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SUMMARY 

Cardiovascular diseases are the leading cause of death in the world, with aging being the main 

risk factor associated with these pathologies (Global Health and Aging, 2019). The world’s population 

is aging at an unprecedented rate, and study of the mechanisms underlying this process is vitally 

important from a health, economic and social point of view.  

Aging is characterized by a deregulation of the immune system resulting in a subclinical, 

sterile, asymptomatic and chronic pro-inflammatory state known as inflammaging (Franceschi and 

Campisi, 2014). This inflammatory condition, coupled with oxidative stress, leads to mitochondrial 

dysfunction and subsequent apoptosis, facilitating the release of reactive species, ATP, and mtDNA. 

These hazard signals are recognized by the NLRP3 inflammasome, a multiprotein complex 

responsible for the maturation of pro-inflammatory cytokines dependent on NF-κB, including IL-1β. 

In this way, this process perpetuates a vicious cycle that results in systemic inflammation that is 

accompanied by symptoms of immunosenescence and activation of the innate immune pathway. 

Alterations in the regulation of mitochondrial homeostasis, including mechanisms of mitochondrial 

dynamics, autophagy, apoptosis, as well as decreased antioxidant defense that occurs with aging, such 

as the Nrf2-dependent pathway, may be necessary for activation of NLRP3 inflammasome. In 

addition, the effect this inflammasome may have on mitochondrial function or on the antioxidant 

pathway of Nrf2 during cardiac aging remains unknown. 

Interestingly, numerous scientific studies relate inflammaging to the disruption of circadian 

rhythms, which allow the organism to adapt and anticipate environmental changes to ensure optimal 

physiological performance (Acuña-Castroviejo et al., 2017; Acuña-Fernández et al., 2020; Volt et al., 

2016). In mammals, circadian rhythms are regulated by a central clock, located in the suprachiasmatic 

nucleus, and by peripheral clocks, located in virtually all tissues, including the heart. While there 

seems to be a connection between aging, clock genes and innate immune response, the molecular 

mechanisms that link these processes remain a mystery. To date, the influence of NF-κB on the 

disruption of circadian rhythms during aging has been demonstrated. However, little is known about 

NLRP3's involvement in aging-associated chronodisruption. 

It should be noted that aging manifests the progressive loss of strength and muscle mass. This 

process is defined as sarcopenia and is considered one of the main causes of reduced physical 

performance and impaired cardiorespiratory function in patients with heart failure (Curcio et al., 

2020). Numerous clinical and experimental studies have shown that aging is associated with 

histological, structural, and functional changes in cardiac tissue (Lakatta, 2002). Our group 

demonstrated that the absence of the NLRP3 inflammasome reduced sarcopenia in skeletal muscle 
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(Sayed et al., 2019). Given these results, we consider it of interest to analyze the involvement of 

NLRP3 inflammasome activation in structural alterations in the aging heart. 

Melatonin is a hormone synthesized by the pineal gland, as well as by most organs and tissues, 

including the heart. Pineal melatonin has chronobiotic actions and its production decreases with age. 

This decline has been linked to changes in circadian rhythms, increased inflammation, and 

development of cardiac pathologies (Hardeland, 2012). Extrapineal melatonin has antioxidant and 

anti-inflammatory properties (Hawthorn et al., 2012). In experimental models that include chronic and 

acute inflammation as well as aging in the mouse heart, melatonin decreased innate immune response, 

counteracted oxidative stress, and improved the activity of cardiac mitochondria (García et al., 2015; 

Rodríguez et al., 2007). In addition, melatonin administration has been shown to improve muscle 

function and reduce inflammation in athletes (Leonardo-Mendonca et al., 2017). 

Considering this theoretical framework, our work focused on the study of the causal 

relationship between chronodisruption, melatonin deficiency, and innate immunity, as well as the 

involvement of the NLRP3 inflammasome-mediated immune response during cardiac aging. 

To accomplish this, the aims were to evaluate cardiac tissue of wild type C57/Bl6 mice and 

mice with a C57/Bl6 background knocked-out for NLRP3 inflammasome (NLRP3-/-) of 3, 12 and 24 

months of age in the following parameters: 

1.- Mitochondrial pathway: mitochondrial dynamics, autophagy, apoptosis and mitochondria 

ultrastructure. 

2.- Antioxidant pathway dependent on Nrf2. 

3.- Biological clocking: expression of clock genes, rhythmicity, acrophase, amplitude and 

mesor. 

4.- Histological study and MRI of heart muscle.  

5.- Effects of melatonin treatment on the parameters mentioned above. 

The results of this doctoral thesis show the deleterious effect NLRP3 inflammasome has on 

mitochondrial function during aging, as its absence prevented damage to mitochondrial dynamics and 

structure. Melatonin treatment also reestablished mitochondrial dynamics, had an anti-apoptotic 

action, restored the Nrf2 dependent antioxidant pathway, and preserved mitochondrial structure during 

aging. 

With reference to the biological clock pathway, it could be found that aging, melatonin, and 

presence of the NLRP3 inflammasome had significant effects on expression observed in the clock 
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genes, except for the Rev-erbα gene, which was not affected by the mouse genotype. Small phase 

changes were observed in the Clock gene, loss of rhythmicity in Per2 and Rorα and a tendency for 

mesor to decrease with aging. The NLRP3 inflammasome influenced the acrophase of Clock, Per2 and 

Rorα, suggesting some negative impact on the function of the myocardium. Melatonin restored 

rhythms and acrophases in cardiac tissue, highlighting its clinical potential in the prevention and 

treatment of chronodisruption. Besides these changes, the results indicate that the local chronobiotic 

system of the heart is highly protected against aging.  

Finally, it was concluded that NLRP3 is involved in cardiac sarcopenia, as 24-month-old 

mutant mice had less thickening of the ventricular wall, less fibrosis, lower expression of 

inflammatory cytokines, and lower mitochondrial damage compared to wild type mice. Again, we 

observed a prophylactic effect of melatonin in preserving the structure and number of cardiomyocytes 

and reducing pro-inflammatory and hypertrophic markers as well as apoptosis. It is therefore inferred 

that suppression of the NLRP3 inflammasome and implementation of melatonin therapy may be 

beneficial therapeutic approaches to ameliorate cardiac aging and sarcopenia. 
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RESUMEN 

Las enfermedades cardiovasculares constituyen la primera causa de muerte en el mundo, 

siendo el envejecimiento el principal factor de riesgo asociado a estas patologías (Global Health and 

Aging, 2019). En una población mundial que envejece a un ritmo sin precedentes, el estudio de los 

mecanismos que subyacen al proceso de envejecimiento resulta de vital importancia desde un punto de 

vista sanitario, económico y social.  

El envejecimiento está caracterizado por una desregulación del sistema inmune que resulta en 

un estado pro-inflamatorio de carácter subclínico, estéril, asintomático y crónico conocido como 

inflammaging (Franceschi and Campisi, 2014). Esta condición inflamatoria, sumada al estrés 

oxidativo, desemboca en una disfunción mitocondrial y consecuente apoptosis, favoreciendo la 

liberación de especies reactivas, ATP y mtDNA. Estas señales de peligro son reconocidas por el 

inflamasoma NLRP3, un complejo multiproteico responsable de la maduración de las citoquinas pro-

inflamatorias dependientes de NF-κB, entre ellas la IL-1β. De este modo, mediante este proceso se 

perpetúa un círculo vicioso que da lugar a una inflamación sistémica que se acompaña de síntomas de 

inmunosenescencia y activación de la vía inmune innata. Las alteraciones en los procesos que regulan 

la homeostasis mitocondrial, entre ellos los mecanismos de dinámica mitocondrial, autofagia, 

apoptosis, así como la disminución de la defensa antioxidante que ocurre con el envejecimiento, tales 

como la vía dependiente de Nrf2, podrían ser necesarias para la activación del inflamasoma NLRP3. 

Asimismo, se desconoce el papel que este inflamasoma puede ejercer sobre la función mitocondrial o 

sobre la vía antioxidante de Nrf2 durante el envejecimiento cardiaco. 

Numerosos estudios científicos relacionan el inflammaging con la disrupción de los ritmos 

circadianos, los cuales permiten al organismo adaptarse y anticiparse a los cambios ambientales, 

asegurando así un rendimiento fisiológico óptimo (Acuña-Castroviejo et al., 2017; Acuña-Fernández 

et al., 2020; Volt et al., 2016). En los mamíferos, los ritmos circadianos están regulados por un reloj 

central, situado en el núcleo supraquiasmático, y por relojes periféricos, localizados prácticamente en 

la totalidad de los tejidos, entre ellos el corazón. Si bien parece existir una conexión entre el 

envejecimiento, los genes reloj y la respuesta inmune innata, los mecanismos moleculares que 

relacionan estos procesos continúan siendo un misterio. Hasta la fecha, se ha demostrado la influencia 

de NF-κB en la disrupción de los ritmos circadianos durante el envejecimiento. No obstante, poco se 

sabe acerca de la participación de NLRP3 en la cronodisrupción asociada al envejecimiento. 

Cabe añadir que con el envejecimiento se pierde de manera progresiva la fuerza y la masa 

muscular. Este proceso se define como sarcopenia y está considerada una de las principales causas de 

reducción del rendimiento físico y función cardiorrespiratoria en pacientes con fallo cardiaco (Curcio 

et al., 2020). Numerosos estudios clínicos y experimentales han demostrado que el envejecimiento está 



~ XX ~ 
 

asociado a cambios histológicos, estructurales y funcionales del tejido cardiaco (Lakatta, 2002). 

Nuestro grupo demostró que la ausencia del inflamasoma NLRP3 redujo la sarcopenia en el músculo 

esquelético (Sayed et al., 2019). Teniendo en cuenta esos resultados, consideramos de interés analizar 

el papel del inflamasoma NLRP3 en los cambios estructurales relacionados con el envejecimiento en 

el corazón. 

La melatonina es una hormona sintetizada por la glándula pineal, así como por la mayoría de 

los órganos y tejidos, incluido el corazón. La melatonina pineal tiene acciones cronobióticas y su 

producción disminuye con la edad. Este descenso se ha relacionado con la alteración de los ritmos 

circadianos, patologías inflamatorias y cardíacas (Hardeland, 2012). La melatonina extrapineal posee 

propiedades antioxidantes y antiinflamatorias (Espino et al., 2012). En modelos experimentales que 

incluyen inflamación crónica, aguda y envejecimiento en el corazón de ratón, la melatonina disminuyó 

la respuesta inmune innata, contrarrestó el estrés oxidativo y mejoró la actividad de las mitocondrias 

cardíacas (García et al., 2015; Rodríguez et al., 2007). Además, la administración de melatonina ha 

demostrado mejorar la función muscular y reducir la inflamación en atletas (Leonardo-Mendonça et 

al., 2017). 

Teniendo en cuenta este marco teórico, nuestro trabajo se centró en el estudio de la relación 

causal entre la cronodisrupción, déficit de melatonina e inmunidad innata, así como de la respuesta 

inmune mediada por el inflamasoma NLRP3 durante el envejecimiento cardiaco. 

Para ello, los objetivos fueron evaluar en el tejido cardiaco de ratones wild type de la cepa 

C57/Bl6 y los correspondientes deficientes en el inflamasoma NLRP3 (NLRP3-/-) de 3, 12 y 24 meses 

de edad los siguientes parámetros: 

1.- Vía mitocondrial: dinámica mitocondrial, autofagia, apoptosis y ultraestructura de la 

mitocondria. 

2.- Vía antioxidante dependiente de Nrf2. 

3.- Vía del reloj biológico: expresión de genes reloj, ritmicidad, acrofase, amplitud y mesor. 

4.- Estudio histológico y resonancia magnética del músculo cardiaco.  

5.- Efectos del tratamiento con melatonina en los parámetros mencionados anteriormente. 

Los resultados de esta tesis doctoral muestran la influencia del inflamasoma NLRP3 en la 

función mitocondrial durante el envejecimiento, ya que su ausencia evitó daños en la dinámica y 

estructura mitocondrial. El tratamiento con melatonina también recuperó la dinámica mitocondrial, 

tuvo una acción antiapoptótica, restauró la vía antioxidante dependiente de Nrf2 y mejoró la estructura 

mitocondrial durante el envejecimiento. 
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En referencia a la vía del reloj biológico, se pudo comprobar que el envejecimiento, la 

melatonina y el inflamasoma NLRP3 tuvieron efectos significativos en los cambios de expresión 

observados en los genes reloj, a excepción del gen Rev-erbα, que no se vio afectado por el genotipo 

del ratón. Se observaron pequeños cambios de fase en el gen Clock, pérdida de ritmicidad en Per2 y 

Rorα y una tendencia a la disminución del mesor con el envejecimiento. El inflamasoma NLRP3 

influyó en la acrofase de Clock, Per2 y Rorα, sugiriendo cierto impacto negativo en la función del 

miocardio. La melatonina restauró los ritmos y acrofases en el tejido cardiaco, poniendo de manifiesto 

su potencial clínico en la prevención y tratamiento de la cronodisrupción. En cualquier caso, los 

resultados indican que el sistema local cronobiótico del corazón está muy protegido frente al 

envejecimiento.  

Por último, se concluyó que NLRP3 está implicado en la sarcopenia cardiaca, pues los ratones 

mutantes de 24 meses presentaron un menor engrosamiento de la pared ventricular, menor fibrosis, 

menor expresión de citoquinas inflamatorias y menos daño mitocondrial en comparación con los 

ratones wild type. Una vez más, observamos un efecto profiláctico de la melatonina al preservar la 

estructura y número de los cardiomiocitos, reducir marcadores proinflamatorios y de hipertrofia, así 

como la apoptosis. Se deduce por tanto que la supresión del inflamasoma NLRP3 y la terapia con 

melatonina pueden ser buenas aproximaciones terapéuticas para el envejecimiento cardiaco y la 

sarcopenia. 
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1. AGING 

1.1. WHAT IS AGING? 

In 1959, Bertrand Strehler defined the aging of metazoans as a “process of gradual and 

irreversible disorganization that occurs over time, causes a progressive loss of bioenergetics capacity 

and functional performance and makes the survival of human and other species of metazoans 

impossible, even in an optimal habitat” (Strehler, 1959). Thus, any change in the organism associated 

with age has to meet the following requirements (Strehler, 1977): 1) to be harmful, adversely affecting 

physiological functions; 2) to have a progressive nature and consequently build gradually; 3) to have 

intrinsic character, excluding those alterations derived from environmental factors; 4) to be universal, 

manifesting  in all individuals of every species. 

The world population is aging at an unprecedented rate, and this change is expected to 

accelerate in the coming decades (Global Health and Aging, 2019). In 2018 for the first time in 

recorded history, people aged 65 and over surpassed children under the age of 5 (Figure 1). Globally, 

the population over 65 is growing at a faster rate than the other population segments. The 

demographics of this group are expected to double between 2019 and 2050, while the number of 

inhabitants under 25 will peak then decrease slightly (Figure 2). Europe and North America had the 

oldest population in 2019, with 18% of people over 65 years of age. In these regions, the 65 year-old 

population will overcome those 25 years and younger by 2050. 

 

Figure 1. Estimated and projected global population by broad age group, 1950-2100. People aged 65 years 

or over make up the fastest-growing age group. From Global Health and Aging, 2019. 
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Figure 2. Estimated and projected population changes. (A) Global population. (B) Europe and Northern 

America population. From Global Health and Aging, 2019. 

Given recent advances in medicine and technology, the resulting rise in life expectancy 

demands a focused on understanding the aging process. Unlike most diseases and disorders, age-

related bodily decline is an inevitable consequence of living a long life. With the projected increase in 

the percentage of the global population over 65 years, research in this subject will remain an 

expanding frontier.  

1.2. HALLMARKS OF AGING 

López-Otín et al. classified and proposed the cellular and molecular hallmarks that contribute 

to the development and phenotype of aging (López-Otín et al., 2013). Each hallmark should satisfy the 

following prerequisites: 1) it should appear during aging; 2) its empirical exacerbation should advance 

aging and 3) its empirical amelioration should delay aging and extend healthy lifespan. Hallmarks of 

aging can be grouped into three main categories: primary, antagonistic and integrative (Figure 3).  

Primary hallmarks damage cellular functions and could be the initiating factors whose harmful 

effects gradually accumulate with age. These hallmarks include genomic instability, telomere attrition, 

epigenetic alterations and loss of proteostasis. Antagonistic hallmarks, such as deregulated nutrient-

sensing, mitochondrial dysfunction and cellular senescence, have consequences that depend on their 

intensity. Initially, at low levels, they are beneficial and become progressively deleterious as their 

severity increases. Finally, integrative hallmarks, which include stem cell exhaustion and altered 
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intercellular communication, manifest when mechanisms of tissue homeostasis are insufficient to 

counteract the detriments caused by primary and antagonist hallmarks.  

 

Figure 3. Hallmarks of aging and their functional interconnections. Primary hallmarks are considered to be 

the leading causes of cellular damage. Antagonistic hallmarks are part of the compensatory responses to the 

damage. These responses initially diminish the damage, but eventually, if chronic or exacerbated, they become 

harmful themselves. The integrative hallmarks are the result of the two previous hallmarks and are responsible 

for the functional decline associated with aging. From López-Otín et al., 2013.  

1.2.1. Genomic instability 

Integrity of genome can be affected by external physical, biological and chemical elements, as 

well as by internal elements that includes spontaneous hydrolytic reactions, DNA replication errors 

and reactive oxygen species (ROS) (Hoeijmakers, 2009).  

Numerous investigations have unveiled an accumulation of somatic DNA mutations in cells 

from aged humans and models organism (Moskalev et al., 2013). It has been suggested that these 

DNA alterations may contribute to the functional impairment of B lymphocytes (Zhang et al., 2019a), 

satellite cells (Franco et al., 2018) and neurons (Lodato et al., 2018) in the elderly. 

Mitochondrial DNA (mtDNA) is believed to be a major target for somatic mutations 

associated with aging due to the lack of histone protection, limited efficacy of mtDNA repair 

machinery compared to those of nuclear DNA, and unrepaired oxidative damage (Kauppila et al., 

2017; Linnane et al., 1989). Mutations and deletions in mtDNA accumulate with aging and have been 

related to tissue dysfunction, severe decline of cellular energy, and age-associated diseases (Chinnery, 

2015; Payne and Chinnery, 2015). 
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1.2.2. Telomere attrition 

Telomeres are repetitive tandem sequences that protect chromosome ends from 

interchromosomal fusion and nucleolytic degradation. During each cell division, telomeres shorten due 

to the incapacity of DNA polymerases to fully replicate the end of the telomeric DNA (Allsopp et al., 

1992). This telomere depletion leads to replicative senescence of some types of in vitro cultured cells 

(Greider, 1998). Telomeres have been considered a “molecular clock” and shortened telomeres have 

been linked to aging processes and risk of mortality (Vera et al., 2012). Telomerase can restore the lost 

telomeric DNA. However, most mammalian somatic cells do not express this enzyme, which only 

remains active in some tissues, such as activated lymphocytes, certain types of stem cell populations, 

and male germ cells (Wright et al., 1996). Telomerase deficiency in humans is involved with early 

development of some diseases, like aplastic anemia, pulmonary fibrosis and dyskeratosis congenita 

(Armanios and Blackburn, 2012). Genetic reactivation of telomerase reverted aging in aged 

telomerase-deficient mice (Jaskelioff et al., 2011). Additionally, aging was delayed in adult and old 

mice with pharmacological and systemic viral transduction of telomerase without increasing cancer 

incidence (Bernardes de Jesus et al., 2012).  

1.2.3. Epigenetic alterations 

Epigenetic alterations are heritable changes in gene expression that are achieved without 

affecting the nucleotide sequence. Epigenetic changes involve mainly DNA methylation, histone 

modification, and non-coding RNAs. Epigenetic modifications affect all cells and tissues during life 

(Talens et al., 2012). The theory of developmental origins of health and disease postulates that 

epigenetic alterations is a short-term adaptive mechanism that may become harmful in either short or 

long term, and therefore causing chronic disease and aging phenotype (Barker et al., 1989; Pembrey et 

al., 2014). 

In mammals, DNA methylation happens predominantly at CpG islands, which are linked with 

about half of all human gene promoters. DNA methylation is emerging as one of the most robust 

predictor of human age (Horvath, 2013). Recently, it has been found a correlation between DNA 

methylation age and increased risk of death in elderly population. Interestingly, this association was 

independent of life-course predictor of aging and death, such as diabetes, smoking or hypertension 

(Marioni et al., 2015).  

Histone modifications have been related to influencing longevity in several organisms through 

the regulation of DNA damage repair, transcriptional control and chromosome packaging (Wątroba et 

al., 2017). In this sense, sirtuins have been extensively studied as possible post-translational histone 

modulators during aging since its activity is age-dependent. The deficiency of mammalian nuclear 
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sirtuins (SIRT), such as SIRT1, SIRT6 and SIRT7, has been associated with accelerated aging, 

degenerative diseases and shortening of lifespan. 

Non-coding RNAs have an important function in gene regulation and silencing. The most 

investigated are microRNAs (miRNA). These short-length sequences may regulate up to 80% of all 

genes expressed in humans (Kozomara and Griffiths-Jones, 2011). MiRNAs are involved in regulation 

of signaling pathways related to aging, among them the insulin/insulin-like growth factor (IGF) 1 and 

mammalian target of rapamycin (mTOR). Their role in the age-associated decline in the immune 

system is also accepted.  

1.2.4. Loss of proteostasis 

Proteostasis is a set of cellular mechanisms that maintain the homeostasis of the proteome, the 

synthesis and turnover of human proteins (Eisenstein, 2014). The accumulation of dysfunctional 

proteins and their consequent formation of insoluble aggregates is the principal cause of some age-

related disorders like Alzheimer’s and Parkinson’s disease, and cataracts (Clark et al., 2012; Labbadia 

and Morimoto, 2015). Therefore, the loss of proteostasis is highly related with aging (Koga et al., 

2011). The proteostasis system consists of chaperone-mediated folding, proteasomal degradation and 

autophagy. 

Molecular chaperones are small proteins that support native polypeptide chains in the folding 

of functional protein conformations. The most relevant group of chaperones is the heat-shock factor 

(HSF) family proteins. Mutant mice with a deficiency of these chaperones exhibited accelerated aging 

phenotypes, while up-regulation showed an increase in longevity (Min et al., 2008; Swindell et al., 

2009). In mammalian cells, the transcription factor HSF-1 is recognized as the master regulator of the 

heat-shock response, which consists in boosting the transcription of chaperones as an effect of a rise in 

unfolded proteins (Labbadia and Morimoto, 2015). 

Proteasome activation is considered a conserved process of aging and longevity control, and 

its activity is known to decline with aging (Rubinsztein et al., 2011; Tomaru et al., 2012). 

Furthermore, it has been demonstrated that proteasomal action retards aging in vivo and in vitro 

models (Chondrogianni et al., 2014). People over the age of one hundred showed persistent 

proteasome functionality (Chondrogianni et al., 2000).  

Autophagy is the intracellular digestion of alien cytosolic components and dysfunctional 

proteins and organelles, a process vital for homeostasis (Glick et al., 2010). As organisms age, their 

autophagic capacity decreases (Cuervo and Macian, 2014), which facilitates age-related diseases 

including senile osteoporosis, osteoarthritis and neurodegeneration (Caramés et al., 2015; Tan et al., 

2014). Likewise, restoring or increasing autophagic capacity is sufficient to extent lifespan in 

nematodes, flies and mice model (Madeo et al., 2015). 
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1.2.5. Deregulated nutrient-sensing 

Efficient detection and utilization of nutrients are of vital importance for cellular homeostasis, 

and overall development throughout the life of an organism. Insulin sensitivity is an evolutionarily 

preserved regulator of metabolism and age-related decline in its efficacy has been of great interest in 

scientific research. Insulin regulation is mediated by the actions of growth hormone (GH) and IGF-1, 

both of which decline with age (Schumacher et al., 2008). Intriguingly, this downregulation has also 

been linked to increased longevity (Fontana et al., 2010). This paradox has been theorized to be a 

defensive response to reduce cell growth and metabolism in the context of age-induced cellular 

damage (Garinis et al., 2008). Moreover, excessive reduction of these regulators becomes lethally 

deleterious, as demonstrated by mouse null mutations of the downstream factors PI3K 

(phosphatidylinositol 3-kinase) and AKT (protein kinase B) (Renner and Carnero, 2009). 

Dietary or caloric restriction, which consists of low-caloric intake throughout life, has been 

linked with IGF-1 inhibition thereby decreasing mTOR activation by impairing the activity of 

downstream factors PI3K and AKT (Houtkooper et al., 2010). The mTOR kinase is implicated in 

virtually all facets of anabolic metabolism. Additionally, dietary restriction leads to adenosine 

monophosphate (AMP)-activated protein kinase (AMPK) and SIRT1 nutrient sensing upregulation, 

impairing mTOR action and activating peroxisome proliferator-activated receptor gamma (PPARγ) 

co-activator 1 alpha (PGC-1α), respectively (Alers et al., 2012). The resulting increase in autophagy 

and mitochondrial biogenesis are associated with the enhanced longevity following caloric-restriction 

in both simple and complex organisms (Anton and Leeuwenburgh, 2013). 

1.2.6. Mitochondrial dysfunction 

Mitochondria are subcellular, dynamic, self-autonomous, pleomorphic and double-membraned 

organelles found in nearly all eukaryotic cells (Kurland and Andersson, 2000). The main function of 

mitochondria is production of adenosine triphosphate (ATP) for cellular utilization by oxidative 

phosphorylation (OXPHOS) in cellular respiration. This system consists of four respiratory complexes 

(I- nicotinamide adenine dinucleotide (NADH) dehydrogenase, II- succinate dehydrogenase, III- 

cytochrome c reductase and IV- cytochrome c oxidase) located in the inner mitochondria membrane, 

two mobile carriers (coenzyme Q and cytochrome c) and ATP synthase.  

On complexes I and II, the reduced coenzymes NADH and flavin adenine dinucleotide 

(FADH2), which are generated by dehydrogenases in tricarboxylic acid, are oxidized. The electrons 

released by the oxidation of reduced coenzymes are transported through the respiratory chain to the 

molecular oxygen, supplying energy to pump protons across the inner mitochondria membrane. The 

proton-motive force creates an electrochemical potential that is used by ATP synthase to form ATP 

from adenosine diphosphate (ADP) and inorganic phosphate (Pi) (Benard et al., 2006). 
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Along with energy production, mitochondria also generate ROS and play an essential role in 

regulation of apoptosis, lipid and amino acid metabolism, calcium homeostasis, thermogenesis and cell 

cycle regulation (Friedman and Nunnari, 2014). 

Mitochondrial dysfunction has long been recognized as a main contributor to aging and age-

related disorders (Acuña Castroviejo et al., 2011). As organisms age, OXPHOS capacity tends to 

decline, thus raising electron leakage and diminishing ATP production. Biogenesis and mitochondrial 

dynamics also decrease with aging, while mtDNA impairment, production of ROS, oxidation of 

mitochondrial proteins and triggering of apoptosis lead to a progressive cellular damage. 

1.2.6.1. Mitochondria theory of aging 

The mitochondria theory of aging has been a leading theory on aging. It was first proposed by 

Harman in 1956 and postulates that the production of intracellular ROS is the main driving force of the 

aging process (Harman, 1956). This theory was further refined and developed by Miquel et al. in 1980, 

who suggested that aging was associated with free radical reactions initiated in the mitochondria and 

changes in their redox status (Miquel et al., 1980). 

Mitochondria are the primary intracellular site of oxygen consumption. Nearly 85% of the 

oxygen consumed by cells goes into the production of ATP through OXPHOS. Therefore, 

mitochondria are the major source of ROS, most of them derived from the mitochondrial respiratory 

chain (Grimm and Eckert, 2017) (Figure 4). As a natural by-product of respiration, 0.2-2% of 

molecular oxygen is one-electron reduced to form superoxide anion (O2
·-). Superoxide may be 

catalyzed by superoxide dismutase (SOD) resulting in the production of a longer-lived and membrane 

permeant hydrogen peroxide (H2O2). Although O2
·- and H2O2 can also be produced by nicotinamide 

adenine dinucleotide phosphate (NADPH) oxidases and monoamine oxidases (MAO) in mitochondria, 

these oxygen species are mainly generated by mitochondrial complexes I and III during electron 

transfer (Wong et al., 2019). Hydrogen peroxide may be fully reduced to water by the antioxidant 

defense systems glutathione peroxidase (GPx), glutathion reductase (GR) and catalase (CAT) 

(Murphy, 2009). Additionally, H2O2 may react with reactive iron (Fe2+), from the degradation of iron-

containing macromolecules, such as ferritin, myoglobin and cytochrome c, to produce hydroxyl radical 

(OH-) via Fenton-type reaction (Terman and Kurz, 2013). Hydroxyl radicals are short-lived ubiquitin 

oxidants that are extremely harmful to biological material. Other potentially damaging molecules that 

are also produced by mitochondria are reactive nitrogen species (RNS), specifically nitric oxide (·NO) 

and peroxynitrite (ONOO-). Nitric oxide competitively inhibits mitochondria complex IV activity by 

binding its oxygen site (Brown and Borutaite, 2002). Peroxynitrite deteriorates protein functions by 

nitration (Goldstein and Merényi, 2008). 
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Figure 4. ROS production in mitochondria and endogenous systems of antioxidants enzymes. Mitochondria 

are the major source of ROS production. Leakage of electrons from complexes I and III leads to the reduction of 

oxygen to form superoxide, which is the precursor of most ROS. Free radicals are maintained at physiological 

levels by endogenous systems of antioxidants enzymes, such as superoxide dismutase, catalase, glutathione 

peroxidase and glutathione reductase. GSH/GSSG: reduced/oxidized glutathione. 

In physiological conditions, ROS production and antioxidant defense systems are in 

harmonious equilibrium (Grimm et al., 2016). It is worth mentioning that ROS are involved in 

physiological processes that include immune response, inflammation, synaptic plasticity, as well as 

signaling pathways involved in cell cycle, apoptosis, necrosis or senescence (Sena and Chandel, 2012). 

It has been proven that ROS activated the transcription factor hypoxia-induced factor 1 (HIF-1), which 

is linked to prolonged longevity (Bratic and Larsson, 2013). These findings suggest that ROS-induced 

stress response is vital for tissue homeostasis. However, there is an imbalance between ROS 

generation and antioxidant defenses during aging (Figure 5). This age-related chronic overproduction 

of ROS deteriorates mitochondria function by decreasing the activity of respiratory chain activity, 

membrane potential, and ATP production. The resulting oxidative damage leads to cell toxicity and 

apoptosis (Cedikova et al., 2016).   
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Figure 5. Equilibrium of antioxidant system and ROS at physiological and aged conditions. In 

physiological conditions, ROS generation and antioxidant defense system are in balance. During aging, there is 

an increase in ROS production and a decline in the antioxidant systems, leading to an oxidative stress. 

1.2.6.2. Signaling pathways mediating mitochondrial effects of aging 

Aging causes progressive increase in ROS that results in impairment and dysregulation of 

mitochondria-mediated signaling pathways. Paramount among them are mitochondria dynamics, 

autophagy (mitophagy), apoptosis, and antioxidant response. 

1.2.6.2.1. Mitochondria dynamics 

Central to metabolic homeostasis is the malleable nature of mitochondria dynamics that 

regulate the ever-changing bioenergetics of an organism (Liu et al., 2020). Regulation is maintained by 

a complex, context-dependent compensatory network of proteins responsible for mitochondria fusion, 

Mitofusin 2 (Mfn2) and Optic atrophy 1 (Opa1), and fission, Dynamin-related protein 1 (Drp1). 

Fusion facilitates the merging of healthy mitochondria with damaged adjacent mitochondria to share 

the energetic demands of a stressed cell. Mfn2 and Opa1 serve to increase the efficiency of 

bioenergetics by sustaining ATP production and maintain mitochondrial viability when resources are 

scarce. Fission proteins maintain homeostasis by separating irreparably damaged mitochondria from 

healthy ones for degradation, allowing for dispersal of mtDNA and the mitochondrial proteome during 

biogenesis. Drp1 decreases bioenergetics efficiency by increasing oxidative stress, membrane 

depolarization, and attenuating ATP production when utilization of excess resources is necessary for 

metabolic homeostasis. Mitochondrial dynamics has been closely linked to the regulation of autophagy 

(Villanueva Paz et al., 2016). The fission of mitochondria results in generation of healthy and 

damaged organelles. Mitochondrial depolarization prevents the fusion process, thus isolating damaged 

mitochondria and allowing their elimination by autophagy (mitophagy). 

1.2.6.2.2. Autophagy (mitophagy) 

Autophagy maintains the production of ATP generating metabolic intermediates and amino 

acids in the face of nutrient shortage. Furthermore, it is described as a cell survival mechanism through 
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which defective organelles are eliminated (Villanueva Paz et al., 2016). Thus, when damaged or non-

functional mitochondria are selectively degraded by autophagy, which is called mitophagy (Lemasters, 

2005). The exact mechanism that triggers mitophagy remains to be elucidated. It has been postulated 

that damaged mitochondria have a decreased mitochondria membrane potential (Twig and Shirihai, 

2011). The uncoupled mitochondria are stabilized by the protein phosphatase and tensin homolog 

(PTEN)-induced kinase 1 (PINK1) at the surface of the mitochondrial outer membrane where it 

phosphorylates ubiquitin (Narendra et al., 2010). The ubiquitin phosphorylation recruits cytosolic E3 

ubiquitin ligase Parkin, which polyubiquitinates mitochondrial proteins leading to the formation of 

autophagosome. Subsequently, LC3-mediated fusion with lysosomes proceeds to digest the damaged 

mitochondria (Narendra et al., 2008). 

1.2.6.2.3. Apoptosis 

Apoptosis, or programmed cell death, is generally characterized by caspase-mediated changes 

in cell structure, membrane, and DNA constitution (Kerr et al., 1972). These characteristics include 

cell shrinkage, budding of the membrane, chromatin condensation and DNA fragmentation. Apoptosis 

is not only critical during cell damage or stress events but is equally vital during embryonic and 

postembryonic development and morphogenesis, as well as in pathological and therapeutic settings 

(Nikoletopoulou et al., 2013). Moreover, disabled apoptosis is an event that participates in the genesis 

and progression of cancer (Kroemer et al., 2007). Finally, massive spikes in apoptotic events 

contribute to the pathophysiology of septic shock, intoxicants, infectious diseases and aging 

(Thompson, 1995). 

There are two major signaling pathways that end in apoptotic cell death: the death receptor 

(DR) (extrinsic) and mitochondrial (intrinsic) pathways. The former, as the name implies, is initiated 

by external stimulus binding of ligands to DRs expressed on the cell surface, most commonly from a 

subset of the tumor necrosis factor (TNF) receptor (TNFR) family, such a Fas(CD95), TNFR1, and 

TNF-related apoptosis-inducing ligand (TRAIL) receptor (Green and Llambi, 2015). Cytotoxic 

lymphocytes, among other cell types, are known to kill transformed or infected cells by locally 

expressing DR ligands, like TNF-α, that leads to caspase-8 activation, making this pathway vital to 

immune system function and maintenance of homeostasis.  

The mitochondrial pathway of apoptosis is an internal signaling cascade driven in a cell-

autonomous manner that will manifest in conditions of cellular stress that exceed reparative capacity. 

These conditions may be caused by an increase in ROS, RNS, Ca2+, mtDNA damage or UV radiation, 

genotoxic agents, and aggregation of unfolded proteins that result in DNA damage and endoplasmic 

reticulum stress (Green and Llambi, 2015). The intracellular event that will trigger the intrinsic 

pathway is mitochondrial outer membrane permeabilization (MOMP) that facilitates cytosolic 

translocation of pro-apoptotic factors, predominantly cytochrome c through the mitochondrial 
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permeability transition pore (MPTP). Cytochrome c release is regulated by expression of pro-apoptotic 

effector proteins BCL2-associated X protein (Bax) and BCL2 antagonist/killer 1 (Bak), anti-apoptotic 

Bcl-2 proteins, and BH3-only proteins such as BH3 interacting domain death agonist (Bid) that serve 

to activate the pro-apoptotic effector proteins and/or neutralize the anti-apoptotic B-cell lymphoma 

protein 2 (Bcl-2) and Bcl-XL proteins (Llambi et al., 2011).  

Regardless of the pathway initiated, either external DR binding or internal MPTP, the next 

step is facilitating caspase activation (Kroemer et al., 2007). Extrinsic DRs will recruit a caspase 

activating platform, known as the death-induced-signaling-complex (DISC), and intrinsic cytochrome 

c release will join with apoptotic peptidase activating factor 1 (Apaf-1) to induce assembly of a 

caspase activating complex, known as the apoptosome (Green and Llambi, 2015; Kroemer et al., 

2007). The DR extrinsic pathway DISC will activate caspase 8 and the intrinsic pathway apoptosome 

will bind procaspase 9 and release active caspase 9, both caspases 8 & 9 will act on executioner 

caspases 3, 6 & 7 (Kroemer et al., 2007; Nikoletopoulou et al., 2013; Salvesen and Riedl, 2008). The 

intrinsic and extrinsic pathways of apoptosis were once thought to be exclusive from one another, 

though in recent years understanding how they converge on caspases 3, 6 & 7 activation is one of 

several connections elucidated. Bid is a link between the activation of both intrinsic and extrinsic 

pathways through its interaction with caspase 8. When cleaved by this caspase, Bid will translocate to 

the mitochondria and insert into the membrane where it activates BAX and BAK, initiating a signaling 

cascade leading to MOMP and thusly cytochrome c release (Haupt et al., 2003; Kroemer et al., 2007).  

Regulation by transformation related protein 53 (p53) of genes that code for cell-surface DRs, 

including TNFR family proteins Fas and DR5, as well as genes that code for APAF-1 and Bcl-2 

family proteins, Bax, Bak and Bid, that regulate the release of cytochrome c, shows the involvement of 

this transcription factor in both extrinsic and intrinsic apoptosis (Lohrum and Vousden, 1999). 

Regarding the intrinsic pathway, cytosolic p53 migrates to the mitochondria and promotes cytochrome 

c release by forming complexes with, and inhibiting, the action of anti-apoptotic Bcl-2 and Bcl-XL 

(Vaseva and Moll, 2009). In the extrinsic pathway, p53 plays a key role by inducing expression of 

genes that code for members of the TNFR family, including Fas and DR5. Additionally, p53 not only 

induces expression of Fas, but will traffic Fas to the cellular membrane and facilitate rapid 

sensitization by increasing the amount of cell-surface DRs (Dickens et al., 2012; Green and Kroemer, 

2009; Vaseva and Moll, 2009). Given these observations, p53 facilitates the convergence of DR-

mediated and mitochondrial-mediated apoptosis. 

1.2.6.2.4. Nrf2-antioxidant pathway 

Oxidative stress is defined as a disruption of the balance between ROS production and the 

efficacy of endogenous antioxidant systems (Sohal and Orr, 2012). In this sense, the nuclear factor, 

erythroid derived 2, like 2 (Nrf2) signaling pathway is possibly the greatest cellular defense against 
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toxins and oxidizing agents, being referred as ‘guardian of healthspan’ (Lewis et al., 2010) and ‘master 

regulator of aging’ (Bruns et al., 2015). Nrf2 is a transcription factor that, under conditions of low 

cellular stress, is sequestered in the cytoplasm by kelch-like ECH-associated protein 1 (Keap1) 

binding, which constitutively targets Nrf2 for ubiquitin-mediated proteasomal degradation (Itoh et al., 

1999). In the event of oxidative stress, Nrf2 is phosphorylated and released from Keap1, translocated 

to the nucleus where binds to the Antioxidant Response Elements (AREs) in promoter regions of 

genes involved in the maintenance of redox homeostasis (Hayes and Dinkova-Kostova, 2014). Among 

them are those that code for the heme oxygenase 1 (Hmox1), NAD(P)H quinone dehydrogenase 1 

(Nqo1) and gamma-glutamate-cysteine ligase, catalytic subunit (γ-Gclc) proteins. Nrf2 influences 

mitochondria function by balancing reduction and oxidation processes and improving ATP production, 

membrane potential, fatty acid oxidation and structural integrity (Dinkova-Kostova and Abramov, 

2015).  

