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a b s t r a c t 

Hydraulic parameters define the water retention, 𝜃( 𝜓), and the unsaturated hydraulic conductivity, K ( 𝜃), func- 
tions. These functions are usually obtained by fitting experimental data using inverse modelling. The drawback of 
inverting the hydraulic parameters is that they suffer from non-uniqueness and the optimal hydraulic parameters 
may not be physical. To reduce the non-uniqueness, it is necessary to invert the hydraulic parameters simultane- 
ously from observations of 𝜃( 𝜓) and K ( 𝜃) , and ensure the measurements cover the full range of 𝜃 from saturated 
to oven dry. The challenge of using bimodal 𝜃( 𝜓) and K ( 𝜃) compared to unimodal functions is that it requires 
double the number of parameters, one set for the matrix and another set for the macropore domain. The objective 
of this paper is to address this shortcoming by deriving a procedure to reduce the number of parameters to be 
optimized to obtain a unique physical set of bimodal soil Kosugi hydraulic parameters from inverse modelling. To 
achieve this, we (1) derive residual volumetric soil water content from the Kosugi standard deviation parameter 
of the soil matrix, (2) derive macropore hydraulic parameters from the water pressure head threshold between 
macropore and matrix flow, and (3) dynamically constrain the Kosugi hydraulic parameters of the soil matrix. 
The procedure successfully reduces the number of optimized hydraulic parameters and dynamically constrains 
the hydraulic parameters without compromising the fit of the 𝜃( 𝜓) and K ( 𝜃) functions, and the derived hydraulic 
parameters are more physical. The robustness of the methodology is demonstrated by deriving the hydraulic 
parameters exclusively from 𝜃( 𝜓) and K s data, enabling satisfactory prediction of K ( 𝜃) even when no additional 
K ( 𝜃) data are available. 
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. Introduction 

Running hydrological models that solve the Richards equation re-
uires knowledge of physical soil hydraulic parameters. The soil hy-
raulic parameters define the water retention, 𝜃( 𝜓) , and the unsaturated
ydraulic conductivity, K ( 𝜃), functions (e.g. Brooks and Corey, 1964 ;
an Genuchten, 1980 ; Kosugi, 1994 ). The hydraulic parameters are
sually obtained by fitting measured values of the 𝜃( 𝜓) and K ( 𝜓)
o the corresponding 𝜃( 𝜓) and K ( 𝜃) functions. However, a serious
rawback of deriving the hydraulic parameters by inverse modelling
s that they suffer from equifinality or non-uniqueness ( Ines and
roogers, 2002 ; Ines and Mohanty, 2008 ; Pollacco et al. , 2008b ;
onkar et al. , 2019 ). Beven (1993) defines equifinality as when more
han one set of parameters give acceptable simulations relative to a
iven measure of goodness of fit between simulated and measured val-
es. Pollacco et al. (2008b) found that to reduce the range equifinality
∗ Corresponding author. 
E-mail address: jesusfg@ugr.es (J. Fernández-Gálvez). 

 

ttps://doi.org/10.1016/j.advwatres.2021.103933 
eceived 22 January 2021; Received in revised form 7 April 2021; Accepted 24 Apri
vailable online 15 May 2021 
309-1708/© 2021 The Author(s). Published by Elsevier Ltd. This is an open access a
nd obtain a unique set of hydraulic parameters, it is necessary to in-
ert the hydraulic parameters simultaneously from observations of both
( 𝜓) and K ( 𝜃), and that the measurements must cover the full range of
from fully saturated to oven dry. However, it is rarely the case that we
ave such rich data sets. 

It has been shown that non-uniqueness or equifinality problems
ause a number of challenges in hydrological modelling ( Pollacco et al. ,
008a , 2008b ; Pollacco and Angulo-Jaramillo, 2009 ), as follows: 

• Linked parameters of inverted hydraulic parameters ( Pollacco et al. ,
2008b ) are sets of parameters that have a mathematical relationship
between them, such that these parameters produce similar objective
function values close to those obtained with the optimal parameter
set. Linked parameters cause challenges for the inverse modelling
algorithm and the identification of parameters. To avoid such prob-
lems, the mathematical formulations should be properly set up with
no inter-correlated parameters. 
l 2021 
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• Non-uniqueness solution results in sets of optimal hydraulic param-
eters with some of them exhibiting non-physical hydraulic values,
which detaches the physical relationship between 𝜃( 𝜓) and K ( 𝜃)
( Pollacco et al., 2013b , 2017 ). This is an important limitation for
physically based models that can preclude convergence when solv-
ing the Richards equation. 

