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The line shapes of specific production experiments of the exotic state such as Xð3872Þ with JPC ¼ 1þþ

quantum numbers involving triangle singularities have been found to become highly sensitive to the binding
energy of weakly bound states, thus offering in principle the opportunity of benchmark determinations. We
critically analyze recent proposals to extract accurately and precisely the Xð3872Þmass, which overlook an
important physical effect by regarding their corresponding production line shapes as a sharp mass
distribution and, thus, neglecting the influence of initial nearby continuum states in the 1þþ channel.
The inclusion of these states implies an effective cancellation mechanism which operates at the current and
finite experimental resolution of the detectors so that one cannot distinguish between the 1þþ bound state and
nearbyDD̄� continuum states with the same quantum numbers. In particular, we show that the line shape for
resolutions above 1MeVbecomes rather insensitive to the binding energy unless high statistics is considered.
The very existence of the observed bumps is a mere consequence of short distance correlated D̄D� pairs,
bound or unbound. The cancellation also provides a natural explanation for a recent study reporting missing
but unknown decay channels in an absolute branching ratio global analysis of the Xð3872Þ.
DOI: 10.1103/PhysRevD.103.114029

I. INTRODUCTION

The quest for the hadronic spectrum has been a major
goal in particle physics over the past 70 years, which has
been marked by predicting and reporting the observed
states and their properties in the PDG (see e.g., [1] for the
latest edition upcoming). Before 2003, this task has mostly
been phenomenologically supported by a nonrelativistic
quark model pattern and its given symmetry multiplets
suggested by the underlying qq̄ and qqq composition for
mesons and baryons, respectively. This nonrigorous but
effective link has been a quite useful and extremely relevant
guidance, particularly because, currently, it is theoretically
unknown how many states should occur below a given
maximal energy or if the full set of recorded states are
incomplete or redundant [2]. In fact, as it is most often the
case for hadronic resonances, we do not detect directly the
reported particle through its track but only in terms of its
decaying products so that the corresponding invariant mass

distribution is observed instead and the relevant signal is
singled out from the reaction background within a given
energy resolution.
Since 2003, the situation has become more involved

above the charm production threshold after the discovery of
the Xð3872Þ [3–6] and the wealth of new X, Y, Z states
whose properties suggest more complicated structures than
those originally envisaged from the quark model [7–9]. In
this study, we analyze the renowned Xð3872Þ state and the
influence of the mass distribution in the 1þþ channel on the
determination of its mass. The Xð3872Þ is allegedly a D̄D�
weakly bound state, whose binding energy has become
smaller since its discovery. The most recent value for its
binding energy, measured by LHCb, is 0.07(12) MeV [10]
for a 1σ confidence level. This actually corresponds to a
30% probability of not being a bound state. We illustrate
the situation in Fig. 1 within a conventional Gaussian
distribution profile interpretation. So, at present, it is
unclear whether its mass is slightly above or below the
D̄D� threshold. However, one might wonder what would
happen if the X(3872) is not a bound state. Recently several
proposals invoke the strong sensitivity of line shapes for
production processes involving triangle singularities to
benchmark the mass determination [11,12].
In this paper, we promote the idea that the precise

value of the mass is actually not crucial, since the
contribution of nearby states with the same quantum
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numbers is unavoidable with the current experimental
energy resolution detecting its decaying products, and a
cancellation mechanism put forward initially by Dashen
and Kane [13] is at work in this particular case. We have
found in previous works that this has implications to count
Xð3872Þ degrees of freedom at finite temperatures of
relevance in relativistic heavy ions collisions [14,15] and
ultrahigh energies pp prompt Xð3872Þ production at finite
pT and midrapidity [16]. We will also show how the
number of reconstructed states representing the bound
Xð3872Þ is smaller than the truly produced ones due to
a cancellation mechanism which will be explained below
and which provides a natural understanding of the missing
decay channels. A brief account and overview of the
present study has already been advanced in conference
proceedings [17].
The paper is organized as follows: In Sec. II we review

the hadronic density of states and its theoretical and
experimental limitations as it will be a key element of
our analysis. In Sec. III we review the XYZ states to
provide a broader perspective around the very special
Xð3872Þ exotic state. In Sec. IV we approach the deter-
mination of the density of states in the 1þþ channel. Our
main numerical results are discussed in Sec. V. In Sec. VI
we ponder the relevance of DD̄� correlations, rather than
binding, as the key behind the observed signals. Finally, our
conclusions are presented in Sec. VII.

II. HADRONIC DENSITY OF STATES

A. General properties

For completeness, in this section we review some basic
aspects of the hadronic density of states following some
historical timeline, in a way that our points can be more
easily presented and with the purpose of fixing the notation.

