO 

Winter 3 11 2 6 1 0 6 9 20/19 0/0 77 

Spring 0 8 0 1 4 2 0 4 19/7 5/0 50 

Summer 0 0 0 1 13 11 1 1 2/3 4/3 39 

Autumn 0 5 25 5 6 2 0 0 ½ 6/2 54 

 

EA 

Winter 0 0 0 4 0 0 0 0 0/0 0/0 4 

Spring 1 6 0 1 4 6 0 2 1/5 11/6 43 

Summer 6 5 0 7 0 5 1 0 0/2 0/3 29 

Autumn 0 1 0 1 0 0 0 0 14/4 0/0 20 

 

EA/WR 

Winter 0 12 19 12 15 2 17 16 11/0 0/0 104 

Spring 27 6 23 3 6 10 2 7 22/14 14/8 142 

Summer 16 17 28 25 1 9 3 0 2/2 5/6 114 

Autumn 27 21 18 0 0 0 0 2 0/2 0/0 70 

 

WEMO 

Winter 0 0 7 18 0 1 0 0 0/0 0/0 26 

Spring 2 10 0 0 10 7 16 4 24/12 3/0 88 

Summer 0 0 1 2 0 0 1 1 2/2 1/1 11 

Autumn 3 0 15 20 8 3 4 0 20/2 1/1 74 

 

MO 

Winter 0 6 5 5 22 16 1 3 17/8 0/0 83 

Spring 1 0 1 2 0 0 1 0 14/4 4/0 27 

Summer 1 0 1 3 0 0 5 1 2/5 2/0 20 

Autumn 9 2 7 0 0 0 0 0 6/0 0/10 34 

 

NCP 

Winter 2 8 28 24 21 17 22 27 4/3 0/0 156 

Spring 6 2 17 11 9 2 6 5 19/14 2/0 93 

Summer 7 12 2 1 17 14 0 0 0/4 5/9 71 

Autumn 7 11 17 22 27 22 9 17 28/19 21/4 204 

 

ENSO 

Winter 1 0 2 3 0 1 9 1 2/2 1/0 22 

Spring 0 0 0 0 0 0 19 17 4/1 2/0 41 

Summer 0 0 2 8 0 2 17 15 5/10 10/3 72 

Autumn 0 0 0 7 1 1 1 0 0/0 0/5 15 

Table 5.5. Number of stations with significant correlations between extreme temperature and 

teleconnection indices at seasonal scale. Only significant results at the 95% confidence level are shown. 
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Figure 5.13. Temporal variability of the standardized NCP index along with some standardized 

temperature indices time series.  

 

5.5 Conclusions and discussion 

Topic such as spatio-temporal analysis for extreme temperature indices over Israel and Palestine 

in the Levant region were not fully explored by previous studies, and it is required further attention. 

Thus, the main aim of this study was to provide a comprehensive analysis of this topic using more 

stations and for a recent period of time. In this study, trends for 16 extreme temperature indices 

computed from daily data of 28 stations homogeneously distributed over the territory were 

spatially and temporally analyzed at annual and seasonal scales, for the period 1987-2018. In 

addition, the relationships between these extreme indices and large-scale circulation patterns were 

examined for each station. The main conclusions can be summarized as follow: 

1. The analysis of 16 extreme temperature indices revealed a dominant warming tendency for 

the last three decades over the study area. Extremes related to minimum night-time 

temperature denoted more intense trends compared to those of maximum day-time 

temperature indices, at annual and seasonal scales. 

2. Regarding the averaged extreme indices over the study area, significant increasing trends 

for seven extreme temperature indices (TNx, TX90p, TN90p, SU25, SU30, TR20 and 

TR25) were detected at annual scale, whereas the significant decreasing trends were 

detected for the CSDI and TN10p indices.  

These results are consistent with other studies in regions around the study area. Donat et al. (2014) 

analyzed the changes in extreme temperature and precipitation over the Arab region based on data 

of 61 stations, and they found increasing trends in the averages of TXx, TX90p, TN90p and WSDI 

indices by 0.23ºC/decade, and 1.6, 2.1 and 0.76 days/decade, respectively. They also found 

decreasing trends in CSDI, TX10p and TN10p indices by -3.3, -2.2 and -3.2 days/decade, 
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respectively. Over Central Asia, Feng et al. (2018) studied the spatio-temporal variations in 

extreme temperature, based on data of 108 stations from six countries for the period 1981-2015. 

The results revealed that both TX90p and TN90p experienced significant increasing trends by 1.1 

and 1.4 days/decade, respectively as well as TX10p and TN10p showed significant decreasing 

trends by -1.01 and -0.62 days/decade, respectively. Furthermore, Almazroui et al. (2014) analyzed 

trends of temperature extremes in Saudi Arabia based on data of 27 stations during the period 

1981-2010, and they found significant increasing trends in the TNx, TX90p, TN90p and WSDI 

indices by 0.7ºC/year, 16.9, 12.7 and 3 days/decade, respectively. The results also indicated the 

significant decreasing trends in CSDI, TX10p and TN10p index by -2.4, -19.4 and -16.3 

days/decade, respectively. Finally, Erlat and Türkeş (2013) analyzed trends of SU25 and SU30 

indices over Turkey based on data of 97 stations during the period 1976-2010 and the results 

revealed significant increasing trends by 6.8 and 7.2 days/decade, respectively. 

3. At annual and local scales, the analysis of trends for extreme temperature indices revealed 

significant warming trends in TNx index (36% of total stations). Moreover, the analysis 

revealed significant increasing trends in WSDI, SU25/30 and TR20/25 indices. For SU25 

and TR20, more than 82% of total stations were affected by significant increasing trends 

while SU30 and TR25 indices exhibited significant increasing trends in 46% and 29% of 

total stations. For WSDI index, 39% of total stations were affected by significant increasing 

trends. In addition, the percentile-based extreme temperature indices showed very coherent 

patterns for significant increasing trends with 89% and 92% of total stations respectively 

exhibited significant increasing trends for TX90p and TN90p indices. Furthermore, TX10p 

and TN10p indices showed decreasing trends in 100% of total stations.  

In agreement with these results, studies carried out in surrounding regions provide results in the 

same line. Rahimzadeh et al. (2009) analyzed the variability of extreme temperature over Iran 

during the period 1951-2003, and the results revealed that 46%, 74%, 46%, 44% and 85% of total 

stations (27 stations) exhibited significant increasing trends in their TNx, TN90p, TX90p, SU25 

and TR20 indices, respectively. For TX10p and TN10p indices, Rahimzadeh et al. (2009) also 

found decreasing trends in more than 55% of total stations. Furthermore, Rahimi and Hejabi (2018) 

studied extreme temperature indices over Iran during 1960-2014 and they found 88%, 71%, 76%, 

61% and 73% of total stations (33 stations) had statistically significant increasing trends in their 

TNx, TX90p, TN90p, SU25 and TR20 indices, whereas TX10p and TN10p indices exhibited 

significant decreasing trends in 39% and 64% of total stations, respectively. The TNx, TR20 and 

WSDI indices also showed intensive significant increasing trends in 70%, 74% and 70% of total 

stations (27 stations) over Saudi Arabia (Almazroui et al., 2014). Finally, Erlat and Türkeş (2013) 

found 95% and 94% of total stations (97 stations) showed upward trends in their annual averages 

of SU25 and SU30 indices, respectively over Turkey.  

4. At seasonal scale, the results did not indicate significant decreasing trends for any absolute 

extreme temperature indices. For TX10p-autumn, 86% of total stations showed significant 

decreasing trends as well as 50% and 57% of total stations in TN10p-spring and TN10p-

autumn, respectively. Contrary, at annual scale, the analysis showed intense and broad 
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significant increasing trends in all the absolute extreme temperature indices. For summer, 

more than 90% of total stations exhibited significantly increasing trends for TXn, TNn and 

TNx indices. For autumn and spring, more than 40% of total stations had significant 

increasing trends of TXn and TNn indices. In winter, 39% of total stations showed 

significant increasing trends in. The intense and coherent increasing trends were found also 

in TX90p and TN90p indices in 61% and 75% of total stations for TX90p-winter and 

TX90p-spring, respectively. For TN90p, 61% and 85% of total stations showed significant 

increasing trends for TN90p-spring and TN90p-summer. 

These results are in agreement with those obtained in surrounding areas. Islam et al. (2015) 

analyzed the changes in seasonal temperature extremes over Saudi Arabia during the period 1981–

2010, and they found that summer exhibited significant warming trends for all absolute extreme 

temperature indices more than those for other seasons in 63% for TXx, 48% for TXn, 59% for 

TNn and 70% for TNx of total stations (27 stations). The analysis of seasonal trends in frequency 

of extreme temperature indices revealed significant increasing trends of SU25 index in winter and 

spring (71% of total stations) with averages ranging between 0.1 and 5.87 days/decade. In summer 

and autumn, more than 64% of total stations exhibited significant increasing trends of TR20 index 

by averages ranging between 1.3 and 5.14 days/decade. TR25 showed significant increasing trend 

in 54% of total stations for summer with averages ranging in the interval 0.04-9.19 days/decade. 

Note that the warming process in densely populated regions like Jerusalem, Akko and Beer Sheva 

is expected to be even faster due to the urban heat island, at least partly (Ziv et al., 2005). Many 

studies indicated the effect of urbanization on the increasing temperature in cities, especially 

during summer, when urban heat islands are stronger due to a greater storage of heat in urban 

structures (Fujibe, 2009). Itzhak Ben Shalom et al. (2016) studied the trends of urban warming 

during the period 1980-2014 in four Israeli cities (Jerusalem, Beer Sheva, Elat and Tel Aviv) to 

estimate the urbanization effect on the local climate, and they found that the urban minus rural 

temperature showed a more intense warming in the daytime in the 4 cities. 

In the present study, the urban locations of Jerusalem and Akko showed the highest increasing 

trends above 6.38 days/decade in SU30-summer index, but other urban stations as Elat and Beer 

Sheva did not show significant increases in this index. Other rural locations, such as Elon and Bet 

Dagan, also exhibited significant increasing trends in SU30-summer. Moreover, for TNx index in 

summer almost all the locations showed significant trends with similar values, independently of 

the urban or rural character. Therefore, from our study we cannot confirm the urban heat effect as 

the responsible of the warming trends in Levant region. The generalized warming trends could be 

due to the global warming (Parker, 2004).  

5. For the analysis of the influence of teleconnection indices on the extreme temperature over 

Israel and Palestine, the study revealed the NCP pattern was the main driver of extreme 

temperature variability over the study area, particularly at annual, winter and autumn 

scales. It displayed strong influence compared with other patterns on 11 out of 12 indices 

for the annual extremes, 5 out of 12 indices for winter and 8 out of 12 indices for autumn. 

In addition, EA/WR and ENSO displayed notably effects on the extreme temperature 
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indices in some cases, especially in spring and summer. The study also revealed the main 

influence of the NCP generally concentrated in the percentile extreme temperature indices 

for winter (all percentile extremes), summer (TX90p and TN90p) and autumn (all 

percentile extremes). EA/WR represented the second most important pattern affecting the 

extreme temperature indices over the study area, and its main influence occurred on the 

absolute extreme temperature indices for winter (TNx), summer (all absolute extremes), 

autumn (TXx and TNx) and spring (TXx and TXn). At annual scale, strong significant 

correlations were observed between the NCP and TX90p, TX10p, TN90p, TN10p, WSDI 

and TR20 indices respectively, in 93%, 82%, 86%, 75%, 71.5%, and 71.4% of total 

stations. In winter and autumn, the NCP broadly and intensively exhibited significant 

correlations with TXn-winter, TNn-winter, TN10p-winter, TX90p-autumn and SU25-

autumn respectively in 100%, 86%, 96%, 96% and 100% of total stations, respectively. 

On the other hand, EA/WR had the highest effect compared with other patterns on TXx-

spring, TXn-spring, TXn-summer, TNn-summer in 96%, 82%, 100% and 89% of total 

stations. For ENSO pattern, it exhibited the highest effect in summer on TX10p, TN10p, 

SU25/30 and TR20 in 61%, 53.5%, 18/36% and 36%, respectively. Other teleconnection 

patterns (NAO, EA, WEMO and MO) did not show significant correlations, except in very 

few cases such as WEMO in spring with TNx (36% of total stations), TX90p (36% of total 

stations) and SU25 (86% of total stations).  

These results are in accordance with those carried out in surrounding areas. Kutiel and Benaroch 

(2002) concluded that the main impact of the NCP mode should be exhibited over the Balkans and 

the eastern Mediterranean basin mainly in autumn, winter and spring, and is less frequent in 

summer. Furthermore, Kutiel et al. (2002) used data of NCP, monthly mean air temperature and 

monthly total rainfall from 33 stations across Greece, Turkey and Israel for the period 1958-1998 

to analyze the implication of the NCP on the regional climate of the eastern Mediterranean basin. 

Their results confirmed that the NCP was the main atmospheric teleconnection affecting the 

climate of the Balkan, the Anatolia Peninsula and the Middle East region. The positive phase of 

this pattern is associated with below normal temperature, while the negative phase temperature is 

related with above normal temperature. In addition, they found the impact of NCP on air 

temperature was more pronounced in the mountainous inland regions for Israel. In addition, the 

results found there was more rainfall during the positive phase of the NCP over all regions in Israel. 

Ghasemi and Khalili (2008) analysed the effect of the NCP on winter temperatures in Iran based 

on data of 31 stations for the period 1958-2000, and they found negative and significant 

correlations between the NCP and minimum, maximum and mean winter temperature for 90%, 

87% and 97% of total stations, respectively. Their results shown that the positive NCP is associate 

with enhanced precipitation and cloudy conditions, which causes below normal temperatures over 

Iran. As noted by Brunetti and Kutiel (2011), during the positive phase of NCP in winter, the 

anomaly circulation is mainly northerly over major parts of eastern Europe, the Black and the 

Caspian Seas and the eastern Mediterranean area, leading to a considerable decrease in 
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temperatures compared to the normal conditions. The opposite is true during the negative phase of 

NCP. 

For the impact of EA/WR pattern, Baltacı et al. (2018) analyzed relationships between 

teleconnection patterns and Turkish climatic extremes based on data of 94 stations for 1965-2014, 

and the results indicated that EA/WR pattern intensively exhibited negative and significant 

correlations with TNx, TNn and TXn indices in winter, stronger than those from the NAO and EA 

patterns. These authors established that the positive phase of EA/WR is associated with a 

prevalence of north flow over the eastern Mediterranean area, which can explain the sign of the 

correlations found. Other studies have been also identified the influence of the EA/WR pattern on 

the climate of the region, but they do not use the temperature (Yosef et al., 2009; Krichak and 

Alpert, 2005).  
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CHAPTER 6 

SPATIO-TEMPORAL ANALYSIS OF  

PRECIPITATION 
 

           This chapter aims to analyze the spatial and temporal 

variability of precipitation in the Levant region. It also aims to 

analyze the annual, seasonal, and monthly trends for the period 

1970-2018. Besides, the relationships between seven large-scale 

circulation patterns and seasonal precipitation will be studied 

using a correlation analysis. 

 

6.1 Introduction  

Identifying the spatio-temporal variability of precipitation is a crucial issue in the management of 

water resources and for the mitigation of hydrological hazards (floods and droughts), especially in 

the Levant region, where arid and semi-arid climates account for the largest part of the region. 

Fluctuations in precipitation can also lead to socio-economic and natural problems (Asakereh, 

2020; Boroujerdy et al., 2017). According to the IPCC report (2013), precipitation increased 

significantly in the eastern parts of North and South America, in northern Europe, and north and 

central Asia. In contrast, rainfall declined in the Mediterranean coast, southern Africa, and parts 

of south Asia in the period 1900-2005. Declining trends in annual and seasonal precipitation have 

also been observed in Italy (Brunetti et al., 2000), India (Pal and Al-Tabbaa, 2011), Turkey (Partal 

and Kucuk, 2006), Iran (Najafi and Moazami, 2015; Soltani et al., 2015) and Iraq (Al-salihi et al., 

2014; Al-Barazanji, 2015). The majority of the Middle East countries cannot meet their current 

water needs (World Bank, 2007). Jordan, for example, is one of the countries in the world with 

more limited water resources. The available water resources per capita will decrease from less than 

160 m3/capita/year to about 90 m3/capita/year by 2025 (MWI and GTZ, 2005).  

Until now, there are not studies to assess changes in mean precipitation and trends at annual, 

seasonal, and monthly time scales for the Levant as a whole. Most studies focused just on local 

areas and used a limited number of stations or time scale. Also, on the basis of observational data, 
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the relationship between the large-scale circulation patterns and the rainfall in the Levant is not 

fully investigated (Gai et al., 2001; Ziv et al., 2006). 

This chapter aims, therefore, to analyze the spatio-temporal variability of precipitation in the 

Levant region, along with a trend analysis at annual, seasonal, and monthly scales during the period 

1970-2018. In addition, the influence of the main large-scale climate variability modes on the 

Levant seasonal rainfall will be explored. Annual and seasonal rainfall time series were obtained 

on the basis of monthly data from 165 stations distributed over the study area. Figure 2.5 showed 

the stations' geographical distribution, while Table 2 in the Appendix A contains names, 

coordinates, and stations' elevations. Details regarding data quality control (QC) and homogeneity 

are available in Chapter 2, Section 2.2. The analysis was carried out for the entire Levant and its 

sub-regions (Palestine/Israel, Jordan, and Syria).  

Some basic statistics, the seasonal/monthly contributions to the annual rainfall, and the temporal 

fluctuations for the annual/seasonal rainfall are investigated. The non-parametric Mann-Whitney 

(U) test was used to analyze the mean differences between the two sub-periods 1970-1990 and 

1991-2018. In addition, the Cramer's test was used to evaluate the mean deviations of five non-

overlapping 10-year periods, and four overlapping 20-year periods at the three-time scales.  

Moreover, the main variability spatial patterns of the annual and seasonal rainfall are investigated 

using Principal Component Analysis (PCA) and K-means cluster algorithm. The factor loadings 

are computed and their spatial distribution is discussed. The component scores were used as input 

in the K-means cluster to divide the study area into homogeneous rainfall sub-regions. 

Furthermore, salient statistics (e.g., mean and standard deviations) along with the box–whisker 

plots were calculated and graphically plotted for each cluster.  

A precipitation trend analysis at annual, seasonal, and monthly scales was carried out using the 

non-parametric Mann-Kendall test (Mann, 1945; Kendall, 1975) and Sen’s slope estimator (Sen, 

1968). Besides, the sequential Mann-Kendall (SMK) test was applied to detect the significant 

change points. Finally, correlation maps between the teleconnection indices and precipitation time 

series over the area under study were constructed and analyzed. 

 

6.2 Results  

6.2.1 Fundamental statistics for the Levant rainfall 

Some statistics (e.g., mean, maximum, minimum, and standard deviation) of the averaged 

precipitation in the Levant for the period 1970-2018 are listed in Table 6.1. In addition, Figure 

6.1a to d shows the box plots for annual and seasonal precipitation for the Levant and its countries, 

and Figure 6.4 shows the temporal behavior of the annual and seasonal mean rainfall. The Levant's 

annual rainfall varies from 246.3 mm in 1999 to 677.8 mm in 1991, with a standard deviation of 

101.6 mm and a mean value of 453.8 mm (Table 6.1). The 1991/1992 rainy season was also the 

highest annual rainfall for Palestine/Israel (832.7mm) and Jordan (453mm), while Syria had the 

highest average (808.1 mm) in 2003. On the other hand, the years 1999, 1995, and 2015 had the 

lowest averages for Palestine (233.2 mm), Jordan (125 mm), and Syria (285.7 mm) (Figure 6.1a, 

Figure 6.4b to d). 
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Series Mean (mm) Max. (year) Min. (year) SD 

(mm) 

CV 

(%) 

Skew. Kurt. % to annual 

rainfall 

Ann. 453.8 677.8 (1991) 246.3 (1999) 101.6 22.4 0.20 -0.50 100.0 

Win. 281.6 521.2 (1992) 79.1 (2014) 86.7 30.8 0.25 -0.08 62.1 

Spr. 93.6 202.0 (1971) 28.2 (2008) 36.4 38.9 0.43 -0.07 20.6 

Aut. 81.2 241.3 (1976) 19.6 (2016) 46.5 57.2 1.45 2.20 17.9 

Jan. 105.9 236.1 14.5 43.0 40.5 0.7 1.0 23.3 

Feb. 85.0 215.2 21.1 42.8 50.3 1.2 1.8 18.7 

Mar. 58.0 125.8 10.1 29.4 50.6 0.2 -0.6 12.8 

Apr. 27.1 150.5 2.3 23.5 86.8 3.3 15.5 6.0 

May 8.8 31.9 0.4 8.3 94.2 1.4 1.2 1.9 

Sep. 2.1 12.1 0.0 2.8 130.0 2.1 3.9 0.5 

Oct. 21.8 54.1 2.2 14.8 67.8 0.5 -0.8 4.8 

Nov. 53.2 173.5 11.5 35.7 67.2 1.4 2.7 11.7 

Dec. 92.2 232.4 21.0 48.5 52.6 0.6 -0.1 20.3 

Table 6.1. Statistics of annual, seasonal and monthly rainfall for the Levant (1970-2018). 

No appreciable precipitation is recorded during summer months in all the region. For the entire 

Levant, the spring, May, September, and October had the lowest standard deviation with values of 

36.4, 8.3, 2.8, and 14.8 mm, respectively (Table 6.1). The highest values were in winter (86.7 mm) 

and December (48.8 mm). As can be seen in Figure 6.4e and f, the spring rainfall are tightly 

grouped around the long-term mean, whereas the winter rainfall relatively spread around the long-

term mean and the year-to-year fluctuations are high. The annual rainfall had a skewness value of 

0.20, indicating an asymmetric distribution for the annual Levant precipitation, and it lies to the 

right of mean “right-skewed”. The kurtosis reached -0.53, indicating platykurtic shape. Based on 

the skewness and kurtosis guidelines provided by Hair et al. (2017), the distribution for annual, 

winter, spring, January, March, October, and December precipitation are considered normal, when 

the values of skewness and kurtosis are between +1 and -1. On the contrary, the distribution for 

autumn, February, April, May, September, and November are not considered normal, when 

skewness and kurtosis values higher than +1, that is “substantially right-skewed” and “too peaked”, 

respectively (Table 6.1). 

As shown in Figure 6.1a to d, Jordan had the lowest minimum, maximum, and mean annual and 

seasonal precipitation. Palestine recorded the maximum precipitation for the annual (832.7 mm, 

1991), for winter (680.5 mm, 1992), and for autumn (274.5 mm, 1986), while Syria recorded the 

maximum in spring (252.7 mm, 1971). In addition, Palestine had a higher mean precipitation value 

in winter (323.8 mm) than Syria, while Syria recorded higher mean values in the annual mean, 

spring, and autumn. On all time scales, Syria had a higher minimum precipitation than Palestine 

and Jordan, which may indicates that Syria has less rainfall variability than Palestine and Jordan 

as will be seen in the following section. 
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Figure 6.1. Boxplot showing the rainfall variability at annual (a), and seasonal, winter (b), spring (c), and 

autumn (d) over the Levant and sub-regions. 
 

6.2.1.1 Coefficient of variation 

The coefficient of variation (CV) is a measure of the dispersion of the data around the mean value, 

which is 22.4% for the annual Levant precipitation (Table 6.1). They increased gradually from 

January (40.5%) to September (130.0%) and decreased gradually from October (67.7%) to 

December (52.6%), indicating the strong inverse relationship between rainfall and CVs values. 

According to Hare (2003) and Tessema et al. (2017), CVs values between 20% and 30% show a 

moderate variability in precipitation conditions. Therefore, all monthly averaged time series 

showed high variability conditions when their CVs were above 30% (Table 6.1). 

The CVs calculated for the annual averaged time series for Palestine/Israel, Jordan, and Syria 

(Figure 6.2) showed moderate variability in annual precipitation for all regions, with 26.7% for 

Palestine, 29.2% for Jordan, and 21.7% for Syria. At seasonal scale, the variability was high for 

all sub-regions except Syria, which showed a moderate variability of 30.3% in winter. The highest 

variability was found in autumn, with 68% for Palestine, 98.3% for Jordan, and 43.4% for Syria. 

It is also noticeable that Jordan had the highest CVs for annual and seasonal rainfall, while Syria 

had the lowest. 

 
Figure 6.2. Annual and seasonal coefficient of variations (%) for the Levant sub-regions (1970-2018). 

 

6.2.1.2 Seasonal contributions to the annual precipitations 

In this section, the contribution of seasonal rainfall to the annual average is analyzed. These 

seasonal contributions vary spatially, with the highest amounts observed from winter (61%-70%) 

for all locations in Palestine, Jordan (except the eastern locations), and southern Syria. In contrast, 

the lowest contributions (42%-50%) were observed at the easternmost stations from Syria, and 
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contributions in northwestern Syria ranged from (51%-60%) (Figure 6.3a). This means that the 

spring and autumn contributions in the northern Levant are higher than in the southern Levant. For 

Jordan and southern Syria, the contributions in autumn (13%-20%) were significantly lower than 

in spring (21%-30%) (Figures 6.3b and c). Moreover, for all Palestine stations, the spring and 

autumn contributions were generally close (13%-20%), except for the southern coastal regions, 

which receive higher rainfall in autumn than in spring. The highest spring contributions (31%-

37%) were recorded for Syria's eastern areas (31%-37%). 

 
Figure 6.3. Spatial distribution of seasonal contributions to annual mean rainfall for winter (a), spring (b), 

and autumn (c). 

The decadal contributions (%) of seasonal and monthly rainfall to the long-term annual average in 

the Levant region are shown in Table 6.2. From this, it can be concluded that the decadal 

contribution for autumn and November decreased gradually from 1980-1989 (21.1% and 15.6%, 

respectively) to 2010-2018 (17% and 11.9%, respectively). The contribution for March fell from 

15.7% in 1990-1999 to 7.4% in 2010-2018. It is interesting to note that the sharpest decline was 

in spring, from 22.5% in the first decade to 14.2% in the last decade, and the autumn contribution 

was significantly higher in the last decade than in spring. 

 1970-1979 1980-1989 1990-1999 2000-2009 2010-2018 

Winter 60.8 60.3 61.4 66.8 61.0 

Spring 22.5 18.6 19.8 13.8 14.2 

Autumn 19.6 21.1 18.4 17.9 17.0 

January 26.3 24.0 27.6 29.2 29.1 

February 16.4 23.4 22.1 23.0 17.1 

March 14.4 14.1 15.7 9.6 7.4 

April 7.8 3.7 3.4 3.5 5.1 

May 0.3 0.8 0.8 0.8 1.7 

September 0.1 0.1 0.2 0.3 0.4 

October 4.3 5.0 3.1 6.1 4.1 

November 13.0 15.6 15.1 11.5 11.9 

December 27.6 21.4 24.4 23.3 23.1 

Table 6.2. Contribution (%) of the seasonal and monthly rainfall to the annual Levant rainfall, by decades. 
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6.2.2 Temporal variability for the rainfall averages 

Figure 6.4a to d depicts the temporal variability of annual precipitation for the Levant and sub-

regions during the years 1970-2018, and Figure 6.4e to g shows the seasonal variations of 

precipitation over the Levant. Interestingly, the regions exhibited similar annual precipitation 

patterns, but the order of magnitude varies between them (Figure 6.4a to d). For Jordan, all annual 

averages were below the long-term average of the Levant (453.8 mm) (Figure 6.4c). The long-

term averages reached 528.8 mm for Syria and 488.6 mm for Palestine/Israel. The estimated annual 

mean of precipitation was about 50.7% for Jordan, 92.4 % for Palestine and 85.8 % for the Levant 

from the annual mean for Syria. 

The temporal behavior of annual rainfall that reflected in the Lowess line (Appendix C.1) has 

shown a cyclical pattern since the late 1980s. In this context, a decreasing pattern was observed 

for the Levant and sub-regions in 1993-1999, 2003-2008, and 2012-2018 (Figures 6.4a to d). On 

the other hand, an increasing pattern for shorter periods was observed in 2000-2003 and 2008-

2012. For Syria (Figure 6.4d), a different pattern was observed in the years 1970-1985, where it 

showed an increasing pattern, while other regions showed a constant variation or a very slightly 

decreasing pattern. For the Levant's seasonal rainfall (Figure 6.4e to g), a similar variability was 

observed for annual and winter rainfall (Figure 6.4a and e). In addition, spring fluctuations 

gradually decreased during the period under study (Figure 6.4f), and autumn precipitation (Figure 

6.4g) decreased in 1990-1999 and increased slightly from 1998 onwards. 

 
Figure 6.4. Temporal behavior of the annual mean rainfall with Lowess (red) and long-term average lines 

for Levant (a), Palestine (b), Jordan (c), and Syria (d). Bottom panels indicate Levant seasonal rainfall 

fluctuations for winter (e), spring (f), and autumn (g).  

For the years 1987-2017, the results indicated an inverse relationship between precipitation and 

temperature in the Levant (see Section 5.2.1 for temperate behavior). For example, when the 

temperature tended to increase in 1987-2000, precipitation decreased, and when the rainfall 

decreased in 2012-2018, temperature notably increased. Moreover, 1992 was the year with the 
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coldest annual averages for Tmax and Tmin, while it was the year with the highest annual average 

precipitation. The cross correlation matrix calculated between the temperature variables (Tmax, 

Tmin, DTR, and Tmean) and the precipitation amount showed a significant and negative 

correlation between annual-Tmax/DTR and rainfall by -0.46/-0.81. All seasonal-Tmax averages 

significantly correlated with their precipitation. For example, winter -Tmax and rainfall correlated 

by -0.53, spring-Tmax and rainfall by -0.46, and autumn-Tmax and rainfall by -0.36. No 

significant correlations were found between all seasonal-Tmin and rainfall. The correlations with 

the Tmean were significant for winter, spring, and autumn by -0.38, -0.46, and -0.36 respectively. 

Figure 6.5 shows some of these relationships, and Table 11 in the Appendix A shows the overall 

cross-correlation matrix. 

 
Figure 6.5. Temporal variability of the standardized annual rainfall and annual-DTR (left panel) and 

annual-Tmax (right panel). 

The correlation between the annual precipitation averages of the Levant and the sub-regions was 

also performed to understand their interrelationship (Figure 6.6). Palestine had a maximum 

correlation (r² = 0.95), while Syria had the minimum (r² = 0.81).  

 
Figure 6.6. Relationship between average annual rainfall of Levant and its sub-regions: Palestine (a), 

Jordan (b), and Syria (c). 

 

6.2.2.1 Sub-periodical variation 

The Cramer test was applied to two types of sub-periods, the non-overlapping 10 years and the 

overlapping 20 years, to assess their mean deviations from long-term averages. This test was 

applied to annual and seasonal precipitation for the Levant and sub-regions, and the results are 

shown in Figure 6.7. No significant (p < 0.05) mean deviations of the non-overlapping 10-year 
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averages were found for the Levant and sub-regions at annual and seasonal scale (Figure 6.7, left 

column). However, the positive and negative values of tk indicate a shift towards wetter or drier 

conditions. In general, the regions have slightly witnessed wetter conditions (tk > 0) in their annual, 

spring, and autumn mean values for the first (1970-1979) and second (1980-1989) sub-periods. In 

contrast, they showed slightly drier conditions (tk < 0) in winter for the first and second 10-years 

sub-periods. In addition, all regions generally had drier conditions in their annual and seasonal 

rainfall during the last 10-year sub-period (2010-2018), which was more pronounced for the annual 

and spring. The highest negative variations over the last two decades were recorded in spring, 

although they were not significant for all regions. 

 
Figure 6.7. Mean departures for annual and seasonal precipitation using 10-years non-overlapping and 20-

years overlapping sub-periods for Levant and its sub-regions.  

The analysis for 20-year overlapping periods (Figure 6.7, right column) showed a significant and 

negative spring mean deviation for the Levant and Palestine in 2000-2018; in contrast, the Levant 

and sub-regions showed a positive annual, spring, and autumn mean deviation for the period 1970-

1989, with a high rate for spring. These positive departures continued only for the Levant and 

Palestine during the years 1980-1999. For winter, all regions showed negative tk values in the years 

1970-1989 and 1980-1999, while they showed positive values in 1990-2009 and 2000-2018. In 
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general, it can be said that the Levant and its sub-regions have shown a different pattern since 

1990. In addition, the mean annual and seasonal differences between the two sub-periods 1970-

1990 and 1991-2018 were also assessed using the Mann-Whitney test. The results indicate that the 

Levant, Palestine, and Jordan experienced a significant decrease in spring precipitation by 17.5, 

18 and 20 mm, respectively, during the years 1991 to 2018. Apart from spring, no significant mean 

increase or decrease was observed for any time scale or region. 

In addition, these significant declines in spring averages in the periods 2000-2018 and 1991-2018 

with respect to the previous one (1970-1999 and 1970-1990, respectively) were spatially evaluated 

(Figures 6.8a and b). In 1991-2018, the strongest decrease was observed at stations in the northern 

Syrian coastal region and in the governorates of Amman, and Jerusalem by 44-65 mm. 

Furthermore, the most inland sites in the West Bank and north-east Palestine, north Jordan, the 

southern coastal areas, and most eastern stations from Syria recorded decreases by 24-43 mm. On 

the other hand, the stations covering the Palestinian coastal areas showed relatively fewer 

decreases in their spring averages (0-23 mm) (Figure 6.8a), while they showed higher decreases 

by 24-43mm over the period 2000-2018 (Figure 6.8b). 

 
Figure 6.8. Differences in mean spring precipitation between the periods 1970-1990 and 1991-2018 (a), 

and 1970-1999 and 2000-2018 (b). 

 

6.3 Spatial rainfall variability   

In this part, the spatial distributions of annual precipitation, coefficient of variation (CVs), and 

precipitation concentration index (PCI) (Appendix C.2) were analyzed. Figure 6.9a to e shows 

isohyet patterns of annual mean, maximum, minimum, coefficients of variation (CVs), and the 

index of annual precipitation concentration (PCI) in the years 1970-2018. The mean annual 

precipitation varied widely in the Levant region. The lowest annual mean was in the Elat station 
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(25.6 mm) in the southernmost part of Palestine, while the highest mean was in the En Halaqeim 

station (1491.1 mm) in the governorate of Tartus. The northwestern part of the study area (Syrian 

coastal region) receives the highest annual precipitation (755-1491 mm) (Figure 6.9a). In these 

regions, both the annual precipitation of each site and the local average are higher than the overall 

average over the study area. The northernmost locations in Palestine represented the second most 

important region receiving annual precipitation amounts between 600 and 700 mm. The highest 

precipitation in these regions is due to the proximity of the sea which increases the interaction 

between land and sea (condensation barrier effect), resulting in a high and evenly distributed 

precipitation throughout the year in this region. 

A general pattern of decreasing annual average precipitation is recognizable while passing through 

west to east and from north to south. The lowest annual precipitation (300 mm) was observed in 

the eastern and southern areas of the Levant, east to 36.5ºE and south to 31.2ºN, especially in Syria 

and Jordanian Badias and in the Negev desert in southern Palestine. In these regions, both the 

annual rainfall of each location and the local average are lower than the overall average (Figure 

6.9a). It is important to note that a wide and extended area receives an average of less than 300 

mm of precipitation, while those areas that receive an average of more than 400 mm of 

precipitation form a small part that is concentrated on the west coasts. 

Similar to annual precipitation, the Syrian coastal region had the highest maxima and minima of 

annual precipitation, while the eastern and southern locations had the lowest (Figure 6.9b and c). 

The maximum annual mean values ranged from 76.6 mm at Elat station to 2779.5 mm at Shatha 

station (northwest of Syria), while the minimum mean values ranged from 0 at Elat and Petra 

stations to 684.2 mm at En Halaqeim. A very strong positive correlation (r > 0.91) was found 

between the annual precipitation, maximum, and minimum averages. 

The spatial pattern of the coefficients of variation (CVs) (Figure 6.9d) corresponds inversely with 

that of the annual precipitation (Figure 6.9a), with an increase in average precipitation being 

expected to cause a decrease in CV. This significant and inverse relationship (r = -0.60) indicates 

that northern Palestine and western Syria show high precipitation averages with regular 

precipitation occurrences, and then relatively low CVs (< 30%), while southern and eastern regions 

show fewer precipitation averages with strong irregularity and then high CVs (> 30%). The highest 

CVs values (> 60%) were found in the most southern regions of Palestine and Jordan (e.g. in the 

Elat and Aljafer stations). 

According to Oliver (1980) and based on the values of the precipitation concentration index (PCI) 

(Figure 6.9e), the annual precipitation of the study area is classified as a non-uniform distribution. 

In the same line, the values of PCI vary spatially over the study area, whereby (i) the values 

between 13 and 15 (moderate precipitation concentration) covered the coastal areas from the 

Syrian governorates (Lattakia and Tartus), (ii) the values between 16 and 20 (irregular distribution) 

covered the largest area of the Levant (rest regions from Syria, northern regions of Jordan and 

central and northern regions of Palestine), and (iii) the values greater than 20 (strong irregularity) 

in the southern regions of the area under investigation and east of Jordan. The average range of 
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PCI < 10 was never recorded for any station. The lowest average value of PCI (13.3) was achieved 

at the Qadamos station in the governorate of Tartus. 

 
Figure 6.9. Spatial distribution of long term mean annual rainfall (a), maximum mean annual (b), minimum 

mean annual (c), CVs (d), and annual PCI values (e) in 1970-2018.  

The annual PCI values increase towards the south where the maximum values were found at Elat 

and Aljafer stations by 37 and 31, respectively. A high positive and significant correlation was 

found between PCI and the CVs by (r = 0.77). Furthermore, the spatial pattern of the annual mean 

values PCI reflects the climate zone map of the Levant. Since the rainy season is very short and 

heavy precipitation is limited in the southern regions as arid and semi-arid zones, relatively high 

PCI values are expected in these regions. Conversely, smaller PCI values were expected in regions 

with a relatively long and heavy rainy season and a uniform temporal distribution of precipitation 

over time, e.g. Syrian coastal areas and northern regions of Palestine. 

 

6.3.1 Spatio-temporal variability of annual rainfall 

Principal Component Analysis (PCA) was used in conjunction with the K-means cluster to study 

the spatial and temporal variability and to delineate precipitation clusters for annual and seasonal 

precipitation in the Levant region. The data of the standardized input matrix (MxN) were 

constructed with columns for 167 stations and rows for 49 years. Based on the North rule of thumb 

(Figure 6.10a), three PCs were retained for the annual precipitation, and consequently they were 

rotated using the varimax approach (Bortz, 1993) to maximize the correlation and large loading, 

and minimize the small loading between the rotated PCs and the original variables, which 
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facilitates their interpretation (Raziei et al., 2008; Gocic and Trajkovic, 2014). As can be observed 

in Table 6.3, the first three PCs explained 70.2% of the total variance and the first three rotated 

components explained 42.4%, 17.9%, and 9.9% of the total variance, respectively. 

Variance (%) 
PCs Cumulative 

PC1 PC2 PC3 

Un-rotated (%) 53.3 10.3 6.6 70.2 

Varimax rotated (%) 42.4 17.9 9.9 70.2 

Table 6.3. Explained variance (%) by the both un-rotated and rotated PCs for annual precipitation.  

Figure 6.10b to d shows the time series (factor scores) for the three rotated PCs, and Figure 6.11a 

to c displays the spatial distribution of factor loadings for these PCs. The spatial patterns of the 

factors loading for each PC (Figure 6.11) showed that each component was well connected to a 

different region, with the highest loading factor for each PC being associated with a particular 

region. Factor loading is essentially the correlation coefficient between the stations and the PCs 

that were rotated PCs. For example, PC-1 represents the central and northern locations in Palestine 

and the southern locations in Syria, where high correlations (r > 0.65) were observed between the 

stations and PC-1 in these regions. PC-2 represents the Syrian coastal region, and PC-3 represents 

the eastern areas of Syria and Jordan. 

 
Figure 6.10. Number of the retained PCs based on the North rule (a). The factor scores for the PC-1 (b), 

PC-2 (c), and PC-3 (d). Redline refers to Lowess line. 

To identify the thresholds separating the stations into homogeneous precipitation regions, the K-

means clustering technique was applied to the rotated PC scores (Mills, 1995). The homogeneity 

of each cluster was examined by the ratio of the variance between the classes and the total variance. 

If the ratio is high, the corresponding cluster must be considered homogeneous and vice versa.  

The ratio calculated for the annual precipitation reached 0.72, where the sum of the squares within 

the cluster is 282.3, and the sum of the squares between the clusters is 571.6. Figure 6.12a 

illustrates the annual spatial pattern of precipitation such that three different sub-zones have been 

identified in the Levant region. The central and northern areas of Palestine between 31.5ºN-33.3ºN, 

northern Jordan and southern Syria, comprising 96 stations, formed the first homogeneous 

precipitation subzone. Cluster 2, comprising 40 stations, is located mainly in the Syrian coastal 

area between 34.5ºN-36ºN. The third cluster covered the largest area in the eastern regions from 

Syria and Jordan and the southern locations from Palestine and Jordan. From this it can be 

concluded that the first and second clusters represent the Mediterranean climate zones, while the 

third cluster is related to the arid and semi-arid climate zones (Figure 6.12a, Figure 2.1c). 
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Figure 6.11. Spatial distributions of factor loading for the rotated PC-1 (a), PC-2 (b), and PC-3 (c). 

The second cluster (the Syrian coastal rainfall cluster), has the highest annual mean value of 

precipitation at 723.8 mm with a standard deviation of 164.5 mm (Figure 6.10c). It also has the 

lowest CVs and the lowest precipitation concentration index (Figure 6.9d and f). In contrast, the 

third cluster (eastern and southern regions) has the lowest mean annual precipitation of 209.8 mm, 

with a standard deviation of 52.9 mm. It also showed the highest inter-annual variability and the 

highest precipitation concentration index. The mean annual precipitation of the second cluster is 

three and a half times higher than that of the third cluster, indicating the high precipitation 

variability in the Levant. The first cluster has a mean annual precipitation of 467.7 mm and a 

standard deviation of 126.4 mm. It showed relatively higher CVs (28%-36%) and PCI (17-19) 

values than the second cluster. The highest annual precipitation was observed in 1992 and 2003 

for the first and second cluster with 791.7 mm and 1142.1 mm, respectively (Figure 6.12b). Finally, 

the extreme values were not observed in any of the clusters (Figure 6.12b). 

 
Figure 6.12. (a) Homogeneous rainfall sub-regions outlined through cluster analysis. (b) Boxplots, and (c) 

standard deviation and mean of annual rainfall for each cluster. 
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6.3.2 Spatial regionalization of seasonal rainfall 

Based on the North rule of thumb (Figure 6.13, panels (a)), three PC were retained for each season. 

Table 6.4 summarizes the explained variance for each un-rotated and rotated PCs, with the first 

three PCs explaining 75.9%, 70%, and 80% of the total variance for winter, spring, and autumn, 

respectively. Figure 6.13 (panels (b) to (d)) shows the seasonal factor scores for the first three 

retained PCs. The spatial distribution of seasonal factor loadings are shown in Figure 6.14 (panels 

(a) to (c)). In addition, Figure 6.15 panels (a), show the homogeneous sub-regions (clusters) for 

each season and some descriptive statistics related to each cluster are presented in the panels (b) 

and (c). In general, the existence of high loading factors in more than one component was not 

observed, i.e. each PC refers to a different region for all seasons (Figure 6.14). The spatial pattern 

of the clusters varies slightly across the seasons and the year together with the variation in the 

number of stations in each cluster. A close spatial pattern was generally observed between winter, 

autumn, and annual precipitation (Figures 6.12a) 6.15 (winter a), and 6.15 (autumn, a)). 

In winter, the first component (PC-1) explained 45.2% of the total variance in the datasets (Table 

6.6), and is concentrated in the central and northern areas of Palestine, north Jordan, and south 

Syria by rainfall average of 306.4 mm and a standard deviation of about 109 mm (Figure 6.15). 

The stations in these regions highly correlated with the first component (0.65 < 𝑟 < 0.85) (Figure 

6.14, winter (a)). For this PC, the rainfall ranged from 666.6 mm (an extreme value) in 1992 to 

55.2 mm (680.3 mm) in 2014 (Figure 6.15, winter (b)). The second component that explained 

18.7% of the total variance was dominant in north Syria, including the coastal areas, the most 

northeastern locations at the borders with Turkey, locations in the west of Damascus district, and 

most northern locations in Palestine. It receives the highest winter rainfall by an average of 430.3 

mm and a standard deviation of 132.8mm. Moreover, this cluster showed the highest rainfall of 

763.2 mm in 2003. A decreasing trend can be seen from 2002 onward for this PC (Figure 6.13, 

winter (c)). 

Season  Variance (%) PCs Cumulative 

PC1 PC2 PC3  

Winter Un-rotated (%) 57.6 10.0 8.4 75.9 

Varimax rotated (%) 45.2 18.7 12.1 75.9 

Spring Un-rotated (%) 49.7 9.1 8.2 70 

Varimax rotated (%) 42.5 13.3 11.2 70 

Autumn Un-rotated (%) 62.9 11.8 5.3 80 

Varimax rotated (%) 38.4 32.3 9.3 80 

Table 6.4. Summarizes the explained variance (%) for each un-rotated and rotated PCs.  
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Figure .16 3. The Panels (a) represent the number of the retained PCs based on the North Rule of Thumb 

for each season. The panels (b), (c), and (d) are factor scores for the PC1, PC2, and PC3 of winter, spring, 

and autumn. 

Figure 6.14, winter (c), shows that the maximum loadings correspond to south Palestine and 

Jordan, east Jordan and Syria, and central locations in Syria (east and north Damascus). Stations 

in these regions formed the third cluster sub-region (Figure 6.15, winter (a)). Note that these 

regions represent the arid and semi-arid climate zones, with the lowest mean precipitation of 142.4 

mm and a standard deviation of 44 mm. This cluster reflects the third PC which explains 12.1% of 

the total variance and contains 33 stations. Winter rainfall ranged from 61.5 mm to 256.2 mm in 

1979. 

In spring, the first PC is strongly connected to the central and northern areas of Palestine and north 

Jordan (> 0.70) (Figure 6.14, spring (a)). A percentage of 42% of the total variance can be 

explained by this PC, while the first three PCs explain 70% of the total variance (Table 6.4). The 

K-means cluster indicated that these regions had an average spring precipitation of 87.1 mm, and 

a standard deviation of 43.5 mm (Figure 6.15, spring (a and b)). As can be seen in Figure 6.13, 

spring (a), the PC-1 showed a decreasing pattern along the study period. In fact, the second and 

third PCs also showed a similar pattern of decreasing over the period 1970-2018. 
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Figure 6.14. Spatial distributions of loading factors for the rotated PC-1 (a), PC-2 (b), and PC-3 (c), of 

winter, spring, and autumn. 

The second component covers the whole of Syria (48 stations) with the highest average 

precipitation (135.2 mm) and a standard deviation of 47.8 mm. It explained 13.3% of the total 

variance (Table 6.4), although it covered the largest area compared to other PCs. For this PC-2, 

the maximum (252.4 mm) and minimum values (21.9 mm) calculated based on the averaged 

stations belonging to it were in 1972 and 2015, respectively. Finally, the southern regions of 

Palestine and Jordan and the eastern part of Jordan formed the third PC, which referred to the third 

cluster (35 stations). These regions always had the lowest rainfall in all seasons. 

For the autumn, the first three PC explained 80% of the total variance by 38.4%, 32.3% and 9.3% 

for the PC-1, PC-2 and PC-3, respectively (Table 6.4). Similar to winter and spring, the central 

and northern stations from Palestine correlated strongly (0.75-0.80) with the largest area of the 

Levant that covered southern Palestine, Jordan, and Syria, and with all of the eastern areas from 
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Jordan and Syria (Figure 6.14, autumn (b)). As can be seen in Figure 6.15, autumn (b), the PC-1 

and PC-3 had extreme values. For example 224.3 mm and 132.3 mm, in 1976 and 1982, for the 

PC-1, and 287.6 mm and 271.5 mm in 1986 and 1994, for the PC-3. 

 
Figure 6.15. (a) Homogeneous winter, spring, and autumn rainfall sub-regions outlined through cluster 

analysis. (b) Boxplots, and (c) standard deviation and mean of annual rainfall for each cluster. 