• Optimal non-physical hydraulic parameters cannot be physically
interpreted and therefore cannot be used to model hydrological pro-
cesses; for example, to derive the impact of tillage practices on the
value of the hydraulic parameters describing the pore size distribu-
tion ( Drewry et al. , 2019 ). 

In order to address these three potential issues that may arise when
he hydraulic parameters are inverted without access to the full range
f 𝜃( 𝜓) and K ( 𝜃), it is important to derive methods to reduce the proba-
ility of obtaining non-physical soil hydraulic properties by preventing
on-physical combinations of hydraulic parameter sets. 

Typically, most studies perform the fit of observations to unimodal
ydraulic functions, while bimodal structured soils are more the rule
han the exception ( Jarvis, 2007 ; McLeod et al., 2008 ). These soils
ave both macropores and micropores, with two-stage drainage (e.g.
arrick et al. , 2010 ). Fast flow (macropore flow) can occur when the
ater pressure head exceeds the threshold needed to activate the macro-
ore network, adding to the matrix flow. Below this threshold, only the
atrix participates in the flow. The combination of these two stages

s known as bimodal hydraulic behaviour, or dual permeability, and
as the subject of previous characterizations ( Lassabatere et al., 2019 ,
014 ). By nature, these soils have a bimodal pore size distribution,
nd although soil structure is one of the main reasons for this, bi-
odal behaviour could also happen for purely textural reasons (e.g.
urner, 1994 ). Therefore, soils with bimodal pore systems cannot be
dequately described by unimodal hydraulic functions. 

In addition to the need to account for dual permeability behaviour,
 proper choice of 𝜃( 𝜓) and K ( 𝜃) should be made to adequately describe
ach pore size domain (macro versus micro/matrix). The 𝜃( 𝜓) and K ( 𝜃)
re often expressed as closed-form unimodal functions (e.g. Brooks and
orey, 1964 ; Clapp and Hornberger, 1978 ; van Genuchten, 1980 ).
his paper adopts the Kosugi (1994) 𝜃( 𝜓) and K ( 𝜃) functions, because
his model presents a physical basis for the description of pore size
log-normal distribution), and their related parameters are physically
ound. Soils have a large variation in pore radius, which, according
o Kosugi (1996) , follows a log-normal probability density function.
ollacco et al. (2017) and Romano and Nasta (2016) found improvement
y using bimodal log-normal expressions (dual porosity models) com-
ared to using unimodal 𝜃( 𝜓) and K ( 𝜃), especially for top soils, which
re biologically more active. 

Pollacco et al. (2013b) showed that the hydraulic parameters
f the Kosugi model can be constrained by deriving an empiri-
al relationship between them. Nevertheless, the drawback of the
ollacco et al. (2013b) method is that (a) the derived methodology is
urely empirical and may not work universally, and (b) the method
as developed for soils with unimodal pore distribution and should
e adapted to multi-modal soils. The challenge of using bimodal or
ual permeability functions is that they require double the number of
arameters, with as many as eight hydraulic parameters to be opti-
ized ( Pollacco et al. , 2017 ), which can exacerbate the problems of
on-uniqueness. To enable the use of bimodal hydraulic functions, we
resent new methods to reduce the number of hydraulic parameters by
sing principles of soil physics, such that the optimal set of the opti-
al hydraulic parameters is within physical limits. We reduce the non-
niqueness of optimised Kosugi hydraulic parameters by deriving the re-
ationship between the parameters from principles of soil physics, which
e apply to the bimodal 𝜃( 𝜓) and K ( 𝜃) functions. 