The first quantum-mechanical attempt to determine the
density of states within the quantum virial expansion was
pioneered by Beth and Uhlenbeck in 1937, who computed
the second virial coefficient as a function of temperature in
terms of the two-body scattering phase shifts [18]. Only
after 30 years, Dashen, Ma and Bernstein provided, in a
seminal work, the link to the full S-matrix [19] which
opened up the basis for the hadron resonance gas (HRG)
model for resonances [20], as well as the notion of effective
elementarity [21]. Based on these developments, Dashen
and Kane promoted the natural idea of counting hadronic
states at a typical hadronic scale. In terms of the corre-
sponding density of states as a function of the invariant c.m.
energy

ffiffiffi
s

p
[13], we have

ρðMÞ ¼ TrδðM −Hc:m:Þ ¼
X
n

δðM −MnÞ; ð1Þ

where Hc:m: is the intrinsic Hamiltonian and Mn the
corresponding eigenvalues. We use here a bound state
notation but, in practice, the continuum spectrum which
will be of concern here implies a spectral integral which
can be approximated by imposing a discretization approxi-
mation, such as placing the system on a sufficiently
large box with finite volume. Unfortunately, while this is
mathematically a well-defined quantity, ρðMÞ cannot, in
most cases, be computed or measured directly, but only
through its coupling to external probes generating the
production process. This effectively corresponds to multi-
plying by an observable OðMÞ and superimposing
the contributions in a given energy window. Another
possibility is the coupling to a thermal heat bath where
we take this observable to be a universal Boltzmann
factor e−M=T.

B. The two-body case

The level density can be split into separate contributions
according to the corresponding good quantum numbers. In
the particular 2 → 2 process (for a recent discussion of N-
body and coupled channel aspects see e.g., Refs. [22,23]
and references therein) one has that the interacting cumu-
lative number in a given channel in the continuum with
thresholdMth is given as [24,25] (for updated presentations
see e.g., [26,27])

ΔNðMÞ≡NðMÞ−N0ðMÞ

¼
X
n

θðM−MB
n Þþ

1

π

Xn
α¼1

½δαðMÞ−δαðMthÞ�: ð2Þ

Here, we have separated bound states MB
n explicitly

from scattering states written in terms of the eigenvalues
of the S-matrix, i.e., S ¼ UDiagðδ1;…; δnÞU†, with U a
unitary transformation for n-coupled channels. This defi-
nition fulfills Nð0Þ ¼ 0. In the single channel case, and

FIG. 1. Different Xð3872Þ mass determinations [3–6] with
standard 68% confidence limits. The band corresponds to the
current D̄D� threshold value with uncertainties.
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in the limit of high masses M → ∞ one gets Nð∞Þ ¼
nB þ 1

π ½δð∞Þ − δðMthÞ� ¼ 0 due to Levinson’s theorem.
The opening of new channels and the impact of confining
interactions was discussed in Ref. [28]. According to
Dashen and Kane, some states may present a fluctuation
at the hadronic scale so that their contribution cancels, so
that the state does not count.

C. Experimental resolution

From a purely theoretical side, a practical and numerical
evaluation of the level density rests on the computation of
the energy levels,Mn, as demanded by Eq. (1) which could,
in principle, be evaluated with arbitrary precision. In
practice, this evaluation requires binning the spectrum with
a given finite invariant mass resolution Δm, in which case
only an averaged or coarse-grained value such as [13]

ρ̄ðMÞ ¼ 1

Δm

Z
MþΔm=2

M−Δm=2
ρðmÞdm ð3Þ

is obtained. On the theoretical side, a practical way of
implementing this is by placing the system into a box of
volumeV, as it is the case in lattice QCDwhere one roughly
has Δm ∼ V−1=3. This finite mass resolution effectively
corresponds to a coarse graining in mass and should not
have any sizable effect on the result, unless the true density
of states presents large fluctuations on a smaller mass scale.
With this viewpoint in mind, Dashen and Kane made the
distinction between the original SUð3Þ multiplets and
“accidental” states, i.e., those states which do not contribute
whenΔm is sufficiently large (presumably about the typical
symmetry breaking multiplet splitting).
On the experimental side, the coarse-graining procedure

corresponds to the finite energy resolution of the detectors,
typically σ ¼ 1–3 MeV (see also the discussion below).
The amount of inherent fluctuation is estimated by assum-
ing that the formation of each charge carrier in the detector
is a Poisson process. This average corresponds to use a
Gaussian detector response function with σ-broadening,

Rσðm;MÞ ¼ 1ffiffiffiffiffiffi
2π

p
σ
e−

ðm−MÞ2
2σ2 ; ð4Þ

so we have [29]

ρ̄σðMÞ ¼
Z

∞

−∞
Rσðm;MÞρðmÞdm: ð5Þ

The binning procedure implied by Eq. (3) may be added
afterwards. Although it is innocuous for Δm ≤ σ, it can
have a sizable effect for Δm > σ.