 

6.4 Trend analysis (Spatial and Temporal) 

In this section, the temporal and spatial trends for annual, seasonal and monthly precipitation are 

examined. The precipitation time series were averaged for the Levant and sub-regions over the 

period 1970-2018, and the trends were calculated for each region on the three time scales (Table 

6.5). The frequency of increasing and decreasing trends is shown in Figure 6.16. In addition, the 

trends were also calculated for each station, and the results were presented spatially in Figure 6.17a 

to d for the annual and seasonal scale, and in Figures 6.19a to c and 6.20a to c for the monthly 

scale. 

 

6.4.1 Annual and seasonal trends 

The analyses showed that average annual precipitation decreased, although not significantly, by -

13.8, -15.2, -5.4, and -9.5 mm/decade for Levant, Palestine, Jordan, and Syria, respectively (Table 

6.5). At the local level, annual trends ranged from -50.4 mm/decade for Hiffeh to 33.8 mm/decade 

for Mesiaf, with an average of -11.7 mm/decade (Table 6.5). 

As shown in Figure 6.16, the annual precipitation decreased at 144 of 167 stations, with 23 stations 

of them showing significant decreasing trend. On the other hand, only 2 stations in Jordan showed 

a significant increasing trend (Ras en-Naqab by 21.7 mm/decade and Mulih by 18.8 mm/decade) 

(Figure 6.17a). The results also showed that of 78 stations distributed in Palestine/Israel, only 5 

stations showed rising trends at weak rates (less than 2 mm/decade), with the exception of Nablus, 

which showed a rising trend by 11.5 mm/decade. In contrast, homogeneous declining trends were 

observed in Palestine, southern and eastern Syria, while annual trends were mixed in Jordan and 
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western Syria (Figure 6.17a). The significant decreasing trends were intensively covered Ar-Raqqa 

and Hasakah (east Syria, east of 39°E longitude, related to cluster 3 and PC-3) with an average of 

-26.8 mm/decade. They were also observed in the West Bank (-17.9 mm/decade at Tubas, 50.1 

mm/decade at Salfit, -43.9 mm/decade at Meithalon, and -30.3 mm/decade at Jericho) and in 

Jordan (-19.4 mm/decade at Ira, and -36.1 mm/decade at Wadi Es-sir) (Figure 6.9a). Among the 

significant increasing trends, they were observed at only two Jordanian sites, Ras en-Naqab by 

21.7 mm/decade, and Mulih by 18.8 mm/decade (Figure 6.17a). 

Time series Levant Palestine  Jordan  Syria  Max.  Min.  Mean  Median   

Annual -13.8 -15.2 -5.4 -9.5 33.8 -50.4 -11.7 -11.3 

Winter -0.6 0.9 2.3 -2.8 35.3 -21.3 0.7 -0.8 

Spring -8.7** -8.4** -5.3* -12.0** 8.8 -25.3 -9.2 -9.1 

Autumn -0.8 -03.3 -1.4 0.5 24.2 -13.3 -1.9 -2.2 

January 5.3 4.7 6.2* 4.5 22.5 -6.4 4.0 3.4 

February -1.1 -0.9 4.4 -3.9 9.1 -13.6 -1.3 -1.3 

March -6.9** -7.3** -5.4** -6.2* 8.6 -16.0 -6.8 -7.1 

April -2.6 -1.8 -0.2 -5.4** 0.2 -17.6 -2.5 -1.8 

May 0.7 0.4** 0.3* 1.0 6.5 -2.2 0.3 0.0 

September 0.2 0.1*** 0.05 0.4 2.2 -1.2 0.1 0.0 

October 0.08 0.04 0.06 0.9 8.5 -4.5 0.5 0.2 

November -2.3 -3.8 -7.1 -1.3 15.8 -9.7 -2.3 -2.0 

December -0.1 -3.7 1.6 1.3 18.8 -14.4 -1.4 -1.4 

Table 6.5. Results of annual, seasonal and monthly rainfall trend (mm/decade) using Mann-Kendall test 

and Sen’s slope estimator, along with some statistical parameters for the trends. Note: *** is for 0.001 level 

of significance, ** for 0.05, and * for 0.1. 

A significant downward trend was observed in the averaged seasonal time series only in spring, 

with -8.7, -8.4, -5.3, and -12.0 mm/decade for the Levant, Palestine, Jordan, and Syria (Table 6.5). 

The non-significant positive trends were found only in winter for Palestine and Jordan by 0.9 and 

2.3 mm/decade, but they showed negative trends in autumn by -3.3 and -1.4 mm/decade, 

respectively (Table 6.5). At the local level, the lowest seasonal trend in spring was -25.3 

mm/decade at Hiffa station and the highest in winter by 35.3 mm/decade at Shatha station (Table 

6.5). 

For all seasons, the decreasing trends formed higher percentages than the increasing trends, with 

92 (55%), 162 (97%), and 124 (74%) of 167 stations showing decreasing trends for winter, spring, 

and autumn, respectively (Figure 6.16). Among the seasons, strikingly rising trends are mainly 

concentrated in winter. In this context, although 45% of the stations showed increasing trends, 

only three dispersed stations were significant; namely, the Kufranja dam (29.9 mm/decade), Ras 

en-Naqb (18.1 mm/decade), and Muleih (18.9 mm/decade) (Figure 6.17b). It is also noticeable that 

the increasing winter trends were concentrated in the Levant's western parts, with an average 

increase of 13.8 mm/decade in the Syrian coastal districts (Latakia and Tartu, Cluster-2 and PC-

2). On the contrary, the declining trends were significantly grouped over the eastern areas from 

Syria (Hasakia and Ar-Raqqa Governorates, Cluster-3 and PC-3) with an average of -14.0 

mm/decade (Figure 6.17b). 
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Figure 6.16. Number of trends for the annual, seasonal and monthly series, during period 1970-2018. 

The widespread and intensive, significant decreasing trends have occurred in the spring. A percent 

of 54% (91 stations) of 167 stations showed significantly decreasing trends (Figures 6.16 and 

6.17c). These trends showed a very coherent pattern for all regions and clusters in spatial terms. 

For Palestine, 100% (78 stations) of the total number of stations showed decreasing trends, and 

65% (51 stations) reported significantly reduced trends. In addition, the sum of the significantly 

declining trends reached 15 out of 36 stations for Jordan and 25 out of 53 stations for Syria (Figures 

6.16 and 6.17c). Furthermore, significantly increasing trends were not observed at any of the sites. 

The northern Levant (Syria) showed stronger declining trends (-12.0 mm/decade) than the southern 

Levant (Palestine and Jordan) (-7.9 mm/decade) (Table 6.5). In spatial terms (Figure 6.17c), the 

Syrian coastal areas, which showed increasing trends in winter, showed decreasing trends in spring 

precipitation by an average of -15.4 mm/decade, significantly for Al Basil Airport (-

19.0mm/decade), Latakia (-20.4mm/decade) and Hiffa (-25.2mm/decade) stations. Similar to 

winter, the easternmost regions of Hasakia showed significant declining trends, averaging -13.9 

mm/decade. In Palestine and Jordan, fewer values of significant declining trends (< -14.0 

mm/decade) were observed for all locations. 

In autumn, the trends calculated for the averaged time series were weak, -0.8, -3.3, -1.4, and 0.5 

mm/decade for the Levant, Palestine, Jordan, and Syria, respectively. In addition, only 5% (9 

stations) of the stations showed significantly decreasing trends (Figure 6.16 and 6.17d). It can be 

seen that the highest decreasing trends are mainly found in the central areas of Palestine between 

31.3ºN-32ºN by an average of -9.1 mm/decade, with significant decreasing trends for the 

Jerusalem (-10.4 mm/decade), Bet Guvrim (-7.8 mm/decade), and Dura (-9.0 mm/decade) stations. 

Similar to winter, the Syrian coastal areas, especially the governorate of Tartus, showed coherently 

increasing trends by an average of 7.9 mm/decade, only significant at Messiaf (8.5 mm/decade). 
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Figure 6.17. The spatial distribution of trends for (a) annual, (b) winter, (c) spring, and (d) autumn 

precipitation during 1970-2018. 

The trend profiles of annual precipitation along latitudes 30ºN to 36.5ºN and longitudes 34.7ºE to 

38ºE, were also calculated (Figure 6.18a to d). Trend profiles were recorded every 0.5ºN and 0.5ºE. 

For illustration purposes, we present here only the trend averages of the latitude and longitude 

profiles (Figure 6.18a and b) and the highest decreasing trends of a longitude and latitude (Figure 

18c and d). The longitudinal profiles across all latitudes "west-east" exhibited a decreasing pattern 

with an average of -0.11 (mm/decade)/(3 Km) (Figure 6.18a). The results also showed that the 

latitudinal profile (north-south) averaging all longitude trends showed a decreasing pattern with an 

average of -0.016 (mm/decade)/(3 Km) (Figure 6.18b). The strongest decrease was observed along 
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the 35.5ºN latitude by -0.20 (mm/decade)/(3 Km) eastward and along the 35.0ºE longitude by -

0.20 (mm/decade)/(3 Km) northward (Figures 6.18c and d). 

 
Figure 6.18. Spatial profiles of mean annual precipitation averaged along all latitudes (a), longitudes (b), 

for the latitude of highest decreasing trend (34.50N) (c), and for the longitude of highest decreasing trend 

(3.050E) (d).  

 

6.4.2 Monthly trends 

Based on the monthly averaged time series over regions (Table 6.5), the main results are:  

(i). All regions (Levant, Palestine, Jordan, and Syria) showed significant decreasing trends in 

March, with -6.9, -7.3, -5.4, and -6.2 mm/decade. A significant downward trend was also observed 

for Syria in April with 5.4 mm/decade. Furthermore, all regions showed a downward trend in April 

by -2.6, -1.8, 0.2 and -5.4 mm/decade and in November by -2.3, -3.8, -7.1 and -1.3 mm/decade.  

ii). A monthly significant increasing trend was only observed for Jordan in January by 6.2 

mm/decade. It can also be noted that Jordan showed rising trends in all winter months (Dec-Feb.). 

iii). Apart from January, the rising trends (sig. or not sig.) in May, September, and October were 

generally weak (less than 0.9 mm/decade).  

iiii). Palestine showed the highest downward trend in December and March, by -3.7 and -7.3 

mm/decade, respectively. In addition, Jordan showed the highest downward trend in November by 

-7.1 mm/decade, and Syria in April by -5.4 mm/decade. 

Concerning the frequency of trends (Figure 6.16), the decreasing trends were dominant in the 

months of a high contribution to the annual precipitation, except for January (Table 6.5 and Figure 

6.16). The highest total of decreasing trends was observed in March and April with 166 and 151 
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stations, respectively, while the highest total of increasing trends was observed in January with 

127 stations. The significant increasing trends were not observed for March, April, October, 

November, and December. In addition, the months of May and September (transition months) 

showed very high percentages of cases without trend, with 62 and 139 stations, respectively.  

The maximum trend was in January by 22.5 mm/decade at Shatha station, whereas the minimum 

trend was in April by -17.6 mm/decade at Wade Al'ouun station (Table 6.5). The range of May, 

September, and October trends was very small (less than 12 mm/decade). In addition, these months 

had a high percentage of cases where no trend was observed and a very low percentage of 

significant rising or decreasing trends. For these reasons, the spatial variability of the monthly 

trends is analyzed only for December, January, February, March, April, and November. 

In December and January (Figure 6.19a and b), trends were positively concentrated in the Syrian 

coastal region, with average values of 5.8 and 13.2 mm/decade, respectively. The results also 

showed that all sites in the Palestinian coastal region showed declining trends with high rates for 

the northwestern sites (-15 mm/decade) in December. In January, they showed especially 

increasing trends with high rates for the northwestern sites (10.7 mm/decade). The different trends 

between December and January were also observed at the southern sites from Palestine, Jordan, 

and Syria. 

 
Figure 6.19. Spatial distribution of trends for winter months of December (a), January (b), and February 

(c), during 1970-2018. 

It is also noticeable that the eastern regions of the Levant (east to 36.6ºE) in January formed a 

region with low declining trends with an average of -2.1 mm/decade. Significant declining trends 

were not observed in January, while they were observed in December at three scattered stations 

(Meithelon -14.4 mm/decade, Elat -0.8 mm/decade, and Ma'an -0.7 mm/decade). Figure 6.19b 

shows the significant upward trends found in January at 9 sites, mainly east to 36.6ºE, with a high 

value at the Ala'reda station (15.7 mm/decade), and two of these sites are in the Palestinian coastal 

region, Kefar Harosh (11.1 mm/decade) and Binyamina (14.3 mm/decade). 

In February (Figure 6.19c), a dominant increasing trend was observed for the West Bank along the 

35.4ºE, which was significant at Tafileh (6.1 mm/decade), Ras En-Naqab (7.4 mm/decade), 

Qatraneh (2.6 mm/decade), and Muleih (1.1 mm/decade). On the other hand, most of the eastern 
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locations in the Hasakah Governorate showed a declining trend of -5.1 mm/decade. The 

significantly decreasing trends also occurred at seven stations between 35.5ºN and 36.8ºN, with a 

high rate at the Al Karim station (-10.4 mm/decade). 

A very coherent and homogeneous pattern of significant decreasing trends was observed in March 

(Figure 6.20a). A percentage of 60.5% (101 stations) of the stations were affected by significantly 

decreasing trends, and 166 of 167 stations showed decreasing trends. Spatially, most stations in 

the West Bank and east of the Haifa district showed the highest decreasing trends, with averages 

of -15.5 and -9.8 mm/decade, respectively. In addition, the easternmost stations in Syria showed 

significant declining trends of -6.4 mm/decade.   

In April (Figure 6.20b), 160 of 167 stations recorded a decreasing trend, while only 26 stations 

reported a significant decreasing trend. The high significant trends were observed at most eastern 

locations of Hasakah and in the coastal areas of Syria with -7.2 and -11.5 mm/decade respectively. 

On the contrary, all southern sites in Palestine and all in Jordan showed very low frequencies and 

orders of magnitude of decreasing trends (sig. or not) compared to their March trends, with less 

than -5.5 and -3.2 mm/decade for all sites.  

In November, the high declining trends were found in the Jerusalem district (-5.2 mm/decade), the 

areas from Nablus to Miethalon in the West Bank (-5.4 mm/decade), and the northern areas from 

Palestine (-4.2 mm/decade) (Figure 6.20c). 

 
Figure 6.20. Spatial distribution of trends for (a) March, (b) April, and (c) November, during 1970-2018. 

 

6.5 Change points detection 

The sequential Mann-Kendall (SMK) test was applied to the time series averaged in spring and 

March due to their significantly decreasing trends. The results were plotted for all regions (Figure 

6.21, upper and lower panel). For the spring-averaged time series (Figure 6.21, upper panel)), there 

are several intersections of 𝑈′(𝑡) and 𝑈(𝑡) for all regions mainly in the years 1975-1985, which 

means a large variability in this period. The results also indicate that significant change points 

were observed around 1992 for the Levant, Palestine and Jordan and around 1997 for Syria. The 

downward trend became significant in 1995, with the 𝑈(𝑡) for all regions outside the 95% 

confidence bands, except Syria, which showed a starting point for a significant trend around 2015. 

The trends were totally significant after 2008 onward for the Levant, Palestine and Jordan, where 
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the 𝑈(𝑡) line did not return to within the 95% confidence band. Furthermore, the significant 

upward trends in the years 1970-2018 were not observed in any region where the declining 

behavior during the period under study can be easily observed. 

 
Figure 6.21. Top panel: Graphical representation of the forward, U(t) (solid line) and the backward, U’(t) 

(dashed line) series of the Sequential Mann-Kendall test for spring averaged time series over (a) Levant, 

(b) Palestine, (c) Jordan, and (d) Syria. Bottom panel: the same for March averaged time series over (a) 

Levant, (b) Palestine, and (c) Jordan. The horizontal dotted lines indicate confidence limits at the 5% 

significance level.   

In contrast to the spring, the averaged time series for March showed an upward trend for all regions 

in the period 1970-1990, although non-significant one, while they have shown a downward trend 

since 1991 onward (Figure 6.21, bottom panel). The significant change points were found for the 

Levant in 2013, for Palestine in 2015 and for Jordan in 1999. In addition, the March trends since 

2015 have been clearly downward for all regions. 

 

6.6 Influence the large-scale circulation patterns on the seasonal temperatures 

Table 6.6 summarizes the number of stations with significant correlations between winter, spring, 

and autumn precipitation, and the teleconnection indices. Figure 6.22 shows the correlation 

coefficients between the teleconnection indices and the averaged seasonal precipitation series for 

the Levant and its countries. Based on the results presented in Table 6.8, the NCP, WEMO, and 

ENSO indices showed the highest frequency of significant correlations in winter, spring, and 

autumn, with 83, 80, and 118, respectively, out of 167 stations. Other indices showed remarkable 

significant correlations in winter (MO and EA/WR indices with 76 and 46 out of 167 stations, 

respectively), spring (NCP and EA indices with 35 and 19 stations), and autumn (WEMO and EA 

/WR with 16 and 17 stations). 

According to the magnitude of the correlations (Figure 6.22), the NCP index also showed the 

highest magnitude of positive correlation with the averaged time series of winter rainfall for the 
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Levant (𝑟 = 0.30), Jordan (𝑟 = 0.32), and Palestine (𝑟 = 0.39). The MO index showed slightly lower 

correlation values than the NCP index, by 0.30, 0.31, and 0.37. Interestingly, no teleconnection 

pattern showed a significant correlation with the winter rainfall in Syria. 

For spring, the highest correlation coefficients with the averaged time series were found for the 

WEMO index by -0.40 for the Levant, -0.30 for Jordan, -0.39 for Palestine, and -0.34 for Syria. It 

is also noteworthy that the indices EA and NCP showed an effect on Syria's rainfall through an 

average correlation of -0.36 and 0.31, respectively. Only the ENSO pattern showed a significant 

effect on autumn precipitation for all regions, except Syria, with -0.34 for the Levant, -0.39 for 

Jordan, and -0.34 for Palestine/Israel (Figure 6.22). 

 WEMO EA/WR NAO EA MO NCP ENSO 

Winter 0 46 5 1 76 83 5 

Spring 80 2 0 19 1 35 4 

Autumn 16 17 4 1 0 0 118 

Table 6.6. The total stations that showed significant (p<0.05) correlation with the large-scale circulation 

patterns based on each season. 

 
Figure 6.22. Correlation coefficients between the teleconnection indices and seasonal rainfall averaged 

series for the Levant and countries. Bold Horizontal line refers the significant limits.   
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6.6.1 Correlation maps for the winter rainfall 

Spatially, during winter, the impact of the EA/WR, MO, and the NCP (Figures 6.23a to c) is 

concentrated on the central and northern Palestine sites and the northern Jordan sites. For the NCP 

index, the highest effect (0.47 < r < 0.57) was on the southern and central regions of the Palestinian 

coastal region and all sites covering the central Palestinian mountains from the Jenin governorate 

in the north to Hebron in the south. It is also noticeable that the NCP index did not show any 

significant effect on the northernmost locations in Palestine. For Syria, the NCP index showed an 

influence on some locations in As-Suwayda governorate (south of Syria) (0.37-0.46) (Figure 6.23). 

Like the NCP index, the MO index showed the highest values of correlations in the southern 

locations of the Palestinian coastal region and the western locations of Jerusalem (0.47-0.57).  

 
Figure 6.23. Spatial distribution of correlation coefficients between winter rainfall and teleconnection 

indices in 1970-2018. 

6.6.2 Correlation maps for the spring rainfall 

During spring, the WEMO showed a widespread significant correlation (-0.37 to -0.56) over the 

coastal areas in Palestine and Syria and over the northern locations of Palestine and Jordan (Figure 

6.24). The effect of the EA index occurred only in the Syrian locations, especially the easternmost 

locations in the governorate Al-Hasaka (-0.37 to -0.66). In addition, the NCP had significant 

positive correlations with some eastern and western locations in Syria (0.37-0.56) (Figure 6.24). 
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Figure 6.24. Spatial distribution of correlation coefficients between spring rainfall and teleconnection 

indices in 1970-2018. 

6.6.3 Correlation maps for the autumn rainfall 

In general, all sites show significant negative correlations with the ENSO pattern (-0.37 to -0.56) 

during autumn, except for the Syrian coastal areas. Its effect also extended to the southern sites of 

Jordan and Palestine (Figure 6.25). The WEMO index showed some impact (ranging between -

0.37 and -0.46), which occurred in 16 Palestinian coastal stations. Furthermore, a significant 

correlation with the EA/WR index (0.37-0.46) for 16 stations in the northeastern area of Palestine 

and southern Syria was found. 

 
Figure 6.25. Spatial distribution of correlation coefficients between autumn rainfall and teleconnection 

indices in 1970-2018. 
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6.7 Conclusions and discussion  

This chapter examined the spatial and temporal changes in monthly, seasonal, and annual rainfall 

averages and trends in the Levant region for the period 1970-2018. The conclusions can be 

summarized as follow:  

1. Annual rainfall in the Levant varies from 246.3 mm in 1999 to 677.8 mm in 1991, and the 

rainy season of 1991/1992 was the wettest for Palestine/Israel and Jordan. The decadal 

autumn and November contribution decreased gradually from 1980-1989 to 2010-2018. 

The March contribution also decreased from 1990-1999 to 2010-2018. The large decline 

was recorded in spring. 

2. A cyclical pattern in the temporal behavior of annual precipitation has been observed, 

particularly since the late 1980s. A decreasing pattern in the years 1993-1999, 2003-2008, 

and 2012-2018 was observed for the Levant and all sub-regions, while in the years 2000-

2003 and 2008-2012 an increasing pattern was observed for shorter periods. In addition, 

the spring fluctuations gradually decreased during the whole period of investigation. 

3. An inverse and significant relationship between precipitation and maximum/mean 

temperature was observed in the Levant during the period 1987-2018. In addition, a high 

positive correlation was found between the annual Levant precipitation and the 

precipitation in Palestine/Israel (r² = 0.95). Kafle and Bruins (2009) studied climatic trends 

in Israel for the period 1970–2002 and found a negative correlation between temperature 

and precipitation and it was significant for the Negba, Kefar Blum, Har Kena'an, Beer 

Sheva and Sedom Pans places. Saaroni et al. (2015) studied the dry periods in the Levant 

region and found that the daily precipitation in Israel (2 grid cells covering the area 31°N–

33°N, 35°E–36°E) was correlated with that in the Levant region, which showed a high 

correlation of r  =  0.87. 

4. In 2000-2018, spring rainfall in the Levant and Palestine has decreased significantly 

compared to 1970-2018. In addition, the Levant, Palestine, and Jordan have recorded a 

significant decrease in their spring mean values for the period 1991-2018 compared to 

1970-1990. 

5. The precipitation is not spatially monotonously distributed over the Levant. The study area 

was divided into three different homogeneous zones using the PCA and CA for the annual 

and seasonal precipitation. In general, Palestine's central and northern regions and the 

northern regions of Jordan formed the first cluster. The Syrian coastal area is the second 

cluster, and the third cluster was located in southern Palestine/Jordan and eastern 

Jordan/Syria. A slightly different classification was observed in the spring, when the whole 

of Syria formed the second cluster, while southern Palestine/Jordan and only east Jordan 

formed the third cluster. Furthermore, the first and second clusters represent the 

Mediterranean climate zone, while the third cluster reflects the arid and semi-arid climate 

zone.  

6. In all cases, the mean precipitation is lowest in cluster 3 (southern and eastern regions) and 

highest in cluster 2 (Syrian coastal areas). Furthermore, the standard deviation of 
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precipitation is lowest for cluster 3 and highest for cluster 2. The first cluster had the 

precipitation concentration index (PCI) between 17 and 19, the second cluster had PCI < 

15, and the third cluster (eastern and southern stations) had the highest annual PCI. Finally, 

the extreme values were not observed for any cluster on the annual scale, whereas they 

were observed for the first and third clusters in autumn. 

7. A significantly decreasing trend was observed in the time series averaged in spring for the 

Levant, Palestine/Israel, Jordan, and Syria. In addition, the sub-regions showed a 

significant downward trend in March and in April for Syria. In spring, the significant 

change points were observed around 1992 for the Levant, Palestine, Jordan, and around 

1997 for Syria. Furthermore, March's average precipitation showed significant change 

points in 2013 for the Levant, 2015 for Palestine, and 1999 for Jordan.  

8. In spatial terms, a total of 91 out of 167 stations showed significant decreasing trends in 

spring, with the highest rates for the easternmost locations of Syria, coastal stations of 

Syria, and northern Palestine. In March, a percentage of 60.5% (101 stations) was affected 

by significant downward trends, with high rates for most stations in the West Bank, east to 

Haifa district, and the most eastern stations of Syria. In autumn, only nine stations showed 

a significantly decreasing trend, with high rates in Palestine's central areas. In contrast, the 

Syrian coastal region showed rising trends in autumn. For winter, only the eastern areas of 

Syria showed significantly decreasing trends, while other regions showed increasing, 

though not significant, with the highest rate for the Syrian coastal region. In April, 26 

stations showed significantly decreasing trends and were spatially concentrated in most 

eastern locations and the coastal areas of Syria. A significant monthly upward trend was 

observed in January for Jordan, with the highest rate for the Syrian coastal region. In 

addition, a dominant upward trend was observed in February for West Jordan along the 

35.4ºE, which was significant for some places. On the other hand, most of the eastern sites 

in Syria showed a declining trend. 

The trends observed are consistent with the results of previous studies in regions around the 

Levant. Fathian et al. (2020) analyzed the changes and trends in climate extremes throughout Iran 

using precipitation and temperature data from 76 stations for the period 1981–2010, noting that 

more than 90% of the stations showed a decreasing trend in annual rainfall, and for almost 26% of 

them, the trend was significant. Raziei et al. (2014) examined the spatial patterns and temporal 

trends of precipitation in Iran using raster data (0.5° spatial resolution) for the period 1951–2009. 

The results showed that winter and January showed an upward trend in most parts of the country, 

while spring seems to be a downward trend in most parts of Iran. Tabari et al. (2011) analyzed the 

annual and seasonal precipitation trends of 41 stations in Iran in the period 1966–2005. The results 

showed a decreasing trend in annual precipitation at about 60% of the stations, and the trends in 

the time series of spring precipitation were mostly negative. Negative decreasing trends in annual 

and seasonal rainfall were well documented for Iran in many other studies (Modarres and Sarhadi, 

2009; Kousari et al., 2011; Najafi and Moazami, 2015; Soltani et al., 2015). 
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Salman et al. (2018) studied the unidirectional trends of daily precipitation extremes in Iraq 

between 1950 and 2015 using data from 15 stations. The results showed a decreasing trend in 

annual precipitation between -0.6 and -39.5 mm/decade. Similar results were obtained by Al-salihi 

et al. (2014) and Al-Barazanji (2015), who analyzed precipitation trends in Iraq for the periods 

1981-2010 and 1972-2011, respectively. Raja et al. (2017) examined the precipitation variability 

in Turkey for the period 1976-2010 and noted a general decrease in Turkey's annual precipitation 

trend in recent years. Oezguer and Koçak (2019) and Unal et al. (2012) examined the annual and 

regional trend of total precipitation based on observations collected at 237 and 271 meteorological 

stations, respectively, over Turkey. According to the results of the regional Mann-Kendall test, a 

decreasing trend was observed for all regions. Toros (2012), examined the spatio-temporal 

precipitation change at 165 stations across Turkey for the period from 1961 to 2008. The results 

showed a decreasing trend of annual precipitation by -9.7 mm/decade and a decreasing trend in 

the rainy season (October-April) by -10.0 mm/decade. Brunetti et al. (2006) investigated the 

precipitation variability in Italy over the last two centuries. They observed a decrease in annual 

precipitation of 5% per century due to the decline in spring precipitation (∼9 %). Furthermore, 

Italy's strong decrease in precipitation trends was well documented (Longobardi and Villani, 2010; 

Diodato, 2007). 

Sahour et al. (2020) studied the aridity trends in the Middle East and adjacent areas from 1948 to 

2018 using Data Assimilation System (GLDAS-Noah). The result showed a significant downward 

trend (up to 8.0 mm/decade), which was detected in March for Turkey's western side, eastern Iran, 

northern Iraq, northern Syria, Lebanon, and Israel. In addition, significant downward trends (2 to 

6 mm/year) were observed in April for north Syria and Israel. Philandras et al. (2011) analyzed 

long-term precipitation trends and variability within the Mediterranean region in the 1901-2009 

and 1951-2010 periods using a monthly grid (0.5º × 0.5º) and based on station data. The results 

showed decreasing trends in annual precipitation for the east (-15 mm/decade), the west (-36.1 

mm/decade), and central Mediterranean (-30 mm/decade). In Egypt, the trend analysis of 

precipitation at 31 stations showed that 77% of the observed trends decreased, suggesting a 

decrease in rainfall (Gado et al., 2019). Zakhem and Kattaa (2016) reported a 17% decrease in the 

mean annual precipitation of Damascus (Syria) for the period 1970–2000. Kafle and Bruins (2009) 

examined climatic trends in Israel for the period 1970-2002 using data from 34 stations. The results 

showed decreasing annual precipitation trends ranging from -5.1 to -16.6 mm/decade. 

9. The study revealed that the NCP index, with average correlations of 0.39 for Palestine and 

0.32 for Jordan, is the main controller of winter rainfall in the Levant, especially for 

southern Levant. The MO and EA/WR represented the second and third most important 

patterns that influenced winter rainfall. The results indicated that the WEMO pattern was 

the main driver of rainfall in spring, where it influenced 80 of 167 stations. In addition, the 

NCP was the second most important pattern affecting spring rainfall for 35 stations. The 

WEMO influence was concentrated in Palestine and Syria's coastal areas and Palestine and 

Jordan's northern areas. For autumn, the results clearly showed that the ENSO was the most 
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important pattern influencing negatively precipitation for 118 stations. Its influence 

extended to all areas except the Syrian coastal region. 

These results are consistent with other studies conducted at the sub-regional level, mainly in Israel  

within the Levant region. Tobias Tornros (2013) examined the relationship between Mediterranean 

Oscillation (MO) and the winter precipitation in southern Levant, using precipitation data for 30 

stations of Israel and Jordan in the years 1960-1993. The results showed the correlation coefficients 

between the MO index and single precipitation series reach values up to 0.60. The results also 

identify the EA/WR and NCP as strongly associated with winter precipitation. During negative 

(positive) MO phases the probability of above average winter precipitation is 22% (59%), 

respectively.  

A positive MO phase characterized by high pressure above central Europe and the West 

Mediterranean, and a Cyprus low in the East Mediterranean. Since the western “Algiers” and 

eastern “Cairo” centers of the MO is above and below normal, respectively. In winter, a low 

pressure tends to penetrate the East Mediterranean and form a Cyprus low; the resultant cyclone 

favours the formation and introduction of moist westerly winds into the Levant region. The 

location of the cyclone centered south or east of Cyprus is known to be associated with above 

normal levels of rainfall in southern parts of the EM (Saaroni et al., 2010). 

Yosef et al. (2009) examined trends in daily precipitation intensity over Israel 1950-2003 using 32 

stations throughout Israel. They also investigated the influence of some telecommunication indices 

on total precipitation by correlation. They found higher correlations between total annual rainfall 

and the NCP and EA/WR for the central and southern regions, although they are also significant 

for the north. Some significant correlations were also found with MO, especially in the south. 

Kutiel et al. (1998, 2002) found that rainfall in Israel during the positive phase of the NCP is far 

greater than rainfall during the negative phase of NCP and that NCP's effect on the rainfall regime 

in Israel increases from the northern parts of the country to the south. The same result was also 

found in this study, where the NCP pattern weakly correlated with the northern locations in Israel 

(<0.27) compared with central and southern locations (0.47-0.56). 

The negative phase of the NCP refers to an increased counterclockwise anomaly around the 

western center of the NCP “the north of the Caspian Sea” and an increased clockwise anomaly 

circulation around the eastern pole. These anomalous imply increased westerly anomaly 

circulation towards central Europe and an increased easterly anomaly circulation towards Georgia, 

and eastern Turkey. Which leads to an increase in southwesterly anomaly circulation towered the 

Balkans, western Turkey, and the Middle East, causing above normal temperatures and below 

normal rainfall in these regions. The opposite occurs with the positive phase of the NCP index. 

Krichak et al. (2005) examined the decadal trends in the pattern East Atlantic-West Russia (EA 

/WR) and the Mediterranean precipitation in the period 1590-2000 using gridded (0.5°lat×long) 

monthly precipitation data over land from the Climate Research Unit (CRU). Their results showed 

that the EA/WR winter precipitation correlations are statistically positive significant and over the 

eastern Atlantic and the southeastern Mediterranean, including Israel. Extreme wet (dry) winter 

months over the Mediterranean region were characterized by anomaly patterns projecting to the 
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negative (positive) phase of EA/WR. Krichak et al. 2005 and 2002, found the precipitation in south 

Levant will increase when the EA/WR in its positive phase where the Levant is affected by more 

cyclones due to the advection to the EM of the air masses from central Europe. Hatzaki et al. 

(2010) showed a significant correlation between East Mediterranean precipitation and EA pattern 

during the spring, winter, and autumn seasons. This study shows that the EA teleconnection pattern 

is negatively correlated with spring precipitation, especially for eastern Syria locations by (-0.47- 

-0.66).  

Balach (2011) and Eshel and Farrell (2000) suggest that the EM precipitation is correlated with 

the North Atlantic Oscillation (NAO). Krichak and Alpert (2005) showed that when the NAO and 

the EA-WR are in positive phase the rainfall in Israel is above normal. On the other hand, Ben‐

Gai et al. (2001) and Ziv et al. (2006) reported that precipitation over Israel is poorly correlated 

with the NAO index. This is also confirmed by the results obtained in this study and shown in 

Table 6.6 and Figure 6.23. Concerning the ENSO, Price et al., 1998 investigated the link between 

El Niño and precipitation in Israel and they showed that statistically significant relationships exist 

in the late autumn between El Niño and weather in EM after mid‐1970s. On the other hand, 

Ouachani et al. (2011) found that there are a link between ENSO and precipitation in the southern 

Mediterranean region. However, the relationship is less clear between ENSO and the eastern 

Mediterranean (EM) region. In this study, and based on observational data more than ever before 

and well cover the whole Levant region, the link between ENSO and EM precipitation were 

strongly confirmed in autumn, especially in south and east Levant. 
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CHAPTER 7 

ANALYSIS OF EXTREME RAINFALL INDICES 

 

          This chapter aims to analyze the spatial and temporal 

changes in the annual and seasonal extreme rainfall indices over 

the southern Levant (Historical Palestine) in the period 1970-

2018. Furthermore, the influence of the seven large-scale 

circulation patterns on the extreme rainfall are spatially and 

temporally analyzed.  

 

7.1 Introduction  

The assessment of changes in extreme precipitation indices is essential due to their broad 

implications for society, agricultural land, river runoff, crop yields, natural vegetation, health, 

tourism, infrastructure design, and economic development (Najafi and Moradkhani, 2014; 

Radinović and Ćurić, 2009; Peterson et al., 2008; Wang et al., 2012). The effects of climate change 

on extreme precipitation indices have recently received considerable attention. Global warming 

has the potential to increase the intensity of extreme precipitation, as a warmer atmosphere with 

enhanced water vapour and moisture content creates a more active hydrological cycle (Rosenzweig 

et al., 2001; Easterling et al., 2000; Trenberth, 2011). Furthermore, small changes in mean 

precipitation due to global warming can cause significant changes in extreme precipitation (Katz 

and Brown, 1992; De Lima et al., 2013). Numerous studies have reported increasing trends of 

extreme precipitation events in Greece (Nastos and Zerefos, 2007), India (Ravadekar and Preethi, 

2010; Deshpande et al., 2011), Switzerland (Schmidli and Frei, 2005), and the Mediterranean 

Basin (Alpert et al., 2002; Goodess and Jones 2002; Barrera-Escoda et al., 2014). The 

Mediterranean region also experienced a decreasing precipitation trend in the second half of the 

20th century (Xoplaki et al., 2003). This trend is expected to continue, with a decrease in total 

annual precipitation of up to 20% by 2050 (Black, 2009). 

The Levant is considered one of the most sensitive areas with regard to climate change and future 

extreme climate conditions. In the literature, most climate studies on climate change in the Levant 
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region have focused on long and mid-term averages (Ziv et al., 2014; Shlomi and Ginat, 2009; 

Freiwan and Kadioǧlu, 2008; Ben-Gai et al., 1994, 1998; Ghanem, 2011). This was mainly due to 

the limitations in providing high quality daily data from many meteorological departments in the 

Levant region, except Israel, with the exchange of data sets with daily or hourly resolution. Yosef 

et al. (2019), however, examined the annual changes in extreme temperature and precipitation 

indices in Israel over the period 1950-2017; their study did not include stations from the area West 

Bank. In addition, looking at precipitation changes on an annual basis often hides considerable 

variation between seasons (Garnaut, 2008). Zhang et al. (2005) analyzed the changes of several 

indices in the Middle East region for the period (1964-1999), using data from 52 stations from 15 

countries, but only four stations belong to the Levant region. Donat et al. (2014) studied changes 

in extreme temperatures and precipitation in the Arab region, but their study did not include 

stations from Israel and Palestine. Therefore, a topic such as spatio-temporal analysis for extreme 

precipitation indices over Israel and Palestine in the southern Levantine region has not been fully 

explored by previous studies and needs further attention. 

This study has two objectives. First, it attempts to provide a comprehensive spatio-temporal 

analysis for the annual and seasonal extreme precipitation indices (15 indices) over Israel and 

Palestine in the period 1970-2018. The methodology and the list of extreme precipitation indices 

and their definition are presented in Section 3.7 and Table 3.2. The second objective is to study 

the effects of the main large-scale circulation patterns in the northern Atlantic and Mediterranean 

Basin (NAO, EA, EA/WR, WEMO, MO, NCP, and ENSO) on the extreme precipitation indices. 

Figure 2.6b shows the stations' geographical distribution for this analysis, while Table 4 in 

Appendix A contains the names, coordinates, and elevations of the stations. Details regarding data 

Quality Control (QC), and homogeneity are available in Chapter 2 Section 2.2. 

 

7.2 Results  

7.2.1 Annual extreme rainfall indices 

7.2.1.1 Spatial distribution 

In order to better understand the relationships between the indices of extreme precipitation and 

their spatial variability, the long-term mean values for the period 1970-2018 were calculated for 

each index and each station. Then the cross-correlation matrix between the indices and some 

geographical factors (e.g., longitude, latitude, and elevation) was established based on the 

detrended time series. Table 7.1 summarizes the links between some precipitation indices and 

geographical factors. Figure 7.1 shows the spatial distribution of some precipitation indices over 

the period 1970-2018, and Figure 7.2 shows some strong relationships between indices and 

geographical factors. For more information about the overall cross-correlation matrix, see Table 

12 in the Appendix A. 

Over the study area, total annual precipitation (PRCPTOT) exhibited a strong positive correlation 

with all extreme indices and geographical factors, except for the index of consecutive dry days 

(CDD) which showed a significant negative correlation of -0.72 (Table 7.1). As shown in Figure 

7.1a, the spatial distribution of the PRCPTOT index shows a distinct north-south gradient or 
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latitudinal pattern with a significant positive correlation of PRCPTOT-latitude, reaching 0.66 

(Table 7.1).  

Variable PRCPTOT CDD CWD R50mm R95P R99P RX3Day RX5Day SDII 

PRCPTOT 1 -0.72 0.86 0.83 0.99 0.97 0.93 0.95 0.89 

CDD -0.72 1 -0.77 -0.42 -0.68 -0.66 -0.53 -0.56 -0.41 

CWD 0.86 -0.77 1 0.46 0.80 0.77 0.71 0.74 0.62 

R50mm 0.83 -0.42 0.46 1 0.89 0.89 0.90 0.90 0.90 

R95P 0.99 -0.68 0.80 0.89 1 0.99 0.96 0.97 0.91 

R99P 0.97 -0.66 0.77 0.89 0.99 1 0.95 0.96 0.91 

RX3Day 0.93 -0.53 0.71 0.90 0.96 0.95 1 1.00 0.98 

RX5Day 0.95 -0.56 0.74 0.90 0.97 0.96 1.00 1 0.97 

SDII 0.89 -0.41 0.62 0.90 0.91 0.91 0.98 0.97 1 

Long. 0.49 -0.67 0.64 0.14 0.42 0.38 0.24 0.27 0.14 

Latit. 0.66 -0.80 0.88 0.21 0.57 0.55 0.42 0.45 0.31 

Elev. 0.43 -0.17 0.23 0.50 0.46 0.44 0.45 0.45 0.45 

Table 7.1. The correlation coefficients calculated between some of extreme rainfall indices and 

geographical factors. Bold number means significant correlation at 𝑝 < 0.05. 

Since mean precipitation cannot reflect the extreme annual precipitation values, the maximum 

annual precipitation (Pmax) was plotted in the study area (Figure 7.1b). Over the last 49 years, 

Pmax with values of 1000 mm between 31.5ºN and 32.2ºN are found at many locations in West 

Bank, central and southern locations from the central coastal region, the southern locations in the 

district of Haifa, and the northernmost locations. These sites also had the highest average values 

for the CWD, SDII, RX5day, and R99P indices (Figure 7.1d, e, g, and h). 

Simultaneously, the CDD, CWD, and SDII indices (Figure 7.1c to e) show a consistent spatial 

distribution with the PRCPTOT index. As precipitation increases towards the central and northern 

regions, CWD and SDII are expected to increase and the CDD index to decrease, as confirmed in 

Figure 7.1. In this context, the central coastal area and the northern regions, in general, showed the 

highest values for CWD and SDII by more than 5 days and 12 mm/day, respectively, while the 

southern stations showed the lowest values by less than 4 days and 10mm/day, respectively. These 

two indices are significantly and positively correlated at 0.62, and they show a significant positive 

correlation with the PRCPTOT index by 0.86 and 0.89, respectively (Table 7.1). They also show 

a significant positive correlation with latitude by 0.88 and 0.31, respectively (Figure 7.2b). The 

results also showed that the SDII index (Figure 7.1e) correlates better with Pmax (Figure 7.1b) 

than the PRCPTOT index, with a correlation value of 0.95 (not shown). 

On the contrary, the central and northern locations had the lowest CDD index values (< 180 days) 

compared to the southern places, which had an average value of 220 days (Figure 7.1c). The CWD 

and CDD indices are the indicators of the spells of rainy days and drought periods, which are good 

indicators of the beginning and end of the drought in a region. Furthermore, they are important 

indices from the agriculture perspective (Casanueva et al., 2014). For example, they help in 

identifying appropriate sowing dates and irrigation scheduling. Areas that received a lower CDD 

value showed a complementary higher value of the CWD and SDII indices (Figure 7.1c and d) 

with a significant negative correlation of -0.77 and -0.46 between CDD-CWD and CDD-SDII, 

respectively (Table 7.1). Furthermore, the CDD index showed significant negative correlations 
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with all extreme precipitation indices and geographical factors, except for its correlation with 

altitude. Figure 7.2a is a demonstration of the strong negative correlation of CDD-latitude. 

 
Figure 7.1. Spatial distribution of some rainfall extreme indices in the period 1970-2018. 

Similar results were found for R50mm, RX5days, and R99P (Figures 7.1f to h). These indices 

show significant positive correlations with the PRCPTOT (by 0.83, 0.95, and 0.99, respectively) 

and CWD indices, and significant negative correlations with the CDD index (by -0.42, -0.56, and 

-0.66, respectively. The highest frequency of the number of days above 50 mm (R50mm), between 

2.1-2.6 days, was found at Qiryat Anavim, the Salfit, Nablus, and Elon stations (Figure 7.1f). Apart 

from the CDD index, the lowest annual mean values of all extreme precipitation indices were 

found both for the southern locations and the regions located at the north-eastern borders of the 

West Bank (Figure 7.1a to h). These locations are characterized by their low altitudes and far from 

marine influences. The significant positive correlations can confirm this between altitude and all 

extreme events, except the CDD index (Table 7.1). The altitude effect is positive for all extreme 

precipitation indices with a high rate (0.50) for the R50mm index (Figure 7.2c). 
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 Figure 7.2. Relationships between some indices and geographical factors. 

 

7.2.1.2 Principal component patterns  

In this section, the PCA was applied to the annual indices to capture an overall view of the 15 

extreme precipitation indices' temporal evolution, averaged over the study area. A matrix of 49 

(years/rows) x 15 (indices/columns) was created for each station. After that, the 49 x 15 matrix 

across the stations' network based on the standardized averaged time series over the study area was 

also constructed. Based on the North rule of thumb, three components were retained and rotated 

(varimax rotation). Table 7.2 shows the factor loadings and the explained variance for each PC 

and Figure 7.3 shows the factor scores for each PC.  

The first component explains 51.1% of the variance in the Palestine/Israel-wide matrix with the 

highest loadings (> 0.90) for the indices R95Ptot, R99P, R99Ptot and RX1day, and > 0.80 for the 

indices R50mm, R95P, RX3day, RX5day, and SDII (Table 7.2). In addition, the temporal variance 

of 9 out of 15 indices can be summarized by the first component. As shown in Figure 7.3a, the 

component scores showed a no significant increasing trend over 1970–2018 by 0.11 per decade. 

Index Comp. 1 Comp. 2 Comp. 3 Index Comp. 1 Comp. 2 Comp. 3 

PRCPTOT  0.89  R99P 0.94   

CDD   -0.96 R99Ptot 0.94   

CWD  0.65  RX1day 0.90   

R1mm  0.94  RX3day 0.87   

R10mm  0.94  RX5day 0.83   

R20mm  0.84  SDII 0.87   

R50mm 0.85   Eigenvalues 10.2 2.4 1.0 

R95P 0.83   Variability (%) 51.1 32.0 7.4 

R95Ptot 0.96   Cumulative % 51.1 83.1 90.5 

Table 7.2. Components loadings for 15 extreme rainfall index for 66 stations in Historical Palestine. 

The second component explains 32% of the composite matrix variance and had high positive 

loadings on the PRCPTOT, CWD, R1mm, R10mm, and R20mm indices (Table 7.2). In addition, 

this component shows a significant (𝑝 < 0.05) negative trend of -0.19 per decade with a decrease 

in the mid-1990s (Figure 7.3b). On the other hand, the third component explains 7.4% of the total 

variance, with a negative loading (-0.96) on the CDD index. The negative loading indicates the 

strong inverse relationship between this component and the CDD index, which shows a significant 

upward trend of 0.2 per decade (Table 7.2, Figure 7.3c). 
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Figure 7.3. Time series plot of standardized scores for the components related to the extreme rainfall indices 

over the period 1970-2018. 

 

7.2.1.3 Explaining variance in extreme rainfall 

To explain the temporal variability of the extreme precipitation indices in the study area, the 

relationship between the three significant PCs obtained in the previous section and seven 

teleconnection indices has been studied. For more details on these indices, see Section 2.3. The 

Pearson correlation was used to link the temporal variability of the first three PCs to the annual 

values of the teleconnection indices. Table 7.3 shows the correlation coefficients and their 

significance level obtained on the basis of detrended time series.  

The results show that PC1 (mainly related to the intensity and percent indices of extreme events) 

is significantly and positively correlated with the WEMO index by 0.29 with a significance level 

of 0.05 (Table 7.3, Figure 7.4a). For PC2, related to the frequency of extreme events, a significant 

(𝑝 < 0.01) positive correlation with the MO index by 0.40 is obtained (Figure 7.4b). In addition, 

this component shows a significant correlation with NCP (Figure 7.4c), ENSO, and EA/WR 

indices by 0.32, -0.31, and 0.29, respectively. The results generally showed a correspondence 

between the PC2 and NCP pattern since 1997 (Figure 7.4c). As shown in Table 7.3, no statistically 

significant link between the predictors and the scores for component 3 could be established. 

 EA/WR NAO EA MO ENSO NCP WEMO 

PC1 -0.04 -0.05 0.05 -0.10 -0.10 -0.09 0.29** 

PC2 0.29** 0.25 0.08 0.40*** -0.31** 0.32** 0.03 

PC3 0.23 0.11 0.25 -0.16 -0.18 0.19 -0.15 

Table 7.3. Correlation coefficients between PCs and teleconnection patterns in the period 1970-2018. 

Asterisks indicate significance level: * = (p < 0.1), ** = (p < 0.05), *** = (p < 0.01). 