This paper is organised as follows: Section 2 presents the bi-
odal soil Kosugi hydraulic functions and outlines the physical set

f constraints proposed for the hydraulic parameters to reduce non-
2 
niqueness; Section 3 presents the experimental data and the numerical
lgorithm used to derive the soil hydraulic parameters; Section 4 eval-
ates the performance of the different constraints when deriving 𝜃( 𝜓)
nd K ( 𝜃) under a range of scenarios and shows that the proposed method
an also be used to infer K ( 𝜃) when only 𝜃( 𝜓) and K s data are available;
nd Section 5 summarises the main conclusions. 

. Theory 

.1. Bimodal Kosugi hydraulic functions 

In this study, for convenience the water pressure head values are
aken to be positive (i.e., 𝜓 > 0) for unsaturated soils. Defining 𝜓 MacMat 
L] as the water pressure head threshold between macropore and matrix,
hen fast flow (macropore flow) can occur when 𝜓 ≤ 𝜓 MacMat ( 𝜓 is small
nough to activate the macropores), and matrix flow (soil water moves
n the micropores) is when 𝜓 > 𝜓 MacMat . The bimodal Kosugi log-normal
robability density function is described by Pollacco et al. (2017) as: 
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𝜃r < 𝜃sMat ⩽ 𝜃s 

(1) 

here 𝜃 [L 3 L − 3 ] represents the volumetric soil water content (splitted
etween the volumetric soil water content in the soil matrix domain,

Mat [L 
3 L − 3 ], and the volumetric soil water content in the soil macro-

ore domain, 𝜃Mac [L 3 L − 3 ]) and 𝜓 [L] the water pressure head , with
 > 0 for unsaturated soils; 𝜃s [L 

3 L − 3 ] and 𝜃r [L 
3 L − 3 ] are the satu-

ated and residual volumetric soil water content , respectively; ln 𝜓 m 

[L]
indicating the argument of ln in units of length, i.e., 𝜓 m 

in [L]) and 𝜎
-] denote the mean and standard deviation of ln 𝜓 [L], respectively, in
he soil matrix domain; ln 𝜓 mMac [L] and 𝜎Mac [-] denote the mean and
tandard deviation of ln 𝜓 , respectively, in the soil macropore domain;
nd 𝜃sMacMat [L 

3 L − 3 ] is the saturated volumetric soil water content that
ifferentiates inter-aggregate pores (structural macropores) and matrix
omains (intra-aggregate micropores). 

Integrating Eq. (1) from 0 to 𝜓 yields the Kosugi bimodal 𝜃( 𝜓): 
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here erfc is the complementary error function. 
The bimodal unsaturated hydraulic conductivity expressed as a func-

ion of the effective saturation , K(S e ) , can be written according to
 Pollacco et al., 2017 ) as: 
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here K s [L T 

− 1 ] is the saturated hydraulic conductivity and S e [-] denotes
he effective saturation , such that 0 ≤ S e ≤ 1. Note that the model can be
onsidered as unimodal if the following condition is met: 

s − 𝜃sMacMat < 0 . 01 (4)

.2. Constraining the Kosugi hydraulic parameters 

Fitting measured 𝜃( 𝜓) and K ( 𝜓) data on Eqs. (3) and (4) requires op-
imizing eight soil hydraulic parameters ( 𝜃s , 𝜃r , 𝜎, 𝜓 m 

, K s , 𝜃sMacMat , 𝜎Mac ,
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Table 1 

Feasible dynamic range of the optimized bimodal Kosugi hydraulic parameters. 

𝜃s [m 

3 m 

− 3 ] 𝜃r [m 

3 m 

− 3 ] 𝜓 m [mm] 𝜎 [-] K s [cm h − 1 ] 𝜃sMacMat [m 

3 m 

− 3 ] 𝜓 mMac [mm] 𝜎Mac [-] 

Min Max( 𝜃) 0.0 𝜓 MacMat 0.75 5.53E-3 0.75 𝜃s 1 0.2 

Max 0.65 0.2 1E8 4.00 288 𝜃s 𝜓 MacMat 2.0 

Fig. 1. Relationship between 𝜃r and 𝜎 described in Eq. (5) , with 𝜃rMax = 0.2, 
𝛼1 = 15, and 𝛼2 = 4. 

