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Abstract

This is a summary of some works related to Translating Solitons
in Semi-Riemannian Manifolds. We review known facts in Euclidean
and Lorentz Spaces, and then introduce them in Semi-Riemannian
Products. When they are graphs, we obtain the necessary PDE. In
addition, if we consider the action of a Lie group by isometries, we
reduce the PDE to an ODE. We focus on studying this ODE in an
abstract way, from existence to extensions of solutions. Finally, we
give some examples.

1 Introduction

A smooth submanifold either in the Euclidean Space Rn or in the Lorentzian
Space Ln is called translating soliton when its mean curvature ~H satisfies
the following equation:

~H = v⊥, (1)

for some constant unit vector v ∈ Rn or v ∈ Ln. In the case of the Lorentz
Space, it is assumed that v is not lightlike. In such case, if a submanifold
F : M → Rn+1 satisfies this condition, then it is possible to define the
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forever flow Γ : M × [0,+∞)→ Rn+1, Γ(p, t) = Γt(p) = F (p) + tv. Clearly,(
∂

∂t
Γt

)⊥
= v⊥ = ~H.

This shows that, up to tangential diffeomorphisms, the submanifold is a
solution to the mean curvature flow. This justifies our definition. In fact, it
is a Type-II singularity, since it does not essentially change with time. Until
now such solutions have been almost exclusively studied in the case where
the ambient space is the Euclidean (or the Minkowski) space. For a good
list of known examples, see [7]. Probably, the most famous examples are
the Grim Reaper curve in R2 and the translating paraboloid and translating
catenoid, [2]. Also, in [6], the authors studied those translating solitons in
Minkowski 3-space with rotational symmetry.

If one wants to generalize (1), the simplest way is to choose a parallel
vector field. Since manifolds admitting such a vector field are locally a prod-
uct M×R, in [5], the authors introduce the notion of (graphical) translating
solitons on a semi-Riemannian product M × R.

In this note, we recall some results from two papers, namely [4] and [5].
Firstly, in the Preliminaries Section we recall some basic facts that we will
use later, where we find the first steps of translating solitons in product
spaces M × R with a product metric gM + εdt2, with ε = ±1 and gM the
metric on M . Since the manifold M might not be complete, we can almost
say that we are dealing with a semi-Riemannian cohomogeneity of degree one
Σ-manifold, since there is a Lie group acting by isometries and the quotient
is a 1-dimensional manifold (see [1].) In this setting, we can construct our
translating solitons from the solutions to an ODE.

Section 3 is devoted to studing the already mentioned ODE, from two
points of view. One of them is solving a boundary problem. Indeed, given
h ∈ C1(a, b) such that lim

s→a
h(s) = +∞, and ε, ε̃ ∈ {1,−1}, consider

w′(s) = (ε̃+ εw2(s))(1− w(s)h(s)), w(a) = 0.

We show in Theorem 1 that there exists a solution under a not very restric-
tive condition on function h.

The solutions in Theorem 1 are just local, i. e., they are defined in a small
interval [a, a+ δ). Thus, the second point of view consist of the extension of
our solutions. In this way, in Propositions 1 and 3 of Section 3, we show that
for εε̃ = 1 and h > 0 or h < 0, it is possible to extend the solution to the
interval [s0, b), where s0 ∈ (a, b) is the chosen initial point. In Proposition
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2, we show some reasonable conditions under which, the solutions defined
on [s0, b) admit lim

s→b
w(s) ∈ R.

Section 4 is devoted to examples. On one hand, we exhibit translating
solitons in Hn × R foliated by horospheres. Also, we make a study on the
round sphere Sn × R, where we obtain translating solitons defined on the
whole sphere Sn but removing two points.

2 First Steps

The following results can be found in [5]. Assume that (M, g) is a connected
semi-Riemannian manifold of dimension n ≥ 2 and index 0 ≤ α ≤ n − 1.
Given ε = ±1, we construct the semi-Riemannian product M̃ = M×R with
metric 〈, 〉 = g + εdt2. The vector field ∂t ∈ χ(M̃) is obviously Killing and

unit, spacelike when ε = +1 and timelike when ε = −1. Now let F : Γ→ M̃
be a submanifold with mean curvature vector ~H. Denote by ∂⊥t the normal
component of ∂t along F .