 
Figure 7.4. Time series plot of standardized scores for the components and some teleconnection patterns 

in the period 1970-2018. 
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7.2.1.4 Annual temporal variation and trends 

Table 7.4 summarizes the number of stations with increasing/decreasing trends, as well as the 

averaged time series trends for the study area from 1970 to 2018. The temporal behavior for the 

PRCPTOT, R1mm, R10mm, R20mm, R95P, R99P, R95PTot, R99PTot, RX1Day, RX3Day, 

RX5Day, SDII, CWD, and CDD indices were plotted and smoothed using the LOWESS line to 

describe their temporal evolution (Figure 7.5(a to n)). Furthermore, the spatial distribution of the 

trends for the extreme indices are presented in Figure 7.6(a to k). 

From Table 3, the frequency-based rainfall extreme indices show generally decreasing trends. On 

the other hand, the intensity and percent-based rainfall extreme indices show rising trends. 

Although more than 86% of the stations showed decreasing trends in the PRCPTOT, R1mm, 

R10mm, R20mm, and CDD indices, but they showed few frequency of significant trends by 4, 21, 

6, 4, and 17 stations, respectively (Table 7.4).  

The intensity extreme indices, RX1day, RX3day, RX5day, and SDII, showed upward trends in 

70%, 64%, and 61% of total stations, respectively (Table 7.4), with very low significant increasing 

or decreasing trends (3 stations). Furthermore, in the R50mm, R99P, R99PTOT, and CWD, more 

than 77% of total stations showed no discernible positive or negative trends (Table 7.4). 

No. Index Total (+) trends 

(Sig.) 

Total (-) trends 

(Sig.) 

No trend  Trend for averaged time 

series  

1 PRCPTOT 6(0) 60(4) 0 -12.3 (mm/decade) 

2 R1mm 1(0) 65(21) 0 -1.5* (days/decade) 

3 R10mm 0 58(6)  8 -0.5 (days/decade) 

4 R20mm 5(0) 34(4) 27 -0.1 (days/decade) 

5 R50mm 12(0) 7(0) 58 0.03 (days/decade) 

6 R95P 35(2) 26(0) 5 2.5 (mm/decade) 

7 R99P 7(6) 0(0) 58 3.3 (mm/decade) 

8 R95Ptot 51(0) 18(0) 6 0.6 (%/decade) 

9 R99Ptot 5(4) 0(0) 61 0.6** (%/decade) 

10 RX1day 46(3) 20 (0) 0 1.3 (mm/decade) 

11 RX3day 42(0) 24(0) 0 1.5 (mm/decade) 

12 RX5day 40(0) 26(0) 0 0.8 (mm/decade) 

13 SDII 40(0) 26(0) 0 0.04 (mm/decade) 

14 CWD 5(0) 10(0) 51 0.02 (days/decade) 

15 CDD 9(0) 57(17) 0 -2.8** (days/decade) 

Table 7.4. Number of stations that showed increasing and decreasing trends along with the trend values for 

the averaged time series in the period, 1970-2018. The number in brackets represents the counts of stations 

with statistically significant trends at the 95% confidence level. Asterisks indicate significance level: * = 

(p < 0.1), ** = (p < 0.05). 

Across the study area, the overall trend of the PRCPTOT index was found to be non-significant 

decreasing by -12.3 mm/decade (Table 7.4). Spatially (Figure 7.6a and Table 7.4), a percent of 

91% of the stations showed downward trends and only four stations of them with significant, 

namely Kefar YehezqeL, Salfit, Sede Boqer, and Elat by -30.3, -8.8, -3.8, and -42.4 mm/decade, 

respectively.  

The number of wet days index (R1mm) showed a significant (p < 0.1) downward trend by -1.5 

days/decade in 1970-2018, with a declining amount from 58 days to 23 days during the period 
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1994–2010 (Figure 7.5b). The regionally averaged R10mm, and R20mm trends were non-

significant, decreasing by -0.5 and -0.1 day/decade, respectively, whereas the R50mm index trend 

was non-significant, increasing by 0.03 day/decade (Table 7.4).  

As can be seen in Table 7.4 and Figure 7.6b, a percent of 99% of stations exhibited decreasing 

trends in the R1mm index, 21 stations of them distributed in northeastern regions, Haifa district, 

and West Bank exhibited significant negative trends. The highest rates (-2.5- -3.0 days/decade) 

were found for Jerusalem and Nablus stations from West Bank, Yiron, Har kena’an, Gazit, kefar 

Yehezqel, and Tirat Zevi stations from northeastern region, and Nir’ezyon station from Haifa 

district. A percent of 88% and 52% of the stations showed decreasing trends for the R10mm and 

R20mm indices (Table 7.4), only 6 and 4 stations of them, respectively with significant trends. For 

example, the kefar Shemaryahu, kefar Yehezqel, Salfit, and Haon stations (-1.0- - 2.0 days/decade) 

for the R10mm index, and Regavim, Yir'on, Jerusalem, and Salfit stations (-0.53- -0.99 

days/decade) for the R20mm index (Figure 7.6c).  

Figures 7.5a to d show a similar temporal behavior pattern for the PRCPTOT, R1mm, R10mm, 

and R20mm indices, with a significant positive correlation (r > 0.82). For these indices, the lowest 

values were registered in 1999 and 2017 and the highest values were registered in 1991/1992. It's 

also worth noting that the annual mean variations from 2004 to 2011 were totally lower than the 

long-term averages, with a general declining pattern from 1991 to 2010. 

For the (R95P) index, there was a non-significant rising trend (2.5 mm/decade) in the study area 

(Table 7.4). Only two stations, Regba and Nablus, had significant increasing trends, by 24.7 and 

21.1mm/decade, respectively (Figure 7.6g). In 1991, 1992, and 2013, the R95P and R99P indices 

showed three strong peaks of 339/124, 283/83, and 238/119mm, respectively (Figure 7.5e and f).  

When the trend was calculated for the R99P index without the abnormal values, it revealed a 

significant increase of 3.6 mm/decade. For R99P index, six stations showed significant rising 

trends at the local level in the northwest, by 1, 1.4, 2.6, and 2.8mm/decade at Kefar Rosh, Regba, 

Haifa Port, and Nir Ezyon stations, and 2.3 and 1.3mm/decade at Gadot and Kefar Yehezqel 

stations (Figure 7.6f).  

The contribution of the very wet days index (R95Ptot) showed a non-significant positive trend of 

0.6%/decade (Table 7.4). On the other hand, the contribution from extremely wet days (R99Ptot) 

showed a generally significant (p <0.05) positive trend of 0.6%/decade in the period 1970-2018 

(Figure 7.5h). The stations that showed a significant upward trend in their R99P index, also showed 

a significant upward trend in their R99Ptot index (Kefar Rosh, Regba, Haifa Port and Kefar 

Yehezqel and Gadot stations) between 0.01-0.8%/decade (not shown). The highest values for these 

two indices were found in 1991 (42/15%) and 2013 (44/22%) whereas the lowest values were 

found in 1999 (10/1%) and 2017 (5/0%) (Figure 7.5g and h). 

The intensity extreme indices RX1day, RX3day, and RX5day indices showed non-significant 

positive trend of 1.5, 1.0, and 0.8 mm/decade over 1970-2018, with no significant increasing or 

decreasing trends were found for all observed stations (Figure 7.6h to j). These indices exhibited 

similar temporal variation with two maximum values, in 1992 (78/146/196mm) and 2013 

(79/154/189mm) (Figure 7.5i to k). 
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The SDII index showed a positive trend over the study area by 0.04 (mm/decade) (Table 7.4). The 

highest values were found in 1991, 1992, and 2013 of 16.3, 13.8, and 15.6 mm/day, respectively 

(Figure 7.5l). The high average values of the PRCPTOT index in 1991 and 1992 led to high 

average values in the SDII index, while the relatively low average of the R1mm index in 2013 led 

conversely to a high average in the SDII index in that year (Figures 7.5(a and b)).   

Figure 7.5m shows the evolution of consecutive wet days (CWD) in 1970-2018. Two periods of 

decreasing and increasing pattern can be seen, 1970-1978/1992-1999, and 2007-2018/1998-2003, 

respectively. Based on the general trend line (0.02 days/decade) (Table 7.4), there was no 

significant interannual variability of CWD from 1970 to 2018.  

 
Figure 7.5. The temporal evolution for extreme rainfall indices in the period 1970-2018. 



ANALYSIS OF EXTREME RAINFALL INDICES | 7 
 

132 
 

Figure 7.5n shows the evolution of consecutive dry days (CDD) over the period 1970-2018, with 

the overall trend for this period showing a significant (p <0.05) downward trend of -2.8 

days/decade (Table 7.4). The highest average (208 days) was observed in 1974, while the lowest 

average (139 days) was observed in 2011. It is also noticeable that the CDD averages have not 

risen above the long-term average (180 days), since 2013, with a general decreasing pattern since 

2007. The trend calculated for 2007-2018 was also statistically significant and decreased by -25.7 

days/decade.  

Spatially (Figure 7.6e), the index of consecutive dry days for 17 stations in the northernmost 

regions and southern locations from the coastal area shows significant negative trends. The highest 

trends <-18.7 days/decade were observed for six stations such as Gadot and Almagor in the 

northeastern regions, Regba in the northwest of the study area, Ziqim and Nir'am at the northern 

boundary of Gaza Strip. Additionally, eight stations randomly showed a non-significant increasing 

trend between 0.1-5.8 days/decade. 

 
Figure 7.6. Spatial distribution of trends for some indices that exhibited notably decreasing or increasing 

trends in the period 1970-2018. 

Although the intensity extreme indices RX1day, RX3day, RX5day, and SDII did not show 

significant trends, it is essential to assess their trends spatially because of their direct association 

with floods and landslides (Figures 7.5h to k). For example, the RX1day index causes flash floods, 

while RX3day and RX5day are more likely to cause long-term river floods. For RX1day index, a 
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percentage of 90% of the total coastal stations that extended from Akko governorate in the far 

northwest, to the direct eastern locations of the Gaza Strip in the south, and all stations in West 

Bank, and the southeastern sites from the north district, showed positive trends. However, only 

three of them were significant trends, Regba, Giv'at Oz, and Elqana stations between 4.5 and 5 

mm/decade. The coastal stations from north to the south showed rising trends in the RX5day index 

more frequently than in the RX1day and RX3day indices. For these three indices, the magnitude 

of the decreasing trends was less than for the increasing trends. The declining trend mainly affected 

the southern coastal area and the northeastern stations, which is more pronounced in the RX5day. 

 

7.2.2 Trends in the seasonal extreme indices  

In this section, the seasonal trends for the indices PRCPTOT, R1mm, R10mm, R20mm, RX1day, 

RX3day, RX5day, SDII, CWD and CDD were calculated for each station and for the entire study 

area on the basis of the averaged time series (Table 7.5). Figures 7.7, 7.8 and 7.9 show the spatial 

distribution for the trends of the winter, spring and autumn indices. 

 

7.2.2.1 Winter trends  

Significant trends for the spatially averaged time series were not found for all extreme winter 

indices (Table 7.5). However, the winter indices showed increasing trends for the PRCPTOT, 

RX1day, RX3day, RX5day, SDII, and CDD indices by 1.4, 1.4, 2.7, 1.1, 0.13 mm/decade, and 

0.20 days/decade, respectively (Table 7.5). On the other hand, the declining trend is observed only 

for the number of wet days index (R1mm) by -0.7 days/decade. As shown in Table 7.5, the 

R10mm, R20mm, and CWD indices did not show any notable trends over 1970-2018. 

The spatial distribution of most significant trends for winter indices is shown in Figures 7.7a to d. 

Overall, the extreme indices do not locally seem to change very quickly, as very few significant 

trends were observed (< 7 stations) for all indices during this season. As shown in Figure 7.7a, the 

PRCPTOT index did not show significant increase or decrease in all observed station. In addition, 

its spatial trend reflects a generally complex pattern, except for the stations in the Haifa district 

and the northeast area, which showed increasing trends in the interval  (6.8 - 5.6) mm/decade. 

However, a percentage of 42% (28 stations) showed decreasing trends with the highest values 

(between -9 and -13.5 mm/decade) for the Salfit, Negba, and Miqwe Yisrael stations. On the other 

hand, a high increasing trend (9 to 22.2 mm/decade) was observed at Karmel, Nablus, and Elqana 

stations in West Bank and the Ramat Hashofet, Haifa Port, and Giv'at Oz stations in Haifa district.  

According to Figure 7.7b in connection with the RX1day-winter index, the central and northern 

regions (> 32.0ºN) vastly showed increasing trends, but only in three stations with a significant 

trend, namely Regba, Ramat Hashofet and Giv'at Oz by 3.8, 5.3, and 3.8 mm/decade, respectively. 

In contrast, the decreasing trends (0 to -1.4 mm/decade) are mainly concentrated in the southern 

locations from the coastal area and the study area's southern locations. Different trends at 

neighboring locations, such as the southern coastal locations, indicated that while a flash flood 

may occur in one area, a water shortage may be expected in the next area at the same time. 
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Index Season  Tot. (+) trends 

(Sig.) 

Tot. (-) trends 

(Sig.) 

No trend  Trend for averaged 

time series  

 

PRCPTOT 

Winter 38(0) 28(0) 0 1.4 (mm/decade) 

Spring 2(0) 64(36) 0 -8.5 (mm/decade) 

Autumn   12(0) 53(0) 1 -1.8 (mm/decade) 

 

R1mm 

Winter 0 66(4) 0 -0.70 (days/decade) 

Spring 2(0) 64(29) 1 -0.70* (days/decade) 

Autumn    20(0) 19(0) 27 0 (days/decade) 

 

R10mm 

Winter 0 21(0) 45 0 (days/decade) 

Spring 0 58(22) 8 -0.10 (days/decade) 

Autumn 14(0) 25(0) 27 0 (days/decade) 

 

R20mm 

Winter 25(0) 22(0) 19 0.02 (days/decade) 

Spring 0 31(9) 35 -0.04** (days/decade) 

Autumn 2(0) 29(3) 35 -0.01 (days/decade) 

 

RX1day 

Winter 50(3) 16(0) 0 1.4 (mm/decade) 

Spring 1(0) 65(27) 0 -2.4** (mm/decade) 

Autumn 3(0) 63(9) 0 -1.9 (mm/decade) 

 

RX3day 

 

Winter 53(0) 13(0) 0 2.7 (mm/decade) 

Spring 2(0) 64(22) 0 -4.2** (mm/decade) 

Autumn 8(0) 58(9) 0 -2.2 (mm/decade) 

 

RX5day 

 

Winter 38(0) 28(0) 0 1.1 (mm/decade) 

Spring 3(0) 63(15) 0 -4.1* (mm/decade) 

Autumn 15(0) 51(3) 0 -1.9 (mm/decade) 

 

SDII 

Winter 46 (7) 20(1) 0 0.13 (mm/decade) 

Spring 2(0) 64(26) 0 -0.61** (mm/decade) 

Autumn 7 (0) 59 (7) 0 -0.60 (mm/decade) 

 

CDD 

Winter 43(0) 23(0) 0 0.20 (days/decade) 

Spring 59 (12) 7(0) 0 1.5** (days/decade) 

Winter spring 58(11) 8(0) 0 1.3 (days/decade) 

 

CWD 

Winter 13 22 31 -0.03 (days/decade) 

Spring 3 52 (21) 11 -0.2** (days/decade) 

Winter-spring 20 22 24 -0.01 (days/decade) 

Table 7.5. Number of stations that showed increasing and decreasing trends along with the trend values for 

the averaged time series in the period 1970-2018. The number in brackets represents the counts of stations 

with statistically significant trends at the 5% level. * = (p < 0.1), and ** = (p < 0.05). 

All stations exhibited decreasing trends in number of wet days index (R1mm winter) (Figure 7.7c), 

with significant results for the stations Salfit, Nablus, Zefat Har Kenaan, and Kefar Yehezqel by -

2.1, -1.5, -1.9, and -1.7 days/decade, respectively. In general, the magnitude of the declining trends 

was higher for the northern regions (> 32.5ºN, > 1.5 days/decade) than for the southern regions (< 

1 day/decade). Moreover, these large declining trends are consistently reflected in the rising trends 

for the simple day intensity index (SDII winter), which were mainly observed in the northern 

regions of the study area (Figure 7.7d). Seven northern locations showed significant rising trends 

in the SDII index: Nablus, Zefat Har Kenaan, Elon, Ramat Hashofet, Haifa Port, Kefar 

Hamakkabbi and Regba stations by 1.3, 0.75, 0.67, 1.1, 0.51, 0.5 and 0.53 mm/decade respectively. 
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Figure 7.7. Spatial distribution of winter trends for some indices that exhibited notably decreasing or 

increasing trends in the period 1970-2018. 

7.2.2.2 Spring trends 

Compared with other seasons, all spring extremes showed very rapid changes. The results indicate 

that the trends at the level of p = 0.05 for the R20mm, RX1day, RX3day and SDII indices 

decreased significantly by -0.04 days/decade, -2.4, -4.2, and -0.61 mm/decade, respectively (Table 

7.5). Furthermore, at a significance level of 0.1, the R1mm and RX5 day indices were statistically 

significant at -0.70 days/decade and -4.1 mm/decade, respectively (Table 7.5). In contrast, the 

CDD index showed a significant increasing trend of 1.5 days/decade. (Table 7.5). 

For the total precipitation index for wet days in spring (PRCPTOT), a percentage of 97% of the 

stations (64 stations) showed a decreasing trend, with 56% (36 stations) showing a significant trend 

at the level of 0.05 (Table 7.5). Decreasing trends ranged from -1.1 mm/decade for Sedom Man to 

-17.3 mm/decade for Yiron, while increasing trends, which occurred at only two sites, ranged from 

0.1 mm/decade for Regba to 2.4 mm/decade for Niram. Locally, a coherent and intense pattern 

(Figure 7.8a) of significantly decreasing trends can be seen. The highest values (< -9.0 mm/decade) 

were for the northernmost station, Jerusalem Governorate at Qiryat Anavim and Beit Jimal, and 

the central region from the coastal areas at Kefar Shemaryahu and Miqwe Yisrael.  

For the index of wet days (R1mm), 97% of the stations (Table 7.5) showed decreasing trends, and 

44% (29 stations) reported significant trends. The R1mm index showed a lower frequency of 

significant trends at the northern sites than the PRCPTOT, while it showed higher frequencies at 

the central and southern sites. It is also interesting that the significant trends affected all stations 

in West Bank. The highest rates (-0.90 to -1.07 days/decade) were observed at West Bank in the 

Jerusalem district, Nablus and Elqana stations, and northeastern Kefar Blum, Gazit, and Hazore'im 

stations.  

As shown in Table 7.5 and Figure 7.8c, a percentage of 88% of the stations (58 stations) showed 

decreasing trends in the occurrence of heavy precipitation events (R10mm); in 38% of these 

stations, a significant decreasing trend was observed. This index showed decreasing trends in the 
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interval from 0 to -0.2 days/decade and was thus below the R1mm index for all stations. Although 

the R1mm and R10mm precipitation events in spring showed similar spatial patterns, the R1mm 

index showed a higher frequency of significantly decreasing trends in the central and southern 

regions than the R10mm index (Figures 7.8b and c). Therefore, it can be stablished that the 

decrease in the frequency of extreme precipitation events (R1mm and R10mm) indices also plays 

a major role in the main decrease of precipitation in spring.  

 
Figure 7.8. Spatial distribution of spring trends for some indices that exhibited notably decreasing or 

increasing trends in the period 1970-2018.  

With respect to the simple daily intensity index (SDII) (Figure 7.8d), 97% of the stations showed 

a decreasing trend, and 40% (26 stations) of them showed a significant trend (Table 7.5). Although 

the R1mm index decreased at most sites, the SDII index decreased due to the large decreases in 

the PRCPTOT index. In this context, a very close spatial pattern was observed for the PRCPTOT 

and SDII indices. All stations showing a significant decreasing trend in the PRCPTOT index also 

showed a significant decreasing trend in the SDII index. The highest significant decreasing trends 

(-0.9 to -1.3 mm/decade) were observed at ten sites in the northern regions, such as Regavim, 

Yir'on, Ginnegar, and Almagor stations, and in the Jerusalem district at Qiryat Anavim, Beit Jimal, 

and Jerusalem St. Anne stations.  

For maximum 1-day, 3-day, and 5-day (RX1day, RX3day, and RX5day) rainfall, more than 95% 

(> 63 stations) of the total stations showed decreasing trends, with significant trends at 41%, 33%, 

and 23% of the stations, respectively (Table 7.5, Figures 7.8e to g). The RX1day index showed 

less declining trends than the RX3Day and RX5Day indices. The highest significant declining 
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trends (between -5.9 and -4.5 mm/decade) for the R1Xday index occurred at four locations: 

Jerusalem, Qiryat Anavim, Salfit, and Parod stations. In addition, the significant trend band 

extends over more sites (around Jerusalem and in the northern regions of the study area) than for 

the RX3day and RX5day indices. 

The Consecutive Dry Days Index (CDD) in spring showed rising trends in 89% (59 stations) of 

the total station, with significant trends in 20% (12 stations) of them (Figure 7.8h and Table 7.5). 

Very similar results were obtained for the CCD index for the combined winter and spring season, 

which also showed increasing trends in 88% (58 stations) of the stations, with significant trends in 

19% (11 stations) of them (Figure 7.8i and Table 7.5). For both indices, the significant increasing 

trends coherently covered the northeast locations at the Gadot, Almagor, Haon, and Kefar Blum 

stations by rates between 1.8 and 3.6 days/decade, and the northwest locations at the Kefar Rosh 

Haniqra and Regba stations by rates between 1.7 and 2.7 days/decade (Figures 7.8h and i). In 

addition, the stations located north of the Gaza Strip (Ziqim, Niram, and Ruhama) also showed 

significantly increasing trends in their CDD-spring index with 2.3, 4.9, and 2.7 days/decade, 

respectively. The broad increasing trends in the CDD-spring index have led to the broad decreasing 

trends in the CWD spring index (Table 7.5, Figure 7.8j). One percent of 79% of stations had 

declining trends in the CWD-Spring Index, with significant trends in 40% of stations (Table 7.5). 

High significant decreasing trends (-0.30 days/decade) were observed at ten stations, namely, 

Salfit, Nablus, Jerusalem, and Carmel at West Bank, Eyal, and Kefar Shemaryahu in the central 

coastal region, and Hazore'im, Gazit, and Almagor in the northeast area (Figure 7.8j). 

 

7.2.2.3 Autumn trends  

The results for the autumn trends were similar to those for the winter, with no significant 

decreasing or increasing trends observed for any of the autumn indices (Table 7.5). Also, the 

frequency-based indices (R1mm, R10mm, and R20mm) did not reflect any remarkable changes in 

the area under investigation in 1970-2018. However, the PRCPTOT, RX1day, RX3day, and 

RX5day indices showed declining trends of -1.8, -1.9, -2.2, and -1.9 mm/decade, respectively. In 

terms of stations, 80%, 29%, 38%, and 44% of the stations showed declining trends in the 

PRCPTOT, R1mm, R10mm, and R20mm indices, respectively, with no significant trend. On the 

other hand, the intensity extreme indices RX1day, RX3day, RX5day, and SDII showed decreasing 

trends for more than 77% of the total stations, with 9, 9, 3, and 7 stations respectively showing 

significant decreasing trends. 

The spatial distribution of trends for some indices is shown in Figures 7.9a to d. The same stations 

that had significantly decreasing trends in the RX1day index also had significantly decreasing 

trends in the RX3day index (Figures 7.9b and c). These significant trends included sites around 

the Jerusalem district and the Salfit, Parod, and Haon stations (at rates < -3.0 mm/decade). 

Significant declining trends were also found for the SDII index (Figures 7.9e) at seven dispersed 

stations, Regavim, Nir Gallim, Yiron, Jerusalem, Ruhama, Haon, and Karmel, with values ranging 

from -0.9 mm/decade at Karmel to -2.3 mm/decade at Nir Gallim and Yiron. 
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Figure 7.9. Spatial distribution of autumn trends for some indices that exhibited notably decreasing or 

increasing trends in the period 1970-2018.  

7.2.3 Extreme rainfall indices and teleconnection patterns 

In this section, the relationships between 15 extreme rainfall indices and seven large-scale 

circulation patterns, WEMO, EA/WR, NAO, EA, MO, NCP, and ENSO were investigated to 

determine whether a particular circulation pattern could have some influence on the occurrence of 

precipitation extremes. Tables 7.6 and 7.7 summarize the number of stations with significant 

correlations between the extreme value indices and the long-distance circulation patterns on the 

annual and seasonal scales. Figure 7.10 shows the spatial distribution of the correlation coefficients 

for the most important patterns that particularly influenced the annual extreme precipitation 

indices. Figures 7.11, 7.12, and 7.13 also show the spatial distribution of the correlation 

coefficients for the extreme precipitation indices in winter, spring, and autumn. 

 

7.2.3.1 Annual scale  

According to the results listed in Table 7.6, the large-scale circulation patterns had a more 

significant impact on the frequency-based indices than the intensity and percent-based indices. For 

the intensity and percent-based indices, the effect was less than 30% of the stations and was mainly 

related to the WEMO index. The results also revealed the MO index was the main driver for the 

PRCPTOT, R1mm, R10mm, and R20mm and R99Ptot indices. These results are consistent with 

the results obtained between the teleconnections pattern and PCs (Table 7.3).  

In detail, when compared to other patterns, the MO index showed the highest frequency of 

significant positive correlation for the indices PRCPTOT, R1mm, R10mm, and R20mm with 59%, 

65%, 61%, and 42% of the stations respectively (Table 7.6). Its effect is intensively concentrated 

between 31.4ºN to 33.2ºN by correlation coefficients between 0.27 and 0.37 for the PRCPTOT, 

R1mm and R20mm indices (Figures 11a, b, and d) and between 0.27 and 0.53 for the R10mm 

index (Figure 7.10c). MO was also the main driver for the R99Ptot index (Table 7.6, Figure 7.10e) 

for 20% of the stations that correlated negatively with it between -0.27 and -0.37 and spatially 

covered some northern sites. 
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Index  WEMO EAWR NAO EA MO NCP ENSO 

+ - + - + - + - + - + - + - 

PRCPTOT 3 0 0 2 10 0 0 0 39 0 3 0 0 33 

CDD 0 0 1 14 1 6 9 0 3 0 8 0 0 5 

CWD 2 0 8 0 0 0 3 0 5 0 31 0 0 28 

R1mm 0 0 26 0 8 0 0 0 43 0 31 0 0 39 

R10mm 3 0 5 0 6 0 2 0 40 0 6 0 0 28 

R20mm 15 0 5 0 8 0 1 0 28 0 2 0 0 8 

R50mm 14 0 2 0 2 3 0 0 3 0 4 0 0 8 

R95P 19 0 1 0 1 0 1 1 3 0 2 0 0 1 

R95Ptot 10 1 0 0 0 8 2 1 2 2 2 0 0 0 

R99P 11 1 0 0 0 8 2 1 2 0 2 0 0 0 

R99Ptot 2 0 5 0 0 8 0 0 1 12 5 0 0 0 

RX1day 9 0 1 0 0 2 2 1 3 2 2 0 0 3 

RX3day 6 5 2 0 6 5 1 0 0 2 0 0 0 1 

RX5day 2 0 2 0 2 2 1 0 2 1 0 0 0 0 

SDII 15 0 0 0 1 3 1 0 1 0 0 0 0 0 

Table 7.6. Number of stations with significant positive or negative correlations between extreme 

precipitation and teleconnection indices at annual scale. Only significant results at the 95% confidence level 

are shown. 

In addition, the ENSO pattern was the second most important pattern affecting the PRCPTOT, 

CWD, R1mm, and R10mm indices (Table 7.6). A percentage of 50%, 42%, 59%, and 42% of the 

stations showed significant negative correlations with the ENSO pattern in their PRCPTOT, CWD, 

R1mm, and R10mm indices, ranging from -0.27 to -0.53. These high frequencies of significant 

correlations place the ENSO index in second place after the MO index for the PRCPTOT, R1mm, 

and R10mm indices and the NCP index for the CWD index. Spatially speaking (Figures 7.10n to 

q), the pattern was generally the same for the ENSO and MO modes, but with lower frequency in 

the northern locations and higher frequency in the southern regions for the ENSO mode. For 

example, the ENSO showed a more significant correlation for the PRCPTOT, R1mm and R10mm 

indices between 31.2ºN and 31.4ºN at the Magen, Eshel Hanasi, Urim, Omer, and Gevulot stations. 

The NCP index was the main controller of the CWD index, showing a significant positive 

correlation with 47% of the stations (Table 7.6). Its effect extended over all stations at the northern 

boundaries of West Bank (with correlation coefficients between 0.27 and 0.53), the northernmost 

locations, and the central and southern locations from the coastal area (Figure 7.10f). In addition, 

47% of the stations showed remarkable positive significant correlations with the R1mm index 

(Figure 7.10r). The significant effect for the EA/WR pattern occurred at 23% and 39% of the 

stations showing negative and positive significant correlations on the CDD and R1mm indices 

(Table 7.6). Spatially (Figures 7.10g and s)), the EA/WR effect mainly covered some central 

locations between 31.3ºN and 32.0ºN (with correlations between -0.27 and -0.4 for the CDD index 

and between 0.27 and 0.44 for the R1mm index). 

The WEMO index had a dominant significant influence on the six extreme indices (R50mm, R95P, 

R95Ptot, R99P, RX1day, and SDII), with 21%, 29%, 17%, 18%, 14% and 23% of the stations 

showing a significant positive correlation with it (Table 7.6). Figure 7.10h to m shows the spatial 

distribution for the correlation coefficients between the WEMO index and the six indices 
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mentioned before. For all six indices, the geographical domain of the WEMO effect was mainly 

concentrated between 31.3ºN and 32.0ºN at some locations in the Jerusalem district and north-

eastern locations from Gaza Strip. Its influence also affected some stations in the Haifa district for 

the R50mm, R95P and SDII indices. Finally, the EA and NAO indices are poorly correlated with 

the annual extreme precipitation indices, except for the NAO effect on the RX3day index at 17% 

of the stations (Table 7.6). Its influence was negative for the northernmost locations (-0.27 to -

0.53) and positive for some southern coastal locations (0.27 to 0.37). 

 
Figure 7.10. Spatial distribution of Pearson correlation coefficients between the teleconnection patterns 

and the precipitation indices at annual scale. 
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7.2.3.2 Seasonal scale  

Based on the frequency of significant correlations (Table 7.7), the results indicated no single 

dominant pattern on the seasonal rainfall extremes, as different patterns generally influence the 

different seasons. In this context, the NCP pattern appeared as the dominant pattern on the winter 

extreme rainfall indices. The MO and EA/WR indices also showed a considerable frequency of 

significant correlations. On the other hand, the ENSO and WEMO indices showed high 

frequencies of significant correlations with the extreme precipitation indices in autumn and spring. 

Similar to the annual results, the strength and frequency of these correlations were low for all 

patterns with the seasonal intensity and percent-based extreme rainfall indices, especially for the 

RX1day, RX3day, and SDII indices. 

Index Season  WEMO EA/WR NAO EA MO NCP ENSO 

+ - + - + - + - + - + - + - 

 

PRCPTOT 

Winter 0 0 20 0 0 0 0 0 43 0 51 0 0 2 

Spring 0 37 0 0 0 1 0 0 5 0 8 0 0 1 

Autumn   0 20 4 0 9 0 0 0 2 0 0 0 0 48 

 

R1mm 

Winter 0 7 41 0 0 0 0 0 53 0 58 0 0 1 

Spring 0 57 0 0 3 0 0 2 3 0 27 0 0 5 

Autumn    0 35 7 0 14 0 0 0 6 0 0 0 0 56 

 

R10mm 

Winter 0 0 30 0 1 0 1 0 58 0 55 0 0 5 

Spring 0 37 1 1 0 1 0 0 9 1 9 1 0 1 

Autumn 0 26 5 0 6 0 1 0 4 0 0 0 0 33 

 

R20mm 

Winter 0 0 6 0 2 0 0 0 32 0 30 0 0 6 

Spring 0 4 0 4 0 0 1 0 4 0 2 0 2 4 

Autumn 0 15 3 0 2 0 1 0 2 0 0 0 0 20 

 

RX1day 

Winter   1 2 3 1 1 2 1 0 2 1 4 0 0 5 

Spring 1 9 1 1 0 1 2 1 2 0 0 0 2 2 

Autumn 0 8 4 0 3 1 0 1 1 0 0 0 0 15 

 

RX3day 

 

Winter  0 3 7 0 0 9 2 0 6 0 15 0 0 7 

Spring  0 8 0 0 0 0 0 1 4 0 3 0 0 2 

Autumn  0 9 0 0 13 0 0 0 0 0 1 0 0 19 

 

RX5day 

 

Winter 0 2 7 0 3 5 1 0 9 0 20 0 0 3 

Spring 0 16 0 0 0 0 0 0 1 0 16 0 0 1 

Autumn 0 5 0 0 28 0 0 0 0 0 1 0 0 38 

 

SDII 

Winter  0 0 0 0 0 1 3 0 1 0 1 0 0 4 

Spring  0 0 0 1 1 0 3 0 2 0 1 0 1 1 

Autumn  0 2 1 0 0 0 0 2 1 0 0 0 0 5 

CDD Winter 0 1 0 2 0 32 1 0 0 14 0 15 0 1 

Spring 7 0 1 3 0 12 12 0 1 0 0 9 1 3 

CWD Winter 0 1 50 0 0 0 1 0 1 0 48 0 1 25 

Spring 0 37 0 0 2 0 0 10 4 0 33 0 0 2 

Table 7.7. Number of stations with significant positive or negative correlations between extreme 

precipitation and teleconnection indices at seasonal scale. Only significant results at the 95% confidence 

level are shown. 

As shown in Table 7.7, the NCP index had a greater impact on seven winter extreme rainfall 

indices (PRCPTOT, R1mm, R10mm, R20mm, RX3day, RX5day, and CWD). It positively and 

significantly correlated with them at 77, 88, 83, 45, 23, 30, and 73% of the stations, respectively, 

which may indicate that the NCP index has had a major impact on the study's rainfall regime area 
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over the last decades. Figure 7.11a shows the spatial distribution of these significant correlation 

coefficients in winter, with the highest correlations (0.55-0.69) for the R1mm index being found 

in the southern parts of the coastal area and around the Gaza Strip. Its effect was extensive and 

covered a large extent, ranging from 30.8ºN to 33.3ºN for the PRCPTOT, R1mm, R10mm, 

R20mm, and CWD indices, except for the northernmost location for the PRCPTOT index. On the 

other hand, there was less frequency of significant correlations with a small area of its effect on 

the RX3day and RX5day indices that generally extended between 31.0ºN and 32.0ºN (𝑟 values 

between 0.27 and 0.38). 

 
Figure 7.11. Spatial distribution of Pearson correlation coefficients between the NCP (a), MO (b), and 

EA/WR (c) teleconnection indices and the precipitation indices in winter. 

The results also showed that the MO and EA/WR indices had remarkable effects on four winter 

extreme precipitation indices. The PRCPTOT, R1mm, R10mm, and R20mm winter indices are 

positively and significantly correlated with the MO index with 65, 80, 88, and 48% of the total 

stations. The correlation coefficients showed similar spatial patterns to the NCP index (Figure 

7.11b). For the R20mm index, MO covered more sites in the southern coastal region with 

significant correlations (0.38-0.53) higher than the NCP index. The EA/WR index (Figure 7.11c) 

showed a lower frequency of significant correlations for the PRCPTOT, R1mm, and R10mm 

indices at 30, 62, and 45% of the stations, respectively, compared to the NCP and MO indices. In 

contrast, it showed a very high frequency of significant correlations with the CWD index in 76% 
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of the total stations, with a similar spatial pattern as in the NCP and CWD, and with a higher 

frequency of the higher correlation band (0.38-0.53) at the northern locations. 

In spring, the WEMO index proved to be the most influential pattern on six spring extreme 

precipitation indices (PRCPTOT, R1mm, R10mm, RX1day, RX5day, and CWD) of 56, 86, 56, 

14, 24, and 56% of the total station with significant negative correlations (Table 7.7). The highest 

significant negative correlations (-0.38 to -0.53) were with the R1mm index for most stations and 

with the PRCPTOT index at some central and northeast locations (Figure 7.12a). The RX5day 

significant correlations are concentrated at coastal and northeastern locations while for the RX5day 

index, they showed a scattered pattern. In addition to the WEMO index's effect, the NCP index 

also exerted a certain positive influence on the R1mm, RX5day, and CWD indices, but with a 

lower frequency and significant magnitude correlations (Figure 7.12b). As shown in Figure 7.12c, 

the effect of the EA index on the CDD index occurred only in spring at 13% of the stations with 

significant positive correlations in the range of 0.27 to 0.37. The NAO pattern also had some 

negative impact on 13% of stations for the CDD index and spatially distributed in the northern 

locations (Figure 7.12c). 

 
Figure 7.12. Spatial distribution of Pearson correlation coefficients between the WEMO (a), NCP (b), and 

NAO (c) teleconnection indices and the precipitation indices in spring. 



ANALYSIS OF EXTREME RAINFALL INDICES | 7 
 

144 
 

For autumn, the results listed in Table 7.7 show that the ENSO pattern is the main regulator for 

seven extreme precipitation indices (PRCPTOT, R1mm, R10mm, R20mm, RX1day, RX3day, and 

RX5day). For these indices, 73, 58, 50, 30, 23, 29, and 58% of the total stations showed significant 

negative correlations with the ENSO pattern in autumn. In addition, the indices PRCPTOT, R1mm, 

R10mm, and R20mm correlated negatively with the WEMO for 30, 53, 39, and 23% of the 

stations, respectively. The NAO pattern also showed some positive effects on the RX1day and 

RX5day indices at 20 and 42% of the stations. Figures 7.13a to c show the spatial distribution of 

correlation values between the three patterns and extreme precipitation autumn indices. Most 

stations in the northern, coastal, and West Bank areas were significantly affected by the ENSO 

pattern, especially for the PRPTOT, R1mm, R10mm, and RX5day indices (Figure 7.13a). Other 

indices (R20mm, RX1day, and RX3day) showed spatially almost isolated patterns for the 

significant correlations, except for stations in the Jerusalem Governorate. The ENSO pattern 

affected more stations in all regions than the WEMO index. 

 
Figure 7.13. Spatial distribution of Pearson correlation coefficients between the ENSO (a), WEMO (b), 

and NAO (c) teleconnection indices and the precipitation indices in autumn. 
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7.3 Conclusions and discussion  

In this study, a set of 15 different extreme precipitation indices were computed using homogeneous 

and quality controlled daily records for 66 stations distributed in Israel and Palestine covering 

1970-2018. The study's main goals were to provide a Spatio-temporal analysis for the extreme 

rainfall indices at the annual and seasonal scales. It also tried for the first time to investigate the 

relationships between these indices and some large-scale circulation patterns in the Atlantic Ocean 

and the Mediterranean Sea. The main conclusions can be summarized as follows: 

1. In 1970-2018, the spatial distribution for the extreme precipitation indices generally 

followed a north-south gradient, with the highest mean values found in the central and 

northern regions and the lowest mean values in the southern regions, except for the CDD 

index. The CDD index correlated negatively with all extreme precipitation indices and 

geographical factors, while a significant positive correlation was found between all other 

indices. In addition, the influence of latitude, longitude, and elevations on all extreme 

indices was significantly positive, except for the CDD index.  

2. We found three underlying components in the data that explain 90% of the variance in the 

composite matrix of annual extreme precipitation indices. The first component appeared in 

the context of the intensity and percentage indices of extreme events and showed a non-

significant upward trend over the period 1970-2018, and showed a significant positive 

correlation with the WEMO mode. The second component connected to frequency-based 

extreme events and showed a significant decreasing trend. The PC2 showed a positive 

correlation with the mode MO mode and with the EA /WR, ENSO and NCP modes. The 

third component relates only to the CDD index with a significantly decreasing trend. 

3. A decreasing pattern for all extreme indices in the period 1991-1999, which is continuous 

until 2010 for many indices was detected. Furthermore, common peaks were observed in 

1991/1992 and 2013 for most indices. The lowest values were observed in 1999 and 2010 

for the most extreme indices.   

4. The annual averages for frequency-based extreme indices exhibited decreasing trends, 

significant for the R1mm and CDD indices. Significant decreasing trends affected 32% and 

26% of the stations respectively for the R1mm and CDD indices, and they covered the 

northern, northeastern, and West Bank stations for the R1mm index, and some southern 

coastal locations for the CDD index. In contrast, the percent and intensity based-extreme 

indices showed increasing trends, significant for the R99Ptot index. The significantly 

decreasing trend in the index CDD did not lead to an increase in the CWD index, suggesting 

that the changes in the indices of precipitation frequency are mainly reflected in the 

decrease of precipitation events with heavy and very heavy rainfall in most parts of the 

study area.  

5. With more than 86% of the stations showed decreasing trends in the PRCPTOT, R1mm, 

R10mm, and R20mm indices, the area under investigation may be subjected to drought 

episodes in the future. The dominant decreasing trends in the PRCPTOT led to a decrease 

in the frequency of wet, heavy, and very heavy rainfall day’s indices, while they led to an 

increase in the intensity and percent of extreme indices. 
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Many studies have shown a decreasing precipitation trend and a reduction in the annual number 

of precipitation days for the Mediterranean and Middle East regions (AlSarmi and Washington, 

2011; Hochman et al. 2018; Shohami et al. 2011; Alpert et al. 2002; Christensen et al. 2007; Nastos 

and Zerefos 2007; Najafi and Moazami 2017; Ziv et al. 2014; Philandras et al. 2011). The results 

are also consistent with Alexander et al. (2006) and Donat et. al. (2014) who studied extreme 

precipitation around the world using data from 5948 stations and global gridded data. They found 

a decreasing trend in the R10mm index and an increasing trend in the R99Ptot index in the eastern 

Mediterranean, including Israel and Palestine. 

The general line of our results are also in agreement with the results obtained by Yosef et al. 

(2019), who studied the annual changes in extreme temperature and precipitation indices in Israel 

for the period 1950-2017. Their results showed the frequency-based extreme indices were affected 

by decreasing trends whereas the percent and intensity based-extreme indices were affected by 

increasing trends. On the other hand, their study did not document any significant increasing or 

decreasing trends while our study showed significant trends for R1mm, R99Ptot, and CDD indices. 

This can be attributed to the different base periods. Alpert et al. (2002) and Yosef et al. (2009) 

described a regional increase in percentage from the total annual amounts of “Moderate-Heavy” 

(16–32 mm/day) and “Heavy” (32–64 mm/day) categories for the north and center of Israel, 

despite the decreases in total rainfall amount. On global and regional scales, many studies 

predicted that under the global warming, a greater increase is expected in extreme precipitation, as 

compared to the mean values (IPCC 2007, 2008, 2011; Groisman et al. 2005; Kundzewicz et al. 

2005; Dai 2011; Klein Tank and Können, 2003; Yilmaz 2015; Sensoy et al. 2013; Najafi and 

Moazami 2016; Rahimzadeh et al. 2009). 

6. On a seasonal scale, no significant trends were observed for the averaged winter extreme 

indices. However, clearly positive trends were observed for the PRCPTOT, RX1day, 

RX3day, RX5day, CDII, and CDD indices. The increasing trend of the PRCPTOT index, 

together with the decreasing trend of the R1mm index, led to an increase of the SDII index, 

which is significant for the northwestern sites. In addition, the northern locations have 

experienced intensively rising trends in the RX1day index. The rising trends in both 

RX1day and the SDII index in the northern regions may indicate an increase in 

precipitation intensity and the possibility of flooding in these areas; particularly, they 

affected many sites with an annual precipitation maximum of more than 1000 mm.  

7. One of the most important findings of this study relates to spring extreme indices that 

showed negative trends for most of the indices, significantly for R1mm, R20mm, CWD, 

RX1day, RX3day, RX5day, and SDII. These indices showed significant decreasing trends 

in more than 32% of the stations covering central and northern locations. With the 

exception of the CDD index, there was a very consistent pattern of declining trends across 

the study area, with more than 75% of stations showing declining trends in all indices. 

8. During the autumn, significant decreases in RX1day, RX3day, and SDII were observed in 

11-14% of the stations, primarily in the central regions. Spring and autumn, according to 

these findings, are the seasons that contribute the most to annual declines in the PRCPTOT, 
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R1mm, R10mm, R20mm, and CDD indices, while winter is the season that contributes the 

most to annual increases in the RX1day, RX3day, RX5day, and SDII indices. 

9. The study area had longer periods of extreme dry spells (CDD) and correspondingly shorter 

extreme wet spells (CWD) for winter, spring, and the combined winter-spring.  

Sillmann and Roeckner (2008) estimate a significant increase in the (CDD) index in regions around 

the Mediterranean Sea. This finding is consistent with a study by Tebaldi et al. (2006), who also 

found a significant increase in dry days. Ziv et al. (2014) found that the declining trend in annual 

precipitation during the period under study is mainly due to the spring season. Our results are also 

consistent with Hertig et al. (2013), who examined the changes in some seasonal extreme 

precipitation indices such as the PRCPTOT and CDD indices for the Mediterranean region, for the 

period 1950-2006. Their results showed a decrease in total precipitation over the Mediterranean 

region, especially in spring, while total precipitation increased especially in winter. Concerning 

the CDD index, they noted an increase in the CDD spring over the Mediterranean's southern and 

eastern parts. 

10. The influence of teleconnection modes on the extreme precipitation indices was more 

pronounced for the frequency-based extreme rainfall indices than for the intensity and 

percent-based indices. In winter, the NCP index had a greater influence on seven winter 

extreme precipitation indices (PRCPTOT, R1mm, R10mm, R20mm, RX3day, RX5day, 

and CWD), mainly between 30.8ºN and 33.3ºN. The MOI and EA/WR indices had a 

remarkable impact on four winter extreme rainfall indices with the highest on the R10mm 

for the MO index, and on the R1mm for EA/WR. In spring, the WEMO index emerged as 

the most influential pattern on six spring extreme precipitation indices (PRCPTOT, R1mm, 

R10mm, RX1day, RX5day, and CWD). For the autumn, the results showed that the ENSO 

pattern is the main regulator for seven extreme precipitation indices (PRCPTOT, R1mm, 

R10mm, R20mm, RX1day, RX3day, and RX5day). In general, the EA and NAO patterns 

showed a weak influence on the annual and seasonal extreme precipitation indices. The 

NAO's remarkable effect was in autumn for the RX3day and RX5day index, and in winter 

for the CDD index.  

No work in the literature establishes a direct link between the extreme precipitation indices 

and large-scale circulation patterns in Israel and Palestine. Most studies analyzed the influence 

of the large-scale circulation pattern on the mean values. However, it is important to note that 

some of these studies confirm some of the results obtained in this study. Kutiel and Benaroch 

(2002), based on monthly average temperatures and monthly precipitation totals from 33 

stations in Greece, Turkey, and Israel, showed that the NCP is more pronounced in winter and 

transitional seasons. The negative episodes of the NCPs tend to increase the circulation of the 

south-western anomaly towards the Balkans, western Turkey, and the Middle East, causing 

precipitation in these regions to be below normal, while the opposite occurs in the positive 

episodes. Kutiel and Paz (1998) found that precipitation in Israel during the positive phase of 

the NCP is far greater than precipitation during the negative phase of the NCP, and that the 

influence of the NCP on the precipitation regime in Israel increases from the northern parts of 
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the country to the south. Toernros (2013) analyzed the relationship between the index 

Mediterranean Oscillation (MO) and winter precipitation in Southern Levant (Israel and 

Jordan) for the period 1960-1993. The results showed that winter precipitation is significantly 

associated with positive MO phases. Price et al. (1998) used monthly data for four stations in 

1922-1990 to investigate whether there is a statistical correlation between ENSO conditions 

and precipitation in Israel. According to the results, there seems to be a correlation between El 

Niño events and precipitation in Israel since the mid-1970s, and these correlations are 

statistically significant for the last 20-25 years. Hurrell et al. (2003) and Kelley et al. (2012) 

have shown that the relationship between NAO and precipitation is not uniform throughout the 

Mediterranean region. The effects are large in the Western Mediterranean and weaker and 

opposite in the Levant. On the other hand, Oikonomou et al. (2010) investigated the 

relationship between extreme droughts (CDD) in the Eastern Mediterranean with large-scale 

circulation using daily precipitation for 56 stations in Eastern Mediterranean for 1958 2000. 