D. The Dashen-Kane cancellation

The immediate consequence of the particular phase shift
behavior follows from Eq. (2) at the density of states level,
defined as

ρðMÞ ¼ dΔNðMÞ
dM

¼
X
n

δðM −MB
n Þ þ

1

π

Xn
α¼1

δ0αðMÞ: ð6Þ

Assuming an experimental resolution Rσðm;MÞ, the
corresponding measured quantity for an observable
depending on the invariant mass function OðMÞ is

OmeasðMÞ ¼
Z

∞

−∞
OðmÞRσðm;MÞρðmÞdm: ð7Þ

Then, for a bin in the range ðM − Δm=2; mþ Δm=2Þ, it
becomes

Omeas ≡ 1

Δm

Z
MþΔm

2

M−Δm
2

OmeasðM0ÞdM0: ð8Þ

In the single channel case, with phase shift δðMÞ, one has

Omeas ¼RðMBÞOðMBÞþ 1

π

Z
∞

−∞
RðmÞOðmÞδ0ðmÞdm; ð9Þ

with RðmÞ ¼ 1
2Δm ½Erfðm−MBþΔm=2ffiffi

2
p

σ
Þ þ ErfðMB−mþΔm=2ffiffi

2
p

σ
Þ�,

which, for a decreasing phase shift and for a smooth
observable OðMÞ, points to a cancellation whose precise
amount depends on the corresponding slope above
threshold.

E. The deuteron state and the np continuum

The cancellation between the continuum and discrete
parts of the spectrum was pointed out by Dashen and
Kane long ago [13] (see also [30,31] for an explicit
picture and further discussion within the HRG model
framework). A prominent example of such a cancellation
discussed in these works corresponds to the deuteron,
which is a neutron-proton 1þþ state weakly bound by
Bd ¼ 2.2 MeV ≪ mp þmn ∼ 1980 MeV. This effect can
explicitly be observed in the np virial coefficient at rather
low temperatures [32] (this work however fails to link the
effect to the Dashen-Kane effect). While this cancellation is
not exactly a theorem, it is an open possibility a fortiori
whose verification depends on details of low energy
scattering. We point out that the cancellation observed in
the equation of state for nuclear matter at low temperatures
where one has a superposition of states weighted by a
Boltzmann factor [32] corresponds to a suppression of the
occupation number in the 1þþ channel as compared to the
deuteron case, N1þþ ≤ Nd.
The case of the deuteron described above is particularly

interesting for us here since it is extremely similar to the
case of the Xð3872Þ, with the important exception of the
detection method of both states, as will be discussed below.
In our previous work [14] we have shown how this
cancellation can likewise be triggered at finite temperature
T for the Xð3872Þ, as it is the case in relativistic heavy ion
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collisions, since the partition function involves the folding

of the Boltzmann factor, ∼e−
ffiffiffiffiffiffiffiffiffiffiffi
p2þm2

p
=T with the density

of states, Eq. (6). Therefore, given these suggestive
similarities, we have undertaken a comparative study of the
deuteron and Xð3872Þ production rates in pp scattering
at ultrahigh energies (∼7 TeV) in the observed pT dis-
tributions in colliders, which provides a suitable calibra-
tion tool in order to see the effects of the cancellation due
to the finite resolution Δm of the detectors signaling
the Xð3872Þ state and deciding on its bound state
character [16].

III. THE XYZ STATES

Nowadays, there is a strong theoretical and experimental
evidence on the existence of loosely bound states near the
charm threshold, originally predicted by Nussinov and
Sidhu [33], as it seems to be confirmed now by the wealth
of evidence on the existence of the Xð3782Þ, renamed
χc1ð3872Þ, state with binding energy BX ¼ 0.01ð18Þ MeV
[34], or 0.07(12) MeV from recent LHCb measurements
[10], and which has triggered a revolution by the prolif-
eration of the so-called X,Y,Z states (for reviews see
e.g., [8,9,35]. In the absence of electroweak interactions,
this state has the smallest known hadronic binding energy
and, for a loosely bound state, many properties are mainly
determined by its binding energy [8] since most of the time
the system is outside the range of the interaction.
In fact, the molecular interpretation has attracted con-

siderable attention, but since this state is unstable against
J=ψρ and J=ψω decays, the detection of Xð3872Þ relies on
its decay channels spectra where the mass resolution never
exceeds Δm ∼ 1–2 MeV [3–6] (see e.g., [36] for a graphi-
cal summary on the current spectral experimental resolu-
tions). Therefore it is in principle unclear if one could
determine the mass of the Xð3872Þ or, equivalently, its
binding energyΔBX ≪ Δmwith such a precision, since we
cannot distinguish sharply the initial state. While in most
studies (see however [37]) the bound state nature is
assumed rather than deduced, even if the Xð3872Þ was
slightly unbound the correlations would be indistinguish-
able in the short distance behavior of the DD̄�0 wave
function.
The discussion on Xð3872Þ line shapes started in

Ref. [38] as a way to extract information on the binding.
Triangle singularities are ubiquitous in weakly bound
hadronic and nuclear systems [39] and arise when three
particles in a Feynman diagram can simultaneously be on
the mass shell. Their relevance in XYZ states has been
pointed out [40] and their relation to unitarity has been
emphasized [41,42]. In fact, they have been put forward
recently as a method to sensitively determine the X mass
based on the theoretical line shape. The falloff of the line
shape above the peak, rather than the actual position of the
peak reflects rather well the binding energy [11,12,43].