Definition A With the previous notation, we will call F a (vertical) trans-
lating soliton of mean curvature flow, or simply, a translating soliton, if
~H = ∂⊥t .

In this paper, we will focus on graphical translating solitons. Namely,
given u ∈ C2(M), we construct its graph map F : M → M × R = : M̃ ,
F (x) = (x, u(x)). Let ν be the upward normal vector along F with ε′ =
sign(〈ν, ν〉) = ±1. Let us call ∇u the gradient of u.

Proposition 1 In the above conditions, the corresponding partial differen-
tial equation that u must satisfy is

div

(
∇u√

ε′(1 + ε|∇u|2)

)
=

1√
ε′(1 + ε|∇u|2)

.

Let Σ be a Lie group acting by isometries on M and π : M → I be a
submersion, I and open interval, such that the fibers of π are orbits of the
action. In addition, assume that π is a semi-Riemannian submersion with
constant mean curvature fibers. For each s ∈ I, π−1{s} ∼= Σ is a hyper-
surface with constant mean curvature. The value of the mean curvature of
π−1{s} is denoted by h(s). Then, we have a function h : I → R.

Theorem 1 Let (M, g) be a connected semi-Riemannian manifold. Let Σ
be a Lie group acting by isometries on M and π : (M, gM ) → (I, ε̃ds2)
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be a semi-Riemannian submersion, I an open interval, such that the fibers
of π are orbits of the action, and satisfying that for each s ∈ I, the fiber
π−1{s} ⊂ M has constant mean curvature h(s). Take u ∈ C2(M,R) and
consider its graph map

F : M →M × R, F (x) = (x, u(x))

for any x ∈M . Then, F is a Σ-invariant translating soliton if, and only if,
there exists a solution f ∈ C2(I,R) to

f
′′
(s) = (ε̃+ ε(f ′)2(s))(1− h(s)f ′(s)) (2)

such that u = f ◦ π.

For the sake of clarity, we now introduce a method to construct a trans-
lating soliton in a manifold foliated by the orbits of the action of a Lie group
acting by isometries.

Algorithm 1 Let (M, g) be semi-Riemannian manifold, Σ a Lie subgroup
of Iso(M, g), I open interval, and ε ∈ {±1}. The metric in M × R is
〈, 〉 = g + dt2.

1. Assume φ : M → Σ × I is a diffeomorphism such that its restriction
π : M → I satisfies |∇π|2 = ε̃ = ±1.

2. For each s ∈ I, compute the mean curvature h(s) of the fiber π−1 {s} ⊂
M .

3. Solve the following equation for some initial values in an interval J ⊂ I,

f
′′
(s) = (ε̃+ ε(f ′(s))2)(1− f ′(s)h(s)).

4. The translating soliton can be constructed by one of the following
equivalent ways:

F : Σ× J →M × R, F (σ, s) = (φ−1(σ, s), f(s)).

F : φ−1(Σ× J)→M × R, F (x) = (x, f(π(x)).

3 Solution and Extension to a Boundary Problem
With Singularity

Inspired by previous sections, we consider and solve the following boundary
problem.
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Theorem 1 Given a ∈ R, b ≤ +∞, ε, ε̃ ∈ {1,−1}, choose q ∈ C1[a, b) such
that q(a) = 0, q(s) 6= 0 for any s > a, ε̃q′(a) ≥ 0, and define h : (a, b)→ R
given by h = 1/q. Then, the boundary problem

w′(s) = (ε̃+ εw2(s))(1− w(s)h(s)), w(a) = 0 (3)

has a solution w : [a, a+ δ)→ R for a suitable small δ > 0.

Along this section, we will always assume the following:

(H) Given a < b ≤ +∞, take s0 ∈ (a, b). Consider h ∈ C1(a, b) such that
h > 0.