1.2.7. Cellular senescence 

Cellular senescence is a stress response characterized by halted cell division and complex 

alterations in morphology, proteasome, secretome, and chromatin arrangement (Rodier and Campisi, 

2011). Conditions that cause senescence involve genomic instability, telomere attrition, epigenetic 

alterations, loss of proteostasis, ROS, mitochondrial dysfunction, and other mechanisms yet to be 

elucidated (Childs et al., 2015, 2017). These conditions facilitate the activation of tumor suppressor 

genes p16INK4a, p21, and p53 that will arrest cell cycle progression (Liu et al., 2009).  

Historically, senescence was believed to be a protective mechanism against carcinogenesis by 

stopping proliferation of cells with damaged or unstable chromosomes (Dimri, 2005). Recently, it has 

been demonstrated that senescent cells can aggregate in tissues for several years by developing 

resistance to apoptosis, consequently interfering with tissue repair and regeneration if not cleared by 

the immune system (Kirkland and Tchkonia, 2017). Senescent cells manifest a senescent-associated 

secretory phenotype (SASP) that generate many compromising agents that include inflammatory 

cytokines and chemokines, matrix proteases, and growth factors (Andriani et al., 2016). Therefore, 

accumulation of the SASP and the resultant degeneration and dysfunction has been proposed as a 

primary driver of aging and age-related diseases, such as Alzheimer’s disease, diabetes, pulmonary 

fibrosis, atherosclerosis, and osteoarthritis (Baker and Petersen, 2018; Palmer et al., 2015; Waters et 

al., 2018). 

1.2.8. Stem cell exhaustion 

Stem cells are characterized by their ability to self-renew. Stem cell exhaustion alludes to the 

progressive functional deterioration of tissue-specific adult stem cells that preserve homeostasis (de 

Haan and Lazare, 2018). The loss of the cellular regenerative potential leads to common features of 
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aging. The decline in hematopoietic stem cells results in immunosenescence, myeloid disorder, and 

anemia (Shaw et al., 2010). Mesenchymal stem cell dysfunction propagates osteoporosis and impairs 

fracture healing (Gruber et al., 2006). The decrease in muscle mass and strength, known as sarcopenia, 

is directly related to satellite cell deterioration with aging (Conboy and Rando, 2012). Intestinal 

epithelial stem cell depletion impairs intestinal function (López-Otín et al., 2013). Stem cell 

exhaustion is an integrative hallmark of aging that constitutes one of the primary malefactors of 

organismal aging via cell-intrinsic and –extrinsic mechanisms. There is much debate on which 

mechanism is most responsible. Recent reviews have postulated that there is a highly interdependent 

and interconnected relationship of extrinsic cellular microenvironment changes and intrinsic cellular 

compensatory processes (Kovtonyuk et al., 2016). Stem cell exhaustion is a complex multifaceted 

process whose age-related mechanisms are not fully understood. It is believed that this process 

encompasses several hallmarks of aging; among them are DNA damage, epigenetic changes, 

mitochondrial dysfunction, and senescence. 

1.2.9. Altered intercellular communication 

Aging implies changes in intercellular communication, including endocrine, neuroendocrine 

and neuronal pathways (Russell and Kahn, 2007). Renin-angiotensin system, adrenergic and insulin-

IGF1 are examples of neurohormonal signals dysregulated with aging.  

Aging-related immune system decline is another prominent factor that alters intercellular 

communications by promoting immunosenescence and inflammaging (López-Otín et al., 2013). 

Immunosenescence is the decline in immune system functionality as age increases. Aging occurs with 

an accumulation of senescent cells that continually generate pro-inflammatory cytokines, chemokines, 

and proteases that perpetuate a low-grade chronic inflammation, known as inflammaging, described in 

section 2.1 (Franceschi and Campisi, 2014). Additionally, senescent cells promote senescence in 

adjacent and local cells by processes that involve ROS and gap junctions-mediated cellular contacts 

(Nelson et al., 2012). Thus, the alterations in intercellular communication compound with aging as the 

derailment of mechanical and functional properties of all tissues are propagated by rampant 

inflammation and ineffectual immunosurveillance. 

1.3. AGING AND HEART 

Aging is the main risk factor for cardiovascular diseases (CVDs), including heart failure, 

stroke, peripheral vascular disease, and coronary heart disease (Obas and Vasan, 2018). CVDs are the 

leading cause of death world-wide (Global Health and Aging, 2019). The global population of 

individuals over the age of 65 is projected to nearly double in the next three decades, giving rise to the 

incidence of this disease. Though we know CVD is correlated with aging, the causation of this 

development remains to be understood.  
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1.3.1. Effect of aging on cardiac structure and function 

As a heart ages, there is a steady decline in the number of cardiomyocytes and a compensatory 

increase in fibroblast proliferation, resulting in an accumulation of collagen that leads to fibrosis and 

hypertrophy of the left ventricle (LV) (Abdellatif et al., 2018). Left ventricular hypertrophy and 

fibrosis are hallmarks of age-induced cardiac structural remodeling by stiffening the myocardium. 

While this preserves ejection fraction at rest, the loss of LV contractility augments passive and active 

filling of the left atrium, which forces remodeling and atrial enlargement, producing another hallmark 

of cardiac aging: decline in diastolic function (Lakatta and Levy, 2003). Additionally, loss of sinoatrial 

node myocyte activity along with fibrosis-impaired electrical impulse conductivity leads to a decrease 

in maximal heart rate and ejection fraction, severely hampering cardiac output. 

1.3.2. Molecular mechanisms of aging in heart 

The heart is the first organ formed during embryonic development (Srivastava and Olson, 

2000). At 22 days of development, primitive heart beats can be detected. From that moment, it 

performs the same essential function throughout life: transporting vital nutrients to and cellular waste 

from all parts of the organism. The ATP demand of the heart is the greatest in the body, consuming 

approximately 6 kg per day (North Brian J. and Sinclair David A., 2012). About 95% of this ATP is 

produced by mitochondrial OXPHOS; because of this, cardiomyocytes have higher mitochondria 

content than any other cell type, occupying around 40% of cytosolic volume (Schaper et al., 1985). As 

aging ensues mitochondria undergo structural changes such as swelling, matrix deformation, and loss 

of cristae; this not only produces more ROS but will consequently produce less ATP by ROS-mediated 

mtDNA damage to essential electron transport chain components. This constant high-energy demand, 

vast amounts of mitochondria, relatively low antioxidant defense, all perpetuating the ROS negative 

feedback loop makes the heart potently susceptible to oxidative stress as aging progresses (Woodall 

and Gustafsson, 2018). Particularly, an excess of ROS has shown to be involved in an impairment of 

intracellular contractility signaling and ventricular dysfunction, contributing to the pathogenesis of 

fibrosis, atherosclerosis, myocardial infarction and heart failure. This situation is aggravated by a loss 

of antioxidants enzymes of mitochondria cardiac tissue, among them SOD, CAT and GPx (Brown 

David I. and Griendling Kathy K., 2015). Oxidative stress generated in mitochondria is the main 

contributor to senescence in cardiomyocytes, resulting in high rates of apoptotic cell death that have 

been implied in the incidence of acute and chronic heart failure. The decline in cardiomyocytes 

reduces cardiac stem cells reserves, whose regenerative activity falls from 1 to 0.4% at the age of 20 

and 75, respectively (Bergmann et al., 2009). Mitochondria function is severely hampered as a result 

of impaired signaling pathways that regulate mitochondria dynamics, autophagy and Nrf2. Altered 

mitochondria dynamics have been associated with cardiac hypertrophy and heart failure (Chen et al., 

2011). The age-dependent deterioration in autophagy/mitophagy is implicated in cardiomyopathy 
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characterized by defective mitochondria, contractile dysfunction, higher fibrosis, cardiomyocyte 

apoptosis, hypertrophy and heart failure (Nakai et al., 2007). As the heart ages, Nrf2 antioxidant 

pathway is downregulated, correlating with age-related cardiomyopathy. Since Nrf2 has proved to 

confer cardioprotection in several disease models, this transcription factor is a promising target for 

therapeutic intervention in the anti-aging stratagem (Fernández-Ortiz et al., 2020; Rahim et al., 2021). 

As progressive loss of mitochondrial function occurs, ROS production increases with mutations in 

mtDNA (Acuña Castroviejo et al., 2011). The accumulation of mtDNA deletions and mutations in 

cardiac aging is depicted in the hearts of mice that have a deficient version of mtDNA polymerase γ 

proofreader. These mice exhibited early onset fibrosis, impaired diastolic and systolic function, and 

cardiac enlargement (Trifunovic et al., 2004). Moreover, mtDNA released from damaged 

mitochondria culminate in myocarditis and dilated cardiomyopathy by activating NLR family pyrin 

domain containing 3 (NLRP3) inflammasome and therefore propagating an age-related chronic low 

grade inflammatory environment, known as inflammaging (Fernández-Ortiz et al., 2020).  

 

2. IMMUNE SYSTEM AND INFLAMMATORY RESPONSE DURING 

AGING 

Taking into account the sensor and effector mechanisms used, as well as the speed and 

specificity of the triggered reaction, the immune response of our body has been classified as innate and 

adaptive or acquired (Medzhitov and Janeway, 1997). The innate immune response is the host's first 

line of defense against invasion. It is made up of physical, chemical and microbiological barriers, as 

well as elements of the immune system such as neutrophils, monocytes, macrophages, dendritic cells, 

eosinophils or cytokines. Recognition of the foreign particle is carried out by a limited number of 

germline encoded receptors that elicit an immediate, limited, and nonspecific response (Moreno and 

Sánchez-Ibarrola, 2003). The adaptive or acquired immune response is characterized by generating 

specific reactions against antigens in which a high number of receptors generated by gene 

rearrangement participate and are expressed on the surface of B and T lymphocytes. This type of 

immunity trades target specificity for a slower response time than that of innate immunity. Although, 

memory mechanisms make it possible to respond more quickly and powerfully when a foreign particle 

is reencountered (Flajnik and Kasahara, 2010). 

At the beginning of the sixth decade of life, the human immune system begins an age-related 

functional decline that manifests a maladaptive state known as immunosenescence (Weyand and 

Goronzy, 2016). This dysregulation of the immune response translates into greater susceptibility to 

infectious processes, cancer, and a reduction in the response to vaccination in older populations. 
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Additionally, the inflammatory response mediated by the innate immune system gains intensity, 

contributing to a chronic inflammatory process known as inflammaging (Franceschi et al., 2000).  

2.1. INFLAMMAGING 

Inflammation is the local response of an organism's immune system to damage inflicted on 

vascularized cells and tissues by bacterial pathogens or any other aggressor of a physical, chemical, 

biological or mechanical nature (Nathan, 2002). The inflammatory cascade is initiated by innate 

immune cells that detect and signal the presence of damage to trigger classical signs of inflammation 

(swelling, redness, heat and pain). Subsequently, the adaptive system is activated to enhance these 

effects to neutralize the offending agent. In this way, inflammation is of enormous physiological value. 

So long as it is triggered in a rapid, coordinated and controlled way to mitigate damage while allowing 

for the elimination of the aggressor, resolution and repair of the damaged tissue, and recovery of 

organismal homeostasis. However, if the inflammatory response is not adequately controlled, not only 

does it fail in its purpose of eliminating the noxious stimulus, but it also persists in the body causing 

greater damage than the stimulus itself that originally initiated it (Drayton et al., 2006). An example of 

tissue damage associated with a perpetual inflammatory response is that which appears during aging 

(Figure 6).  

 

Figure 6. Inflammation response in young and old organisms. In young healthy organisms (right, green) a 

regulated inflammatory response promotes tissue homeostasis and longevity. During aging (left, red), chronic 

inflammation and tissue damage drive the dysfunctional state that leads to age-related diseases. 

The aging process is accompanied by a state of subclinical, asymptomatic, chronic and 

systemic inflammation, a phenomenon known as ‘inflammaging’ (Franceschi et al., 2000). This 

chronic-low grade inflammation is characterized by a 2 to 4-fold increase in serum levels of pro-

inflammatory mediators, including C-reactive protein (CRP), TNF-α or interleukin (IL)-6, in the older 
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population when compared to younger adults (Krabbe et al., 2004). These inflammatory mediators are 

strong predictors of all-cause mortality risk. Etiology of age-related inflammation remains to be 

elucidated and the mechanisms proposed so far are diverse and mutually non-exclusive. Among them, 

the accumulation of senescent cells and their acquisition of the SASP stand out (Franceschi and 

Campisi, 2014). Current studies point to changes in the composition of the gut microbiota with age as 

a source of inflammatory activation (Buford, 2017). Metabolic dysfunction as seen in obesity leads to 

inflammaging (Gregor and Hotamisligil, 2011). While adiponectin found in lean states favors the 

production of anti-inflammatory cytokines, increased leptin during obesity promotes the production of 

IL-6, IL-12 and TNF-α. Increased adipose tissue with age is known to be an underlying cause of 

higher levels of inflammatory cytokines in obesity. Recently, it has been suggested that innate immune 

cells have a memory driven by epigenetic changes that allow for enhanced responsiveness when 

pathogens are reencountered. This "trained immunity" has been put forward as a contributing factor to 

inflammaging (Franceschi et al., 2017). The sustained exposure to infectious agents throughout life, 

especially by virus such as cytomegalovirus (CMV), promotes a chronic stimulation of the immune 

system that induces a pro-inflammatory response. This situation is aggravated by the inability of the 

adaptive immune system to contain viral infections and eliminate exogenous antigens with aging, 

thereby extending the duration of the immune response and its adverse consequences (Deeks, 2011). 

Along with chronic antigenic overload, the presence of macromolecules and damaged organelles that 

accumulate in old organisms is a major stimulus activating inflammatory signaling during aging. The 

cell debris comes from dead and deteriorating cells and is produced at a higher rate in aged tissues, 

because the mechanisms responsible for its elimination, including autophagy and apoptosis, are altered 

with aging. The result of all these processes is induction of the innate immune response through 

Nuclear Factor Kappa B (NF-κB) pathway and NLRP3 activation (Youm et al., 2013). Thus, a better 

understanding of these pathways would help decipher the etiology of inflammaging and facilitate the 

identification of new therapeutic targets 

2.2. INNATE IMMUNE RESPONSE: EFFECT OF AGING 

The innate immune system recognizes highly conserved antigenic structures in various 

microorganisms that are called Pathogen-Associated Molecular Patterns (PAMPs). These PAMPs are 

recognized by receptors of the innate immune system known as Pattern Recognition Receptors 

(PRRs). Structurally, all PRRs have a specific domain for the recognition of PAMPs and a protein-

protein interaction region essential to initiate cell signaling processes (Medzhitov, 2007). PRRs can be 

classified according to their functional differences: 

Secreted PRRs: They are present in body fluids and in the extracellular space. Given their 

location, these PRRs are in charge of binding to the cell surface of microorganisms, activating the 

complement system, initiating opsonization of pathogens, and participating in the transfer of PAMPs 
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to other receptors involved in the innate immune response (Lee and Kim, 2007). Examples of secreted 

PRRs are complement receptors, CRP, serum amyloid P component protein, and pentraxin-related 

protein PTX3. 

Transmembrane PRRs: They are expressed on the cell membrane or on lysosomes / 

endosomes. They carry out immune recognition on uninfected cells to trigger an effector response 

(Iwasaki and Medzhitov, 2010). Toll-like receptors (TLRs) and C-type Lectin receptors stand out as 

transmembrane PRRs. TLRs have been shown to be involved in the inflammaging process, 

distinguishing in turn between a) membranous TLRs (TLR1, 2, 4, 5 and 6), responsible for the 

activation of the NF-κB pathway ; and b) Intracellular TLRs, responsible for detecting nucleic acids of 

viruses and bacteria that induce the activation of Interferon Regulatory Factor (IRF) (Uematsu and 

Akira, 2007). 

Cytosolic PRRs: They act as intracellular sensors detecting the presence of viruses, microbial 

products, substances related to cellular stress or crystalline particles of non-infectious origin. Cytosolic 

PRRs mediate the immune response once the cell is infected and cooperate with transmembrane PRRs 

to give continuity to intracellular signaling associated with the presence of a foreign element 

(Pichlmair and Reis e Sousa, 2007). These PRRs include the retinoic acid-inducible gene I (RIG-I) -

like receptors (RLRs) and the nucleotide-binding domain and leucine-rich repeat containing receptors 

(NLRs). NLRs cooperate with transmembrane TLRs to activate the innate immune response and 

apoptosis involving the formation of signaling complexes, such as inflammasomes and Nucleotide-

binding Oligomerization Domain (NOD) signalosomes (Martinon et al., 2002). 

It should be noted that the immune response to a certain pathogen is not limited only to its 

recognition by a single PRR, but also involves complex cooperation between different receptors, 

immune cells and mediators. Furthermore, the same pathogen presents multiple PAMPs that will be 

recognized by different types of PRR. Therefore, the connection established between the different 

PRRs shows a quantitative effect (the synergistic responses between PRRs allow an efficient response 

to low concentrations of PAMP) and a qualitative effect (the activation of a PRR by its PAMP 

activates other related PRRs). In this way, the host increases its ability to detect any pathogen and 

respond efficiently (Ishii et al., 2008). 

However, as already mentioned, a disproportionate inflammatory response can cause cell 

death and tissue damage in the host, releasing noxious cellular components into the extracellular 

environment. These components or danger signals are called Damage-Associated Molecular Patterns 

(DAMPs) and include cellular proteins like High mobility group protein B1 (HMGB1), IL-1 and 

Histone deacetylase dependent SIN3A (SAP130) and related proteins, as well as nucleic acids DNA, 

ATP or uric acid. These DAMPs are recognized by some PRRs mentioned above, which triggers a 
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greater inflammatory response to the foreign agent and a failure in the regulation of inflammatory 

pathways (Jounai et al., 2012). 

The mechanisms underlying the basal inflammatory process associated with aging undergo 

quantitative and qualitative changes in innate immunity cells and alterations in the expression and 

signal cascades initiated by PRR activation. This ultimately leads to uncontrolled secretion of pro-

inflammatory mediators. It has been observed that there is an age-related decrease in the expression of 

TLRs in innate immune cells (Shaw et al., 2013)). One of the first studies evaluating the function of 

TLRs in aged C57BL/6 mice showed a general decrease in gene expression of the receptors TLR1-

TLR9, decreased protein content of TLR4, and an increase in production of TNF-α and IL-6 

dependent on TLR in peritoneal and splenic macrophages (Renshaw et al., 2002). These data provide 

clear evidence of TLR functional deterioration and the consequent increase in inflammatory response 

brought about by increased production of inflammatory cytokines during aging.  

On the other hand, very little is known about the effects that age has on the functioning of 

cytosolic PRR NLRs. It was not until 2013 that the involvement of the NLRP3 inflammasome in the 

systemic low-grade age-related “sterile” inflammation in adipose tissue and brain was demonstrated 

for the first time. The absence of this protein protected the mice from age-associated increases in 

innate immune activation, in addition to improving glucose tolerance, motor performance, cognitive 

function, as well as attenuate bone loss. While the connection between inflammaging and NLRP3 

activation has been widely reported, some of the molecular mechanisms underlying this process 

remain unclear (Volt et al., 2016). 

Together, all these findings relate the dysregulation of innate immunity activation and the 

perpetuation of pro-inflammatory processes that occurs with age (Figure 7). 
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Figure 7. Effects of aging on PRR-dependent innate immunity signaling. Representation of signaling 

pathways mediated by TLR and NLRP3 during aging, which occurs with high levels of PAMPs and DAMPs that 

contribute to an elevated pro-inflammatory state. dsRNA, double-stranded RNA; IFN, interferon; IFNAR, 

IFNα/β receptor; IL-1β, interleukin-1β; IRF, IFN-regulatory factor; LPS, lipopolysaccharide; MD2, myeloid 

differentiation factor 2; MYD88, myeloid differentiation primary-response protein 88; NF-κB, nuclear factor-

κB; SOCS, suppressor of cytokine signalling; ssRNA, single-stranded RNA; TAM, TYRO3, AXL and MER; 

TRAM, TRIF-related adaptor molecule; TRIF, TIR-domain-containing adaptor protein inducing IFNβ. From 

Shaw et al., 2013. 

2.2.1. NF-κB as a regulator of immune and inflammatory response. Effect of NF-κB during 

aging 

Despite the enormous variety of stimuli to which the immune system responds, the 

complicated task of communicating the presence of lesions or infections in the body is carried out by a 

relatively low number of signaling pathways, which ultimately depends on a common transcriptional 

activator known as NF-κB. 

In mammals, the NF-κB family of transcription factors consists of five members identified as 

p65 (RelA), RelB, c-Rel, p50 (NF-κB 1 and its precursor p105) and p52 (NF-κB 2 and its precursor 

p100). These proteins possess a Rel-homology domain (RHD) that allows DNA binding, dimerization 

and nuclear translocation, whereas only p65, RelB and c-Rel have a transcriptional activation domain 

(TAD) for gene activation. NF-κB members can form any combination of homo- or heterodimers, 

each with different transcriptional ability. However, not every possible dimer combination could be 

demonstrated to occur in vivo. For example, p65/p50 heterodimers, which constitute the majority form, 
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strongly promote gene transcription, while p50/p50 homodimers repress gene transcription (Christian 

et al., 2016; Liu et al., 2017).  

Members of the NF-κB family are activated by a wide variety of stimuli, including pro-

inflammatory cytokines such as TNF-α or IL-1β, B- or T-cell mitogens, bacteria and bacterial products 

such as LPS, viruses, proteins, double-stranded RNA, or even physical or chemical stress situations 

(Karin and Ben-Neriah, 2000). The recognition of these ligands by their specific receptors leads to the 

activation of NF-κB through two possible pathways: the canonical pathway and the non-canonical 

pathway (Figure 8). In the canonical pathway, the nuclear translocation of the p50/p65 heterodimers 

occurs following phosphorylation mediated degradation of the inhibitor of kappaB (IκB). This 

pathway is mainly activated in response to bacterial products and pro-inflammatory signals, playing a 

key role in the pathogenesis of inflammatory diseases and exacerbation of the innate immune 

response. The non-canonical pathway is activated primarily by cytokines of the TNF-α family, 

although not by TNF-α itself. In it, the IKKα-dependent phosphorylation of p100:RelB leads to the 

processing of p100 and the consequent generation of the heterodimer p52:RelB that enters the nucleus 

and activates the transcription of its target genes (Oeckinghaus et al., 2011). The non-canonical 

pathway has been shown to play a major role in the adaptative immune responses, lymphoid 

organogenesis and B cell maturation (Sehnert et al., 2020). 

 

Figure 8. NF-κB signaling pathway. The canonical pathway (left) is activated through different receptors 

including TNFR, IL-1 receptor (IL-1R), B-cell receptor (BCR), T-cell receptor (TCR), Toll-like receptor, RANK, 
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and CD40. The non-canonical pathway (right) is activated through CD40, B-cell-activating factor receptor 

(BAFF-R), lymphotoxin beta receptor (LT2R) and RANK. From Sehnert et al., 2020. 

An aberrant NF-κB expression contributes to the pathogenesis of chronic immune-mediated 

diseases including rheumatoid arthritis, multiple sclerosis, asthma and others (Gregersen et al., 2009; 

Makarov, 2001; Mishra et al., 2018). Numerous studies support a causal relationship between 

inflammaging and a deregulated NF-κB activation. The first of these took place more than two 

decades ago, when Helenius et al. evaluated the DNA-binding capacity of a series of transcription 

factors (NF-κB, AP-1 and Sp-1) in nuclear extracts from various tissues from young and old rodents. 

The results showed a significant increase in the DNA binding of the NF-κB complexes in all the 

tissues of the old animals, while the DNA-binding capacity of AP-1 and Sp-1 did not change with age. 

This finding demonstrated the increase in NF-κB activation with aging, unlike other transcription 

factors related to activation of the immune system. Recently, mouse model with gain of NF-κB 

function showed a shorter lifespan and signs of accelerated aging at middle age that included alopecia, 

osteoporosis, central nervous system alterations, enhanced cellular senescence and reduced 

regenerative capacity (Bernal et al., 2014). This study exhibits a causal relationship between 

inflammation linked to NF-κB overexpression and the deregulation of immune responses that leads to 

development of age-related phenotypes. 

To date, no gold standard for the treatment of chronic inflammation during aging has been 

identified. In this sense, NF-κB is a very attractive therapeutic target due to its importance of 

pathogenic inflammatory pathways. However, NF-κB is known for its crucial role during immune 

responses, cell growth, development and survival (Hayden and Ghosh, 2008), suggesting that a 

systemic NF-κB inhibitor may cause serious adverse effects associated with severe 

immunosuppression and loss of homeostasis. Pioneering approaches must be developed to dampen 

NF-κB activity in a cell-type specific manner. Another very promising target for counteracting the 

effects of inflammaging and currently enjoying great scientific interest is the inhibition of another 

essential component of the innate immune system: the NLRP3 inflammasome. 

2.2.2. NLRP3 as a regulator of immune and inflammatory response. Effect of NLRP3 during 

aging 

Inflammasomes are defined as high molecular weight multiprotein complexes that regulate the 

activation of inflammatory caspases and, consequently, the maturation of their respective substrates 

(Martinon et al., 2002). These caspases are produced in the form of catalytically inactive proenzymes 

that, once the signal is detected, integrate and dimerize in the inflammasome, which triggers their 

activation mediated by proteolytic processing and subsequent maturation of the pro-inflammatory 

cytokines IL-1β, IL-18 and IL-33 (Martinon et al., 2009). 
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Among the different types of inflammasome, NLRP3 is the best characterized and studied one 

because of its implication in different autoinflammatory diseases, among them cold-induced familial 

autoinflammatory syndrome or Muckle-Wells syndrome. These pathologies are included within what 

are known as cryopyrin-associates periodic syndromes (CAPS) and are characterized by recurrent 

episodes of fever and systemic inflammation of the tissues. The cause of these diseases is due to 

mutations in the Nlrp3 gene characterized by a disproportionate activation of the inflammasome, 

resulting in excessive release of pro-inflammatory cytokines, mainly IL-1β (Neven et al., 2008). In 

addition, it should be noted that, unlike other NLRs, the NLRP3 inflammasome can be activated in 

response to DAMPs, turning it into the most important sensor of endogenous stress signal (Feldman et 

al., 2015). 

Structurally, the NLRP3 inflammasome is made up of the NLRP3 receptor, the Apoptosis-

associated Speck-like protein containing a caspase recruitment domain (ASC) adapter protein and the 

cysteine protease caspase-1 (Agostini et al., 2004). The NLRP3 receptor consists of three domains 

(Figure 9): an N-terminal domain called Pyrin Domain (PYD), a NACHT-NAD (NACHT, Nucleotide-

binding oligomerization domain, leucine-rich-repeat family, Apoptosis inhibitory protein, Class II, 

major histocompatibility complex transactivator, Het-E incompatibility locus protein from Podospora 

anserina, Telomerase-associated protein 1; NAD, NACHT-associated domain) core domain and a C-

terminal leucine-rich-repeat (LRR) domain. In an inactive state, NLRP3 is constitutively expressed in 

the cytosol given the internal interaction that is established between the domains NACHT-NAD and 

the LRR of the receptor. In the presence of activating signals, the NLRP3 protein undergoes 

conformational modifications that expose the central domain NACHT-NAD, which allows the 

association of the adapter protein ASC through PYD-like interactions, and the interaction with pro-

caspase-1 through interactions of type Caspase Activation and Recruitment Domain (CARD). As a 

consequence of these conformational modifications and interactions, the proteolytic activity of 

caspase-1 is induced and the subsequent processing of the pro-inflammatory cytokines pro-IL1β, pro-

IL-18 and pro-IL-33 to their active forms IL- 1β, IL-18 and IL-33, respectively (Dunne, 2011). 
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Figure 9. Schematic representation of the NLRP3 components and their assembly during the 
inflammasome activation. In its inactive form, NLRP3 is constitutively expressed in the cytoplasm (upper). The 

recognition of a series of PAMPs/DAMPs induces conformational changes in NLRP3, recruiting ASC and pro-

caspase-1 to the inflammasome (lower). Consequently, caspase-1 is activated facilitating the maturation of pro-

inflammatory cytokines to their active forms. From Escames et al., 2012.  

NLRP3 inflammasome activation occurs in response to a wide variety of stimuli, including 

bacterial products (muramyl dipeptide, LPS, or bacterial RNA), bacterial toxins (nigericin, listeriolysin 

O, gramicidin), Gram-negative pathogenic bacteria, and Gram-positive, viruses and viral products, 

fungal pathogens or signs related to the existence of damage in the body (silica or cholesterol crystals, 

aluminum hydroxide, monosodium urate, β-amyloid plaque, extracellular ATP, cytoplasmic DNA or 

ROS) (Bauernfeind et al., 2011). Various mechanisms have been suggested that trigger the activation 

of the NLRP3 inflammasome, although none of them alone can explain the response to the enormous 

diversity of stimuli mentioned above (Figure 10). 
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Figure 10. Models involved in the activation of the NLRP3 inflammasome. Both signal 1 and 2 are required 

for NLRP3 inflammasome activation. Signal 1 activates the NF-κB pathway and increases NLRP3 levels. Signal 

2 promotes triggering of the NLRP3 inflammasome complex mediated by potassium output (1), lysosomal 

content release (2) and ROS generation (3). Adapted from Jo et al., 2016. 

The first signal in inflammasome activation involves the priming signal, which is mediated by 

ligands recognized by TLRs and induces the NF-κB pathway to upregulate the expression of pro-IL-1β 

and NLRP3. The second signal is mediated by numerous PAMPs and DAMPs, named above, and 

promotes the assembly of ASC and pro-caspase 1. Several molecular pathways have been proposed for 

NLRP3 activation to induce caspase-1-activation and IL-1β maturation: 

 One model suggests that the activation of the inflammasome occurs in response to the rapid 

output of potassium caused by each and every one of the above ligands (Lamkanfi et al., 

2009). This model is supported not only by the fact that sub-physiological amounts of 

potassium induce spontaneous activation of the inflammasome, which suggests that it can 

detect small decreases in intracellular potassium levels, but also due to the profound inhibition 

of the NLRP3 inflammasome that is observed in response to the increase in potassium 

concentrations at the extracellular level, preventing potassium efflux form the cell (Pétrilli et 
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al., 2007). Potassium efflux occurs through pores formed by the action of certain bacterial 

toxins that alter cell integrity, or through P2X7 purinergic receptors in response to 

extracellular ATP (Mariathasan et al., 2006). The presence of ATP in this location is 

associated with cell damage, necrosis, as well as mechanical stimuli on certain cell types, 

mainly endothelial and epithelial cells (Martinon et al., 2009). Once out of the cell, ATP 

induces activation of P2X7 receptors, an ion channel regulated by ATP that acts in 

conjunction with the hemichannels of panexin-1, which can act as channels specific for ATP 

release. Consequently, not only is a pore produced in the cell membrane that facilitates the 

cytoplasmic entry of NLRP3, but the release of ATP mediated by panexin-1 amplifies the 

activation of the P2X7 receptor-dependent inflammasome. 

 

 Another proposed mechanism for the activation of the NLRP3 inflammasome is based on the 

destabilization of the lysosome after phagocytosis of crystalline particles or structures, 

including particles of silica, cholesterol or β-amyloid. As a consequence of this lysosomal 

disintegration, its content is released into the cytoplasm, an event that is perceived as a sign of 

endogenous damage by the immune system (Dostert et al., 2008). In this model, the release to 

the cytosol of cathepsin B, a proteolytic enzyme responsible for catalyzing the hydrolysis of 

proteins to polypeptides, will play a key role in the production of IL-1β in response to a 

variety of mediators dependent on processes of phagocytosis. This fact is evidenced by the 

suppression exerted by the inhibitor of the biological activity of cathepsin B, Ca-074-me, on 

the activation of the inflammasome (Hornung et al., 2008). 

 

 Recently, it has been observed that all known NLRP3 inflammasome activators induce ROS 

production, suggesting the use of antioxidants could effectively inhibit inflammasome 

activation (García et al., 2015). In this activation model, the thioredoxin-interacting protein 

(TXNIP) has an essential role in associating ROS production with inflammasome activation 

(Zhou et al., 2011). Under basal conditions, TXNIP is associated with thioredoxin 

oxidoreductase (TRX), a complex that dissociates when intracellular ROS levels increase. 

This dissociation is double-edged: while free thioredoxin can play its role as a ROS scavenger, 

TXNIP associates with NLRP3 in a ROS-dependent manner, ultimately inducing its 

activation. Although this causative effect of ROS has been known for a long time, it was not 

until relatively recently that the importance of mitochondria in modulating innate immunity 

through direct activation of the NLRP3 inflammasome was brought to light. In this sense, 

Zhou et al. observed that ROS production associated with mitochondrial dysfunction directly 

activates the NLRP3 inflammasome while Nakahira et al. demonstrated that mitophagy 

constitutes an important inhibitory mechanism of NLRP3 inflammasome (Nakahira et al., 

2011). Likewise, the association between NLRP3 and mitochondria is sustained by: 
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- Subcellular location of the mitochondria during inflammatory processes. While the inactive 

NLRP3 and ASC proteins associate with the endoplasmic reticulum, the activation of the 

inflammasome induces its perinuclear distribution in conjunction with the mitochondria 

(Zhou et al., 2011). 

- Mitochondria ROS production facilitates opening of the MPTP, consequently releasing 

mtDNA which is detected as a signal of damage and index the activation of the NLRP3 

inflammasome and the secretion of IL-1β and IL-18 (Nakahira et al., 2011; Zhou et al., 

2011). Interestingly, the magnitude of caspase-1 activation is directly related to the amount 

of mtDNA in the cytosol, suggesting its role as a caspase-1 coactivator. 

Exposure throughout our lives to different antigens and stressful stimuli causes a state of 

chronic oxidative stress in our body (Baylis et al., 2013). This situation allows for mitochondrial ROS 

release, causing greater oxidative damage in the biomolecules of senescent cells, and strongly 

contributes to age-related cellular deterioration. The oxidative process that accompanies aging leads to 

the release and accumulation of DAMPs that initiate an inflammatory process through PRRs, such as 

TLRs and NLRs, triggering the activation of the NLRP3 inflammasome, an increase in IL-1β levels 

and a perpetual inflammatory response (Feldman et al., 2015). The aberrant activity of the NLRP3 

inflammasome has been implied in a multitude of age-related pathologies, such as neurodegenerative 

diseases, obesity, diabetes, osteoarthritis and CVDs (Sebastian-Valverde and Pasinetti, 2020). All 

these data suggest that targeting NLRP3inflammasome may be potentially beneficial to reestablishing 

of immune competence and homeostasis state in the elderly.  

2.3. INFLAMMAGING AS A CAUSE OF CARDIOVASCULAR DISEASES  

Epidemiological studies reveal that CVDs emerge ensuing a chronic inflammatory state 

(Welsh et al., 2017). The increase in inflammatory markers with aging is considered CV risk factor 

(Scuteri et al., 2011; Ungvari et al., 2004). Thus, the increase in the pro-inflammatory cytokine IL-6 

has been implicated in age-associated vascular disease. CRP was linked to increased arterial stiffness 

in middle and old-age subjects. Likewise, TNF-α has been found to be upregulated in coronary 

arteries, leading to endothelial dysfunction and proatherogenic inflammatory mediators. Ischemic 

cardiac injury is often caused by obstruction of arterial blood flow through the coronary artery by 

atherosclerotic lesions. 

Atherosclerosis is defined as a chronic inflammatory disorder of the medium and large-size 

arteries distinguished by an endothelial accumulation of immune cells, extracellular matrix (ECM), 

cholesterol and lipids (Miteva et al., 2018). This cardiovascular event constitutes the main cause of 

CVD and NLRP3 inflammasome plays an important role in its etiology (Figure 11). 
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The high levels of ROS observed in aged individuals that come from the oxidative stress and 

mitochondrial dysfunction induce the oxidation of LDL. Oxidized LDL and cholesterol crystal act as 

DAMPs that initiate NLRP3 activation, which leads to the maturation of IL-1β. At the same time, IL-

1β enhances the inflammatory reaction by increasing the expression of IL-6, IL-8, TNF-α, vascular 

cell adhesion molecule (VCAM)-1, and monocyte chemo-attractant protein-1 (MCP-1). These events 

facilitate the infiltration of neutrophils and monocytes. In addition, IL-1β promotes proliferation and 

migration of vascular smooth muscle cells (VSMCs), enables the development of foam cells, and 

boosts the metalloproteinase (MPP) expression and successive collagen degradation that promotes 

plaque instability. This situation is exacerbated by the release of more pro-inflammatory cytokines and 

more ROS, which further provoke LDL oxidation and aggravate atherosclerosis. 

 

Figure 11. Role of the NLRP3 inflammasome in atherosclerosis. Aging contributes to the development of 

atherosclerosis, a chronic inflammatory arterial disease characterized by the deposition of lipids and cholesterol 

crystals that act as DAMPs by triggering NLRP3 inflammatory response. From Miteva et al., 2018. 

Considering what is mentioned in this section, we can conclude that the innate immune system 

and especially NLRP3 inflammasome has an essential role in the maintenance of an age-associated 

chronic inflammatory state, because of its capability to sense many of the aging-related danger signals, 

thus orchestrating an immune response that promotes inflammation. Consequently, the NLRP3 

inflammasome appears to be a tempting therapeutic target for the treatment of not only the 

cardiovascular events described here but also for the aging process. 
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3. CYRCADIAN RHYTHMS AND CLOCK GENES 

The concept of circadian rhythms was defined by Halberg et al. in 1959 to detail the 

association between the Earth’s daily rotation and the endogenous oscillation of many physiological 

factors (Halberg, 1959). In this way, circadian rhythms are regular cycles in a host of biochemical, 

functional and behavioral parameters that display periods of near 24 h (Dibner et al., 2010). 

Biologically, circadian rhythms allow organism to adapt and anticipate environmental changes and 

ensure optimal physiological performance. Sleep-wake cycles, food intake, body temperature, 

secretion of enzymes and hormones, neurological activity and glucose homeostasis are some of the 

myriads of biological processes that follow circadian rhythms. In mammals, circadian rhythms are 

regulated by one central or master clock and peripheral clocks. 

The master circadian pacemaker is located in the suprachiasmatic nucleus (SCN) of the 

anterior hypothalamus and it consists of around 20.000 neurons in rodents and 50.000 in humans 

(Hastings et al., 2018). Photoperiod is the main Zeitgeber (from the German time giver) for the central 

clock, which is synchronized by the environmental lighting conditions to ensure that the organism is in 

phase with the environment. In vertebrates, circadian photoreception occurs via intrinsically 

photosensitive retinal ganglion cells (ipRGCs) due to the presence of melanopsin pigment, that is 

directly activated by blue light with a wavelength of 440 to 480 nm. These cells also integrate light 

signals from visual photoreceptors (rods and cones) to adjust the SCN to the external day-night cycle. 