They showed that the CDD index via EM is influenced by teleconnection patterns centered on 

Northern Atlantic (NAO). 
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CHAPTER 8 

        COVARIABILITY ANALYSIS  

 

            In this chapter, Singular Value Decomposition 

(SVD) technique is used to examine and evaluate the 

possible relationships between the seasonal temperatures 

and precipitation in the Levant region and two indicators 

of climate variability, the sea surface temperatures (SST) 

and the North Hemisphere sea level pressure (SLP), in 

order to identify associated regions that may have coupled 

impacts. 

 

8.1 Introduction  

In the previous chapters, the influence of seven main teleconnection indices (such as the NCP, 

NAO, and ENSO) on the seasonal temperatures (Tmax and Tmin) and precipitation in the Levant 

region was spatially and temporally investigated. These teleconnection indices represent a part of 

ocean-atmospheric variability but they are spatially referred to specific regions (e.g., the pressure 

differences between two centers of action). This implies they do not take into account additional 

information of the climatic system that could have an influence on the seasonal temperatures and 

precipitation in the Levant region. Furthermore, the non-stationarity of the teleconnection patterns 

(Batehup et al., 2015; López-Moreno, 2008) due to external factors such as anthropogenic climate 

change (Müller and Roeckner, 2008; Herceg Bulic et al., 2011) and internal factors such as the 

non-linear interactions with other regulators of climate variability (Fogt et al., 2011), compels us 

to seek new variables that can provide information regarding the variability of the climate system. 

Xoplaki et al. (2003, 2002) and Matulla et al. (2003) showed the combination of various large-

scale climate fields can account for a higher amount of explained variance of the local or regional 

climate fields than a single circulation parameter alone.   

The oceans are playing an important role in driving of internal climate variability, affecting climate 

around the globe (Shukla, 1998). In this sense, Donat et al. (2016) compared century-long SST-
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driven runs from one atmospheric GCM with gridded observations and reanalysis data and found 

that SST variability could explain about 50% of the inter-annual variability of globally averaged 

temperature extremes and about 15% for precipitation extremes. The majority of radiation from 

the sun is absorbed by the ocean, which also helps to distribute heat around the globe. For example, 

ocean water is constantly evaporating, increasing the temperature and humidity of the surrounding 

air to form rain and storms that are then carried by trade winds (Olbers et al., 2012; Gill, 1982). In 

fact, the ocean dynamics should be considered since it plays a significant role in temperature and 

precipitation variability (Deser et al., 2010). Hence, the SST or the sea level pressure (SLP) can 

provide important information about hydrologic variability in regions around the world. For 

example, slow variations in SST provide a source of potential predictability for climate 

fluctuations on timescales of seasons and longer (Deser et al., 2010). Therefore, the identification 

of coupling modes between these climatic variables and the seasonal temperature and precipitation 

variability could be a useful tool to improve our understanding of the interactive relationships 

between them. 

In the literature, there are various methods to evaluate coupled modes of variability between two 

spatial-temporal fields. Bretherton et al. (1991), in their work entitled “An Inter-comparison of 

methods for finding coupled patterns in climate data”, provided a unified conceptual framework 

for five methods that isolate important coupled modes such as the singular value decomposition 

(SVD) of the covariance matrix between two fields, the canonical correlation analysis (CCA), and 

the companied principal component analysis (CPCA). They compared SVD with others techniques 

mentioned before andfound the SVD is the most preferable for general use and it directly produces 

explicit measures of relationships between the derived coupled patterns. In addition, it has 

advantages such as its lack of systematic bias and good general performance. Their results also 

indicated that SVD was simpler to apply, interpret, and require no user-supplied parameters.  

In their study between wintertime SST and 500 mbar height (Z500) anomalies, Wallace et al. 

(1992) illustrated SVD applied to a geophysical problem, and they compares SVD to CCA and 

CPCA and PCA, showing that SVD clearly isolates the two most important extratropical modes 

of variability in this case. Furthermore, while principal components analysis (PCA) is very 

common for this type of analysis, SVD has the advantage of being able to establish the similarities 

between two spatio-temporal fields by evaluating the cross-covariance matrix. In contrast, PCA 

evaluates only one spatial-temporal field (Sagarika et al., 2015). 

The role of SST or SLP, in shaping the climate of the Levant region is still mostly unclear and 

unexplored. To determine the mechanisms governing climatic variations, it is essential to 

characterize the large-scale interactions between the ocean and the overlying atmosphere. In this 

Chapter, the possible relationships between the seasonal temperature and precipitation in the 

Levant region and two indicators of climate variability, the SST and North Hemisphere SLP will 

be evaluated in order to identify significant associated regions that have coupled impacts. The first 

goal is to identify the principal modes of behavior of the SST/SLP and the overlying atmospheric 

circulation, in order to provide insight into the variability of the coupled atmosphere–ocean system 

on interannual timescales. A secondary goal is to determine whether these modes of variability are 
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connected with any of the well-known teleconnection patterns. The geographical domain, periods, 

resources of the SST and SLP data are available in Chapter 2, Section 2.3. The methodology related 

to SVD used in this study is included in Chapter 3, Sections 3.8 and 3.9. The SST, SLP, 

precipitation, and temperature data are averaged for the winter (December, January, February), 

spring (March, April, May), summer (June, July, August), and autumn (September, October, 

November) for the periods 1987-2017 for temperature and 1970-2018 for the precipitation. 

  

8.2 Results  

8.2.1 Covariability between SST and seasonal temperatures  

To examine and quantify the link between the SST and seasonal temperatures (Tmax and Tmin), 

the SVD was performed by analyzing the covariance matrices of the two fields. The results are 

displayed using homogenous and heterogeneous correlation maps (Wallace et al., 1992). The 

statistics for the first three leading SVD modes, including the temporal correlation between pairs 

of expansion coefficients, strength of the coupling (STR) and the percentage of squared covariance 

(SCF) are listed in Table 8.1. Furthermore, Table 8.2 shows the variance in individual fields (SST, 

seasonal temperatures) explained by each mode. Table 8.3 shows the correlations between the left 

SST expansion coefficients of the selected SVD modes and the seven teleconnection indices 

chosen for this study. 

In all SVD analyses, only the coupling coefficients associated with the first three modes were 

evaluated because they accounted for 80% or more of the SCF. As can be seen in Table 8.1, the 

SCF for the third mode drops below 6% in all cases, and the SCF for the second mode was less 

than 8% in most cases, which means that the amount of information accounted for the second and 

third modes respecting the two fields is not very relevant. Moreover, the total number of stations 

that exhibited significant correlations with the second and third modes was less than 12 stations. 

Because of the reasons above, only the first mode was included in our discussion. 

 

Season 

 

Variable 

STR SST-seasonal temperatures  

SCF (%) 

Total sig. stations 

(Heterogeneous) 

Mode1 Mode2 Mode3 Mode1 Mode2 Mode3 Modes (1,2,3) 

Winter Tmax 0.59 0.58 0.66 91 4  1 (55,0,0) 

Tmin 0.73 0.67 0.66 89 5  2 (58,5,3) 

Spring Tmax 0.70 0.64 0.55 84 6  4 (59,0,0) 

Tmin 0.79 0.62 0.77 81 8 2 (54,3,0) 

Summer Tmax 0.68 0.64 0.73 84 5 3 (53,6,1) 

Tmin 0.76 0.73 0.78 76 8 6 (53,4,12) 

Autumn Tmax 0.64 0.69 0.73 80 7 3 (57,1,0) 

Tmin 0.73 0.80 0.70 65 16 4 (57,2,0) 

Table 8.1. Summary of the strength of the coupling (STR) and the square covariance fraction (SCF) 

corresponding to the selected modes from SVD of SST and seasonal temperatures for the period 1987-

2017. 

 

 

 

 

 



COVARIABILITY ANALYSIS | 8 
  

152 
 

 

Season 

Variable SST variance (%) Seasonal Temp. variance (%) 

Mode1 Mode2 Mode3 Mode1 Mode2 Mode3 

Winter Tmax 19 21 9 85 4 2 

Tmin 19 22 8 71 4 4 

Spring Tmax 11 24 16 77 3 4 

Tmin 12 27 10 66 5 3 

Summer Tmax 24 8 8 55 11 5 

Tmin 23 14 7 41 8 9 

Autumn Tmax 11 17 8 79 4 2 

Tmin 7 21 11 67 4 3 

Table 8.2. The variance in individual fields (SST and seasonal temperatures) that are explained by each 

mode. 

Season Variable  WEMO EA/WR NAO EA MO NCP ENSO 

 

 

 

Winter 

 

Tmax 

M1  -0.18 -0.20 -0.66 0.08 -0.48 -0.39 0.07 

M2 -0.42 0.12 -0.61 -0.40 -0.16 0.11 0.13 

M3 -0.17 0.07 0.11 -0.05 0.18 0.08 0.23 

 

Tmin 

M1 -0.13 -0.20 -0.65 0.10 -0.48 -0.40 0.00 

M2 0.43 -0.08 0.58 0.43 0.14 -0.08 -0.27 

M3 0.03 -0.06 -0.12 -0.10 -0.09 0.08 0.06 

 

 

 

Spring 

 

Tmax 

M1 0.43 -0.47 -0.10 0.18 -0.16 -0.21 0.28 

M2 0.19 0.00 0.63 0.07 0.20 0.38 -0.25 

M3 -0.18 -0.26 -0.47 0.02 -0.01 -0.24 -0.16 

 

Tmin 

M1 -0.25 0.51 0.25 -0.19 0.15 0.26 -0.22 

M2 -0.20 0.03 -0.62 -0.05 -0.11 -0.34 0.13 

M3 -0.11 -0.15 -0.22 0.04 0.16 -0.12 -0.47 

 

 

 

Summer 

 

Tmax 

M1 -0.44 -0.56 -0.28 0.06 0.02 -0.46 0.56 

M2 0.22 0.29 -0.03 0.13 0.10 0.07 -0.17 

M3 -0.21 -0.21 0.02 0.12 0.00 -0.12 0.09 

 

Tmin 

M1 -0.42 -0.55 -0.26 0.09 0.03 -0.43 0.58 

M2 0.28 0.21 0.04 0.11 0.28 0.07 -0.08 

M3 -0.39 -0.24 -0.19 0.00 -0.11 -0.28 0.06 

 

 

 

Autumn 

 

Tmax 

M1 0.08 -0.24 -0.45 -0.16 -0.16 -0.66 0.35 

M2 0.16 0.14 0.46 0.00 0.08 0.03 -0.23 

M3 -0.49 0.12 -0.01 0.19 -0.13 0.19 -0.12 

 

Tmin 

M1 0.18 -0.15 -0.25 -0.16 -0.11 -0.67 0.16 

M2 -0.14 -0.14 -0.44 0.04 -0.11 -0.12 0.24 

M3 -0.39 0.15 -0.08 0.15 -0.14 0.15 -0.16 

Table 8.3. Correlations between the left expansion coefficients of the selected SST modes and the 

teleconnection indices, from the SVD of SST and seasonal temperatures. 

 

8.2.1.1 Winter Tmax and Tmin covariability  

The first SVD mode explains 91% of the squared covariance between the SST and winter-Tmax 

(Table 8.1). The temporal correlation between pairs of expansion coefficients for the first mode is 

0.59, significant at 99.99% (Table 8.1, Figure 8.1c). In addition, the first pattern itself explains 

19% of the total SST variance and 85% of the total Levant’s winter-Tmax variance (Table 8.2). 

The homogenous and heterogeneous correlation patterns, as well as the temporal correlation 

between the left (SST) and right (winter-Tmax) standardized expansion coefficients for the first 

mode, are shown in (Figure 8.1, upper panels). The first SVD mode of winter-Tmax has a well-

defined pattern over the domain where high positive significant correlations are found in 55 out of 
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60 stations (Figure 8.1b, Table 8.1). The SST homogeneous correlation map (Figure 8.1a) 

generally resembles the Atlantic tripolar pattern (Sutton et al., 2001), showing a significant 

positive correlation up to 0.70 in north and south of the North Atlantic Ocean, and a different sign 

in the central Atlantic ocean (30°N to 40°N). A positive correlation in the western/eastern 

Mediterranean Sea were also detected. When the SST in the north and south of the Atlantic Ocean 

is abnormally warm, and the SST is abnormally cold in the central Atlantic Ocean, the winter-

Tmax in the Levant is abnormally warm increase. Most Levant’s locations showed positive 

correlations (r> 0.55) with this pattern. In general, this mode is characterized by the NAO/MO-

SST relationship, which is also confirmed by the significant correlation between the left expansion 

coefficient and the NAO/MO indices by -0.66/-0.48 (Table 8.3). The NAO and MO indices also 

showed significant negative correlations with winter-Tmax, especially for southern locations in 

the Levant (Figure 4.10). These correlations are generally less than those for this SST mode.  

In addition, the homogenous correlation map also exhibited a significant negative correlation over 

the Baltic Sea and east of the North Sea, with a high negative dipole correlation in the Baltic Sea 

(𝑟 > 0.80). These regions are negatively and significantly correlated to winter-Tmax. The left 

expansion coefficient significantly presented a correlation by 0.39 with the NCP index (Table 8.3). 

It is also noted that the NCP which has a center of action in the North Sea exhibited a significant 

negative correlation with the Levant winter-Tmax (-0.79) (Figure 4.10).   

For winter-Tmin, the first SVD mode individually explains 85% of the squared covariance between 

SST and winter-Tmin (Table 8.1). The temporal correlation between the left (SST) and right 

(winter-Tmin) standardized expansion coefficient reached 0.73, which indicates a tight coupling 

between them (Table 8.1, Figure 8.1c, bottom panels). For the first mode, the SST pattern itself 

explains 19% of the total SST variance, while the first SVD mode of winter-Tmin explains 71% 

of the Levant winter-Tmin variance (Table 8.2).   

The homogeneous map (Figure 8.1a, lower panel) associated with this mode shows a similar 

pattern of the winter-Tmax. It shows a couple of significantly correlated areas. A positive in the 

north and south parts of the North Atlantic Ocean (up to 0.85) and eastern Mediterranean Sea (up 

to 0.70), which are positively and significantly associated with winter-Tmin in the Levant. On the 

other hand, the Atlantic Ocean's central area (30°N to 40°N), the Baltic Sea, and east of the North 

Sea negatively correlated with the left expansion coefficient and the winter-Tmin. Similar to 

winter-Tmax, the left expansion coefficient significantly correlates with the NAO, MO, and NCP 

indices by -0.72, -0.56 and -0.40 (Table 8.3). Theses indices negatively affected the Levant´s 

winter-Tmin. It can be concluded that the NAO and MO indices are negatively related to SST in 

the North Atlantic and the Eastern Mediterranean, while the NCP positively correlated with SST 

in the North and Baltic Seas. As shown in Figure (8.1b), 58 stations exhibited a significant positive 

correlation with this mode, with the highest values (0.70-0.84) in southern locations in Palestine 

and Jordan and at the eastern locations from Jordan.  

It seems that there is a relevant contribution from SST to the long-term behavior and variability in 

winter Levant temperatures (Figures 8.1, c panels). Small deviations between the SST's left and 

winter Tmax/Tmin right expansion coefficients are observed. For example, the warming winter 
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Tmax and Tmin anomalies in 1991-1999 (Figure 8.1) are perfectly associated with the SST 

warming in the north and south of the Atlantic Ocean.  

 
Figure 8.1. (a) Homogeneous maps, (b) heterogeneous maps and (c) left (SST) and right (winter 

temperature) normalized expansion coefficient time series of  winter SST-Tmax (upper panel) and winter 

SST-Tmin (bottom panel) SVD. Colored areas and circles in homogeneous and heterogeneous maps 

respectively represent regions and stations with significant correlations at 0.05 significance level (higher 

than +0.35 and lower than -0.35).  

 

8.2.1.2 Spring Tmax and Tmin covariability 

The first SVD mode comprises 84% of the square covariance fraction between SST and spring-

Tmax. The correlation between the left and right expansion coefficient reached 0.70 (Table 8.1, 

Figure 8.2c, upper panels). Moreover, the SST pattern explains 11% of the total SST variance, 

while the first SVD mode explains 77% of the Levant´s spring-Tmax variance (Table 8.2). 

According to the homogenous map (Figure 8.2a, upper panel), the pattern showed a positive 

correlation (0.70-0.84) in the east and the central Mediterranean Sea, the Black Sea, and 

central/southern parts of the Atlantic Ocean. The spring-Tmax are significantly and positively 

associated with the SST of these regions for all locations and with high values (> 0.70) in the 

northern areas of Palestine and coastal locations of Lebanon and Syria (Figure 8.2b). In the same 

context, the results also showed the left expansion coefficient significantly correlates with the 

WEMO and EA/WR indices by 0.43 and -0.47, respectively (Table 8.3). In addition, these two 

indices showed significant correlations with the averaged spring-Tmax over the Levant by 0.51 

and -0.38, respectively (Chapter 4, section 4.2.5.2). 
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For spring-Tmin (Figure 8.2, bottom panels), the fraction of the square covariance explained by 

the first mode reached up 81%, and the strength of the coupling was 0.79 (Table 8.1, Figures 8.2c). 

the first mode explains 66% of the spring-Tmin variance, much higher than the second mode, 

which presents only 8% (Table 8.2). The SST pattern describes 12% of the total SST variance 

(Table 8.2). The homogenous map (Figure 8.2a) revealed significant negative correlations (-0.40 

- -0.70) in south and central Atlantic, Black Sea, and east of the Mediterranean Sea. The SST of 

these regions positively correlated with spring-Tmin. On the contrary, this mode showed a positive 

correlation to the west of the Iberian Peninsula. The heterogeneous map (Figure 8.2b) displayed 

significant negative correlations in all stations except for Lebanon. The results also showed the 

left expansion coefficient significantly correlates with EA/WR index by 0.51 (Table 8.3). 

In spring, the strength of coupling between the left (SST) and right (temperature) expansions 

coefficients was generally higher than for winter and other seasons (Figures 8.2, c panels). Closed 

variation is noted between the left and right expansion coefficients, especially in 1987-1999 and 

2011-2018, where the increasing temperature well coincides with the SST increasing periods. 

 
Figure 8.2. As Figure 8.1 but for spring.  

 

8.2.1.3 Summer Tmax and Tmin covariability 

The results showed a significant correlation between the left (SST) and right (summer-Tmax) 

expansion coefficient by 0.68 (Table 8.1, Figure 8.3c, upper panel). In addition, the first mode 

from the SVD comprises 84% of the square covariance (Table 8.1). This mode strongly showed 

positive correlations in the north and tropical Atlantic Ocean, eastern parts of the Mediterranean 

Sea, and Black Sea (Figure 8.3a). The heterogeneous map (Figure 8.3b, upper panel) also showed 
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high and significant positive correlations for most locations. Significant correlations were found 

between the left expansion coefficient and the EA/WR, NCP, and ENSO indices by -0.56, -0.46, 

and 0.56, respectively (Table 8.3).  

For summer-Tmin (Figure 8.3, bottom panel), a significant positive correlation was found between 

the left and right expansion coefficient by 0.76 (Table 8.1, Figure 8.3c). The first mode from the 

SVD comprises 76% of the square covariance (Table 8.1). Similar to the results obtained for the 

SST/summer-Tmax, this mode strongly showed positive correlations in the north and tropical 

Atlantic Ocean and east of the Mediterranean Sea (Figure 8.3a). The heterogeneous map (Figure 

8.3b, lower panel) also showed high and significant positive correlations for most locations. 

Significant correlations were found between the left expansion coefficient and the EA/WR, NCP, 

and ENSO indices by -0.55, -0.43, and 0.58, respectively (Table 8.3). Close deviations between 

the left SST and right summer Tmax/Tmin expansions coefficients are observed. When the SST 

in the north and tropical Atlantic Ocean and east of the Mediterranean Sea increases,the summer 

temperatures increases. For example, the decreasing and increasing summer (Tmax and Tmin) in 

1987-1991 and 1992-1999, respectively (Figure 8.3c) are associated with decreasing and 

increasing SST in the north and south of the North Atlantic Ocean. 

 
Figure 8.3. As Figure 8.1 but for summer. 

 

8.2.1.4 Autumn Tmax and Tmin covariability 

The three leading SVD modes together account for 90% of the total SST/autumn-Tmax variance. 

Individually, they explain 80%, 7%, and 3% of the variance (Table 8.1). A significant correlation 

(0.64) was found between the left (SST) and right (autumn-Tmax) expansion coefficients (Table 
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8.1, Figure 8.4c, upper pannel). The SVD SST pattern explains 11% of the total SST variance, 

whereas the first SVD mode of autumn-Tmax explains 79% of the Levant’s autumn-Tmax variance 

(Table 8.2).  

The correlation maps analysis revealed that this first SST mode shows significant positive 

correlations in the north and the tropical part of the Atlantic Ocean and east the Mediterranean Sea 

(Figure 8.4a, upper panel). It also shows significant positive correlations with the most locations 

in the Levant. It can be concluded that the Levant's autumn-Tmax positively and significantly 

correlates to the SST in the northern Atlantic Ocean and eastern Mediterranean Sea. On the 

contrary, the autumn-Tmax negatively correlated with the SST for the North and Baltic Seas and 

the western Mediterranean Sea (Figure 8.4a, upper panel). The heterogeneous map (Figure 8.4b, 

upper panel) indicated that this mode is highly associated with autumn-Tmax variability in most 

Levant locations. It showed significant positive correlations for 57 out of 60 stations. The highest 

correlations (up to 0.7) were found for the eastern places from Jordan and Syria and some northern 

Palestine locations. Based on the correlations coefficients calculated between the first SST mode 

and the teleconnection indices (Table 8.3), the NAO and NCP indices presented significant 

negative correlations by -0.45 and -0.66, respectively. Furthermore, the NCP index showed a 

significant negative correlation with the Levant's autumn-Tmax (Chapter 2, section 4.2.5.4).  

 
Figure 8.4. As Figure 8.1 but for autumn.  

A percent of 65% of the total covariance of the system is explained by the first mode SST-autumn 

Tmin, and the correlation coefficients between the reconstructed SST and autumn-Tmin time series 

based only on the first mode is equal to 0.73 (Table 8.1). The first SVD mode of autumn-Tmin and 

SST formed 0.67% and 7% of the total variance, respectively (Table 8.2).  
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As shown in Figure 8.4a (bottom panel), the eastern Mediterranean Sea and the Black Sea showed 

a high positive correlation (up to 0.85). In addition, the heterogeneous map (Figure 8.4b, lower 

panel) indicated that this mode is highly and positively associated with autumn-Tmin variability 

in 57 out of 60 stations in the Levant. The highest correlations (>0.85) were found in some 

locations around Jerusalem and northern Palestine. On the other hand, the North and Baltic Seas 

and the western area from the Mediterranean Sea exhibited a significant negative correlation with 

the left expansion coefficients, which means autumn-Tmin negatively correlated with these 

regions. Based on the correlation coefficients calculated between the first SST mode and the 

teleconnection indices (Table 8.3), only the NCP index presented significant negative correlations 

by -0.60. In addition, the NCP index exhibited a significant negative correlation with autumn-Tmin 

by an average of -0.66 (Chapter 2, section 4.2.5.4). 

 

8.2.2 Covariability between SST and seasonal precipitation  
The fractional variance of the SST-precipitation covariance matrix explained by the first three 

leading SVD modes and the correlations between the left and right expansion coefficients of the 

SST and precipitation modes are listed in Table 8.4. Table 8.5 shows the percentage variances 

explained by the individual SST and seasonal precipitation fields. Additionally, Table 8.6 shows 

the correlations between left expansion coefficients of the selected SVD modes and the 

teleconnection indices.  

Season STR SST-seasonal rainfall 

SCF (%) 

Total Sig. Stations 

(Heterogeneous) 

Mode1 Mode2 Mode3 Mode1 Mode2 Mode3 Modes (1,2,3) 

Winter 0.46 0.56 0.59 36 31 8 (103,44,/3) 

Spring 0.56 0.40 0.69 38 29 7 (102,6,13) 

Autumn 0.53 0.66 0.47 80 7 5 (135,30,12) 

Table 8.4. Summary of the strength of the coupling (STR) and the square covariance fraction (SCF) 

corresponding to the selected modes from SVD of SST and seasonal rainfall for the period 1970-2018. 

 

Season 

SST variance (%) Seasonal rainfall Variance (%) 

Mode1 Mode2 Mode3 Mode1 Mode2 Mode3 

Winter 6 16 4 55 8 8 

Spring 6 28 4 40 12 6 

Autumn 17 5 11 61 11 7 

Table 8.5. The variance of individual fields (SST and seasonal rainfall) that is explained by each mode. 

Season  WEMO EA/WR NAO EA MO NCP ENSO 

Winter M1 -0.22 0.18 -0.50 -0.28 -0.09 0.03 0.00 

M2 -0.10 -0.10 -0.61 0.01 -0.36 -0.28 0.07 

M3 0.33 -0.37 0.01 -0.23 -0.08 -0.29 0.32 

Spring M1 0.33 -0.09 -0.20 0.13 0.00 -0.33 -0.36 

M2 -0.08 -0.06 -0.47 0.10 0.08 -0.17 -0.16 

M3 0.23 0.08 -0.12 -0.08 -0.21 -0.12 0.08 

Autumn M1 0.15 0.17 0.37 0.01 0.05 0.09 -0.41 

M2 0.01 0.19 0.13 0.02 0.28 0.09 -0.06 

M3 0.19 -0.02 0.30 -0.10 -0.06 -0.16 -0.03 

Table 8.6. Correlations between the left expansion coefficients of the selected SVD SST modes and the 

teleconnection indices, from the SVD of SST and seasonal rainfall. 
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8.2.2.1 Winter covariability  

Figure 8.5 shows the first three modes obtained through the SVD analysis applied to the seasonal 

series of the SST anomalies and the winter-rainfall anomalies in the Levant during the entire period 

1970-2018. The first three coupled modes explain 75% of the fractional variance for the covariance 

matrix (SST–winter rainfall) (Table 8.4). The first SVD mode explains 36% of the fractional 

variance between the SST and winter-rainfall, with a strength of the coupling of 0.46 (Table 8.4, 

Figure 8.5c, Mode 1). Furthermore, the first mode itself explains 6% of the total SST variance and 

55% of the total winter precipitation variance (Table 8.5). 

The SST of the Atlantic resembles the Atlantic tripolar pattern, showing two centers of action with 

positive correlations (up to 0.70) located in the northernmost latitudes and in the tropical region, 

and two centers of action with negative correlations (up to 0.40) in the north-central Atlantic, the 

North Sea, and central Mediterranean Sea. The heterogeneous map (Figure 8.5b, Mode 1) indicated 

that this mode is intensively associated with winter rainfall variability in most Levant locations by 

103 out of 165 stations, with high magnitudes of correlations (0.55-0.69) in north Palestine. This 

implies that the Levant tends to have more precipitation in winter when the northern and southern 

parts of the North Atlantic Ocean are abnormally warm. Based on the correlation coefficients 

calculated between the first mode and teleconnection indices (Table 8.6), only the NAO index 

presented significant negative correlations by -0.50. Note that colored areas and circles in the 

homogeneous and heterogeneous maps represent regions and stations with significant correlations 

at a 0.05 significance level (higher than +0.30 and lower than -0.30).  

The second SVD mode explains 31% of the fractional variance between the SST and winter-

rainfall, with a strength of the coupling of 0.56 (Table 8.4, Figure 8.9c, Mode 2). Furthermore, the 

second coupled-mode explains 16% of the total SST variance and only 8% of the total precipitation 

variance (Table 8.5). The homogeneous map (Figure 8.5a, Mode 2) exhibited significant negative 

correlations (up to 0.70) in the north, and the area extended from southern Spain to the eastern 

coastal area of the southern America content between (0º-20ºN), which also negatively correlated 

with winter rainfall. This mode seems similar to the tripolar pattern of the Atlantic but with 

displaced centers of action. On the other hand, the central area of the Atlantic Ocean, North and 

Baltic Seas, presented positive correlations (up to 0.55) with the left expansion coefficients, and 

these regions positively correlated with winter rainfall. The heterogeneous map (Figure 8.5b, Mode 

1) indicated that this mode is associated with winter rainfall variability only in the central regions 

from Palestine between (31.5ºN-32.5ºN) by 44 out of 165 stations, with correlations values (0.40-

0.54). Based on the correlation coefficients calculated between the left SST expansion coefficients 

and the teleconnection indices (Table 8.6), only the NAO and MOI indices presented significant 

negative correlations by -0.61 and -0.36, respectively. However, note that the NAO did not 

exhibited significant correlation with the winter rainfall whereas the MOI index showed a notably 

positive correlation with winter rainfall in Palestine (Chapter 6, section 6.6.1).  
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Figure 8.5. (a) Homogeneous map, (b) heterogeneous map and (c) left (SST) and right (winter-rainfall) 

normalized expansion coefficient time series for the Mode 1 (upper panel), Mode 2 (central panel), and 

Mode 3 (bottom panel) from winter SST-precipitation SVD. Colored areas and circles in homogeneous 

and heterogeneous maps represent regions and stations with significant correlations at 0.05 significance 

level (higher than +0.30 and lower than -0.30).  

The third coupled mode between the winter SST and winter-rainfall (Figure 8.5, Mode 3) explains 

8% of the SCF between both fields (Table 8.4). The correlation between the SST and winter-

rainfall expansion coefficients is 0.59, showing, therefore, an important coupling force between 

these two fields for this third mode. The spatial pattern found for the SST presents negative SST 

values in the equatorial strip of the Atlantic and bordering the African and Portuguese coasts. There 

are center of positive correlations in the central Atlantic. The heterogeneous correlation map for 

winter-rainfall in the Levant (Figure 8.5b, Mode 3) shows significant positive correlations in the 
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Syrian coastal area with an average of 0.40, which positively correlated with the center of positive 

correlation in the central Atlantic. 

 

8.2.2.2 Spring covariability 

Figure 8.6 shows the first three modes of SST obtained by the SVD in spring, along with the map 

of heterogeneous correlations for spring-rainfall (Figures 8.6, b panels) and temporal variability of 

each mode, represented by its respective coefficients of expansion (Figure 8.6, c panels). 

The first three coupled modes explain 74% of the fractional variance for the covarience matrix 

(SST–spring rainfall) (Table 8.4). The first associated pattern is responsible for 38% of the SCF, 

with a strength of the coupling of 0.56 (Table 8.4, Figure 8.6c, Mode 1). Furthermore, the first 

mode itself explains 6% of the total SST variance and 40% of the total precipitation variance (Table 

8.5). The homogenous map (Figure 8.6a, Mode 1) presents a horseshoe shape with significant 

positive correlation in the Atlantic Ocean and a significant negative correlation in the central part 

of the Atlantic Ocean, the North Sea, and the western coast of Italy.  

 
 Figure 8.6. As Figure 8.5 but for the first two coupled modes from the spring SST-rainfall SVD.  

As shown in Figure (8.6b, Mode 1), the heterogeneous map showed significant negative 

correlations with 102 stations concentrated in the south of Levant (Palestine and Jordan) and at 

some locations in eastern Syria. The highest correlations (-0.55- -0.69) covered the western and 

northern sites from Jordan and the northeastern locations in Palestine. Hence, the Levant will 

receive less precipitation in spring when the horseshoe shape area's SST is abnormally cold. The 

correlations with teleconnection indices were significant and moderate for WEMO (0.33), NCP (-
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0.33), and ENSO (-0.36) indices (Table 8.6). Besides, the WEMO index negatively correlated with 

the spring Levant rainfall by an average of -0.40 (Chapter 6, section 6.6.2). 

The second mode explains 29% of the squared variance, with a strength of the coupling of 0.40 

(Table 8.4, Figure 8.6c, Mode 2). This mode also explains 28% of the total SST variance and 12% 

of the spring rainfall (Table 8.5). It exhibited a horseshoe shape pattern of significant negative 

correlations in the Atlantic Ocean with a significant positive correlation centre in the central area 

of the Atlantic Ocean, the North Sea, and western and eastern Mediterranean Sea (Figure 8.6a, 

Mode 2). For the heterogeneous map (Figure 8.6a, Mode 2), a significant positive correlation was 

found in the southern regions, especially in the south of Palestine and Jordan, as well as eastern 

locations from Jordan. In addition, a significant negative correlation was found between the NAO 

index and the left SST expansion coefficients by -0.47 (Table 8.6).  

 

8.2.2.3 Autumn covariability 

Table 8.4 shows the first three coupled modes, which explain 92% of the covariance matrix's 

fractional variance (SST–autumn rainfall). The first coupled pattern is responsible for 80% of the 

SCF, with a strength of the coupling of 0.53. Furthermore, the variance explained for this first 

mode was 17% of the total SST variance and 61% of the total precipitation variance (Table 8.5).  

The homogenous map (Figure 8.7a, Mode 1) presents a significant negative correlation in the north 

and tropical Atlantic Ocean. The correlations between the left (SST) expansion coefficients and 

the teleconnection indices were significant for NAO (0.37) and ENSO (-0.41) indices (Table 8.6). 

The heterogeneous map (Figure 8.7a, Mode 1) showed significant positive correlations with 135 

stations covering all locations, except Syria's coastal area. The high correlations (0.55-0.69) were 

more pronounced for the western and northern sites from Jordan, the northeastern locations in 

Palestine and southern locations from Jerusalem, and the Palestinian coastal area (Figure 8.7b). 

The homogeneous and heterogeneous maps indicated the Levant tends to have more precipitation 

in autumn when the northern and tropical Atlantic Ocean's SST is remarkably cold.  

The second coupled mode (Figure 8.7, Mode 2) between the SST and the autumn rainfall explains 

7% of the SCF. It presents a high coupling force between the two fields; the correlation coefficient 

is 0.66, significant at the 95% confidence level. The variance explained by each field for the second 

mode was only 5% of the total SST variance and 11% of the total precipitation variance (Table 

8.5). This pattern did not show any significant correlation with the large-scale circulation patterns 

(Table 8.6), where the SST homogeneous map showed very small areas of significant correlation 

in the Atlantic Ocean (Figure 8.7a, Mode 2).  

For the third mode, the two fields explained the 5% of the square covariance and the correlation 

between their expansion coefficients time series was 0.47 (Table 8.4). This mode itself explains 

11% of the total SST variance and 5% of the total precipitation variance (Table 8.5). Again, the 

SST spatial pattern for this mode indicates the tripolar Atlantic SST pattern with a displacement 

for its subtropical center (Figure 8.7a, Mode 3). Also, this pattern is associated with the NAO 

index, with the correlation between the time series of the SST expansion coefficients and the NAO 

index being 0.30 (significant at a 95% confidence level). The heterogeneous correlation map shows 
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significant negative correlation values at the 95% confidence level over the Syrian coastal region, 

indicating an increase in autumn rainfall in these areas when the SST abnormally high. 

 
Figure 8.7. As Figure 8.5 but for autumn rainfall.  

 

8.2.3 Covariability between SLP and seasonal temperature   

The statistics for the first three SVD modes, including strength of the coupling (STR) and the 

percentage of squared covariance explained by each mode, that is, the relative importance of each 

SVD mode (SCF), are listed in Table 8.7. Furthermore, Table 8.8 shows the variance for individual 

fields (SLP and seasonal temperatures) explained by each mode. Table 8.9 shows the correlations 

between the left (SLP) expansion coefficients and the teleconnection indices. As can be noted in 

Table 8.7, SCF shows that the first coupled mode is, for all cases, the most important one, being it 

is much higher than SCF for modes 2 and 3. 
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Season 

 

Variable 

STR SLP-seasonal temperatures  

SCF (%) 

Total Sig. Stations 

(Heterogeneous) 

Mode1 Mode2 Mode3 Mode1 Mode2 Mode3 Modes (1,2,3) 

Winter Tmax 0.67 0.63 0.76 97 1 0.3 (59,1,0) 

Tmin 0.80 0.63 0.74 94 2 0.8 (58,1,0) 

Spring Tmax 0.57 0.69 0.56 87 4.5 2.9 (56,0,0) 

Tmin 0.59 0.61 0.81 78 4.9 4.4 (53,1,0) 

Summer Tmax 0.73 0.67 0.59 70 10 5.5 (53,2,1) 

Tmin 0.74 0.68 0.69 64 10.6 7.5 (50,1,1) 

Autumn Tmax 0.68 0.78 0.82 83 5.4 3 (59,1,2) 

Tmin 0.72 0.86 0.77 69 11 5.5 (58,1,1) 

Table 8.7. Summary of the strength of the coupling (STR) and the square covariance fraction (SCF) 

corresponding to the selected modes from SVD of SLP and seasonal temperatures for the period 1987-

2017. 
 

Season 

 

Variable 

SLP variance (%) Seasonal Temp. Variance (%) 

Mode1 Mode2 Mode3 Mode1 Mode2 Mode3 

Winter Tmax 36 8 12 85 4 0.5 

Tmin 26 14 5 72 5 3.5 

Spring Tmax 19 10 12 77 5 4 

Tmin 15 11 16 65 5 1.7 

Summer Tmax 11 19 8.5 56 6 8.5 

Tmin 14 15 13.8 42 7.7 5.8 

Autumn Tmax 11 14 7.7 79 3 2.8 

Tmin 6 17 8 72 3 3 

Table 8.8. The variance in individual fields (SLP and seasonal temperatures) that are explained by each 

mode. 
Season Variable  WEMO EA/WR NAO EA MO NCP ENSO 

 

 

 

Winter 

 

Tmax 

M1 -0.01 0.44 0.73 0.08 0.57 0.65 0.08 

M2 0.44 -0.17 0.61 0.32 0.32 -0.12 0.23 

M3 -0.05 -0.30 0.05 -0.59 0.15 0.03 0.39 

 

Tmin 

M1 0.02 0.43 0.76 0.14 0.59 0.65 0.10 

M2 -0.05 -0.37 -0.03 -0.62 0.16 -0.11 0.66 

M3 0.07 0.42 0.20 0.25 0.34 0.35 -0.68 

 

 

Spring 

 

Tmax 

M1 -0.45 0.19 0.52 -0.04 0.66 0.57 -0.47 

M2 -0.11 0.31 0.38 -0.16 0.12 0.26 0.56 

M3 0.07 0.03 0.56 0.24 0.44 0.47 -0.07 

 

Tmin 

M1 -0.43 0.26 0.56 -0.04 0.64 0.55 -0.45 

M2 -0.11 -0.16 0.32 0.11 0.53 0.43 -0.48 

M3 -0.11 0.18 0.46 -0.05 0.25 0.45 0.43 

 

 

 

Summer 

 

Tmax 

M1 -0.19 -0.38 -0.37 0.18 0.21 -0.41 0.74 

M2 0.21 -0.31 0.55 0.50 0.29 0.32 0.05 

M3 -0.05 -0.02 0.40 0.01 0.36 0.22 0.47 

 

Tmin 

M1 -0.21 -0.34 -0.20 0.18 0.18 -0.26 0.78 

M2 0.12 -0.34 0.23 0.42 0.06 0.08 -0.06 

M3 0.14 -0.12 0.81 0.28 0.21 0.54 0.23 

 

 

Autumn 

 

Tmax 

M1 -0.53 0.12 0.60 -0.08 0.26 0.71 -0.14 

M2 0.02 -0.35 -0.25 -0.17 -0.10 -0.13 0.63 

M3 -0.46 0.20 -0.29 -0.11 -0.25 -0.08 0.20 

 

Tmin 

M1 -0.41 -0.14 0.52 -0.08 0.09 0.70 0.39 

M2 0.23 -0.28 -0.46 0.00 -0.29 -0.40 0.62 

M3 -0.20 0.21 -0.25 -0.21 0.29 0.00 -0.33 

Table 8.9. Correlations between the left expansion coefficients of the selected SLP modes and the 

teleconnection indices, from the SVD of SLP and seasonal temperatures. 
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8.2.3.1 Winter Tmax and Tmin covariability  

The results show that the first three leading modes of the coupled variability from the SLP and 

winter-Tmax of the Levant account for 98.3% of the total square covariance (Table 8.7). The SCF 

value for the first leading mode is found to be 97%, which means that the first leading mode 

explains 97% of the combined covariance of the SLP and winter-Tmax (Table 8.7). Furthermore, 

the first mode explains 36% of the total SLP variance and 85% of the total winter-Tmax variance 

(Table 8.8). The correlation coefficient is then calculated between the expansion coefficients of 

SLP and winter-Tmax to indicate the strength of each mode's coupling (Table 8.7). The first, 

second, and third-leading modes have correlations equal to 0.67, 0.63, and 0.76, respectively, 

significant at p < 0.05 level (Table 8.7). For winter-Tmin, the SCF value for the first leading mode 

is f 94%, with the strength of the coupling of 0.80 (Table 8.7). Furthermore, the first mode explains 

26% of the total SLP variance and 72% of the total winter-Tmin variance (Table 8.8).  

 
Figure 8.8. (a) Homogeneous map, (b) heterogeneous map, and (c) left (SLP) and right (winter temperature) 

normalized expansion coefficient time series for the mode 1 from the SDV of SLP and winter-Tmax. (d), 

(e), and (f) as (a), (b) and (c) but for winter-Tmin, respectively.  

Figure 8.8 shows the heterogeneous and homogeneous correlation maps, and the expansion 

coefficients time series for the first leading SLP and winter-temperature (winter-Tmax, from a to 
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c, and winter-Tmin, from d to f) coupled mode, which determine how well the right (winter-

Tmax/Tmin) field can be reconstructed from the left (SLP) field. The homogeneous maps (Figures 

8.8a and 8.8d) show a significant correlation center (up to 0.85) over the central part of the Atlantic 

Ocean that extends over the Mediterranean Sea and Europe, while negative correlations are found 

at higher latitudes. When correlating the left expansion coefficients of the first modes with the 

teleconnection indices (Table 8.9), the highest and significant correlations were found with the 

NAO, NCP, MO, and EA/WR indices by 0.73, 0.65, 0.57, and 0.44 for winter-Tmax, and 0.76, 

0.65, 0.59, and 0.43 for the winter-Tmin, respectively.  

In addition, winter-Tmax and Tmin exhibited significant negative correlations with the NAO, 

NCP, MOI, and EA/WR indices (Figure 4.10). More than 97% of the stations for winter-Tmax and 

Tmin) significantly correlated with this mode (Table 8.7, Figures 8.8b and 8.8e, respectively). 

These results provide us the evidence that SLP is a crucial factor that explains the variability of 

the regional winter-Tmax and Tmin. 

 

8.2.3.2 Spring Tmax and Tmin covariability 

Figure 8.9 shows the results of the SVD between SLP and spring-Tmax and Tmin over the Levant 

region for the first coupled mode. For spring-Tmax, a total of 87% of the square covariance is 

explained by the first mode, and the strength of coupling between both variables is 0.73 (Table 

8.7, Figure 8.9c). The first mode also explains 19% of the SLP variance and 77% of the spring-

Tmax variance (Table 8.8). For the spring-Tmin, the first SVD mode accounts for 78% of the 

variance from the joint SLP and spring-Tmin dataset. The expansion coefficients of SLP and 

spring-Tmin are highly correlated, yielding a correlation coefficient of 0.59 (Table 8.7, Figure 

8.9f). The first mode also explains 15% of the total SLP variance and 65% of the spring-Tmin 

variance (Table 8.8). 

Figures 8.9a and 8.9d show the SLP spatial pattern for the first coupled mode for the spring-Tmax 

and Tmin, respectively. It is characterized by a center of high significant positive correlations (> 

0.70) over the Middle latitudes (e.g., Europe, North Africa, Mediterranean Sea, Red Sea, and 

southern Asia). Moreover, significant negative correlations for the SLP are seen over high latitudes 

(60ºN-90ºN). The spring-Tmax and Tmin patterns in Figures 8.9b and 8.9e are marked by 

widespread significant negative correlations over all parts of the Levant region. Additionally, the 

SLP pattern is positively connected with the MO, NAO, and NCP indices, whereas it is negatively 

associated with the WEMO and ENSO indices (Table 8.9). In Figure 4.10, the MO, NAO, and 

NCP indices are negatively correlated with the spring-Tmax and Tmin, which indicates when these 

indices and the second SLP mode increase, the spring-Tmax and Tmin are expected to decrease.    
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Figure 8.9. As Figure 8.8 but for spring temperatures.  

 

8.2.3.3 Summer Tmax and Tmin covariability 

For summer-Tmax (Figure 8.10, left panel), the first SVD mode explains 70% of the square 

covariance between the SLP and summer-Tmax, and the strength of the coupling between both 

variables is 0.73 (Table 8.7, Figure 8.10c). The first mode also explains 11% of the SLP variance 

and 56% of the summer-Tmax variance (Table 8.8).  

For summer-Tmin (Figure 8.10, right panel), the first SVD mode accounts for 64% of the variance 

from the joint SLP and summer-Tmin dataset. The expansion coefficients of SLP and summer-

Tmin are highly correlated, yielding correlation of 0.74 (Table 8.7, Figure 8.10e). The first mode 

explains 14% of the SLP variance and 42% of the summer-Tmin variance (Table 8.8). 

Figures 8.10a and 8.10d show that the SLP pattern for this first coupled mode is characterized by 

significant positive correlations (𝑟> 0.70) in the tropical Pacific region, which indicates the ENSO 

signature. Furthermore, the southern parts of the North Atlantic Ocean and northern Europa display 

negative SLP anomalies. A strong correlation of 0.74 was found between the left (SLP) expansion 

coefficients and the ENSO index for the summer SLP-Tmax and of 0.78 for the summer SLP-

Tmin (Table 9). From the heterogeneous summer- Tmax and Tmin maps (Figures 8.10b and 
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8.10e), more than 83% of the stations exhibited a significant positive correlation with this mode. 

In addition, the summer-Tmax and Tmin positively correlated with the ENSO pattern by an 

average of 0.41 and 0.52, respectively (Figure 4.10). 

 
Figure 8.10. As Figure 8.8 but for summer temperatures.  

 

8.2.3.4 Autumn Tmax and Tmin covariability 

The first coupled pattern between SLP and autumn-Tmax (Figure 8.11, left panel) is responsible 

for 83% of the SCF, with a strength of the coupling is 0.68 (Table 8.7). The first SVD mode 

explains 11% and 79% of SLP and autumn-Tmax variance, respectively (Table 8.8). For the 

autumn-Tmin, the first SVD mode accounts for 69% of the variance from the joint SLP and 

autumn-Tmin dataset. The expansion coefficients of SLP and autumn-Tmin are highly correlated, 

yielding a correlation coefficient of 0.72 (Table 8.7). In addition, the first mode explains 6% of the 

SLP variance and 72% of the autumn-Tmin variance (Table 8.8).  

The homogenous maps (Figures 8.11a and d) present a significant positive correlation center that 

extends from Europe to the Mediterranean Sea and northern Africa. On the other hand, the 

heterogeneous maps (Figure 8.11b and e) show significant negative correlations with 97% of the 

stations. The left (SLP) expansion coefficient for the first mode are positively correlated with the 
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NCP index by 0.71 and 0.70 for autumn-Tmax and -Tmin (Table 8.9), and the NCP index showed 

a negative correlation with the autumn-Tmax and -Tmin of -0.66 and -0.61(Figure 4.10). 

 
Figure 8.11. As Figure 8.8 but for autumn temperatures.  

 

8.2.4 Covariability between SLP and seasonal rainfall  

In this section, the Levant rainfall and the SLP relationships are investigated using an SVD 

analysis. Table 8.10 shows the percentage of the SCF and the temporal correlation between the 

pairs of expansion coefficients for the first three modes of the SVD analysis to give us an idea of 

the coupling strength. Furthermore, Table 8.11 shows the variance for individual fields (SLP and 

seasonal rainfall) explained by each mode. Table 8.12 shows the correlations between the left 

(SLP) expansion coefficients of the selected SVD modes and the teleconnection indices.  