Guo has considered the effect of a short distance source
(the specific process has not been specified) which
generates a D�0D̄�0 pair in a relative S-wave and which
eventually evolves into a Xð3872Þ þ γ final state [11].
This production mechanism is enhanced by the
D�0D̄�0 → γD0 þ D̄�0 → γ þ Xð3872Þ one loop triangle
singularities producing a narrow peak at about the D�0D̄�0
threshold. Braaten, He and Ingles have proposed a similar
triangle singularity enhancement for the production of X
(3872) and a photon using eþe− annihilation as the source
of a D�0D̄�0 pair in a relative P-wave, which becomes
possible because of its 1þþ quantum numbers [12].
Further related analysis on this regard may be found in
Refs. [43,44].
However, these methods focusing on the Xð3872Þ

production lack one important circumstance operating
due to the finite resolution of the detectors, since they
assume a pure initial mass state (mostly the bound state
mass MX). In reality, any nearby initial states with the
same 1þþ quantum numbers will produce a signal in the
final state due to the finite resolution in the final state. We
have reported recently on the neat and accurate cancellation
between the would-be X(3872) bound state and the DD̄�
continuum in the initial state which has a sizable impact
on the final density of states and blurs the detected
signal [14,15]. In this work, we will extend those works
to analyze the implications on the allegedly accurate mass
determinations.
The similarities between d and Xð3872Þ already noted in

Refs. [45–47] have been corroborated on a quantitative
level in our recent work [16], where we have pointed out
that they are also applicable from the point of view of
production at accelerators [16]. However, a crucial and
relevant difference for the present work is that while the
deuteron is detected directly by analyzing its track and/or
stopping power leaving a well-defined trace, the Xð3872Þ is
inferred from its decay properties, mainly through the J=ψρ
and J=ψω channels.

IV. LEVEL DENSITY IN THE
Xð3872Þ CHANNEL

A. Coupled channel scattering

In order to implement the formula given by Eq. (2), we
make some digression on the DD̄� scattering states in the
1þþ, which actually resembles closely the same channel for
the deuteron. However, while the partial wave analysis of
Nucleon-Nucleon scattering data and the determination of
the corresponding phase shifts is a well-known subject,
mainly due to the abundance of data [48], we remind that a
similar analysis in theDD̄� case is, at present, in its infancy
and thus our first analysis in Ref. [14] has been based on a
quark model. In the 1þþ channel, the presence of tensor
force implies a coupling between the 3S1 and 3D1 channels,
so that the S-matrix is given by
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SJ1 ¼
�
cos εj − sin εj
sin εj cos εj

��
e2iδ

1j
j−1 0

0 e2iδ
1j
jþ1

�

×

�
cos εj − sin εj
sin εj cos εj

�
: ð10Þ

From here we define the T-matrix

SJS ¼ 1 − 2ikTJS: ð11Þ

The S and D eigen phase shifts have been shown in our
previous work [14] using the quark cluster model of
Refs. [49,50] which includes both cc̄ and DD̄� channels.
The cumulative number is shown in Fig. 2. The outstanding
feature is the turnover of the function as soon as a slightly
nonvanishing cc̄ content in the Xð3872Þ is included, unlike
the purely molecular picture (see Ref. [14] for a more
detailed discussion). We also compute the cumulative
number for the coupled-channels effective field theory
(EFT) model of Ref. [51] fine-tuning the parameters to
agree at low energies with the quarkmodel. In both cases the
fitting parameters have been binding properties of the
Xð3872Þ. As we see, results present a rather similar pattern
over the entire plotted energy range; the sharp rise of the
cumulative number is followed by a strong decrease gen-
erated by the phase shift. Moreover, we have checked that
the S-wave phase shift asymptotically approaches π [due to
the bound X(3940) state of the purely confined channel [50]
which becomes a resonance when coupled to the DD̄�
continuum] and hence Nð∞Þ ¼ 1 in agreement with the

modified Levinson’s theorem of interactions with confining
channels [28].

B. Effective range approximation

However, as we will see, the S-D waves mixing stem-
ming from the tensor force has an influence for larger
energies than those considered here [14]. Therefore, in
order to illustrate how the cancellation comes about, we
also considered a simple model which works fairly accu-
rately for both the deuteron and the Xð3872Þ by just
considering a contact (Gaussian) interaction [52] in the
3S1-channel and using effective range parameters to deter-
mine the corresponding phase shift in the d and Xð3872Þ
[14,53] respectively. The result for NðMÞ together with the
EFT and CQM predictions can be seen in Fig. 2. Of course,
if the binding energy is not that small, several effects appear
and, in particular, the composite nature of the Xð3872Þ
becomes manifest (see e.g., [49]). All these similarities
suggest the possibility of using the shape-independent
effective range approximation (ERA) to second order to
calculate the phase shifts near threshold. In ERA, we have
that the δ is given as a function of two parameters:

k cot δ ¼ −
1

as
þ 1

2
r0k2 ð12Þ

where k is the c.m. momentum

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μðM −M0Þ

p
; ð13Þ

where μ ¼ MDMDþ=ðMD þMD�Þ is the reduced mass and
M0 ¼ MD þMD� is the threshold mass. The comparison in
Fig. 2 between ERA and the two coupled-channels models
reassures the validity of the approximation for the rangeffiffiffi
s

p ≲ 3920 MeV. The partial wave inverse scattering
amplitude is given by

f0ðkÞ−1 ¼ k cot δ − ik ð14Þ

and, in general, bound and virtual states correspond to
poles of f0ðkÞ at k ¼ �iγX in the first and second Riemann
sheet in energy Eb ¼ MX −M0 respectively. It is worth
mentioning that Kang and Oller have comprehensively
studied the pole structure and analyzed the character of the
Xð3872Þ in terms of bound and virtual states within simple
analytical parametrizations [37], although the Dashen-
Kane cancellation was not addressed.

C. Finite energy resolution

The detector response function transforms the mono-
chromatic signal of mass MX in a Gaussian distribution
RσðMX;mÞ with σ resolution [29]. It reflects the imper-
fection of the detector to measure a single energy due to the
Poisson statistics of the energy deposition. The energy
window ΔM is interpreted as the energy range where the

FIG. 2. Comparison between the cumulative number of
the 1þþ sector with Eb ¼ 180 keV in different models: The
coupled-channels EFT model of Ref. [51] with d ¼ 0.4 fm1=2,

C ¼ −976 fm2 and mð0Þ
cc̄ ¼ 3947.44 MeV (blue); the coupled-

channels constituent quark model (CQM) of Ref. [49] with

mð0Þ
cc̄ ¼ 3947.44 MeV and γ3P0

¼ 0.194 (dashed red) and the
effective range approximation (ERA) model with r0 ¼ 1 fm
and as ¼ 1ffiffiffiffiffiffiffiffi

2μEb

p ¼ 10.58 fm (dash-dotted green).
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final channel products are selected as decay products of the
Xð3872Þ (and, thus, reconstructed). Usually they are taken
as �ð2–3Þσ, to take most of the Gaussian distribution. The
binning energy Δm corresponds to the actual sampling of
discriminated data.
The experiments measure such Gaussian distributions,

from where the typical resolution σ can be extracted. For
example, on page 4 of Ref. [54], the authors claim a
resolution of σ ≈ 1 MeV when measuring the mass of the
ψð3686Þ, and J=ψππ events between 3.86 and 3.88 GeV
are selected, thus, employing an energy window of 20 MeV
and binning with 3 MeV. The situation for this and other
experiments [5,55] is summarized in Table I (see the
Appendix A for details). The experimental analysis of
Ref. [5] is of special interest, as they obtain an upper limit
for the X width which is considerably smaller than the
energy resolution of the Belle detector (ΓX < 1.2 MeV vs
σ ≈ 4 MeV). That upper limit is established on the sensi-
tivity of the area of the Mðπþπ−J=ψÞ signal peak on the
width of the X, but such an analysis assumes that the
involved amplitudes are smooth below that experimental
energy resolution. Any fluctuations below such 4 MeV
energy graining, such as the discussed Dashen-Kane
cancellation, are not considered by the experimental event
measurements and Monte Carlo codes, and can have an
impact on such experimental analysis and conclusions. In
Appendix B we elaborate further details on the explicit
smoothness assumption of the upper limit of the X width
invoked in Ref. [5].
According to Table I the finest value for the resolution

σ is around σ ¼ 1 MeV, and it reflects the best pos-
sible experimentally accessible resolution at present.
Additionally, the energy window of selected events would
be of ΔM ¼ 20 MeV.

D. Smearing of the density of states

According to the general expression, Eq. (6), and
neglecting the inessential S-D wave mixing at low energies,
the density of states in the 1þþ channel for the bound X
case is given by

ρðmÞ ¼ δðm −MXÞ þ
1

π
δ0ðmÞ; ð15Þ

where the S-wave phase shift as a function of the invariant
mass vanishes below the DD̄� threshold. For the unbound

case, the bound state contribution δðm −MXÞ is simply
dropped out. Note that from Fig. 2 the phase shift at low
energies is a decreasing function, so its derivative becomes
negative which is the essence of the Dashen-Kane cancel-
lation. If the mass of X is not correctly reconstructed,
because we have a finite resolution in our detector, given by
the response function Rσðm;MÞ, we will measure realDD�
pairs from the decay of the X andDD� from the continuum,
so that we cannot distinguish them due to the finite detector
resolution. Thus, we have to fold the detector response
function and the density of states as done in Eq. (5) applied
to the Xð3872Þ case

ρ̄σðMÞ ¼ ΘRσðMX;MÞ

þ 1

π

Z
∞

MDD�
Rσðm;MÞδ0ðmÞdm ð16Þ

being MDD� the DD� threshold mass and Θ≡ ΘðMDD� −
MXÞ the Heaviside function. We show in Fig. 3 the smear of
the density of states for Eb ¼ 180 keV (bound) and Eb ¼
−180 keV (virtual) for different resolutions in the range
σ ¼ 1–6 MeV. When Eb ≫ σ the finite resolution does not
modify the line shape and effectively corresponds to the
σ → 0 picture. For finite σ the cancellation becomes rather

TABLE I. Detector energy resolutions σ, binning Δm and
energy window ΔM in several experiments detecting Xð3872Þ
decays.