The SCN then projects to a wide range of brain areas involved in the regulation of metabolic 

pathways; among them are the paraventricular nucleus (PVN) of the hypothalamus, sub-

paraventricular zone (sPVZ), dorsomedial hypothalamus (DMH) and arcuate nucleus (ARC) (Brown 

et al., 2010). Through this retino-hypothalamic pathway, SCN conveys phase information to peripheral 

pacemakers, helping preserve homeostasis of the organism by maintaining internal synchrony. These 

peripheral clocks are found in almost all mammalian tissues including the retina, heart, kidneys, liver, 

lungs, ovaries, testis, gut, spleen, muscle, and immune cells, among others (Acuña-Castroviejo et al., 

2017). Feeding time, physical exercise and availability of metabolites are the Zeitgeber for the 

peripheral clocks that synchronize their circadian rhythms (Schibler et al., 2015). Other than 

orchestrating metabolic pathways, the SNC regulates synthesis and release of pineal melatonin 

depending of the level of photoreception. Specifically, during night, PVN neuronal activity promotes 

melatonin secretion, that peaks between 2 am and 4 am, and is rapidly released into the blood and 

cerebrospinal fluid reaching all cells of the organism (Reiter, 1993). Light increases SCN electrical 

activity via ipRGCs photo-stimulation, which inhibits PVN neurons and, thus, melatonin secretion 

during the day. These qualities of melatonin characterize it as an endogenous synchronizer of circadian 

rhythms because this pineal hormone transmits the timekeeping signals from SCN and coordinates 

each cell of the body with a period of 24 hours (Pfeffer et al., 2018) (Figure 12).  
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Figure 12. Mammalian circadian rhythms. In mammals, circadian rhythms are regulated by circadian clocks. 

These clocks include a central clock and peripheral clocks. The central clock is located in the SCN of the 

hypothalamus and is synchronized mainly by photoperiod. The central clock regulates basic functions of the 

organism by two processes: 1) synchronization of peripheral clocks via humoral signals to maintain 

homeostasis; 2) regulating pineal production of melatonin. This hormone is the endogenous synchronizer of 

circadian rhythms. 

Central and peripheral clocks share the same molecular mechanism (Mohawk et al., 2012). It 

is based on positive and negative transcription-translation feedback loops (TTFL) (Figure 13). The 

transcription factors CLOCK (circadian locomotor output cycles kaput) and BMAL1 (brain and 

muscle ARNT-like 1) form a heterodimer that binds to Enhancer (E)-box sites located in promoter 

regions and induces the expression of the clock genes Per and Cry (Period and Chryptochrome, 

respectively), and also Ror (Retinoic acid-related orphan receptor)-α, Rev-erb (reverse strand of 

protein ERB)-α and other clock controlled genes (CCGs, which represent approximately 10-20% of 

the complete genome in mammals. Once translated the protein PER and CRY heterodimerize in 

cytosol and translocate to the nucleus, where they repress CLOCK:BMAIL1 heterodimer action. A 

new cycle starts when the PER:CRY complex decreases, owing to the low levels of CLOCK:BMAL. 

A second feedback loop consists of RORα and REV-ERBα, which compete to bind retinoic acid-

related orphan receptor response elements (ROREs) in the promoter region of Bmal1. RORα activates 

the transcription of Bmal1 while REV-ERBα represses it. 
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Recently, a new protein has been discovered, CHRONO (ChIP-derived Repressor of Network 

Oscillator), that functions as a core component of the mammalian circadian clock. Its overexpression 

leads to suppression of CLOCK:BMAL1 activity in a histone deacetylase-dependent manner (Goriki 

et al., 2014). 

 

Figure 13. Mammalian clock system. The molecular clock is comprised of interconnected transcription 

feedback loops: CLOCK and BMAL1 heterodimer on the activation loop, which promotes Per, Cry, Rorα, Rev-

Erbα and CCGs transcription. PER:CRY heterodimer on the inhibition loop, that inhibits CLOCK:BMAL1. 

RORα and REV-ERBα activates and represses Bmal1 transcription, respectively. Adapted from Firsov and 

Bonny, 2018. 

3.1. CIRCADIAN RHYTHMS DURING AGING: CHRONODISRUPTION PROCESS 

The biologist Pittendrigh, during the influential Cold Spring Harbor Symposium on 

Quantitative Biology in 1960 (XXV: Biological Clocks), postulated that “circadian rhythms are 

inherent in and pervade the living system to an extent that they are fundamental features of its 

organization; and to an extent that if deranged they impair it” (Pittendrigh, 1960). Consequently, 

chronodisruption was defined as a misalignment of internal clock with zeitgebers. This syndrome is 

frequent in people who work nightshifts, experience jet-lag, or are otherwise subjected to artificial 

lighting during the night (Rajaratnam and Arendt, 2001). Perturbation of circadian synchronicity 

predisposes individuals to several pathologies; among them are sleep disorders, cognitive impairments, 

cancer, metabolic syndrome and CVDs (Pauley, 2004). An inescapable source of chronodisruption is 

aging. The major circadian changes observed in the elderly include phase advancing of the daily 

rhythms, attenuation of the amplitude and fragmentation of the rhythms (Hood and Amir, 2017). Also 

described during aging are alteration in the phase relationship with environmental photoperiod cycle, a 

reduced response to resetting signals and a desynchrony of rhythms within an organism. 
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Aging affects light reception by impairing blue light transmission, the most crucial wavelength 

to prompt continuation of the circadian entrainment (Turner and Mainster, 2008). This fact is due to 

the gradual loss of ipRGCs. A 40-year-old adult has already lost 35% of these cells, and at 55 the 

individual will perceive less than half the circadian photoperiod a 25-year-old adult would. This 

circumstance progressively weakens light reception of the circadian system. Similarly, a reported 

impairment of master clock performance is the reduction of number and functionality of neurons and 

synaptic terminals (Tsukahara et al., 2005). In addition, the secretion pattern of the main output, 

melatonin, decreases and experiences phase advancement with aging (Srinivasan et al., 2005). On 

average, elderly individuals show a 50% decline in nocturnal melatonin levels (Touitou, 2001). The 

rhythmicity of this pineal hormone is dampened by pinealocyte secretion deficiency, pineal size 

reduction and calcification (Kunz et al., 1999). Moreover, SNC expression of MT1 melatonin receptor 

is diminished in aged humans. These findings indicate that circadian systems are not only less able to 

adjust to environmental time cues with age, but also that melatoninergic feedback to the SCN may be 

deteriorated in aging (Arellanes-Licea et al., 2014). 

Melatonin release modulates the activity of the ipRGCs time-keeping signals to the SNC, 

regulates core body temperature, stimulates sleep onset and controls the circadian oscillator system 

(Arendt, 2006). Melatonin also contributes to the rhythmic control of the immune system, influencing 

the diurnal oscillations of leukocyte proliferation, cytokine production, and Natural Killer (NK) cell 

activity. Indeed, several studies have shown a connection between a decline in melatonin secretion and 

age-associated pathologies that occur with alterations in immune system and inflammation, such as 

Parkinson’s or Alzheimer’s disease (Cardinali et al., 2008).  

Immune system activity is connected with the circadian clock, as it is shown by the daily 

variations of monocytes, macrophages, T and B lymphocytes in blood (Cermakian et al., 2014). These 

data suggest that innate immunity is in part controlled by the clock proteins (Figure 14). It has been 

reported that CLOCK phosphorylates and acetylates p65, increasing the transcriptional activity of NF-

κB and consequently the inflammatory response (Spengler et al., 2012). Instead, BMAL1 recruits 

CLOCK, preventing the activation of innate immunity and acting as an anti-inflammatory agent. 

Furthermore, BMAL1 increases the expression of RORα, which can further suppress NF-κB through 

the increase of its inhibitor IκB and the deacetylation of p65 mediated by the binding of melatonin to 

ROR (Nguyen et al., 2013). REV-ERBα induces an inflammatory response by inhibiting BMAL1. 

PER and CRY also modulate inflammation. Among the three known PER proteins, PER2 has been 

proposed as the most important in the control of innate immunity, since it seems to act by stimulating 

it through BMAL1 repression. On the other hand, the absence of CRY causes an increase in IL-6, 

TNF-α and inducible nitric oxide synthase (iNOS), giving rise to a pro-inflammatory state dependent 

on NF-κB action (Narasimamurthy et al., 2012). 
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Figure 14. Interaction between clock genes and NF-κB to modulate innate immune activity.  

Interestingly, inflammation also disrupts the molecular clock. In this sense, chronodisruption 

with aging promotes an increase in pro-inflammatory factors towards anti-inflammatory cytokines, 

causing a further alteration of the clock by exacerbating innate immune response (Volt et al., 2016). 

The underlying mechanisms involved in the alterations of clock genes by inflammaging are probably 

related to the inhibitory roles of TNF-α, IL-1β and NF-κB on the transcriptional activity of 

CLOCK:BMAL1 complex (Cavadini et al., 2007). 

These studies suggest a relationship between clock genes, aging and innate immune response 

(Acuña-Castroviejo et al., 2017; Acuña-Fernández et al., 2020; Volt et al., 2016). However, this 

connection is not fully clarified since most research to date is focused on NF-κB, leaving the role of 

NLRP3 unknown. Understanding the involvement of this inflammasome during chronoinflammaging 

may reveal valuable information to mitigate this process.   

Regarding the effect of aging on peripheral clocks, the consensus in the field is still unclear 

with many controversial results. Some tissues seem unaffected by phase shift while other tissues 

manifest phase discordance with light cycle or the lack of rhythms (Yamazaki et al., 2002). It is known 

that organs age at different rates and have tissue-specific impaired pathways in both mammals and 

Drosophila (Girardot et al., 2006). Some tissues may have functional roles in the entire circadian 

system, adding more complexity to the understating of aging influence on peripheral clocks. More 
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studies are required in this research area to elucidate the intricate mechanism of circadian rhythm 

regulation with aging. 

3.2. CIRCADIAN RHYTHMS IN HEART. EFFECT OF AGE-RELATED 

CHRONODISRUPTION  

Circadian rhythms are essential for a healthy cardiovascular system. The rhythm of heartbeat 

shows a diurnal oscillation with higher frequencies and cardiac output during the active phase and 

lowered activity during the sleep phase (Durgan David J. and Young Martin E., 2010). As a result, a 

concomitant rhythm appears in blood pressure and, thus, oxygen and nutrient supplementation. 

Additionally, the risk of serious cardiovascular events, such as stroke, acute myocardial infarction, and 

sudden death, exhibits circadian patterns characterized by marked peaks in the morning hours at the 

transition from sleep to wake phase (Willich et al., 1992). Recent investigations have demonstrated 

that disturbances of circadian rhythms are associated with risk of cardiovascular events (Martino and 

Sole, 2009). 

Genetic mouse models of altered circadian clock function show a ranging degree of 

abnormalities in heart rate and other cardiac circadian rhythms depending on which distinct circadian 

clock component is modified (Bray et al., 2008) (Figure 15). 

 

Figure 15. Phases of central and cardiac peripheral clocks. Synchronization between central and cardiac 

peripheral clock is essential in keeping physiological function and organism homeostasis. Disruption between 

central and peripheral clock, or desynchrony among the peripheral clocks leads to cardiac dysfunction. Adapted 

from Takeda and Maemura, 2015. 
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One study reported that a change in the light/dark (L/D) cycle length from 24 h (12/12 h L/D) 

to 20 h (10/10 h) increased disease severity of mice that had been subjected to the pressure-overload 

cardiac hypertrophy (transverse aortic constriction, TAC) model (Penev et al., 1998). A repeated phase 

shift of L/D cycles in hamster with cardiomyopathy considerably compromised their survival (Hurd 

and Ralph, 1998). These results conclude that disruption of external rhythmicity promotes 

cardiovascular pathology and affects longevity.  

Loss of synchronization between the central and peripheral clocks also underlies cardiac 

dysfunction. Hamsters with a mutation in casein kinase-1ε are named tau mutants, and instead of 

having a period of 24 h, as seen in wild type hamsters, +/tau heterozygotes have shorter cycles with a 

duration of 22 h. Mutant animals showed cardiomyopathy, fibrosis, impaired systolic function and 

died at younger age. Interestingly, cardiac impairment disappeared in heterozygotes hamsters when 

they were kept under a 22 h period that fits their intrinsic rhythm (Martino et al., 2008). 

The role of the internal clock in cardiovascular disorders has been studied in genetically 

modified mice. Bmal1-deficient mice displayed age-associated cardiomyopathy, with a thin 

myocardial wall, decreased cardiac function, and alterations in sarcomere structure in histology (Lefta 

et al., 2012). Intrinsically, circadian peripheral clocks in heart are present in cardiomyocytes, VSMCs 

and endothelial cells. Cardiomyocyte-specific Clock mutant mice exhibited increased bi-ventricular 

weight, cardiomyocyte size, and hypertrophy (Durgan et al., 2011). Similarly, cardiomyocyte-specific 

Bmal1-deficient mice had a decreased ejection fraction and developed dilated cardiomyopathy that 

ended in heart failure, severely reducing their life span (Young et al., 2014). Regarding vascular 

physiology, mice with Per2 knocked out showed aortic rings with decreased endothelium-dependent 

relaxation activity and impaired vasodilation (Viswambharan et al., 2007). 

The mechanism underlying aging regulation of circadian clock genes in the heart is unknown. 

However, in recent research, Gao et al. performed RNA sequencing in young (2 months) and old (18 

months) mouse aorta to clarify age-associated changes in the transcriptome. Authors found that 

circadian rhythms genes were differentially expressed in young and old aorta. In the old aorta, Clock 

and Bmal1 exhibited a 30% and 50% decrease, respectively, concurrent with an upregulation of Per2. 

In addition, the analysis showed most upregulated pathways in aged aortae were related to immune 

response, including inflammation (Gao et al., 2020). ECM organization, protein folding control and 

stress response were the top downregulated pathways. Altogether, the results support the concept that 

chronodisruption and inflammaging are major contributors in vascular cell senescence and age-related 

cardiovascular dysfunction (Volt et al., 2016)  (Figure 16). 
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Figure 16. Proposed model of transcriptome regulated by arterial aging. Arterial aging triggers 

inflammatory response, leads to circadian clock impairment, and reduction in extracellular matrix organization, 

chaperone-mediated protein folding control and stress response. Adapted from Gao et al., 2020. 

Pharmacological targeting of circadian rhythms regulators may provide a new opportunity for 

treating heart disease. The therapeutic implications could be particularly important for individuals who 

are subjected to chronodisruption, such as nightshift workers and individuals with sleep disorders in 

the aging population. In this sense, melatonin, as an endogenous synchronizer of central and peripheral 

circadian rhythms, may be an excellent candidate for that purpose.   

 

 4. MELATONIN 

Melatonin, or N-acetyl-5-methoxytryptamine (from Greek melas = black, dark + tonin, from 

serotonin; melatonin is a hormone that can lighten skin color in some animals, and is derived from 

serotonin) (aMT), is a highly preserved indoleamine throughout evolution, being present from 

primitive organisms such as cyanobacteria, parasites such as Tripanosoma cruzi and single-celled 

algae to current organisms (Hardeland, 2008; Hardeland and Poeggeler, 2003; Macías et al., 1999). It 

was initially described by McCord and Allen in 1917 (McCord and Allen, 1917) and was first isolated 

from cow pineal gland extracts by Lerner in 1958 (Lerner et al., 1958). A year later, the same author 

identified the chemical structure of this molecule, giving it the name melatonin (Lerner et al., 1959) 

(Figure 17). From a chemical point of view, it is an organic crystal, white, with a molecular weight of 

232.38g/mol, a melting point between 116-118˚C, not very soluble in water but very soluble in 

ethanol. 
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Figure 17. Chemical structure of melatonin. 

Melatonin is ubiquitous, distributed throughout the body thanks to its amphipathic nature, 

which allows it to cross all cellular barriers. Evolutionarily, it is believed that its appearance is due to 

an adaptation of organisms to use oxygen, since melatonin can neutralize the free radicals produced by 

this gas’ effect on different cellular structures. 

Initially, melatonin was characterized as a regulatory element in circadian and reproductive 

physiology. However, later studies discovered an extra pineal melatonin with antioxidant and anti-

inflammatory actions, as well as play a key role in maintaining mitochondrial homeostasis (Acuña 

Castroviejo et al., 2011; Acuña-Castroviejo et al., 2003; Escames et al., 2003; López et al., 2009; 

Martín et al., 2000a, 2000b). 

4.1. MELATONIN SYNTHESIS 

In mammals, the first place where melatonin synthesis was discovered was in the pineal gland 

which, connected to SCN, possesses the enzymes necessary for its synthesis from serotonin, and 

whose activity was apparently conditioned by light-dark cycles (Arendt, 2006). In this way, the 

synthesis of melatonin in the pineal gland acts as a coded message indicating the duration of darkness, 

reaching pico and nanomolar plasma concentrations (Reiter, 1991). 

Melatonin is synthesized from the amino acid tryptophan, which is captured from the 

circulatory stream by the pinealocyte through an active transport mechanism (Zhao et al., 2019a). 

Tryptophan is first transformed into 5-hydroxytryptamine, or serotonin, following a process of 

hydroxylation and subsequent decarboxylation mediated by L-Tryptophan hydroxylase (TPH) and 5-

hydroxytryptophan decarboxylase, respectively. Serotonin may suffer a deamination by action of 

MAO, producing N-acetyl-5-hydroxytryptamine, or acetylation by Arialkylamine N-Acetyltransferase 

(AANAT), in which case N-acetyl-serotonin (NAS) would be produced. Finally, NAS is methylated 

by N-acetylserotonin O-methyltransferase (ASMT), producing melatonin (Figure 18). Initially, 

AANAT was identified as the limiting enzyme in this process, as it has the same circadian rhythm as 

melatonin and its action is inhibited by light. However, recent studies have shown that melatonin 

synthesis is unaffected by a decrease or increase in AANAT activity, which points to ASTM as the 

possible limiting enzyme in the synthesis of this indolamine (Liu and Borjigin, 2005). 



Marisol Fernández Ortiz 

~ 40 ~ 
 

In addition to pineal synthesis, it has been shown that this synthesis of melatonin extends to 

most, if not all, organs and tissues of the body, in addition to non-endocrine cells such as eosinophils, 

platelets, endothelial cells and NK cells (Acuña-Castroviejo et al., 2014). Similarly, melatonin levels 

are known to vary within cell organelles, with the nuclear and mitochondrial concentrations of this 

molecule greater than plasma levels (Venegas et al., 2012). Unlike pineal melatonin, which is rapidly 

released into the vascular system to access fluids, cell compartments and tissues, extrapineal melatonin 

that occurs in tissues remains inside the cell and does not enter circulation. This fact suggests that its 

biological action is different from melatonin of pineal origin (Acuña-Castroviejo et al., 2014). 

 

Figure 18. Synthesis of melatonin. 
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4.2. MECHANISMS OF ACTION 

Given the lipophilic nature of melatonin, it was initially considered that this molecule could 

pass through biological membranes with ease. However, today it is known that plasma, nuclear and 

mitochondrial membranes have regulatory mechanisms for the entry of melatonin, avoiding an excess 

concentration of it inside the cell (Venegas et al., 2012). This regulatory mechanism is essential for the 

maintenance of organismal homeostasis. In view of the different cellular targets, the following 

mechanisms of action are attributed to melatonin: 

 Binding to membrane receptors. 

 Binding to nuclear receptors. 

 Interaction with cytosolic proteins. 

 Antioxidant with direct and indirect action. 

 Anti-inflammatory. 

 Maintenance of mitochondrial homeostasis. 

4.2.1. Binding to membrane receptors  

As membrane receptors, two receptors coupled to G proteins, called MT1 (Mel 1a) and MT2 

(Mel 1b), have been identified. Despite sharing a homology of 60% in their amino acid sequence, there 

are differences between the two receptors (Reppert et al., 1995): 

1. The MT2 receptor has a lower affinity (Kd = 160 pmol/L) for the radio ligand 125I-melatonin 

compared to that showed by MT1 (Kd = 20-40 pmol/L). In any case, both receptors have a 

high affinity for melatonin (Jockers et al., 2016). 

2. They are expressed in various tissues of the body, although the location of MT2 appears to 

be more limited to the brain. It should be noted that the expression of these receptors depends 

on various factors, such as species, tissue, endocrine status, the state of development in which 

the organism is located and environmental light (Vanecek, 1998). 

3. Melatonin's interaction with each of these receptors causes different effects: MT1 is 

associated with G proteins that inactivate adenylate cyclase and activate phospholipase Cβ. 

MT2 also inhibits the pathway of soluble cyclase adenylate (von Gall et al., 2002). 

Subsequently, this family of membrane receptors has been expanded with the discovery of the 

MT3 receptor, characterized as a quinone reductase 2. This receptor has been identified in hamster but 

not in humans (Nosjean et al., 2000). 

Admittedly the mechanisms that regulate the expression of membrane receptors are very 

complex, so the responses mediated by melatonin depend on various factors such as the circadian 
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rhythm phase, duration of exposure, greater or lesser presence of endogenous melatonin and sensitivity 

of the receptor to melatonin. 

4.2.2. Binding to nuclear receptors 

The first indication of a possible interaction of melatonin with nuclear material was obtained 

when a high concentration of this hormone was found to be associated with chromatin 

(Withyachumnarnkul et al., 1986). Subsequently, the presence of melatonin in the nucleus was 

demonstrated by Acuña-Castroviejo et al. They tested their specific binding to the protein fraction of 

the rat liver nucleus using 125I-iodomelatonine, suggesting the existence of nuclear receptors for 

melatonin (Acuña-Castroviejo et al., 1994). 

In 1994, Becker-Andre et al. (Becker-André et al., 1994) demonstrated a genomic action of 

melatonin through RORα nuclear receptors, a subfamily of nuclear receptors or ligand-dependent 

transcription factors that provide organisms with the ability to control gene expression in response to 

physiological, developmental and environmental factors. However, there is currently some controversy 

as to whether ROR transcription factors are true nuclear melatonin receptors (Lardone et al., 2011), 

despite recent publications that support its existence (García et al., 2015). 

The ROR/RZR family of receptors (retinoid-related orphan receptor/retinoid Z receptor) is 

divided into three subtypes: RORα (Becker-André et al., 1994), RORβ (Carlberg et al., 1994) y RORγ 

(Hirose et al., 1994). Due to variable splicing, each gene has several isoforms, which differ only at its 

terminal amino end. In humans, 4 RORα isoforms (RORα1-4) have been found, while only isoforms 1 

and 4 have been described in mice. Of the two isoforms generated by RORβ, in humans only isoform 

1 is expressed, and the two isoforms generated by RORγ are present in both species. Each of these 

isoforms show a specific expression of tissue and are involved in the control of different biological 

processes (Smirnov, 2001). RORα is expressed in virtually all peripheral tissues, RORβ in brain and 

retina, and RORγ in adipose tissue, skeletal muscle, liver, kidney and immune system. 

From a structural point of view, the members of this subfamily have a DNA-binding domain 

(DBD) and a ligand-binding domain (LBD) (Jetten et al., 2001). DBD consists of two zinc fingers that 

allow the specific union of ROR monomers to DNA, recognition that takes place because of the 

existence of a RORE, consisting of a consensus sequence (AGGTCA) preceded by a sequence of 6 

base pairs rich in AT. LBD is located at the C-terminal end and presents an activation function 

sequence (AF-2) responsible for the transcriptional activity of the nuclear receptor once it has joined 

its ligand. 

Once attached to DNA through its response element, ROR mediates the regulation of 

numerous biological processes, including circadian rhythms, where the feedback loop involving ROR 

and REV-ERBα competitively bind to RORE, as detailed in the previous section. In addition, ROR 
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also controls embryonic development, cell differentiation and proliferation processes, metabolism and 

immune system response, and testicular development (Sayed et al., 2019a). In relation to the latter 

point, transcriptional activity of RORα has been shown to be related to inhibition of the enzyme 5-

lipooxygenase, which is involved in the biosynthesis of pro-inflammatory leukotriene in human B 

lymphocytes (Steinhilber et al., 1995). RORα1 inhibits the expression of pro-inflammatory mediators 

IL-6, IL-18 and cyclooxygenase (COX)-2 due to the presence of response elements to RORα in the 

promoter of the Iκbα gen, acting as a negative regulator in the signaling pathways dependent on NF-

κB (Delerive et al., 2001). These properties were subsequently confirmed by seeing that mutant mice 

for RORα had a greater LPS-induced inflammatory reaction compared to wild-type, although this fact 

was not related to a repression or lack of induction of Iκbα expression in mutant mice (Stapleton et al., 

2005). 

4.2.3. Interaction with cytosolic proteins 

Melatonin is mainly bound to two cytosolic proteins: calmodulin and calreticulin (León et al., 

2000). By interacting with calmodulin, melatonin is involved in processes such as modulation of 

cytoskeleton structure, or the activity of enzymes such as neuronal nitric oxide synthase (nNOS) and 

phosphodiesterase (León et al., 2006). Through its binding to calreticulin, melatonin regulates calcium 

metabolism (Macías et al., 2003). 

4.2.4. Antioxidant with direct and indirect action 

Melatonin, as well as some of its metabolites such as N1-acetyl-5-methoxykinuramine (AMK) 

and N1-acetyl-N2-formil-5-methoxykirunamine (AFMK), can directly neutralize ROS and RNS 

(Reiter et al., 2003a). Being an electron-rich molecule, this indoleamine can successively transfer them 

to OH-, forming an indole radical; this, in turn, can neutralize another OH- to generate cyclic 3-

hydroxymelatonin. On the other hand, melatonin can also scavenge O2
·- radical, resulting in the active 

metabolite AFMK. Both cyclic 3-hydroxymelatonin and the metabolite AFMK possess a high 

antioxidant capacity, increasing the action of melatonin as a powerful free radical scavenger (Reiter et 

al., 2003b). Melatonin is also able to react with RNS, such as ONNO- or peroxide radicals (LOO·) 

(Zhang et al., 1999), preventing the spread of lipid peroxidation. 

In addition to this intrinsic ability to purify free radicals, melatonin can stimulate the activity 

and expression of other antioxidant systems, indirectly reducing oxidative stress. Firstly, melatonin 

stimulates the glutathione cycle, thus regulating the balance GSSG/GSH. To do this, melatonin 

increases the activity of GPx, GRd, γ-glutamylcysteine synthase and glucose-6-phosphate 

dehydrogenase (G6PD) (Martín et al., 2000a; Urata et al., 1999). The enzime γ-glutamylcysteine is the 

limiting step in glutathione biosynthesis and the enzyme G6PD generates NADPH necessary for GRd. 
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The action of melatonin has also been described in other antioxidant enzymes, such as CAT and SOD 

(Acuna-Castroviejo et al., 2007). 

Whether through direct or indirect action, melatonin is a powerful antioxidant and plays an 

important role in maintaining the balance of cellular redox state, especially at the mitochondrial level, 

as this organelle is the main source of ROS and RNS. In this way, melatonin protects macromolecules 

such as DNA, proteins and lipids from oxidative damage. In addition, thanks to the characteristics of 

its N-acetyl group, melatonin increases the effectiveness of other natural antioxidants, acting 

synergistically with vitamins C and E (Reiter et al., 2003b).  

4.2.5. Anti-inflammatory 

Inflammation and free radical production are reciprocally connected process. Therefore, the 

property of melatonin to activate endogenous antioxidant defense and its efficiency as ROS scavenger 

are crucial to its anti-inflammatory activity (Mauriz et al., 2013). 

Melatonin and its metabolites AMK and AFMK also act directly as anti-inflammatory agents 

inhibiting the synthesis of prostaglandins and adhesion molecules. In addition, melatonin decreases the 

expression of COX-2 in macrophages, as well as adhesion and leukocyte migration on activated  

endothelial cells, thus avoiding the recruitment of polymorphonuclear cells and reducing  

inflammation (Cuzzocrea and Reiter, 2002).  

Various investigations show that melatonin decreases pro-inflammatory cytokines and 

increases anti-inflammatory cytokines. In animals exposed to heat stress, stimulated with LPS or 

during aging, melatonin minimized the pro-inflammatory cytokines TNF-α, IL-12 and IFN-γ and 

increased the inflammatory cytokine IL-10. In senescent animals, melatonin diminished expressions of 

pro-inflammatory cytokines IL-16, IL-1o and TNF-α (Forman et al., 2011; Reiter et al., 2000). 

The first report demonstrating the anti-inflammatory properties of melatonin was that of 

Crespo et al. (Crespo et al., 1999), showing the efficacy of the indoleamine to prevent endotoxemia in 

rats. Multiple studies of the same group further reported the potent anti-inflammatory efficacy of 

melatonin against systemic innate immune activation. This indolamine suppressed NF-κB activity in 

Senescence-Accelerated Mouse Prone (SAMP)8 mice and other conditions such as 

ischemia/reperfusion injury, Alzheimer’s disease, pulmonary inflammation, diabetes, cancer and 

exercise stress. It was recently proved that melatonin dampened the NF-κB/NLRP3 connection and 

activation during cardiac sepsis and aging (García et al., 2015; Rahim et al., 2017; Volt et al., 2016). 

This research provides the basis for further research on the value of melatonin in protecting against 

myocardial damage associated to inflammation. 
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4.2.6. Maintenance of mitochondrial homeostasis 

Melatonin contributes to the maintenance of mitochondrial homeostasis thanks to its 

antioxidant effect, discussed above, and to the direct action it exerts on this organelle. In particular, 

melatonin interacts with the electron transport chain, increasing the activity of respiratory complexes 

in healthy mitochondria and, above all, in damaged mitochondria. Given the high redox potential of 

melatonin (0.94 V),  it is thought that this indoleamine not only stimulates the activity of the 

complexes, but could also donate electrons by itself by increasing the electron flow (Tan et al., 2000). 

Martin et al. was the first reporting the outstanding role of melatonin to maintain 

mitochondrial homeostasis (Martín et al., 2000a). The same group reportedly showed the interaction 

between melatonin and mitochondria, the specificity of melatonin to act for maintaining mitochondrial 

function, demonstrating that mitochondria is the main target for melatonin in the cell (Doerrier et al., 

2015; Escames et al., 2012; García et al., 2015; Ortiz et al., 2014). Melatonin also has other effects at 

the mitochondrial level, including increased mitochondrial biogenesis following chronic 

administration, internal mitochondrial membrane stabilization, increased ATP production and 

prevention of apoptosis by modulating mitochondrial membrane potential, regulating calcium 

homeostasis and inhibiting MPTP (López et al., 2006). All these properties make melatonin a possible 

therapeutic agent in pathologies where mitochondrial function is aggravated and threatens cell 

survival, including CVDs. 

4.3. MELATONIN MECHANISMS OF ACTION IN CARDIAC MUSCLE 

Melatonin protects cardiac muscle through interconnected receptor and non-receptor pathways 

(Fu et al., 2020) (Figure 19):  

The related pathways by which melatonin shelters myocardium via membrane receptors are: 

1) reperfusion injury salvage kinase (RISK) pathway; 2) SAFE pathway, and 3) Notch pathway. 

1. The RISK pathway has an intracellular biological role through MT1 and MT2 melatonin 

receptors. In turn, this via is constituted by three downstream signal pathways, namely: a) 

Mitogen Activated Protein Kinase- Extracellular signal Regulated Kinase (MAPK-ERK) 

signal pathway; b) AMPK pathway, and c) PI3K-Akt signaling pathway. 

 

The MAPK-ERK signaling pathway upregulates the antioxidant factor Nrf2, which couples 

with DNA AREs to upregulate the expressions of Hmox, Nqo1, and glutathione s-transferase 1 

(GST1), and reduce the expression of apoptotic proteins p38 and p21. ERK inhibits activity of 

the voltage dependent anion channel (VDAC) and the transcription factor of IP3R-cAMP 

response element binding protein (CREB). An extreme activation of VDAC and CREB would 

cause intracellular calcium overload, which would lead to mitochondria dysfunction and 
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cardiomyocyte necrosis (Zhou et al., 2018). Downstream effects of this pathway also involve 

the activation of endothelial nitric oxide synthase (eNOS) and downregulation of apoptotic 

factors such as Bax, Bad, and phosphorylation of caspases that avoid the opening of MPTP 

(Acuña Castroviejo et al., 2011). 

 

AMPK pathway is interrelated with MAPK-ERK through Nrf2 and has a synergistic action in 

antioxidant stress and anti-apoptotic processes (Yu et al., 2016). AMPK promotes 

mitochondria fission by activation of Drp1, thereby opening the MPTP. SIRT3 is a 

downstream target of PGC-1α, which is stimulated by AMPK. This pathway enhances the 

activity of GPx and SOD, decreases the transfer of Bax to mitochondria and boots the 

biosynthesis of this organelle (Lochner et al., 2018). 

 

The primary effect of PI3K-Akt pathway is to reduce the cellular oxidative stress. Akt is 

activated by Nrf2. It is known that melatonin modulates the activity of ERK throught Akt. 

Signaling molecules that participates in this pathway are Zrt/Irt-like protein 1 (Zip1), brain-

derived neurotrophic factor (BDNF) and PPARγ (Zhang et al., 2019b). 2. In the SAFE 

pathway, melatonin phosphorylates JAK2-STAT3 via TNF cell membrane receptor. 

Downstream molecular effects include the expression of TNF-α, Bcl-2, antioxidant genes, 

mcl1 and FAS, and the inhibition of Bax, caspase-3, cytochrome c, cyclin-dependent kinase 

(cyclin D1) and MPTP opening. The phosphorylation of STAT3 activates ERK and Akt 

pathways (Yang et al., 2013). 

 

2. In the SAFE pathway, melatonin phosphorylates JAK2-STAT3 via TNF cell membrane 

receptor. Downstream molecular effects include the expression of TNF-α, Bcl-2, antioxidant 

genes, mcl1 and FAS, and the inhibition of Bax, caspase-3, cytochrome c, cyclin-dependent 

kinase (cyclin D1) and MPTP opening. The phosphorylation of STAT3 activates ERK and Akt 

pathways (Yang et al., 2013). 

 

3. Regarding the Notch pathway, melatonin activates the expression of Hairy and enhancer of 

split 1 (Hes-1) via Notch 1-Notch Intracellular area (NICD). Hes-1 inhibits the negative 

regulatory effect of chromosome 10 (PTEN) on PI3K. Furthermore, Notch pathway decreases 

the effects of cardiomyocyte apoptosis by modulating mitophagy with the mitochondrial 

fusion protein Mfn2 (Pei et al., 2016). 

 

In the nuclear receptor signaling pathway, melatonin interacts with RORα to regulate 

autophagy, cytochrome c release, and to promote the expression of genes related to calcium processing 

that will contribute to reduce the stress injury to and apoptosis of the cardiomyocytes. Some of these 
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genes are myocardial sarcoplasmic reticulum Ca2+-ATPase (SERCA) 2α, sodium-calcium exchange 1 

(NCX1), Ryanodine receptor 2 (RyR2) and Ca2+-calmodulin-dependent kinase II (CAMKII) (Yeung et 

al., 2008). 

Finally, melatonin also acts directly inside the cells and has biological effects through non-

receptor mediated pathways. In cytosol, this indolamine promotes the release of NO, stimulates the 

activity of iNOS and the expression of SIRT3 via PKB-Akt. Another sirtuin activated by melatonin is 

SIRT1, which regulates oxidative stress, mitophagy and apoptosis by enhancing the expression of Bcl2 

and weakening Bax and caspase 3. The ultimate effects of these pathways are to reduce oxidative 

stress, inflammatory responses, and to protect mitochondrial function of cardiomyocyte (Mauriz et al., 

2013). 

Figure 19. Melatonin mechanism of action mediated by receptor and non-receptor pathways in cardiac 
muscle. Melatonin protects cardiac muscle mainly by being bound to membrane and nuclear receptors. 

Membrane receptors pathways include 1) RISK pathway, mediated by MT1 and MT2 receptors; 2) SAFE 

pathway, mediated by TNFR; and 3) Notch pathway. There are three downstream signal pathways belonging to 

RISK: a) MAPK-ERK; 2) AMPK; and 3) PI3K-Akt. Melatonin also acts through the nuclear receptor RORα. In 

addition, melatonin can enter into cells, where it has direct biological effects. Adapted from Fu et al., 2020. 
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Aging is the main risk factor for CVDs, which are the leading cause of death world-wide. 

Previous studies have proved that aging is associated with a low-grade pro-inflammatory state 

characterized by a subclinical, sterile, asymptomatic and chronic inflammation, called inflammaging. 

This phenomenon produces free radicals that cause oxidative damage and amplify the release of pro-

inflammatory cytokines, propagating a vicious cycle that ends in systemic inflammation, 

immunosenescence and innate immune activation, whose main components are NF-κB and NLRP3 

inflammasome. Atherosclerotic lesions are considered an underlying consequence of inflammaging 

and are the major cause of serious cardiovascular events such as ischemic cardiac injury, heart attack 

or stroke. Recent works have pointed to NLRP3 as a key player in the etiology of these diseases.  

It is established that the main driving force of the aging process is oxidative stress caused by 

an imbalance between ROS generation and antioxidant defenses. The age-related increase in free 

radicals results in impairment and dysregulation of mitochondria, which are the primary source of 

ROS, most of them derived from the mitochondrial respiratory chain. In addition, ROS production 

induces deleterious mitochondria changes that directly activate the NLRP3 inflammasome and may 

also activate the Nrf2 pathway, establishing a connection between inflammaging, mitochondrial 

dysfunction and endogenous protective response by Nrf2-dependent antioxidant response. The fact 

that the heart has a high-energy demand, vast amounts of mitochondria and relatively low antioxidant 

defense, makes this organ particularly susceptible to oxidative stress as aging progresses. 

Increasing evidence supports a connection between aging and alterations in the biological 

clock that control the circadian rhythms. This chronodisruption process has been linked to a decline in 

melatonin synthesis. This indolamine is the endogenous synchronizer of central and peripheral 

circadian rhythms. Circadian rhythm disruption and the decrease in melatonin levels have both been 

connected with the risk of cardiovascular events. Furthermore, inflammation has been found to disrupt 

the molecular clock. Therefore, chronodisruption with aging may increase pro-inflammatory factors 

towards anti-inflammatory cytokines, causing a further alteration of the clock by exacerbating innate 

immune response. 

In addition to its chronobiotic effects, melatonin has anti-oxidative and anti-inflammatory 

properties that depend on high levels of extrapineal melatonin. Its main target is mitochondria, 

boosting their bioenergetic properties, enhancing ATP levels and mitigating the formation of free 

radicals. In numerous experimental conditions including acute and chronic inflammation, and aging in 

mouse heart, melatonin significantly prevented oxidative stress, reduced activation of innate 

immunity, and improved cardiac mitochondria function. 
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As a result, our hypothesis is: 

1. NLRP3 inflammasome plays an essential role in cardiac aging, promoting mitochondria 

dysfunction and impairing antioxidant defense. Given the antioxidant and anti-

inflammatory properties of melatonin, this indolamine is able to counteract aging and 

NLRP3 effects. 

2. Nrf2 response may be insufficient to counteract the damage induced by NLRP3 response; 

the effects of melatonin to activate this pathway may be of utility in aged heart. 

3. NLRP3 inflammasome leads to chronodisruption during cardiac aging. Since 

chronodisruption is caused by a decrease in melatonin, the endogenous synchronizer of the 

biological clock, we believe that by restoring the circadian melatonin pattern in older 

animals we can resynchronize the broken biological clock to, partially, or fully, offset 

deficits associated with age-related amelioration of melatonin synthesis. 

4. Aging and NLRP3 inflammasome promote morphometrical and ultrastructural alterations 

in heart muscle. We placed confidence in melatonin to prevent age-related cardiac 

sarcopenia.  

To test the hypothesis, we will address the following aims: 

General aim: 

To study the causal relationship between chronodisruption, melatonin deficiency, and innate 

immune response mediated by NLRP3 during aging in heart tissue.  

Specific aims: 

To evaluate in cardiac muscle of 3, 12 and 24 month old C57/Bl6 and NLRP3 deficient mice: 

- Mitochondria pathway: fission, fusion, mito/autophagy, apoptosis and mitochondria 

ultrastructure. 

- Nrf2-dependent antioxidant pathway. 

- Biological clock pathway: clock gene expression, rhythmicity, acrophase, amplitude and 

mesor. 

- Histology, ultrastructure and magnetic resonance imaging of cardiac muscle. 