a  

c  

w  

u  

2  

d  

t

2

 

o  

a  

n  

t  

H  

h  

r  

w  

M  

t  

a  

n  

h  

s  

{

w  

w  

2  

s  

𝜎  

f
 

i  

i  

c  

n  

𝜃  

n  

o

2

 

m  

p  

t  

o  

c  

f  

o  

p  

p  

t  

2  

o  

h  

2

𝜓  

 

𝜃  

c  

a  

s

l  

w

𝜎

 

p  

o  

w  

m

2

 

u  

i  

l  

t  

t  

T  

t  

t  

s  

s  

s
 

t  

a  

n  

t  

n  

t

𝜎

w

nd 𝜓 mMac ). The simultaneous estimation of all these parameters may
ause problems of non-uniqueness. Non-unique hydraulic parameters
ere also obtained even when inverting only five hydraulic parameters
sing close-form unimodal hydraulic functions ( Pollacco et al., 2013a ,
008b ; Pollacco and Mohanty, 2012 ). Therefore, there is a need to re-
uce the number of parameters while providing hydraulic parameters
hat are physically sound. 

.2.1. Deriving 𝜃r from 𝜎

The residual volumetric soil water content, 𝜃r , is a parameter with-
ut strict physical meaning, which is usually considered as the minimum
mount of water left in the soil when the water pressure head is ”infi-
ite ” ( Du, 2020 ). 𝜃r is often set to zero, as it has been thought that
his merely affects the goodness of fit for 𝜃( 𝜓) and K ( 𝜃) ( Clapp and
ornberger, 1978 ; Pollacco et al., 2013a , 2008b ; Pollacco and Mo-
anty, 2012 ). Nevertheless, fixing 𝜃r at a constant value close to zero
esults in significant errors in the estimation of 𝜃( 𝜓), especially for soils
ith significant clay fraction (e.g. Lee and Ro, 2014 ; Mohammadi and
eskini-Vishkaee, 2013 ). Pollacco et al. (2020) found that 𝜃r is related

o the clay fraction and therefore could be correlated to 𝜎. Large 𝜎 is
ssociated with soils having high clay content. Therefore, a higher 𝜓 is
eeded for water to be extracted from the smallest pores, resulting in
igher 𝜃r , and vice versa for smaller 𝜎. The following empirical expres-
ion is based on Pollacco et al. (2020) , which relates 𝜃r to 𝜎, is proposed:

 

𝜎∗ = 

𝜎− 𝜎min 
𝜎max − 𝜎min 

𝜃r = 𝜃rMax 
1− 𝑒 − 𝛼1 ⋅𝜎

∗ 

1− 𝑒 − 𝛼1 

(5) 

here 𝜃rMax is set to 0.20 which was found by fitting 𝜃( 𝜓) and K ( 𝜃)
ith laboratory data (e.g. Fernández-Gálvez et al., 2019 ; Pollacco et al.,
020 , 2017 , 2013b ), the maximum value for 𝜃r that was found to be
atisfactory, 𝛼1 = 15 and 𝛼2 = 4 are two optimized empirical parameters,
∗ [-] is the normalized 𝜎, and 𝜎min [-] and 𝜎ma x [-] values are obtained
rom Table 1 . 

The relationship between 𝜃r and 𝜎 described in Eq. (5) is represented
n Fig. 1 , for 𝜎 values below 4 and the set of empirical parameters as
ndicated above. The shape of the curve shows the increase of 𝜃r with in-
reasing 𝜎, while the empirical parameters are responsible for the steep-
ess of the slope before reaching 𝜃rMax . Using the relationship between

r and 𝜎 described in Eq. (5) and shown in Fig. 1 not only reduces the
umber of optimized parameters, but also reduces the non-uniqueness
f 𝜎 by enforcing its physical meaning ( Pollacco et al. , 2020 ). 
3 
.2.2. Deriving 𝜓 mMac and 𝜎Mac from 𝜓 MacMat 