Channel σ Δm ΔM Reference

J=ψπþπ− 1.14� 0.07 3 20 Ref. [54]
J=ψπþπ− 3.33� 0.08 2 6σ ≈ 20 Ref. [55]
J=ψπþπ− 4 2 18 Ref. [5] FIG. 3. Upper: smeared density of states for Eb ¼ 180 keV for

different resolutions. Lower: same for Eb ¼ −180 keV (virtual).
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evident and is more effective for larger resolutions σ ≫
jEbj where the difference between a bound and a virtual
state becomes small.

E. Missing decays vs missing counts

According to a recent work, there are a number (about a
third) of unknown decays when absolute branching ratios
are considered and compared to the total width of the
Xð3872Þ [56] (see also [57] for an experimental upgrade)
suggesting new experiments to detect these missing decays.
The statistical analysis carried out by the authors of
Ref. [56] provides large error bars for the branching
BrðXð3872Þ → unknownÞ ¼ 1 −

P
i Γi=Γ ¼ 31.9þ18.1

−31.5%

from the analysis of eight detected channels (see their
Table II). Actually, about half of the decays goes into
DD̄� pairs. We note here that the quenching effect we
unveil here may be behind such missing decays, since
quite generally and due to the Dashen-Kane cancellation
the counted signals are suppressed against the original
ones, N̄1þþ < NXð3872Þ. This undercounting is in complete
agreement with our previous study [14,15] on occupation

numbers at finite temperature and of relevance in Xð3872Þ
in heavy ion-collisions. It also complies with the similar-
ities of production rates at finite pT of deuterons and
Xð3872Þ states in pp collisions at ultrahigh energies in the
midrapidity region [16] which provides, after correcting the
effect to a one-to-one production rate, NX=Nd ∼ 1.

V. SMEARING OF LINE SHAPES

A. General considerations

As we have discussed above, the finite detector reso-
lution does not separate between the signals triggered by a
bound Xð3872Þ and DD̄� pairs in the 1þþ nearby con-
tinuum. This fact in itself should not necessarily be a cause
of concern if the level density was a smooth function within
the finite resolution σ. However, we have seen that this is
not what happens in the 1þþ channel; a relevant variation
with positive and negative contributions does take place.
This, of course, sets the problem on how would it be
possible to deduce accurately the mass of the Xð3872Þ state
given these limitations on resolution and being aware of the
cancellation effect.

FIG. 4. Smeared line shapes of states, L̄ðsÞ, for σ ¼ 0 MeV (top left), σ ¼ 1 MeV (top right), σ ¼ 3 MeV (bottom left), and
σ ¼ 4 MeV (bottom right) for the S-wave source of Ref. [11], for different binding energies and a Δm ¼ 2 MeV.
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In general, the direct determination of the mass would
require more precision on the mass of the constituents (i.e.,
D0 and D�0 mass assuming a molecular nature) and a large
acquisition of statistics, considering the small value of the
X binding energy. An alternative, and more interesting
method, is the characterization of production processes in
terms of a suitable mass operator OðMÞ, sensitive to small
variations of the binding energy. Recently, two methods
involving triangle singularities near the D�0D̄�0 threshold
have been proposed [11,12]. Those kinematic singularities,
which are formed when the three particles composing the
triangle are simultaneously on shell, have been suggested to
provide a more accurate method to determine the Xð3872Þ
binding energy than direct mass measurements.

B. Smearing effects

All experimental analyses make a distinction between
the resolution σ of the detectors leading to a Gaussian
response function for a monochromatic signal with invari-
ant mass m0:

δðm −m0Þ →
1ffiffiffiffiffiffi
2π

p
σ
e−

1
2
ðm−m0

σ Þ2 : ð17Þ

This is one source of mixing mass effects. On the other
hand, a choice of mass window, Δm for measurements
must be made. This is another source of mass mixing, since
the resulting signal will correspond to the averaged mass
distribution around a chosen mass interval �Δm=2.
In order to illustrate the aforementioned limitations due

to the resolution and the cancellation effect, let us consider
now a general line shape Lðs;MÞ, where s is the invariant
mass and M is the reconstructed mass of the secondary X
particle from the Gaussian distribution Rσðm;MÞ. The
convoluted line shape from the X particle with mass M
is [Eq. (9)]

L̄ðsÞ ¼ ΘRðMXÞLðs;MXÞ

þ 1

π

Z
∞

MDD�
RðmÞLðs;mÞδ0ðmÞdm ð18Þ

with RðmÞ ¼ 1
2Δm ½Erfðm−MXþΔm=2ffiffi

2
p

σ
Þ þ ErfðMX−mþΔm=2ffiffi

2
p

σ
Þ�.