- The effects of melatonin treatment on the aforementioned parameters. 
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1. ANIMALS AND TREATMENT 

Wild-type C57BL/6J and NLRP3-knockout mice NLRP3-/- (B6.129S6-NLRP3tm1Bhk/J) on a 

wild-type C57BL/6J background (>10 backcrosses) aged 3 weeks were purchased from Charles River 

(Barcelona, Spain) and The Jackson Laboratory (Bar Harbor, ME, USA), respectively. Mice were 

housed in the animal facility of the University of Granada under a specific pathogen-free barrier and 

were kept under controlled temperature (22 ºC ± 1 ºC). Room illumination was on automated 12 h L/D 

cycle (lights on at 08:00 h). Animals had ad libitum access to tap water and pelleted rodent chow. 

This study was carried out in accordance with the National Institutes of Health Guide for the 

Care and Use of Laboratory Animals (National Research Council, National Academy of Sciences, 

Bethesda, MD, USA), the European Convention for the Protection of Vertebrate Animals used for 

Experimental and Other Scientific Purposes (CETS #123), and the Spanish law for animal 

experimentation (R.D. 53/2013). The protocol was approved by the Andalusian Ethical Committee 

(05/07/2016/130). 

Wild-type (WT) and NLRP3-/- mice were divided into five experimental groups (Figure 20): 

(I) young (Y, 3-months old), (II) early-aged (EA, 12-months old), (III) early-aged plus melatonin (EA 

+ aMT), (IV) old-aged (OA, 24-months old), and (V) old-aged plus melatonin (OA + aMT) mice. 

Melatonin was orally administered at 10 mg/kg/day in the chow during the last two months before 

early and old-aged treated mice were sacrificed (EA + aMT at the age of 10 months and OA + aMT at 

the age of 22 months). The other groups of animals (Y, EA and OA) were fed with normal chow 

without melatonin. The melatonin pelleted chow was prepared by the Diet Production Unit facility of 

the University of Granada. 

 

Figure 20. Study design summary: experimental groups and melatonin treatment. 

Animals were sacrificed by cervical dislocation after equithesin administered via 

intraperitoneal injection (1 mL/kg), and hearts were collected. The LV was dissected and divided 

into two parts. One part was washed in saline, and rapidly fixed in 2.5% glutaraldehyde for 

transmission electron microscopy analysis, while the other part was stored at -80 ◦C for further 
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western blot analysis. To assess the cardiac muscle fibers architecture, animals were transcardially 

perfused with trump´s fixative and hearts were processed for light microscopic examination. For 

these experiments, animals were always sacrificed at the same time of day to avoid circadian 

variations in the immune response (Curtis et al., 2014). 

To study the circadian rhythm, mice were sacrificed by cervical dislocation after equithensin 

anesthesia via intraperitoneal injection (1 mL/kg), at 24:00, 06:00, 12:00 and 18:00 h under a 12 h 

light/dark cycle. At night, the sacrifice of animals was performed under a dim red light which does not 

influence endogenous melatonin production. Hearts were collected, washed in cold saline and freshly 

store at -80 ºC for PCR analysis. 

 

2. ISOLATION OF CYTOSOL FRACTION  

Pure cytosolic subcellular fraction was isolated from heart tissue according to Dimauro et al. 

(Dimauro et al., 2012) with some adjustments described in Rahim et al. (Rahim et al., 2017). Heart 

tissue was homogenized on ice at 800 rpm in 500 µL of STM buffer containing 250 mM sucrose, 50 

mM Tris-HCl pH 7.4, 5 mM MgCl2, 0.5 mM dithiothreitol (DTT), 5% phosphatase inhibitor buffer 

(125 mM NaF, 250 mM β-glycerophosphate, 250 mM p-nitrophenyl phosphate, and 25 mM NaVO3), 

and a protease inhibitor cocktail (Cat. 78429, Thermo Fisher Scientific, Waltham, MA, USA) with a 

Teflon pestle (Stuart Scientific, mod. SS2). The homogenate was maintained on ice for 30 min, and 

then centrifuged at 800 g for 15 min at 4 ºC. The supernatant was labeled as S0 and used for 

subsequent isolation of cytosolic fractions. S0 was centrifuged at 800× g for 10 min at 4 ºC and the 

supernatant S1 was centrifuged at 11.000× g for 10 min. The resulting supernatant S2, containing 

cytosol and microsomal fraction, was precipitated in cold 100% acetone at -20 ºC for 1 h followed by 

centrifugation at 12.000× g for 5 min. The pellet was resuspended in 300 µL STM buffer and labeled 

as cytosolic fraction, which was aliquoted and frozen at -80 ºC. 

 

3. SAMPLE PREPARATION AND ANALYSIS OF PROTEIN CONTENT 
BY WESTERN BLOT 

Western blot analysis was performed on cytosolic fractions of mice hearts. Samples were 

prepared for western blot analysis with a denaturation process that followed the following steps: 

The cytosolic fraction was thawed and, after measuring its protein content, it was treated with a 

buffer composed of 2.5% sodium dodecyl sulfate (SDS), 5% β-mercaptoethanol and 0.01% 

bromophenol blue. The mixture was heated at 99 ºC for 5 minutes, and subsequently incubated for 
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another 5 minutes at 4 ºC. Sample treatment was completed with a short centrifugation at maximum 

speed.  

Denatured protein samples (40 µg/fraction) were separated by SDS polyacrylamide gel 

electrophoresis (SDS-PAGE) using 12% or 15% acrylamide/bis-acrylamide gels. Electrophoretic 

separation was performed at 100 V, 400 mA for 2 h at room temperature (RT). Proteins were then wet 

transferred to a polyvinylidene difluoride (PVDF) membrane (Merck Life Science S.L.U., Madrid, 

Spain) at 100V during 90 min at 4 ºC. The membrane was blocked in 5% bovine serum albumin (BSA) 

in PBS-T (phosphate-buffered saline, composed by 0.01 M K2HPO4, 0.15 M NaCl, pH 7.4, with 0.01% 

Tween-20) for 1.5 h at RT, then incubated overnight at 4 ºC with the primary antibodies diluted in 

blocking buffer as per manufacturer’s specification. The primary antibodies used are shown in Table 1: 

Antibody Reference Company 

Anti-Bax sc-7480  

Anti-Bcl2 sc-7382  

Anti-Casp9 sc-56076  

Anti-p53 sc-126 Santa Cruz Biotechnology (Heidelberg, Germany) 

Anti-GAPDH sc-166574  

Anti-Nrf2 sc-722  

Anti-Nqo1 sc-32793  

Anti-γ-Gclc sc-390811  

Anti-Keap1 10503-2-AP Proteintech (Manchester, United Kingdom) 

Anti-Hmox1 70081s Cell Signaling Technology (Leiden, The Netherlands) 

Anti-pNrf2 (Ser40) bs-2013R Bioss Antibodies (Woburn, MA, USA) 

Anti-LC3 NB100-2220 Novus Biologicals (Centennial, CO, USA) 

Anti-Opa1 CPA3687 Quimigen (Madrid, Spain) 

Anti-Drp1 PA5-43802 Fisher Scientific (Madrid, Spain) 

Anti-Mfn2 TA344104 OriGene Technologies (Rockville, MD, USA) 

Table 1. List of primary antibodies used in western blot analysis. Bax: BCL2-associated X protein; Bcl2: B-

cell lymphoma protein 2; Casp9: caspase 9; p53: transformation related protein 53; GAPDH: glyceraldehyde 3-

phosphate dehydrogenase; Nrf2: nuclear factor, erythroid derived 2, like 2; Nqo1: NAD(P)H quinone 

dehydrogenase 1; γ-Gclc: gamma-glutamate-cysteine ligase, catalytic subunit; Keap1: kelch-like ECH-
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associated protein 1; Hmox1: heme oxygenase 1; pNrf2: phosphorylated Nrf2 (Ser40); LC3: microtubule-

associated protein 1 light chain 3; Opa1: optic atrophy 1; Drp1: dynamin-related protein 1; Mfn2: mitofusin 2. 

Membranes were washed with PBS-T 3 × 10 min and incubated for 1 h at room temperature 

with anti-mouse (BD Biosciences Pharmigen, San Jose, CA, USA) or anti-rabbit (Thermo Scientific, 

Madrid, Spain) IgG-horseradish peroxidase conjugated secondary antibodies diluted according to the 

manufacturer’s instructions. After washing with PBS-T, immunoreaction was detected using 

ClarityTM Western ECL Substrate (Bio-Rad, Madrid, Spain) and revealed in Kodak Image Station 

4000MM PRO (Carestream Health, Rochester, NY, USA). Bands were analyzed and quantified using 

Kodak Molecular Imaging Software v. 4.5.1 (Carestream Health, Rochester, NY, USA). 

The percentage of acrylamide / bis-acrylamide gel used in electrophoresis, as well as the 

dilutions of primary and secondary antibodies used for each protein are shown in Table 2. 

 Mfn2 Opa1 Drp1 LC3I LC3II Nrf2 pNrf2 Keap1 

% GEL 12% 12% 12% 15% 15% 12% 12% 12% 

1º Ab 1:1000 1:500 1:1000 1:500 1:500 1:500 1:1000 1:1000 

2º Ab 

Anti-

rabbit 

(1:5000) 

Anti-

rabbit 

(1:5000) 

Anti-

rabbit 

(1:5000) 

Anti-

rabbit 

(1:5000) 

Anti-

rabbit 

(1:5000) 

Anti-

rabbit 

(1:5000) 

Anti-

rabbit 

(1:5000) 

Anti-

rabbit 

(1:5000) 

 

 Hmox1 Nqo1 γGclc p53 Casp9 Bax Bcl2 GAPDH 

% GEL 15% 15% 12% 15% 12% 15% 15% 12/15 % 

1º Ab 1:1000 1:200 1:100 1:1000 1:1000 1:1000 1:500 1:200 

2º Ab 

Anti-

rabbit 

(1:5000) 

Anti-

mouse 

(1:5000) 

Anti-

mouse 

(1:5000) 

Anti-

mouse 

(1:1000) 

Anti-

mouse 

(1:1000) 

Anti-

mouse 

(1:1000) 

Anti-

mouse 

(1:1000) 

Anti-

mouse 

(1:5000) 

Table 2. Western blot conditions for the analysis of the content of our target proteins. 
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4. GENE EXPRESSION ANALYSIS 

4.1. RNA extraction  

RNA was isolated from frozen mouse hearts using the NZY Total RNA Isolation kit (Nzytech 

gene & expression, Lisbon, Portugal), following the protocol provided by the company. An initial 

proteinase K digestion step was performed to improve the yield of RNA (20 mg/mL proteinase K, 600 

mAU/mL) (Qiagen, Hilden, Germany). RNA was quantified in a Nano Drop ND-1000 

spectrophotometer (Thermo Scientific, Wilmington, DE, USA) and its integrity was confirmed by 2% 

agarose gel electrophoresis. RNA was aliquoted and stored at -80 ºC for its later reverse transcription 

into cDNA. 

4.2. Reverse transcription reaction 

RNA was reverse transcribed to cDNA with qScriptTM cDNA SuperMix kit (Quanta 

Biosciences, Gaithersburg, MD, USA). The samples were loaded into a Techne Thermal Cycler / PCR 

model FTGene2D (Techne, Cambridge, UK). The reverse transcription reaction conditions are 

specified in Table 3. After finishing the program, the cDNA obtained was aliquoted and stored at -20 

ºC until later use. 

 

 Step 1 Step 2 Step 3 Step 4 

Temperature (ºC) 22 42 85 4 

Time (min) 5 30 5 ∞ 

 

Table 3. Conditions programmed into the thermal cycler for reverse transcription. 

 
4.3. Real-time reverse transcription polymerase chain reaction (RT-PCR)  

Amplification was performed by quantitative real-time polymerase chain reaction (RT-PCR) 

in a Stratagene Mx3005P QPCR System (Agilent Technologies, Madrid, Spain) with SYBR® Premix 

Ex TaqTM (Takara Bio Europe, Saint-Germain-en-Laye, France). The PCR mix contained 80 ng of 

cDNA, 10 µM of each primer and 10 µL of SYBR Green of the kit in a final volume of 20 µL. Primer 

sequences are showed in the Table 4 and they were designed using the Beacon Designer software 4.0 

(Premier Biosoft Inc., Palo Alto, CA, USA). Thermal profile of RT-PCR is indicated in Table 5. 

Output data were analyzed according to the standard curves generated from increasing amounts of 

cDNA (0.05, 0.5, 5, 50, and 500 ng). Beta-actin housekeeping gene was used as an endogenous 

reference gene. Template-free (water) sample was used as a negative control and 3 months-old wild 

type mice were used as a calibrator sample. 
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Gene 

Symbol 
 

Gene Description Forward primer Reverse primer 

 

Clock 

 

 
Circadian 
Locomotor Output 
Cycles Kaput 
 

GGTGGTGACTGCCTATC
CTAC 

CTGCTGTTGTTGTTGCTG
TTG 

Bmal1 

Brain and muscle 
ARNT (aryl 
hydrocarbon 
receptor nuclear 
translocator)-like 1 
 

GAAGACAATGAGCCAG
ACAAC 

CCATAGATTTCACCCGT
ATTTCC 

Per2 

 

Period circadian 
clock 2 
 

ATCTATCTGTGCTGCTG
GTC 

ACTGGTGATGTCTCGTT
CC 

Chrono 

Circadian 
associated 
repressor of 
transcription 
 

GCATTGGTGTCATCCTT
GTC 

TTAGTCATCTCTCTGTCT
GTGG 

Rev-erbα 
Reverse strand of 
protein ERB alpha ACACACTCTCTGCTCTTC GACCTTGACACAAACTG

G 

Rorα 

 
Retinoic acid-
related orphan 
receptor alpha 
 

 
AGGTGGTGTTTATTAGG
ATGTG 
 

 
TCTTCTCGGTGGTTCTTC
T 
 

 

β-MHC 

Myosin, heavy 
polypeptide 7, 
cardiac muscle, 
beta 

CAAGCGGAAGCTGGAG
GGA 

CCTCGATGCGTGCCTGA
AG 

IL-1α 

 
Interleukin 1 alpha 
 

 
AGCCCGTGTTGCTGAAG
GAGT 

 
CCGACTTTGTTCTTTGGT
GGCA 

 

IL-6 

 
Interleukin 6 

 
AAAGCCAGAGTCCTTCA
GAGAGA 

 
GGAGAGCATTGGAAATT
GGGGTA 

TNF-α 

 
 
Tumor necrosis 
factor alpha 
 

 
 
AGCCCACGTCGTAGCAA
ACC 
 

 
GGTGAGGAGCACGTAGT
CGG 

β-actin Beta-actin 
 

GCTGTCCCTGTATGCCT
CTG 

CGCTCGTTGCCAATAGT
GATG 

    
    

 

Table 4. List of primers used in RT-PCR assay.  
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Number of cycles Step Duration Temperature 

1 Denaturalization 10 min 96 ºC 

40 DNA Replication 
15 s 95 ºC 

1 min 55 ºC 

 

Table 5. RT-PCR cycle program 

 

5. MAGNETIC RESONANCE IMAGING  

The magnetic resonance experiments were carried out on a small-animal horizontal 7 Tesla 

USR Bruker BioSpec TM 70/20 USR magnet (Ettlingen, Germany). Before imaging, mice were 

anesthetized with isoflurane (1.5% in air), and the breathing rate was monitored using an air balloon 

placed on top of the lungs (SA Instruments, Inc., New York, NY). The respiration rates between 

animals were similar for every experiment. For heart imaging, the animals were placed in prone and 

supine positions, with placement of non-magnetic metallic or carbon-fiber Electrocardiogram (ECG) 

electrodes on the front paw and limbs. Coronal CINE was acquired using a CINE sequence with the 

following parameters: Time to Echo (TE) = 1.6 ms, Time to Repetition (TR) = 8 ms, number of 

averages = 1, flip angle = 15.0, slice thickness = 0.8 mm, image size =   192x192, field-of-view = 

25x25 mm2. Analysis of heart length, left ventricular lumen length and left ventricular wall thickness 

were applied on the acquired images. 

 

6. TISSUE PREPARATION FOR LIGHT MICROSCOPY  

For histological analysis, animals were weighed and anaesthetized by intraperitoneal injection 

of equithesin (1 mL/kg). After confirming complete anaesthetization through loss of all reflexes, 

animals were transcardially perfused with warm saline followed by trump's fixative (3.7% 

formaldehyde plus 1% glutaraldehyde in saline buffer). The heart was carefully dissected, weighted 

after removal of excessive connective tissues, and was fixed in the trump's fixative. Part of the LV was 

immersed in bouin's solution for further histological analysis, while other part was fixed for further 

transmission electron microscopy (TEM) analysis.  

After proper fixation, samples of the LV were washed in ethanol 70% (3 times x 24h each 

time), dehydrated in ascending graded concentrations of ethanol, cleared in xylene, and then embedded 

in the paraffin wax. Sections 4μm-thick were cut with a SLEE Mainz Cut 5062 microtome, dewaxed in 

xylene (2 x 30 minutes), rehydrated in descending concentrations of ethanol (100%, 95%, 80% and 

70%), washed with distilled water, and were stained with Hematoxylin and Eosin (H&E) stain for 

general histological analysis and Van Gieson stain for differentiation of connective tissue and cardiac 
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muscle fibers. Sections were dehydrated in an ascending series of ethanol (70%, 95%, and 100%), 

cleared in xylene (2 x 10 minutes), and mounted with Dibutyl Phthalate Xylene (DPX). The sections 

were examined by a Carl Zeiss Primo Star Optic microscope, and digital images were acquired using a 

Magnifier AxioCamICc3 digital camera (BioSciences, Jena, Germany). 

 

7. TRANSMISSION ELECTRON MICROSCOPY  

Small pieces from the LV of experimental groups were fixed in a 2.5% glutaraldehyde in 0.1 M 

cacodylate buffer (pH 7.4), and post fixed in 0.1 M cacodylate buffer-containing 1% osmium 

tetraoxide with 1% potassium ferrocyanide for 1 hour. The samples were then immersed on 0.15% 

tannic acid for 50 seconds, incubated in 1% uranyl acetate for 1.5 hour with shaking, dehydrated in 

ethanol, and embedded in resin. Ultrathin sections of 65 nm thickness were cut using a Reichert-Jung 

Ultracut E ultramicrotome, doubled stained with uranyl acetate and lead citrate, and finally examined 

on a Carl Zeiss Leo 906E electron microscope. 

 

8. FLUORESCENT DETECTION OF APOPTOTIC NUCLEI 

For analysis of nuclear apoptosis in the heart, paraffin sections of 4μm-thickness were 

immersed in xylene, rehydrated in a descending series of ethanol, washed with distilled water, air-

dried, rinsed in PBS 1X (2 x 5 minutes), and finally stained with 33258 Hoechst dye (H6024, Sigma-

Aldrich, Madrid, Spain). After staining, sections were washed in PBS (5 x 5 minutes), air-dried, 

mounted, and examined with LEICA DM5500B fluorescent microscope. Acquired images were used 

for detection of the percentage of apoptotic nuclei. Hoechst dye is a fluorescent dye that penetrates the 

cellular nucleus and binds to DNA, enabling detection of apoptotic nuclei. Under a 350-nm wavelength 

light, this dye emits blue fluorescence that allows visibility of the nuclear DNA and observation of 

nuclear fragmentation or chromatin condensation. 

 

9. MORPHOMETRICAL ANALYSES 

Morphometrical analysis of cardiomyocytes number and cross-sectional area (CSA), as well as 

the percentage of the fibrotic area were performed using images of Van Gieson-stained paraffin cross 

sections (10 images, 40x objective, per animal). Moreover, intermyofibrillar (IMF) mitochondrial 

number, CSA, and Feret’s diameter, as well as the percentage of the mitochondrial damage (as number 

of damaged mitochondria/total mitochondrial number 100) were analyzed on electron micrographs (5 

images, 10000x, per animal). All these morphometrical analyses were analyzed by two double-blinded 
· 
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investigators using Image J processing software and were represented as a percentage compared with 

the young group. 

 

10. PROTEIN QUANTIFICATION 

Determination of protein quantity was accomplished by utilizing the Bradford method 

(Bradford, 1976). This technique is based on the binding of a hydrophobic dye, Coomassie Blue G-

250, to proteins. In acidic solution, the dye exists in two forms: orange, whose maximum absorption is 

at a wavelength between 465 and 470 nm, and blue, whose maximum absorption corresponds to a 

wavelength of 595 nm. Proteins bind to the blue form to establish a protein-dye complex, with an 

extinction coefficient greater than the free dye and which is easily detectable by spectrophotometric 

analysis. The absorbance variation of Coomassie Blue-G is proportional to the amount of protein 

bound dye, and consequently proportional to the protein concentration in a solution. 

To determine the concentration of total protein present in the sample, a standard curve was 

made using BSA dissolved in 20 mM Tris at concentrations between 0.05 and 0.6 mg / mL. 10 µL of 

buffer (blank), 10 µL of each concentration of the standard curve, and 10 µL of sample are deposited 

in the respective wells of a microplate. A final addition of 200 µL of Bradford reagent (1/5 dilution) is 

added to each well and the plate is shaken for 15 min at RT. Lastly, the absorbance is measured at 595 

nm in a plate spectrophotometer (Power-Wavex Microplate Scanning Spectrophotometer, BioTek 

Winooski, USA), expressing the results in mg of protein / mL. 

 

11. STATISTIC ANALYSIS 

Data are expressed as mean ± standard error of the mean (SEM). Statistical analyses were 

carried out using GraphPad Prism 6.0 software (GraphPad Software, San Diego, CA, USA). One-way 

ANOVA with a Tukey’s post hoc test was used to compare the differences between experimental 

groups. The values were found to be significantly different when p < 0.05. 

For circadian rhythm studies, Cosinor analysis (Nelson et al., 1979) was performed with the 

Time Series Analysis-Seriel Cosinor 6.3 Lab View software (TSASC 6.3; Expert Soft Technologies 

Inc, BioMedical Computing and Applied Statistics Laboratory, Esvres, France). Rhythm 

characterization includes the average level of three parameters, calculated with 95% confidence limits:

the mesor (acronym for midline estimating statistic of rhythm, it is the mean of the oscillation), the 

amplitude (half the difference between the minimum and maximum of the fitted cosine function) and 

the acrophase (the timing of the cosine maximum). This procedure allows testing the null hypothesis 

that the amplitude of the cosine function is equal to zero. Rhythm detection was considered 
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statistically significant at p < 0.05. In addition, to evaluate the effect of the time point of mice 

sacrifice, age, melatonin treatment, and genotype in the expression of clock genes transcripts, 

multifactorial ANOVA analysis was performed with R software 2020 (RStudio, Inc., Boston, MA). 

Different post hoc test were performed according to the normality of the data.   
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CHAPTER 1: MELATONIN/NRF2/NLRP3 CONNECTION IN 
MOUSE HEART MITOCHONDRIA DURING AGING  

1. NLRP3 deficiency prevents, and melatonin treatment restores cardiac muscle 

mitochondrial dynamics altered by aging

Anomalies in mitochondrial dynamics (fusion/fission) are typical of aged cardiac muscle (Wu 

et al., 2019). Here, we showed that aging induced a decrease in the levels of proteins involved in 

mitochondrial dynamics, including Mfn2, Opa1, and Drp1, in WT mice, an effect absent in NLRP3-/- 

mice (Figure 21 A-C). Melatonin supplementation counteracted the decline of Mfn2, Opa1, and Drp1 

caused by aging in WT mice. Interestingly, no significant effect of melatonin was observed in fusion 

proteins Mfn2 and Opa1 in NLRP3-/- mice at the age of 12 and 24 months (Figure 21 A, B). A slight, 

but not significant enhancement in fission protein Drp1 was noted in EA and OA NLRP3-/- mice with 

melatonin supplementation (Figure 21 C).

Figure 21. Changes in mitochondrial dynamics (fusion/fission) in WT and NLRP3-/- mice during aging and 
melatonin treatment. (A) Protein levels of Mfn2. (B) Protein levels of Opa1. (C) Protein levels of Drp1.

Experiments were performed in hearts of young (Y), early-aged (EA), early-aged with melatonin (EA + aMT), 

old-aged (OA), and old-aged with melatonin (OA + aMT) wild type and NLRP3
-/-

 mice. Data are expressed as 

means ± SEM (n = 7 animals/group). *p<0.05, **p<0.01 vs. Y; #p<0.05, ##p<0.01 vs. group without melatonin 

treatment. 

2. NLRP3 deficiency and melatonin therapy had minimal effects in autophagy in cardiac

muscle during aging

A drop in the autophagic capacity observed in cardiac aging is associated with the 

accumulation of dysfunctional mitochondria, exaggerated ROS production, and mtDNA release (Wu 

et al., 2019; Zhou et al., 2011). Unsurprisingly, the conversion of LC3I to LC3II, a hallmark of 

autophagy (Lee et al., 2011), was significantly reduced in WT mice during aging, as reflected in the 

decrease in the LC3II/LC3I ratio in WT EA and OA mice (Figure 22). LC3II/LC3I ratio trends to 

increase in NLRP3-/- EA and OA mice, which may explain the attempt to restore autophagy events. 

Melatonin administration had minimal effects on the LC3II/LC3I ratio in all cases.
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Figure 22. Changes in autophagy in WT and NLRP3-/- mice during aging and melatonin treatment. 
LC3II/LC3I ratio. Experiments were performed in hearts of young (Y), early-aged (EA), early-aged with 

melatonin (EA + aMT), old-aged (OA), and old-aged with melatonin (OA + aMT) wild type and NLRP3
-/-

 mice. 

Data are expressed as means ± SEM (n = 7 animals/group). *p<0.05 vs. Y. 

3. Melatonin treatment and, to a lesser extent NLRP3 deficiency, reduced apoptosis in 

cardiac muscle during aging  

Despite being intensively studied over the past three decades, many of the mechanisms of 

apoptotic cell death remain unknown. Although the relationship between aging and apoptosis have 

been a subject of controversy in scientific community, there seems to be consensus that apoptosis 

plays a significant role in cardiac aging (Quarles et al., 2015). Here, we showed that aging induced a 

rise in the levels of some proteins involved in apoptotic processes, including p53 and caspase 9 in both 

WT and NLRP3-/- mice. Melatonin treatment significantly diminished the levels of p53 and caspase 9 

in EA WT mice and in EA and OA mutant mice (Figure 23 A, B). The pro-apoptotic protein Bax and 

the anti-apoptotic Bcl2 were significantly enhanced by aging in WT mice. Mutant mice only showed 

Bcl2 increased in OA animal's group (Figure 23 C, D). We observed a slight rise in Bax/Bcl2 ratio in 

EA and a significant increase in WT OA mice (Figure 23 E). The absence of NLRP3, however, 

prevented the apoptotic process associated with aging since Bax/Bcl2 ratio remained at similar levels 

as that of Y mutant mice. Melatonin supplementation significantly decreased the Bax/Bcl2 ratio in EA 

and OA WT mice, but had no effect in NLRP3-/- mice. 
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Figure 23. Changes in apoptosis in WT and NLRP3-/- mice during aging and melatonin treatment. (A) 

Protein levels of p53. (B) Protein levels of caspase 9. (C) Protein levels of Bax. (D) Protein levels of Bcl2. (E) 

Bax/Bcl2 ratio. Experiments were performed in hearts of young (Y), early-aged (EA), early-aged with melatonin 

(EA + aMT), old-aged (OA), and old-aged with melatonin (OA + aMT) wild type and NLRP3
-/-

 mice. Data are 

expressed as means ± SEM (n = 7 animals/group). *p<0.05, **p<0.01 vs. Y; #p<0.05, ##p<0.01 vs. group 

without melatonin treatment. 

4. Melatonin treatment, but not NLRP3 deficiency, recovered the Nrf2-dependent 

antioxidant capacity in cardiac muscle declined by aging  

In recent years, emerging evidence has indicated that aging leads to a gradual reduction of the 

Nrf2-dependent antioxidant response, which in turn contributes to the accumulation of oxidative stress 

(Schmidlin et al., 2019; Zhang et al., 2015). Our results showed a significant decrease in the protein 

levels of Nrf2 and its active form phosphorylated Nrf2 (pNrf2) (Ser40) in WT and NLRP3-/- mice with 

age, suggesting that NLRP3 deficiency was unable to ameliorate the age-related decline of Nrf2 and 

pNrf2 (Ser40) in these animals (Figure 24 A, B). Melatonin supplementation markedly recovered the 

levels of Nrf2 and pNrf2 (Ser40) in both WT and mutant EA and OA mice. Aging and melatonin 

therapy did not significantly modify the levels of the Nrf2 inhibitor, Keap1, in either mouse strain 

(Figure 24 C). Hmox1, Nqo1, and γGclc, three cytoprotective enzymes transcriptionally regulated by 

Nrf2, also remarkably decreased in WT OA mice (Figure 24 D-F). The levels of Hmox1 and γGclc 

significantly dropped in NLRP3-/- EA and OA mice (Figure 24 D, F). Protein content of Nqo1 enzyme 

was not modified by aging in mutant animals (Figure 24 E). Again, melatonin treatment greatly 

enhanced the levels of Hmox1, Nqo1, and γGclc in WT and NLRP3
-/- mice. 
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Figure 24. Changes in the Nrf2-dependent antioxidant pathway in WT and NLRP3-/- mice during aging 
and melatonin treatment. (A) Protein levels of Nrf2. (B) Protein levels of pNrf2 (Ser40). (C) Protein levels of 

Keap1. (D) Protein levels of Hmox1. (E) Protein levels of Nqo1. (F) Protein levels of γGclc. Experiments were 

performed in hearts of young (Y), early-aged (EA), early-aged with melatonin (EA + aMT), old-aged (OA), and 

old-aged with melatonin (OA + aMT) wild type and NLRP3
-/-

 mice. Data are expressed as means ± SEM (n = 7 

animals/group). *p<0.05, **p<0.01, ***p<0.001 vs. Y; #p<0.05, ##p<0.01, ###p<0.001 vs. group without 

melatonin treatment. 

5. NLRP3 deficiency and melatonin therapy improved mitochondria ultrastructure 

altered by age in cardiac muscle  

Transmission electron microscopy of the cardiac muscles of Y WT mice revealed presence of 

normally intact and compacted mitochondria with clearly organized cristae distributed in the 

intermyofibrillar spaces (Figure 25 A, B). At the age of 12 months (EA), most of these mitochondria 

were found to be normal; however, a few showed cristae damage (Figure 25 C, D). These changes 

were exacerbated, and numerous mitochondria were severely damaged, hypertrophied, and vacuolated 

with completely destroyed cristae in WT OA mice (Figure 25 G, H). Melatonin supplementation, 

however, preserved the normal ultrastructure of the cardiac mitochondria in EA (Figure 25 E, F) and 

OA WT mice (Figure 25 I, J) maintaining their healthy and compact appearance. 
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Figure 25. Age-associated ultrastructural changes of mitochondria in cardiac muscle fibers of WT mice 
and melatonin treatment. (A, B) Electron micrographs of cardiac muscle fibers of Y WT mice revealing 

presence of normally intact and compacted mitochondria (M) distributed among myofibrils (Mf). (C, D) Electron 

micrographs of cardiac muscle fibers of EA WT mice demonstrating presence of normal mitochondria (M) with 

few demonstrating cristae damage (asterisk). (E, F) Electron micrographs of cardiac muscle fibers of EA + aMT 

WT mice showing the protective effect of melatonin supplementation in preserving normal mitochondrial 

structure (M) with presence of lipid droplets (L), N; nucleus. (G, H) Electron micrographs of cardiac muscle 

fibers of OA WT mice clarifying the presence of numerous severely damaged hypertrophied vacuolated 

mitochondria with completely destructed cristae (asterisk). (I, J) Electron micrographs of cardiac muscle fibers 

of OA + aMT WT mice exhibiting the beneficial effect of melatonin supplementation in keeping normal 

mitochondrial architecture (M). (A, C, E, G, I): bar = 2 μm and (B, D, F, H, J): bar = 1 μm. 

Cardiac muscle fibers of NLRP3-/- Y mice presented normal highly compacted mitochondria 

with densely packed cristae (Figure 26 A, B). Mitochondrial structure did not change in EA mice, 

except one that showed damage in peripheral cristae (Figure 26 C, D). The mitochondrial damage was 

less prevalent at 24 months in comparison with WT OA mice. Mitochondria were characterized by 

their widely separated and organized cristae, with presence of small-sized membranous vacuoles of 

possibly autophagic nature (Figure 26 G, H). Melatonin treatment exhibited an obvious protective 

effect at the age of 12 (Figure 26 E, F) and 24 months (Figure 26 I, J), where it kept normal 

mitochondrial architecture with aging, in addition to formation of multivesicular bodies, which reflect 

the induction of the autophagic processes. 
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Figure 26. Age-related ultrastructural changes of mitochondria in cardiac muscle fibers of NLRP3-/- mice 
and melatonin treatment. (A, B) Electron micrographs of cardiac muscle fibers of Y NLRP3

-/-
 mice showing 

presence of normally highly compacted mitochondria with densely packed cristae (M) distributed among 

myofibrils (Mf). (C, D) Electron micrographs of cardiac muscle fibers of EA NLRP3
-/-

 mice demonstrating intact 

mitochondria (M) with individual ones depicting damaged peripherally cristae (asterisk). (E, F) Electron 

micrographs of cardiac muscle fibers of EA + aMT NLRP3
-/-

 mice revealing the clearly apparent prophylactic 

effect of melatonin supplementation in keeping normal mitochondrial architecture (M) with aging. (G, H) 

Electron micrographs of cardiac muscle fibers of OA NLRP3
-/-

 mice indicating less detectable mitochondrial 

damage compared with WT mice, with presence of numerous mitochondria showing widely separated organized 

cristae (asterisk) and small-sized membranous vacuoles of possibly autophagic nature (V). (I, J) Electron 

micrographs of cardiac muscle fibers of OA + aMT NLRP3
-/-

 mice showing the protective effect of melatonin 

supplementation in preserving normal mitochondrial structure (M), with formation of multivesicular bodies 

(MVB), which reflect the induction of the autophagic processes, N; nucleus. (A, C, E, G, I): bar = 2 μm and (B, 

D, F, H, J): bar = 1 μm. 

6. Lack of NLRP3 reduced mitochondria number loss and mitochondrial damage, an 

effect shared by melatonin 

Morphometric analysis of cardiac mitochondria revealed that mitochondrial number exhibited 

initial non-significant decline in cardiac muscles of WT and NLRP3-/- EA mice. Nevertheless, 

mitochondrial number was significantly decreased in OA, being more pronounced in WT mice than 

NLRP3-/- one, an effect significantly counteracted after melatonin therapy (Figure 27 A). Furthermore, 

the percentage of the mitochondrial damage was significantly increased in aged mice, especially in 

WT animals, and it was counteracted by melatonin supplementation (Figure 27 B). Morphometrical 

analysis of the mitochondrial CSA illustrated a non-significant increase in cardiac muscle of WT and 

NLRP3-/- EA mice, whereas the former increased in aged animals (Figure 27 C). Mitochondrial 

diameter showed non-significant increase in WT EA mice, increasing in OA animals. NLRP3-/- mice 

revealed non-significant changes in mitochondrial diameter among all experimental groups (Figure 27 

D).  
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Figure 27. Age-associated morphometrical changes of intermyofibrillar mitochondria in cardiac muscle 
fibers of WT and NLRP3-/- mice and melatonin treatment. (A) Analysis of mitochondrial number. (B) 

Analysis of mitochondrial damage percentage. (C) Analysis of cross section area (CSA, µm
2
).  (D) Analysis of 

mitochondrial Feret’s diameter (µm). Data are expressed as means ± SEM (n = 7 animals/group). *p<0.05, 

**p<0.01, ***p<0.001 vs. Y; #p<0.05, ##p<0.01 vs. group without melatonin treatment. 
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CHAPTER 2: AGING AND CHRONODISRUPTION IN MOUSE 
CARDIAC TISSUE. EFFECT OF THE NLRP3 
INFLAMMASOME AND MELATONIN THERAPY 

1. Time point, aging, melatonin treatment and, to a lesser extent NLRP3 inflammasome, 

had significant effects on the expression of clock genes in cardiac tissue

The Multifactorial-ANOVA evaluation of the expression of the gene Clock revealed a main 

effect of time point (F (3,59) = 81.80, p < 0.001), age (F (4,59) = 47.60, p < 0.001), genotype (F (1,59) = 

9.87, p < 0.01), and a significant time point x age x genotype interaction (F (12,59) = 6.33, p < 0.001) in 

the heart (Figure 28). Data of significant differences in the relative expression of Clock transcript in 

WT and NLRP3-/- mice during aging and melatonin treatment at every time point were evaluated by 

Least Significant Difference post-hoc test following ANOVA and are detailed in Annex 1. 

TRANSCRIPT: Clock. MULTIFACTORIAL ANOVA 

Main effect of 

Time point 

Main effect of 

Age 

Main effect of 

Genotype 

Time point x Age x 

Genotype Interaction 

F (3,59) P value F (4,59) P value F (1,59) P value F (12,59) P value 
81.80 <0.001 47.60 <0.001 9.87 <0.01 6.33 <0.001 

Figure 28. Changes in the relative expression of the Clock transcript in WT and NLRP3-/- mice during 
aging and melatonin treatment. Main effect of time point, age, genotype and their interaction. Relative

expression of the Clock transcript in hearts of young (Y), early-aged (EA), early-aged with melatonin (EA + 

aMT), old-aged (OA), and old-aged with melatonin (OA + aMT) wild type and NLRP3
-/-

 mice and their daily 

patterns at 4 time points (00:00, 06:00, 12:00 and 18:00 h) under a 12 h/12 h light/dark cycle. The shaded 

region on each graph represents constant darkness.  Data are expressed as means ± SEM (n = 6 animals/group) 

(upper). The effect of time point, age, genotype and interactions were analyzed by Multifactorial-ANOVA 

(lower). Data of significant differences among the experimental groups were evaluated by Least Significant 

Difference post-hoc test following ANOVA and are detailed in Annex 1.
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The Multifactorial-ANOVA analysis of Bmal1 gene expression showed a main effect of time 

point (F (3,59) = 781.11, p < 0.001), age (F (4,59) = 83.88, p < 0.001), genotype (F (1,59) = 9.14, p < 

0.05), and a significant time point x age x genotype interaction (F (12,59) = 8.37, p < 0.001) in cardiac 

muscle (Figure 29). Data of significant differences in the relative expression of Bmal1 transcript in 

WT and NLRP3-/- mice during aging and melatonin treatment at every time point were evaluated by 

Tukey multiple comparison of mean post-hoc test following ANOVA and are detailed in Annex 1. 

 

TRANSCRIPT: Bmal1. MULTIFACTORIAL ANOVA 

Main effect of 

Time point 

Main effect of 

Age 

Main effect of 

Genotype 

Time point x Age x 

Genotype Interaction 

F (3,59) P value F (4,59) P value F (1,59) P value F (12,59) P value 

781.11 <0.001 83.88 <0.001 9.14 <0.05 8.37 <0.001 

Figure 29. Changes in the relative expression of the Bmal1 transcript in WT and NLRP3-/- mice during 
aging and melatonin treatment. Main effect of time point, age, genotype and their interaction. Relative 

expression of the Bmal1 transcript in hearts of young (Y), early-aged (EA), early-aged with melatonin (EA + 

aMT), old-aged (OA), and old-aged with melatonin (OA + aMT) wild type and NLRP3
-/-

 mice and their daily 

patterns at 4 time points (00:00, 06:00, 12:00 and 18:00 h) under a 12 h/12 h light/dark cycle. The shaded 

region on each graph represents constant darkness.  Data are expressed as means ± SEM (n = 6 animals/group) 

(upper). The effect of time point, age, genotype and interactions were analyzed by Multifactorial-ANOVA 

(lower). Data of significant differences among the experimental groups were evaluated by Tukey multiple 

comparison of mean post-hoc test following ANOVA and are detailed in Annex 1. 
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The Multifactorial-ANOVA calculation of Per2 gene expression revealed a main effect of 

time point (F (3,59) = 23.31, p < 0.001), age (F (4,59) = 38.11, p < 0.001), genotype (F (1,59) = 42.17, p < 

0.001), and an important time point x age x genotype interaction (F (12,59) = 10.34, p < 0.001) in the 

heart (Figure 30). Data of significant differences in the relative expression of Per2 transcript in WT 

and NLRP3-/- mice during aging and melatonin treatment at every time point were evaluated by Least 

Significant Difference post-hoc test and are detailed in Annex 1. 