Next result shows that this Condition (H) provides the hypothesis to
extend the local solutions until the end of time. In other words, the local
solution provided by the Lindelöf-Pickard Theorem can be extended up to
b (the supremum of the interval.)

Proposition 1 Assume (H).

1. For each w0 ∈ R, the initial value problem

w′(s) = (1 + w2(s))(1− h(s)w(s)), w(s0) = w0, (4)

has a unique C2-solution w on (s0 − ρ, b), for some ρ > 0.

2. If b = +∞, then lim
s→b

h(s)w(s) = 1.

By Theorem 1 and Proposition 1, we obtain the following result.

Corollary 1 Assume (H), and in addition lim
s→a

h(s) = +∞ and lim
s→a

h′(s)
h2(s)

=

h1 > 0. Then, the boundary problem (3) has a unique globally defined solu-
tion w ∈ C1[a, b).

Proposition 2 Assuming (H), suppose in addition b < +∞ and there exist
lim
s→b

h(s) = +∞.

1. If there exists lim
s→b

h′(s)
h2(s)

= h1 ∈ [0,+∞), there is a solution to (4) for

certain w0 such that lim
s→b

w(s) = 0 and lim
s→b

w′(s) = 1
1+h1

.

2. If for some M > 0 and s1 ∈ [s0, b), it holds w(s) ≥M for every s ≥ s1,
then there exist lim

s→b
w(s) = w1 ≥M and lim

s→b
w′(s) = −∞.
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3. If there exist M < 0, s1 ∈ [s0, b) such that for every s ≥ s1, w(s) ≤M,
then there exist lim

s→b
w(s) = w1 ≤M and lim

s→b
w′(s) = +∞.

This proposition can be easilly proved.
The case ε = ε̃ = −1 can be studied in a similar way. All ideas are

already explained, so its proof is left to the reader.

Proposition 3 Given h : [s0, b)→ R , h ∈ C1[s0, b) and b ≤ +∞ such that
h(s) < 0.

1. For each w0 ∈ R, the boundary value problem

w′(s) = −(1 + w2(s))(1− h(s)w(s)), w(s0) = w0, (5)

has a unique C2-solution w on [s0, b).

2. If b = +∞, then lim
s→+∞

h(s)w(s) = 1.

3. Assume b < +∞ and there exist the limits lim
s→b

h(s) = −∞ and lim
s→b

h′(s)
h2(s)

= h1 ∈ (−∞, 0]. Then, for certain w0 ∈ R, there exist the limits
lim
s→b

w(s) = 0 and lim
s→b

w′(s) = 1
1+h1

.

4. Assume b < +∞ and there exists lim
s→b

h(s) = −∞. If for some M > 0

and s1 ∈ [s0, b), it holds w(s) ≥ M for every s ≥ s1, then there exist
lim
s→b

w(s) = w1 ≥M and lim
s→b

w′(s) = −∞.

5. Assume b < +∞ and there exist M < 0, s1 ∈ [s0, b) such that for
every s ≥ s1, w(s) ≤ M, then there exist lim

s→b
w(s) = w1 ≤ M and

lim
s→b

w′(s) = +∞.

4 Examples

Example 1 In Rn, with the standard flat metric g0, we consider the Poincare’s
Half hyperplane model of Hn, namely

Hn = {(x1, x2, ..., xn) ∈ Rn | xn > 0} , g =
1

x2n
g0.

Let Σ be the Lie group Σ = (Rn−1,+) acting by isometries on Hn as usual,
namely

Σ×Hn → Hn, (w, p)→ (p1 + w1, ..., pn−1 + wn−1, pn)
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where w = (w1, w2, ..., wn−1) and p = (p1, p2, ..., pn), respectively. Note that
the orbits are the well-known horospheres.

We define the projection map, with its usual properties:

τ̄ : Hn → R, τ(x1, x2, ..., xn) = ln(xn).