Season STR SLP-seasonal precipitation 

SCF (%) 

Total Sig. Stations 

(Heterogeneous) 

Mode1 Mode2 Mode3 Mode1 Mode2 Mode3 Modes (1,2,3) 

Winter 0.47 0.54 0.62 42 30 7 (102,22,8) 

Spring 0.57 0.54 0.57 65 12 6 (100,24,16) 

Autumn 0.58 0.63 0.52 77 7.8 4.9 (145,15,11) 

Table 8.10. Summary of the strength of the coupling (STR) and the square covariance fraction (SCF) 

corresponding to the selected modes from SVD of SLP and seasonal rainfall for the period 1970-2018. 
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Season 

SLP variance (%) Seasonal rainfall Variance (%) 

Mode1 Mode2 Mode3 Mode1 Mode2 Mode3 

Winter 7 18.5 8.8 53 11 4 

Spring 17 10 8 40 13 7 

Autumn 13 9 6 61 10 7 

Table 8.11. The variance in individual fields (SLP and seasonal rainfall) that are explained by each mode. 

Season  WEMO EA/WR NAO EA MO NCP ENSO 

Winter M1 -0.11 -0.01 0.56 -0.13 0.21 0.27 0.40 

M2 -0.18 0.58 0.74 0.17 0.55 0.68 -0.20 

M3 0.04 0.24 0.21 0.01 0.10 0.11 -0.42 

Spring M1 -0.43 0.13 0.52 -0.11 0.44 0.57 -0.14 

M2 0.06 0.21 0.58 0.26 0.58 0.21 -0.20 

M3 0.11 -0.20 -0.11 0.26 0.26 -0.15 -0.57 

Autumn M1 -0.17 0.38 0.35 0.03 -0.01 0.22 -0.79 

M2 -0.05 0.17 0.48 -0.12 -0.06 0.17 -0.27 

M3 0.38 -0.26 -0.38 0.16 -0.39 -0.51 -0.10 

Table 8.12. Correlations between left expansion coefficients of the selected SLP modes and teleconnection 

indices, from the SVD of SLP and seasonal rainfall.  

 

8.2.4.1 Winter covariability  

The first coupled mode (Figure 8.12, left panel) explains 42% of the square covariance, and the 

strength of the coupling is 0.47, significant at the 95% confidence level (Table 8.10, Figure 8.12c). 

The first mode also explains 7% of the total SLP variance and 53% of the winter-rainfall variance 

(Table 8.11). The homogeneous map (Figure 8.12a) shows a center of significant positive 

correlation (𝑟> 0.70) over the central area of the Atlantic Ocean, which extends to the 

Mediterranean Sea, and also significant correlations (𝑟>0.55) are in the equatorial and higher 

latitudes in the Pacific Ocean. These correlations are indicating the potential NAO and ENSO 

effects that significantly correlate with the left (SLP) expansion coefficients time series by 0.56 

and 0.40, respectively (Table 8.12). The heterogeneous map couples this mode with rainfall 

variability in central Palestine, northern Palestine and Jordan, and the Syrian coastal area (Figure 

8.12b). Therefore, this pattern is responsible for a generalized decrease in winter-rainfall in these 

regions. 

The second mode (Figure 8.12, right panel) explains 30% of the square covariance with a strength 

of the coupling of 0.54, significant at the 95% confidence level (Table 8, Figure 8.12f). 

Furthermore, the second mode explains 18.5% of the total SLP variance and 11% of the winter- 

rainfall variance (Table 8.11). The homogeneous map (Figure 8.12d) shows a center of high 

significant positive correlation (up to 0.85) that extends from the Atlantic over Europe, north of 

Africa, and the Mediterranean Sea. This result is associated with the effects of the NCP, MO, and 

NAO indices, which significantly correlate with the second left (SLP) expansion coefficients time 

series by 0.68, 0.55, and 0.74, respectively (Table 8.12). The heterogeneous map couples this mode 

with rainfall variability in the Syrian coastal area (Figure 8.12e).  
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Figure 8.12. (a) Heterogeneous map, (b) homogeneous map, (c) left (SLP) and right (winter-rainfall) 

normalized expansion coefficient time series for the coupled Mode 1 obtained from SVD of SLP and winter-

rainfall. (d), (e), and (f) are as (a), (b) and (c) respectively but for the coupled Mode 2.   

 

8.2.4.2 Spring covariability 

Figure 8.13 presents the results of the homogeneous correlation maps (Figures 8.13a and d) for the 

first two SLP modes obtained by the SVD in spring, together with the heterogeneous correlation 

maps for spring-rainfall (Figures 8.13b and e), and the temporal variability of each mode, 

represented by their respective expansion coefficient time series (Figures 8.13c and f).  

The first mode explains 65% of the squared covariance, and the strength of the coupling reached 

0.57 (Table 8.10, Figure 8. 13c). Furthermore, the first SVD mode explains 17% and 40% of the 

total variance for the SLP and spring rainfall, respectively (Table 8.11). The homogeneous map 

(Figure 8.13a) exhibits a pattern of positive correlations (r> 0.70) over Europe and western 

Mediterranean that extends through the Atlantic until North America. The NCP, MO, and NAO 

indices significantly correlate with this left expansion coefficient time series by 0.57, 0.44, and 

0.52, respectively (Table 8.12). The heterogeneous map couples this mode with rainfall variability 

in the southern Levant, mainly in Palestine (Figure 8.13b). This pattern is responsible for a 

generalized increase in spring-rainfall, mostly in Palestine.  
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Figure 8.13. As Figure 8.12 but for spring rainfall.  

The second coupled mode (Figure 8.13, right panels) between the SLP and the spring-rainfall 

explains 12% of the SCF and presents a strength of the coupling of 0.54 (Table 8, Figure 8.13f). It 

explains 10% and 13% of the total variance of the SLP and spring-rainfall, respectively (Table 

8.11). From the homogeneous pattern (Figure 8.13d), the most intense positive values of 

correlation (> 0.70) are located over Europe, extending through the central Atlantic Ocean to the 

eastern coasts of North America (Figure 8.13d). Again, this pattern is associated with the NAO 

and MO indices. The correlation between the time series of the SLP expansion coefficients and 

these teleconnection indices is 0.58, significant at the 95% confidence level (Table 8.12). The 

heterogeneous correlation map (Figure 8.13e) shows a significant negative correlation at the 95% 

confidence level over the Syrian coastal area. It is indicating a decrease in spring-rainfall in these 

areas of the Levant during this mode's positive phase. 

 

8.2.4.3 Autumn covariability 

During autumn, the first coupled mode explains 77% of square covariance, with a couple of 

strength between the SLP and the autumn-rainfall of 0.58, which provides the highest square 

covariance among all the seasons (Table 8.10, Figure 8.14c). Also, it is important to note that the 

second mode of coupled variability in autumn explains the lowest SCF (7.8%) compared to that 
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explained by the second mode for winter (30%) and spring (12%) (Table 8.10). The first mode 

explains 61% of the total variance of the autumn-rainfall and 13% of the SLP variance (Table 

8.11). Its homogeneous SLP spatial pattern (Figure 8.14a) shows a structure associated with ENSO 

index, with two action centers varying in opposite phase located over the western and eastern parts 

of the tropical Pacific Ocean. The correlation between the SLP expansion coefficient time series 

associated with the first mode and the ENSO index is -0.79 (Table 8.12), being significant at the 

95% confidence. In addition, the autumn-rainfall averaged for the Levan was found negatively 

correlated with the ENSO index by -0.34 (see Figure 6.22 in Chapter 6). This implies a decrease 

in autumn rainfall when the SLP over the western and eastern parts of the tropical Pacific Ocean 

increases and vice versa. On the contrary, positive correlation were found in the southern part of 

the North Atlantic Ocean, South Africa and Asia, with high value in the northern Indian Ocean (r 

> 0.85) (Figure 8.14c). As shown in Figure 8.14b, all locations except Syrian coastal area showed 

positive and significant correlation with the SLP in these regions.  

 
 Figure 8.14. As Figure 8.12 but for the autumn rainfall. 

The second coupled mode (Figure 8.14, right panels) between the SLP and the autumn-rainfall 

explains 7.8% of the SCF and presents a strength of the coupling of 0.63 (Table 8, Figure 8.14f). 

It explains 9% and 10% of the total variance of the SLP and spring-rainfall, respectively (Table 

8.11). The second mode exhibited positive significant correlations over the northeastern Asia, the 
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Scandinavian Peninsula, and eastern coast of America. The SLP over these regions negatively 

correlated with the rainfall in the Syrian coast. On the other hand, negative significant correlations 

were found over the Greenland and most northern Canada, which positively correlated with the 

rainfall in the Syrian coast.    

   

8.3 Conclusions and discussion  

In this study, the SVD technique was applied to investigate the influence of two indicators of 

climate variability, Atlantic and Mediterranean SST and North Hemisphere SLP, on the seasonal 

temperatures (Tmax and Tmin) and precipitation variability over the Levant region. The main 

conclusions can be given as follow:   

1. The analysis provides strong evidence for the influence of the Atlantic Ocean and 

Mediterranean Sea SST and the North Hemisphere SLP on the long-term behavior and 

variability in the Levant seasonal temperatures and precipitation. The leading SVD modes 

suggest that along with the complex topography of the Levant, many physical processes 

that are linked to large‐scale ocean-atmospheric circulation interactions (e.g., winds speed, 

air temperatures, humidity, and heat flux) dominates the Levant temperatures and 

precipitation variability.  

2. The strength of SST/SLP-seasonal temperature coupling (> 0.59) is much higher than the 

strength of the first SST/SLP-seasonal rainfall coupling mode (<0.59). Both the SST and 

the SLP account for roughly the same percentage of seasonal temperature variation (up to 

85% of the winter-Tmax). Similarly, the SST and SLP account for similar percentages of 

total precipitation variance (up to 61% of the autumn rainfall). In addition, the SCF values 

calculated for SST/SLP-seasonal temperatures are generally higher than those calculated 

for SST/SLP-seasonal rainfall. These two large-scale indicators, SST and SLP, explain 

temperature variability better than precipitation variability, which could be due to the 

higher spatial and temporal variability of precipitation, especially in transition seasons, 

than temperatures.  

3. Only the first mode was chosen for seasonal temperatures because the SCF values for the 

second and third SST/SLP-seasonal temperature coupled modes are always below 10%, 

and only a small number of stations are significantly correlated with them. On the other 

hand, this indicates that the temperatures in the study area are fairly consistent. When the 

North rule was used to determine the number of principal components that should be 

retained from PCA, the same results were obtained. 

4. With the exception of spring for the first and second modes, the Mediterranean SST had a 

little impact on all seasonal rainfall. It is possible that the relationship between 

Mediterranean SST and seasonal precipitation in the Levant is not entirely causal, or that 

both fields are influenced by atmospheric processes. The influence of the Mediterranean 

SST on seasonal temperature, on the other hand, was more pronounced. Warmer SST in 

the eastern Mediterranean and Black Sea, are associated with warmer temperatures in all 

seasons (more details can be found in the following points(. 
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5. The SLP-winter temperatures and rainfall coupled modes revealed that rising SLP over the 

central North Atlantic (near the Azores), the Mediterranean region, Africa's northern coast, 

and Europe, which is accompanied by decreasing SLP over the northern latitudes [70ºN-

90ºN], leads to lower winter temperatures and rainfall in the Levant. The left SLP 

expansion coefficients show high significant positive correlations with the NAO, NCP, 

MO, and EA/WR indices, although its expansion coefficients, with the NAO and NCP 

showing the highest correlation values. The influence of the NAO, NCP, MO, and EA/WR 

indices is always negative on temperatures and positive on rainfall, except for the NAO, 

which has an inverse effect on the first winter rainfall mode.  

The homogeneous patterns detected in these coupled modes are also similar to those found in some 

studies carried out in the Middle East and North Hemisphere region (Attada et al., 2019; Papadimas 

et al., 2012). The results are also in line with Beranová and Kyselý (2016), who studied the links 

between teleconnection indices (NAO, MO, and WEMO) and precipitation in the Mediterranean, 

and they found a similarity of the NAO and MO indices in explaining the drier conditions for 

positive phases over most of the Mediterranean area. Furthermore, they showed the eastern part of 

the Mediterranean presents an exception, as there is a positive MO index associated with wetter 

conditions while a positive NAO index is associated with drier conditions.  

Iqbal et al. (2013) studied the influence of Azores High pressure on Middle Eastern rainfall and 

they found a negative significant correlation between the winter rainfall and the NAO and Azores 

High pressure and a positive significant correlation with the Icelandic Low pressure. Donat et al. 

(2014) and El Kenawy et al. (2016) confirmed that the links between the NAO and Middle East 

climate are best expressed during winter time, compared with the other seasons.  

Several studies explain the dynamical mechanism of the NAO influence on the climate variability 

and general overview of NAO characteristics can be found (Cullen et al., 2002; Hurrell, 1995; 

Diao et al., 2015; Pinto and Raible, 2012; Visbeck et al., 2001). Note that most studies in literature 

have focused on central and western Europe, while there are few studies that have examined the 

effect of the NAO on the east Mediterranean.  

The pressure gradient's intensity is determined by the pressure values in the Azores and Iceland, 

and it is enforced when the NAO index is positive and reduced when it is negative. When the NAO 

index is positive, the surface wind and winter storm tracks moving from west to east across the 

North Atlantic are stronger than usual, and vice versa. Wetter and warmer winter conditions are 

experienced in northern Europe, Scandinavia, and the east coast of the United States as a result of 

these westerly winds and winter storms track. Winters in Greenland, the Mediterranean, and the 

Middle East, including the Levant region, are cooler (lower temperatures) and drier (less rainfall). 

The negative phase of the NAO index, on the other hand, results in a weak westerly wind that may 

can penetrate south Europe to the Levant region, causing unstable winter conditions (wetter and 

warmer), while the opposite occurs over northern Europe. 

The findings also revealed an inverse relationship between the SLP over central Europe and the 

air winter temperatures in the Levant region, which can be attributed to strong northerly flow over 

the Middle East, caused by anticyclones formed over Europe, being responsible for low air 
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temperatures there (van Loon and Rogers 1978; Bartzokas and Metaxas 1993; Papadimas et al., 

2012). In a similar line, Eshel and Farrell (2000) demonstrated that when Greenland's pressure is 

elevated (negative NAO), an anomalous low/cyclone covers the Mediterranean and southern 

Europe, extending from the Azores, resulting in EM southerlies (warm wind), enhancing the ascent 

and thus intensifying rainfall. When Greenland's pressure is reduced, EM northerlies (cold wind) 

prevail, enhancing subsidence and resulting in less rainfall and drier conditions. 

Ghasemi and Khalili (2007) found that a positive NCP (high SLP over the North Sea and low over 

the Caspian Sea) is linked to increased precipitation and cloudiness, resulting in below-normal 

temperatures over Iran. During the positive NCP phase, when the anticyclone is amplified in the 

North Sea, decreased temperature is linked to an increase in northeasterly (cold air) stream, 

according to Kutiel et al. (2002) and Nastos et al. (2011). Increasing temperature, on the other 

hand, is associated with increased southeasterly (warm air) stream during the negative NCP phase, 

as a result of the combined effect of an increased cyclonic anomaly circulation pattern over the 

North Sea and an increased anticyclone over the Caspian Sea.  

Positive pressure anomalies near the British Isles (leading to less rainfall) characterize the EA/WR 

index's positive phase, while negative pressure anomalies in the Caspian Sea region characterize 

the index's negative phase (leading to more rainfall from northeast Africa to eastern Turkey and 

Black Sea region). The Azores High pressure center expands towards continental Europe in the 

positive phase, resulting in cold air advection from the north towards the southern part of Europe 

and the eastern Mediterranean region, with increased moisture transport from the Black Sea 

(Krichak and Alpert, 2005; Lim, 2014; Baltac et al., 2017). The negative phase is characterized by 

the occurrence of opposite conditions. 

For the MO index, it generally shows similarities with the NAO pattern compared to other 

Mediterranean indices, with both positive (negative) phases characterized by higher (lower) SLP 

anomalies over the Mediterranean (Criado-Aldeanueva et al., 2014; Criado-Aldeanueva and Soto-

Navarro, 2020). The effect of the MO on the winter temperatures and rainfall is mainly due to 

inforce the Mediterranean cyclogenesis. Both the NCP and MO indices affect temperature and 

rainfall in a similar way or seesaw behavior inside the Mediterranean basin (Ciarlo`and Aquilina, 

2015; Conte et al., 1989). During the MOI positive phase, positive SLP is found in the west 

Mediterranean and negative in the east, resulting the east Mediterranean affected by a northerly 

circulation bringing cold air masses and lower temperatures to that region (Maheras and Kutiel, 

1999; Conte et al., 1989). The pattern of positive MO index leads to positive precipitation 

anomalies in eastern Mediterranean and Levant, and the negative MO leads to negative 

precipitation anomalies (Beranová and Kyselý, 2016; Redolat et al., 2019; Ramadan et al., 2012; 

Törnros, 2013). This is due to the high geopotential height over the west that inhibits upward 

movement (that is required for rainfall) and leads to stable and sunny weather in these regions. 

This condition is primarily due to an atmospheric blocking generated in the western 

Mediterranean, where westerlies are reduced and storm tracks such as Cyprus Low along the 

eastern Mediterranean are favored (Redolat et al., 2019).  
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6. The results of the SST-winter temperatures reflect the tripolar SST structure marked by the 

same sign in the north and south of the North Atlantic Ocean and a different sign in the 

middle. This pattern is accompanied by a bipolar positive structure in the eastern 

Mediterranean, Red Sea, and eastern Black Sea. Furthermore, the findings could point to a 

shared action between the synoptic Atlantic SST and the Mediterranean Sea's regional SST. 

The NAO, MO, and NCP indices showed significant negative correlations with the left 

SST expansion coefficients.  

7. The tripolar pattern, in which the Levant receives more precipitation when the SSTs in the 

north and tropical Atlantic are abnormally warm, is also reflected in the first and second 

SST-winter rainfall coupled modes. These two modes highly showed significant negative 

correlations with the NAO index, and significantly correlated with the most locations in 

the Levant for the first mode, and few locations in south Palestinian cost for the second 

mode. 

The SST variability in the Atlantic has been shown to influence global and regional climate, 

particularly in the Northern Hemisphere (Sutton and Hodson, 2005; Sutton and Dong, 2012; Ehsan 

et al., 2020; Zhou and Wu, 2016; Black, 2011). The intrinsic modes of atmospheric circulation 

variability, such as the NAO index, imprint themselves on the SST field primarily via surface 

energy fluxes, wind regimes, and latent heat exchanges (Deser et. al., 2010). This tripole SST 

structure is dominant in the subpolar-tropical Atlantic during the winter (Wallace et al. 1990; Da 

Costa and Colin de Verdiere 2002), and the SST tripole has been shown to be influenced by the 

NAO's atmospheric forcing (Cayan, 1992; Marshall and Johnson, 2001; Wallece et al., 1990; 

Cullen et al., 2002; Kumar et al., 2017). 

Kumar et al. (2017) found a trioplar SST structure similar to that found in this study when they 

investigated the north Atlantic effect on wintertime warm extremes trends in the Middle East. 

Compared to other indices, we found higher significant correlations between the NAO and the left 

SST expansion coefficients, ranging from -0.53 to -0.66 for both temperature and rainfall patterns, 

indicating that the tripole and the NAO have a strong relationship. 

Because of stronger westerly and northeast trade winds, the Atlantic Ocean loses energy to the 

atmosphere over the subpolar and tropical regions during the NAO positive phase. The increased 

turbulent heat flux from the ocean to the atmosphere is caused by these strong winds. The Atlantic, 

on the other hand, gains energy in the middle latitudes due to lower wind speeds, resulting in a 

lower turbulent heat flux out of the ocean (Cayan 1992; Marshall et al., 2001; Visbeck et al., 2003; 

Jing et al., 2020). This means that when the NAO is in a positive phase, the SST in the subpolar 

and tropical Atlantic will be colder than normal, and in the multitudes higher than normal, resulting 

in a drop in winter Levant temperatures and rainfall, and vice versa. 

Many studies have found that atmospheric processes in the Atlantic influence SST variability in 

the Mediterranean Sea (Traigo et al., 2002; Skliris et al., 2011; Marullo, 2011; Oguz, 2005; Türkes, 

1996). In this context, the results showed a significant negative correlation between the NAO and 

SST of the east Mediterranean and Black Seas, which is also documented in many other studies 

(Rixen et al., 2005; Skliris et al., 2011; Oguz, 2005; Kazmin and Zatsepin 2007).  
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In general, the SST of the Eastern Mediterranean and Black Seas is strongly and positively related 

to all seasonal temperatures. As previously stated, a positive NAO pattern indicates strong 

westerlies, whereas a negative case indicates westerlies weakening. If the westerlies are weak, 

another large-scale process may take over, bringing a local northeasterly cold wind regime over 

the Caspian and Black Seas. The combination of a negative NAO phase and a positive NCP and 

EAWE patterns, according to Krichak et al., (2002), motivates the conditions for the predominance 

of northeasterly winds over the east Mediterranean. Northeasterly winds dominate over the 

Caspian and Black Seas during the positive phase of the NCP index, bringing cold air to the region 

and causing a decrease in SST, which leads to lower seasonal Levant temperatures. Similarly, 

during the negative phase of the NCP index, the winds blow primarily from the southwest, bringing 

warm air from these regions and, as a result, increasing SST, which leads to higher seasonal 

temperatures (Kazmin and Zatsepin, 2007; Tutsak et al., 2015). 

Kumar et al. (2017) indicated that large and persistent Atlantic SST anomalies appear to modulate 

the occurrence of warm winter spells via the mediation of Mediterranean SSTs, thereby creating 

the conditions for the development of extended and persistent anticyclonic structures over the 

Middle East. Warmer SSTs over the eastern Mediterranean enhance evaporation, and the strong 

anticyclonic structures prevailing over the eastern Mediterranean and Middle East all help to 

suppress deep convection and initiate and sustain winter warm spells. 

8. The SLP-spring temperatures coupled mode showed rising SLP from the Azores to west 

Pacific Ocean, Europe, north Africa, Middle East, and Indian Ocean, is associated with 

lower than normal temperatures over the Levant, while rising SLP in east Pacific Ocean 

and northern latitudes is associated with higher normal temperatures. The NAO, MO, and 

NCP indices are also linked to this coupled pattern.  

9. The first SLP-spring rainfall coupled mode indicates when the SLP over central Atlantic, 

central Europe, the North and Caspian Seas, central Mediterranean Sea, Africa's northern 

coast, and southeastern coastal of Asia is higher than normal, the rainfall in south Levant 

increases. The second SLP-spring rainfall coupled mode is only relevant in the Syrian coast 

region, where increasing SLP over the central Atlantic, Europe, the Mediterranean Sea, 

North Africa, and the Middle East is associated with decreased rainfall, while increasing 

SLP in northern latitudes is associated with increased rainfall. For the first mode, rainfall 

in the south Levant was positively correlated with the NCP and MO indices, but negatively 

correlated with the WEMO index. Furthermore, the second mode resembles the NAO index 

effect on the Syrian coast area. 

A similar SLP structure was also found in studying air temperature variability over the Arabian 

Peninsula and its links to circulation patterns (Attada et al., 2019). The mechanisms related to the 

NAO, MO, and NCP influence of temperature and precipitation in the Levant were discussed in 

conclusion 5.  

10. The SST-spring temperatures coupled mode indicated a circulation pattern with a same 

sign in the central and east of the Mediterranean, Black, Red Seas, and North Seas. The 
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EA/WR index was the only one that had a significant correlation with SST expansion 

coefficients.  

The EA/WR mechanism that affects temperatures was discussed in conclusions 5 and 6. Note that 

the EA/WR and NCP mechanisms are similar with both indices related to the SLP differences 

between the west Europe and Caspian Sea regions.  

11. The first spring SST-precipitation coupled mode showed a horseshoe SST shape in the 

North Atlantic with a different sign, while the SST of the central Mediterranean Sea and 

North Red Sea showed a same SST sign was found in. This coupled mode exhibited 

significant correlations with the WEMO, NCP, and ENSO indices. For the second mode, 

the SST also showed a horseshoe in the North Atlantic with a different sign, while the SST 

of the east and west Mediterranean Sea exhibited a same sign. This SST pattern only 

exhibited significant correlation with the NAO index that affects the spring rainfall in the 

most southern locations from palatine/Israel and Jordan.  

In spring, the atmospheric circulation related to the NAO is very weak and no significant, 

compared to the winter, which may enhances the regional Mediterranean, Black, and Red Seas 

effects on the climate conditions in the Levant region. The large-scale circulation patterns that 

connected generally with the Mediterranean area like the EA/WR, WEMO, and NCP indices are 

significantly correlated with the left SST expansion coefficients.  

A warmer SST in the Mediterranean Sea will lead to enhance the water vapor in the atmosphere 

and a decrease of the vertical stability, which in turn, leads to increase rainfall in the adjacent areas 

like Levant. Rowell (2003), discovered evidence of increased Sahel rainfall with increased lower 

tropospheric moisture content, when the Mediterranean SST happened to be warmer than average. 

12. The SST-summer temperatures leading mode revealed that warmer-than-normal SST in 

the subtropical/equatorial and north Atlantic, east Mediterranean, and Caspian Seas leads 

to higher-than-normal temperatures in the Levant.  

13. The SLP-summer temperatures coupled mode revealed that increasing SLP in the 

tropical/subtropical Pacific Ocean causes temperature increases, while increasing SLP over 

the tropical/subtropical Atlantic Ocean, Africa, the Indian Oceans, and North Europe 

causes temperature decreases.  

Ehsan et al. (2020) and Attada et al. (2019) found similar SST-summer temperatures and SLP-

summer temperatures structures, respectively, for the Arab Peninsula and Middle East. In summer, 

the Azores High extends eastwards meeting the Balkan High pressure to form one common system 

(Bitan and Saaroni 1992; Alpert et al., 1990). For SST/SLP-summer temperatures coupled modes, 

the patterns are strongly correlated with the ENSO index, with significant positive correlations 

between the left (SST/SLP) expansion coefficients.   

Regarding the influence of the Atlantic Ocean on the Middle East summer temperature, Ehsan et 

al. (2020) suggested that basin-wide North Atlantic SST warming is closely associated with 

warmer than normal conditions over the Middle East, and conversely, basin-wide North Atlantic 

SST cooling is closely associated with cooler than normal conditions over the Middle East. They 

also found a significant positive correlation (0.71) between the leading mode of the summer ME 
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temperature and spatially averaged SST anomalies in the Atlantic region, which is very close to 

our results where the STR between SST-summer Tmax/Tmin reached 0.68/0.76.  

This Atlantic−ME connection during summer involves ocean–atmosphere interactions through 

multiple ocean basins, with an influence from the Indian Ocean and the Arabian Sea. Recent 

studies suggested that the mid-latitude/extratropical Eurasian Rossby wave is an important factor 

in describing the regional temperature variability during summer (Yadav, 2017). With the 

subtropical jet stream acting as a waveguide for Rossby waves (Branstator, 2002; Ding and Wang, 

2005), successive troughs and ridges of Rossby waves travel along the jet stream and influence the 

characteristics of the Middle East regional climate (Yadav et al., 2009). Many studies also indicate 

the tropical Atlantic SST variability is associated with the ENSO (Enfield and Mayer, 1997), which 

was also documented in this study due to the positive significant correlation between the ENSO 

and left SST expansion coefficients by 0.56. The ENSO-related Atlantic warmings occur as a result 

of reductions in the surface NE trade wind speeds, which in turn reduce latent and sensible heat 

losses (increase SST) over the Tropical Atlantic, which in turn leads to increase summer 

temperatures in the Levant. 

14. For the SLP-autumn temperatures, the coupled structure had a different sign in the area 

extending from Europe to the Mediterranean Sea and central northern Africa, while it had 

a same sign in the northern latitudes. In the east Mediterranean and Red Seas, the SST-

autumn temperatures coupled mode showed the same sign while in the North Sea, western 

Mediterranean, and Europe, it showed an opposite sign. The left (SLP/SST) expansion 

coefficients had high significant correlations (0.70/-0.67) with the NCP index, indicating 

that this pattern resembles the NCP effect. 

Furthermore, it was also documented that the NCP has a high negative impact on autumn 

temperatures, compared to other indices. In general, the SLP/SST homogeneous patterns are 

similar to those detected by Attada et al. ( 2019). The physical mechanism of the NCP index, which 

has a negative impact on temperatures, was discussed in detail in points 5 and 6. It should be noted 

that rising SST and SLP over the North Sea and west of Europe result in lower Levant temperatures 

in the autumn, which could be due to the NCP entering a positive phase (high SLP over the North 

Sea and low SLP over the Caspian Sea).  

15. The first SLP-autumn rainfall coupled mode revealed increasing rainfall in all Levant 

locations, except the Syrian coast, when the SLP increases over the tropical/subtropical 

(Atlantic Ocean, Africa, Indian Ocean, and west pacific), Middle East and East Asia. The 

SLP pattern also indicated to increase rainfall when the SLP over the east Pacific Ocean is 

abnormally low.  

16. Similarly, the first SST-autumn rainfall coupled pattern indicated to increase rainfall in 

most Levant location, except the Syrian coast, when the SST in the north and 

tropical/subtropical Atlantic Ocean is abnormally cold. The second and third mode of the 

SLP/SST-autumn rainfall only correlated with the NAO index,  

The left SLP and SST expansion coefficients exhibited a strong negative correlation of -0.79 and 

-0.41 with ENSO index, respectively, compared to other indices. Note that the precipitation 
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structure linked to these SLP/SST patterns in the heterogeneous correlation maps exactly coincide 

with those autumn precipitation areas connected to the ENSO in (Figure 6.25). In addition, the 

SST-autumn rainfall displayed similar homogeneous structure of the SST-summer temperatures, 

where the SST pattern in both cases is highly correlated with the ENSO index.  

In addition, the analysis may also indicates the positive (negative) links between the SST in 

tropical/subtropical Atlantic (SLP in tropical/subtropical Atlantic) and the ENSO index. Many 

studies have indicated the negative influence of the ENSO on the autumn rainfall in Iran 

(Nazemosadat and Cordery, 2000; Soltani and Gholipoor, 2006). Nazemosadat and Ghasemi 

(2004) assessed the impact of the Southern Oscillation index (SOI) on dry and wet periods in Iran. 

It has been found that El Niño (negative phase of the SOI) increases the autumn precipitation in 

the southern parts of this country, while La Niña (positive phase of the SOI) reduces the amount 

of precipitation. Alpert et al. (2005) found El Niño increased rainfall over the north Israel after 

1970s due to the changes in the jet stream position, because if the jet stream shifts equatorward (El 

Niño) or poleward (La Niña) by a few degrees, significant changes in precipitation amounts can 

occur. Sandeep and Ajayamohan (2018) suggested that the ENSO influences the Middle East 

precipitation variability through an equatorward shift of the subtropical jet streams. They also 

found the moisture transport from the Red and Arabian Seas toward the Arabian Gulf is stronger 

and covers the entire Gulf during El Niño years. During El Niño events, they suggested the polar 

jet streams moved further south causing increased storms and thus increased rainfall. The potential 

mechanism that the ENSO affects the SST in the Tropical/subtropical Atlantic was discussed in 

points 12 and 13.  
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CHAPTER 9 

DROUGHT ANALYSIS USING THE  

STANDARDIZED PRECIPITATION INDEX 
 

          Using data from 165 stations, this chapter examines the 

spatial and temporal variability of the drought over the Levant 

from 1970 to 2018. Drought characteristics (frequency, 

duration, and severity) are analyzed. In addition, the 

relationships between seven large-scale circulation patterns 

along with two climate indicators, the sea surface temperatures 

(SST), and the North Hemisphere sea level pressure (SLP) and 

the seasonal drought are studied. 

 

9.1 Introduction  

Drought is a complex natural disaster, which has various negative environmental, economic, 

agricultural, social, and political consequences (Zeinali and Safarian, 2017; Shamsniya et al., 

2008). There is no universally agreed-upon definition of drought at the international level although 

it generally occurs when there is a shortage of water at a specific location and time (Correia et al., 

1991; IPCC, 2007). In literature, drought can be divided into four types: meteorological, 

agricultural, hydrological, and socioeconomic (Fiorillo and Guadagno, 2010; Nalbantis, 2008; 

Wilhite, 2000; Wilhite and Glantz, 1985; Wilhite and Buchannan-Smith, 2005). The 

meteorological drought is defined as the degree of dryness in a specific region as measured by a 

deviation from climatological precipitation. Agricultural drought is caused by a lack of soil 

moisture caused by a lack of water available for crop or plant growth, resulting in biomass loss. 

Hydrological drought, on the other hand, is associated with a decrease in mean level water in 

surface and subsurface water resources. Finally, the socioeconomic drought has ramifications for 

human activities, including direct and indirect effects on agricultural production and other 

economic activities.  

Many studies have shown that climate change is causing more drying conditions in the 

Mediterranean region due to temperature increases and precipitation decreases (IPCC, 2013; 
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Seager et al., 2014; Spinoni et al., 2018; Ulbrich et al., 2006; Tanarhte et al., 2012), which has 

been also documented from this Thesis for the Levant region (see chapters 4 and 6). Furthermore, 

all Levantine countries face constant threats of soil degradation, desertification, water scarcity, 

overpopulation, large-scale changes in land use and cover, increased urbanization, among others 

(Avni et al., 2006). As a result, in a region like the Levant, where also most agricultural systems 

rely on rainfall, the drought vulnerability will be very high. In addition, and because drought can 

be quite destructive at times, a better understanding of the spatial distribution of the drought and 

its parameters is required. Drought characteristics (e.g., frequency, duration, and severity) must be 

accurately estimated in order to plan the efficient use of water resources, as well as agricultural 

production. Where due to a lack of accurate information about the spatiotemporal characteristics 

of droughts, poor decision-making may result in increased drought-related costs and damages. 

The meteorological drought analysis using the Standardized Precipitation Index (SPI) has been 

performed in many regions and countries in the Levant (Mathbout et al., 2018; Kelley et al., 2015; 

Gleick, 2014; Mohammed et al., 2020; Al-Qinna et al., 2011; Inbar and Bruins, 2004), Turkey 

(Sirdas and Sen, 2003; Karabulut, 2015; Dabanli et al., 2017), Iran (Shahabfar and Eitzinger, 2013; 

Mohammadrezaei et. al., 2020; Golian et. al., 2020), Iraq (Jasim and Awchi, 2020; Hameed et al., 

2018; Awchi and Kalyana, 2017), and Saudi Arabia (Almazroui, 2019). However, until now, there 

are no detailed studies on drought in the Levant as a whole. All studies were conducted on a 

specific region or country using a small number of stations and few SPI-time scales. In addition, 

the relationships between drought and the large-scale circulation patterns and some climate 

indicators like SST or SLP have not been explored yet in the previous studies. 

The main objectives of this chapter are as follow:  

1) To identify the spatial and temporal patterns and trends of the drought over the Levant region 

at multiple SPI timescales (3, 6, 12, and 24 months) for the period 1970-2018.  

2) To assess several drought characteristics, drought frequency (DF), drought duration (DD), and 

drought severity (DS), through the construction of the Levant DF, DD, and DS maps for different 

periods between 1970 and 2018. 

3) To understand the relationships between the seasonal drought in the Levant and large scale 

circulation patterns in the Mediterranean Sea and North Atlantic Ocean via the teleconnection 

indices, as well as with the North Atlantic SST and North Hemisphere SLP.  

In this study, the 3-, 6-, 12-, and 24-month timescales have been used as reference periods to 

monitor the meteorological and hydrological drought events. In order to compute the seasonal SPI, 

new cumulative time series from the original monthly data were obtained for winter (December-

February, SPI‐3 Feb), spring (March-May, SPI‐3 May), autumn (September-November, SPI-3 

Nov), September-February (SPI‐6 Feb), December-May (SPI-6 May), March-August (SPI‐6 Aug), 

and January–December (SPI‐12 Dec). Figure 2.5 showed the stations' geographical distribution, 

while Table 2 in the Appendix A contains names, coordinates, and stations' elevations. Details 

regarding data quality control (QC) and homogeneity are available in Chapter 2, Section 2.2. The 

methodology used to calculate the SPI, along with the definitions of drought characteristics are 

provided in detail in Chapter 3, Section 3.10. 
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9.2 Results  

9.2.1 Temporal variation of drought 

Interannual and annual drought variations were investigated. In this regards, the SPI values for 

winter (SPI-3 Feb(, spring (SPI-3 May), autumn (SPI-3 Nov), September-February (SPI-6 Feb), 

December-May (SPI-6 May), March-August (SPI-6 Aug), January-December (SPI-12 Dec), and 

SPI-24 were calculated for each station and averaged over the study area. Figure 9.1(a-p) depicts 

the temporal variations of the mean SPI time series along with the proportion of drought at stations 

in 1970-2018 for each drought category (extreme, severe, moderate, and slightly). The trends in 

the number of stations showing drought conditions based on the different drought categories were 

also calculated (Table 9.1). Furthermore, the historical drought events that resulted in widespread 

drought conditions in the region have been mapped and analyzed (Figure 9.2). 

 

9.2.1.1 SPI-3 months 

9.2.1.1.1 SPI-3 Feb 

The extremely wet conditions are observed in 1992 for SPI-3 Feb (Figure 9.1a). Drought events 

were detected in 55% of the years (26 years), with 22 years falling into the slightly drought 

category and 4 years falling into the moderate drought category (−1.50 < SPI ≤ −1.0), in 1973, 

1984, 1999, and 2014 (Figure 9.1a). The SPI distribution shows that some stations, primarily in 

1973, 1982, 1984, 1987, 1999, 2008, 2009, 2014, and 2015, exceeded the category threshold for 

extreme (SPI< -2) and severe (-2 <SPI<-1.5) droughts (Figure 9.1b). With 22 and 39 stations, 

respectively, the highest proportion of drought at stations was found in 2014 for the extreme 

drought and 1984 for the severe drought. At this timescale, the total number of stations that were 

affected by extreme and slightly drought events increased non-significantly by 0.37 and 

1.50%/decade, while the total number of stations affected by severe and moderate drought 

decreased non-significantly by -1.1 and -1.3%/decade, respectively (Table 9.1). 

In 2014, the spatial distribution of SPI-3 Feb (Figure 9.2a) revealed that marginally wet conditions 

covered a small region in the south of the Palestinian coast. On the other hand, severe and extreme 

drought conditions hit the Syrian coast, as well as several areas in northern and eastern Syria and 

northern Jordan. In 1970-2018, droughts in SPI-3 Feb lasted the longest in 1984-1987 and 2005-

2009 (Figure 9.1a). Figure 9.1b also shows that the wettest winters were found in 1981, 1988, 

1992, and 2003. 

 

9.2.1.1.2 SPI-3 May 

The variation of mean SPI-3 May values shows that the year 2008 is classified as extreme drought 

event (Figures 9.1c). The percent of drought years in SPI-3 May (51%, 24 years) was smaller than 

that in SPI-3 winter (Figures 9.1c and d). On the other hand, the severity and duration of drought, 

increased after 1992 for SPI-3 May compared to SPI-3 Feb. Drought events were also more 

frequent in the winter SPI-3 before 1992 than in spring SPI-3. Except for the years 2004 (moderate 

drought, covering 31.5% of the stations), 2008 (extremely drought, covering 50% of the stations), 

and 2010 (severe drought, covering 16% of the stations), all drought events were rated as slightly 
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drought (Figure 9.1c and d). During 1970-2018, the total number of stations that was affected by 

extreme, severe, and moderate drought significantly increased by 4.1, 3.2, and 3.3%/decade, 

respectively (Table 9.1). As shown in Figure 9.2b, the extreme drought event in 2008 occurred in 

the central and northern areas of Palestine and Jordan, while the north of Levant and the 

southern/eastern locations of Jordan had less severity for most locations. The longest drought 

duration in SPI-3 May/spring was found in 1992-1995, 1999-2001, and 2015-2018 (Figure 9.1c).  

 

9.2.1.1.3 SPI-3 Nov 

The variation of mean SPI values for SPI-3 autumn (Figures 9.1e and f) indicates that only 20 out 

of 49 years had drought occurrences, all of which were classified as slightly drought, with the 

exception of 1998, 1999, 2010, 2013, and 2016, which were classified as moderate drought. 

Extreme and severe droughts were mostly observed in 1998, 1999, 2010, 2013, and 2016, with 

23%, 13%, 27%, 18%, and 25% of the stations experiencing extreme drought and 29%, 22%, 19%, 

23%, and 29% of the stations experiencing severe drought, respectively. Between 1970 and 2018, 

the stations that experienced extreme, severe, and moderate drought increased non-significantly 

by 2.2, 2.4, and 0.3%/decade, respectively, whereas the stations that experienced slightly drought 

decreased significantly by -5.8%/decade (Table 9.1). The extreme drought event in 2010 (Figure 

9.2c) intensively covered the coastal and northern stations from Palestine, while the north Levant, 

especially the west Syria showed slightly wet conditions. The lowest drought duration was found 

for SPI-3 Nov compared to those for winter and spring, when there were 2 consecutive autumns 

with drought throughout the record. In any case, the drought duration did not persist for more than 

two years (Figure 9.1e). 

 

9.2.1.2 SPI-6 months 

Based on the averaged values, only 2008 was determined to have extreme drought for SPI‐6 Aug 

and the event of extreme wet is observed in 1992 for SPI-6 Feb (Figure 9.1g and k). A total of 24 

years is rated as dry years based on the SPI-6 Feb mean values (Figures 9.1g and h), with only four 

years (1973, 1984, 1999, and 2014) falling into the moderate drought. The highest proportion of 

extreme drought at stations was found in 1973, 1999, and 2014 by 13%, 21%, and 19% of the 

stations. For the severe drought, the highest proportion was recorded in 1999 (34%) and 2014 

(25%) and for the moderate drought, in 1999 (34%) and 2014 (25%). The SPI-6 Feb drought 

duration generally spanned for three years in the periods 1999-2001, 2006-2009, and 2016-2018. 

For SPI-6 May (Figure 9.1i and j), the drought events were found in 26 years, three years of them, 

1973, 1999, and 2008 were classified as moderate drought, and the remaining years were classified 

as slightly drought. Based on stations (Figure 9.1j), extreme drought affected the highest 

percentage of stations in 1999 and 2014 by 18 and 14% of the stations, and the severe drought in 

1999 (25%) and 2008 (18%). Among the hydrological drought at the SPI-6 timescale, the longest 

drought duration was found in 1994-1997, 1999-2001, 2005-2010, and 2014-2018 (Figure 9.1i). 

In 1970-2018, the percent of stations that were affected by all drought categories was increased 

non-significantly by 0.71(extreme), 0.46 (severe), 0.66 (moderate), and 3.4 (slightly) %/decade.  
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The mean annual SPI-6 Aug values over the study region (Figure 9.1k and l) indicated drought 

events in 24 years, with one extreme drought year (2008), one severe drought year (2010), one 

moderate drought year (2004), and 21 slightly drought years. The highest extreme drought events 

were observed in 2004, 2008, 2010, 2015, and 2017 affecting between 17% and 50% of the 

stations. similar to SPI-3 May, the total stations that were affected by extreme, severe, and 

moderate drought in 1970-2018 significantly increased by 4.2, 3.1, and 3.4%/decade, respectively 

(Table 9.1).The drought duration generally spanned during the periods 1992-1995, 1999-2001, and 

2015-2018 (Figure 9.1k).  

 

9.2.1.3 SPI-12 and -24 months 

For both hydrological drought timescales, a percent of 45% of the total years showed drought 

events, all of them were classified as slightly drought, except for (1999 and 2017, severe for SPI-

12), and (2000, moderate for SPI-24). For SPI-12 (Figure 9.1n), the most diffused drought event 

took place in 1999 with more than 44% and 24% of the stations showing extreme and severe dry 

conditions. A diffused drought was also observed in 2017 with more than 33% and 23% of the 

stations showing extreme and severe dry conditions (Figure 9.1n). The highest moderate drought 

events was observed in 2008 covering approximately 38% of the stations. Slightly drought-

affected stations showed a non-significant decrease of -6%, whereas extreme, severe, and 

moderated drought-affected stations increased by 2.2, 2.0 (Significant), and 1.6%, respectively 

(Table 9.1). Spatially, the extreme and severe drought in 1999 were widespread in the central and 

north Palestine, North Jordan, and south Syria (Figure 9.2d). Other regions generally showed less 

severity within the moderate drought. According to the SPI-12 scale, the study area have witnessed 

episodes of drought in 1999-2001, 2005-2011, and 2014-2018 (Figure 9.1m).  

For mean annual SPI-24 (Figures 9.1o and p), the highest occurrence extreme and severe droughts 

were observed in 2000 covering about 25% and 23% of the stations, respectively. Furthermore, 

the number of stations affected by extreme, severe, moderate, and slightly droughts has increased 

in 1970-2018 by 0.9, 2.2, 4.0, and 5.4%/decade, respectively (Table 9.1). As can be seen in Figure 

9.2e, all regions were affected by the extreme drought in 2000, with the exception of the central 

and northern sites in Palestine and west of Syria, which showed moderate and slightly drought. 

The maximum drought duration was observed during1999-2002, 2006-2012 and 2014-2018. 

SPI lags Extreme (%) Severe (%) Moderate (%) Slightly (%) 

SPI-3 FEB 0.37 -1.1 -1.3 1.5 

SPI-3 MAY 4.1* 3.2* 3.3* 3.7 

SPI-3 NOV 2.2 2.4 0.3 -5.8* 

SPI-6 FEB 0.36 -0.27 -1.5 1.4 

SPI-6 May 0.71 0.46 0.66 3.4 

SPI-6 Aug 4.2* 3.1* 3.4* 3.2 

SPI-12 2.2 2.0* 1.6 -0.6 

SPI-24 0.90 2.2 4.0 5.4 

Table 9.1. Trends in the number of stations that show drought conditions based on the drought categories 

for the period 1970-2018. * indicates significant trend at the 95% confidence level. 
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Figure 9.1.The annual SPI-3, -6, -12, and -24 months timescales series over the study area along the 

proportion of stations presenting drought conditions during 1970-2018 for each drought categories, 

extreme, severe, moderate, and slightly.  

 
Figure 9.2. Drought maps of major historical drought events at various SPI timescales.  
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9.2.2 Spatial characteristics of drought 

In order to analyze the spatial variation of drought in the Levant region and to detect homogeneous 

drought areas, the principal component analysis (PCA) and the K-means cluster were used. The 

factor loadings (Figure 9.3) are mapped to display the drought's spatial patterns, and the 

corresponding factor scores (Figure 9.4) are plotted to determine each PC's temporal behavior. The 

North Rule of Thumb (North et al., 1982) was used to determine the number of PCs retained, and 

they were rotated using the varimax technique (Bortz, 1993). Table 9.2 displays the overall 

variance described by each PC for SPI at various timescales in the Levant from 1970 to 2018. 

The results listed in Table 9.2 show the first three PCs were retained for the SPI-3, -6, and -12 

months timescales and they explained 70.7%, 66.6%, and 68.3% of the total variance. For the SPI-

24 months, the first four PCs were retained and they explain 72.3% of the total variance. The first 

PC explains the highest percent of the total variance between 33.9% for SPI-24 and 39.1% for SPI-

3. For the PC-2, the percent ranged from 16.1% for SPI-3 and 21.6% for SPI-24, and from 10.2% 

(SPI-24) to 15.5% (SPI-3) for the third PC. The PC-4 for the SPI-24 months timescale explains 

only 6.6% of the total variance.  

SPI timescales PC1 (%) PC2 (%) PC3 (%) PC4 (%) 

SPI-3 39.1 55.2 70.7 - 

SPI-6 36.5 55.5 66.6 - 

SPI-12 35.2 57.1 68.3 - 

SPI-24 33.9 55.5 65.7 72.3 

Table 9.2. The cumulative variance explained by each PC for different SPI timescales in 1970-2018. 

The first three patterns for the SPI-3, -6, and -12 months and the first four patterns for the SPI-24 

months were mapped (Figure 9.3) using the loading factors which represent the correlation 

between each PC and the SPI time series at 165 rainfall stations. In general, the results indicated a 

similar drought spatial distribution for all SPI time scales in the Levant region during 1970-2018. 

In addition, the results generally did not showed overlapping between PCs with high correlations 

(r> 0.55), where they clearly divided the study area into separated regions. At SPI-3 and -6 months 

timescales (Figure 9.3a to f), the three retained PCs are related to the same regions where the first 

PC represents the central and northern locations from Palestine, northern locations from Jordan, 

and south Syria. The second PC showed the highest correlations in western and coastal locations 

from Syria. In general, the Mediterranean climate zone in the south and north Levant is represented 

by the first and second PCs at these SPI timescales. The third PC is associated to the eastern and 

southern locations of the Levant, which represents the arid and semi-arid climate zones.  