 

TRANSCRIPT: Per2. MULTIFACTORIAL ANOVA 

Main effect of 

Time point 

Main effect of 

Age 

Main effect of 

Genotype 

Time point x Age x 

Genotype Interaction 

F (3,59) P value F (4,59) P value F (1,59) P value F (12,59) P value 

23.31 <0.001 38.11 <0.001 42.17 <0.001 10.34 <0.001 

Figure 30. Changes in the relative expression of the Per2 transcript in WT and NLRP3-/- mice during 
aging and melatonin treatment. Main effect of time point, age, genotype and their interaction. Relative 

expression of the Per2 transcript in hearts of young (Y), early-aged (EA), early-aged with melatonin (EA + 

aMT), old-aged (OA), and old-aged with melatonin (OA + aMT) wild type and NLRP3
-/-

 mice and their daily 

patterns at 4 time points (00:00, 06:00, 12:00 and 18:00 h) under a 12 h/12 h light/dark cycle. The shaded 

region on each graph represents constant darkness.  Data are expressed as means ± SEM (n = 6 animals/group) 

(upper). The effect of time point, age, genotype and interactions were analyzed by Multifactorial-ANOVA 

(lower). Data of significant differences among the experimental groups were evaluated by Least Significant 

Difference post-hoc test following ANOVA and are detailed in Annex 1. 
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The Multifactorial-ANOVA analysis of Chrono gene expression indicated a main effect of 

time point (F (3,59) = 744.15, p < 0.001), age (F (4,59) = 179.12, p < 0.001), genotype (F (1,59) = 33.91, p 

< 0.001), and a significant time point x age x genotype interaction (F (12,59) = 34.34, p < 0.001) in 

cardiac muscle (Figure 31). Data of significant differences in the relative expression of Chrono 

transcript in WT and NLRP3-/- mice during aging and melatonin treatment at every time point were 

evaluated by Least Significant Difference post-hoc test and are detailed in Annex 1. 

 

TRANSCRIPT: Chrono. MULTIFACTORIAL ANOVA 

Main effect of 

Time point 

Main effect of 

Age 

Main effect of 

Genotype 

Time point x Age x 

Genotype Interaction 

F (3,59) P value F (4,59) P value F (1,59) P value F (12,59) P value 

744.15 <0.001 179.12 <0.001 33.91 <0.001 34.34 <0.001 

Figure 31. Changes in the relative expression of the Chrono transcript in WT and NLRP3-/- mice during 
aging and melatonin treatment. Main effect of time point, age, genotype and their interaction. Relative 

expression of the Chrono transcript in hearts of young (Y), early-aged (EA), early-aged with melatonin (EA + 

aMT), old-aged (OA), and old-aged with melatonin (OA + aMT) wild type and NLRP3
-/-

 mice and their daily 

patterns at 4 time points (00:00, 06:00, 12:00 and 18:00 h) under a 12 h/12 h light/dark cycle. The shaded 

region on each graph represents constant darkness.  Data are expressed as means ± SEM (n = 6 animals/group) 

(upper). The effect of time point, age, genotype and interactions were analyzed by Multifactorial-ANOVA 

(lower). Data of significant differences among the experimental groups were evaluated by Least Significant 

Difference post-hoc test following ANOVA and are detailed in Annex 1. 
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The Multifactorial-ANOVA evaluation of Rev-erbα gene expression revealed a main effect of 

time point (F (3,59) = 342.37, p < 0.001), and age (F (4,59) = 8.38, p < 0.001). Genotype had no impact 

in the changes of expression observed in Rev-erbα gene. Therefore, a significant time point x age 

interaction (F (12,59) = 8.02, p < 0.001) was found in the myocardium (Figure 32). Data of significant 

differences in the relative expression of Rev-erbα transcript in WT and NLRP3-/- mice during aging 

and melatonin treatment at every time point were evaluated by Least Significant Difference post-hoc 

test and are detailed in Annex 1. 

 

TRANSCRIPT: Rev-erbα. MULTIFACTORIAL ANOVA 

Main effect of 

Time point 

Main effect of 

Age 

Main effect of 

Genotype 

Time point x Age 

Interaction 

F (3,59) P value F (4,59) P value 
No effect 

F (12,59) P value 

342.37 <0.001 8.38 <0.001 8.02 <0.001 

Figure 32. Changes in the relative expression of the Rev-erbα transcript in WT and NLRP3-/- mice during 
aging and melatonin treatment. Main effect of time point, age, genotype and their interaction. Relative 

expression of the Rev-erbα transcript in hearts of young (Y), early-aged (EA), early-aged with melatonin (EA + 

aMT), old-aged (OA), and old-aged with melatonin (OA + aMT) wild type and NLRP3
-/-

 mice and their daily 

patterns at 4 time points (00:00, 06:00, 12:00 and 18:00 h) under a 12 h/12 h light/dark cycle. The shaded 

region on each graph represents constant darkness.  Data are expressed as means ± SEM (n = 6 animals/group) 

(upper). The effect of time point, age, genotype and interactions were analyzed by Multifactorial-ANOVA 

(lower). Data of significant differences among the experimental groups were evaluated by Least Significant 

Difference post-hoc test following ANOVA and are detailed in Annex 1. 
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The Multifactorial-ANOVA analysis of the expression of Rorα gene expression showed a 

main effect of time point (F (3,59) = 9.51, p < 0.001), age (F (4,59) = 16.34, p < 0.001), genotype (F (1,59) 

= 19.92, p < 0.001), and a significant time point x age x genotype interaction (F (12,59) = 14.02, p < 

0.001) in cardiac muscle (Figure 33). Data of significant differences in the relative expression of Rorα 

transcript in WT and NLRP3-/- mice during aging and melatonin treatment at every time point were 

evaluated by Least Significant Difference post-hoc test and are detailed in Annex 1. 

 

TRANSCRIPT: Rorα. MULTIFACTORIAL ANOVA 

Main effect of 

Time point 

Main effect of 

Age 

Main effect of 

Genotype 

Time point x Age x 

Genotype Interaction 

F (3,59) P value F (4,59) P value F (1,59) P value F (12,59) P value 

9.51 <0.001 16.34 <0.001 19.92 <0.001 14.02 <0.001 

Figure 33. Changes in the relative expression of the Rorα transcript in WT and NLRP3-/- mice during 
aging and melatonin treatment. Main effect of time point, age, genotype and their interaction. Relative 

expression of the Rorα transcript in hearts of young (Y), early-aged (EA), early-aged with melatonin (EA + 

aMT), old-aged (OA), and old-aged with melatonin (OA + aMT) wild type and NLRP3
-/-

 mice and their daily 

patterns at 4 time points (00:00, 06:00, 12:00 and 18:00 h) under a 12 h/12 h light/dark cycle. The shaded 

region on each graph represents constant darkness.  Data are expressed as means ± SEM (n = 6 animals/group) 

(upper). The effect of time point, age, genotype and interactions were analyzed by Multifactorial-ANOVA 

(lower). Data of significant differences among the experimental groups were evaluated by Least Significant 

Difference post-hoc test following ANOVA and are detailed in Annex 1. 
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2. Cosinor analysis revealed that aging and NLRP3 inflammasome did not have a great impact 

on the rhythm and changes in acrophase of clock genes in mice heart. Melatonin therapy 

restored the loss of rhythm and acrophase 

The gene Clock presented an acrophase at 7.53 h in WT Y mice (Figure 34). This acrophase 

was significantly delayed until 12.2 h in WT EA mice and 11.4 h in WT OA. In both cases, melatonin 

was able to counteract this delay in acrophase, putting it back at 7 h. Rhythm was observed in all 

experimental groups, although it is remarkable that it decreased in EA and OA (Annex 2). Melatonin 

reestablished the rhythm in EA mice, to values like those of Y mice. A similar trend to that of WT 

mice was observed in NLRP3-/- mice. The acrophase of Clock in Y mice averaged at 7.80 h. A phase 

delay was also observed with EA and OA mice. This phase delay was not as pronounced as in WT 

mice, with an acrophase at 10.90 h in EA mice and at 10.40 h in OA mice. In both cases, melatonin 

corrected this phase, restoring it to around 7 h (Figure 34). Rhythm was appreciated in all 

experimental groups (Annex 2). 

The acrophases of Bmal1 showed some similarity with respect to the acrophases of the gene 

Clock. In WT Y mice, the acrophase of Bmal1 is located at 8 h, it is slightly delayed in EA mice until 

11 h, and it is corrected again with melatonin, where it is located around 9 h. It was observed that both 

the acrophase and the rhythm of Bmal1 barely change with aging or with melatonin treatment (Figure 

34). The acrophase of Bmal1 also appeared at 8 h in NLRP3-/- Y. Although some tendency to phase 

delay was observed in EA and OA mice, aging did not cause significant changes in the acrophase of 

Bmal1 in the mutant mice (Figure 34). The treatment with melatonin advanced the acrophase in both 

cases, placing it closer to that of the Y mice. The existence of rhythm was observed in all the 

experimental groups, both in WT and in NLRP3-/- (Annex 2). 

The Per2 gene had an acrophase close to 20 h in WT Y mice, remaining constant with age in 

EA and OA. Interestingly, melatonin significantly advanced this acrophase at 12 and 24 months, with 

values close to 7 hours and 5 hours, respectively (Figure 34). It is also observed that Per2 lost its 

rhythm in WT OA mice, which was restored with melatonin (Annex 2). In mice deficient in NLRP3, 

no prominent changes were observed with age or with melatonin therapy (Figure 34). It should be 

noted that the acrophase in this case was different with respect to the WT mice, occurring around 12 h. 

There was rhythm in all the experimental groups (Annex 2). 

The acrophase of the gene Chrono was around 20 h in the WT Y mice. No notable changes 

were observed with aging or with melatonin treatment (Figure 34). The rhythm was maintained in all 

the experimental groups (Annex 2). In the mutant mice, the acrophases showed a trend like that 

observed in the WT mice. In this case, acrophase was found at around 18 h in Y mice, remaining 

constant throughout aging and with melatonin therapy (Figure 34). Mutant mice treated with 
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melatonin showed a phase advanced regarding WT. There was rhythm in all the experimental groups 

(Annex 2). 

The gene Rev-erbα had an acrophase around 17 h in WT Y mice (Figure 34). This acrophase 

remained constant during aging. Interestingly, melatonin produced a phase advance in EA and OA. 

Rhythm was observed in all experimental groups (Annex 2). The acrophase values for Rev-erbα in the 

NLRP3-/- mice were quite like those in the WT mice (Figure 34). With aging, there appears to be a 

trend towards phase advancement. Melatonin had little effect on mutant mice. Again, there was 

rhythm in all experimental groups (Annex 2). 

Rorα acrophase occurred at nearly 12 h in WT Y mice (Figure 34). Rhythm was lost in WT 

EA and WT OA mice. Melatonin recovered the rhythm and advanced the acrophase by 5-6 h in both 

experimental groups (Annex 2). In the case of NLRP3-/- mice, acrophase appeared at 18 h in Y mice 

(Figure 34). As in WT mice, the rhythm was lost at 12 and 24 months. Again, melatonin regained 

rhythm and produced a phase advance of an equivalent duration to that observed in WT mice (Annex 

2). 

Figure 34. Acrophase charts showing peaks of fitted 24 h cosine for clock genes analyzed in heart of WT 

and NLRP3-/- mice during aging and melatonin treatment. Acrophase of clock genes Clock (light blue plots), 

Bmal1 (red plots), Per2 (green plots), Chrono (dark blue plots), Rev-erbα (purple plots) and Rorα (orange plots) 

in hearts of young (Y), early-aged (EA), early-aged with melatonin (EA + aMT), old-aged (OA), and old-aged 
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with melatonin (OA + aMT) wild type (left chart) and NLRP3
-/-

 mice (right chart). The shaded region on each 

graph represents constant darkness. Data are expressed as means ± confidence interval (CI) of the Acrophase 

when p was ≤ 0.05 from the non-zero amplitude. Data of significant differences among the experimental groups 

were evaluated by overlapping of confidence interval and are detailed in Annex 2. *p<0.05 vs. Y; # p<0.05 vs. 

group without melatonin treatment; $ p<0.05 vs. WT mice. 

3. Cosinor analysis revealed that aging, the absence of NLRP3 inflammasome, and melatonin 

treatment had little impact on the amplitude of clock genes in heart muscle 

The amplitude of the gene Clock remained constant with age and with melatonin treatment in 

WT mice (Figure 35). In mutant mice, the amplitude increased significantly in EA and in OA vs Y 

mice. Melatonin decreased this amplitude to values like Y group in NLRP3-/- EA mice (Figure 35). 

The amplitude of Bmal1 was invariable with aging in WT mice (Figure 35). It decreased 

significantly in WT OA + aMT vs WT OA mice. In NLRP3-/- mice, the amplitude increased at 24 

months and melatonin decreased the amplitude to values like Y mice (Figure 35). 

No changes were observed in the amplitude of the Per2 gene in WT or NLRP3-/-mice (Figure 

35). This parameter remained constant with age, melatonin treatment, and the absence of the NLRP3 

inflammasome. 

The amplitude of Chrono increased in WT OA vs WT Y. Melatonin restored this amplitude 

(Figure 35). However, in the mutant mice, the amplitude decreased in NLRP3-/- OA vs NLRP3-/- Y. 

Again, melatonin reestablished this amplitude (Figure 35). It should be added that the amplitude of the 

mutant mice was higher than WT mice. 

No noteworthy changes were observed with aging or melatonin treatment in the amplitude of 

the Rev-erbα gene in WT mice or NLRP3-/- mice (Figure 35). 

The amplitude of Rorα gene did not undergo significant changes with age or with melatonin 

treatment in WT mice (Figure 35). A decrease in the amplitude was observed in NLRP3-/- OA vs 

NLRP3-/- Y mice, which was mended with melatonin (Figure 35). 
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Figure 35. Amplitude chart showing peaks of fitted 24 h cosine for clock genes analyzed in heart of WT 
and NLRP3-/- mice during aging and melatonin treatment. Amplitude of clock genes Clock (light blue lines), 

Bmal1 (red lines), Per2 (green lines), Chrono (dark blue lines), Rev-erbα (purple lines) and Rorα (orange lines) 

in hearts of young (Y), early-aged (EA), early-aged with melatonin (EA + aMT), old-aged (OA), and old-aged 

with melatonin (OA + aMT) wild type (solid line) and NLRP3
-/-

 mice (dashed line). The shaded region on each 

graph represents constant darkness. Data are expressed as means ± confidence interval (CI) of the Amplitud 

when p was ≤ 0.05 from the non-zero amplitude. Data of significant differences among the experimental groups 

were evaluated by overlapping of confidence interval and are detailed in Annex 2. *p<0.05 vs. Y; # p<0.05 vs. 

group without melatonin treatment; $ p<0.05 vs. WT mice. 
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4. Cosinor analysis showed that aging caused significant changes in clock genes mesor, generally 

decreasing with age. Treatment with melatonin and the absence of NLRP3 had little effect on 

this parameter 

The mesor of the gene Clock decreased with aging in WT mice (Figure 36). Melatonin had no 

effect. In NLRP3-/- mice, the mesor increased in group EA and decreased in OA (Figure 36). 

Melatonin therapy had no action. 

In WT mice, the mesor of Bmal1 declined with age. Melatonin did not counteract this outcome 

(Figure 36). The mesor remained constant with aging in mutant mice. Melatonin decreased mesor in 

NLRP3-deficient mice (Figure 36). 

The mesor of Per2 decreased with aging in WT OA vs WT Y mice. No effect of melatonin 

was observed (Figure 36). In the NLRP3-/- mice, a decrease in the mesor was again seen in the 24-

month-old mice, although in this case melatonin restored the mesor to similar values to those of Y 

mice (Figure 36). 

The mesor of the gene Chrono remained constant during aging in WT mice (Figure 36). 

Interestingly, melatonin significantly decreased this mesor. Mesor diminished with aging in NLRP3-

deficient mice (Figure 36). Melatonin had no effect in mutant mice. It was further appreciated that, in 

general, the mesor had higher values in NLRP3-/- mice vs WT mice. 

No changes were observed in the mesor of Rev-erbα gene derived from aging, treatment with 

melatonin or absence of the NLRP3 inflammasome (Figure 36). 

The mesor of the Rorα increased in the WT OA vs WT Y mice (Figure 36). Melatonin 

decreased the mesor significantly in the OA group. In contrast, mesor was decreased in NLRP3-/- OA 

vs NLRP3-/- Y mice (Figure 36). Melatonin had no effect in mutant mice. Again, higher mesor values 

were seen in NLRP3 deficient mice compared to WT mice. 
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Figure 36. Mesor chart showing peaks of fitted 24 h cosine for clock genes analyzed in heart of WT and 
NLRP3-/- mice during aging and melatonin treatment. Mesor of clock genes Clock (light blue lines), Bmal1

(red lines), Per2 (green lines), Chrono (dark blue lines), Rev-erbα (purple lines) and Rorα (orange lines) in 

hearts of young (Y), early-aged (EA), early-aged with melatonin (EA + aMT), old-aged (OA), and old-aged with 

melatonin (OA + aMT) wild type (solid line) and NLRP3
-/-

 mice (dashed line). The shaded region on each graph 

represents constant darkness. Data are expressed as means ± confidence interval (CI) of the Mesor when p was 

≤ 0.05 from the non-zero amplitude. Data of significant differences among the experimental groups were 

evaluated by overlapping of confidence interval and are detailed in Annex 2. *p<0.05 vs. Y; # p<0.05 vs. group 

without melatonin treatment; $ p<0.05 vs. WT mice.
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CHAPTER 3: NLRP3 INFLAMMASOME DELETION AND / 
WITH MELATONIN SUPPLEMENTATION MITIGATE AGE-
DEPENDENT MORPHOLOGICAL AND ULTRASTRUCTURAL 
ALTERATIONS IN MURINE HEART 

1. NLRP3 absence and melatonin administration restored left ventricular lumen and 

inhibited thickening of its wall during aging

Magnetic resonance imaging of the heart of the Y, EA, and OA WT (Figure 37 A-E) and 

NLRP3-/- mice (Figure 37 F-J), as well as the beneficial effect of melatonin supplementation was 

illustrated in Figure 37. With aging, there were no changes in the length of the heart of the EA WT and 

NLRP3-/- mice, while the cardiac length of OA WT mice displayed a significant decline. However, 

melatonin therapy significantly increased the cardiac length in the EA NLRP3-/- animals, where its 

effect was more detectable than in WT mice (Figure 37 K). Moreover, aging induced a significant 

reduction in the length of the left ventricular lumen in WT and NLRP3-/- mice, and this decline was 

less detectable in the NLRP3-/- than in the WT mice. Melatonin administration recovered the luminal 

length of the LV in the EA and OA WT and NLRP3-/- mice (Figure 37 L). Aging was also 

accompanied with an increase in the thickness of the left ventricular wall in the WT and NLRP3-/- 

mice, and this increase was less remarkable in the NLRP3-/- than in the WT mice. Interestingly, this 

increase in the left ventricular wall thickness was countered in the OA animals by melatonin therapy, 

which revealed a more noticeable beneficial effect on NLRP3-/- mice (Figure 37 M).  

2. NLRP3 deficiency and melatonin therapy enhanced cardiac anthropometric 

parameters during aging

Aging displayed a significant increase in the body weight and heart weight of both WT and 

NLRP3-/- mice, an effect enhanced by melatonin administration. While this rise in the body weight 

revealed no changes between WT and NLRP3-/- mice, the increase of heart weight was higher in the 

NLRP3-/- mice than WT ones with aging. Furthermore, melatonin therapy showed more considerable 

effects in the NLRP3-/- mice than in WT animals (Figure 37 N and O).  The ratio of the heart weight to 

the body weight however, reported an age-mediated decline, which was higher in the OA WT mice 

than in the NLRP3-/- ones. This reduction was significantly countered by melatonin supplementation 

(Figure 37 P). 
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Figure 37. Impact of NLRP3 deficiency and melatonin therapy on cardiac magnetic resonance imaging and 
anthropometric parameters during aging. (A-E) Magnetic resonance imaging of the heart of young (Y), early-

aged (EA), early-aged with melatonin (EA + aMT), old-aged (OA), and old-aged with melatonin (OA + aMT) WT 

mice. (F-J) Magnetic resonance imaging of the heart of Y, EA, EA + aMT, OA, and OA + aMT NLRP3
-/ -

 mice. 

(K) Analysis of the heart length (cm). (L) Analysis of the luminal length of the left ventricle (cm). (M) Analysis of

the thickness of the left ventricular wall (cm). (N) Analysis of the body weight (g). (O) Analysis of the heart

weight (mg). (P) Analysis of the ratio of the heart weight to the body weight (mg/g). * p<0.05, ** p<0.01 and ***

p<0.001 vs. Y; # p<0.05, ## p<0.01 and ### p<0.001 vs. group without melatonin treatment; $ p<0.05, $$

p<0.01 and $$$ p<0.001  vs. WT mice.

3. NLRP3 deletion and melatonin supplementation reduced age-related histological and

morphometrical alterations of cardiac myocytes, and minimized hypertrophy-associated

genes as well as inflammatory cytokines genes

Histological analysis of the LV of the Y WT mice showed normal architecture of the cardiac 

muscles, which consisted of cardiomyocytes in different orientations; longitudinal, transverse and 

oblique. These cardiac fibers were separated from each other by narrow interstitial tissues, composed 
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of blood capillaries, less collagenous tissue, and fibroblasts. The nucleus was centrally located (Figure 

38 A and B). 

Cardiomyocytes of the EA WT mice revealed an initial degree of necrosis associated with 

lymphocytic infiltrates and widening of the interstitial spaces (Figure 38 C and D). These alterations 

were progressive in the heart of OA animals, where the myocardium demonstrated severe degrees of 

necrotic damage, associated with lymphocytic infiltrations and excessive collagen deposition, an 

indicator of fibrosis. Also, disorganization of the cardiac fibers and large interstitial spaces 

were illustrated (Figure 38 G, H). Melatonin administration, however, elucidated a protective effect 

on the cardiac muscle fibers of both EA (figure 38 E and F) and OA (Figure 38 I and J) WT mice. The 

fibers conserved their normal architecture with narrow interstitial spaces, less collagenous tissue 

infiltrations and absence of necrotic fibers. 

Histological examination of the cardiac muscles of the Y NLRP3-/- mice (Figure 38 K and L) 

showed the normal organization of the cardiomyocytes, which demonstrated no changes in the EA 

animals, except for a widening of interstitial tissues (Figure 38 M and N). Less necrotic changes as 

well as reduced collagen deposition were observed in OA mutants (Figure 38 Q and R), compared with 

those of WT mice. Interestingly, melatonin therapy induced a more preservative effect on the 

cardiomyocytes of EA (Figure 38 O and P) and OA (Figure 38 S and T) NLRP3-/- mice than on WT 

mice, sustaining the normal architecture of muscle fibers with narrow interstitial spaces. 

Aging also induced a significant loss of cardiac muscle fibers associated with hypertrophy of 

individual cardiomyocyte (increased CSA of individual cardiomyocyte). This decline in cardiac fiber 

number and increase in cardiomyocyte CSA were more remarkable in WT mice than NLRP3-/- ones. 

Melatonin therapy restored the number of cardiomyocytes and minimized muscle fiber hypertrophy in 

EA and OA WT and NLRP3-/- mice (Figure 38 U and V). Aging associated with increased β-MHC 

expression in WT and NLRP3-/- mice; however, the expression was more detectable in WT animals. 

Melatonin supplementation reduced β-MHC expression in both mice strain, with more considerable 

effect on NLRP3-/- mice (Figure 38 W). 

Morphometrical analysis of the percentage fibrotic area revealed age-mediated induction of 

cardiac fibrosis (Figure 38 X), associated with increased expressions of IL-1α, IL-6 and TNF-α in the 

old-aged animals, while early-aged mice showed a non-significant increase (Figures 38 Y-ZZ). These 

incidence of fibrosis and expression of inflammatory cytokines were less remarkable in the NLRP3-/- 

mice. Melatonin supplementation however, reduced cardiac fibrosis and significantly decreased the 

expression of IL-1α and IL-6 in WT and NLRP3-/- mice, with non-significant decline of TNF-α. 
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Figure 38. Effect of NLRP3 deletion and melatonin supplementation on age-associated histological and 
morphometrical changes of cardiac muscle fibers. (A and B) Left ventricle (LV) of the Y WT mice showing the 

normal cardiac muscle fibers (MF) architecture, with central nucleus (black arrows), and narrow interstitial 

spaces (black asterisks). (C and D) LV of the EA WT mice revealing an initial necrotic degree (N), with 

lymphocytic infilterates (white arrow) and wide interstitial spaces (black asterisks). (E and F) The conservative 

effect of melatonin on maintaining normal muscle fibers (MF) of EA mice, with narrow interstitial spaces (black 

asterisks). (G and H) LV of the OA WT mice demonstrating severe necrotic changes (N), with lymphocytic 

infiltrations (white arrow), excessive collagen deposition (black arrows), and wide interstitial spaces (black 

asterisks). (I and J) The protective effect of melatonin on improving cardiac muscle fibers (MF) and minimizing 

interstitial tissues (black asterisks) in OA animals. (K and L) LV of the Y NLRP3
-/-

 mice showing the normal 

cardiac muscle fibers organization (MF), with centrally located muscle (black arrows) and interstitial spaces 

(black asterisks). (M and N) LV of the EA NLRP3
-/-

 mice revealing wide interstitial spaces (black asterisks) 

without necrosis. (O and P) The preservative effect of melatonin on keeping normal structure of cardiac myocytes 

(MF) in EA mice. (Q and R) LV of the OA NLRP3
-/-

 mice demonstrating less necrotic changes (N), interstitial 

spaces (black asterisks), and collagen deposition (white arrows). (S and T) The beneficial effect of melatonin on 

improving cardiac architecture, with narrow interstitial spaces (black asterisk). Bar=50 μm. A, C, E, G, I, K, M, 

O, Q and S stained with H&E stain, while B, D, F, H, J, L, N, P, R and T stained with Van Gieson stain. (U and 

V) Age-associated morphometrical changes in cardiac muscle fibers number (per 100 µm
2
) and cross-sectional 

area (CSA). (W) mRNA expression level of β-MHC. (X) Morphometrical analysis of cardiac fibrosis during 

aging. (Y) mRNA expression level of IL-1α. (Z) mRNA expression level of IL-6. (ZZ) mRNA expression level of 

TNF-α. * p<0.05, ** p<0.01 and *** p<0.001 vs. Y; # p<0.05, ## p<0.01 and ### p<0.001 vs. group without 

melatonin treatment; $ p<0.05, $$ p<0.01 and $$$ p<0.001 vs. WT mice. 

4. NLRP3 ablation and melatonin administration conserved cardiac muscle 

ultrastructure during aging 

Electron microscopy analysis of the LV of the Y WT mice clarified the normal ultrastructure of 

the cardiac muscle fibers, which are composed of centrally located nuclei, and are formed as well-

organized longitudinally arranged myofibrils that illustrated cross and longitudinal striations with 

sarcoplasmic reticulum in between. Each myofibril consists of thread-like myofilaments, actin and 

myosin. The sarcomeres are well-aligned between each two successive Z-lines. Cardiomyocytes 

branched repeatedly and attached strongly at the intercalated disc (Figure 39 A). The mitochondria 

were intact and compacted with clearly organized cristae and were gathered in different orientations; 

clusters in between cardiac myofibrils as intermyofibrillar, around the nucleus, and beneath the 

sarcolemma as subsarcolemmal (Figure 39 B). Cardiac fibers had a better structure in Y NLRP3-/- mice 

than in WT. The myofibrils depicted an organized sarcomere, and highly compacted mitochondria with 

densely packed well-arranged cristae, and narrow interstitial spaces with a normally oriented 

sarcoplasmic reticulum (Figure 39 C and D). 
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Figure 39. Ultrastructural architecture of cardiac muscle fibers in young WT and NLRP3-/- mice. (A and B) 

Transmission electron micrographs of the LV of the Y WT mice clarifying well-organized longitudinally arranged 

myofibrils (Mf), with cross and longitudinal striations, centrally located nucleus (N), and intermyofibrillar 

sarcoplasmic reticulum (SR). Sarcomeres (line) are well-alignment between each two successive Z-lines (Z), and 

cardiomyocytes branched repeatly and attached strongly at the intercalated disc (arrow). The mitochondria were 

intact and compacted with clearly organized cristae, (M). (C and D) Transmission electron micrographs of the 

LV of the Y NLRP
-/-

 mice showing cardiac myofibrils (Mf) of better structure with organized sarcomere between 

Z-lines (Z), highly compacted mitochondria (M), narrow interstitial spaces (asterisk), intermyofibrillar 

distribution of sarcoplasmic reticulum (SR), and lipid droplets (L). Nucleus (N) was centrally located. Bar=2 μm. 

At the early stage of aging, cardiac muscle fibers of WT mice showed disorganized myofibrils 

and sarcoplasmic reticulum. Some mitochondria displayed vacuolation and cristae damage. 

Appearance of small-sized multivesicular bodies, termed autophagosomes, were also detected (Figure 

40 A and B). However, melatonin supplementation preserved the cardiomyocytes, maintained the 

normal orientation of the myofibrils and the intact contents of mitochondria, and reduced the residual 

bodies (Figure 40 C and D). In contrast, cardiac muscle fibers of the EA NLRP3-/- did not show age-

related alterations in the myofibril architecture and mitochondrial composition, except presence of 

individual disorganized myofibrils with indistinct striations (Figure 40 E and F), which was improved 

with melatonin therapy that revealed a better preservative effect in EA NLRP3-/- mice than in WT 

(Figure 40 G and H). 
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Figure 40. Impact of NLRP3 abscence and melatonin treatment on the ultrastructure of early-aged cardiac 
myocytes. (A and B) Transmission electron micrographs of the LV of the EA WT mice showing disorganized 

myofibrils (Mf) and sarcoplasmic reticulum (SR). Some mitochondria displayed vacuolation and cristae damage 

(white asterisk), with appearance of small-sized multivesicular bodies (arrow). (C and D) Transmission electron 

micrographs of the LV of the EA WT mice after melatonin supplementation. The cardiac myofibrils (Mf) 

maintained the normal orientation, with intact mitochondrial contents (M), organized sarcoplasmic reticulum 

(SR), and reduced residual bodies (arrow). (E and F) Transmission electron micrographs of the LV of the EA 

NLRP3
-/-

 mice revealing absence of age-related alterations in the myofibrils architecture (Mf), sarcoplasmic 

reticulum (SR), and mitochondrial composition (M), except presence of individual disorganized myofibrils with 

indistinct striations (black asterisk). (G and H) Transmission electron micrographs of the LV of the EA NLRP3
-/-

 

mice with melatonin therapy demonstrating improvement of myofibrils (Mf) and their sarcoplasmic reticulum 

(SR) and mitochondrial contents (M). Note sarcomeres arrangement between each two successive Z-lines (Z). 

Bar=2 μm. 

The cardiac muscle fibers of the OA WT mice demonstrated severe myofibrillar damage, with 

widening of interstitial spaces and disruption of the sarcoplasmic reticulum. Some mitochondria 

revealed a normal structure, while others were hypertrophied and demonstrated different stages of 

cristae damage and presence of inclusion bodies on their matrix. Splitting of the nucleus into two or 

three parts was mostly detected, with formation of autophagosomes (Figure 41 A-C). Meanwhile, 

melatonin supplementation conserved the cardiac muscle constitutions and protected nuclear and 

mitochondrial contents, excepting individual mitochondria that displayed structural damage. Small-

sized residual bodies were also found (Figure 41 D-F). 

The severe age-associated changes detected in cardiomyocytes were less evident in OA 

NLRP3-/- mice than WT ones. The cardiac muscles of the OA NLRP3-/- had less prevalent muscular 

damage with lipid droplets. Some mitochondria were normal and intact, while others were 

characterized by widely separated and disorganized cristae (Figure 41 G and H). Melatonin 

administration induced a beneficial effect, where it maintained normal muscular structure and 

mitochondrial architecture during aging. Most of the myofibrils and mitochondria were intact, while 

individual fibers revealed residual bodies and lipid infiltrations (Figure 41 I and J). 
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Aging induced an early non-significant decline of IMF mitochondrial number in cardiac 

muscle fibers of EA WT and NLRP3-/- mice. This decline was followed by a significant reduction in 

the OA animals of both groups; however, the decline in mitochondrial number was less prevalent in 

OA NLRP3-/- mice than WT mice. Melatonin administration maintained the integrity of the IMF 

mitochondria number with aging (Figure 41 K). Aged cardiomyocytes were also associated with non-

significant increase in the IMF mitochondria CSA of EA WT and NLRP3-/- mice, while this induction 

of mitochondrial CSA was more considerable in OA animals (Figure 41 L). 

Figure 41. Effect of NLRP3 ablation and melatonin administration on age-associated ultrastructural and 
morphometrical alterations of cardiac muscle fibers and cardiac mitochondria. (A-C) Transmission electron 

micrographs of the LV of the OA WT mice illustrating widening of interstitial spaces (white asterisk) and 

disruption of the sarcoplasmic reticulum (SR) between myofibrils (Mf). Some mitochondria revealed a normal 

structure (M), while others were hypertrophied and demonstrated different stages of cristae damage with 

presence of inclusions bodies on their matrix (black asterisks). Splitting of the nucleus (N) was mostly clarified, 

with formation of autophagosomes (arrow). (D-F) Transmission electron micrographs of the LV of the OA WT 

mice after melatonin supplementation showing conservation of cardiac myofibrils (Mf), nuclear structure (N), 
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sarcoplasmic reticulum (SR), and mitochondrial contents (M), except of individual mitochondria displayed 

destructed damage (black asterisk), in addition to the presence of small-sized residual bodies (arrow). (G and H) 

Transmission electron micrographs of the LV of the OA NLRP3
-/-

 mice illustrating less prevalent damage of 

cardiac myofibrils (Mf), with well-organized sarcoplasmic reticulum (SR), and lipid droplet (L) infiltrations. 

Some mitochondria were normal, and intact, while others were characterized by their widely-separated and 

disorganized cristae (asterisk). (I and J) Transmission electron micrographs of the LV of the OA NLRP3
-/-

 mice 

after treatment with melatonin depicting the maintenance of normal myofibrils (Mf) structure, sarcoplasmic 

reticulum (SR) organization, and mitochondrial architecture (M) during aging. Individual fibers containing 

residual bodies (arrows) and lipid infiltrations (L) were observed. Note organization of sarcomeres between each 

two successive Z-lines (Z). Bar=2 μm. (K) Age-mediated morphometrical changes of cardiac intermyofibrillar 

mitochondrial number (per 5 µm
2
). (L) Age-associated morphometrical changes of mitochondrial cross-sectional 

area (CSA). Aging induced reduction of mitochondrial number, which was more detectable in WT than NLRP3
-/-

 

mice, and also was recovered by melatonin administration. Aging was also associated with increased CSA. * 

p<0.05 and *** p<0.001 vs. Y; # p<0.05 vs. group without melatonin treatment; $ p<0.05 vs. WT mice. 

5. NLRP3 absence and melatonin treatment diminished cardiac apoptosis during aging 

Hoechst fluorescent analysis of the cardiac muscle fibers nuclei showed the normal nuclear 

appearance in Y WT and NLRP3-/- mice (Figure 42 A and B). With aging, cardiac muscle fibers of EA 

WT and NLRP3-/- animals illustrated signs of apoptosis, where apoptotic cells illustrated cell 

shrinkage, chromatin condensation, and nuclear fragmentation (Figure 42 C and D). These age-related 

apoptotic changes were more pronounced in the OA groups (Figure 42 G and H) and were more 

considerable in cardiac myocytes of WT mice than NLRP3-/- one (Figure 42 K). Interestingly, this age-

mediated induction of nuclear apoptosis was countered by melatonin treatment in EA (Figure 42 E and 

F) and OA (Figure 42 I and J) WT and NLRP3-/- mice respectively (Figure 42 K).  

 

 

 

 

 



  Results 
 

~ 95 ~ 
 

 Figure 42. Impact of NLRP3 deletion and melatonin therapy on age-dependent cardiac apoptosis. (A and 

B) Hoechst fluorescent analysis of the nuclear apoptosis in the LV of the Y WT and NLRP3
-/-

 mice, respectively 

showing normal nuclear appearance. (C and D) Analysis of the nuclear apoptosis in the LV of the EA WT and 

NLRP3
-/-

 mice, respectively revealing that aging induced nuclear apoptosis and fragmentation (arrows). (E and 

F) Analysis of the nuclear apoptosis in the LV of the EA WT and NLRP3
-/-

 mice, respectively after melatonin 

therapy clarifying the protective effect of melatonin on reducing cardiac apoptosis. (G and H) Analysis of the 

nuclear apoptosis in the LV of the OA WT and NLRP3
-/-

 mice, respectively exhibiting more detectable nuclear 

apoptosis. (I and J) Analysis of the nuclear apoptosis in the LV of the OA WT and NLRP3
-/-

 mice, respectively 

after melatonin treatment confirming the beneficial effect of melatonin against age-related cardiac apoptosis. 

(K) Morphometrical analysis of apoptotic nuclei of cardiomyocytes during aging revealing that cardiac 

apoptosis was more considerable in cardiac myocytes of WT mice than in those of NLRP3
-/-

 one. Bar=20 μm. * 

p<0.05 and *** p<0.001 vs. Y; # p<0.05 and ### p<0.001 vs. group without melatonin treatment; $$ p<0.01 

and $$$ p<0.001 vs. WT mice. 
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CHAPTER 1: MELATONIN/NRF2/NLRP3 CONNECTION IN 
MOUSE HEART MITOCHONDRIA DURING AGING  

Immunosenescence and inflammaging are caused by persistent activation of NF-κB/NLRP3 

inflammasome pathways generates chronic low-grade inflammation which leads to, among other 

detriments, accumulation of cardiac mitochondrial dysfunction, characterized by dysregulation of 

mitochondrial dynamics, autophagy, apoptosis, Nrf2 antioxidant pathway, and maintenance of 

ultrastructure of mitochondria (Franceschi et al., 2000). Another hallmark of aging is a decline in 

melatonin levels and its protective roles (Reiter et al., 1998). This brings about increased oxidative 

damage, chronodisruption, upregulation of pro-inflammatory cytokines, and down regulation of anti-

oxidant/-inflammatory processes that contribute to inflammaging by facilitating mitochondrial 

disruption (Hardeland, 2019). The role of the NLRP3 inflammasome and melatonin levels in 

regulation of mitochondrial dysfunction, associated with cardiac aging, is not fully understood. Our 

results suggest direct involvement of this inflammasome by marked amelioration of some 

mitochondrial dysfunctions with NLRP3 ablation both involved with, and independent of, melatonin 

supplementation in EA and OA mice (Figures 43, 44). 

Figure 43. Proposed mechanism of melatonin in mitochondria of WT mice during cardiac aging. (A)

Mitochondrial dynamics: aging led to a decline in fusion (Mfn2 and Opa1) and fission proteins (Opa1). 