Structured soils have both matrix (inter-aggregate) pore spaces and
acropore (intra-aggregate) pore spaces, where 𝜓 MacMat is the water
ressure head boundary between macropore and matrix. Thus, when
he pores are saturated ( 𝜓 < 𝜓 MacMat ), the flow is considered macrop-
re flow, and when the soil is desaturated ( 𝜓 > 𝜓 MacMat ), the flow is
onsidered matrix flow. Carrick et al. (2010) found that 𝜓 MacMat ranges
rom 50 to 150 mm, with an average of 100 mm also in agreement with
ther authors (e.g. Jarvis, 2007 ). We assume that 𝜓 MacMat is a constant
arameter and so it is fixed at 100 mm. This threshold is also in line with
revious studies and values suggested for the tension to be applied for
he deactivation of the macropore network (e.g. Lassabatere et al., 2019 ,
014 ; Luxmoore, 1981 ; Timlin et al., 1994 ). To reduce the number of
ptimized parameters, and due to the narrow range of water pressure
ead in the macropore domain, it is assumed (following Pollacco et al. ,
017 ; Eq. 15 ) that: 

 mMac = 𝑒 
ln 𝜓 MacMat 

2 = 

√
𝜓 MacMat (6)

Moreover, we assume that 𝜃Mac ( 𝜓 MacMat ) ≈ 0 in Eq. (2) , and since
( 𝜓) is a log-normal distribution we derive the following relationship
omputed with a typical value of P 𝜎 = 3, establishing ln 𝜓 MacMat at
 water pressure head higher than ln 𝜓 mMac , which is three times the
tandard deviation of the logarithmic macropore size distribution. 

n 𝜓 MacMat = ln 𝜓 mMac + 𝜎Mac 𝑃 𝜎 = 

ln 𝜓 MacMat 
2 

+ 𝜎Mac 𝑃 𝜎 (7)

hich results in: 

Mac = 

ln 𝜓 MacMat 
2 𝑃 𝜎

(8) 

Thus, by using Eqs. (6) and (8) with a fixed value of 𝜓 MacMat , it is
ossible to compute the Kosugi hydraulic parameters of the soil macrop-
re domain without having to include them in the optimization scheme,
hich further reduces the number of parameters to optimize. The only
acropore hydraulic parameter required is 𝜃sMacMat . 

.2.3. Reducing non-uniqueness of the inverted 𝜎 and 𝜓 m 

Pollacco et al. (2013b) showed that it is possible to reduce the non-
niqueness of the unimodal Kosugi hydraulic parameters by constrain-
ng the relationship between 𝜓 m 

and 𝜎, taking advantage of the positive
inear correlation between ln 𝜓 m 

and 𝜎. Such correlation exists because
he large median pore size (small 𝜓 m 

), which is characteristic of coarsely
extured soils, is linked to a smaller dispersion in pore size (small 𝜎).
his relationship can be explained by the fact that when 𝜓 m 

is small,
he soil tends to have single-grain texture (monodisperse) and so 𝜎 tends
o be small. On the other hand, when 𝜓 m 

increases, corresponding to a
maller median pore size, which is characteristic of finer material, the
oil becomes aggregated, where the soil is made up of a range of grain
izes (polydisperse), and so 𝜎 tends to be larger. 

Pollacco et al. (2013b) found an empirical relation between these
wo parameters for a set of soils from the UNSODA ( Leij et al. , 1999 )
nd HYPRES ( Wösten et al. , 1999 ) databases and used it to reduce the
on-uniqueness of the inverted Kosugi hydraulic parameters. This rela-
ionship was also used by Fernández-Gálvez et al . (2019) to reduce the
on-uniqueness of the hydraulic parameters derived from infiltration
ests: 

= 𝑃 𝜎1 

(
ln 𝜓 m − 1 

)𝑃 𝜎2 (9) 

here P and P are two fitting parameters [0-1]. 
𝜎1 𝜎2 
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Table 2 

Nash–Sutcliffe efficiency coefficient ( NSE ) values and root mean squared errors ( RMSE ) from fitting bimodal Kosugi 𝜃( 𝜓) and K ( 𝜃) with different 
constraints of the hydraulic parameters according to Section 2.2 and using the soil data described in Pollacco et al. (2020) . 𝜃s is derived from 

total porosity, while 𝜎, 𝜃sMacMat and K s are optimized for all simulations. N opt is the number of optimized parameters in each case. 