Similar results were generally obtained at SPI-12 and -24 timescales (Figure 9.3g to m), with little 

differences, where the second PC extended to cover many locations in north Palestine at SPI-12 

and -24. In addition, the third PC is confined to the eastern regions of Syria whereas the south 

Palestine and all stations in Jordan, except the northern stations, conformed the fourth PC at SPI-

24 timescale.  

Figure 9.4 (from a to m) shows the temporal evolution of the PCs. At shorter SPI timescales, the 

drought duration is shorter, and as the SPI timescale increases, the duration of drought increases. 

Several extreme drought episodes were detected for many areas in the Levant, particularly for SPI-
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12 and SPI-24 months. For example, the longest and most extreme drought for SPI-12 was 

observed from Feb./1999 to Nov./1999 for the PC-1 region (north Jordan, central and northern 

locations from Palestine, except most north locations) (see also Figure 9.2d), from Feb/2000 to 

Nov./2000 for PC-3 (east and south Levant), and from April/2014 to Nov./2014 for the second PC-

2 (western and coastal regions from Syria) (Figure 9.4(j-i)). 

 
Figure 9.3. Spatial distribution of the PCs loading factors selected (EOFs) for the SPI-3, -6, -12, and -24 

months timescales. The fourth column shows the delineated regions using the K-means cluster algorithm.  
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    Figure 9.4. Temporal evolution for different SPI timescales from the series representing PCs. 
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For SPI-24, the longest extreme drought were extended from May/2013 to Sept./2015 for the PC-

3 region (Figure 9.4l), from Jan./2000 to Dec./2000 for PC-4 (Figure 9.4m and Figure 9.2e), and 

from April/2009 to Nov./2009 for PC-3 (Figure 9.4L). For SPI-3, the longest drought period was 

observed in Jan/2015-Nov./2016 by average SPI value reached -1.2 for the PC-2 region (Syrian 

coast) (Figure 9.4b). Some drought parameters, drought frequency (DF), drought duration (DD), 

and drought severity (DS) for each PC-region at different SPI time scales will be analyze in the 

next section.  

 

9.2.3 Drought parameters 

In this section, the drought frequency (DF), total drought duration (TDD), and total drought 

severity (TDS) were calculated and spatially analyzed at different SPI timescales. These 

parameters were spatially evaluated to highlight the drought hot spots for the whole period 1970-

2018 and for the two sub-periods 1970-1994 and 1995-2018 (Figures 9.6, 9.7, and 9.8), providing 

maps of the areas most affected by drought in the last 49 years. The whole period was splitted into 

two sub-periods because many SPI time scales generally showed turning points in the mid-1990s 

(see Figure 9.9 in the next section). The DF, TDD, and TDS were also averaged for the entire 

Levant and the studied countries as well as for the PCs time series (Figure 9.5).  

 

9.2.3.1 Drought frequency  

Based on the averaged values of DF (Figure 9.5a), a percent of 10.7, 14.1, 13.4, and 14.9% of the 

total months over the Levant showed DF (SPI≤ -1) at SPI-3, -6, -12, and -24 months, respectively. 

Syria showed the highest DF at the SPI-3, -6, and -12 by 11.7, 15.4, 13.8% of the total months, 

while Jordan showed the lowest by 9.5, 12.5, and 13.1%, respectively. At SPI-24 timescale, 

Palestine showed the highest DF with 15.4% of total months that showed moderate and above 

drought events.  

The total months above moderate drought (SPI≤ -1) were calculated for each station and at 

different timescales (3-, 6-, 12-, and 24-months) during the whole period 1970-2018 (Figure 9.6, 

upper row) and for the two sub-periods 1970-1994 and 1995-2018 (Figure 9.6, middle and lower 

rows). The results show the DF for above moderate drought (SPI <-1) at each station is between 

5.1 and 16% for the SPI-3 and between 5.1 to 21% for the SPI-6, -12, and -24. The stations affected 

by the lowest DF (< 12%, 69 months) decreased from 115 stations for SPI-3 to 29 stations for SPI-

6, and only 17 stations for SPI-24. This indicates an increase in DF in most of the studied stations, 

from short-term drought to mid and long-term drought.  

In general, most locations in north Jordan showed the lowest DF (5%< DF<12%) for all SPI 

timescales (Figures 9.6a to d). Based on SPI-3 months (Figure 9.6a), the highest DF was 

concentrated in the PC-2 region, the Syrian coast stations, (12-16%, 69-92 months) whereas the 

rest Levant locations (70% of the stations) showed DF <12% (69 months).  

For SPI-6 months (Figure 9.6b), 100% of the stations showed higher DF than SPI-3 months. The 

highest DF with values around 16-18% (90-103 months) at this timescale was observed in 20% of 

the stations and spatially occurred in north Palestine and for many locations in coastal and eastern 
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areas of Syria, while the lowest DF values, around 10-12% of total months, were concentrated in 

northern Jordan and West bank. Based on PCs regions (Figure 9.5d), the PC-2 region also exhibited 

the highest DF by an average of 16% of the total months, while the PCs 1 and 3 exhibited similar 

DF values around 13.8%.  

The southern locations of Palestine and Jordan, and eastern Syria (regions associates with the PC-

3) showed the highest DF for SPI-12 (16-21% of total months) while the northern Jordan and West 

Bank showed the lowest (<12% of total months) (Figure 9.6c and Figure 9.5d). The highest DF 

for SPI-24 was mainly concentrated in southern part of Palestinian coast by average of 17.7% of 

total months (Figure 9.6d). The calculations based on PCs regions give to the regions associated 

with the PCs 3 and 4 the highest DF by averages of 16 and 15%, respectively. Although the PC-1 

region has relatively less DF for all SPI timescales (Figure 9.5d), however the locations around 

Haifa district, in northern Palestine, showed considerable DF values mainly for SPI-3, -6, and -12 

months compared to other locations considered into the PC-1 region.     

 
Figure 9.5. The averaged values of DF, TDD, and TDS over the Levant in 1970-2018.  
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Moreover, drought became more frequent during the second sub-period 1995-2018 compared to 

the first sub-period 1970-1994 for all SPI timescales (Figure 9.6, middle and lower rows). In this 

regard, the percentage of stations that showed DF > 20% of total months increased from < 2% of 

the total stations for SPI-6, -12, and -24 months in the first sub-period to 13%, 25%, and 50% of 

the total stations in the second sub-period, respectively. For example, the eastern locations from 

Syria showed the highest DF (> 20% of total months) for SPI-6, -12, and -24 during the second 

sub-period while they displayed DF with an average of 14% of total months in the first sub-period.   

 
Figure 9.6. Drought frequency maps at different SPI timescales for the total period 1970–2018 (upper 

row), the first sub-period 1970–1994 (middle row), and the second sub-period 1995-2018 (lower row). 
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9.2.3.2 Drought duration  

The average total drought duration (TDD) over the Levant from the SPI-3, -6, -12, and -24 months 

timescale are 39.4, 63.1, 81.6, and 79.5 months, respectively (Figure 9.5b). The highest average 

TDD was found for Syria with 47 and 69 months from the SPI-3 and -6, whereas Palestine showed 

the highest averages at SPI-12 and -24 by 84 and 82 months, respectively. On the other hand, 

Jordan showed the lowest averages from all SPI timescales with 35, 58, 77, and 76 months for 

SPI-3, -6, -12 and -24 months, respectively.  

Overall, the PC-1 region (central Palestine and northern Jordan) had the lowest TDD at all SPI 

timescales, while the PC-2 region (western Syria) at SPI-3 and -6, and the PC-2 region (western 

Syria and northern Palestine) at SPI-12 and -24 had the highest TDD at all SPI lags.  

 
Figure 9.7. Drought duration maps at different SPI timescales for 1970–2018 (upper row), 1970–1994 

(middle row), and 1995-2018 (lower row). 
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As can be seen in Figure 9.7a, the highest TDD values (around 51-65 months) at SPI-3 months 

were concentrated in the Syrian coast area (PC-2 region) and at some stations located to the east 

of Syria. On the other hand, the lowest values (between 21-35 months) were found in southern part 

of the Palestinian coast, West Bank, and northern Jordan (PC-1 region). At SPI-6 months’ 

timescale (Figure 9.7b), both stations and regions showed higher values in their TDD than those 

for SPI-3 months. In this regards, the northern Palestine regions showed values between 51 and 65 

months, while the highest values (between 81-95 months) affected many locations in Syrian coast 

and eastern Syria.  

At the SPI-12 timescale (Figure 9.7c), the highest TDD is intensified and clustered in the north of 

Palestine region, which is a part of the PC-2 region, with an average value of 93 months. In general, 

the PC-2, PC-3, and PC-4 regions had identical TDD (between 83-87 months) for the SPI-24 

timescale, while the PC-1 region (center of Palestine including the West Bank and northern Jordan) 

had TDD values lower, with an average of 76 months (Figure 9.5d). Locally, the southern part of 

Palestinian coast, which is a part of the PC-4 region of the SPI-24 timescale exhibited the 

maximum values of TDD with an average of 95 months.  

The TDD between 1970-1994 and 1995-2018 (Figure 9.7, central and lower rows) shows that the 

TDD increased for most stations and regions during the second sub-period relative to the first one. 

The total number of stations that showed TDD < 20 months decreased substantially in the second 

sub-period compared to the first one. For example, the TDD for the central and northern stations 

in Palestine and Jordan increased from 20 months in the first sub-period to 21-35 months in the 

second sub-period for the SPI-3 months timescale. Increases for SPI-6, -12 and -24 timescales 

from TDD averages of 26, 26, and 12 months in the first sub-period to 49, 60, and 75 months in 

the second sub-period are also visible in areas of eastern Syria. On the other hand, the central and 

northern stations along the Palestinian coast, have seen a decrease of TDD from 48 months in 

1970-1994 to 41 months in 1995-2018, at SPI-12 timescale. 

 

9.2.3.3 Drought Severity 

Over the Levant, the total drought severity (TDS) at SPI-3, -6, -12, and -24 month timescale are 

67.2, 103.9, 126.4, and 121.3, respectively (Figure 9.5c). The results also showed the TDS for the 

northern Levant (Syria) was much higher than those for the southern Levant (Palestine and Jordan) 

at all SPI timescales (Figure 9.5c). In this context, the highest TDS was found for Syria by 79.7, 

117.8, 131.1, and 127.9 at SPI-3, -6, -12, and -24, respectively. On the other hand, Jordan showed 

the lowest TDS for all SPI timescales by 59, 92.7, 121.9, and 119, respectively. For Palestine, the 

values reached 62.5,  99.7, 125.4, and 117.9, respectively (Figure 9.5c). According to the PCs 

regions (Figure 9.5f), the PC-2 region displayed the highest TDS at SPI-3 and -6 timescales, while 

the PC-3 region displayed the highest values at SPI-12 and -24 timescales. The PC-1 area had the 

lowest TDS at all SPI timescales. 

Figure 9.8 depicts the spatial distribution of TDS in the Levant from 1970 to 2018 (upper row), as 

well as for the two sub-periods, 1970-1994 and 1995-2018 (middle and lower rows). The highest 

TDS values (between 76-100) were found along the Syrian coast (PC-2 region) and for many 

locations eastern Syria at the SPI-3 timescale (Figure 9.8a), while the lowest TDS values (between 
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26–50) were found at many Jordinean locations along the Palestine border. The values for the 

center and north of Palestine (PC-1 region) ranged from 51 to 75.  

The maximum TDS values (126-150) for the mid-term drought SPI-6 (Figure 9.8b) were also 

grouped in the Syrian coast (PC-2 region) and some eastern Syria locations. At this time scale, the 

northern Palestine regions had significantly higher TDS than for the SPI-3 months, with values 

ranging from 101 to125, with the lowest values (between 76-100) located in the West Bank, 

southern part of the Palestinean coast, and in Jordan. 

 
Figure 9.8. Drought severity maps at different SPI timescales for the total period 1970–2018 (upper row), 

the first sub-period 1970–1994 (middle row), and the second sub-period 1995-2018 (lower row). 

Many locations to the east of Syria and Jordan were primarily affected by the highest TDS values 

(> 150) at SPI-12 months, as represented by the PC-3 area, which had the highest average TDS 

value by 139 (Figure 9.8c and Figure 9.5f). With an average of 135, the coastal and western areas 
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of Syria and north Palestine (PC-2 region) came in second place. And, as in all cases, the lowest 

TDS values was observed in central Palestine and northern Jordan, with an average of 117.5. 

According to the SPI-24 timescale analysis, the maximum TDS values (>126) clustered in the 

southern portion of the Palestinean coast and easten locations of Syria (Figure 9.8d). 

Regarding the comparison between sub-periods, the TDS clearly increased for most locations and 

regions in 1995-2018 relative to 1970-1994, for all SPI timescales (Figure 9.8 middle and lower 

rows). TDS increased from values < 25 in the first sub-period to values between 26-50 in the 

second sub-period for PC-1 area (central and northern Palestine and Jordan) at SPI-3 months. It 

was also increased at SPI-6 months for the same area, from TDS values around 50 in the first sub-

period to between 51-75 in the second one. The TDS in Syria's eastern locations (PC-3 region) 

increased from an average of 40 in the first sub-period to 106 in the second sub-period. At the SPI-

24 timescale, TDS increased from an average of 17 to 133 for the same areas. 

 

9.2.4 Temporal and spatial trends  

The overall trends for the mean SPI-3 Feb, SPI-3 May, SPI-3 Nov, SPI-6 Feb, SPI-6 May, SPI-6 

Aug, SPI-12, and SPI-24 months time series were estimated using the Mann Kendal test (Table 

9.3), and the temporal evolution for the SPI averages at different timescales was evaluated using 

the Sequential Man kendall test (Figure 9.9). Only SPI-3 Feb reported statistically non-significant 

positive trend of 0.023 unit/decade (Table 9.3). The trends estimated for the spatially averaged SPI 

time series exhibited non-significant and negatives trends by -0.018, -0.019, -0.073, -0.11, and -

0.15 unit/decade for SPI-3 Nov, SPI-6 Feb, SPI-6 May, SPI-12, and SPI-24, respectively. On the 

other hand, the SPI-3 May (-0.20 unit/decade) and SPI-6 Aug (-0.19 unit/decade) showed 

significantly (at 0.05 level) decreasing trends. In addition, in 1997, significant change points for 

the SPI-3 May and SPI-6 August were detected (Table 9.3, Figure 9.9b and f). During the periods 

1999-2018 and 1978-1997/2000-2018, respectively, the notably rising SPI pattern was observed 

for SPI-3 Feb, SPI-3 Nov, and SPI-24 (Figure 9.9a, c, and h). In contrast, the sharp decreasing SPI 

pattern was noted in the period 1990-2018 for SPI-3 May, SPI-6 Aug, and SPI-12 (Figure 9.9b, f, 

and g). For SPI-6 May (Figure 9.9e), decreasing pattern was noted in 2002-2018. For SPI-24, two 

periods of decreasing pattern can be characterized, 1971-1980 and 1998-2018 (Figure 9.9h).  

The trends of the different SPI timescales were also examined spatially, with the findings shown 

in Table 9.4 and Figure 9.10. Table 9.4 shows that for SPI values in winter, spring, autumn, and 

autumn/winter, few stations (< 4 stations) showed significant negative or positive trends. In the 

spring and spring/summer, however, significant decreasing trends affected more than 36% of the 

stations. Furthermore, the SPI-12 showed a significant decreasing trend in 27% of the stations. 

Due to their notably significant decreasing trends, the trends for SPI-3 spring, SPI-6 

spring/summer, and SPI-12 have been spatially evaluated (Figure 9.10). Similar trend patterns 

were observed for SPI-3 spring and SPI-6 spring/summer values. For both SPI timescales, only 4 

stations showed negative trends at the 99% significance level. Furthermore, central and north 

Palestine, north Jordan as well as several locations in east Syria displayed significant decreasing 

trends at the 95% confidence level. At SPI-12 months, many stations in West Bank and northern 

Jordan exhibited significant decreasing trends at the 99% confidence level.  
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SPI timescales Trend (per decade) Change points detected 

SPI-3 Feb. 0.023 - 

SPI-3 May -0.20* 1997 

SPI-3 Nov. -0.018 - 

SPI-6 Feb. -0.019 - 

SPI-6 May -0.073 - 

SPI-6 Aug. -0.19* 1997 

SPI-12 -0.11 - 

SPI-24 -0.15 - 

Table 9.3. Trends calculated for SPI values at different lags in 1970-2018. Trend units are standardized 

unit/decade.  

 
       Figure 9.9. Temporal behaviour for different SPI timescales in the period 1970-2018. 
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SPI lags Positive (Sig.)  Negative (Sig.) 

SPI-3 winter 91(3) 74(4) 

SPI-3 spring 8(0) 157(60) 

SPI-3 autumn 56(2) 109(1) 

SPI-6 autumn/winter 66(1) 99(4) 

SPI-6 winter/spring 30(1) 135(4) 

SPI-6 spring/summer 7(0) 158(60) 

SPI-12 annual 22(4) 143 (44) 

SPI-24 annual 26(4) 139(5) 

Table 9.4. Number of stations that showed increasing (significant increasing) and decreasing (significant 

decreasing) trends at 5% significance level.  

 
Figure 9.10. Spatial distribution of trend signification for different SPI timescales during the period 1970-

2018. 

At SPI-3 and -12 months timescales, the drought frequency (DF) and the maximum drought 

severity (MDS) were calculated for each station, and the values were averaged over the study area. 

The findings supported the trend toward drier conditions, with non-significant increases in DF at 

SPI-3 and -12 timescales of 0.20 and 0.58 event/decade, respectively (not shown). For both SPI-3 

and SPI-12 timescales, decreasing trends in MDS of -0.07 (significant at 0.1 level) and -0.01 

unit/decade, respectively were detected (not shown).  

The spatial distribution of trends calculated for these two parameters is depicted in Figure 9.11. 

For both SPI-3 and -12 timescales, 128 out of 165 stations in the DF (Figure 9.11a and b) were 

affected by increasing trends, which were distributed throughout the Levant. They covered central 

and northern Palestine (PC-1 region), as well as southern and eastern Syria, intensively and 

uniformly, while the Syrian coast area (associated with the PC-2 region) and northern Jordan 

showed mixed trends, with many locations showing negative trends for DF. Many locations in the 

West Bank and northeastern Palestine at SPI-3 and -12 timescales, as well as the east of Syria at 

SPI-12 timescale, were affected by significant increasing trends (0.51-0.75 event/decade). In 

addition, the magnitudes of trends increased at SPI-12 compared to SPI-3, from 0.31 to 0.62 

event/decade for the east of Syria, and from 0.29 to 0.38 event/decade for the north of Palestine.  

The dry conditions were also confirmed by the MDS (Figure 9.11c and d), which showed 

decreasing trends in the study area of -0.096 and -0.11 unit/decade at SPI-3 and SPI-12, 

respectively (not shown). Furthermore, at SPI-3 and -12, more than 132 out of 165 stations showed 
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decreasing trends, with 22 and 31 stations showing significant decreases. The PC-1 regions also 

had the most significant decreasing trends (between -0.15 and -0.20 unit/decade). On the other 

hand, many locations in PC-2 regions and western Jordan along the border with Palestine showed 

increasing trends. In comparison to the SPI-3 timescale, the band of high decreasing trends (-0.15 

˗ -0.20) was intensified at SPI-12 scale in north Palestine and southern/eastern Syria. 

 
 Figure 9.11. Spatial distribution of the DF and MDS trends calculated for the period 1970-2018. 

 

9.2.5 Influence of the large-scale circulation patterns on seasonal drought  

The number of stations that showed significant correlations between annual and seasonal SPI 

values (SPI-12, SPI-3 Feb. for winter, SPI-3 May for spring, and SPI-3 Nov. for autumn) and the 

teleconnection indices, is listed in Table 9.5. Based on the frequency of significant correlations, 

the WEMO index is a key driver of drought in Levant in spring, showing 58 stations that are 

strongly and negatively correlated with it. It is also the second index related with drought in 

autumn, with 38 stations. The NCP index is the main controller of drought at annual and winter 

timescales in the Levant, where it showed negative significant correlations with 74 stations. Its 

effect also was notably on the autumn drought by 43 stations. The ENSO index has the greatest 

impact on autumn drought, with 93 out of 165 stations reporting a significant correlation with it, 

though it also has a significant impact on annual and winter drought. The EAWR and MO indices' 

positive correlations were concentrated in winter by 67 and 50 stations, respectively, putting them 

second and third after the NCP index. Figure 9.12 represents the spatial distribution of all of these 

major associations. In most cases, the impact of the teleconnection patterns dominated in the 

southern Levant, especially in regions assciated with the PC-1 area, which encompassed, central 

and northern Palestine, north of Jordan, and south of Syria.  

The effect of the NCP index on the SPI-12 (Figure 9.12a) is mainly concentrated in the southern 

areas of Palestine and Jordan, as well as in the west of Jordan (arid and semi-arid climate zones), 

with correlations ranging from 0.28 to 0.60. On the other hand, the influence of the ENSO index 

(Figure 9.12b) on the SPI-12 is localized in the southern areas from the Palestinian coast to the 

northwest of the West Bank, with correlations ranging from -0.29 to -0.39. 
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Index  WEMO EAWR NAO EA MO NCP ENSO 

+ - + - + - + - + - + - + - 

SPI-12 0 1 2 0 1 0 7 0 4 0 30 2 1 26 

SPI-3 Feb. 0 1 67 0 11 0 1 0 50 0 74 0 0 27 

SPI-3 May 0 58 0 0 4 0 0 12 3 0 43 0 0 3 

SPI-3 Nov. 0 38 8 0 0 6 1 0 2 0 0 0 0 93 

Table 9.5. Number of stations that showed significant (p<0.05) correlations between their annual and 

seasonal SPI time series ant the teleconection indices. 

 
Figure 9.12. Spatial distribution of correlation coefficients between annual and seasonal SPI and some 

teleconnection indices, for the period 1970-2018. The limits of significant correlations are 27 and -27.  

In winter (Figure 9.12c, d and e), the EAWR, MO, and NCP indices present higher frequency and 

magnitudes of significant correlations than other indices. Their significant effects on SPI-3 Feb 

occurred predominantly in south Levant, especially in central and northern Palestine, northern 
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Jordan, and southern Syria, with higher frequency and magnitude, up to 0.50 for the NCP index, 

up to 0.47 for the MO, and up to 0.42 for EAWR. As can be seen in Figure 9.11f, the ENSO index 

also exerts some influence on the winter drought in the southern stations of Palestinian coast and 

West Bank (-0.49 < r < -0.28). 

During spring, the WEMO and NCP indices had a noticeable influence on SPI values (Figure 9.12 

g and h) compared to other indices. The WEMO effect covered virtually all locations along the 

Palestinian coast, north of Palestine and Jordan, and many locations in Syrian coast with significant 

negative correlations between -0.28 and -0.41). Furthermore, the NCP index has exerted notably 

influence (correlation values from 0.28 to 0.49) on northern and northeastern parts of Palestine, 

north of Jordan, and southern Syria, including Damascus governorate.  

The analysis clearly indicated the ENSO pattern is the main driver of the SPI autumn over the 

Levant (Figure 9.12j). Except for some stations in northern Palestine, Syrian coastal and western 

areas, all sites showed significant negative correlations with the ENSO index (with values from -

0.37 to -0.56) during autumn. It had an influence on Jordan's and Palestine's southern regions as 

well (Figure 9.12j). Also, the WEMO index reported some effect (correlations values ranging from 

-0.27 to -0.39) in Palestinian coastal stations, the West Bank, and some northern Syrian locations 

(Figure 9.12i). Finally, as shown in Figures 6.23, 6.24, and 6.25, the findings were very similar to 

those obtained from observing the impact of large-scale circulation patterns on the Levant seasonal 

rainfall. 

 

9.2.6 Covariability analysis  

9.2.6.1 Covariability between SST and seasonal drought  

By analyzing the covariance matrices of the two fields, the SVD was used to investigate the link 

between the SST and seasonal drought (SPI-3 Feb, SPI-3 May, and SPI-3 Nov) in the Levant 

region. The findings are represented by homogeneous and heterogeneous correlation maps 

(Wallace et al., 1992). Table 9.6 shows the statistics for the first three leading SVD modes, which 

includes the temporal correlation between pairs of expansion coefficients, strength of the coupling 

(STR), and percentage of squared covariance (SCF). Table 9.7 also shows how each mode explains 

the variance for the individual fields (SST, seasonal SPI values). The correlations between the left 

SST expansion coefficients of the selected SVD modes and the seven teleconnection indices 

chosen for this study are shown in Table 9.8. Only the coupling coefficients associated with the 

first three modes were evaluated in all SVD analyses because they accounted for 80% or more of 

the SCF. The SCF for the third mode drops below 7% in all cases, as shown in Table 9.6, indicating 

that the amount of information accounted for the third mode in relation to the two fields is not very 

relevant. Furthermore, there were fewer than seven stations that showed significant correlations 

with the third mode. Then, only the results corresponding to the first and second modes were 

discussed because of the reasons stated above. Figures 9.13, 9.14 and 9.15 show the homogeneous 

and heterogeneous maps along with the expansion coefficient time series for the selected coupled 

modes for winter, spring and autumn, respectively. 
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Season 

 

Variable 

STR SST-seasonal drought   

SCF (%) 

Total sig. stations 

(Heterogeneous) 

Mode1 Mode2 Mode3 Mode1 Mode2 Mode3 Modes (1,2,3) 

Winter SPI-3 Feb 0.44 0.52 0.61 58 14 7 (90,23,3) 

Spring SPI-3 May 0.40 0.36 0.54 45 22 6  (28,24,7) 

Autumn SPI-3 Nov 0.47 0.54 0.59 66 11 6 (106,7,23) 

Table 9.6. Summary of the strength of the coupling (STR) and the square covariance fraction (SCF) 

corresponding to the selected modes obtained from the SVD of SST and seasonal drought for the period 

1987-2017. 

Season 
Variable 

SST variance (%) Seasonal drought variance (%) 

Mode1 Mode2 Mode3 Mode1 Mode2 Mode3 

Winter SPI-3 Feb 18 11 12 45 13 4 

Spring SPI-3 May 19 11 8 27 27 5 

Autumn SPI-3 Nov 17 13 7 49 5 8 

Table 9.7. Explained variance by each coupled mode for the individual fields (SST and seasonal drought). 

Season Variable  WEMO EA/WR NAO EA MO NCP ENSO 

 

Winter 

SPI-3 

Feb 

M1 -0.28 0.10 -0.46 -0.30 -0.09 0.04 0.06 

M2 -0.02 0.33 0.66 0.04 0.49 0.45 -0.26 

M3 0.18 -0.12 0.10 -0.21 0.08 -0.05 -0.20 

 

Spring 

SPI-3 

May 

M1 0.07 -0.01 -0.48 0.04 -0.04 -0.26 -0.19 

M2 -0.21 0.13 -0.43 -0.07 0.01 0.01 -0.06 

M3 -0.09 0.07 0.40 -0.23 -0.11 0.31 0.08 

 

Autumn 

SPI-3 

Nov 

M1 0.12 0.15 0.40 0.07 0.10 0.11 -0.40 

M2 0.12 -0.07 0.16 0.05 -0.12 -0.19 0.04 

M3 -0.34 0.05 -0.29 0.21 -0.15 0.01 -0.01 

Table 9.8. Correlations between the left expansion coefficients of the selected SST modes, obtained from 

the SVD of SST and seasonal drought, and the teleconnection indices. 

 

9.2.6.1.1 Winter SST-SPI covariability  

The first and second SVD modes account for 58% and 14% of the squared covariance between the 

SST and SPI-3 Feb, respectively (Table 9.6). For the first and second modes, the temporal 

correlation between pairs of expansion coefficients (STR) is 0.44 and 0.52, respectively, and both 

are significant at the 95% confidence level (Table 9.6, Figure 9.13c). Furthermore, the first pattern 

accounts for 18% of total SST variance and 45% of total Levant drought variance, while the second 

mode accounts for 11% and 13%, respectively (Table 9.7). The homogeneus map (Figure 9.13a, 

Mode 1) shows the Atlantic SST with two centers of action with positive correlations (up to 0.85) 

in the northernmost latitudes and in the tropical region, and two centers of action with negative 

correlations (up to -0.70) in the north-central Atlantic and the central Mediterranean Sea. This 

mode associates with a tripolar pattern of sea surface temperature (SST) anomalies that show one 

sign in the western midlatitudinal North Atlantic and the opposite in the subpolar and tropical 

North Atlantic. According to the correlation coefficients calculated between this SST first mode 

and the teleconnection indices (Table 9.8), only the NAO and EA indices presented significant 

negative correlations of -0.46 and -0.30, respectively. 

The heterogeneous map (Figure 9.13b, Mode 1) revealed that this mode is strongly linked to winter 

drought in most Levant locations, with magnitudes of significant correlations around 0.30-0.49 in 
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northern Palestine, Jordan, and the majority of Syrian stations. It also has an impact on drought in 

a few isolated locations in eastern and southern Jordan. This means that during winter, when the 

northern and southern parts of the North Atlantic Ocean are unusually cold, the Levant experiences 

more drought.  

For the second SVD coupled mode, the homogeneous SST map (Figure 9.13a, Mode 2) showed 

significant positive correlations (up to 0.70) to the northern and eastern of Europe (e.g., North Sea 

and Bay of Biscay) and for the central and southern Mediterranean Sea. This mode showed 

significant positive correlations (between 0.30-0.49) with winter SPI variability in the southern 

portions of the Palestinean coast. Furthermore, some stations in eastern Syria had a negative 

correlation with this mode. The EA/WR, NAO, and MO indices presented significant positive 

correlations with the left SST expansion coefficients in the range (0.33-0.49), wherase the 

correlations was highr with the NAO index by 0.66 (Table 9.8). 

 
Figure 9.13. (a) Homogeneous maps, (b) heterogeneous maps, and (c) left (SST) and right (SPI-3 Feb) 

normalized expansion coefficient time series for the Mode 1 (upper panel) and Mode 2 (bottom panel). 

Colored areas and circles in homogeneous and heterogeneous maps represent regions and stations with 

significant correlations at 0.05 significance level (corresponding to correlation values higher than +0.30 

and lower than -0.30).  

 

9.2.6.1.2 Spring SST-SPI covariability  

Figure 9.14 depicts the spatial patterns of the two variability modes of SST obtained by the SVD 

in spring (Figure 9.14, panel a), as well as the map of heterogeneous correlations for spring SPI 

values (Figures 9.14, panel b) and the temporal variability of each mode, as represented by the 

respective coefficients of expansion (Figure 9.14, panel c). With coupling strengths of 0.40 and 
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0.36, the first two coupled modes explain 45% and 22% of the fractional variance for the 

covarience matrix SST–SPI-3 May) (Table 9.6). Furthermore, the first mode alone accounts for 

19% of total SST variability and 27% of total spring drought variability (Table 9.7). The second 

mode accounts for 11% of total SST variance and 27% of SPI values in spring (Table 9.7).  

The first and second modes' homogeneous maps (Figure 9.14a, Mode 1 and 2) show a horseshoe 

shape with significant positive correlation in the Atlantic Ocean and significant negative 

correlation in the central Atlantic Ocean and western Mediterranean Sea. The heterogeneous map 

connected to the first mode, as shown in Figure 9.14b (Mode 1), showed significant negative 

correlations with 25 stations with values ranging from -0.30 to -0.46, mostly located in the south 

of the Levant, northern Palestine, and western Jordan. The heterogeneous map for the second 

mode, on the other hand, revealed significant positive correlations (values between 0.30 - 0.46) 

with 28 stations primarily in the northern Levant, west, and south of Syria.  This pattern is 

responsible for an increase in drought events in the south of Levant and a decrease in drought 

"wetter conditions" in the north of Levant when it is abnormally warm. The correlations with 

teleconnection indices were only significant for the NAO index by -0.48 and -0.43 for both modes, 

with the same strength for the correlations between the left SST expansion coefficients and SPI 

spring values.  

 
  Figure 9.14. As Figure 9.13 but for drough in spring. 
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9.2.6.1.3 Autumn SST-SPI covariability  

With a coupling strength of 0.47, the first coupled pattern is responsible for 66% of the SCF. 

Furthermore, the variance explained by the first mode in each field accounted for 17% of the total 

SST variance and 49% of the autumn drought variance (Table 9.7). In the north and tropical 

Atlantic Ocean, the homogeneous map (Figure 9.15a, Mode 1) shows a significant negative 

correlation (up to 0.70). With 106 stations covering all regions except Syria's coastal and 

northeastern areas, the heterogeneous map (Figure 9.15a, Mode 1) revealed significant positive 

correlations (between 0.30-0.51). The Levant has wetter conditions in autumn, when the SST in 

the northern and tropical Atlantic Ocean is remarkably cold, according to the homogeneous and 

heterogeneous maps. The correlations between the SST expansion coefficient time series and the 

NAO  and ENSO indices were 0.40 and -0.40, respectively (Table 9.8). 

 
 Figure 9.15. As Figure 9.13 but for drough in autumn. 
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The third coupled mode between the SST and the autumn drought (Figure 9.15, Mode 3) explains 

6% of the SCF. The STR is 0.59, which is statistically significant at the 95% confidence level. For 

the third mode, the variance explained for each field was 13% of the total SST variance and 8% of 

the total SPI-3 Nov variance (Table 9.7). This pattern did not present a discernible relationship 

with the teleconnection indices (Table 9.8). Its SST homogeneous map revealed a strong 

correlation in the southern North Atlantic Ocean and the western Mediterranean Sea (Figure 9.15a, 

Mode 3). The heterogeneous map showed a significant positive correlation (between 0.30-0.54) 

with Syrian stations in the coastal and western areas, as shown in Figure 9.15b, Mode 3. This 

means that if the southern region of the North Atlantic Ocean is warmer than usual, the 

aforementioned Syrian regions will experience more humid conditions. 

 

9.2.6.2 Covariability between SLP and seasonal drought  

In this section, drought in the Levant and SLP relationships are investigated using SVD analysis. 

For the first three modes of the SVD analysis, Table 9.9 shows the percentage of the SCF and the 

temporal correlation between the pairs of expansion coefficients to give us an idea of the coupling 

strength. Table 9.10 also shows the variance explained by each mode for individual fields (SLP 

and seasonal drought). Table 9.11 shows the relationships between the teleconnection indices and 

the left (SLP) expansion coefficients of the selected SVD modes. 

 

Season 

 

Variable 

STR SLP-seasonal drought  

SCF (%) 

Total sig. stations 

(Heterogeneous) 

Mode1 Mode2 Mode3 Mode1 Mode2 Mode3 Modes (1,2,3) 

Winter SPI-3 Feb 0.46 0.43 0.56 53 20 7 (74,26,5) 

Spring SPI-3 May 0.58 0.58 0.64 69 13 4 +(110,0,26) -(0,32,0) 

Autumn SPI-3 Nov 0.62 0.67 0.69 74 7 4 +(141,11,2) -(0,19,6) 

Table 9.9. Summary of the strength of the coupling (STR) and the square covariance fraction (SCF) 

corresponding to the selected modes obtained from the SVD of SLP and seasonal drought for the period 

1987-2017. 

 

Season 

Variable SLP variance (%) Seasonal drought variance (%) 

Mode1 Mode2 Mode3 Mode1 Mode2 Mode3 

Winter SPI-3 Feb 16 14 12 39 19 5 

Spring SPI-3 May 19 8 5 39 17 8 

Autumn  SPI-3 Nov 13 7 7 53 8 4 

Table 9.10. Explained variance by each coupled mode for the individual fields (SLP and seasonal drought). 

Season Variable  WEMO EA/WR NAO EA MO NCP ENSO 

 

Winter 

SPI-3 

Feb 

M1 0.16 -0.60 -0.52 -0.15 -0.37 -0.54 0.45 

M2 -0.11 0.21 0.74 0.04 0.44 0.51 0.24 

M3 0.17 0.25 -0.14 0.57 -0.16 -0.10 -0.70 

 

Spring 

SPI-3 

May 

M1 -0.36 0.12 0.57 -0.02 0.51 0.54 -0.20 

M2 0.14 0.17 0.54 0.30 0.53 0.10 -0.16 

M3 -0.17 0.01 -0.13 -0.24 -0.08 0.06 0.28 

 

Autumn 

SPI-3 

Nov 

M1 -0.29 0.36 0.38 0.03 0.13 0.31 -0.72 

M2 0.02 0.08 0.38 0 -0.06 0.06 -0.40 

M3 -0.17 -0.01 0.65 -0.11 0.43 0.50 0.31 

Table 9.11. Correlations between the left expansion coefficients of the selected SLP modes, obtained from 

the SVD of SLP and seasonal drought, and the teleconnection indices. 
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9.2.6.2.1 Winter SLP-SPI covariability  

The first coupled mode in winter (Figure 9.16, left panels) explains 53% of the square covariance, 

and the strength of the coupling is 0.46, significant at the 95% confidence level (Table 9.9, Figure 

9.16c). The first mode also explains 16% of the total SLP variance and 39% of the winter drought 

variance (Table 9.10). The homogeneous map (Figure 9.16a) shows a center of significant positive 

correlation (r > 0.70) extended over the north of Asia and Atlantic Ocean, which is responsible for 

increase drought in winter in south Levant, central Palestine, north Palestine and Jordan (Figure 

9.16b). The homogeneous map also shows significant negative correlations (-0.54< r <-0.31) over 

the equatorial Atlantic Ocean, south of Europe, Mediterranean Sea, Africa, western Indian Ocean. 

The SLP over these regions positively correlated with drought in in south Levant.   

 
Figure 9.16. (a and d) Homogeneous map, (b and e) heterogeneous map, and (c and f) left (SLP) and right 

(SPI winter) normalized expansion coefficient time series for the Mode 1 and Mode 2. Colored areas and 

circles in homogeneous and heterogeneous maps represent regions and stations with significant correlations 

at 0.05 significance level (corresponding to values higher than +0.30 and lower than -0.30).  

The second mode (Figure 9.16, right panel) explains 20% of the square covariance with a strength 

of the coupling of 0.46, significant at the 95% confidence level (Table 9.9, Figure 9.16f). 

Furthermore, the second mode accounts for 14% of total SLP variation and 19% of winter drought 

variability (Table 9.10). The homogeneous map (Figure 9.16d) shows a strong significant positive 
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correlation (up to 0.85) over the Atlantic Ocean's central region, which stretches all the way to the 

Mediterranean Sea and the over the higher and mid latitudes of the Pacific Ocean. It also shows 

negative correlations over Greenland, which extend into high latitudes for the entire globe. The 

teleconnection indices, NAO, MO, NCP, and ENSO significantly correlate with the left (SLP) 

expansion coefficients time series by -0.52, -0.37, -0.54, and 0.45, respectively (Table 9.11). As 

can be seen in the heterogeneous map (Figure 9.16e), the drought variability in the most north 

Palestine and Syrian coastal areas is negatively correlated with the SLP over the Atlantic Ocean's 

central region and positively with the SLP over the Greenland and high latitudes. 

 

9.2.6.2.2 Spring SLP-SPI covariability  

Figure 9.17 presents the results of the homogeneous correlation maps (Figures 9.17a and d) for the 

first two SLP modes obtained by the SVD in spring, together with the heterogeneous correlation 

maps for SPI-3 May (Figures 9.17b and e), and the temporal variability of each mode, represented 

by their respective expansion coefficient time series (Figures 9.17c and f).  

The first mode explains 69% of the squared covariance, and the strength of the coupling reached 

0.58 (Table 9.9, Figure 9.17c). Furthermore, the first SVD mode explains 19% and 39% of the 

total variance for the SLP and spring SPI fields, respectively (Table 9.10). The homogeneous map 

(Figure 9.17a) exhibits a pattern of positive correlations (r> 0.70) over Europe and western 

Mediterranean that extends through the Atlantic until North America with lower values (up to 

0.55). The NCP, WEMO, and NAO indices significantly correlate with this left expansion 

coefficient time series by 0.54, -0.36, and 0.57, respectively (Table 9.11). The heterogeneous map 

couples this mode with drought variability in the southern Levant countries with high correlations 

(between 0.55-0.72) in the Palestine coast and northern locations (Figure 9.17b). This pattern is 

responsible for a generalized increase in SPI-3 May values (wetter conditions), mostly in south of 

Levant. 

The second coupled mode (Figure 9.17, right panel) explains 13% of the SCF and presents a 

strength of the coupling of 0.58 (Table 9.9, Figure 9.17f). It explains 8% and 17% of the total 

variance of the SLP and spring drought, respectively (Table 9.10). From the homogeneous pattern 

(Figure 9.17d), the higher positive values of correlation (> 0.70) are located over west of Europe, 

extending through the central Atlantic Ocean to the eastern coasts of North America (Figure 

9.17d), and it also has strong negative correlations over Greenland, which extend into high 

latitudes for the entire globe. This pattern presents significant correlations with the NAO, EA, and 

MO indices. The correlation between the time series of this SLP expansion coefficients and these 

teleconnection indices are between 0.30 and 0.54, significant at the 95% confidence level (Table 

9.11). The heterogeneous correlation map (Figure 9.17e) shows significant negative correlations 

at the 95% confidence level over the Syrian coastal, western, and eastern areas. This implies that  

when the SLP over the west Europe and central North Atlantic Ocean has positive anomalies and 

the SLP over the Greenland and high latitudes has negative anomalies, the SPI decreases (more 

drought), and vice versa. 
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 Figure 9.17. As Figure 9.16 but for spring.  

 

9.2.6.2.3 Autumn SLP-SPI covariability  

During autumn, the first coupled mode explains 74% of square covariance, with a couple of 

strength between the SLP and SPI-3 Nov of 0.62, which provides the highest square covariance 

among all the seasons (Table 9.9, Figure 9.18c). The first mode explains 53% of the total variance 

of the autumn drought and 13% of the SLP variance (Table 9.10). Its homogeneous SLP spatial 

pattern (Figure 9.18a) shows a structure associated with ENSO index, with two action centers 

varying in opposite phase located over the western and eastern parts of the tropical Pacific Ocean. 

The correlation between the SLP expansion coefficient time series associated with this first mode 

and the ENSO index is -0.72 (Table 9.11), being significant at the 95% confidence level. When 

the western Pacific SLP has positive anomalies and the eastern Pacific SLP has negative 

anomalies, the SPI rises (more humid conditions), and when the western Pacific SLP has negative 

anomalies and the eastern SLP has positive anomalies, the SPI falls (more drought). Additionallay, 

positive correlations were found in the southern part of the North Atlantic Ocean, South Africa 

and Asia, with high value in the north of Indian Ocean (r > 0.85) (Figure 9.18a). As shown in 

Figure 9.18b, all locations “except Syrian coastal area” showed positive and significant correlation 

with the SLP in these regions. 
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The second mode (Figure 9.18, left panel) explains 7% of the square covariance, and the strength 

of the coupling is 0.67, which is significant at the 95% confidence level (Table 9.9, Figure 9.18f). 

It also explains 7% of the total SLP variance and 8% of the autunm drought variance (Table 9.10). 

The homogeneous map (Figure 9.18b) shows a center of significant positive correlation (up to 

0.75) over the North Asia and Siberia, which is associated with increasing drought in autumn in 

Syrian coast locations and a decrease in some southern locations from Jordan and Palestine when 

high SLP anomalies are presented over Asia. 

 
 Figure 9.18. As Figure 9.16 but for autumn.  

 

9.3 Conclusions and discusion 

Using observational rainfall data from 165 meteorological stations, the standardized precipitation 

index (SPI) was computed at several timescales to assess the spatial and temporal variability of 

drought in the Levant from 1970 to 2018. The following conclusions may be drawn: 

1. The temporal variation of the mean SPI over the Levant reveals that only the year 2008 

had an extreme drought event for SPI-3 spring and SPI-6 spring/summer. In 1992, 

extremely wet conditions were observed for SPI-3 winter and SPI-6 autumn/winter. The 

wettest events were observed at many SPI timescales in 1991/1992, 1971, and 1988. 

Moderate and above drought events, on the other hand, were mostly observed at several 
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SPI timescales in 1998/1999, 2010, 2013/2014, and 2008. (e.g., 44% of the stations showed 

extreme drought events in 1999 for the SPI-12 months timescale). Furthermore, the Levant 

region experienced drought episodes in 1999-2001, 2006-2011, and 2014-2018, all of 

which were more severe at long-term drought scales. 

Several studies have identified 1991/1992 as the wettest year on record for many Levantine 

countries, and 1998/1999, 2008, and 2010 as the worst drought years on record (Turco et. al., 2017; 

Inbar and Bruins, 2004; Haensel and Zurba, 2015; Kafle and Bruins, 2009; Salim and Wildi, 2005; 

Abu Hajar et al., 2019; Mustafa and Rahman, 2018; Yenigun and Ibrahim, 2019). Drought in 

Jordan, Syria, and Israel were also documented during the periods 1999-2001 and 2006-2011 

(Mathbout et al., 2018; Kelley et al., 2015; Gleick, 2014; Mohammed et al., 2020; Al-Qinna et al., 

2011; Inbar and Bruins, 2004). According to some of these studies, one of the causes of the civil 

war in Syria was the drought that struck the country between 2007 and 2011. Drought in central, 

southwest of Asia, and Middle East was studied by Barlow et al. (2002) and (2016), who identified 

severe droughts in 1998-2001 and 2007/2008, which they attributed to a cold phase ENSO (La 

Nina) event and unusually warm ocean waters in the western Pacific. Abbas and Kousar (2021) 

also found the strong ENSO in 1998/1999 contributed rise to a 5-year drought from 1998 to 2002 

in the regions of South Asia. Significant negative correlations between the ENSO index and the 

SPI-12, -3 Feb, and -3 Nov were also detected in this study.  

2. Drought characteristics have increased significantly in all regions and for all SPI timescales 

from 1995 to 2018, compared to the period 1970-1994. In general, the regions had higher 

values of drought parameters at long-term drought scales than at short- and mid-term 

drought scales, with the southern and eastern regions of the Levant showing this result 

more clearly. Identical spatial patterns for all SPI timescales were found between the TDS 

TDD, and DF maps.  

3. According to the PCA analysis, the study area can be divided into three homogeneous PC 

regions for SPI-3, -6, and -12 months timescales, that explain 70.7%, 66.6% and 68.3% of 

the total variance, respectively, and four regions for SPI-24 months timescale that explain 

72.3% of the total variance.  

4. The least vulnerable regions to DF, TDD, and TDS are the central and northern locations 

of Palestine, northern Jordan, and southern Syria, associated with the PC-1 region at SPI-

3 and -6 months timescale, and the central and northern locations of Palestine and northern 

Jordan (PC-1 region at SPI-12 and -24 timescales). The Syrian coastal and western 

locations, associated with the PC-2 region at SPI-3 and -6 months, on the other hand, had 

the highest values for all drought characteristics. At larger timescales, the eastern and 

southern locations of the Levant, associated with the PC-3 region for SPI-12 and with PC-

3 and PC-4 regions for the SPI-24, generally showed the highest values of the DF, TDD, 

and TDS than other regions.  

5. The study confirmed the trend toward drier conditions, especially after the mid-1990s. 

Drought has become more frequent and extended, within the region. Significant (at 0.05 

level) decrasing trends were detected for the SPI-3 spring and SPI-6 spring/summer, with 

a significant change point detected in 1997. For SPI-3 spring, SPI-6 spring/summer, SPI-
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12, and SPI-24, a strong increasing drought pattern from 1990 to 2018 was observed. 

Spatially, the widespread significant decreasing trends (> 27% of the total stations) were 

observed for SPI-3 May, SPI-3 spring/summer, and SPI-12 months timescales, and they 

mainly affected the central and northern locations in Palestine, northern Jordan, and east 

of Syria, while other regions showed few significant trends. As was documented in Chapter 

6, Section 6.4.1, the significant decreasing trends for SPI-3 spring are accompanied by a 

significant temporal and spatial decline in spring precipitation for most Levant regions (see 

also the study of Ziv et al. (2014) for Israel). Moreover, dominant increasing trends were 

detected in the number of stations affected by different drought categories and at various 

SPI timescales.  