Consider two local frames (∂x1 , ∂x2 , ..., ∂xn) and (Ei = xn∂xi : i = 1, . . . , n)
of THn. A straightforward computation shows

∇τ̄ = En, div(∇τ̄) = −n+ 1. (6)

We arrive to the following initial value problem,

f
′′
(s) = (1 + (f ′(s))2)(1 + (n− 1)f ′(s)), f ′(s0) = f0, f(s0) = f1, (7)

where s0, f0, f1 ∈ R. By the easy change f ′(s) = w(s), we transform this
problem in

w′(s) = (1 + w2(s))(1 + (n− 1)w(s)), w(s0) = f0. (8)

To solve this equation, we consider the map

F : R\ {−1/(n− 1)} → R,

F (t) =
1

1 + (n− 1)2

[
(n− 1) ln

(
|1 + (n− 1)t|√

1 + t2

)
+ arctan t

]
+ C0,

for some integration constant C0 ∈ R. From here we obtain 3 cases.
Case 1: f0 = −1/(n− 1). Then, f(s) = f1 − s/(n− 1) is a solution to (7).

Case 2: f0 > −1/(n − 1). We restrict F , namely F1 :
(
−1
n−1 ,+∞

)
→ R. In

this case, F ′ > 0, so that F is injective. To compute its image, we see

lim
t→+∞

F1(t) =

(
1

1 + (n− 1)2

)(
(n− 1)ln(n− 1) +

π

2

)
+ C0 =: K0,

lim
t→ −1

n−1

+
F1(t) = = −∞.

We obtain that F1 :
(
−1
n−1 ,+∞

)
→ (−∞,K0) is bijective, and there exists

its inverse function

F−11 : (−∞,K0)→
(
−1

n− 1
,+∞

)
.
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Now, we recover w(s) = F−11 (s), w(s0) = F−11 (s0) = w0 > −1
n−1 , and

lim
s→−∞

w(s) = −1/(n− 1), lim
s→K0

w(s) = +∞. Finally,

f : (−∞,K0)→ R, f(s) = f1 +

∫ s

s0

w(u)du.

Then, we obtain lim lim
s→−∞

f(s) = −∞ and lim
s→K0

f(s) = +∞. Thus, function

f has a finite time blow up.

Case 3: f0 < −1/(n−1). Similarly to case 2 we can easilly obtain f function
has a finite time blow up.

Next, for each case, we resort to Algorithm 1 to obtain our translating
solitons.

Example 2 In Rn+1, n ≥ 1, with its standard flat metric g, consider a
round n−sphere of radius 1 centered at 0, namely Sn. Now, the Lie group
O(n− 1) acts by isometries on Sn as usual:

O(n− 1)× Sn → Sn, (A, x)→ A.x =

(
A 0
0 1

)
x =

(
A(x1, ..., xn)t

xn+1

)
We restrict our study to M = Sn\{N,S}, i. e., we remove the North and
South Poles. In this way, the space of orbits can be identified by the following
projection map

τ : M → (−π/2, π/2), τ(x) = − arcsin(xn+1).

We obtain that the mean curvature of the orbits is given by h(s) = (1 −
n) tan(s). Thus, we consider the following differential equation:

f ′′(s) =
(
1 + f ′(s)2

)(
1− (n− 1) tan(s)f ′(s)

)
, (9)

which we reduce in a first step to (w = f ′),

w′(s) =
(
1 + w2(s)

)(
1− (n− 1) tan(s)w(s)

)
. (10)

Assume a solution w : (−δ, δ) → R such that w(0) = wo. Since h > 0
on (0, π/2), by Proposition 1, we can extend to w : (−δ, π/2) → R. Now,
by taking z : (−π/2, δ) → R, z(u) = −w(−u), it is clear that z is another
solution to (10). By Proposition 1, we can extend z : (−π/2, π/2)→ R. This
means that each solution to (10) can be globally defined w : (−π/2, π/2)→
R. Clearly, for each f0 ∈ R, we construct a solution f(s) =

∫
w(x)dx + f0,

f : (−π/2, π/2) → R. Now, by using Algorithm 1, given a solution f , we
obtain a translating soliton defined on the sphere except two points, namely
Sn\{N,S}.
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