Scenario N opt 𝜃r 𝜓 m 𝜎Mac 𝜓 mMac NSE 𝜃( 𝜓) NSLE K ( 𝜃) 𝑁𝑆𝐸 RMSE 𝜃( 𝜓) RMSLE K ( 𝜃) 𝑅𝑀𝑆𝐸 

A 7 Opt Opt Opt Opt 0.985 0.989 0.987 0.0078 0.0003 0.0040 

B 6 𝜃r ( 𝜎) Opt Opt Opt 0.973 0.987 0.980 0.0108 0.0004 0.0056 

C 5 𝜃r ( 𝜎) Opt 𝜎Mac ( 𝜓 MacMat ) Opt 0.972 0.972 0.972 0.0111 0.0005 0.0058 

D 5 𝜃r ( 𝜎) Opt Opt 𝜓 mMac ( 𝜓 MacMat ) 0.970 0.958 0.964 0.0112 0.0008 0.0060 

E 4 𝜃r ( 𝜎) Opt 𝜎Mac ( 𝜓 MacMat ) 𝜓 mMac ( 𝜓 MacMat ) 0.967 0.952 0.960 0.0117 0.0009 0.0063 

F 5 Opt Opt: 𝜓 m ( 𝜎) 𝜎Mac ( 𝜓 MacMat ) 𝜓 mMac ( 𝜓 MacMat ) 0.953 0.894 0.924 0.0133 0.0013 0.0073 

G 4 𝜃r ( 𝜎) Opt: 𝜓 m ( 𝜎) 𝜎Mac ( 𝜓 MacMat ) 𝜓 mMac ( 𝜓 MacMat ) 0.952 0.863 0.908 0.0138 0.0014 0.0076 

Fig. 2. Relationship between 𝜎 and ln 𝜓 m using Eq. (12) to reduce non- 
uniqueness of the hydraulic parameters for the set of studied soils. The two 
dashed lines represent the upper and lower limits of the dynamic constraint. 
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Nevertheless, the relationship shown in Eq. (9) is purely empirical
nd only applicable to the unimodal Kosugi hydraulic functions. There-
ore, a physical relationship between 𝜓 m 

and 𝜎 for the bimodal Kosugi
ydraulic functions is proposed, in which the feasible range of 𝜓 m 

is
erived from 𝜎. 

Similarly to Eq. (7) , the following expression is set for the matrix
ore space domain with P 𝜎 = 3: 

n 𝜓 mMac ⩽ ln 𝜓 m − 𝜎𝑃 𝜎 ⩽ ln 𝜓 MacMat (10)

here isolating 𝜓 m 

, gives: 

 

ln 𝜓 mMac + 𝜎𝑃 𝜎 ⩽ 𝜓 m ⩽ 𝑒 ln 𝜓 MacMat + 𝜎𝑃 𝜎 (11) 

nd using Eq. (6) gives: 

𝜓 MacMat 𝑒 
𝜎P 𝜎 ⩽ 𝜓 m ⩽ 𝜓 MacMat 𝑒 

𝜎𝑃 𝜎 (12) 

For illustration purposes, Fig. 2 shows the relationship between 𝜎
nd ln 𝜓 m 

using the dynamic physical range to reduce non-uniqueness
f the hydraulic parameters ( Eq. (12) ) for the set of studied soils de-
cribed in Section 3.1 and using the additional constraints correspond-
ng to scenario G in Table 2 . 

Fig. 3 illustrates an example of the normalized constrained bimodal
ydraulic functions, S e ( 𝜓) and K Se ( 𝜓), for three different values of 𝜎
0.75, 2.38, and 4.00) and its corresponding feasible range of 𝜓 m 

derived
rom Eq. (12) with S e ( 𝜃sMac ) = 0.85. The feasible range of 𝜓 m 

determines
he shape of the curves, with values between the solid and dotted lines
orresponding to each of the 𝜎 considered. The plot of the K Se ( 𝜓) curve
or 𝜎 = 4 and 𝜓 m 

= 15 shows a small artefact next to ln (1 + 𝜓) = 1 due
o the transformation ln (1 + 𝜓) in the x-axis. 