6. Despite having the lowest DF, TDD, and TDS values, the PC-1 regions showed heavy 

significant increasing trends for the DF at SPI-3 and -12 months timescales. Furthermore, 

the MDS's significant decreasing trends were concentrated over the PC-1 and PC-

3 regions. On the other hand, while the PC-2 (Syrian coast) had the highest DF, TDD, and 

TDS values, the DF and MDS showed mixed trends with no significance. In comparison 

to other regions with mixed trends, this indicates that significant changes will occur in 

central and northern Palestine, as well as eastern Syria. 

These results are consistent with other studies conducted in the Levant sub-regions and the areas 

around them. Trends towards drier conditions in large parts of the Mediterranean region have been 

also observed in Palestine, Jordan, Syria, Israel, and Lebanon (Mahfouz et al., 2015;  Aladaileh et 

al., 2019;  Hameed et al., 2018;  Haensel and Zurba 2015;  Turco et al., 2017;  Mathbout et al., 

2018). Several studies have found that global trends in drought characteristics are on the rise (Dai 

et. al., 2004; Sheffield et al., 2012). According to Cook et al. (2016), the drought that hit the Levant 

region from 1998 to 2012 was the driest on the records in the past nine centuries. Mustafa and 

Rahman (2018) showed a significant increase in magnitude of drought with the rate 0.02 unit/year 

for the period 1980-2017 in Jordan. Haensel and Zurba (2015), based on grided data for the period 

1950-2010, showed that dry anomalies for the first ten years of the 21st century were more 

abundant than wet anomalies in Palestine. Moreover, Mahfouz et al. (2016) studied the temporal 

variability of the SPI in Lebanon using gridded rainfall dataset for the period 1951–2000, and the 

results demonstraed extremely dry conditions in the year 1999 and 2014, and a decreasing trend 

of SPI-12 months timescale, for all selected regions, was detected. Mathbout et al., (2018) analysed 

the drought in Syria using data from 20 stations in 1961-2012, and their analysis suggests that 

Syria had a severe drought in the 1990s, which had been never observed before in the country. 

Furthermore, the 2007–2010 drought was the driest period in the instrumental record, happening 

just before the onset of the recent conflict in Syria.  

Hameed et al. (2018) studied drought characteristics over Iraq in 1948-2009 and the results 

revealed a significant drought exacerbation over Iraq during the sub-period of 1998–2009. Two 

significant drought periods, 1998–1999 and 2007–2008, have been identified when severe to 

extreme droughts covered about 87% and 82% of Iraq, respectively. Mohammed et al., (2020) 

examinid the variability of drought in Syria at SPI-12 scale using data from 36 stations for the 

period 1990-2010, and the results indicated drought was more intensified in the early 1999–2001 

and 2007–2010. The results also demonstrated a statistically significant decline in SPI-12 values 
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over Syria. Turco et al., (2017) studied the recent drought changes in Israel as a case study of the 

Eastern Mediterranean using grided data for the period 1980-2014, and they found significant 

decreasing trends for SPI-3 spring by -0.3 unit/decade and a decreasing trend for SP1-12 by -0.20 

unit/decade. The results also showed that drought conditions in Israel have increased since 1980, 

regardless of the drought index considered.  

According to Kafle and Bruins (2009), Israel's climate became more arid in most regions between 

1970 and 2002. They discovered a significant warming trend, as well as a decrease in annual 

average precipitation and the annual aridity index. Shohami et. al. (2011) suggested that the EM 

region is experiencing a climate change manifested by an increased warming and drying. Changes 

of atmospheric conditions during winter and the transitional seasons such as increase in the SLP 

over the entire Mediterranean Basin, increased anticyclonic circulation, a weakening of the 

Eurasian thermal high, and a rising 500-hPa geopotential height, support drier conditions resulting 

from reduction in cyclogenesis and specific humidity over the EM. Shohami et al. (2011) also 

showed a summer–autumn SST increase in the Mediterranean, which points to a reduction in the 

Mediterranean Sea's cooling effect eastward, as well as an extension of the summer season into 

autumn.  

7. Drought is primarily controlled by the NCP, WEMO, and ENSO indices in the winter, 

spring, and autumn, respectively. The NCP and WEMO had the greatest impact in the 

southern Levant, particularly on the PC-1 area, which included central and northern 

Palestine, north Jordan, and south Syria. The ENSO effect, on the other hand, covered the 

entire region in the autumn, with the exception of the Syrian coast. In addition, other indices 

also exhibited notable effects on the drought variability in the Levant regions but with less 

frequency and magnitude, such as MO and EA/WR on the SPI-winter, NCP on the SPI-

spring, and WEMO on SPI-autumn.  

There are no previous studies directly documenting the relationship between large-scale patterns 

and drought in the Levant at regional or local scales, making comparisons difficult. It is also worth 

noting that these teleconnection indices influenced rainfall variations in the Levant in a similar 

way. In Chapter 8, section 8.3, the physical mechanisms by which these indices influenced 

seasonal precipitation in the Levant, and thus the drought, were discussed. During positive NCP 

and EA/WR phases, the drought will decrease due to the cold air advection from the north towards 

the southern part of Europe and the eastern Mediterranean region, with increased moisture 

transport from the Black Sea. The ENSO influences the Middle East precipitation variability 

through an equatorward shift of the subtropical jet, if the jet stream shifts equatorward (El Niño) 

or poleward (La Niña) by a few degrees, significant changes in precipitation amounts can occur. 

During El Niño events, the polar jet streams moved further south causing increased storms and 

thus decreased drought.  

8. From the SST/SLP-drought covariability analysis, a percent between 50-60% of the total 

seasonal drought variance can be explained by the first and second SST and SLP 

covariability modes. Additionally, the first coupled SLP-seasonal drought showed higher 

values of the SCF and STR compared to the first SST-drought for spring and autumn. It 

also explains higher drought variance in the Levant than the SST. On the other hand, the 
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first coupled SST-drought showed higher values of the SCF and STR for winter compared 

to the SLP-drought, and it explains higher SPI variance in winter than the SLP.  

In most cases, the covariability analysis revealed the first SST/SLP-seasonal drought mode 

was significantly related to the southern Levant, while the second SST/SLP-seasonal 

drought mode was significantly related to the drought variability in the Syrian coast and 

northern areas. Similar results were obtained for the first and second SST/SLP-seasonal 

rainfall covariability modes in the Levant. 

9. The first SST-winter drought coupled mode reflects the SST tripolar Atlantic pattern, 

which resembles the NAO signature. This SST pattern marks by a same sign in the north 

and south of the North Atlantic Ocean and a different one in the central Atlantic and the 

Mediterranean Sea. Furthermore, the drought in all regions, except for the southern location 

of the Palestinian coast were significantly connected with this pattern. For the second 

coupled mode, when the SST in the North and Baltic Seas, west of Europe, and southern 

parts of the Mediterranean Sea are abnormally warm, wetter conditions will occur in the 

southern location of the Palestinian coast. The second mode showed significant positive 

correlations with the NCP, EA/WR, and MO indices.  

10. The first SLP-winter drought coupled mode indicates when the SLP over Europe, entire 

North Africa, North Indian Ocean and west Pacific Ocean is higher than normal, the 

drought in southern Levant decreases. For this mode, drought in the south of Levant was 

mainly correlated with the NCP index, where increase NCP “positive phase” leads to 

increase SPI values and increase rainfall. On the contrary, if the SLP over the northern 

latitudes increases, the drought will increase. The second SLP-winter drought coupled 

mode is only relevant in the western Syrian regions and some locations in most northern 

Palestine, where increasing SLP over the central Atlantic, Europe, Levant, Middle East, 

and North west and east of the Pacific Ocean is associated with increased drought in the 

Levant, while increasing SLP in northern latitudes is associated with decreased drought. 

Furthermore, the second mode resembles the NAO influence, where the positive phase of 

the NAO leads to decrease SPI values through a decrease in rainfall for the western Syrian 

regions and some locations in most northern Palestine.  

11. Similar to the SLP-spring rainfall analysis, the first SLP-spring drought coupled mode 

indicates when the SLP over central Atlantic, central Europe, the North and Caspian Seas, 

central Mediterranean Sea, Africa's northern coast, and southeastern coastal of Asia is 

higher than normal, the drought in south of Levant decreases. The second SLP-spring 

drought coupled mode is only relevant in the Syrian coastal and eastern regions, where 

increasing SLP over the central Atlantic, Europe, the Mediterranean Sea, North Africa, and 

the Middle East is associated with increased drought, while increasing SLP in northern 

latitudes is associated with decreased drought. For the first mode, SPI values in the south 

Levant were positively correlated with the NCP index, but negatively correlated with the 

WEMO index. Furthermore, the second mode resembles the NAO index effect on the 

Syrian coastal and eastern regions. 

12. Similar SST-autumn (drought and rainfall) coupled patterns were detected for the first 

mode. These patterns are characterized by increasing (decreasing) rainfall (drought) in all 
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Levant regions, except for the Syrian coast, when the SST in the north and subtropical 

Atlantic Ocean is abnormally cold. As mentioned in Chapter 8 (section 8.3), this pattern is 

associated with the ENSO index. For the second mode, very few information can be 

extracted from the coupled pattern, with very few stations significantly correlated with the 

SST pattern, and there is not any large-scale atmospheric circulations indices correlated 

with the left (SST) expansion coefficients. The third SST-drought mode exhibited same 

sign between the SST in (the west Mediterranean and subtropical Atlantic) and SPI in the 

north western and eastern locations from Syria. The left SST expansion coefficients 

showed significant negative correlation with the WEMO index.   

13. The first and second covariability modes for SLP-autumn drought and SLP-autumn rainfall 

were also similar. The first SLP-autumn drought coupled mode revealed increasing SPI 

values in all Levant locations, except the Syrian coast, when the SLP increases over the 

tropical/subtropical Atlantic Ocean, extending through Africa, Indian Ocean, and western 

Pacific, Middle East and East Asia. The SLP pattern also indicated increased SPI values 

when the SLP over the east of the Pacific Ocean is abnormally low. The left (SLP) 

expansion coefficients exhibited a strong negative correlation of -0.72 with ENSO index, 

compared to other indices. Note that the SPI structure linked to the SLP patterns in the 

heterogeneous correlation map exactly coincide with the autumn SPI connected to the 

ENSO (Figure 9.12j). The second mode, which was related to the rainfall and drought in 

Syrian coast, showed when the SLP over the northeastern Asia, the Scandinavian 

Peninsula, and eastern coast of America is higher than normal the rainfall in the Syrian 

coast will decrease and the drought will increase.  
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CHAPTER 10 

CONCLUSIONS  

 
           The main conclusions of this thesis are summarized, 

including data quality control, temperature and rainfall 

variability, extreme temperature and rainfall indices, drought 

characteristics, and the effects of large-scale circulation patterns 

on temperature and precipitation in the Levant region. 

 

In this work, two climate variables have been used, the temperature (Tmax, Tmin, and DTR) and 

the precipitation. It was based on a large set of climate data that covers the entire Levant region 

(Palestine, Israel, Jordan, Lebanon, and Syria). All data were subjected to rigorous, station-by-

station quality control. The final stations list consisted of data from 61 stations for temperature 

covering the period 1987-2018 and 165 stations for precipitation covering the period 1970-2018.  

The objective of this thesis is to investigate climate variability in the Levant. For this end, the 

spatio-temporal variability of temperature, precipitation, extreme temperature and precipitation 

indices, drought occurrence and its characteristics, and their relationships with the large-scale 

patterns in the Atlantic and Mediterranean Sea, as well as the influence of SST and SLP indicators, 

have been all analyzed. 

 

 The results have demonstrated that the Levant region is experiencing high warming trends 

at various time scales (annual, seasonal, and monthly). The trends differ relatively in 

magnitudes from one country to another, from one region to another, and for maximum and 

minimum temperatures. The spatial distribution of the seasonal temperatures (both for 

Tmax and Tmin) was homogeneous across the study area. Decreasing trends were not 

detected at any time scale. For all time scales, more than 97% of the stations exhibited 

increasing trends, in both Tmax and Tmin, with the highest frequency of significant trends 
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(> 74% of the stations) observed at the annual scale and for spring, February, March, and 

August. Specifically, the main results are:       

- The annual, spring, summer, January, February, March, June, July, and August-Tmax and 

-Tmin means increased significantly over the Levant in 2001-2018 compared to 1987-

2000. The most significant increases were observed for spring and March. Moreover, the 

annual and seasonal-Tmax and -Tmin means for the 10-years non-overlapping periods, 

1987-1996, 1997-2006, and 2007-2018 gradually increased, with the last decade, 2007-

2018, being significantly the hottest decade.  

- Significant warming trends affected both Tmax and Tmin across the Levant in 1987-2018, 

but Tmax increased at a faster rate than Tmin in winter, summer, and spring. The Levant-

Tmin, on the other hand, has warmed faster than Tmax in the autumn, May, and July.  

- Over the study area, spring-Tmax and -Tmin, winter-Tmax, and autumn-Tmin all showed 

very strong and significant seasonal warming trends. On a monthly basis, March and 

February had the highest warming trends for both Tmax and Tmin. 

- For the entire Levant, the DTR for the cold months (December-April) increased, while it 

decreased for the warm months (May-November). Significant DTR decreasing trends were 

detected for August and September. Furthermore, the highest DTR increasing trend was in 

March, although it was non-significant.  

- For annual, spring, summer, and autumn, the southern Levant Tmax increased significantly 

at a higher rate than the northern Levant. Only in winter, the Tmax of northern Levant rose 

at a higher rate than southern Levant. On the contrary, the Tmin of the northern Levant 

rose at a higher rate than the south Levant at annual, winter, and autumn scales.  

- For all countries, the highest significant warming trends were found in spring (for both 

Tmax and Tmin). Jordan had the highest significant increasing Tmax trends for annual, 

winter, spring, and summer, while Syria had the highest trend for autumn-Tmax. 

Furthermore, Syria-Tmin had the highest warming trend at annual, winter, and autumn, 

while Palestine and Jordan had the highest trends in spring-Tmin and summer-Tmin. 

- In the summer months, Jordan-Tmax and -Tmin showed the highest (significant) increases. 

It also showed the highest increasing trends in September and October.  

- The widespread significant warming trends (> 80% of the stations) were mainly observed 

in March, February, and August, both in Tmax and Tmin. Spatially, most stations from 

Jordan, northern and central areas of Palestine showed very high warming trends at annual 

scale, and for winter, spring, summer, and autumn for Tmax, with the highest value for 

spring. These regions also showed very high warming trends for the summer-Tmin and 

winter-DTR. 

 

 Regards precipitation, at various time scales, the Levant presented a trend toward lower 

rainfall amounts and drier conditions, particularly in the spring and March. Except for 

Jordan in February, no significant increasing trends in precipitation were detected for the 

Levant as a whole and for its sub-regions at any time scale. The study area showed more 
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spatial variability for seasonal rainfall than for seasonal temperatures, and it can be divided 

into three homogeneous regions: the central and north of Palestine and Jordan (PC-1), the 

coastal and western Syria (PC-2), and the eastern Syria and Jordan, and southern Palestine 

and Jordan (PC-3). Some relevant results are: 

- For the periods 1993-1999, 2003-2008, and 2012-2018, the rainfall showed a decreasing 

trend, while in 2000-2003 and 2008-2012, it showed an increasing trend. Moreover, during 

the period under investigation, 1970-2018, the spring variability gradually decreased.  

- Significant mean differences were noted only in spring rainfall for the Levant and Palestine 

in 2000-2018 compared to 1970-2018. Furthermore, the Levant as a whole, Palestine, and 

Jordan recorded significant decreases in their spring mean values for the period 1991-2018 

compared to 1970-1990.  

- Significant change points were observed in spring around 1992 for the Levant, Palestine, 

and Jordan, and around 1997 for Syria. The significant change points were also found in 

March for the Levant (in 2013), Palestine (in 2015), and Jordan (in 1999). 

- A total of 91 out of 167 stations showed significant decreasing trends in spring, with the 

highest rates for Syria's easternmost locations, coastal stations, and northern Palestine. 

Only nine stations showed a significant downward trend in the autumn, with high rates in 

Palestine's central areas. Only the eastern parts of Syria experienced significant decreases 

in winter, while the rest of the regions experienced increases, but not significant, with the 

Syrian coastal region experiencing the highest rate. 

- At monthly timescale, March had the highest frequency of significant downward trends. 

The highest trend values were detected for most stations in the West Bank, east to Haifa 

district, and Syria's most eastern stations. In April, significant decreasing trends were 

spatially concentrated in most eastern and coastal locations of Syria. On the other hand, a 

significant upward trend was observed in January and February for Jordan. 

 

 For the study of extreme events, a total of 34 extreme rainfall and temperature indices 

developed by ETCCDI and ET-SCI (some of them modified to fit the study area) were 

analyzed for Palestine and Israel (southern Levant). Warmer and drier conditions are also 

on the rise. Extremes related to minimum night-time temperature indices denoted more 

intense trends at annual and seasonal scales than those related to maximum day-time 

temperature indices. The study area had longer periods of extreme dry spells (CDD) and 

shorter periods of extreme wet spells (CWD) in the winter, spring, and combined winter-

spring seasons. Spring rainfall extreme indices showed negative trends for most of the 

indices, significantly for R1mm, R20mm, CWD, RX1day, RX3day, RX5day, and SDII 

indices. The main conclusion for the extreme events analysis are: 

- The southern Levant witnessed significant increasing trends in seven extreme temperature 

indices (TNx, TX90p, TN90p, SU25, SU30, TR20 and TR25) at annual scale, whereas it 

showed significant decreasing trends in the CSDI and TN10p indices. 



CONCLUSIONS |10 
 

222 
 

- At annual scale, significant warming trends (> 82% of the stations) were intensively 

detected in SU25, TR20 TX90p, and TN90p indices. For the TNx, SU30, TR25, and WSDI 

indices, between 29%-46% of the stations exhibited significant increasing trends.  

- At seasonal scale, significant decreasing trends were only found for TX10p-autumn, 

TN10p-spring, and TN10p-autumn. The most significant increasing trends were detected 

for summer-TXn, -TNn, and -TNx, for more than 90% of total stations. For TN90p-spring 

and TN90p-summer, 61% and 85% of the locations showed significant increasing trends, 

respectively.  

- The annual averages for frequency-based precipitation extreme indices exhibited 

decreasing trends, significant for the R1mm and CDD indices, covering the northern, 

northeastern, and West Bank stations, for the R1mm index, and some southern coastal 

locations for the CDD index. Conversely, the percent and intensity based-extreme indices 

showed increasing trends, significant for the R99Ptot index.  

- The significantly decreasing trend in the CDD index did not lead to an increase in the CWD 

index, which may points at a change in the temporal organization of the dry and wet days. 

- Spring and autumn are the seasons that contribute the most to annual declines in the 

PRCPTOT, R1mm, R10mm, R20mm, and CDD indices, while winter is the season that 

contributes the most in the RX1day, RX3day, RX5day, and SDII indices. 

- At seasonal scale, only the winter-R1mm index showed a declining trend. The increasing 

trend of the PRCPTOT index, together with the decreasing trend of the R1mm index, led 

to an increase of the simple daily intensity index (SDII), which is significant for the 

northwestern sites. In addition, the northern locations have experienced intensively rising 

trends in the RX1day index.  

- The rising trends in RX1day and the SDII indices in the northern regions may indicate an 

increase in precipitation intensity and the possibility of flooding in these areas, particularly, 

for localities with an annual precipitation maximum of more than 1000 mm.  

- For spring, extreme indices showed negative trends for most of the indices, significant for 

R1mm, R20mm, CWD, RX1day, RX3day, RX5day, and SDII mainly in stations covering 

central and northern locations. With the exception of the CDD index, there was a very 

consistent pattern of declining trends across the study area, with more than 75% of stations 

showing declining trends in all indices. During the autumn, significant decreases in 

RX1day, RX3day, and SDII were observed primarily in the central regions.  

 

 Drought analysis shows that it has become more frequent and widespread in the region, 

particularly since the mid-1990s. In comparison to 1970-1994, drought features have 

increased significantly in all regions and for all SPI time scales in 1995-2018. According to 

the PCA, the study area can be divided into three homogeneous regions based on the SPI-3, 

-6, and -12 months, and into four regions based on the SPI-24 months time scale. The first 

PC represents the central and northern locations from Palestine, northern locations from 

Jordan, and south of Syria at SPI-3 and -6 months timescales. The second PC represents 
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Syria's western and coastal regions. The third PC is associated with the Levant's eastern 

and southern locations. Little difference was detected for the SPI-12 and -24 months, when 

the second PC extended to cover many locations in north of Palestine at SPI-12 and -24. 

Furthermore, the third PC is restricted to Syria's eastern regions, whereas the southern 

Palestine and all stations in Jordan, with the exception of the northern stations, conformed 

to the fourth PC for the SPI-24 months. The main findings are summarized as follows: 

- The wettest events were observed at many SPI time scales in 1991/1992, 1971, and 1988. 

Drought events of moderate and above, on the other hand, were mostly observed at several 

SPI timescales in 1998/1999, 2010, 2013/2014, and 2008. The Levant region experienced 

drought episodes in 1999-2001, 2006-2011, and 2014-2018, all of which were more severe 

on long-term hydrological drought.  

- Significant decreasing trends were detected across the Levant for the SPI-3 spring and SPI-

6 spring/summer, with a significant change point detected in 1997. For SPI-3 spring, SPI-

6 spring/summer, SPI-12, and SPI-24, a strong downward trend from 1990 to 2018 was 

observed over the Levant. The widespread significant decreasing trends mainly affected 

the central and northern locations in Palestine, northern Jordan, and eastern Syria. The 

significant decreasing trends in SPI-3 spring are accompanied by a significant temporal 

and spatial decline in spring precipitation for most Levant regions.  

- In general, the locations had higher values of drought characteristics on long-term 

hydrological drought than on short- and mid-term meteorological drought scales, with the 

southern and eastern regions of the Levant showing this result more clearly. The regions 

with lowest DF, TDD, and TDS values were in the central and northern locations of 

Palestine, northern Jordan, and southern Syria (PC-1 region for SPI-3 and -6 months), and 

for the central and northern locations of Palestine and north of Jordan (PC-1 region at SPI-

12 and -24 months). The Syrian coastal and western locations (PC-2 region at SPI-3 and -

6 months), on the other hand, had the highest values of all drought parameters.  

- Despite having the lowest DF, TDD, and TDS values, the central and northern locations 

from Palestine, northern locations of Jordan, and southern and eastern Syria showed high 

significant increasing trends for the DF at SPI-3 and -12 months’ time scales. Furthermore, 

they also showed MDS's significant decreasing trends.  

 

 Regarding the influence of large-scale ocean-atmospheric circulation patterns on seasonal 

temperatures, precipitation and drought, the results show that, along with the complex 

topography of the Levant, many physical processes that are linked to large‐scale ocean-

atmospheric circulation interactions dominate the Levant temperatures and precipitation 

variability. The results strongly support the NCP, NAO, WEMO, and ENSO indices as 

potential predictors due to their high ability in explaining the temperatures and rainfall 

variability in different seasons. Additionally, the MO and EA/WR indices also present 

significant relationships with winter rainfall. The correlation of the NAO, NCP, MO, and 

EA/WR indices is always negative on temperatures and positive on rainfall, except for the 

NAO, which has an inverse effect on rainfall. On the other hand, the effect of the ENSO 
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and WEMO indices is positive on temperatures and negative on the rainfall. In most cases, 

similar mechanisms and spatial patterns were detected between the SLP/SST-rainfall and 

SLP/SST-drought. The main findings are summarized as follows:  

- The NCP index is the major influential atmospheric circulation index for the seasonal 

temperatures and rainfall over the Levant region 

- The effect of the ENSO index was mainly restricted for the summer temperature and for 

autumn precipitation.  

- The WEMO index notably exerted influence in spring, both for temperature and 

precipitation. 

- Based on the SVD analysis, the SST (of the North Atlantic Ocean and Mediterranean Sea) 

and the SLP (North Hemisphere) explain temperature variability better than precipitation 

one, which could be due to the higher spatial and temporal variability of precipitation, 

mainly in transition months, compared to the more homogeneous temperature behaviour.  

- The SST and winter temperatures/rainfall coupled modes reflect the SST tripolar Atlantic 

Ocean pattern, which is related with the NAO. During the NAO positive phase, the SST in 

the subpolar and tropical Atlantic will be colder than normal due to lose energy to the 

atmosphere by stronger westerly and northeast trade winds. Atlantic SST in the middle 

latitudes will be higher than normal due to lower wind speeds and a lower turbulent heat 

flux out of the ocean, resulting in a drop in winter Levant temperatures and rainfall 

(increase drought), and vice versa.  

- The Mediterranean SST had little impact on seasonal rainfall. It is possible that the 

relationship between Mediterranean SST and seasonal precipitation in the Levant is not 

causal, or that distinct atmospheric processes influence both fields. On the other hand, the 

SST of the Eastern Mediterranean and Black Sea is strongly and positively related to all 

seasonal temperatures. If the westerlies are weak (negative NAO), another large-scale 

processes related to NCP and EA/WR indices may take over, bringing a local northeasterly 

cold wind regime over the Caspian and Black Seas. Northeasterly winds dominate over the 

Caspian and Black Seas during the positive phases of the NCP and EA/WR indices, 

bringing cold air to the region and causing a decrease in SST, which leads to lower seasonal 

Levant temperatures. Similarly, during the negative phases, the winds blow primarily from 

the southwest, bringing warm air from these regions and, as a result, increasing SST, which 

leads to higher seasonal temperatures. 

- The SST and spring temperatures/rainfall coupled modes reflect the SSTs horseshoe 

Atlantic Ocean pattern, which not resembles the NAO signature, except for the second 

coupled mode of the SST-rainfall related to the Syrian coast. The Atlantic SSTs horseshoe 

shape showed a negative association with the temperature and rainfall, while the SST in 

the Mediterranean Sea, Black, North, and Red seas had positive correlations with the 

temperature and rainfall. This could indicate that regional atmospheric-ocean interactions 

(like Mediterranean SLP, and the NCP index) have a stronger influence in spring and 

autumn than the NAO index, as a natural result of the NAO's weaker influence in the 

transitional seasons.    
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- A similar SST structure was found for the SST-summer temperatures and the first SST-

autumn rainfall coupled modes, distinguishable by the positive association between the 

SST in the north and tropical/subtropical Atlantic Ocean and summer temperatures, and a 

negative association between the SST in these regions and autumn rainfall. This SST 

variability mode is associated with the ENSO's positive and negative effects on summer 

temperatures and autumn rainfall, respectively. The ENSO-related Atlantic warmings 

occur as a result of reductions in the surface NE trade wind speeds, which in turn reduce 

latent and sensible heat losses (increasing SST) over the Tropical Atlantic, leading to 

increase summer temperatures in the Levant. 

- With the exception of the summer, the SLP-seasonal temperatures coupled modes 

generally showed a negative correlation between the SLP over the North Africa, 

Mediterranean, Europe (except most north part), and central Atlantic (Azores) and seasonal 

temperatures, whereas positive correlations were found between the SLP in the north 

latitudes and seasonal temperatures. These coupled patterns reflect the signatures of the 

NAO, NCP, MO, WEMO, and EAWR indices. For the SLP-summer temperatures, 

increasing SLP in tropical/subtropical Pacific Ocean, associated with the ENSO signal, is 

associated with increased temperatures.   

 

Future work 

In this thesis all efforts have been aimed at offering an analysis of the spatio-temporal 

variability of the climate in the Levant region, trying to analyze the causal mechanisms 

responsible for it. Then, the results obtained are the starting point for the consideration of 

potential predictors for seasonal temperature, rainfall or extreme events such as drought 

occurrence. In this framework several key points could be improved in the future focused 

on the study of the climate predictability in this region. For this end, a better understanding 

the role of the large-scale circulation patterns in the seasonal temperature and precipitation 

is crucial. One way could be to complete the potential predictor fields, adding more 

teleconnection indices and expanding the spatial cover of the SST. Once a more complete 

set of possible predictors has been identified, their predictive ability should be analyzed. 

Different techniques could be used for the development of statistical models of seasonal 

climate prediction, such as the application of the SVD between the predictor fields and the 

temperature and precipitation of Levant at different seasonal lags, or the application of 

statistical linear regression models, among others. 

Additionally, the region under study also could be expanded trough obtaining daily 

temperature and precipitation time series for Jordan and Syria, in order to analyze changes 

in extreme climate events in these regions, where this topic has never been explored before. 

Other important issue in this respect is related with the use of different drought indices for 

the analysis of this phenomenon in the region. For example, the use of the Standardized 

Precipitation Evapotranspiration Index (SPEI), which account for both rainfall and 
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potential evapotranspiration, could be used to better understand the impact of temperature 

on water demand and moisture variability under climate change conditions. 
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CAPÍTULO 10 

CONCLUSIONES 

 

            Las principales conclusiones de esta Tesis, que incluyen 

el control de calidad de los datos, el estudio de la variabilidad de 

la temperatura y las precipitaciones y de los índices de 

temperatura y precipitaciones extremas, así como las 

características de la sequía y la influencia de los patrones de 

circulación a gran escala sobre la temperatura y la precipitación 

en la región de Levante, son resumidas en este capítulo. 

En este trabajo se han utilizado dos variables climáticas, la temperatura (Tmax, Tmin y DTR) y la 

precipitación. El estudio se ha basado en un gran conjunto de datos climáticos que cubren toda la 

región del Levante (Palestina, Israel, Jordania, Líbano y Siria). Los datos de cada localidad se 

sometieron a un riguroso control de calidad. El conjunto final de datos analizados consistió en 

datos procedentes de 61 estaciones para la temperatura, que cubren el período 1987-2018, y 165 

estaciones para la precipitación, que cubren el período 1970-2018. 

El objetivo de esta Tesis es investigar la variabilidad climática en el Levante. Para ello, se ha 

estudiado la variabilidad espacio-temporal de la temperatura, la precipitación, los índices de 

temperatura y precipitación extrema, la ocurrencia de sequías y sus características, y sus relaciones 

con los principales patrones de teleconexión en el Atlántico y Mediterráneo, así como los 

principales modos de variabilidad acoplados entre la SST y SLP y las variables analizadas.  

 

 Los resultados han demostrado que la región de Levante está experimentando altas 

tendencias de calentamiento en varias escalas de tiempo (anual, estacional y mensual). Las 

tendencias difieren relativamente en magnitud de un país a otro, de una región a otra y entre 

las temperaturas máximas y mínimas. La distribución espacial de las temperaturas 

estacionales (tanto para Tmax como para Tmin) fue homogénea en toda el área de estudio. 

No se detectaron tendencias decrecientes en ninguna escala de tiempo. Para todas las 

escalas de tiempo, más del 97% de las estaciones exhibieron tendencias crecientes, tanto en 
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la Tmax como en la Tmin, con la mayor frecuencia de tendencias significativas (> 74% de 

las estaciones) observadas a escala anual y para la primavera, febrero, marzo, y agosto. En 

concreto, los principales resultados son:  

- Las medias anuales, de primavera, verano y de los meses de enero, febrero, marzo, 

junio, julio y agosto, tanto para la Tmax como para la Tmin, aumentaron 

significativamente en el Levante en 2001-2018 en comparación con 1987-2000. Los 

incrementos más significativos se observaron en primavera y en el mes de marzo. 

Además, las medias anuales y estacionales de la Tmax y la Tmin para los períodos de 

10 años no superpuestos, 1987-1996, 1997-2006 y 2007-2018 aumentaron 

gradualmente, siendo la última década, 2007-2018, significativamente la más cálida.  

- Las tendencias de calentamiento significativas afectaron tanto a la Tmax como a la 

Tmin en todo el Levante en el periodo 1987-2018, pero la Tmax aumentó a un ritmo 

más rápido que la Tmin en invierno, verano y primavera. La Tmin, por otro lado, 

incrementó más que la Tmax en otoño, mayo y julio. 

- En el área de estudio, las series de primavera de Tmax y Tmin, la de invierno de Tmax 

y las de otoño de Tmin mostraron tendencias de calentamiento estacional muy fuertes 

y significativas. Mensualmente, marzo y febrero tuvieron las tendencias de 

calentamiento más altas tanto para la Tmax como para la Tmin. 

- Para todo el Levante, el DTR para los meses fríos (diciembre-abril) aumentó, mientras 

que disminuyó para los meses cálidos (mayo-noviembre). Se detectaron tendencias 

significativas a la baja de DTR para agosto y septiembre. Además, la mayor tendencia 

al alza de DTR se registró en marzo, aunque no fue significativa. 

- Para la primavera, el verano y el otoño, la Tmax del Levante meridional aumentó 

significativamente a un ritmo mayor que la del Levante septentrional. Solo en invierno, 

la Tmax del norte del Levante aumentó a un ritmo mayor que la del sur. Por el contrario, 

la Tmin del norte de Levante aumentó a un ritmo mayor que el sur a escala anual, y 

para invierno y otoño. 

- Para todos los países analizados, las tendencias crecientes significativas más altas se 

encontraron en primavera (tanto para la Tmax como para la Tmin). Para Jordania se 

encontraron las tendencias de aumento significativo de la Tmax más altas para la serie 

anual, de invierno, primavera y verano, mientras que para Siria la tendencia más alta 

de Tmax fue en otoño. Para la Tmin, Siria tuvo la mayor tasa de calentamiento anual, 

y en invierno y otoño, mientras que Palestina y Jordania mostraron las mayores 

tendencias en primavera y verano. 

- Las tendencias generalizadas de calentamiento significativo (> 80% de las estaciones) 

se observaron principalmente en marzo, febrero y agosto, tanto en la Tmax como en la 

Tmin. Espacialmente, la mayoría de las estaciones de Jordania y las áreas norte y 

central de Palestina muestran tendencias de calentamiento muy altas para la Tmax 

anual, de invierno, primavera, verano y otoño, con el valor más alto para la primavera. 
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Estas regiones también muestran tendencias de calentamiento muy altas para la Tmin 

de verano y el DTR de invierno. 

 

 Respecto a la precipitación, a diversas escalas de tiempo, el Levante presentó una tendencia 

hacia menores cantidades de lluvia y condiciones más secas, particularmente en la 

primavera y marzo. A excepción de Jordania en febrero, no se detectaron tendencias 

crecientes significativas en las precipitaciones para el Levante en su conjunto ni para sus 

subregiones en ninguna escala de tiempo. El área de estudio mostró más variabilidad 

espacial para las precipitaciones estacionales que para las temperaturas estacionales, 

pudiéndose establecer tres regiones homogéneas: el centro y norte de Palestina y Jordania 

(PC-1), la costa y el oeste de Siria (PC-2), y el este de Siria y Jordania y sur de Palestina y 

Jordania (PC-3). Algunos resultados relevantes son: 

- Para los períodos 1993-1999, 2003-2008 y 2012-2018, la precipitación mostró una 

tendencia decreciente, mientras que en 2000-2003 y 2008-2012 mostró una tendencia 

creciente. Además, durante el período investigado, 1970-2018, la variabilidad de la 

precipitación de primavera disminuyó gradualmente. 

- Se observaron diferencias medias significativas solo en las precipitaciones de 

primavera para la región en conjunto del Levante y para Palestina en el periodo 2000-

2018 en comparación con el periodo 1970-2018. Además, el Levante en su conjunto, 

Palestina y Jordania registraron disminuciones significativas en sus valores medios de 

la precipitación de primavera para el período 1991-2018 en comparación con 1970-

1990. 

- Se observaron puntos de cambio significativos en la precipitación de primavera 

alrededor de 1992 para el Levante en su conjunto, Palestina y Jordania, y alrededor de 

1997 para Siria. Los puntos de cambio significativos también se encontraron en marzo 

para el Levante (en 2013), Palestina (en 2015) y Jordania (en 1999). 

- Un total de 91 de las 167 estaciones mostraron tendencias decrecientes significativas 

en la primavera, con las tasas más altas para las ubicaciones más orientales de Siria, las 

estaciones costeras y el norte de Palestina. Solo nueve estaciones mostraron una 

tendencia descendente significativa en el otoño, con tasas altas en las áreas centrales 

de Palestina. Solo las partes orientales de Siria experimentaron disminuciones 

significativas en invierno, mientras que el resto de las regiones experimentaron 

aumentos, aunque no significativos. 

- A escala de tiempo mensual, marzo tuvo la mayor frecuencia de tendencias 

significativas decrecientes. Los valores de tendencia más altos se detectaron para la 

mayoría de las estaciones en Cisjordania, al este del distrito de Haifa y las estaciones 

más al este de Siria. En abril, las tendencias decrecientes significativas se concentraron 

espacialmente en la mayoría de las ubicaciones costeras y orientales de Siria. Por otro 

lado, se observó una tendencia ascendente significativa en enero y febrero para 

Jordania.  
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 Para el estudio de eventos extremos, se analizaron un total de 34 índices de temperatura y 

precipitación extrema desarrollados por el ETCCDI y ET-SCI (algunos de los cuales fueron 

modificados para ajustarse al área de estudio) para Palestina e Israel (sur del Levante). Las 

condiciones más cálidas y secas también están aumentando. Los extremos relacionados con 

los índices de temperatura mínima nocturna denotaron tendencias más intensas en escalas 

anuales y estacionales que las relacionadas con los índices de temperatura máxima diurna. 

El área de estudio tuvo períodos más largos de períodos secos extremos (CDD) y períodos 

más cortos de períodos húmedos extremos (CWD) en invierno, primavera y en las 

temporadas combinadas de invierno-primavera. La mayoría de los índices extremos de lluvia 

de primavera mostraron tendencias negativas, significativas para los índices R1mm, 

R20mm, CWD, RX1day, RX3day, RX5day y SDII. Las principales conclusiones para el 

análisis de índices de extremos son:  

- El sur del Levante mostró tendencias crecientes significativas en siete índices de 

temperaturas extremas (TNx, TX90p, TN90p, SU25, SU30, TR20 y TR25) a escala 

anual, mientras que mostró tendencias decrecientes significativas en los índices CSDI 

y TN10p. 

- A escala anual, se detectaron tendencias de calentamiento significativas (> 82% de las 

estaciones) en los índices SU25, TR20 TX90p y TN90p. Para los índices TNx, SU30, 

TR25 y WSDI, entre el 29% y el 46% de las estaciones exhibieron tendencias crecientes 

significativas. 

- A escala estacional, solo se detectaron tendencias decrecientes significativas para los 

índice TX10p y TN10p de otoño y de primavera. Las tendencias crecientes más 

significativas se detectaron para los índices TXn, TNn y TNx de verano, para más del 

90% del total de estaciones. Para TN90p de primavera y de verano, el 61% y 85%, 

respectivamente, mostró tendencias crecientes significativas. 

- Los valores anuales para los índices extremos de precipitación basados en la frecuencia 

exhibieron tendencias decrecientes, significativas para los índices R1mm y CDD, en 

localidades del norte, noreste y Cisjordania, para el índice R1mm, y algunas 

localizaciones costeras del sur para el índice CDD. Por el contrario, los índices de 

extremos basados en el porcentaje y la intensidad mostraron tendencias crecientes, 

significativas para el índice R99Ptot. 

- La tendencia significativamente decreciente en el índice CDD no condujo a un aumento 

en el índice CWD, lo que sugiere que las lluvias tienden a ocurrir en días más aislados. 

- La primavera y el otoño son las estaciones que más contribuyen a los descensos anuales 

en los índices PRCPTOT, R1mm, R10mm, R20mm y CDD, mientras que el invierno 

es la temporada que más contribuye en los índices RX1day, RX3day, RX5day y SDII. 

- A escala estacional, solo el índice R1mm de invierno mostró una tendencia a la baja. 

La tendencia creciente del índice PRCPTOT, junto con la tendencia decreciente del 

índice R1mm, llevó a un aumento del índice de intensidad diaria simple (SDII), que es 
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significativo para localidades del noroeste. Además, las ubicaciones del norte han 

experimentado tendencias ascendentes intensas en el índice RX1day. 

- Las tendencias ascendentes tanto en los índices RX1day como SDII en las localidades 

del norte pueden indicar un aumento en la intensidad de las precipitaciones y la 

posibilidad de inundaciones en estas áreas, particularmente, para localidades con un 

máximo anual de precipitación de más de 1000 mm. 

- Para la primavera, los índices extremos mostraron tendencias negativas para la mayoría 

de los índices, significativas para R1mm, R20mm, CWD, RX1day, RX3day, RX5day 

y SDII. Estos índices mostraron tendencias decrecientes significativas en las estaciones 

del centro y norte. Con la excepción del índice CDD, hubo un patrón muy consistente 

de tendencias decrecientes en el área de estudio, con más del 75% de las estaciones 

mostrando tendencias decrecientes en todos los índices. Durante el otoño, se 

observaron disminuciones significativas en RX1day, RX3day y SDII principalmente 

en las localidades centrales. 

 

 El análisis de la sequía muestra que esta se ha vuelto más frecuente y generalizada en la 

región, particularmente desde mediados de la década de 1990. En comparación con 1970-

1994, las características de la sequía han aumentado significativamente en todas las 

regiones y para todas las escalas de tiempo analizadas del SPI en el periodo 1995-2018. 

Según el PCA, el área de estudio se puede dividir en tres regiones homogéneas para el SPI 

en escalas de 3, 6 y 12 meses, y en cuatro regiones para el SPI a 24 meses. La primera PC 

representa las ubicaciones del centro y norte de Palestina, las ubicaciones del norte de 

Jordania y el sur de Siria en escalas de tiempo de 3 y 6 meses. La segunda PC representa 

las regiones costeras y occidentales de Siria. La tercera PC está asociado con las ubicaciones 

este y sur de Levante. Se detectó poca diferencia en las escalas de tiempo SPI-12 y -24, donde 

la segunda PC se extiende para cubrir muchas ubicaciones en el norte de Palestina. Además, 

la tercera PC está restringida a las regiones del este de Siria, mientras que el sur de Palestina 

y todas las estaciones en Jordania, con la excepción de las estaciones del norte, se asocian 

a la cuarta PC para el SPI-24 meses. Los principales hallazgos se resumen a continuación: 

- Los eventos más húmedos se observaron en diversas escalas de tiempo del SPI en los 

años 1991/1992, 1971 y 1988. Los eventos de sequía moderados y fuertes, por otro 

lado, se observaron principalmente en varias escalas de tiempo del SPI en 1998/1999, 

2010, 2013/2014 y 2008. La región de Levante experimentó episodios de sequía en 

1999-2001, 2006-2011 y 2014-2018, los cuales fueron más graves al poder catalogarse 

como sequía hidrológica a largo plazo. 

- Se detectaron tendencias decrecientes significativas en todo el Levante para el SPI-3 

de primavera y SPI-6 de primavera/verano, con un punto de cambio significativo 

detectado en 1997. Para el SPI-3 de primavera, SPI-6 primavera/verano, SPI-12 y SPI-

24, se observó una fuerte tendencia decreciente de 1990 a 2018 en el Levante. Las 

tendencias descendentes significativas generalizadas se observaron para las escalas de 
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tiempo SPI-3 de mayo, SPI-3 primavera /verano y SPI-12, y afectaron principalmente 

al centro y norte de Palestina, norte de Jordania y el este de Siria. Las tendencias 

decrecientes significativas en el SPI-3 de primavera están acompañadas por una 

disminución temporal y espacial significativa en la precipitación de primavera para la 

mayoría de las regiones del Levante. 

- En general, las diversas áreas presentaron características más marcadas en la sequía 

hidrológica a largo plazo que en las escalas de sequía meteorológica a corto y medio 

plazo, siendo las regiones sur y este del Levante las que muestran este resultado con 

mayor claridad. Las regiones con valores más bajos de DF, TDD y TDS, en distintas 

escalas de tiempo, se encontraron en el centro y norte de Palestina, norte de Jordania y 

sur de Siria (región PC-1 para el SPI-3 y -6 meses), y para las ubicaciones del centro y 

norte de Palestina (región PC-1 para el SPI-12 y -24 meses). Las localidades costeras 

y occidentales de Siria (región PC-2 para el SPI-3 y -6 meses), por otro lado, 

presentaron los valores más altos de estos parámetros de sequía. 

- A pesar de tener los valores más bajos de DF, TDD y TDS, las localidades del centro 

y norte de Palestina, las del norte de Jordania y el sur y este de Siria mostraron 

tendencias crecientes significativas para la DF en las escalas de tiempo del SPI-3 y -12 

meses. Además, también mostraron tendencias decrecientes significativas de MDS. La 

costa siria tuvo los valores más altos de DF, TDD y TDS. 

 

 En cuanto a la influencia de los patrones de circulación océano-atmosférica a gran escala 

en las temperaturas estacionales, las precipitaciones y la sequía, los resultados muestran 

que, junto con la compleja topografía del Levante, muchos procesos físicos que están 

vinculados a las interacciones de la circulación océano-atmosférica a gran escala podrían 

influir en la variabilidad de las temperaturas y las precipitaciones del Levante. Los 

resultados presentan firmemente a los índices de teleconexión NCP, NAO, WEMO y ENSO 

como potenciales predictores debido a su alta capacidad para explicar las temperaturas y la 

variabilidad de las precipitaciones en las diferentes estaciones. Además, los índices MO y 

EA/WR también presentan relaciones significativas con las lluvias invernales. La 

correlación de los índices NAO, NCP, MO y EA/WR es siempre negativa con las 

temperaturas y positiva con las precipitaciones, a excepción del NAO, que tiene un efecto 

inverso sobre las precipitaciones. Por otro lado, la correlación de los índices ENSO y WEMO 

es positiva con las temperaturas y negativa con las precipitaciones. En la mayoría de los 

casos, se detectaron relaciones y patrones acoplados de estructura espacial similares entre 

la SLP/SST y la precipitación, y entre la SLP/SST y la sequía. Los principales hallazgos se 

resumen a continuación: 

- El índice NCP es el índice de circulación atmosférica más influyente para las 

temperaturas estacionales y las precipitaciones en la región de Levante. 

- El efecto del índice ENSO se restringió principalmente a la temperatura de verano y a 

las precipitaciones de otoño. 
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- El índice WEMO parece ejercer una influencia notable durante la primavera, tanto en 

la temperatura como en las precipitaciones. 

- Los resultados del SVD muestran que la SST (del Atlántico Norte y Mar Mediterráneo) 

y la SLP (del Hemisferio Norte) explican mejor la variabilidad de la temperatura que 

la de la precipitación, lo que podría deberse a la mayor variabilidad espacial y temporal 

de la precipitación, principalmente en los meses de transición, en comparación con el 

comportamiento más homogéneo de la temperatura. 

- Los modos de variabilidad acoplados de la SST y la temperatura/precipitación, en 

invierno, reflejan el patrón tripolar de la SST del Océano Atlántico, que está 

relacionado con la NAO. Durante la fase positiva de NAO, la SST en el Atlántico 

subpolar y tropical tiende a ser más fría de lo normal debido a la pérdida de energía a 

la atmósfera debido a los vientos alisios del oeste y noreste más fuertes. La SST de 

Atlántico en las latitudes medias es más alta de lo normal debido a las velocidades del 

viento más bajas y a la reducción de los flujos de calor hacia la atmósfera, lo que resulta 

en una disminución en las temperaturas y precipitaciones de invierno en el Levante (y 

por tanto un aumento de la sequía), y viceversa. 

- La SST del Mediterráneo presenta un impacto limitado en precipitación estacional. Es 

posible que la relación entre la SST mediterránea y la precipitación estacional en el 

Levante no sea causal, o que distintos procesos atmosféricos influyan en ambos 

campos. Por otro lado, la SST del Mediterráneo oriental y el Mar Negro están 

relacionadas fuerte y positivamente con todas las temperaturas estacionales. Note que, 

si los vientos del oeste son débiles (NAO negativo), otros procesos a gran escala 

relacionados con los índices NCP y EA/WR pueden tomar importancia, estableciendo 

un régimen local de vientos fríos del noreste sobre los Mares Caspio y Negro. Los 

vientos del noreste dominan estos mares durante las fases positivas de los índices NCP 

y EA/WR, estableciendo aire frío sobre la región y provocando una disminución de la 

SST, lo que conduce a temperaturas estacionales más bajas en el Levante. De manera 

opuesta, durante las fases negativas, los vientos soplan principalmente del suroeste, 

transportando aire cálido de estas regiones y, como resultado, aumentando la SST, lo 

que conduce a temperaturas estacionales más altas en el Levante. 