Melatonin treatment counteracted this decrease. (B) Autophagy (mitophagy): autophagic capacity dropped in 

aged myocardium. Melatonin therapy had minimal impact on this pathway. (C) Intrinsic and (D) extrinsic 
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apoptosis: WT mice have intrinsic and extrinsic pathways mediated by p53 and caspase 9. Those apoptotic 

markers, as well as Bax/Bcl2 ratio, increased with aging and are related with NLRP3 activation. This 

inflammasome seemed to have a regulatory effect on the intrinsic apoptotic pathway, which depends on 

mitochondria cytochrome c release. Melatonin supplementation had an anti-apoptotic effect in both intrinsic and 

extrinsic apoptosis. (E) Nrf2-dependent antioxidant response: Nrf2 and pNrf2 (Ser40) were reduced with aging. 

This loss was linked to the decrease of the cytoprotective enzyme transcriptionally regulate by Nrf2: Hmox1, 

Nqo1 and γGclc. Melatonin recovered this antioxidant pathway. No changes in Keap1 were reported. Red-

purple arrow: impact of aging. Green-blue arrow: effect of melatonin treatment. 

 

 

Figure 44. Proposed mechanism of melatonin in mitochondria of NLRP3-/- mice during cardiac aging. 
Lack of NLRP3 inflammasome reduced mitochondria dysfunction. (A) Mitochondrial dynamics: the absence of 

NLRP3 prevented the decline in fusion (Mfn2 and Opa1) and fission proteins (Opa1) with aging. Melatonin 

treatment had no effect on these mice. (B) Autophagy (mitophagy): autophagic capacity was restored by NLRP3 

deficiency. Melatonin therapy had minimal impact on autophagic capacity. (C) Intrinsic and (D) extrinsic 

apoptosis: loss of NLRP3 had an anti-apoptotic effect in Bax/Blc2 ratio, but not in p53 or caspase 9. The 

ablation of this inflammasome could trigger extrinsic apoptosis mediated by TNF-α binding to death receptor. 

Melatonin supplementation had an anti-apoptotic effect in p53 and caspase 9. (E) Nrf2-dependent antioxidant 

response: lack of NLRP3 did not recover the decrease of this antioxidant pathway with aging. Only Nqo1 were 

not diminished in mutant mice. Melatonin improved this antioxidant pathway. No changes in Keap1 were 

reported. Red-purple arrow: impact of aging. Green-blue arrow: effect of melatonin treatment. 

Mitochondria fusion (Mfn2 and Opa1) and fission (Drp1) proteins decrease naturally with 

aging, as seen in WT mice (Figure 43 A). Findings in the literature link declines in regulatory proteins 

of mitochondrial dynamics and age-related development of CVD (Ahuja et al., 2013; Rosca and 
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Hoppel, 2010; Stotland and Gottlieb, 2016; Zhao et al., 2014). Cardiomyocytes of Mfn2-deficient 

mice showed cardiac hypertrophy (Papanicolaou et al., 2011). Low levels of Opa1 have been reported 

in failing human heart (Chen et al., 2009). Loss of Drp1 in adult mice results in lethal dilated 

cardiomyopathy (Song et al., 2015). Our study also concluded that the absence of NLRP3 prevented 

the decrease in fusion and fission processes associated with aging that were observed in WT mice 

(Figure 44 A). This cardioprotective effect observed in NLRP3-/- mice supports the existence of a close 

relationship between mitochondrial dynamics and inflammaging. Our results are in line with scientific 

evidence that connects impaired mitochondria dynamics, stimulation of innate immune response and 

inflammasome activation (Horng, 2014; Ichinohe et al., 2013; Park et al., 2015; Szabadkai et al., 2004; 

Wang et al., 2014; Yasukawa et al., 2009). On the other hand, melatonin’s mechanism of action in 

mitochondria dynamics and aging remains unclear. We indicate herein that melatonin promotes fusion 

by increasing the expression of the Mfn2 and Opa1 proteins in WT EA and OA mice (Figure 43 A). 

Most investigations support that this indolamine stimulates mitochondria fusion, contributing to the 

survival of cardiomyocytes and reducing mitochondria damage (Pei et al., 2016; Suwanjang et al., 

2016; Zhang et al., 2019b). Moreover, numerous studies remark a melatonin-induced reduction of 

mitochondria fission with stressful stimuli (Chuang et al., 2016; Parameyong et al., 2013, 2015; Xu et 

al., 2016), showing a protective effect in cardiac function against ischemia/reperfusion injury and post-

traumatic cardiac dysfunction in vitro and in vivo models, respectively (Ding et al., 2018a, 2018b; 

Zhou et al., 2017a). Conversely, we found that melatonin supplementation increased the levels of the 

Drp1 protein in EA and OA WT mice. Supporting our results, recent findings showed that 

increasement in Drp1 levels enhanced regulation of mitochondria homeostasis through mitophagy 

(Cho et al., 2019). Additionally, Drp1 overexpression in flies reversed age-related mitochondria 

dysfunction and age-onset pathologies (Rana et al., 2017). Taken together, our data suggests that 

melatonin enhances the response of mitochondria dynamics to maintain homeostasis during age-

related metabolic stressors like inflammasome activation. It should be noted melatonin did not trigger 

significant changes in EA and OA NLRP3-/- mice either (Figure 44 A). This effect of melatonin has 

previously been related to its cytoprotective activity, since its effect will be greater the more cellular 

damage there is, while in situations of low damage or physiological conditions its response is minimal 

(Acuña Castroviejo et al., 2011). 

The LC3II/LC3I ratio showed a significant decrease in autophagy in EA and OA WT mice 

compared to Y WT mice (Figure 43 B). Numerous findings indicate a loss of autophagy with aging in 

most organisms and tissues, including the heart (Cuervo, 2006; Rubinsztein et al., 2011; Shirakabe 

Akihiro et al., 2016; Zhou et al., 2017b). Changes in the expression of autophagic proteins such as 

Atg9, LAMP-1, and LC3II in aged mice and rats resulted in cardiac dysfunction (Hua et al., 2011; 

Taneike et al., 2010; Wohlgemuth et al., 2007). The consequent accumulation of altered organelles, 

mutated mtDNA, cristae disarray, and ROS, have been shown to propagate different age-related 
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cardiac pathologies (Boengler et al., 2009; Dai et al., 2014; Li et al., 2018) and produce risk-associated 

molecular pattern derived from mitochondria (DAMP) that activate NLRP3 inflammasome (Salminen 

et al., 2012a). Our results showed that the absence of NLRP3 prevented the drop in LC3II/LC3I ratio 

in mice during aging (Figure 44 B). Ablation of the NLRP3 inflammasome in old NLRP3-/- mice has 

been reported to improve the quality of autophagy by increasing the levels of ATG12, beclin 1 and 

LC3II and decreasing p62/SQSTM1 (Marín‐Aguilar et al., 2020). Several studies have demonstrated 

the protective influence of melatonin by both increasing and decreasing autophagic capacity, in 

response to sterile and non-sterile inflammation (Kang et al., 2016; Lin et al., 2016; Ma et al., 2018; 

San‐Miguel et al., 2015). Interestingly, in our results it is implied that melatonin had no effect on EA 

and OA WT mice compared to their corresponding controls (Figure 43 B). Similar results were 

obtained in the brain of SAMP8 mice, where melatonin did not cause changes in autophagy (Caballero 

et al., 2009). However, it is noteworthy that melatonin was able to increase autophagy of OA WT 

mice, thereby restoring levels like Y WT mice, but not in EA mice. This action suggests that 

melatonin and autophagy operate synergistically to increase cell survival, delay immunosenescence, 

and decrease oxidative stress. Thus, melatonin could act selectively, increasing autophagy only when 

antioxidant activity is severely impaired, or when sufficient loss of cellular homeostasis results in 

abnormal mitochondrial morphology and DR pathway activation (Houtkooper et al., 2013; Moore, 

2008; Sebastián et al., 2016). Melatonin did not cause significant changes in the LC3II/LC3I ratio in 

NLRP3-/- mice (Figure 44 B), possibly due to the protective effect resulting from ablation of the 

inflammasome. 

Apoptotic proteins p53 and caspase 9 were found to be increased in EA and OA vs Y mice in 

both WT and NLP3-/- mice (Figure 43 C, D, Figure 44 C, D). Oxidative stress that occurs during aging 

has been shown to induce apoptosis, mitochondria dysfunction in cardiomyocytes and ultimately heart 

failure (Aggarwal, 2000; D’Oria et al., 2020; Gustafsson and Gottlieb, 2003; Kannan and Jain, 2000). 

The Bax/Bcl2 ratio confirmed the increase in apoptosis with aging in WT mice. Interestingly, no 

changes were observed between ages in mutant mice. The ablation of NLRP3 had an anti-apoptotic 

protective effect during cardiac aging in Bax/Bcl2 ratio, but not in p53 or caspase 9. This finding 

suggests that NLRP3 is a direct regulator of the intrinsic apoptotic pathway in cardiac aging, which is 

dependent of the balance between Bax and Bcl2 and cytochrome c release (Figure 44 C). The absence 

of this inflammasome could trigger activation of extrinsic apoptosis with ligand-induced activation of 

several DRs since the participation of p53 and caspase 9 in this pathway has been reported in various 

tissues and cell models (D’Sa-Eipper et al., 2001; Haupt et al., 2003; McDonnell et al., 2003). In 

support of our hypothesis, recent studies revealed an increase in TNF-α in the serum of old NLRP3-/- 

mice compared to young mice (Cañadas-Lozano et al., 2020). This cytokine is linked to inflammaging 

(López-Otín et al., 2016) and induces extrinsic apoptotic pathway by binding to the cell DR TNFR1. 

On the other hand, findings have showed that caspase 8, which is key in extrinsic apoptosis, plays a 
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role in NLRP3 inflammasome priming and cytochrome c independent caspase 9 activation (Allam et 

al., 2014; McDonnell et al., 2008; Vince et al., 2018). Without NLRP3, cardiac aging-induced 

inflammation is favored and could start with extrinsic TNF-α apoptosis pathway preceding activation 

of caspase 8 which in turn activates caspase 9 (Figure 44 D). Further investigations centered of the 

impact of aging on the heart are required to elucidate the extent of the complex interactions between 

NLRP3 and apoptosis. In most cases, melatonin counteracted the high levels of p53 and caspase 9 

associated with aging in WT and mutant mice and Bax/Bcl2 ratio in WT. This anti-apoptotic effect of 

melatonin during cardiac aging was evident in both extrinsic and intrinsic pathways (Figure 43 C, D, 

Figure 44 C, D) and can be explained due to its ability to restore the redox potential of the 

mitochondria membrane and reduce oxidative stress. These actions increase ATP production and 

decrease MOMP following release of cytochrome c (Acuna-Castroviejo et al., 2007). 

Mitochondrial theory of aging (Harman, 1972; Miquel et al., 1980) postulates that an 

alteration in the redox state of the mitochondria, the main source of free radicals in the cell, causes 

oxidative damage that results in senescence, the primary driver of the aging process. In this sense, 

Nrf2 is defined as a ‘guardian of health span’ and a ‘master regulator of aging’ giving it enormous 

importance in the control of numerous antioxidant enzymes (Bruns et al., 2015; Lewis et al., 2010). It 

is well stablished that Nrf2 improves mitochondria function by balancing reduction and oxidation 

processes and influencing ATP production, membrane potential, fatty acid oxidation and structural 

integrity (Dinkova-Kostova and Abramov, 2015). However, changes in the levels of this protein 

during aging, as well as the antioxidant enzymes it regulates, have been the subject of debate in recent 

years. Controversial and even opposite results appear in many studies, which seem to depend on the 

species, strain, tissue, sex and experimental design. Our results in cardiac muscle indicate that 

cytosolic levels of Nrf2 and pNrf2 (Ser40) decrease with aging, both in WT and in NLRP3-/- mice at 

EA and OA (Figure 43 E, Figure 44 E). This may suggest translocation to the nucleus to activate 

transcription, to mediate age-related increases in ROS, decreasing cytosolic levels. The presence of 

pNrf2 in the cytosol could also be due to phosphorylation of Nrf2 by GSK-3β which translocates 

pNrf2 out of the nucleus (Tomobe et al., 2012). Our data agree with investigations showing that mice 

deficient in Nrf2 have a higher susceptibility to inflammation and oxidative stress (Ma et al., 2006). 

This alteration in the Nrf2 pathway is associated with CVDs (Howden, 2013; Reuland et al., 2013). 

Nrf2-/- mice were more prone to heart failure and their mortality increased ten days after suffering a 

myocardial infarction (Strom and Chen, 2017; Xu et al., 2014). Although most studies point to a 

decrease in Nrf2 in heart tissue with aging, the causes are unknown. Surprisingly, our results discarded 

Keap1 as the responsible of this declining since there were no changes in its levels between the 

different ages and experimental groups. In line with our findings, levels of Nrf2 and its mRNA were 

found to be reduced in the liver of 10-month-old SAMP8 mice compared to senescence-accelerated 

mouse resistant (SAMR)1 mice, while Keap1 mRNA and its protein levels remained unchanged with 
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age (Tomobe et al., 2012). The decrease in the antioxidant enzymes Hmox1, Nqo1 and γGclc during 

aging is possibly due to a less efficient Nrf2 signaling (Shih and Yen, 2007; Suh et al., 2004). Similar 

results using aortas of 24-month-old rats, whose Nrf2 levels were lower compared to 3-month-old 

young rats, resulted in a drop in the enzymes Hmox1, Nqo1 and γGclc (Ungvari et al., 2011a). 

However, the same group demonstrated that oxidative stress associated with aging did not induce 

significant changes in Nrf2 levels of carotid arteries in aged Rhesus macaques (20 years) compared to 

young individuals (10 years), and their respective antioxidant enzymes were not induced either 

(Ungvari et al., 2011b). Together, these data confirm that the expression of these antioxidant enzymes 

is linked to Nrf2. It also suggests the activation of this signaling pathway in the cardiovascular system 

during aging depends not only on the animal model but on the degree of oxidative stress as well. In 

this light, recent works described that there is a shift in Nrf2 target to Klf9 instead of Hmox1, Nqo1 

and γGclc at excessive oxidative damage (Chhunchha et al., 2019; Zucker et al., 2014). This could 

explain the fact that Hmox1 and γGclc were decreased to a greater degree than WT by showing 

decline in EA while WT decreased only at OA. Interestingly, Nqo1 expression levels were not reduced 

in NLRP3-/- mice but were still upregulated by melatonin supplementation. Several studies show that 

Nqo1 is the prototype gene target for Nrf2 activation. In BV2 cells after cerebral ischemia reperfusion, 

Nrf2 ROS response was linked to Nqo1 expression (Xu et al., 2018). This could illuminate the limited 

decrease in cytosolic Nqo1 by being preferentially targeted by the ever-shrinking pool of Nrf2 and 

pNrf2 as aging ensues. This study also proved that scavenging of ROS by Nqo1 restrained NLRP3 

inflammasome activation and IL-1β expression. Except for Keap1 expression levels, which remained 

unchanged during aging, treatment with melatonin counteracted the age-associated decline in 

expression of all the parameters of the Nrf2 signaling pathway, both in WT and NLRP3-/- mice (Figure 

43 E, Figure 44 E). Melatonin has been shown to have a protective effect on the mitochondria by 

acting as a powerful antioxidant in a direct way, as a scavenger of free radicals, detoxifying ROS and 

RNS, and indirectly, increasing the rest of the Nrf2-dependent and independent antioxidant systems 

(Rahim et al., 2021; Reiter et al., 2001; Rodriguez et al., 2004; Tomás-Zapico and Coto-Montes, 

2005).  

Studies in animal models confirm that the ultrastructure of cardiac mitochondria changes with 

aging (Corsetti et al., 2008). Our study supported these results. A small number of isolated 

mitochondria had damaged cristae in EA mice, and severe mitochondrial damage, with destroyed, 

separated, vacuolated and hypertrophied cristae in OA mice. This mitochondrial impairment was more 

remarkable in WT mice than in mutants. These findings reveal age-induced cellular senescence and 

mitochondrial dysfunction (Shigenaga et al., 1994), as well as the cardioprotective effect linked to the 

ablation of the NLRP3 inflammasome (Wang et al., 2018b). Melatonin treatment maintained normal 

mitochondrial ultrastructure in all experimental groups. Multivesicular bodies increased in treated OA 

NLRP3-/- mice, which indicate autophagy induction. These results, once again, highlight the protective 
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role of melatonin against age-mediated mitochondria impairment and its ability to restore altered 

autophagic processes during cardiac aging (Rodríguez et al., 2008). 

Various morphometric analyses show that the size and number of mitochondria per cell is 

impacted during cardiac aging (El’darov et al., 2015). Our results showed an increase in CSA and 

Feret’s diameter in the mitochondria of OA WT mice, accompanied by a decrease in number of 

mitochondria. This mitochondrial hypertrophy has been related to a systemic demand from overload 

stress on the heart (Dobaczewski et al., 2011; Hefti et al., 1997), and our results suggest that it could 

also be an adaptive mechanism to compensate for the decrease in the amount of this organelle. The 

ablation of the NLRP3 inflammasome reduced cardiac hypertrophy, as there were no changes in 

Feret's diameter with age and less significant increase in CSA and decline in mitochondria number. To 

our knowledge, this is the first time that these morphometrical parameters are studied specifically in 

IMF during cardiac aging using a mice model. In line to our findings, CSA of cardiomyocytes from 

the LV of male Fischer 344 rats increased with aging, while the number of cardiomyocytes decreased 

(No et al., 2020). In Wistar rats, mitochondria volume fraction and mean size both in left and right 

ventricle were decreased in 2 years old vs 6 weeks old animals (Frenzel and Feimann, 1984). Our 

results showed that melatonin significantly increased the number of mitochondria in WT and NLRP3-/- 

mice, with no effect on CSA or Feret’s diameter. It is possible that in this case two-months treatment 

is not enough to counter the age-related changes in CSA and Feret’s diameter in the heart, one of the 

most energy-demanding organs of our body (Neubauer, 2007). This ‘cardiac sarcopenia’ has hardly 

been investigated since most studies focus on skeletal muscle. Indeed, our group previously performed 

the same analyses in gastrocnemius and morphometric alterations were observed earlier, in EA mice 

and protected in NLRP3 deficient mice (Sayed et al., 2019b). Our findings suggest that cardiac muscle 

and its mitochondria are physiologically more protected from age-related sarcopenia than skeletal 

muscle. Its ability to make a metabolic switch in favor of glycolysis instead of fatty acid oxidation 

during aging (Hyyti et al., 2010; Kates et al., 2003), being one of the organs where the NLRP3 

inflammasome is expressed less (Huang et al., 2014; Ye et al., 2015), or the presence of resident 

macrophages with tissue protective function (Pinto et al., 2012) are some of many possible adaptations 

of the heart that could explain its greater resistance to sarcopenia. 
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CHAPTER 2: AGING AND CHRONODISRUPTION IN MOUSE 
CARDIAC TISSUE. EFFECT OF THE NLRP3 
INFLAMMASOME AND MELATONIN THERAPY 

The aging process leads to a chronic low-grade inflammatory environment that perpetuates 

innate immune response and is known as inflammaging (Ferrucci and Fabbri, 2018; Franceschi et al., 

2000). The aggregation of pro-inflammatory signals impairs clock genes expression in both central 

and peripheral tissues (Cavadini et al., 2007; Gast et al., 2012). One of the key components of 

circadian rhythm regulation is the pineal melatonin. It is known that both melatonin synthesis and its 

receptor’s expression decline with age (Waldhauser et al., 1998). Recent studies have shown the 

importance of clock gene regulation in maintaining cardiomyocyte function, growth, and renewal 

pathways as organisms age (Alibhai et al., 2017; Hergenhan et al., 2020). Our results clearly showed 

that not only does aging impact circadian gene expression in cardiac tissue, but melatonin treatment 

was also influential. Additionally, we found that, to a lesser extent, ablation of the NLRP3 

inflammasome altered daily expression patterns of all clock genes investigated, excepting Rev-erbα 

where no effect was observed with genotype. 

Interestingly, the role of Rev-erbα in the innate immune and, specifically, in the inflammatory 

response, has been a controversial topic in scientific research. On one hand, REV-ERBα exerts a pro-

inflammatory action by binding competitively with RORα to the same RORE in the promoter of 

Bmal1 (Acuña-Castroviejo et al., 2017). Among other processes, BMAL1 regulates Nampt expression, 

whose protein synthesizes NAD+, the cofactor of SIRT1. This deacetylase inactivates NF-κB, 

therefore controlling the inflammatory response. On the other hand, the anti-inflammatory effect of 

REV-ERBα has been well-stablished through the downregulation of the expression of NF-κB 

signaling and related genes, such as IL-6, IL-1β, IL-18, Tnf-α, Ccl2 and Nlrp3 (Griffin et al., 2019; 

Guo et al., 2019; Wang et al., 2018a; Zhao et al., 2019b). It has been proposed that the inflammatory 

action of REV-ERBα and the mechanisms of repressing transcription may be tissue-specific (Griffin et 

al., 2019; Wang et al., 2020). Most studies reveal a protective role of REV-ERBα in cardiac tissue by 

inhibiting the expression of factors determining atherosclerosis risk, including: apoCIII protein (Raspé 

et al., 2001), PPAR nuclear receptors (Fontaine and Staels, 2007), and plasminogen activator inhibitor 

(PAI-1) (Vaughan, 2005). REV-ERBα activation, as well as selective agonists for REV-ERBα, have 

been shown to ameliorate heart failure and myocardial infarction in mice by down-regulation of 

NLRP3 inflammasome activity (Reitz et al., 2019; Stujanna et al., 2017; Zhang et al., 2017). The 

molecular mechanism of this anti-inflammatory effect remains poorly understood in heart. Using heart 

tissue chromatin immunoprecipitation sequencing (ChIP-Seq), a recent study proposed that Rev-erbα 

can colocalize with others transcription factors and coordinate the repression at thousands of loci in 

the genome mediated by multiple transcription factors, preventing a pathogenic switch of gene 

program (Zhang et al., 2017). The mentioned investigations highlight the anti-inflammatory effect of 
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Rev-erbα mediated inflammasome suppression in moderating vascular inflammation. The age-related 

increase of NLRP3 inflammasome activation is well established, and recent studies show increased 

Rev-erbα in murine cardiac tissue with age (Volt et al., 2016). Given our results illustrate that loss of 

Nlrp3 did not alter the mRNA expression of Rev-erbα, this implies that while Rev-erbα can act 

directly on the inflammasome to suppress it, the presence of Nlrp3 does not appear to influence Rev-

erbα in murine cardiac tissue. 

The core components of circadian mechanism Clock and Bmal1 are vital determinant for 

cardiac physiology. Premature aging phenotype and age-associated cardiomyopathy is developed in 

global and cardiomyocyte-specific mutant mice for Clock and also for Bmal1 gene (Alibhai et al., 

2017; Bray et al., 2008; Ingle et al., 2015; Lefta et al., 2012; Young et al., 2014). Cosinor data reflects 

that rhythm of Clock and Bmal1 is not affected by aging. Some debate has been found regarding the 

rhythmicity of the gene Clock. Some authors exposed no rhythm of gene Clock in heart of young 

Balb/c mice (Bonaconsa et al., 2014). However, our findings are in line with those who showed Clock 

rhythmicity and same acrophase that Bmal1 in young age rodents (Herichová et al., 2007; Young et 

al., 2001). It should be noted that although the rhythm of gene Clock in heart was unaffected, the phase 

of the rhythms was delayed over 4 hours in WT EA and WT OA vs WT Y mice. Therefore, while 

peripheral oscillators may continue to function with rhythmic expression of core clock genes in heart, 

aging induced phase shifts and reorganization of rhythms in clock genes, as also observed in other 

peripheral tissues as kidney (Sellix et al., 2012; Yamazaki et al., 2002). Rhythms and acrophases of 

Bmal1 were very preserved at all ages. Similar results were found in human skin fibroblasts and 

cortical area, as well as in mice brain and liver (Lim et al., 2013; Oishi et al., 2011; Pagani et al., 

2011). This fact is extremely important for the maintenance of circadian rhythm in heart since Bmal1 

is the only obligate mammalian clock gene for rhythmicity (Bunger et al., 2000). Absence of Nlrp3 

preserved the acrophase in Clock and Bmal1 genes in almost all ages, indicating the influence of this 

inflammasome on the age-related shifts in the acrophases of these genes. Melatonin treatment 

corrected the alterations in the acrophases of the gene Clock, probably by counteracting the disruption 

of CLOCK/BMAL1/NF-κB/SIRT1 in aged mice and reducing the activation of NLRP3 inflammasome 

(Volt et al., 2016). 

Our results showed that Bmal1 is expressed in antiphase with Per2 gene in WT Y and EA, 

coinciding with prior studies in heart and other peripheral tissues like stomach and colon (Bonaconsa 

et al., 2014; Hoogerwerf et al., 2007). Acrophase time is maintained at the beginning of the dark phase 

(20-21 h), but rhythm is lost with aging in WT OA animals. Some findings reported no apparent 

changes in Per2 resulting from the course of aging (Oishi et al., 2011; Tahara et al., 2017). However, 

our data are in agreement with others that revealed consistent effects in the Per2 circadian pattern of 

aged animals (Chen et al., 2016; Driver, 2000; Kunieda et al., 2006; Zhao et al., 2018). Recent studies 

examining the role of Per2 in cardiac function are conflicting. Some authors found Per2-mutant mice 
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had less severe injury in ischemia/reperfusion and non-reperfused myocardial infarction than control 

mice (Virag and Murry, 2003; Virag et al., 2010). Conversely, it has been widely established the 

cardioprotective effect of Per2 as mediator of endothelial function, vascular senescence and 

angiogenesis (Eckle et al., 2012; Viswambharan et al., 2007; Wang et al., 2008). Melatonin restored 

the rhythm in WT OA mice and significantly advanced the acrophase in both WT EA and WT OA 

mice. The phase advance of Per2 in control and hypertensive rat hearts was previously described after 

melatonin administration in drinking water during the dark phase for 6 weeks (Zeman et al., 2009). 

Melatonin may have a protective effect in cardiac tissue by extending the period, whose length 

decreases as a result of aging (McAuley et al., 2002; Pittendrigh and Daan, 1974; Weitzman et al., 

1982; Witting et al., 1994). The shortening of circadian period has been linked to cardiomyopathies, 

fibrosis and decrease lifespan in vitro and in vivo experimental models (Klarsfeld and Rouyer, 1998; 

Krishnan et al., 2009, 2012; Martino et al., 2008; Pagani et al., 2011). Melatonin has been proposed to 

be a proteasome inhibitor in central and peripheral tissues, limiting the destruction of PER2 protein 

and therefore, increasing period length by advancing the phase (Vriend and Reiter, 2015). The 

contribution of this gene in immunity seems to be complex. Absence of Per2 in mice reduced IL-1β 

and INFγ in sepsis, but it is also able to promote inflammation by reducing the activity of BMAL1 and 

REV-ERBα (Liu et al., 2006; Preitner et al., 2002). Inflammation, and especially IL-1β, disrupts the 

circadian rhythm of Per2 in peripheral tissues (Yuan et al., 2019). Absence of NLRP3 maintained the 

rhythm in OA mice, possibly because this cytokine remains inactive without the action of this 

inflammasome. Unexpectedly, the acrophase of mutant mice remained constant with age and 

melatonin treatment. Interestingly, this acrophase was notably different from WT. The aged-associated 

increase of NLRP3 may cause this loss of rhythm in WT mice. The fact that acrophase was modified 

in the complete absence of this inflammasome suggests that NLRP3 may influence Per2 acrophase. 

Therefore, basal levels of NLRP3 could be necessary for maintaining Per2 rhythm. Similar findings 

were described regarding NF-κB (Hong et al., 2018). 

As Per2 gene, acrophase of Chrono occurred at 20 h in WT Y mice, being both genes 

repressor of the positive loop Clock/Bmal1 and in antiphase with Bmal1, as previously described in 

SCN and other peripheral tissues (Goriki et al., 2014; Hatanaka et al., 2010). However, unlike Per2, 

the acrophase and rhythmicity of Chrono remained constant with aging and with melatonin therapy in 

WT mice. These data suggest that Chrono is an evolutionarily highly preserved gene. As a matter of 

fact, Chrono is known to be the gene that is rhythmically expressed in the largest number of tissues in 

diurnal primates (Mure et al., 2018). Lack of NLRP3 had no impact on rhythm and acrophase of 

Chrono, which were similar to WT observations. This data implies that, contrary to Per2, Nlrp3 

expression does not influence Chrono circadian activity. Overall, mechanisms of action and regulation 

of Per2 and Chrono seem to be different. This result is in line with recent discoveries that found Per2 
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and Chrono to bind Bmal1 N and C-terminus, respectively, and function distinctly as repressors in the 

mammalian circadian clock (Langmesser et al., 2008; Yang et al., 2020). 

Rhythm and acrophase of Rev-erbα placed over 17 h persisted in the aged heart of WT mice, 

as formerly described in cardiac tissue of young and old mice (Bonaconsa et al., 2014), and young 

Winstar rats (Herichová et al., 2014; Szántóová et al., 2011), others peripheral tissues like mice small 

intestine and colon (Duez and Staels, 2008; Paulose et al., 2019), as well as experiments performed in 

vitro with young rat cardiomyocytes (Peliciari-Garcia et al., 2011). Melatonin treatment induced a 

phase advance of Rev-erbα in both WT EA and OA mice. The same phenomenon was observed in rat 

SCN (Masson-Pévet, 2007) but not in rat cardiomyocytes (Peliciari-Garcia et al., 2011). Although 

there is variation in the dosages and administration of melatonin, and experimental model across 

studies (Baburski et al., 2015), our results propose that the chronobiotic effect of melatonin may rely 

on Rev-erbα as an initial molecular target (Fontaine and Staels, 2007). There were no significant 

differences between NLRP3 deficient and WT mice regarding acrophase of Rev-erbα, which agrees 

with our previous comments regarding lack of effect of genotype in mRNA Rev-erbα expression. 

Aging seemed to cause phase advance in mutant mice like what is observed in WT melatonin treated 

mice. Additionally, melatonin had little impact on acrophase of NLRP3-/- mice. Based on these 

findings it appears that the therapeutic effect of melatonin on Rev-erbα acrophase is mimicked in the 

NLRP3 knock-out mice, corroborating that some protective effects of melatonin in WT cardiac tissue 

are dependent on suppression of NLRP3 inflammasome activation (Volt et al., 2016). 

Rorα rhythm disappeared in heart of WT EA and WT OA mice. Conversely, neither rhythm 

nor systematic changes were found in Rorα expression of gastrointestinal tissues with aging (Paulose 

et al., 2019). Studies related to the age-associated changes in Rorα are very limited, but these 

discoveries imply there is a tissue-specific function, being this gene a molecular link between 

circadian rhythm and cardiac homeostasis (He et al., 2016a). Mice with a loss-of-function mutation in 

RORα (Rora
sg/sg) have impairments in the circadian oscillator and develop severe cardiomyopathies. 

Pharmacological activation of RORα ameliorated the deleterious cardiac changes and strengthened 

circadian oscillations (He et al., 2016b; Sato et al., 2004). In this sense, melatonin recovered the 

rhythm in WT EA and OA animals and, interestingly, advanced the phase of Rorα to be an hour or two 

before Bmal1 acrophase, possibly enhancing its anti-inflammatory action during aging, as also 

observed in cardiac sepsis mice model (Volt et al., 2016). RORα is a known activator of the 

BMAL1/NAD+/SIRT1 anti-inflammatory pathway. Bmal1 transcription increased the expression of 

Nampt gene and consequently NAD+ levels, which is the substrate for SIRT1 deacetylase activity that 

inhibits p65 subunit of NF-κB (Donmez and Guarente, 2010; Yeung et al., 2004). Melatonin seems to 

modulate age-related inflammatory response through RORα. Although it remains a matter of debate 

whether RORα is a melatonin receptor, an increasing body of evidence suggests that RORα is essential 

as a mediator of some of the biological effect of melatonin, including the inhibition of the innate 
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immune response during chronic inflammation (Acuña-Castroviejo et al., 2017; Ding et al., 2019; 

García et al., 2015). RORα is known to induce the transcription of inhibitor of NF-κB (IκB) and

inhibits the nuclear translocation of NF-κB. Lack of NLRP3 shifted the phase at 18 h in Y mice with

less rhythmicity compared to WT Y animals. The chronodisruption has been previously observed in 

mutant mice (Acuña-Castroviejo et al., 2017), indicating that NLRP3 may have a role in maintaining 

circadian rhythm in heart. As in WT, rhythm was lost in NLRP3-/- EA and OA animals, and restored 

by melatonin, placing the acrophase respectively at 13 h and 11h, approaching WT Y mice phase. 

Melatonin was able to reestablish Rorα rhythm and advance acrophase to a similar degree in both 

strains of mice independent of NLRP3 inflammasome expression. These data could be due to the fact 

that there are no changes in Nampt and Sirt1 expression in mutant mice (Rahim et al., 2017), limiting 

the activation of Rorα in Y mice. Taken together, these findings suggest that Rorα rhythm and 

acrophase are influenced by melatonin and NLRP3 inflammasome.  

Lower amplitude has been linked with an augmented risk of CVD, and diminished mesor has 

been associated with a higher risk of coronary heart disease (Paudel et al., 2011). Circadian changes 

related to aging include the reduction of the amplitude in both central and peripheral tissues of 

mammals and Drosophila melanogaster (Chen et al., 2016; Nakamura et al., 2015; Rakshit et al., 

2012; Roenneberg et al., 2007). However, a significant number of other studies showed no apparent 

effect of aging regarding these circadian parameters (Oishi et al., 2011; Pagani et al., 2011; Solanas et 

al., 2017; Yamaguchi et al., 2018). Our results suggest that aging, lack of NLRP3 inflammasome and 

melatonin treatment had low influence in the amplitude of clock genes in heart. Instead, mesor tended 

to decline with aging, and NLRP3 absence and melatonin did not restore this dampening. Contrary to 

our findings, Bonaconsa et al. found a tendency towards amplitude decrease and preservation of mesor 

in aged heart (Bonaconsa et al., 2014). Controversial results regarding amplitude have been also 

observed in rodent SCN and also in human leukocytes, mucosa and heart, cardiac tissue being the one 

with the widest range of amplitudes (Banks et al., 2016; Leibetseder et al., 2009). The intense 

metabolism and low rate of differentiation of myocardial cells were proposed by authors as a possible 

explanation of these results. Still, the exact reasons for these discrepancies in clock-gene amplitudes 

and mesor remain to be elucidated (Okamura, 2004; Tsinkalovsky et al., 2007). 
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CHAPTER 3: NLRP3 INFLAMMASOME DELETION AND / 
WITH MELATONIN SUPPLEMENTATION MITIGATE AGE-
DEPENDENT MORPHOLOGICAL AND ULTRASTRUCTURAL 
ALTERATIONS IN MURINE HEART 

This study describes for the first time the contribution of NLRP3 inflammasome to heart 

deterioration during aging. The NLRP3 inflammasome plays an essential role in the pathogenesis of 

various CVDs such as hypertension, atherosclerosis and myocardial infarction (Liu et al., 2018; Toldo 

and Abbate, 2018). To better understand the role of NLRP3 in cardiac aging and age-related cardiac 

sarcopenia, we examined the LV of differentially aged WT and NLRP3-/- mice. As observed here, the 

deletion of the NLRP3 inflammasome resulted in a better cardiac architecture with no age-associated 

changes in the EA mice, and with less necrotic and fibrotic changes in the OA animals when compared 

to WT mice. A recent study performed on NLRP3-knockout mice revealed a significant increase of 

heart weight / body weight ratio in the old WT mice, while non-significant increase were detected in 

old NLRP3-/- mice (Marín-Aguilar et al., 2020); however, the ratio of heart weight to body weight 

observed here reported an age-mediated reduction, confirmed previous findings reported elsewhere 

(Boyle et al., 2011), and this decline was higher in the OA WT mice than in OA NLRP3-/-. 

The reduction of heart weight to body weight ratio during aging was associated with a decline 

in cardiac fiber numbers, increased left ventricular wall thickness and an enhanced compensated 

cardiomyocyte hypertrophy of the remaining fibers with increased β-MHC mRNA expression. These 

alterations were less prominent in NLRP3-/- mice than in WT. Increased cardiomyocyte transverse CSA 

was reported in aged WT mice unlike NLRP3-/- (Marín‐Aguilar et al., 2020). Our previous study in 

gastrocnemius muscle confirmed these results, where lack of NLRP3 inflammasome showed lower 

muscular decline and reduced collagen fibers in aged NLRP3-/- mice when compared with aged WT 

mice (Sayed et al., 2019b). The increased expression level of β-MHC during cardiac aging has been 

reported (Carnes et al., 2004). Other study suggested that β-MHC expression during aging is a marker 

of fibrosis rather than of cellular hypertrophy (Pandya et al., 2006).  

Recently, a study revealed increased mass and collagen level of the LV, as well as the 

thickness of the septal wall in aged mice, associated with increased expressions of IL-1α, IL-6 and 

TNF-α, suggesting that cardiac structural and functional changes with age are closely graded with 

frailty and inflammation markers (Kane et al., 2021). NLRP3 inflammasome-related inflammaging has 

been reported to be activated during the aging phenomenon in many tissues and organs including heart 

(Liu et al., 2018; McBride et al., 2017). Pro-inflammatory cytokines induced through age-dependent 

inflammasome activation promote muscle tissue wasting and atrophy, whilst lack of NLRP3 protects 

against these inflammatory proceedings (Huang et al., 2017). The induction of fibrosis and IL-1α and

IL-6 inflammatory cytokine genes observed here were less remarkable in the NLRP3-/- mice. Lately, 
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interstitial and perivascular cardiac fibrosis was described in aged WT mice, with non-significant 

changes in aged NLRP3-/- mice, where increased IL-6 serum and protein levels in the cardiac tissues of 

old WT and NLRP3-/- mice were observed (Marín-Aguilar et al., 2020). Therefore, the reduction of 

collagenous tissue infiltrations in the aged myocardium of NLRP3-/- mice assured the attenuation of 

fibrosis upon NLRP3 depletion (Kane et al., 2021). 

Mitochondria play critical roles in cellular life and death, as it is important for maintaining 

cellular homeostasis, thus mitochondrial dysfunction with aging has been implicated in the 

deterioration in structure and function of skeletal and cardiac muscles (Hepple, 2016). The correlation 

between mitochondrial function and cardiovascular health was recently investigated, where lower 

mitochondrial oxidative capacity in aged individuals was associated with a positive previous history of 

CVD (Zampino et al., 2021). Furthermore, poorer mitochondrial function was recently proposed as a 

potential contributor of increased perceived fatigability (Liu et al., 2021). The current study 

demonstrated by electron microscopy that cardiac muscle aging is associated with an assortment of 

ultrastructural alterations, including mitochondrial swelling, cristae destruction and matrix 

vacuolization, increased lipid accumulation, and a decline in mitochondrial number. These 

observations of the mitochondrial ultrastructural alterations have been proposed as an indicator of 

cellular senescence and age-dependent loss of mitochondrial functions (Leonardo-Mendonça et al., 

2017; Zhang et al., 2018), and were less considerable in aged cardiomyocytes of NLRP3-/- mice than 

WT (Marín-Aguilar et al., 2020). Our data confirm our previous findings in the skeletal muscle, where 

the lack of NLRP3 inflammasome reduced mitochondrial impairment during aging (Sayed et al., 

2019b), and supporting the role of the NLRP3 inflammasome inhibition in prevention of cardiac aging 

(Marín‐Aguilar et al., 2020).  