We analyze the effect of smearing for the line shapes
generated in the Xð3872Þγ production process using either
a relative S-wave [11] or P-wave [12] source of a D�0D̄�0
pair. Results for the S-wave source of Ref. [11] can be see

FIG. 5. Smeared line shapes of states, L̄ðsÞ, for σ ¼ 0 MeV (top left), σ ¼ 1 MeV (top right), σ ¼ 3 MeV (bottom left), and
σ ¼ 4 MeV (bottom right) for the P-wave source of Ref. [12], for different binding energies and a Δm ¼ 2 MeV.
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in Fig. 4 and results for the P-wave source of Ref. [12] are
shown in Fig. 5, without considering a finite binning in
the γX invariant mass spectrum. For the S-wave source,
normalized to the D�0D̄�0 threshold, we appreciate a
change in the shape of the distribution, which pretty much
blurs the neat distinction due to the X binding energy. Still,
we see a separation of the line shape tails which could be
used for the latter purposes. The cancellation and the finite
resolution, thus, leads to a more complicated precise
measurement of the Xð3872Þ mass, especially when finite
statistics are considered (see discussion below). For the
P-wave source, the main effect is the absolute value
decreases of the line shapes, depending on their binding
energy due to the cancellation (an effect that also occurs for
the S-wave source but it not appreciated due to the
normalization of the line shapes).

C. Finite samples

It is interesting to analyze the S-wave source results
from the counting statistics point of view. We expect a
convergence of all γX line shapes regardless of the X
binding energy. Their tails decrease at different rates,
but a limited statistics can compromise their proper
identification. Quite generally we will be able to discern
two different (smeared) signals if the number of events
fulfills

ΔO
O

∼
1ffiffiffiffi
N

p : ð19Þ

In Figs. 6 and 7 we show examples (for S- and P-waves
respectively) of limited resolution for binding energies
Eb ¼ 180 keV and Eb ¼ −180 keV (virtual), a σ ¼
2 MeV and an energy bin of Ewin¼1MeV. The synthetic
data is obtained by randomly sampling N ¼ 100 and
1000 events in the [4010,4020] energy range, according
to the probability density function given by the line
shapes of Fig. 4 (bottom). As the global normalization
of the line shapes of Fig. 4 are not known, the same
occurs to the global normalization of the synthetic data, so
caution should be taken when directly comparing
between the line shapes for different binding energies.
Of course, for larger values of σ all curves resemble
each other and the strong mass dependence is largely
washed out. We believe these effects should be considered
in an eventual benchmark experimental determination of
the Xð3872Þ mass.

VI. BINDING INDEPENDENT SHORT
DISTANCE D̄D� CORRELATIONS

One important aspect within the present context is that,
regardless of the precise features of the line shape, the
existence of the peak does not depend crucially on the

Xð3872Þ being truly bound or unbound. At long distances
the reduced relative wave functions for a bound/unbound
Xð3872Þ state behaves as

uXðrÞ → AXe∓γXr ð20Þ

respectively where γX is the corresponding wave number
which corresponds to a pole of the partial wave amplitude.
Clearly, the signal for the Xð3872Þ is reconstructed by
detecting its decay products, which involves a short
distance operator and tells us about the relative D̄D� wave
function at short distances. To further analyze this issue, we
plot in Fig. 8 the case of bound/unbound wave functions,
normalized so that their long-distance extrapolated value to
the origin is unity, i.e., uXðrÞ → e∓γXr, using for illustration
the particular (unquenched) quark model of Refs. [49,50]

FIG. 6. Binned smeared line shapes of the S-wave source
for N ¼ 100 events (top) and N ¼ 1000 events (bottom). We
compare the Eb ¼ 180 keV (black) and Eb ¼ −180 keV (blue)
binding energies, using a σ ¼ 2 MeV resolution, an energy bin of
1 MeVand a Δm ¼ 2 MeV. The full line shape corresponding to
ΔM ¼ σ ¼ 0 is shown for comparison.
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which includes both a cc̄ and DD̄� channels in the
description of the Xð3872Þ state. As we see, their short
distance behavior is nearly identical although they are
completely different at long distances.1 Thus, the bumps
found experimentally and attributed to be the Xð3872Þ are
certainly reflecting a strong short distance correlated D̄D�
pair in the 1þþ channel, and not just a bound state feature.
The short distance dominance of the Xð3872Þ is not new,
and it provides an explanation for the large isoscalar to
isovector decay modes (see e.g., [52]).