- Los modos acoplados de la SST y la temperatura/precipitación, en primavera, reflejan 

el patrón en herradura de la SST del Atlántico Norte, que no muestra correlación con 

la NAO, excepto para el segundo modo acoplado de la SST y la precipitación 

relacionado con las localidades situadas en la costa de Siria. La forma de herradura de 

la SST del Atlántico muestra una correlación negativa con las temperaturas y las 

precipitaciones, mientras que la SST en los mares Mediterráneo, Negro, Norte y Rojo 

presenta correlaciones positivas con la temperatura y las precipitaciones. Esto podría 

indicar que otras interacciones atmosféricas-oceánicas regionales (como la SLP del 

Mediterráneo y el índice NCP) podrían tener una influencia más fuerte en primavera y 
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otoño que el índice NAO, como resultado natural de la influencia más débil de la NAO 

en las estaciones de transición. 

- Se encontró una estructura similar de la SST para los primeros modos acoplados de la 

SST y la temperatura de verano, y de la SST y la precipitación de otoño. Esta estructura 

se distingue por la asociación positiva entre la SST en el norte y en el Océano Atlántico 

tropical/subtropical y las temperaturas de verano, y una correlación negativa entre la 

SST de estas regiones y las lluvias otoñales. Además, este modo de variabilidad de la 

SST está asociado con los efectos positivos y negativos del ENSO sobre las 

temperaturas de verano y las precipitaciones de otoño, respectivamente. El 

calentamiento de la SST del Atlántico, relacionado con el ENSO, ocurre como 

resultado de la reducción en la velocidad de los vientos alisios, que a su vez reducen 

las pérdidas de calor latente y sensible (aumentando la SST) sobre el Atlántico tropical, 

lo que lleva a un aumento de las temperaturas del Levante en verano. 

- Excepto en verano, los modos de variabilidad acoplados entre la SLP y las temperaturas 

estacionales, mostraron en general una correlación negativa entre las SLP en el norte 

de África, el Mediterráneo, Europa (excepto la mayor parte del norte) y el Atlántico 

central (Azores), y las temperaturas estacionales, mientras que se encontraron 

correlaciones positivas entre la SLP en las latitudes más al norte y las temperaturas 

estacionales. Estos patrones acoplados reflejan, en parte, la influencia de los índices 

NAO, NCP, MO, WEMO y EA/WR. Para el acoplamiento de la SLP con la temperatura 

de verano, anomalías positivas de la SLP en la región tropical/subtropical del Océano 

Pacífico, asociadas con el ENSO, están relacionadas con un aumento de las 

temperaturas en el Levante.  

 

Trabajo futuro 

A lo largo de esta Tesis todos los esfuerzos se han dirigido a ofrecer un análisis de la variabilidad 

espacio-temporal del clima en la región del Levante, tratando de analizar los mecanismos causales 

responsables de la misma. Por tanto, los resultados obtenidos en este trabajo establecen un punto 

de partida para la consideración de potenciales predictores de la temperatura y precipitación 

estacionales, y de los eventos extremos como la ocurrencia de sequías. En este marco, varios 

puntos clave podrían mejorarse en el futuro centrados en el estudio de la predictibilidad climática 

en esta región. Para ello, resulta fundamental mejorar la comprensión del papel de los patrones de 

circulación a gran escala en la temperatura y las precipitaciones estacionales. Una forma podría 

ser completando los posibles campos predictores, por ejemplo, agregando más índices de 

teleconexión al estudio y expandiendo la cobertura espacial de la SST, limitada aquí al Atlántico 

Norte. Una vez que identificado un conjunto más completo de potenciales predictores, la capacidad 

predictiva de los mismos debería ser analizada. Para ello se podrían utilizar diferentes técnicas, 

con la finalidad de poder desarrollar modelos estadísticos de predicción climática estacional, como 

la aplicación de la SVD entre los campos predictores y la temperatura y precipitación del Levante 
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a diferentes retrasos estacionales, o la aplicación de modelos estadísticos de regresión lineal, entre 

otros. 

Además, la región de estudio también podría ser ampliada a través de la obtención de series 

temporales de temperatura y precipitación diarias para Jordania y Siria, con el fin de analizar los 

cambios en los eventos climáticos extremos en estas regiones, donde esta temática no se ha sido 

explorado aún. Otro aspecto importante al respecto está relacionado con el uso de diferentes 

índices de sequía para el análisis de este fenómeno extremo en la región. Por ejemplo, el uso del 

Índice Estandarizado de Precipitación y Evapotranspiración (SPEI), que tiene en cuenta tanto la 

precipitación como la evapotranspiración potencial, podría utilizarse para comprender mejor el 

impacto de la temperatura en la demanda de agua y la variabilidad de la humedad en el Levante 

bajo condiciones de cambio climático.  
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APPENDIX A 

TABLES 

  
Table 1. The final list of the meteorological stations used in this study (monthly maximum and minimum 

temperatures). 

Station  Name  Country  Long. Latit. Elev. period Missing (%) 

1 Amman Airport Jordan  31.98 35.98 767 1987-2017 0.0 

2 Aqaba Airport Jordan 29.55 35.01 53 1987-2017 0.0 

3 Ghor Safi Jordan  31.03 35.46 -350 1987-2017 0.3 

4 H-4 Irwaished Jordan 32.5 38.2 686 1987-2017 0.0 

5 H-5 Safawi Jordan  32.2 37.13 668 1987-2017 0.8 

6 Irbid Jordan 32.54 35.85 618 1987-2017 1.4 

7 Maan Jordan  30.16 35.78 1069 1987-2017 0.6 

8 Mafraq Jordan 32.36 36.25 686 1987-2017 0.6 

9 Queen Alia Airport Jordan 31.71 35.96 721 1987-2017 0.0 

10 Guriat Saudi arb. 31.4 37.26 509 1987-2017 0.0 

11 Turaif Saudi arb. 31.68 38.66 813 1987-2017 0.0 

12 Iskenderun Turkey  36.58 36.16 3 1987-2017 0.0 

13 Gaziantep Turkey 37.08 37.36 701 1987-2017 0.0 

14 Elat Israel  29.5526 34.9542 12 1987-2017 0.0 

15 Yotvata Israel 29.8851 35.0771 70 1987-2017 1.4 

16 Sede Boqer Israel 30.8704 34.7951 475 1987-2017 0.0 

17 Sedom Man Israel  31.0306 35.3919 -388 1987-2017 0.0 

18 Arad Man Israel 31.2552 35.2128 605 1987-2017 0.0 

19 Beer Sheva Man Israel 31.2515 34.7995 279 1987-2017 0.0 

20 Besor Farm Man Israel  31.2716 34.3894 110 1987-2017 0.3 

21 Lahav Man Israel 31.3812 34.8729 460 1987-2017 0.0 

22 Lod Airport Israel 31.995 34.897 40 1987-2017 0.3 

23 Gat Man Israel  31.6303 34.7913 140 1987-2017 0.1 

24 Negba Israel 31.6596 34.6796 90 1987-2017 0.0 

25 Beit Jimal Man Israel 31.7248 34.9762 355 1987-2017 4.2 

26 Jerusalem Centre Israel  31.7806 35.2217 810 1987-2017 0.0 

27 Bet Dagan Man Israel 32.0073 34.8138 31 1987-2017 0.0 

28 Yavne'el Man Israel 32.6978 35.5101 0 1987-2017 0.0 

29 Hakfar Hayarok Israel  30 34.83 432 1987-2017 0.3 

30 Massada Man Israel 32.6833 35.6008 -200 1987-2017 4.4 

31 Avne Etan Man Israel 32.8174 35.7622 375 1987-2017 0.6 

32 Kefar Blum Man Israel  33.1728 35.612 75 1987-2017 0.0 

33 Ayyelet Hashahar Israel 33.0219 35.5742 175 1987-2017 0.7 
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34 Zefat Har Kenaan Israel 32.98 35.507 936 1987-2017 0.0 

35 Harashim Israel  32.956 35.3288 825 1987-2017 0.1 

36 Elon Man Israel 33.0653 35.2173 300 1987-2017 0.0 

37 En Hahoresh Man Israel 32.3877 34.9376 15 1987-2017 1.9 

38 Galed (Even Yizhaq) Israel  32.558 35.0742 185 1987-2017 0.0 

39 Akko Israel 32.9318 35.102 8 1987-2017 0.0 

40 Leshem Israel 32.8 35.24 345 1987-2017 0.3 

41 Hebron Palestine  31.5 35.1 1005 1987-2017 0.0 

42 Dama0080 Syria  33.42 36.52 620 1987-2017 0.0 

43 Hamaairport0558 Syria 35.12 36.71 305 1987-2017 0.0 

44 Hmam0454 Syria 35.41 35.94 48 1987-2017 0.3 

45 Kami0001 Syria  37.06 41.23 449 1987-2017 1.9 

46 Lata0440 Syria 35.52 35.78 7 1987-2017 0.0 

47 Safi0066 Syria 34.81 36.12 370 1987-2017 0.6 

48 Alep0007 Syria  36.18 37.24 385 1987-2015 0.6 

49 Deir0045 Syria 35.34 40.14 215 1987-2015 2.2 

50 Hamaagric Syria 35.11 36.75 316 1987-2015 0.6 

51 Homs0055 Syria  34.73 36.73 483 1987-2015 0.6 

52 Swed0067 Syria 32.71 36.57 1015 1987-2015 1.1 

53 Tart0050 Syria 34.87 35.88 5 1987-2015 0.0 

54 Palm0061 Syria  34.56 38.28 400 1987-2015 1.9 

55 Maze0079 Syria 33.48 36.22 730 1987-2015 0.8 

56 Qunitera Syria 33.12 35.82 941 1987-2015 0.4 

57 Kfardan Lebanon 34.01 36.05 1049 1994-2017 1.1 

58 Beyrouth Lebanon 33.81 35.48 29 1994-2017 0.0 

59 Tripoli Lebanon 34.45 35.8 5 1994-2017 3.9 

60 Houche-Oumara Lebanon 33.81 35.85 920 1994-2017 5.3 

 

Table 2. The final list of the meteorological stations used in this study (monthly precipitation). 

Station Name Country Long. Latit. Elev. Period Missing (%) 

1 Kefar Rosh Haniqra Israel 35.11 33.09 50 1970-2018 0 
2 Bet Haemeq Israel 35.15 32.97 50 1970-2018 0.03 
3 Kefar Hamakkabbi Israel 35.11 32.79 25 1970-2018 0 
4 Yagur Israel 35.08 32.74 25 1970-2018 0 
5 Bet Oren Israel 35.01 32.73 370 1970-2018 0 
6 Atlit Salt Israel 34.94 32.71 5 1970-2018 0.02 
7 Ramat Hashofet Israel 35.10 32.61 250 1970-2018 0 
8 Nahsholim Plantations Israel 34.95 32.61 15 1970-2018 0.05 
9 Regavim Israel 35.03 32.52 105 1970-2018 0 
10 Binyamina Agr. Coun. Israel 34.95 32.52 25 1970-2018 0 
11 Barqay Israel 35.03 32.47 65 1970-2018 0.01 
12 Yad Hanna Israel 35.01 32.33 55 1970-2018 0 
13 Bene Deror Israel 34.90 32.26 30 1970-2018 0 
14 Eyal Israel 34.98 32.21 75 1970-2018 0 
15 Kefar Shemaryahu Israel 34.82 32.18 30 1970-2018 0.01 
16 Adanim Israel 34.90 32.14 25 1970-2018 0 
17 Miqwe Yisrael Israel 34.78 32.03 20 1970-2018 0 
18 Palmahim Israel 34.71 31.93 20 1970-2018 0.02 
19 Yavne Israel 34.75 31.90 20 1970-2018 0.02 
20 Kefar Bilu Israel 34.82 31.88 65 1970-2018 0 
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21 Bet Hilqiyya Israel 34.81 31.79 70 1970-2018 0.03 
22 Nir Gallim Israel 34.68 31.83 20 1970-2018 0.01 
23 Nizzanim Kibbuz Israel 34.64 31.72 30 1970-2018 0 
24 En Zurim Israel 34.72 31.70 55 1970-2018 0.01 
25 Talme Yafe Israel 34.61 31.62 75 1970-2018 0 
26 Ziqim Israel 34.52 31.61 30 1970-2018 0 
27 Beror Hayil Israel 34.65 31.56 75 1970-2018 0.01 
28 Be'eri Israel 34.49 31.42 90 1970-2018 0 
29 Niroz Israel 34.40 31.31 110 1970-2018 0 
30 Yir'on Israel 35.46 33.08 685 1970-2018 0 
31 Mazzuva Israel 35.16 33.06 110 1970-2018 0 
32 Kabri Israel 35.15 33.02 100 1970-2018 0.03 
33 Yehi'am Israel 35.23 33.00 380 1970-2018 0 
34 Zefat Har Kenaan Israel 35.51 32.98 936 1970-2018 0 
35 Huqoq Israel 35.50 32.88 5 1970-2018 0 
36 Kefar Hittim Israel 35.50 32.80 40 1970-2018 0 
37 Sede Ilan Israel 35.43 32.75 195 1970-2018 0 
38 Kefar Yehoshua Israel 35.15 32.68 60 1970-2018 0 
39 Ramat Dawid Israel 35.20 32.68 80 1970-2018 0 
40 Mizra Plantation Israel 35.29 32.67 100 1970-2018 0.01 
41 Hayogev Israel 35.20 32.61 100 1970-2018 0.06 
42 Moledet Israel 35.44 32.59 65 1970-2018 0 
43 Kefar Yehezqel Israel 35.36 32.57 10 1970-2018 0.01 
44 Sheluhot Israel 35.48 32.47 -110 1970-2018 0 
45 Sha'alvim Israel 34.98 31.87 180 1970-2018 0 
46 Hulda Israel 34.88 31.83 125 1970-2018 0 
47 Qiryat Anavim Israel 35.12 31.81 660 1970-2018 0.01 
48 Jerusalem St Anne Israel 35.24 31.78 740 1970-2018 0 
49 Beit Jimal?Man Israel 34.98 31.72 355 1970-2018 0 
50 Rosh Zurim Israel 35.13 31.67 955 1970-2018 0 
51 Bet Guvrin Israel 34.89 31.61 270 1970-2018 0 
52 Ruhama Israel 34.71 31.50 170 1970-2018 0 
53 Shoval Israel 34.75 31.41 225 1970-2018 0 
54 Urim Israel 34.52 31.30 100 1970-2018 0.01 
55 Be'er Sheva Israel 34.80 31.25 279 1970-2018 0 
56 Gevulot Israel 34.47 31.21 135 1970-2018 0.06 
57 Sede Boqer Man Israel 34.80 30.87 475 1970-2018 0 
58 Hagosherim Israel 35.63 33.22 110 1970-2018 0.01 
59 Gadot Israel 35.62 33.02 120 1970-2018 0.02 
60 Mahanayim Israel 35.57 32.99 270 1970-2018 0 
61 Almagor Israel 35.60 32.91 -10 1970-2018 0.01 
62 Haon Israel 35.62 32.73 -200 1970-2018 0 
63 Deganya Bet Israel 35.58 32.70 -195 1970-2018 0 
64 Gesher Israel 35.55 32.62 -200 1970-2018 0 
65 Tirat Zevi Israel 35.53 32.42 -220 1970-2018 0 
66 Sedom?Man Israel 35.39 31.03 -388 1970-2018 0.03 
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67 Nablus Israel 35.26 32.23 550 1970-2018 0 
68 Tubas Israel 35.37 32.32 175 1970-2018 0.05 
69 Salfit Israel 35.18 32.08 570 1970-2018 0.02 
70 Dura Israel 35.03 31.51 850 1970-2018 0.03 
71 Hebron Israel 35.10 31.53 1005 1970-2018 0.01 
72 Meithelon Israel 35.27 32.35 380 1970-2018 0.01 
73 Rammallah Israel 35.20 31.90 856 1970-2018 0.01 
74 Jenin Israel 35.30 32.46 178 1970-2018 0.02 
75 Jericho Israel 35.46 31.86 -260 1970-2018 0.02 
76 Elqana Pe'erim Israel 35.04 32.11 275 1970-2018 0 
77 Ma'on Israel 35.16 31.42 780 1970-2018 0 
78 Elat Israel 34.95 29.55 11 1970-2018 0 
79 Irbed Jordan 35.85 32.56 754 1970-2018 0 
80 Errabah Jordan 35.45 31.16 963 1970-2018 0 
81 Safawi Jordan 37.08 32.12 711 1970-2018 0 
82 Maan Jordan 35.47 30.10 1112 1970-2018 0 
83 Aljafer Jordan 36.09 30.17 849 1970-2018 0 
84 Irwished Jordan 38.20 32.50 688 1970-2018 0 
85 Quen Alia Jordan 35.99 31.72 716 1970-2018 0 
86 Mafraq Air Port Jordan 36.24 32.32 676 1970-2018 0 
87 Deir Alla Jordan 35.62 32.19 -220 1970-2018 0 
88 Burma Jordan 35.78 32.22 607 1970-2018 0 
89 Ma'in Jordan 35.74 31.68 840 1970-2018 0 
90 Mazar Jordan 35.70 31.06 1242 1970-2018 0 
91 Petra Jordan 35.44 30.34 900 1970-2018 0 
92 Ruseifa Jordan 36.04 32.02 641 1970-2018 0 
93 Turra Jordan 35.99 32.63 463 1970-2018 0 
94 Baqura Met.Station Jordan 35.60 32.61 -227 1970-2018 0.01 
95 South Shuna Jordan 35.64 31.91 637 1970-2018 0 
96 Deir Abi Said Jordan 35.68 32.50 339 1970-2018 0.01 
97 Sihan Jordan 35.76 32.14 900 1970-2018 0 
98 Jarash Jordan 35.89 32.28 636 1970-2018 0 
99 Kufranja Dam Jordan 35.64 32.27 630 1970-2018 0 

100 Ira Jordan 35.67 32.01 700 1970-2018 0 
101 Na'ur Jordan 35.83 31.87 520 1970-2018 0 
102 Tafile Jordan 35.61 30.84 1300 1970-2018 0 
103 Um Qeis Jordan 35.68 32.65 347 1970-2018 0 
104 Wadi Es-Sir Jordan 35.82 31.95 1211 1970-2018 0 
105 Jubeiha Jordan 35.87 32.02 1012 1970-2018 0 
106 Um El-Quttein Jordan 36.63 32.32 896 1970-2018 0 
107 Ras En-Naqb Jordan 35.49 30.00 1539 1970-2018 0 
108 Qatraneh Jordan 36.05 31.25 779 1970-2018 0 
109 Azraq Jordan 36.82 31.83 521 1970-2018 0 
110 Muleih Jordan 35.82 31.59 684 1970-2018 0 
111 Ras Muneif Evap. Jordan 35.81 32.38 1154 1970-2018 0 
112 En Nueiyime Jordan 35.91 32.42 748 1970-2018 0 
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113 Wadi Dhuleli Jordan 36.28 32.15 514 1970-2018 0 
114 Rabba Jordan 35.74 31.27 954 1970-2018 0 
115 Ras Al3en Syria 40.09 36.84 400 1970-2018 0.03 
116 Busra Al Sham Syria 36.49 32.52 800 1970-2018 0.02 
117 Banias Syria 35.95 35.18 20 1970-2018 0.06 
118 Al Hiffa Syria 36.05 35.61 335 1970-2018 0.03 
119 Al Shadadah Syria 40.73 36.03 280 1970-2018 0 
120 Ezra3 Syria 36.24 32.88 570 1970-2018 0.02 
121 Al Zabadani Syria 36.09 33.72 145 1970-2018 0.05 
122 Al Sanamin Syria 36.18 33.08 640 1970-2018 0.02 
123 Al 3areda Syria 36.29 34.66 280 1970-2018 0 
124 Al Qahtania Syria 38.95 35.98 262 1970-2018 0 
125 Al Manajer Syria 40.19 36.69 345 1970-2018 0.02 
126 Al Ya3robia Syria 42.04 36.81 400 1970-2018 0.02 
127 Al Karem Syria 36.33 35.40 174 1970-2018 0.07 
128 Tal Shehab Syria 36.00 32.69 300 1970-2018 0.03 
129 Al Soura Al Soghra Syria 36.57 33.03 740 1970-2018 0.03 
130 Salkhad Syria 36.70 32.48 320 1970-2018 0 
131 Shekh Meskin Syria 36.16 32.83 528 1970-2018 0 
132 Quirdaha Syria 36.05 35.45 300 1970-2018 0 
133 Al Basil Airpo Syria 35.94 35.41 48 1970-2018 0 
134 Azaz Syria 37.04 36.58 555 1970-2018 0 
135 Al Safera Syria 37.38 36.07 335 1970-2018 0.05 
136 Allepo Syria 37.24 36.18 385 1970-2018 0 
137 Tel Tammer Syria 41.91 36.83 410 1970-2018 0.02 
138 Derbasia Syria 40.65 37.08 500 1970-2018 0.02 
139 Mabroka Syria 39.76 36.53 400 1970-2018 0.01 
140 Tartus Syria 35.88 34.87 5 1970-2018 0 
141 Lattakia Syria 35.78 35.52 7 1970-2018 0 
142 Malkieh Syria 42.14 37.19 500 1970-2018 0 
143 Qamishli Syria 41.23 37.06 449 1970-2018 0 
144 Hasaka Syria 40.71 36.50 307 1970-2018 0 
145 Zuhireieh Syria 42.31 37.19 350 1970-2018 0.04 
146 Saeta Syria 36.12 34.81 370 1970-2018 0 
147 Shatha Syria 36.25 35.49 250 1970-2018 0 
148 Qusir Syria 36.58 34.51 600 1970-2018 0.03 
149 Makhram Foqani Syria 37.08 34.81 600 1970-2018 0.01 
150 Msefreh Syria 36.34 32.64 685 1970-2018 0.03 
151 Hama Airpo Syria 36.71 35.12 305 1970-2018 0 
152 En Halaquim Syria 36.31 34.92 600 1970-2018 0 
153 Alsalamieh Syria 37.06 35.01 448 1970-2018 0 
154 Maysalon Syria 36.06 33.59 156 1970-2018 0 
155 Sarghaya Syria 36.14 33.79 409 1970-2018 0 
156 Nabak Syria 36.73 34.03 329 1970-2018 0 
157 Al Swaida Syria 36.57 32.71 15 1970-2018 0 
158 Wadi Al3ouun Syria 36.19 35.00 300 1970-2018 0.04 
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159 Al Se3en Syria 37.38 35.27 440 1970-2018 0.05 
160 Hamere Syria 36.41 35.29 600 1970-2018 0.01 
161 Mesiaf Syria 36.34 35.06 530 1970-2018 0 
162 Qatefeh Syria 36.60 33.74 930 1970-2018 0.03 
163 Duma Syria 36.39 33.57 660 1970-2018 0.05 
164 Shekh Bader Syria 36.07 34.99 600 1970-2018 0.04 
165 Qadamos Syria 36.16 35.09 915 1970-2018 0.04 
166 Drekish Syria 36.14 34.90 500 1970-2018 0.01 
167 Alhol Syria 41.15 36.43 450 1970-2018 0 

 

Table 3. The final list of the meteorological stations used in this study (daily maximum and minimum 

temperatures). 

Station Name Elevation 

(m) 

Longitude 

(ºE) 

Latitude 

(ºN) 

Period Missing 

(%) 

1 Elat 12 29.5526º 34.9542º 1987-2016 0 

2 Yotvata 70 29.8851º 35.0771º 1987-2016 1.3 

3 Sede Boqer 475 30.8704º 34.7951º 1987-2016 0 

4 Sedom Man -388 31.0306º 35.3919º 1987-2016 0 

5 Arad Man 605 31.2552º 35.2128º 1987-2016 0 

6 Beer Sheva Man 279 31.2515º 34.7995º 1987-2016 0 

7 Besor Farm Man 110 31.2716º 34.3894º 1987-2016 0.3 

8 Lahav Man 460 31.3812º 34.8729º 1987-2016 0 

9 Lod Airport 40 31.9950º 34.8970º 1987-2016 0.3 

10 Gat Man 140 31.6303º 34.7913º 1987-2016 0.1 

11 Negba 90 31.6596º 34.6796º 1987-2016 0 

12 Beit Jimal Man 355 31.7248º 34.9762º 1987-2016 4.1 

13 Jerusalem Centre 810 31.7806º 35.2217º 1987-2016 0 

14 Bet Dagan Man 31 32.0073º 34.8138º 1987-2016 0 

15 Yavne'el Man 0 32.6978º 35.5101º 1987-2016 0 

16 Hakfar Hayarok 432 30 34.83 1987-2016 0.3 

17 Massada Man -200 32.6833º 35.6008º 1987-2016 4.1 

18 Avne Etan Man 375 32.8174º 35.7622º 1987-2016 0.5 

19 Kefar Blum Man 75 33.1728º 35.6120º 1987-2016 0 

20 Ayyelet Hashahar 175 33.0219º 35.5742º 1987-2016 0 

21 Zefat Har Kenaan 936 32.9800º 35.5070º 1987-2016 0.7 

22 Harashim 825 32.9560º 35.3288º 1987-2016 0.1 

23 Elon Man 300 33.0653º 35.2173º 1987-2016 0 

24 En Hahoresh Man 15 32.3877º 34.9376º 1987-2016 2 

25 Galed (Even Yizhaq) 185 32.5580º 35.0742º 1987-2016 0 

26 Akko 8 32.9318º 35.1020º 1987-2016 0 

27 Hazeva Man -135 30.7787º 35.2389º 1988-2016 0.8 

28 Ariel 590 32.1063º 35.1774º 1990-2016 0.5 
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 Table 4. The final list of the meteorological stations used in this study (daily precipitation). 

Station Name Elevation 

(m) 

Latitude  

(ºN) 

Longitude 

(ºE) 

Period Missing 

(%) 

1 Kefar Rosh Haniqra 50 35.1149 33.0861 1970-2018 0.23 

2 Regba 20 35.0980 32.9755 1970-2018 0.33 

3 Kefar Hamakkabbi 25 35.1134 32.7915 1970-2018 0.01 

4 Haifa Port 5 34.9979 32.8223 1970-2018 0 

5 Nir Ezyon 210 34.989 32.6990 1970-2018 0 

6 Ramat Hashofet 250 35.0969 32.6121 1970-2018 0.09 

7 Ma'yan Zevi Fields 10 34.9360 32.5756 1970-2018 0 

8 Regavim 105 35.0336 32.5228 1970-2018 0.01 

9 Binyamina Agr. 25 34.9469 32.5195 1970-2018 0 

10 Yad Hanna 55 35.0072 32.3255 1970-2018 0.01 

11 Bene Deror 30 34.9009 32.2629 1970-2018 0 

12 Eyal 75 34.9797 32.2123 1970-2018 0.02 

13 Kefar Shemaryahu 30 34.8185 32.1801 1970-2018 0 

14 Adanim 25 34.9025 32.1430 1970-2018 0.02 

15 Nahshonim 100 34.9510 32.0602 1970-2018 0.06 

16 Miqwe Yisrael 20 34.7846 32.0318 1970-2018 0 

17 Palmahim 20 34.7053 31.9340 1970-2018 0.37 

18 Kefar Bilu 65 34.8223 31.8758 1970-2018 0.07 

19 Nir Gallim 20 34.6831 31.8265 1970-2018 0.30 

20 Kefar Menahem 115 34.8346 31.7333 1970-2018 0.02 

21 Nizzanim Kibbuz 30 34.6352 31.7193 1970-2018 0 

22 Negba 85 34.6841 31.6616 1970-2018 0 

23 Talme Yafe 75 34.6148 31.6171 1970-2018 0.07 

24 Ziqim 30 34.5243 31.6077 1970-2018 0.02 

25 Nir Am 120 34.5791 31.5213 1970-2018 0 

26 Nahal Oz 80 34.4947 31.4726 1970-2018 0 

27 Magen 135 34.4253 31.301 1970-2018 0 

28 Yir'on 685 35.4553 33.0778 1970-2018 0 

29 Elon 320 35.2210 33.0630 1970-2018 0 

30 Zefat Har Kenaan 936 35.5070 32.9800 1970-2018 0 

31 Parod 450 35.4330 32.9322 1970-2018 0.02 

32 Sede Ilan 195 35.4259 32.7525 1970-2018 0.21 

33 Hazore'im -65 35.5038 32.7433 1970-2018 0.06 

34 Gazit 125 35.4472 32.6362 1970-2018 0 

35 Kefar Yehoshua 60 35.1515 32.6810 1970-2018 0.02 

36 Ginnegar 100 35.2563 32.6624 1970-2018 0.12 

37 Giv'at Oz 105 35.1986 32.5559 1970-2018 0 

38 Kefar Yehezqel 10 35.3617 32.5650 1970-2018 0.37 

39 Hamadya -165 35.5208 32.5199 1970-2018 0.01 

40 Sha'alvim 180 34.9830 31.8698 1970-2018 0 

41 Hulda 125 34.8838 31.8315 1970-2018 0.01 

42 Qiryat Anavim 660 35.1199 31.8098 1970-2018 0 

43 Jerusalem St Anne 740 35.2360 31.7808 1970-2018 0 

44 Beit Jimal Man 355 34.9762 31.7248 1970-2018 0 

45 Rosh Zurim 955 35.1264 31.6680 1970-2018 0.12 

46 Bet Guvrin 270 34.8934 31.6139 1970-2018 0 

47 Ruhama 170 34.7063 31.4974 1970-2018 0.05 

48 Shoval 225 34.7460 31.4138 1970-2018 0 

49 Eshel Hanasi 190 34.6986 31.3243 1970-2018 0.32 

50 Urim 100 34.5245 31.3049 1970-2018 0.01 
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51 Omer 330 34.8490 31.2725 1970-2018 0.13 

52 Gevulot 135 34.4676 31.2105 1970-2018 0.39 

53 Revivim 280 34.7231 31.0448 1970-2018 0 

54 Sede Boqer 475 34.7950 30.8702 1970-2018 0 

55 Kefar Blum 75 35.6133 33.1716 1970-2018 0 

56 Gadot 120 35.6208 33.0165 1970-2018 0.42 

57 Almagor -10 35.6006 32.9122 1970-2018 0.21 

58 Haon -200 35.6248 32.7275 1970-2018 0.01 

59 Gesher -200 35.5534 32.6192 1970-2018 0 

60 Tirat Zevi -220 35.5258 32.4222 1970-2018 0.03 

61 Sedom Man -388 35.3919 31.0306 1970-2018 0 

62 Elat 11 34.9542 29.5526 1970-2018 0 

63 Salfit 570 35.1805 32.0847 1970-2018 0.19 

64 Nabils 550 35.2608 32.2250 1970-2018 0 

65 Elqana 275 35.0381 32.1121 1982-2018 0.02 

66 Karmel 740 35.1841 31.4294 1982-2018 0.14 

 

 Table 5. List of the stations where change points in daily rainfall was detected. 

Station Name Latitude (ºN) Longitude (ºE) Change points 

1 Regba 35.098 32.9755 6/2/2013 

2 Kefar Hamakkabbi 35.1134 32.7915 22/10/2000 

3 Nir Ezyon 34.989 32.699 1/2/2013 

4 Ramat Hashofet 35.0969 32.6121 31/1/2013 

5 Palmahim 34.7053 31.934 18/10/1989 

6 Kefar Menahem 34.8346 31.7333 22/2/2016 

7 Parod 35.4330 32.9322 17/3/1991 

8 Hazore'im 35.5038 32.7433 12/2/2005 

9 Kefar Yehezqel 35.3617 32.565 5/3/1976 , 25/12/1999 

10 Hamadya 35.5208 32.5199 1/2/2013 

11 Jerusalem St Anne 35.236 31.7808 25/1/1982 

12 Shoval 34.746 31.4138 4/12/1994 

13 Urim 34.5245 31.3049 14/12/2013 

14 Revivim 34.7231 31.0448 11/2/1974 

15 Gesher 35.5534 32.6192 10/12/1974 

 

 Table 6. List of the stations where change points in daily temperatures was detected. 

Station NAME Tmax Tmin 

1 Elat  19971026 

2 Yotvata  19931009/19880715 

3 Sede Boqer   

4 Sedom Man  19911204/19930507 

5 Arad Man  19901014/19910515 

19930412/20080304 

6 Beer Sheva Man 20091213/20110129 19971008 

7 Besor Farm Man  20091206 

8 Lahav Man   

9 Lod Airport 19910516/19920523 19890216/19900825 

19931010 

10 Gat Man  20091005 

11 Negba   

12 Beit Jimal Man  20080304 

13 Jerusalem Centre   
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14 Bet Dagan Man  19931010/20080228 

15 Yavne'el Man  19980409 

16 Hakfar Hayarok  20090515/20120404 

17 Massada Man   

18 Avne Etan Man  19931009/19941104 

19 Kefar Blum Man   

20 Ayyelet Hashahar   

21 Zefat Har Kenaan   

22 Harashim  20080221 

23 Elon Man   

24 En Hahoresh Man 19901014/19910515 

19930412/20031107 

 

25 Galed (Even Yizhaq) 19910516/20030706 

20041116/20080304 

20110130/20120331 

 

26 Akko  19981000/19991200 

20030300/20061100 

27 Hazeva Man  19900828/19901031 

19910516/19930514 

28 Ariel 19980408/20091214  

Total 23 (82%) 12 (43%) 

 

Table 7. Significant change points detected in the annual, seasonal, and monthly Tmax. Tmin, and DTR 

averages time series in 1987-2017.  

Level Tmax Tmin DTR 

Annual 1997 2007 - 

Winter 2002 1998 - 

Spring 2002 2007 - 

Summer 1997 2004 - 

Autumn  2006 - 

February 2008 2005 - 

March 1999 2005 - 

May - 2012 - 

June 1995 1997 - 

July 2014 1997 - 

August 2005 2005 2005 

September - 2005 2005 

 

Table 8. The trends for the annual, seasonal, and monthly averages of Tmax, Tmin, and DTR for the Levant 

sub-regions during (1987-2017). (***) if trend at α = 0.001 level of significance.  (**) if trend at α = 0.01 

level of significance.  (*) if trend at α = 0.05 level of significance.  (+) if trend at α = 0.1 level of significance. 

Month Palestine 

(Tmax/Tmin/DTR) 

Jordan 

(Tmax/Tmin/DTR) 

Lebanon 

(Tmax/Tmin/DTR) 

Syria 

(Tmax/Tmin/DTR) 

Ann. (0.32**/0.29***/-0.09) (0.39***/0.28**/0.07) (0.37+/0.34+/-0.03) (0.34*/0.32**/-0.09) 

Win. (0.43+/0.32*/0.15) (0.53*/0.20/0.34*) (0.35/0.21/0.12) (0.51*/0.35+/0.22) 

Spr. (0.53*/0.48**/-0.028) (0.59**/0.47**/0.18) (0.49*/0.48*/0.10) (0.50*/0.47*/-0.14) 

Sum. (0.33*/0.33**/-0.19**) (0.45*/0.38**/-0.08) (0.25/0.08/0.02) (0.40*/0.23+/-0.17*) 

Aut. (0.31+/0.41**/-0.19*) (0.32+/0.42**/-0.11) (0.33/0.49*/-0.17) (0.38/0.58**/-0.24) 

Jan. (0.49/0.37/0.02) (0.56/0.19/0.46*) (0.23/-0.04/-0.05) (0.54+/0.25/0.02) 

Feb. (0.85*/0.64*/0.29) (0.98**/0.56*/0.50*) (0.74/0.46/0.22) (0.71*/0.75*/0.21) 

Mar. (1.1*/0.72*/0.34) (1*/0.70*/0.38*) (1.1+/0.81+/0.24) (0.78+/0.71*/0.03) 
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Apr. (0.50/0.45*/-0.06) (0.63*/0.38/0.20) (1.1*/0.61+/0.63+) (0.63+/0.45+/0.01) 

May (0.18/0.47**/-0.22*) (0.18/0.29/-0.04) (0.04/0.25/-0.32) (0.11/0.45*/-0.21) 

June (0.45*/0.22/-0.16) (0.48*/0.40**/-0.12) (0.22/-0.061/0) (0.32+/0.26/-0.23+) 

July (0.44*/0.48**/-0.19) (0.52*/0.57**/0.01) (0.44/0.0/0.13) (0.40+/0.29/-0.087) 

Aug. (0.47***/0.49**/-0.022) (0.62**/0.59**/-0.01) (0.38/0.45/-0.07) (0.54***/0.51**/-0.29*) 

Sept. (0.33/0.45**/-0.14+) (0.37+/0.48**/-0.20) (0.49*/0.54*/-0.19) (0.35*/0.55*/-0.34*) 

Oct. (0.16/0.34/-0.11) (0.23/0.38/-0.08) (0.63+/0.52/0.07) (0.08/0.47+/-0.18) 

Nov. (0.36/0.39/-0.12) (0.31/0.29/-0.03) (0.01/0.48/-0.32) (0.63/0.44/0) 

Dec. (0.47/0.40/0.072) (0.42 /0.38/0.28) (0.046 /-0.15/0.05) (0.64+/0.22/0.37) 

 

Table 9. Number of stations with positive or negative trends at annual, seasonal and monthly scales. Note: 

In bracket, the number of stations with significant positive or negative trends at the 95% confidence level. 

Level Tmax Tmin Range 

+ - + - + - 

Annual 59(50) 1(0) 57(50) 3(0) 36(13) 24(5) 

Winter 58(38) 2(0) 55(21) 5(0) 46(22) 14(1) 

Spring 59(44) 1(1) 58(47) 2(0) 37(11) 23(7) 

Summer 59(44) 1(1) 59(40) 1(0) 20(7) 40(10) 

Autumn 53(22) 7(1) 58(37) 2(1) 20(5) 40(18) 

January 55(15) 5(0) 54(3) 6(0) 46(23) 14(0) 

February 60(49) 0(0) 59(49) 1(0) 46(17) 14(2) 

March 60(50) 0(0) 60(50) 0(0) 49(20) 11(0) 

April 59(23) 1(0) 56(24) 4(1) 35(4) 25(7) 

May 48(7) 12(0) 57(33) 3(0) 16(2) 54(0) 

June 57(27) 3(0) 58(32) 2(0) 13(4) 49(11) 

July 60(37) 0(0) 58(43) 2(0) 29(7) 31(9) 

August 59(47) 1(1) 59(52) 1(1) 20(4) 40(13) 

September 57(23) 3(0) 58(46) 2(0) 14(6) 46(20) 

October 50(3) 10(0) 55(12) 5(0) 25(3) 35(10) 

November 53(5) 7(0) 54(10) 6(0) 25(5) 35(3) 

December 58(12) 2(0) 44(8) 16(0) 49(10) 11(0) 

 

Table 10. Some fundamental statistics for the annual and seasonal (Tmax and Tmin) trends.   

  Annual Winter Spring Summer Autumn 

T
m

a
x

 

Minimum 0.01 -0.29 -0.41 -0.38 -0.42 

Maximum 0.48 0.65 0.74 0.58 0.55 

1st Quartile 0.25 0.35 0.41 0.29 0.17 

Median 0.30 0.43 0.51 0.34 0.27 

3rd Quartile 0.35 0.51 0.59 0.40 0.41 

Mean 0.30 0.41 0.48 0.33 0.27 

Variance 0.00 0.00 0.00 0.00 0.00 

Standard deviation 0.09 0.15 0.19 0.15 0.19 

T
m

in
 

Minimum -0.23 -0.05 -0.23 -0.36 -0.29 

Maximum 0.45 0.63 0.66 0.56 0.94 

1st Quartile 0.21 0.17 0.36 0.22 0.28 

Median 0.29 0.28 0.43 0.28 0.37 

3rd Quartile 0.33 0.35 0.49 0.36 0.48 

Mean 0.27 0.26 0.40 0.28 0.38 

Variance 0.00 0.00 0.00 0.00 0.00 

Standard deviation 0.12 0.15 0.15 0.13 0.22 
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Table 11. The whole cross correlation matrix between the annual and seasonal temperature and rainfall. 

  Annual rainfall Winter rainfall Spring rainfall Autumn rainfall 

 

Annual 

Tmax -0.465 -0.329 -0.294 -0.261 

Tmin -0.207 -0.124 -0.173 -0.116 

DTR -0.813 -0.633 -0.403 -0.454 

Tmean -0.348 -0.236 -0.240 -0.195 

 

 

Winter 

Rainfall 0.890 1 0.14 0 

Tmax -0.510 -0.526 -0.022 -0.152 

Tmin 0.005 -0.031 0.049 0.059 

DTR -0.475 -0.463 -0.057 -0.184 

Tmean -0.347 -0.378 0.012 -0.072 

 

 

Spring 

Rainfall 0.43 0.14 1 0 

Tmax -0.363 -0.259 -0.460 0.019 

Tmin -0.248 -0.213 -0.258 0.033 

DTR -0.133 -0.067 -0.211 -0.008 

Tmean -0.388 -0.297 -0.459 0.032 

 

 

Autumn 

Rainfall 0.39 0 0 1 

Tmax -0.151 0.052 -0.225 -0.361 

Tmin -0.080 0.036 -0.174 -0.164 

DTR -0.058 0.013 -0.046 -0.158 

Tmean -0.157 0.060 -0.269 -0.356 

 

Table 12. The cross-correlation matrix between the extreme rainfall indices and geographical features in 

the Levant for the period 1987-2018. 

Index  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

prcptot 1 -0.72 0.86 0.89 0.99 0.99 0.83 0.99 0.71 0.97 0.69 0.92 0.93 0.95 0.89 0.49 0.66 0.43 

Cdd -0.72 1 -0.77 -0.82 -0.73 -0.66 -0.42 -0.68 -0.57 -0.66 -0.60 -0.52 -0.53 -0.56 -0.41 -0.67 -0.80 -0.17 

Cwd 0.86 -0.77 1 0.98 0.90 0.79 0.46 0.80 0.58 0.77 0.64 0.68 0.71 0.74 0.62 0.64 0.88 0.23 

r1mm 0.89 -0.82 0.98 1 0.93 0.83 0.52 0.84 0.59 0.81 0.65 0.71 0.74 0.76 0.65 0.67 0.89 0.29 

r10mm 0.99 -0.73 0.90 0.93 1 0.97 0.75 0.96 0.67 0.94 0.68 0.88 0.90 0.92 0.85 0.53 0.72 0.38 

r20mm 0.99 -0.66 0.79 0.83 0.97 1 0.87 0.98 0.70 0.97 0.67 0.93 0.94 0.96 0.91 0.43 0.56 0.48 

r50mm 0.83 -0.42 0.46 0.52 0.75 0.87 1 0.89 0.71 0.89 0.58 0.91 0.90 0.90 0.90 0.14 0.21 0.50 

r95 0.99 -0.68 0.80 0.84 0.96 0.98 0.89 1 0.76 0.99 0.71 0.96 0.96 0.97 0.91 0.42 0.57 0.46 

r95ptot 0.71 -0.57 0.58 0.59 0.67 0.70 0.71 0.76 1.00 0.76 0.71 0.78 0.76 0.76 0.68 0.30 0.45 0.34 

r99 0.97 -0.66 0.77 0.81 0.94 0.97 0.89 0.99 0.76 1.00 0.76 0.96 0.95 0.96 0.91 0.38 0.55 0.44 

r99ptot 0.69 -0.60 0.64 0.65 0.68 0.67 0.58 0.71 0.71 0.76 1.00 0.68 0.64 0.66 0.56 0.44 0.57 0.25 

rx1day 0.92 -0.52 0.68 0.71 0.88 0.93 0.91 0.96 0.78 0.96 0.68 1.00 0.99 0.99 0.98 0.21 0.40 0.46 

rx3day 0.93 -0.53 0.71 0.74 0.90 0.94 0.90 0.96 0.76 0.95 0.64 0.99 1.00 1.00 0.98 0.24 0.42 0.45 

rx5day 0.95 -0.56 0.74 0.76 0.92 0.96 0.90 0.97 0.76 0.96 0.66 0.99 1.00 1.00 0.97 0.27 0.45 0.45 

Cdii 0.89 -0.41 0.62 0.65 0.85 0.91 0.90 0.91 0.68 0.91 0.56 0.98 0.98 0.97 1.00 0.14 0.31 0.45 

X 0.49 -0.67 0.64 0.67 0.53 0.43 0.14 0.42 0.30 0.38 0.44 0.21 0.24 0.27 0.14 1.00 0.83 -0.01 

Y 0.66 -0.80 0.88 0.89 0.72 0.56 0.21 0.57 0.45 0.55 0.57 0.40 0.42 0.45 0.31 0.83 1.00 0.01 

Elv. 0.43 -0.17 0.23 0.29 0.38 0.48 0.50 0.46 0.34 0.44 0.25 0.46 0.45 0.45 0.45 -0.01 0.01 1.00 

 

 

 

 

 



TABLES |  
 

248 
 

 

 

 

 

 



FIGURES |  
 

249 
 

 

 

 

APPENDIX B 

FIGURES 

 
 

Figure 1. Spatial distribution of Pearson correlation coefficients between the EA/WR index and the extreme 

temperature indices at annual scale. 
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Figure 2. Spatial distribution of Pearson correlation coefficients between the NAO index and the TX90p 

and TN90p indices at annual scale. 
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Figure 3. Spatial distribution of Pearson correlation coefficients between the EA/WR index and the extreme 

temperature indices at seasonal scale. 
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Figure 4. Spatial distribution of Pearson correlation coefficients between A) the NAO and SU25/30 in 

winter, and B) the ENSO and TX10p and TN10p in spring and summer. 
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APPENDIX C 

TESTS 

 

1. Lowess smooth algorithm  

Cleveland (1979) proposed the algorithm LOWESS, locally weighted scatter plot smoothing, as 

an outlier resistant method based on local polynomial fits. The basic idea is to start with a local 

polynomial (a k-NN type fitting) least squares fit and then to use robust methods to obtain the final 

fit. Specifically, one can first fit a polynomial regression in a neighborhood of 𝑥, that is, find β ∈ 

𝑅𝑝+1 which minimize 

                                            𝑛−1 ∑ 𝑊𝑘𝑖(𝑥)𝑛
𝑖=1 (𝑦𝑖 − ∑ 𝐵𝑖𝑋𝑖𝑝

𝑗=0 )                           C1 

Where 𝑊𝑘𝑖(𝑥) denote k-NN weights. Compute the residuals ɛ𝑖ˆ and the scale parameter and the 

scale parameter σˆ = median(ɛ𝑖). Define robustness weights 𝛿𝑖  = 𝐾(ɛ𝑖/6ˆσ), where 𝐾(𝑢) = 

(15/16)(1− 𝑢)², if |𝑢| ≤ 1 and 𝐾(𝑢) = 0, if otherwise. Then, fit a polynomial regression as in (C1) 

but with weights (𝛿𝑖𝑊𝑘𝑖 (𝑥)). Cleveland suggests that 𝑝 = 1 provides good balance between 

computational ease and the need for flexibility to reproduce patterns in the data. The smoothing 

parameter can be determined by cross-validation.  

 

2. Precipitation concentration index  

The Precipitation Concentration Index (PCI) proposed by Oliver (1980) and further developed by 

De Luis et al. (1997) was used for the calculation of the annual PCI as indicated in equation (C3),  

                                                            𝑃𝐶𝐼 =
∑ 𝑃²12

𝑖=1

(∑ 𝑃12
𝑖=1 )²

∗ 100           C3 

where 𝑃 represents the monthly precipitation in month 𝑖 that is calculated for each studied station 

and for each year throughout the observation period. For the study area, the previous equation was 

modified as indicated in equation 2 to be suitable for Climate of Levant which generally has 

recording rainfall data of nine months from September to May,  

                                                           𝑃𝐶𝐼 =
∑ 𝑃²9

𝑖=1

(∑ 𝑃9
𝑖=1 )²

∗ 75           C4 

According to Oliver (1980) and Zamani et al. (2018), 𝑃𝐶𝐼 values below 10 denote a uniform 

monthly rainfall distribution throughout the year (low precipitation concentration); values ranging 
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from 11 to 15 indicate a moderate concentration of precipitation; values between 16 and 20 

represent an irregular distribution; and values above 20 represent a strong irregularity (high 

precipitation concentration) in precipitation distribution. On theoretical bases, the lowest PCI value 

is 8.3, indicating the perfect uniformity in precipitation distribution (i.e., the same amount of 

rainfall occurs in each month. A 𝑃𝐶𝐼 value of 16.7 indicates the total annual or seasonal rainfall is 

concentrated in ½ of the period and a 𝑃𝐶𝐼 value of 25 means the total rainfall occurs in 1/3 of the 

period (i,e., total annual and seasonal rainfall occurred in 4 months and 1 month, respectively). 
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