Aging of cardiomyocytes was associated with formation of autophagosomes, which were more 

pronounced in aged cardiomyocytes of WT mice than NLRP3-/-. Many studies have suggested the 

involvement of autophagy in the regulation of lifespan and aging (Madeo et al., 2015). It plays an 

essential role in mitigation of age-associated cardiac changes (Shirakabe Akihiro et al., 2016). The 

age-dependent decline of autophagy in the heart (Taneike et al., 2010) enhances impairments in 

cellular housekeeping functions that induce NF-κB signaling which, either directly or through 

inflammasomes, stimulates age-related pro-inflammatory events (Salminen et al., 2012b). Moreover, 

aging diminishes the autophagic/mitophagic capacity and leads to an accumulation of ROS, triggering 

activation of the NLRP3 inflammasome and induces inflammation in various tissues (Kane et al., 

2021; Salminen et al., 2012b), while absence of NLRP3 improves mitochondrial dysfunction. 

Therefore, our results revealed reduction of autophagosome number and size in aged cardiac muscles 

of NLRP3-/- mice, confirming the beneficial effect of NLRP3 inhibition in improvement of autophagy 

quality during cardiac aging (Marín‐Aguilar et al., 2020). Our previous study revealed that loss of 

NLRP3 had few impacts on age-dependent cardiac autophagic changes (Fernández-Ortiz et al., 2020). 
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A recent study confirmed the beneficial effect of NLRP3 inhibition via enhancing autophagy in aged 

mice. Moreover, this latter study proposed the impact of NLRP3 suppression on improving human 

health and age-dependent metabolic syndrome (Marín-Aguilar et al., 2020). 

Aging of cardiac muscle fibers was associated with increased nuclear apoptosis, being more 

pronounced in cardiac myocytes of WT mice than NLRP3-/- ones. Apoptosis displays a key role in the 

muscular loss, where it has been defined in muscular denervation (Borisov and Carlson, 2000), as well 

as in chronic heart failure (Adams et al., 1999). It is an active process causing designed cellular death, 

and is associated with removal of apoptotic bodies without inflammation through phagocytosis of 

these bodies by surrounding cells or macrophages (Pollack and Leeuwenburgh, 2001). An increase in 

apoptosis and necrosis was previously observed in the myocardium of old animals (Kajstura et al., 

1996). Our recent study detected less cardiac apoptosis during aging in the absence of NLRP3 

(Fernández-Ortiz et al., 2020). 

Besides its chronobiotic properties due to the low-level circadian release of melatonin by the 

pineal gland, melatonin is also produced in most organs and tissues of the body (Venegas et al., 2012). 

The so-called extrapineal melatonin exerts profound antioxidant and anti-inflammatory actions due to 

high levels that reach the cells. Recently, it has been showed that mouse hearts produce high amounts 

of melatonin that contributes to cardiac protection (Acuña-Castroviejo et al., 2018; García et al., 

2015). Cardiac melatonin, however, decreases with age (Sanchez-Hidalgo et al., 2009), thus reducing 

this potential cardioprotective capacity.  Here, melatonin supplementation to mice prevented the 

progress of age-related cardiac sarcopenia, where melatonin conserved the normal architecture of 

cardiomyocytes with narrow interstitium, less fibrosis and absence of necrotic fibers. Moreover, 

melatonin treatment recovered the thickness of the ventricular wall, improved the heart weight / body 

weight ratio through restoration of cardiomyocyte number and minimizing muscle fiber hypertrophy 

(decreased β-MHC expression) and apoptosis in EA and OA animals. Furthermore, melatonin 

supplementation significantly decreased the expression of IL-1α and IL-6 in WT and NLRP3-/- mice, 

confirming the anti-oxidative, anti-apoptotic, and anti-inflammatory effects of melatonin (Acuña-

Castroviejo et al., 2014; Molpeceres et al., 2007). Melatonin administration was reported to inhibit 

cardiomyocyte apoptosis and improve organization of actin filaments, as well as maintain calcium 

homeostasis as protective mechanisms against myocardial reperfusion injury (Hu et al., 2018). The 

beneficial effects of melatonin treatment against age-related cardiac apoptosis and autophagic changes 

was more profound in NLRP3-/- mice than WT (Fernández-Ortiz et al., 2020). 

Mitochondria are the key intracellular target of melatonin, which reduces free radical 

formation, and boosts the ATP production in both normal and pathological conditions (Acuña 

Castroviejo et al., 2011; Escames et al., 2003; López et al., 2009; Martín et al., 2000a). Melatonin 

therapy protected the cardiac muscle fibers against the age-dependent mitochondrial damage. It 
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maintained the normal ultrastructure of cardiac myocytes, preserved the mitochondrial contents, 

reduced residual and multivesicular bodies, and also kept the integrity of the IMF mitochondrial 

number with aging. These preservative effects of melatonin were more detectable in NLRP3-/- mice 

than in WT (Fernández-Ortiz et al., 2020), confirming our previous findings where melatonin 

protected muscles from age-related sarcopenia-dependent mitochondrial damages. Furthermore, 

NLRP3 inflammasome deletion reduced these alterations and induced the protective effects of 

melatonin (Sayed et al., 2018, 2019b). All of these findings support the essential impact of melatonin 

on preventing mitochondrial dysfunction, reducing oxidative stress, and minimizing sarcopenic 

alterations in patients (Coto-Montes et al., 2016). 
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1. Our results clarify the impact of NLRP3 inflammasome in the mitochondria during aging because 

the lack of NLRP3 prevents mitochondrial dynamics and ultrastructural mitochondrial impairments. 

2. Similarly, melatonin treatment boosts the Nrf2-dependent antioxidant capacity of aged heart, 

making it able to improve mitochondrial structure. 

3. Aging affects clock genes expression in mouse heart. Our results support that age caused small 

phase changes in Clock, loss of rhythmicity in Per2 and Rorα, and a tendency towards dampening 

mesor. 

4. NLRP3 inflammasome impacts clock gene expression in cardiac tissue, except for Rev-erbα, which 

was not affected by mice genotype. NLRP3 inflammasome activity, which increases with age, 

influenced the acrophase of Clock, Per2 and Rorα, suggesting a negative impact in myocardial 

function. 

5. Melatonin therapy restored acrophases and rhythm in cardiac tissue, giving it clinical potential in 

preventing and treating chronopathologies including those dependending on myocardial dysfunction. 

6. Nevertheless, the changes in clock genes expression here reported support that the local 

chronobiotic system of the heart is highly protected from aging. 

7. NLRP3 is involved in age-dependent sarcopenia in cardiac muscle, since NLRP3-/- mice show less 

thickening of the ventricular wall, less fibrosis in aged myocardium, lower expression of inflammatory 

cytokines and less mitochondrial damage compared to wild type mice. 

8. Melatonin therapy prevents cardiac aging in a similar manner that the absence of NLRP3 

inflammasome, suggesting that the former counteracts the inflammatory effects of this inflammasome, 

a property further demonstrated in our previous studies. 

9. Overall, melatonin becomes an excellent cardioprotective agent against the deleterious effects of 

aging on mouse myocardial function. 
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Annex 1. Aging, genotype, melatonin effect on clock gene expression in WT and NLRP3-/- mice. Significant differences determined by 
post-hoc test after Multifactorial-ANOVA.  

TRANSCRIPT: Clock. Post-hoc test: Least Significant Difference 

Aging effect on WT Genotype effect Melatonin effect on WT
 

Melatonin effect on NLRP3
-/- 

Hour Comparison P value Hour Comparison P value Hour Comparison P value Hour Comparison P value 

0 
Y vs OA <0.05 

0 

NLRP3-/- Y vs NLRP3-/- EA <0.05 0 Y vs OA + aMT <0.05 

0 
 

NLRP3-/-Y vs 
NLRP3-/-OA + aMT 

<0.05 

EA vs OA <0.05 
NLRP3-/- Y vs NLRP3-/- 

OA 
<0.05 

6 
Y vs OA + aMT <0.05 

NLRP3-/-EA vs 
NLRP3-/-EA + aMT 

<0.05 

6 

Y vs EA <0.05 
NLRP3-/- EA vs NLRP3-/- 

OA 
<0.05 

EA vs EA + 
aMT 

<0.05 
NLRP3-/-OA vs 

NLRP3-/-OA + aMT 
<0.05 

Y vs OA <0.05 WT EA vs NLRP3-/-EA <0.05 
12 

Y vs OA + aMT <0.05 
WT EA + aMT vs 

NLRP3-/- EA + aMT 
<0.05 

EA vs OA <0.05 WT OA vs NLRP3-/- OA <0.05 
OA vs OA + 

aMT 
<0.05 6 

WT OA + aMT vs 
NLRP3-/- OA + aMT 

<0.05 

12 EA vs OA <0.05 
 

6 
 

NLRP3-/- Y vs NLRP3-/- 

OA 
<0.05 

18 
 

Y vs EA + aMT <0.05 

18 

NLRP3-/- Y vs 
NLRP3-/- EA + aMT 

<0.05 

18 
Y vs OA <0.05 

NLRP3-/- EA vs NLRP3-/- 

OA 
<0.05 Y vs OA + aMT <0.05 

NLRP3-/- Y vs 
NLRP3-/- OA + aMT 

<0.05 

EA vs OA <0.05 WT EA vs NLRP3-/-EA <0.05 
EA vs EA + 

aMT 
<0.05 

WT EA + aMT vs 
NLRP3-/- EA + aMT 

<0.05 

   
12 

NLRP3-/- Y vs NLRP3-/- EA <0.05 
OA vs OA + 

aMT 
<0.05    

   
NLRP3-/- EA vs NLRP3-/- 

OA 
<0.05       

   

18 

NLRP3-/- Y vs NLRP3-/- EA <0.05       

   
NLRP3-/- Y vs NLRP3-/- 

OA 
<0.05       

   
NLRP3-/- EA vs NLRP3-/- 

OA 
<0.05       
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TRANSCRIPT: Bmal1. Post-hoc test:Tukey multiple comparison of mean 

Aging effect on WT Genotype effect Melatonin effect on WT
 

Melatonin effect on NLRP3
-/- 

Hour Comparison P value Hour Comparison P value Hour Comparison P value Hour Comparison P value 

0 
 

Y vs EA <0.001 
0 
 

NLRP3-/- Y vs 
NLRP3-/- EA <0.001 

0 
 

Y vs EA + aMT <0.001 
0 
 

NLRP3-/- Y vs 
NLRP3-/-OA + aMT 

<0.001 

Y vs OA <0.001 NLRP3-/- Y vs 
NLRP3-/- OA 

<0.001 Y vs OA + aMT <0.001 WT EA + aMT vs 
NLRP3-/- EA + aMT <0.001 

6 
 

Y vs EA <0.001 6 WT Y vs NLRP3-/- 
Y <0.01 

6 
 

Y vs EA + aMT <0.05 
12 
 

NLRP3-/- Y vs 
NLRP3-/-OA + aMT <0.001 

EA vs OA <0.05 12 NLRP3-/- EA vs 
NLRP3-/- OA 

<0.05 Y vs OA + aMT <0.05 NLRP3-/- OA vs 
NLRP3-/-OA + aMT <0.001 

18 
 

Y vs EA <0.001 

18 
 

NLRP3-/- Y vs 
NLRP3-/- EA <0.001 

18 
 

Y vs EA + aMT <0.001 

18 

NLRP3-/- Y vs 
NLRP3-/-EA + aMT <0.05 

Y vs OA <0.001 NLRP3-/-Y vs 
NLRP3-/-OA <0.001 Y vs OA + aMT <0.001 NLRP3-/- Y vs 

NLRP3-/-OA + aMT <0.001 

   WT Y vs NLRP3-/- 
Y <0.001 EA vs EA+aMT <0.001 WT EA + aMT vs 

NLRP3-/- EA + aMT <0.001 

      EA + aMT vs 
OA <0.001    

      EA + aMT vs 
OA + aMT <0.001    
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TRANSCRIPT: Per2. Post-hoc test: Least Significant Difference 

Aging effect on WT Genotype effect Melatonin effect on WT
 

Melatonin effect on NLRP3
-/- 

Hour Comparison P value Hour Comparison P value Hour Comparison P value Hour Comparison P 
value 

0 
 

Y vs EA <0.05 

0 
 

NLRP3-/- Y vs NLRP3-/- OA <0.05 6 
 

Y vs EA + aMT <0.05 

0 
 

NLRP3-/- Y vs NLRP3-/- EA + 
aMT 

<0.05 

EA vs OA <0.05 NLRP3-/- EA vs NLRP3-/- 

OA 
<0.05 OA vs OA + aMT <0.05 NLRP3-/-EA vs NLRP3-/-EA + 

aMT <0.05 

6 
 

Y vs OA <0.05 WT EA vs NLRP3-/-EA <0.05 12 
 

Y vs EA + aMT <0.05 NLRP3-/-OA vs NLRP3-/-OA + 
aMT <0.05 

EA vs OA <0.05 WT OA vs NLRP3-/- OA <0.05 EA vs EA + aMT <0.05 6 
 

NLRP3-/- Y vs NLRP3-/-EA + 
aMT <0.05 

18 
 

Y vs EA <0.05 

6 

NLRP3-/- Y vs NLRP3-/- EA <0.05 

18 
 

Y vs EA + aMT <0.05 WT OA + aMT vs NLRP3-/- OA 
+ aMT <0.05 

Y vs OA <0.05 NLRP3-/- EA vs NLRP3-/- 

OA <0.05 Y vs OA + aMT <0.05 

12 
 

NLRP3-/-EA vs NLRP3-/-EA + 
aMT <0.05 

EA vs OA <0.05 WT EA vs NLRP3-/-EA <0.05 EA vs EA + aMT <0.05 NLRP3-/-OA vs NLRP3-/-OA + 
aMT <0.05 

   12 
 

NLRP3-/- Y vs NLRP3-/- EA <0.05 OA vs OA + aMT <0.05 WT Y vs NLRP3-/-Y <0.05 

   NLRP3-/- Y vs NLRP3-/- OA <0.05    WT EA vs NLRP3-/-EA <0.05 

   

18 
 

NLRP3-/- Y vs NLRP3-/- OA <0.05    WT OA vs NLRP3-/- OA <0.05 

   NLRP3-/- EA vs NLRP3-/- 

OA <0.05    WT EA + aMT vs NLRP3-/- EA 
+ aMT <0.05 

   WT Y vs NLRP3-/- Y <0.05    WT OA + aMT vs NLRP3-/- OA 
+ aMT <0.05 

   WT EA vs NLRP3-/-EA <0.05    

18 
 

NLRP3-/- Y vs NLRP3-/-EA + 
aMT <0.05 

   WT OA vs NLRP3-/- OA <0.05    

NLRP3-/-OA vs NLRP3-/-OA + 
aMT <0.05 

WT EA + aMT vs NLRP3-/- EA 
+ aMT <0.05 

         WT OA + aMT vs NLRP3-/- OA 
+ aMT <0.05 
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TRANSCRIPT: Chrono. Post-hoc test: Least Significant Difference 

Aging effect on WT Genotype effect Melatonin effect on WT
 

Melatonin effect on NLRP3
-/-

 

Hour Comparison P value Hour Comparison P value Hour Comparison P value Hour Comparison 
P 

value 

6 
 

Y vs EA <0.05 

0 
 

NLRP3-/- Y vs NLRP3-/- EA <0.05 

0 
 

Y vs EA + aMT <0.05 

0 
 

NLRP3-/- Y vs NLRP3-/- EA + 
aMT 

<0.05 

Y vs OA <0.05 NLRP3-/- Y vs NLRP3-/- OA <0.05 Y vs OA + aMT <0.05 
NLRP3-/- Y vs NLRP3-/- OA + 

aMT 
<0.05 

EA vs OA <0.05 WT Y vs NLRP3-/- Y <0.05 EA vs EA + aMT <0.05 
NLRP3-/- EA vs NLRP3-/- EA + 

aMT 
<0.05 

12 
 

Y vs EA <0.05 WT EA vs NLRP3-/- EA <0.05 OA vs OA + aMT <0.05 
NLRP3-/- OA vs NLRP3-/- OA + 

aMT 
<0.05 

Y vs OA <0.05 WT OA vs NLRP3-/- OA <0.05 

6 

Y vs EA + aMT <0.05 
WT EA + aMT vs NLRP3-/- EA 

+ aMT 
<0.05 

EA vs OA <0.05 

6 
 

NLRP3-/- Y vs NLRP3-/- EA <0.05 Y vs OA + aMT <0.05 
WT OA + aMT vs NLRP3-/- OA 

+ aMT 
<0.05 

18 
 

Y vs OA <0.05 NLRP3-/- Y vs NLRP3-/- OA <0.05 EA vs EA + aMT <0.05 

6 
 

NLRP3-/- Y vs NLRP3-/-EA + 
aMT 

<0.05 

EA vs OA <0.05 WT EA vs NLRP3-/- EA <0.05 

12 
 

Y vs EA + aMT <0.05 
NLRP3-/- Y vs NLRP3-/-OA + 

aMT 
<0.05 

   WT OA vs NLRP3-/- OA <0.05 Y vs OA + aMT <0.05 
NLRP3-/- EA vs NLRP3-/- EA + 

aMT 
<0.05 

   

12 
 

NLRP3-/- Y vs NLRP3-/- EA <0.05 EA vs EA + aMT <0.05 

12 
 

NLRP3-/- Y vs NLRP3-/- EA + 
aMT 

<0.05 

   NLRP3-/- Y vs NLRP3-/- OA <0.05 OA vs OA + aMT <0.05 
NLRP3-/- EA vs NLRP3-/- EA + 

aMT 
<0.05 

   WT Y vs NLRP3-/- Y <0.05 

18 
 

Y vs EA + aMT <0.05 
NLRP3-/- OA vs NLRP3-/- OA + 

aMT 
<0.05 

   WT EA vs NLRP3-/- EA <0.05 Y vs OA + aMT <0.05 
WT EA + aMT vs NLRP3-/- EA 

+ aMT 
<0.05 

   WT OA vs NLRP3-/- OA <0.05 EA vs EA + aMT <0.05 
WT OA +aMT vs NLRP3-/- OA 

+aMT 
<0.05 
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TRANSCRIPT: Chrono. Post-hoc test: Least Significant Difference (continued) 

Aging effect on WT Genotype effect Melatonin effect on WT
 

Melatonin effect on NLRP3
-/-

 

Hour Comparison P value Hour Comparison P value Hour Comparison P value Hour Comparison 
P 

value 

   

18 
 

NLRP3-/- Y vs NLRP3-/- OA <0.05 18 OA vs OA + aMT <0.05 

18 
 

NLRP3-/- Y vs NLRP3-/- OA + 
aMT 

<0.05 

   
NLRP3-/- EA vs NLRP3-/- 

OA 
<0.05    

NLRP3-/- OA vs NLRP3-/- OA + 
aMT 

<0.05 

   WT Y vs NLRP3-/- Y <0.05    
WT EA + aMT vs NLRP3-/- EA 

+ aMT 
<0.05 

   WT EA vs NLRP3-/- EA <0.05    
WT OA + aMT vs NLRP3-/- OA 

+ aMT 
<0.05 

   WT OA vs NLRP3-/- OA <0.05       
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TRANSCRIPT: Rev-erbα. Post-hoc test: Least Significant Difference 

Aging effect on WT Genotype effect Melatonin effect on WT
 

Melatonin effect on NLRP3
-/-

 

Hour Comparison P value Hour Comparison P value Hour Comparison P value Hour Comparison 
P 

value 

0 
 

Y vs EA <0.05 
0 
 

NLRP3-/- Y vs NLRP3-/- EA <0.05 
6 
 

Y vs EA + aMT <0.05 
 

6 

NLRP3-/- Y vs NLRP3-/-EA + 
aMT 

<0.05 

EA vs OA <0.05 
NLRP3-/- EA vs NLRP3-/- 

OA 
<0.05 Y vs OA + aMT <0.05 

NLRP3-/- Y vs NLRP3-/-OA + 
aMT 

<0.05 

6 
 

Y vs EA <0.05 
6 
 

NLRP3-/- Y vs NLRP3-/- EA <0.05 

12 
 

Y vs EA + aMT <0.05 

12 
 

NLRP3-/- Y vs NLRP3-/-EA + 
aMT 

<0.05 

Y vs OA <0.05 NLRP3-/- Y vs NLRP3-/- OA <0.05 Y vs OA + aMT <0.05 
NLRP3-/- Y vs NLRP3-/-OA + 

aMT 
<0.05 

12 
 

Y vs EA <0.05 

12 
 

NLRP3-/- Y vs NLRP3-/- EA <0.05 EA vs EA + aMT <0.05 
NLRP3-/- EA vs NLRP3-/-EA + 

aMT 
<0.05 

Y vs OA <0.05 NLRP3-/- Y vs NLRP3-/- OA <0.05 OA vs OA + aMT <0.05 
NLRP3-/- OA vs NLRP3-/-OA + 

aMT 
<0.05 

EA vs OA <0.05 
NLRP3-/- EA vs NLRP3-/- 

OA 
<0.05 

18 
 

Y vs EA + aMT <0.05 

18 
 

NLRP3-/- Y vs NLRP3-/-EA + 
aMT 

<0.05 

      Y vs OA + aMT <0.05 
NLRP3-/- Y vs NLRP3-/-OA + 

aMT 
<0.05 

      EA vs EA + aMT <0.05 
NLRP3-/- EA vs NLRP3-/-EA + 

aMT 
<0.05 
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TRANSCRIPT: Rorα. Post-hoc test: Least Significant Difference 

Aging effect on WT Genotype effect Melatonin effect on WT
 

Melatonin effect on NLRP3
-/-

 

Hour Comparison P value Hour Comparison 
P 

value 
Hour Comparison P value Hour Comparison 

P 
value 

0 Y vs OA <0.05 
0 
 

NLRP3-/- Y vs NLRP3-/- EA <0.05 0 
 

Y vs EA + aMT <0.05 0 
 

NLRP3-/- Y vs NLRP3-/-EA + aMT <0.05 

6 
 

Y vs OA <0.05 NLRP3-/- Y vs NLRP3-/- OA <0.05 OA vs OA + aMT <0.05 NLRP3-/- Y vs NLRP3-/-OA + aMT <0.05 

EA vs OA <0.05 WT Y vs NLRP3-/- Y <0.05 6 Y vs OA + aMT <0.05 

6 
 

NLRP3-/- Y vs NLRP3-/-EA + aMT <0.05 

18 EA vs OA <0.05 

6 
 

NLRP3-/- Y vs NLRP3-/- EA <0.05 
12 
 

Y vs OA + aMT <0.05 NLRP3-/- Y vs NLRP3-/-OA + aMT <0.05 

   NLRP3-/- Y vs NLRP3-/- OA <0.05 OA vs OA + aMT <0.05 
NLRP3-/- EA vs NLRP3-/- EA + 

aMT 
<0.05 

   NLRP3-/- EA vs NLRP3-/- OA <0.05 

18 
 

Y vs EA + aMT <0.05 

12 
 

NLRP3-/- EA vs NLRP3-/- EA + 
aMT 

<0.05 

   WT Y vs NLRP3-/- Y <0.05 Y vs OA + aMT <0.05 
NLRP3-/- OA vs NLRP3-/- OA + 

aMT 
<0.05 

   WT EA vs NLRP3-/- EA <0.05 EA vs EA + aMT <0.05 
WT OA + aMT vs NLRP3-/- OA + 

aMT 
<0.05 

   WT OA vs NLRP3-/- OA <0.05 OA vs OA + aMT <0.05 

18 
 

NLRP3-/- Y vs NLRP3-/-EA + aMT <0.05 

   

12 
 

NLRP3-/- Y vs NLRP3-/- EA <0.05    NLRP3-/- Y vs NLRP3-/-OA + aMT <0.05 

   NLRP3-/- Y vs NLRP3-/- OA <0.05    
NLRP3-/- EA vs NLRP3-/- EA + 

aMT 
<0.05 

   NLRP3-/- EA vs NLRP3-/- OA <0.05    
WT EA + aMT vs NLRP3-/- EA + 

aMT 
<0.05 

   WT EA vs NLRP3-/- EA <0.05    
WT OA + aMT vs NLRP3-/- OA + 

aMT 
<0.05 

   

18 

NLRP3-/-Y vs NLRP3-/-OA <0.05       

   NLRP3-/-EA vs NLRP3-/-OA <0.05       

   WT Y vs NLRP3-/- Y <0.05       

   WT EA vs NLRP3-/- EA <0.05       
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Annex 2. Cosinor analysis of clock gene expression in heart of WT and NLRP3-/- mice 
during aging and melatonin treatment.  

Group Gene 

 

P-value 

 

 

PR  

 

Acrophase 

(95% CI) 

Amplitude 

(95% CI) 

Mesor 

(95% CI) 

WT 

Y 
Clock < 0.001  83,31 

7.53 

(6.21 – 8.87) 

20 

(13.30 - 26.80) 

69.2 

(64.50 - 74) 

 
Bmal1 < 0.001 73,48 

7.67 

(6.62 – 8.87) 

28.60 

(20.80 – 36.40) 

50.80 

(45.30 – 56.30) 

 
Per2 < 0.01  35,83 

19.87 

(17.40 – 22.40) 

10.40 

(4.07 – 16.30) 

45.60 

(41.20 – 50.10) 

 Chrono < 0.05 63,17 
19.67 

(17.33 - 22) 

8.96 

(3.80 – 14.10) 

22.10 

(18.40 – 25.70) 

 
Rev-erbα < 0.001 65,24 

16.73 

(15.47 - 18) 

27.20 

(18.20 – 36.20) 

21.70 

(15.30 – 28.10) 

 
Rorα < 0.001 83,25 

13.33 

(12.47 -14.20) 

15.50 

(12 – 19.10) 

53.20 

(50.70 – 55.70) 

NLRP3-/- 

Y 
Clock < 0.05 48,22 

7.80 

(5.26 – 10.40) 

7.60 

(2.80 – 12.30) 

55.90 

(52.50 – 59.20) 

 
Bmal1 < 0.01 43,63 

7.93 

(5.84 - 10) 

17.30 

(8.37 – 26.20) 

30.50 

(24.20 – 36.90) 

 
Per2 < 0.05 58,63 

12.47 

(9.87 – 15.13) 

19.70 

(7.20 – 32.10) 

53.80 

(45 – 62.70) 

 Chrono < 0.001 81,06 
17.73 

(16.87 – 18.53) 

34.90 

(27.20 – 42.50) 

45.80 

(40.40 – 51.30) 

 
Rev-erbα < 0.001 72,8 

17.40 

(16.33 – 18.47) 

35.70 

(25.80 – 45.70) 

28.40 

(21.40 – 35.40) 

 
Rorα < 0.05 58,83 

18.01 

(15.47 – 20.67) 

26.50 

(9.79 – 43.30) 

74.30 

(62.40 – 86.10) 

WT 

EA 
Clock < 0.01 37,08 

12.20 

(9.80 – 14.60) 

14.70 

(6.03 – 23.50) 

60.60 

(54.50 – 66.80) 

 
Bmal1 < 0.001 72,58 

10.87 

(9.80 - 11.93) 

34.90 

(25.20 – 44.70) 

26.90 

(20 – 33.80) 

 
Per2 < 0.05 61,46 

21.33 

(18.87 – 23.73) 

23.80 

(9.58 - 38) 

58.70 

(48.60 – 68.70) 



  Annex 

~ 161 ~ 
 

 Chrono < 0.001 86,97 
17.27 

(16.60 - 17.93) 

14.80 

(12.20 – 17.40) 

22.70 

(20.90 – 24.50) 

 
Rev-erbα < 0.001 80,37 

16.07 

(15.20 - 16.93) 

24.40 

(18.90 – 29.80) 

30.80 

(26.90 – 34.60) 

 
Rorα ns 23,86 

13.80 

(10.20 – 17.40) 

13.20 

(2.49 – 23.90) 

54.50 

(47 – 62.10) 

NLRP3-/- 

EA 
Clock < 0.001 80,06 

10.87 

(10 - 11.73) 

29.80 

(23 – 36.50) 

67.60 

(62.90 – 72.40) 

 
Bmal1 < 0.001 74,63 

8.80 

(7.73 – 9.80) 

26.50 

(19.50 – 33.50) 

24.70 

(19.80 – 29.70) 

 
Per2 < 0.001 52,92 

11.13 

(9.47 – 12.80) 

12.80 

(7.32 – 18.30) 

56.10 

(52.20 – 59.90) 

 Chrono < 0.001 65,24 
17.73 

(16.47 – 19.07) 

34.90 

(23.30 – 46.50) 

24.60 

(16.50 – 32.80) 

 
Rev-erbα < 0.001 95,62 

15.07 

(14.67 – 15.40) 

43.60 

(39.40 – 47.90) 

36.90 

(33.90 – 39.90) 

 
Rorα ns 3,03 

19.40 

(16.27 – 22.53) 

4.28 

(-6.71 – 15.30) 

56.80 

(49 – 64.60) 

WT 

EA + aMT 
Clock < 0.001 78,5 

7.27 

(6.34 – 8.20) 

29.50 

(22.50 – 36.50) 

50.90 

(45.90 – 55.90) 

 
Bmal1 < 0.001 96,16 

9.33 

(8.93 – 9.67) 

28.90 

(26.30 -31.60) 

22.70 

(20.80 – 24.50) 

 
Per2 < 0.01 43,64 

6.65 

(4.58 – 8.73) 

15.50 

(7.50 – 23.50) 

47.60 

(41.90 – 53.30) 

 Chrono < 0.001 77,88 
20.60 

(19.67 – 21.53) 

4.73 

(3.59 – 5.87) 

9.55 

(8.74 – 10.40) 

 
Rev-erbα < 0.001 67,33 

12.13 

(10.93 – 13.40) 

40.40 

(27.60 – 53.10) 

31.50 

(22.50 – 40.60) 

 
Rorα < 0.05 54,57 

6.63 

(3.73 – 9.53) 

23 

(7.17 – 38.80) 

45 

(33.80 – 56.20) 

NLRP3-/- 

EA + aMT 
Clock < 0.01 46,18 

6.48 

(4.53 – 8.47) 

13.90 

(7.10 – 20.80) 

68.80 

(64 – 73.70) 

 
Bmal1 < 0.001 95,65 

7.40 

(7 - 7.73) 

17.30 

(15.60 - 19) 

19.70 

(18.50 – 20.90) 

 
Per2 < 0.05 41,03 

10.80 

(7.80 – 13.87) 

12.30 

(3.47 – 21.20) 

60.90 

(54.70 – 67.20) 
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 Chrono < 0.001 66,5 
18.27 

(17 – 19.53) 

32.10 

(21.80 – 42.50) 

22.80 

(15.50 – 30.10) 

 
Rev-erbα < 0.001 90,93 

15.60 

(15 – 16.13) 

40.20 

(34.40 – 45.90) 

36.60 

(32.50 – 40.70) 

 
Rorα < 0.05 40,9 

13.13 

(10.07 – 16.20) 

9.46 

(2.65 – 16.30) 

56.60 

(51.70 – 61.40) 

WT 

OA 
Clock < 0.01 46,41 

11.40 

(9.40 – 13.33) 

13.10 

(6.73 – 19.50) 

41.90 

(37.40 – 46.50) 

 
Bmal1 < 0.001 86,62 

9.13 

(8.40 - 9.80) 

37 

(30.40 – 43.60) 

30.20 

(25.50 – 34.90) 

 
Per2 ns 20,98 

20.93 

(16.80 – 25.07) 

6.01 

(0.72 – 11.30) 

35 

(31.20 – 38.70) 

 Chrono < 0.001 73,24 
18.67 

(17.60 – 19.73) 

42.20 

(30.70 – 53.80) 

29.60 

(21.40 – 37.80) 

 
Rev-erbα < 0.001 77,94 

15.73 

(14.80 – 16.67) 

21 

(16 – 26.10) 

24.50 

(20.90 - 28) 

 
Rorα ns 1,35 

16 

(12.93 – 19.07) 

2.76 

(-7.94 – 13.40) 

65.60 

(58 – 73.20) 

NLRP3-/- 

OA 
Clock < 0.001 67,88 

10.40 

(9.20 – 11.60) 

22.30 

(15.40 – 29.30) 

40.60 

(35.60 – 45.50) 

 
Bmal1 < 0.001 83,88 

9.80 

(9 – 10.53) 

41 

(32.80 – 49.10) 

32.70 

(26.90 – 38.40) 

 
Per2 < 0.001 78,38 

10.47 

(9.53 – 11.33) 

19.30 

(14.70 – 23.90) 

37.70 

(34.50 - 41) 

 Chrono < 0.001 55,85 
17.47 

(15.87 – 19.07) 

13 

(7.74 – 18.20) 

13.60 

(9.86 – 17.30) 

 
Rev-erbα < 0.001 70,96 

16 

(14.87 – 17.13) 

25.40 

(18 – 32.80) 

22.40 

(17.20 – 27.60) 

 
Rorα ns 28,59 

15.27 

(11.20 – 19.40) 

3.43 

(-0.66 – 7.53) 

51.70 

(48.80 – 54.60) 

WT 

OA + aMT 
Clock < 0.01 38,43 

7 

(4.66 – 9.33) 

9.11 

(3.80 – 14.30) 

36.20 

(32.50 – 39.90) 

 
Bmal1 < 0.001 81,19 

8.40 

(7.53 – 9.27) 

22.20 

(17.40 – 27.10) 

22 

(18.60 – 25.40) 

 
Per2 < 0.001 50,67 

4.63 

(2.86 – 6.41) 

13.50 

(7.45 – 19.50) 

36.50 

(32.30 – 40.80) 
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 Chrono < 0.001 66,99 
19.80 

(18.40 – 21.20) 

7 

(4.48 – 9.51) 

10.70 

(8.92 – 12.50) 

 
Rev-erbα < 0.001 93,08 

13.93 

(13.27 - 14.53) 

16.40 

(13.70 - 19) 

20.60 

(18.70 – 22.50) 

 
Rorα < 0.001 79,2 

6.01 

(4.49 – 7.53) 

22.80 

(14 – 31.60) 

36.30 

(30.10 – 42.60) 

NLRP3-/- 

OA + aMT 
Clock < 0.01 41,73 

7.53 

(5.37 – 9.67) 

20.50 

(9.25 – 31.50) 

42.30 

(34.50 – 50.10) 

 
Bmal1 < 0.001 86,25 

7.40 

(6.67 – 8.07) 

16.10 

(13.20 - 19) 

15 

(13 – 17.10) 

 
Per2 < 0.001 64,39 

12.60 

(11.33 – 13.93) 

28.80 

(19.10 – 38.50) 

51.30 

(44.40 – 58.20) 

 Chrono < 0.001 86,27 
16.01 

(15.13 - 17) 

28.10 

(21.40 – 34.80) 

26 

(21.30 – 30.80) 

 
Rev-erbα < 0.001 84,81 

14.33 

(13.60 – 15.07) 

41.90 

(33.80 – 49.90) 

35.60 

(29.90 – 41.30) 

 
Rorα < 0.001 82,95 

11.20 

(9.87 - 12.53) 

31.10 

(20.50 – 41.80) 

60.80 

(53.30 – 68.40) 
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Annex 3. Melatonin/Nrf2/NLRP3 connection in mouse heart mitochondria during 
aging.  

Article 

Antioxidants (Basel). 2020 Nov 27;9(12):1187. DOI:10.3390/antiox9121187. 

 

Melatonin/Nrf2/NLRP3 connection in mouse heart 

mitochondria during aging 

Marisol Fernández Ortiz1, Ramy KA Sayed1,2, José Fernández-Martínez1, Antonia Cionfrini1, Paula 

Aranda-Martínez1, Germaine Escames1,3, Tomás de Haro4, Darío Acuña-Castroviejo1,3,4* 

1 Departamento de Fisiología, Facultad de Medicina, Instituto de Biotecnología, Centro de Investigación 

Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain 
2 Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Sohag University, 82524 Sohag, 

Egypt 
3 CIBERfes, Ibs.Granada, Granada, Spain 
4 UGC de Laboratorios Clínicos, Hospital Universitario San Cecilio, Granada, Spain 

* Correspondence: dacuna@ugr.es; Tel.: (+34958241000, ext. 20169) 

Received: date; Accepted: date; Published: date 

Abstract: Aging is a major risk for cardiovascular diseases (CVD). Age-related disorders include 

oxidative stress, mitochondria dysfunction and exacerbation of the NF-κB/NLRP3 innate immune 

response pathways. Some of the molecular mechanisms underlying these processes, however, 

remain unclear. This study tested the hypothesis that NLRP3 inflammasome plays a role in cardiac 

aging and melatonin is able to counteract its effects. With the aim of investigating the impact of 

NLRP3 inflammasome and the actions and target of melatonin in aged myocardium, we analyzed 

the expression of proteins implied in mitochondria dynamics, autophagy, apoptosis, Nrf2-

dependent antioxidant response and mitochondria ultrastructure in heart of wild-type and NLRP3-

knockout mice of 3, 12 and 24 moths-old, with and without melatonin treatment. Our results 

showed that the absence of NLRP3 prevented age-related mitochondrial dynamic alterations in 

cardiac muscle with minimal effects in cardiac autophagy during aging. The deficiency of the 

inflammasome affected Bax/Bcl2 ratio, but not p53 or caspase 9. The Nrf2-antioxidant pathway was 

also unaffected by the absence of NLRP3. Furthermore, NLRP3-deficiency prevented the drop in 

autophagy and mice showed less mitochondrial damage than wild-type animals. Interestingly, 

melatonin treatment recovered mitochondrial dynamics altered by aging and had few effects on 

cardiac autophagy. Melatonin supplementation also had an anti-apoptotic action in addition to 

restore Nrf2-antioxidant capacity and improve mitochondria ultrastructure altered by aging. 

Keywords: melatonin; mitochondria; NLRP3 inflammasome; Nrf2; heart ultrastructure; apoptosis; 

mitochondrial dynamics 

 

1. Introduction 

Cardiovascular diseases (CVD) constitute the leading cause of death in the world, especially in 

industrialized countries [1]. Genetics, hypertension, diabetes, obesity, smoking, and physical 

inactivity have been identified as risk factors for these diseases [2]. However, aging is by far the major 

risk factor for cardiac dysfunction, since its prevalence increases dramatically in aged people. The 

connection between aging and these cardiac pathologies have been widely reported [3–5]. Cardiac 

aging correlates with hemodynamic and metabolic alterations together, with changes in the structure 
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and function of cardiovascular tissues. Furthermore, the increase in reactive oxygen species (ROS) 

and the activation of inflammation-related pathways have also been documented [6–8]. Aging is 

characterized by an increase in oxidative damage and persistent activation of innate immunity 

resulting in immunosenescence. This immune dysregulation results in a state of age-associated 

chronic inflammation termed ‘inflammaging’, which plays an important role in the onset and 

progression of cardiovascular diseases, in addition to other age-related disorders [9–12].  

The main components of the innate immunity include NF-kB and NLRP3 inflammasome. 

Focusing on the NLRP3 inflammasome, it consists of the scaffold protein NLRP3, the adaptor protein 

ASC and caspase-1, forming a multiprotein complex [13]. The NLRP3 inflammasome is induced upon 

different signs of cellular ‘danger’ and is responsible for the maturation of the NF-kB-dependent pro-

inflammatory cytokines including interleukin-1β (IL-1β), potentiating the inflammatory response [14]. 

Some of these danger signals, such as ROS and mitochondrial DNA (mtDNA), come from impaired 

mitochondria during inflammation [15]. Additionally, age-related alterations in processes that 

maintain mitochondrial homeostasis, including fusion, fission, autophagy (mitophagy), and 

mitochondrial biogenesis, have been described. The resulting accumulation of dysfunctional 

mitochondria enhances ROS production and mtDNA release [16,17]. Another fact that could 

contribute to NLRP3 inflammasome activation is the reduced endogenous antioxidant defense 

capacity which occurs during aging, in particular, the decline of transcription factor Nrf2 [18,19]. 

Thus, there seems to be a close relationship between aging, NF-kB/NLRP3 inflammasome response, 

cardiac and mitochondrial dysfunction, ROS formation, and decrease in Nrf2. 