VII. CONCLUSIONS

In this paper, we have analyzed the impact of finite
detector resolution in the production and decay of the
Xð3872Þ state. We have discussed the cancellation effect
due to the superposition in the level density in the 1þþ

channel of the bound state and nearby DD̄� continuum
states in the initial state, which cannot be separated in the
final state when the binding energy is much smaller than the
energy resolution. Our results suggest that the mechanism
of production of weakly bound states such as the Xð3872Þ
undercounts the number of states N̄1þþ < NXð3872Þ, an
effect which is in harmony with the missing resonances
reported in a recent absolute branching ratio analysis. This
signal suppression is in complete agreement with our
previous study on occupation numbers at finite temperature
and of relevance in Xð3872Þ in heavy ion-collisions. It also
complies with the deuteron to X(3872) finite pT production
ratio in pp collisions at ultrahigh energies at midrapidity.
Our findings are also relevant to future benchmark deter-
minations of the Xð3872Þ, particularly those displayed by
the strong line shape dependence in production processes
involving triangle singularities. Quite generally we find
that the initial density of states triggering a signal of X
production in a finite resolution energy detector blurs the
spectrum and hence the strong mass dependence is reduced
and could only be pinned down with sufficiently high
statistics. This is in harmony with the relevance of short
distance DD̄� correlations in the 1þþ channel. We expect
our observations to hold in similar weakly bound states not
directly measured through their track, but inferred from
their decay products.
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APPENDIX A: DETAILS ON THE CHOICE
OF RESOLUTION

In this section we come to justify the numbers provided
in Table I.

(i) In Ref. [5], the authors make studies of the ψ 0 →
πþπ−J=ψ as a control sample using 3.635 GeV ≤
Mðπþπ−J=ψÞ ≤ 3.735 GeV and, for X(3872) stud-
ies, they use 3.77GeV≤Mðπþπ−J=ψÞ≤3.97GeV.
They select events in the range jMðπþπ−J=ψÞ−
Mpeakj ≤ 0.009 GeV, taking energy bins of Δm ¼
2 MeV. The Mðπþπ−J=ψÞ mass resolution of the
Belle detector in the mass region of the X(3872) is
claimed to be σ ≃ 4 MeV, larger than the Xð3872Þ
width estimation calculated in the work of
ΓðXð3872ÞÞ < 1.2 MeV at 90% C.L.

(ii) Ablikim et al. [54] analyze the angular distribution of
the radiative photon in the eþe− c.m. frame and the
πþπ− invariant mass distribution. For the Xð3872Þ
signal, they select events between 3.86 GeV <
Mðπþπ−J=ψÞ < 3.88 GeV. The mass resolution of
the detector is estimated from fits to the ψð3686Þ
signal, obtaining σ¼ð1.14�0.07ÞMeV=c2. Results
are shown with an energy bin of Δm ¼ 3 MeV.

(iii) In Ref. [55], Aaij et al. study the inclusive production
of the Xð3872Þ in pp collisions at

ffiffiffi
s

p ¼ 7 TeV.
Candidates are selectedwithin a�3σ energywindow,
where the mass resolution is estimated as σ¼ð3.33�
0.08ÞMeV for the Xð2872Þ, so ΔM≃20MeV. The
energy bin used in the work is Δm ¼ 2 MeV.

APPENDIX B: ON THE SMOOTHNESS
ASSUMPTION OF THE CALIBRATION

PROCEDURE

When giving an estimation of the mass and width of the
Xð3872Þ state, experimental collaborations performcomplex
and detailed analyses that allow them to extract information
even below the energy resolution of their detectors. Such
efforts of going beyond the experimental limitations are
incredibly useful to unveil the inner structure of narrow
resonances such as theXð3872Þ provided a smooth behavior
is taken for granted. Moreover, the analyses have underlying
modeling assumptions that can hide rapid change effects
such as theDashen-Kane cancellation thatwe describe in this
work, and which can have an impact on such estimations.
As an example, in thisAppendixwediscuss the upper limit

determination of the Xð3872Þ width performed by Ref. [5],
where ΓX < 1.2 MeVwas obtained, a value much narrower
than theMðπþπ−J=ψÞmass resolution of the Belle detector
in the mass region of the Xð3872Þ, which is ∼4 MeV. The
Belle collaboration determined that theMðπþπ−J=ψÞ signal
peak area was sensitive to natural widths that are narrower
than the Belle energy resolution. With that purpose, they
applied a three-dimensional fit of Mðπþπ−J=ψÞ, Mbc
and ΔE components, with the support of Monte Carlo
simulations.
However, it is worth noticing that such a fit implicitly

assumes a smoothness behavior of the amplitudes below the
energy resolution of 4MeV.The unbinned three-dimensional
likelihood fit is based onMbc,Mðπþπ−J=ψÞ andΔE events,
which are fitted to simple Gaussian functions, ignoring any
fluctuation below σ. Furthermore, the Monte Carlo codes
employed in high energy physics analysis do not include
effects such as the referred Dashen-Kane cancellation.
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