Melatonin (N-acetyl-5-methoxytryptamine, aMT) is an ubiquitous molecule that, aside from the 

pineal gland [20], is synthesized by most body organs and tissues, including the heart [21,22]. In 

addition to its chronobiotic effects, this indoleamine presents important anti-oxidative and anti-

inflammatory properties that depend on the high levels of extrapineal melatonin [23–25]. Within the 

cell, melatonin acts on its main target, the mitochondria, boosting their bioenergetic properties, 

enhancing the ATP levels and reducing the formation of free radicals [26–30]. In multiple 

experimental conditions including acute and chronic inflammation, and aging in mouse heart, 

melatonin consistently prevented oxidative stress, reduced the innate immunity activation, and 

boosted cardiac mitochondria function [12,23,25,31]. 

The mechanisms by which NLRP3 contributes to cardiovascular disorders are still unclear [32]. 

We hypothesized that NLPR3 inflammasome has a role in aged cardiac muscle and we considered 

worthwhile to evaluate its association with molecular mechanisms underlying the development of 

cardiovascular diseases with age. Moreover, we also hypothesized that melatonin is able to counteract 

the age-related changes in the myocardium and we investigated where it exerts its action. For this 

purpose, we assessed age-associated disturbances regarding mitochondrial dynamics (fusion/fission), 

autophagy (mitophagy), apoptosis, Nrf2-dependent antioxidant response, and mitochondrial 

ultrastructure in the heart of the wild-type and NLRP3-knockout mice at 3, 12, and 24 months of age, 

with and without melatonin treatment. 

2. Materials and Methods  

2.1. Animals and Treatment 

Wild-type C57BL/6J and NLRP3-knockout mice NLRP3-/- (B6.129S6-NLRP3tm1Bhk/J) on the 

wild-type C57BL/6J background (>10 backcrosses) aged 3 weeks, were purchased from Charles River 

(Barcelona, Spain) and The Jackson Laboratory (Bar Harbor, ME, USA), respectively. Mice were 

housed in the animal facility of the University of Granada under a specific pathogen-free barrier and 

were kept under controlled temperature (22°C ± 1°C). Room illumination was on automated 12h 

light/dark cycle (lights on at 08:00 h). Animals had ad libitum access to tap water and pelleted rodent 

chow. 

This study was carried out in accordance with the National Institutes of Health Guide for the 

Care and Use of Laboratory Animals (National Research Council, National Academy of Sciences, 
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Bethesda, MD, USA), the European Convention for the Protection of Vertebrate Animals used for 

Experimental and Other Scientific Purposes (CETS # 123), and the Spanish law for animal 

experimentation (R.D. 53/2013). The protocol was approved by the Andalusian’s Ethical Committee 

(05/07/2016/130).  

Wild-type (WT) and NLRP3-/- mice were divided into five experimental groups (n = 7 animals per 

group) (Figure 1): (I) young (Y, 3-months old), (II) early-aged (EA, 12-months old), (III) early-aged 

plus melatonin (EA + aMT), (IV) old-aged (OA, 24-months old), and (V) old-aged plus melatonin (OA 

+ aMT) mice. Melatonin (aMT) was orally administered at 10 mg/kg/day in the chow during the last 

two months before early and old-aged treated mice were sacrificed (EA + aMT at the age of 10 months 

and OA + aMT at the age of 22 months). The other groups of animals (Y, EA and OA) were fed with 

normal chow without melatonin. The melatonin pelleted chow was prepared by the Diet Production 

Unit facility of the University of Granada. The amount of melatonin in the pellets was calculated 

according to the average daily food intake, number, weight and age of mice [33]. The use of 10 

mg/kg/day was selected on the basis of previous studies that demonstrated the effectiveness of this 

dose on the aging process [11,34] and mitochondrial function [35,36]. C57/BL6A was reported to be a 

strain of mice that responds well to melatonin therapy [37,38]. Therefore, we deemed them suitable 

for the purpose of this study. 

 

Figure 1. Study design summary: experimental groups and melatonin treatment. 

Animals were killed by cervical dislocation after ketamine plus xylazine anesthesia, and hearts 

were collected. The left ventricle was dissected and divided into two parts. One part waswashed in 

saline, and rapidly fixed in 2.5% glutaraldehyde for transmission electron microscopy analysis, while 

the other part was stored at -80ºC for further western blot analysis. 

2.2. Western blot analysis 

Pure cytosolic subcellular fraction was isolated from heart tissue according to Dimauro et al. [39] 

with some adjustments described in Rahim et al. [30]. Briefly, heart tissue was homogenized on ice at 

800 rpm in 500 μL of STM buffer containing 250 mM sucrose, 50 mM Tris-HCl pH 7.4, 5 mM MgCl2, 

0.5 mM DTT, 5% phosphatase inhibitor buffer (125 mM NaF, 250 mM β-glycerophosphate, 250 mM p-

nitrophenyl phosphate, and 25 mM NaVO3), and a protease inhibitor cocktail (Cat. 78429, Thermo 

Fisher Scientific, Waltham, MA, USA) with a Teflon pestle. The homogenate was maintained on ice 

for 30 minutes, then centrifuged at 800 g for 15 minutes at 4ºC. The supernatant was labeled as S0 and 

used for subsequent isolation of cytosolic fractions. S0 was centrifuged at 800 g for 10 minutes at 4ºC 

and the supernatant S1 was centrifuged at 11000 g for 10 minutes. The resulting supernatant S2, 

containing cytosol and microsomal fraction, was precipitated in cold 100% acetone at −20°C for 1 hour 

followed by centrifugation at 12000 g for 5 minutes. The pellet was then resuspended in 300 μL STM 

buffer and labeled as cytosolic fraction. 

Western blot analysis was performed on cytosolic fractions of mice hearts. Denatured protein 

samples (40 μg/fraction) were separated by sodium dodecyl sulfate polyacrylamide gel 



  Annex 

~ 167 ~ 
 

electrophoresis (SDS-PAGE) using 12% or 15% acrylamide/bis-acrylamide gels. Proteins were then 

wet transferred to a polyvinylidene difluoride (PVDF) membrane (Merck Life Science S.L.U., Madrid, 

Spain). The membrane was blocked in 5% bovine serum albumin (BSA) in PBST (PBS with 0.1% 

Tween-20) at room temperature and then incubated overnight at 4ºC with the primary antibodies 

(Table S1) diluted in blocking buffer per manufacturer´s specification. Membranes were washed with 

PBST 3 x 10 minutes and incubated for 1 hour at room temperature with anti‐mouse (BD Biosciences 

Pharmigen, San Jose, CA, USA) or anti‐rabbit (Thermo Scientific, Madrid, Spain) IgG‐horseradish 

peroxidase conjugated secondary antibodies diluted according to manufacturer’s instruction. After 

washing with PBST, immunoreaction was detected using ClarityTM Western ECL Substrate (Bio-Rad, 

Madrid, Spain) and revealed in Kodak Image Station 4000MM PRO (Carestream Health, Rochester, 

NY, USA). Bands were analyzed and quantified using Kodak Molecular Imaging Software v. 4.5.1 

(Carestream Health, Rochester, NY, USA). GAPDH protein content was used to normalize the 

cytosolic subcellular fraction. Data obtained from early and old-aged mice were always compared to 

young mice of the same group. The value of WT Y mice group was defined as 100%. 

2.3. Transmission electron microscopy (TEM) 

Small pieces from the left ventricle of the heart were rapidly immersed in a 2.5% glutaraldehyde 

in 0.1M cacodylate buffer (pH 7.4) for fixation, then post-fixed in 0.1M cacodylate buffer-with 1% 

osmium tetroxide and 1% potassium ferrocyanide for 1 hour. The specimens were then immersed in 

0.15% tannic acid for 50 seconds, incubated in 1% uranyl acetate for 1.5 hour, dehydrated in ethanol, 

and embedded in resin. Ultrathin sections of 65 nm thickness were cut using a Reichert-Jung Ultracut 

E ultramicrotome. These sections were double stained with uranyl acetate and lead citrate [40], and 

examined by a Carl Zeiss Leo 906E electron microscope and digital electron micrographs were 

acquired.  

2.4. Morphometric analyses 

Using electron micrographs, mitochondrial number and percentage of the mitochondrial damage 

(as number of damaged mitochondria/ total mitochondrial number ·100) were analyzed in areas with 

a width and height of 5.24 µm and 3.99 µm, respectively. Moreover, some morphometric analyses, 

including cross sectional area (CSA) and Feret’s diameter of the intermyofibrillar mitochondria, of 

cardiac muscle fibers were performed on images of electron microscopy using Image J processing 

software.  

2.5. Statistical analyses 

Data are expressed as mean ± standard error of the mean (SEM) of n = 7 animals per group. All 

statistical analyses were carried out using GraphPad Prism 6.0 software (GraphPad Software, San 

Diego, CA, USA). One-way ANOVA with a Tukey’s post hoc test was used to compare the 

differences between experimental groups. The values were found to be significantly different when p 

< 0.05. 

3. Results 

3.1. NLRP3 deficiency prevents, and melatonin treatment restores cardiac muscle mitochondrial dynamics 

altered by aging 

Anomalies in mitochondrial dynamics (fusion/fission) are typical of aged cardiac muscle [16]. 

Here, we showed that aging induced a decrease in the levels of proteins involved in mitochondrial 

dynamics, including Mfn2, Opa1, and Drp1, in WT mice, an effect absent in NLRP3-/- mice (Figure 2A, 

B, C). Melatonin supplementation counteracted the decline of Mfn2, Opa1, and Drp1 caused by aging 

in WT mice. Interestingly, no significant effect of melatonin was observed in fusion proteins Mfn2 and 

Opa1 in NLRP3-/- mice at the age of 12 and 24 months (Figure 2A, B). A slight, but not significant 
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enhancement in fission protein Drp1 was noted in EA and OA NLRP3-/- mice with melatonin 

supplementation (Figure 2C). 

Figure 2. Changes in mitochondrial dynamics (fusion/fission) in WT and NLRP3-/- mice during aging 

and melatonin treatment. (A) Protein levels of Mfn2. (B) Protein levels of Opa1. (C) Protein levels of 

Drp1. Experiments were performed in hearts of young (Y), early-aged (EA), early-aged with melatonin 

(EA + aMT), old-aged (OA), and old-aged with melatonin (OA + aMT) wild type and NLRP3-/- mice. 

Data are expressed as means ± SEM (n = 7 animals/group). *p<0.05, **p<0.01 vs. Y; #p<0.05, ##p<0.01 vs. 

group without melatonin treatment. 

3.2. NLRP3 deficiency and melatonin therapy had minimal effects in autophagy in cardiac muscle during aging 

A drop in the autophagic capacity observed in cardiac aging, is associated with the accumulation 

of dysfunctional mitochondria, exaggerated ROS production, and mtDNA release [16,17]. 

Unsurprisingly, the conversion of LC3I to LC3II, a hallmark of autophagy [41], was significantly 

reduced in WT mice during aging, as reflected in the decrease in the LC3II/LC3I ratio in WT EA and 

OA mice (Figure 3). LC3II/LC3I ratio trends to increase in NLRP3-/- EA and OA mice, which may 

explain the attempt to restore autophagy events. Melatonin administration had minimal effects on the 

LC3II/LC3I ratio in all cases. 

 

Figure 3. Changes in autophagy in WT and NLRP3-/- mice during aging and melatonin treatment. 

LC3II/LC3I ratio. Experiments were performed in hearts of young (Y), early-aged (EA), early-aged 

with melatonin (EA + aMT), old-aged (OA), and old-aged with melatonin (OA + aMT) wild type and 

NLRP3-/- mice. Data are expressed as means ± SEM (n = 7 animals/group). *p<0.05, **p<0.01 vs. Y. 

3.3. Melatonin treatment and, to a lesser extent NLRP3 deficiency, reduced apoptosis in cardiac muscle during 

aging  

Despite being intensively studied over the past three decades, many of the mechanisms of 

apoptotic cell death remain unknown. Although the relationship between aging and apoptosis have 

been a subject of controversy in scientific community, there seems to be consensus that apoptosis 



  Annex 

~ 169 ~ 
 

plays a significant role in cardiac aging [42]. Here, we showed that aging induced a rise in the levels 

of some proteins involved in apoptotic processes, including p53 and caspase 9 in both WT and 

NLRP3-/- mice. Melatonin treatment significantly diminished the levels of p53 and caspase 9 in EA WT 

mice and in EA and OA mutant mice (Figure 4A, B). The pro-apoptotic protein Bax and the anti-

apoptotic Bcl2 were significantly enhanced by aging in WT mice. Mutant mice only showed Bcl2 

increased in OA animal's group (Figure 4C, D). We observed a slight rise in Bax/Bcl2 ratio in EA and a 

significantly increase in WT OA mice (Figure 4E). The absence of NLRP3, however, prevented the 

apoptotic process associated with aging since Bax/Bcl2 ratio remained at similar levels that Y mutant 

mice. Melatonin supplementation significantly decreased the Bax/Bcl2 ratio in EA and OA WT mice, 

but had no effect in NLRP3-/- mice. 

Figure 4. Changes in apoptosis in WT and NLRP3-/- mice during aging and melatonin treatment. (A) 

Protein levels of p53. (B) Protein levels of caspase 9. (C) Protein levels of Bax. (D) Protein levels of 

Bcl2. (E) Bax/Bcl2 ratio. Experiments were performed in hearts of young (Y), early-aged (EA), early-

aged with melatonin (EA + aMT), old-aged (OA), and old-aged with melatonin (OA + aMT) wild type 

and NLRP3-/- mice. Data are expressed as means ± SEM (n = 7 animals/group). *p<0.05, **p<0.01 vs. Y; 

#p<0.05, ##p<0.01 vs. group without melatonin treatment. 

3.4. Melatonin treatment, but not NLRP3 deficiency, recovered the Nrf2-dependent antioxidant capacity in 

cardiac muscle declined by aging  

In recent years, emerging evidence has indicated that aging leads to a gradual reduction of the 

Nrf2-dependent antioxidant response, which in turn contributes to the accumulation of oxidative 

stress [18,19]. Our results showed a significant decrease in the protein levels of Nrf2 and its active 

form pNrf2 (Ser40) in WT and NLRP3-/- mice with age, suggesting that NLRP3 deficiency was unable 

to ameliorate the age-related decline of Nrf2 and pNrf2 (Ser40) in these animals (Figure 5A, B). 

Melatonin supplementation markedly recovered the levels of Nrf2 and pNrf2 (Ser40) in both WT and 

mutant EA and OA mice. Aging and melatonin therapy did not significantly modify the levels of the 

Nrf2 inhibitor, Keap1, in either mouse strain (Figure 5C). Hmox1, Nqo1, and γGclc, three 

cytoprotective enzymes transcriptionally regulated by Nrf2, also remarkably decreased in WT OA 

mice (Figure 5D, E, F). The levels of Hmox1 and γGclc significantly dropped in NLRP3 -/- EA and OA 

mice (Figure 5D, E). Protein content of Nqo1 enzyme was not modified by aging in mutant animals 

(Figure F). Again, melatonin treatment greatly enhanced the levels of Hmox1, Nqo1, and γGclc in WT 

and NLRP3-/- mice. 
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Figure 5. Changes in the Nrf2-dependent antioxidant pathway in WT and NLRP3-/- mice during aging 

and melatonin treatment. (A) Protein levels of Nrf2. (B) Protein levels of pNrf2 (Ser40). (C) Protein 

levels of Keap1. (D) Protein levels of Hmox1. (E) Protein levels of Nqo1. (F) Protein levels of γGclc. 

Experiments were performed in hearts of young (Y), early-aged (EA), early-aged with melatonin (EA + 

aMT), old-aged (OA), and old-aged with melatonin (OA + aMT) wild type and NLRP3-/- mice. Data are 

expressed as means ± SEM (n = 7 animals/group). *p<0.05, **p<0.01, ***p<0.001 vs. Y; #p<0.05, ##p<0.01, 

###p<0.001 vs. group without melatonin treatment. 

3.5. NLRP3 deficiency and melatonin therapy improved mitochondria ultrastructure altered by age in cardiac 

muscle  

Transmission electron microscopy of the cardiac muscles of Y WT mice revealed presence of 

normally intact and compacted mitochondria with clearly organized cristae distributed in the 

intermyofibrillar spaces (Figure 6A, B). At the age of 12 months (EA), most of these mitochondria 

were found normally; however, a few showed cristae damage (Figure 6C, D). These changes were 

exacerbated and numerous mitochondria were severely damaged, hypertrophied, and vacuolated 

with completely destroyed cristae in WT OA mice (Figure 6G, H). Melatonin supplementation, 

however, preserved the normal ultrastructure of the cardiac mitochondria in EA (Figure 6E, F) and 

OA WT mice (Figure 6I, J) maintaining their healthy and compact appearance. 

Figure 6. Age-associated ultrastructural changes of mitochondria in cardiac muscle fibers of WT mice 

and melatonin treatment. (A, B) Electron micrographs of cardiac muscle fibers of Y WT mice revealing 
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presence of normally intact and compacted mitochondria (M) distributed among myofibrils (Mf). (C, 

D) Electron micrographs of cardiac muscle fibers of EA WT mice demonstrating presence of normal 

mitochondria (M) with presence few ones demonstrated cristae damage (asterisk). (E, F) Electron 

micrographs of cardiac muscle fibers of EA + aMT WT mice showing the protective effect of melatonin 

supplementation in preserving normal mitochondrial structure (M) with presence of lipid droplets (L), 

N; nucleus. (G, H) Electron micrographs of cardiac muscle fibers of OA WT mice clarifying presence 

of numerous severely damaged hypertrophied vacuolated mitochondria with completely destructed 

cristae (asterisk). (I, J) Electron micrographs of cardiac muscle fibers of OA + aMT WT mice exhibiting 

the beneficial effect of melatonin supplementation in keeping normal mitochondrial architecture (M). 

A, C, E, G, I: bar = 2 μm and B, D, F, H, J: bar = 1 μm. 

Cardiac muscle fibers of NLRP3-/- Y mice presented normal highly compacted mitochondria with 

densely packed cristae (Figure 7A, B). Mitochondrial structure did not change in EA mice, except one 

that showed damage in peripheral cristae (Figure 7C, D). The mitochondrial damage was less 

prevalent at 24 months in comparison with WT OA mice. Mitochondria were characterized by their 

widely-separated and organized cristae, with presence of small-sized membranous vacuoles of 

possibly autophagic nature (Figure 7G, H). Melatonin treatment exhibited an obvious protective effect 

at the age of 12 (Figure 7E, F) and 24 months (Figure 7I, J), where it kept normal mitochondrial 

architecture with aging, in addition to formation of multivesicular bodies, which reflect the induction 

of the autophagic processes. 

Figure 7. Age-related ultrastructural changes of mitochondria in cardiac muscle fibers of NLRP3-/- mice 

and melatonin treatment. (A, B) Electron micrographs of cardiac muscle fibers of Y NLRP3-/- mice 

showing presence of normally highly compacted mitochondria with densely packed cristae (M) 

distributed among myofibrils (Mf). (C, D) Electron micrographs of cardiac muscle fibers of EA NLRP3-

/- mice demonstrating intact mitochondria (M) with individual ones depicting damaged peripherally 

cristae (asterisk). (E, F) Electron micrographs of cardiac muscle fibers of EA + aMT NLRP3-/- mice 

revealing the clearly apparent prophylactic effect of melatonin supplementation in keeping normal 

mitochondrial architecture (M) with aging. (G, H) Electron micrographs of cardiac muscle fibers of OA 

NLRP3-/- mice indicating less detectable mitochondrial damage compared with WT mice, with 

presence of numerous mitochondria showing widely-separated organized cristae (asterisk) and small-

sized membranous vacuoles of possibly autophagic nature (V). (I, J) Electron micrographs of cardiac 

muscle fibers of OA + aMT NLRP3-/- mice showing the protective effect of melatonin supplementation 

in preserving normal mitochondrial structure (M), with formation of multivesicular bodies (MVB), 

which reflect the induction of the autophagic processes, N; nucleus. A, C, E, G, I: bar = 2 μm and B, D, 

F, H, J: bar = 1 μm. 

3.6. Lack of NLRP3 reduced mitochondria number loss and mitochondrial damage, an effect shared by 

melatonin 

Morphometric analysis of cardiac mitochondria revealed that mitochondrial number exhibited 

initial non-significant decline in cardiac muscles of WT and NLRP3-/- EA mice. Nevertheless, 
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mitochondrial number was significantly decreased in OA, being more pronounced in WT mice than 

NLRP3-/- one, an effect significantly counteracted after melatonin therapy (Figure 8A). Furthermore, 

the percentage of the mitochondrial damage was significantly increased in aged mice, especially in 

WT animals, and it was counteracted by melatonin supplementation (Figure 8B). Morphometrical 

analysis of the mitochondrial CSA illustrated a non-significant increase in cardiac muscle of WT and 

NLRP3-/- EA mice, whereas the former increased in aged animals (Figure 8C). Mitochondrial diameter 

showed non-significant increase in WT EA mice, increasing in OA animals. NLRP3-/- mice revealed 

non-significant changes in mitochondrial diameter among all experimental groups (Figure 8D).  

Figure 8. Age-associated morphometrical changes of intermyofibrillar mitochondria in cardiac muscle 

fibers of WT and NLRP3-/- mice and melatonin treatment. (A) Analysis of mitochondrial number. (B) 

Analysis of mitochondrial damage percentage. (C) Analysis of cross section area (CSA, µm2).  (D) 

Analysis of mitochondrial Feret’s diameter (μm). Data are expressed as means ± SEM (n = 7 

animals/group). *p<0.05, **p<0.01, ***p<0.001 vs. Y; #p<0.05, ##p<0.01 vs. group without melatonin 

treatment. 

4. Discussion 

Immunosenescence and inflammaging are caused by persistent activation of NF-κB/NLRP3 

inflammasome pathways generates chronic low-grade inflammation which leads to, among other 

detriments, accumulation of cardiac mitochondrial dysfunction, characterized by dysregulation of 

mitochondrial dynamics, autophagy, apoptosis, Nrf2 antioxidant pathway, and maintenance of 

ultrastructure of mitochondria [43]. Another hallmark of aging is a decline in melatonin levels and its 

protective roles [44]. This brings about increased oxidative damage, chronodisruption, upregulation 

of pro-inflammatory cytokines, and down regulation of anti-oxidant/-inflammatory processes that 

contribute to inflammaging by facilitating mitochondrial disruption [45]. The role of the NLRP3 

inflammasome and melatonin levels in regulation of mitochondrial dysfunction, associated with 

cardiac aging, is not fully understood. Our results suggest direct involvement of this inflammasome 



  Annex 

~ 173 ~ 
 

by marked amelioration of some mitochondrial dysfunctions with NLRP3 ablation both involved 

with, and independent of, melatonin supplementation in EA and OA mice (Figures 9, 10). 

 

 

Figure 9. Proposed mechanism of melatonin in mitochondria of WT mice during cardiac aging. (A) 

Mitochondrial dynamics: aging led to a decline in fusion (Mfn2 and Opa1) and fission proteins (Opa1). 

Melatonin treatment counteracted this decrease. (B) Autophagy (mitophagy): autophagic capacity 

dropped in aged myocardium. Melatonin therapy had minimal impact on this pathway. (C) Intrinsic 

and (D) extrinsic apoptosis: WT mice have intrinsic and extrinsic pathways mediated by p53 and 

caspase 9. Those apoptotic markers, as well as Bax/Bcl2 ratio, increased with aging and are related 

with NLRP3 activation. This inflammasome seemed to have a regulatory effect on the intrinsic 

apoptotic pathway, which depends on mitochondria cytochrome c release. Melatonin 

supplementation had an anti-apoptotic effect in both intrinsic and extrinsic apoptosis. (E) Nrf2-

dependent antioxidant response: Nrf2 and pNrf2 (Ser40) were reduced with aging. This loss was 

linked to the decrease of the cytoprotective enzyme transcriptionally regulate by Nrf2: Hmox1, Nqo1 

and γGclc. Melatonin recovered this antioxidant pathway. No changes in Keap1 were reported. Red-

purple arrow: impact of aging. Green-blue arrow: effect of melatonin treatment. 
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Figure 10. Proposed mechanism of melatonin in mitochondria of NLRP3-/- mice during cardiac aging. 

Lack of NLRP3 inflammasome reduced mitochondria dysfunction. (A) Mitochondrial dynamics: the 

absence of NLRP3 prevented the decline in fusion (Mfn2 and Opa1) and fission proteins (Opa1) with 

aging. Melatonin treatment had no effect on these mice. (B) Autophagy (mitophagy): autophagic 

capacity was restored by NLRP3 deficiency. Melatonin therapy had minimal impact on autophagic 

capacity. (C) Intrinsic and (D) extrinsic apoptosis: loss of NLRP3 had an anti-apoptotic effect in 

Bax/Blc2 ratio, but not in p53 or caspase 9. The ablation of this inflammasome could trigger extrinsic 

apoptosis mediated by TNFα binding to death receptor. Melatonin supplementation had an anti-

apoptotic effect in p53 and caspase 9. (E) Nrf2-dependent antioxidant response: lack of NLRP3 did not 

recover the decrease of this antioxidant pathway with aging. Only Nqo1 were not diminished in 

mutant mice. Melatonin improved this antioxidant pathway. No changes in Keap1 were reported. 

Red-purple arrow: impact of aging. Green-blue arrow: effect of melatonin treatment. 

Mitochondria fusion (Mfn2 and Opa1) and fission (Drp1) proteins decrease naturally with aging, 

as seen in WT mice (Figure 9A). Findings in the literature link declines in regulatory proteins of 

mitochondrial dynamics and age-related development of cardiovascular disease [46–49]. 

Cardiomyocytes of Mfn2-deficient mice showed cardiac hypertrophy [50]. Low levels of Opa1 have 

been reported in failing human heart [51]. Loss of Drp1 in adult mice results in lethal dilated 

cardiomyopathy [52]. Our study also concluded that the absence of NLRP3 prevented the decrease in 

fusion and fission processes associated with aging that were observed in WT mice (Figure 10A). This 

cardioprotective effect observed in NLRP3-/- mice supports the existence of a close relationship 

between mitochondrial dynamics and inflammaging. Our results are in line with scientific evidence 

that connects impaired mitochondria dynamics, stimulation of innate immune response and 

inflammasome activation [53–58]. On the other hand, melatonin’s mechanism of action in 

mitochondria dynamics and aging remains unclear. We indicate herein that melatonin promotes 

fusion by increasing the expression of the Mfn2 and Opa1 proteins in WT EA and OA mice (Figure 

9A). Most investigations support that this indolamine stimulates mitochondria fusion, contributing to 
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the survival of cardiomyocytes and reducing mitochondria damage [59–61]. Moreover, numerous 

studies remark a melatonin-induced reduction of mitochondria fission with stressful stimuli [62–65], 

showing a protective effect in cardiac function against ischemia/reperfusion injury and post-traumatic 

cardiac dysfunction in vitro and in vivo models, respectively [66–68]. Conversely, we found that 

melatonin supplementation increased the levels of the Drp1 protein in EA and OA WT mice. 

Supporting our results, recent findings showed that increasement in Drp1 levels enhanced regulation 

of mitochondria homeostasis through mitophagy [69]. Additionally, Drp1 overexpression in flies 

reversed age-related mitochondria dysfunction and age-onset pathologies [70]. Taken together, our 

data suggests that melatonin enhances the response of mitochondria dynamics to maintain 

homeostasis during age-related metabolic stressors like inflammasome activation. It should be noted 

melatonin did not trigger significant changes in EA and OA NLRP3-/- mice either (Figure 10A). This 

effect of melatonin has previously been related to its cytoprotective activity, since its effect will be 

greater the more cellular damage there is, while in situations of low damage or physiological 

conditions its response is minimal [71]. 

The LC3II/LC3I ratio showed a significant decrease in autophagy in EA and OA WT mice 

compared to Y WT mice (Figure 9B). Numerous findings indicate a loss of autophagy with aging in 

most organisms and tissues, including the heart [72–76]. Changes in the expression of autophagic 

proteins such as Atg9, LAMP-1, and LC3II in aged mice and rats resulted in cardiac dysfunction [77–

79]. The consequent accumulation of altered organelles, mutated mtDNA, cristae disarray, and ROS, 

have been shown to propagate different age-related cardiac pathologies [74,75,80–82] and produce 

risk-associated molecular pattern derived from mitochondria (DAMP) that activate NLRP3 

inflammasome [83]. Our results showed that the absence of NLRP3 prevented the drop in LC3II/LC3I 

ratio in mice during aging (Figure 10B). Ablation of the NLRP3 inflammasome in old NLRP3-/- mice 

has been reported to improve the quality of autophagy by increasing the levels of ATG12, beclin 1 

and LC3II and decreasing p62/SQSTM1 [84]. Several studies have demonstrated the protective 

influence of melatonin by both increasing and decreasing autophagic capacity, in response to sterile 

and non-sterile inflammation [85–92]. Interestingly, in our results it is implied that melatonin had no 

effect on EA and OA WT mice compared to their corresponding controls (Figure 9B). Similar results 

were obtained in the brain of SAMP8 mice, where melatonin did not cause changes in autophagy [93]. 

However, it is noteworthy that melatonin was able to increase autophagy of OA WT mice, thereby 

restoring levels like Y WT mice, but not in EA mice. This action suggests that melatonin and 

autophagy operate synergistically to increase cell survival, delay immunosenescence, and decrease 

oxidative stress. Thus, melatonin could act selectively, increasing autophagy only when antioxidant 

activity is severely impaired, or when sufficient loss of cellular homeostasis results in abnormal 

mitochondrial morphology and death receptor pathway activation [94–98]. Melatonin did not cause 

significant changes in the LC3II/LC3I ratio in NLRP3-/- mice (Figure 10B), possibly due to the 

protective effect resulting from ablation of the inflammasome. 

Apoptotic proteins p53 and caspase 9 were found to be increased in EA and OA vs Y mice in 

both WT and NLP3-/- mice (Figure 9C, D, Figure 10C, D). Oxidative stress that occurs during aging 

has been shown to induce apoptosis, mitochondria dysfunction in cardiomyocytes and ultimately 

heart failure [99–102]. The Bax/Bcl2 ratio confirmed the increase in apoptosis with aging in WT mice. 

Interestingly, no changes were observed between ages in mutant mice. The ablation of NLRP3 had an 

anti-apoptotic protective effect during cardiac aging in Bax/Bcl2 ratio, but not in p53 or caspase 9. This 

finding suggests that NLRP3 is a direct regulator of the intrinsic apoptotic pathway in cardiac aging, 

which is dependent of the balance between Bax and Bcl2 and cytochrome c release (Figure 10C). The 

absence of this inflammasome could trigger activation of extrinsic apoptosis with ligand-induced 

activation of several death receptors since the participation of p53 and caspase 9 in this pathway has 

been reported in various tissues and cell models [103–105]. In support of our hypothesis, recent 

studies revealed an increase in TNFα in the serum of old NLRP3-/- mice compared to young mice 

[106]. This cytokine is linked to inflammaging [107] and induces extrinsic apoptotic pathway by 

binding to the cell death receptor TNFR1. On the other hand, findings have showed that caspase 8, 
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which is key in extrinsic apoptosis, plays a role in NLRP3 inflammasome priming and cytochrome c 

independent caspase 9 activation [108–110]. Without NLRP3, cardiac aging-induced inflammation is 

favored and could start with extrinsic TNFα apoptosis pathway preceding activation of caspase 8 

which in turn activates caspase 9 (Figure 10D). Further investigations centered of the impact of aging 

on the heart are required to elucidate the extent of the complex interactions between NLRP3 and 

apoptosis. In most cases, melatonin counteracted the high levels of p53 and caspase 9 associated with 

aging in WT and mutant mice and Bax/Bcl2 ratio in WT. This anti-apoptotic effect of melatonin 

during cardiac aging was evident in both extrinsic and intrinsic pathways (Figure 9C, D, Figure 10C, 

D) and can be explained due to its ability to restore the redox potential of the mitochondria 

membrane and reduce oxidative stress. These actions increase ATP production and decrease 

mitochondrial outer membrane permeabilization (MOMP)  following release of cytochrome c [111]. 

Mitochondrial theory of aging [112,113] postulates that an alteration in the redox state of the 

mitochondria, the main source of free radicals in the cell, causes oxidative damage that results in 

senescence, the primary driver of the aging process. In this sense, Nrf2 is defined as a ‘guardian of 

health span’ and a ‘master regulator of aging’ giving it enormous importance in the control of 

numerous antioxidant enzymes [114,115]. It is well stablished that Nrf2 improves mitochondria 

function by balancing reduction and oxidation processes and influencing ATP production, membrane 

potential, fatty acid oxidation and structural integrity [116]. However, changes in the levels of this 

protein during aging, as well as the antioxidant enzymes it regulates, have been the subject of debate 

in recent years. Controversial and even opposite results appear in many studies, which seem to 

depend on the species, strain, tissue, sex and experimental design. Our results in cardiac muscle 

indicate that cytosolic levels of Nrf2 and pNrf2 (Ser40) decrease with aging, both in WT and in 

NLRP3-/- mice at EA and OA (Figure 9E, Figure 10E). This may suggest translocation to the nucleus to 

activate transcription, to mediate age-related increases in ROS, decreasing cytosolic levels. The 

presence of pNrf2 in the cytosol could also be due to phosphorylation of Nrf2 by GSK-3β which 

translocates pNrf2 out of the nucleus [117]. Our data agree with investigations showing that  mice 

deficient in Nrf2 have a higher susceptibility to inflammation and oxidative stress [118]. This 

alteration in the Nrf2 pathway is associated with cardiovascular diseases [119,120]. Nrf2-/- mice were 

more prone to heart failure and their mortality increased ten days after suffering a myocardial 

infarction [121,122]. Although most studies point to a decrease in Nrf2 in heart tissue with aging, the 

causes are unknown. Surprisingly, our results discarded Keap1 as the responsible of this declining 

since there were no changes in its levels between the different ages and experimental groups. In line 

with our findings, levels of Nrf2 and its mRNA were found to be reduced in the liver of 10-month-old 

SAMP8 mice compared to SAMR1 mice, while Keap1 mRNA and its protein levels remained 

unchanged with age [117]. The decrease in the antioxidant enzymes Hmox1, Nqo1 and γGclc during 

aging is possibly due to a less efficient Nrf2 signaling [123,124]. Similar results using aortas of 24-

month-old rats, whose Nrf2 levels were lower compared to 3-month-old young rats, resulted in a 

drop in the enzymes Hmox1, Nqo1 and γGclc [125]. However, the same group demonstrated that 

oxidative stress associated with aging did not induce significant changes in Nrf2 levels of carotid 

arteries in aged Rhesus macaques (20 years) compared to young individuals (10 years), and their 

respective antioxidant enzymes were not induced either [126]. Together, these data confirm that the 

expression of these antioxidant enzymes is linked to Nrf2. It also suggests the activation of this 

signaling pathway in the cardiovascular system during aging depends not only on the animal model 

but on the degree of oxidative stress as well. In this light, recent works described that there is a shift 

in Nrf2 target to Klf9 instead of Hmox1, Nqo1 and γGclc at excessive oxidative damage [127,128]. 

This could explain the fact that Hmox1 and γGclc were decreased to a greater degree than WT by 

showing decline in EA while WT decreased only at OA. Interestingly, Nqo1 expression levels were 

not reduced in NLRP3-/- mice but were still upregulated by melatonin supplementation. Several 

studies show that Nqo1 is the prototype gene target for Nrf2 activation. In BV2 cells after cerebral 

ischemia reperfusion, Nrf2 ROS response was linked to Nqo1 expression [129]. This could illuminate 

the limited decrease in cytosolic Nqo1 by being preferentially targeted by the ever-shrinking pool of 
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Nrf2 and pNrf2 as aging ensues. This study also proved that scavenging of ROS by Nqo1 restrained 

NLRP3 inflammasome activation and IL-1β expression. Except for Keap1 expression levels, which 

remained unchanged during aging, treatment with melatonin counteracted the age-associated decline 

in expression of all the parameters of the Nrf2 signaling pathway, both in WT and NLRP3-/- mice 

(Figure 9E, Figure 10E). Melatonin has been shown to have a protective effect on the mitochondria by 

acting as a powerful antioxidant in a direct way, as a scavenger of free radicals, detoxifying reactive 

oxygen and nitrogen species, and indirectly, increasing the rest of the Nrf2-dependent and 

independent antioxidant systems [130–133].  

Studies in animal models confirm that the ultrastructure of cardiac mitochondria changes with 

aging [134]. Our study supported these results. A small number of isolated mitochondria had 

damaged cristae in EA mice, and severe mitochondrial damage, with destroyed, separated, 

vacuolated and hypertrophied cristae in OA mice. This mitochondrial impairment was more 

remarkable in WT mice than in mutants. These findings reveal age-induced cellular senescence and 

mitochondrial dysfunction [135], as well as the cardioprotective effect linked to the ablation of the 

NLRP3 inflammasome [136]. Melatonin treatment maintained normal mitochondrial ultrastructure in 

all experimental groups. Multivesicular bodies increased in treated OA NLRP3-/- mice, which indicate 

autophagy induction. These results, once again, highlight the protective role of melatonin against age-

mediated mitochondria impairment and its ability to restore altered autophagic processes during 

cardiac aging [137]. 

Various morphometric analyses show that the size and number of mitochondria per cell is 

impacted during cardiac aging [138]. Our results showed an increase in CSA and Feret’s diameter in 

the mitochondria of OA WT mice, accompanied by a decrease in number of mitochondria. This 

mitochondrial hypertrophy has been related to a systemic demand from overload stress on the heart 

[139,140], and our results suggest that it could also be an adaptive mechanism to compensate for the 

decrease in the amount of this organelle. The ablation of the NLRP3 inflammasome reduced cardiac 

hypertrophy, as there were no changes in Feret's diameter with age and less significant increase in 

CSA and decline in mitochondria number. To our knowledge, this is the first time that these 

morphometrical parameters are studied specifically in IMF during cardiac aging using a mice model. 

In line to our findings, CSA of cardiomyocytes from the left ventricle of male Fischer 344 rats 

increased with aging, while the number of cardiomyocytes decreased [141]. In Wistar rats, 

mitochondria volume fraction and mean size both in left and right ventricle were decreased in 2 years 

old vs 6 weeks old animals [142]. Our results showed that melatonin significantly increased the 

number of mitochondria in WT and NLRP3-/- mice, with no effect on CSA or Feret’s diameter. It is 

possible that in this case two-months treatment is not enough to counter the age-related changes in 

CSA and Feret’s diameter in the heart, one of the most energy-demanding organs of our body [143]. 

This ‘cardiac sarcopenia’ has hardly been investigated since most studies focus on skeletal muscle. 

Indeed, our group previously performed the same analyses in gastrocnemius and morphometric 

alterations were observed earlier, in EA mice and protected in NLRP3 deficient mice [144]. Our 

findings suggest that cardiac muscle and its mitochondria are physiologically more protected from 

age-related sarcopenia than skeletal muscle. Its ability to make a metabolic switch in favor of 

glycolysis instead of fatty acid oxidation during aging [145,146], being one of the organs where the 

NLRP3 inflammasome is expressed less [147,148], or the presence of resident macrophages with 

tissue protective function [149] are some of many possible adaptations of the heart that could explain 

its greater resistance to sarcopenia. 

5. Conclusions 

Results of this study clarify the impact of NLRP3 inflammasome and melatonin treatment in the 

mitochondria during cardiac aging. The main findings can be summarized as 1) NLRP3 knocking out 

and melatonin supplementation avoided mitochondrial dynamics changes of heart with aging; 2) loss 

of NLRP3 and melatonin treatment revealed few impact on cardiac autophagy during aging; 3) 

NLRP3 absence had less role on cardiac apoptosis during aging compared to melatonin therapy; 4) 
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melatonin restored aged-related Nrf2-dependent antioxidant capacity while NLRP3 inflammasome 

showed no effect on this pathway; 5) lack of NLRP3 as well as melatonin treatment enhanced 

mitochondria ultrastructure alterations in aged myocardium.  
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