The dynamic physical feasible range of the optimized bimodal Ko-
ugi hydraulic parameters is indicated in Table 1 . As indicated in
ection 2.2.2 , 𝜓 MacMat is considered constant with a value of 100 mm. 

The proposed parsimonious bimodal Kosugi 𝜃( 𝜓) and K ( 𝜃) model re-
uires only four parameters ( 𝜓 m 

, 𝜎, K s and 𝜃sMacMat ) to be optimized;
ith 𝜓 MacMat set as a constant, 𝜓 mMac and 𝜎Mac derived from 𝜓 MacMat 
4 
sing Eqs. (6) and (8) , respectively, 𝜃r derived from 𝜎 through Eq. (5) ,
nd 𝜃s derived from total porosity. Moreover, the non-uniqueness be-
ween 𝜓 m 

and 𝜎 is also reduced by Eq. (12) using the assumption that
( 𝜓) and K ( 𝜃) are log-normal distributed. Therefore, the number of hy-
raulic parameters to be optimized is reduced from eight to four using
he principles of soil physics. 

. Material and methods 

.1. Experimental data used to validate the parsimonious bimodal 𝜃( 𝜓) 
nd K( 𝜃) 

The model is validated with data collected across the Canterbury
egion of New Zealand ( Pollacco et al. , 2020 ). The dataset has a sample
ize of n = 259 collected from soil profiles at 46 different sites. Sampled
ites include irrigated and non-irrigated pastoral farming land. Rainfall
cross the sites varies from 550 to 800 mm per year. Soil parent material
s sediments derived from quartzo-feldspathic hard sandstone, deposited
s either river alluvium or windblown loess ( Schmidt et al. , 2005 ). All
oils in this study have at least 60 cm depth of fine earth soil material,
ith most sites classifying to the Pallic soil order in the New Zealand
oil Classification ( Hewitt, 2010 ), correlating in the Soil Taxonomy to
aplusteps and Humustepts great groups. Fourteen sites have younger

oils that classify to the recent soil order ( Hewitt, 2010 ), correlating to
aplusteps and Ustifluvent great groups. 

Soil was sampled using undisturbed soil cores of 59 cm 

3 (5 cm di-
meter by 3 cm depth) used for 𝜃( 𝜓) measurements, and undisturbed
oil cores of 589 cm 

3 (10 cm diameter by 7.5 cm depth) used for K ( 𝜃)
easurements. To ensure consistent 𝜃 conditions at all sites, water was

nfiltrated two days prior to sampling. 𝜃( 𝜓) values were measured at
0, 70, 100, 500, 1000, 2000, 4000, 10,000 and 150,000 mm. Measure-
ents less than 1000 mm water pressure head were made on high-flow

eramic plates, with water pressure head applied by a hanging water
olumn, while measurements above 1000 mm water pressure head were
ade using pressure chambers ( Gradwell and Birrell, 1979 ). To measure
 ( 𝜓), the core samples were trimmed, saturated, and equilibrated to 10,
0, 70 and 100 mm water pressure head with a Buchner funnel appara-
us, before unsaturated hydraulic conductivity was measured using disc
ermeameters set to the equivalent water pressure heads for each mea-
urement. Additional detail about the experimental sites, soil sampling
nd soil physical measurements is given in Pollacco et al. (2020) . 

.2. Objective function and goodness of fit 

The fitting process that estimates the parameters used an adap-
ive differential evolution algorithm ( Qin et al., 2009 ; Zhang and
anderson, 2009 ) in the BlackBoxOptim.jl library (version 0.5.0, https:
/github.com/robertfeldt/BlackBoxOptim.jl ), written in the Julia lan-
uage. This procedure used an objective function and goodness-of-fit
efined below. 

The minimization process between the observed and the fitted values
sed a weighted objective function, WOF , which includes information

https://github.com/robertfeldt/BlackBoxOptim.jl
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Fig. 3. Example of normalized bimodal hy- 
draulic functions, S e ( 𝜓) and K Se ( 𝜓), for three 
different values of 𝜎 (0.75, 2.38, and 4.00) and 
the corresponding feasible range of 𝜓 m (solid 
and dotted lines represent hydraulic functions 
with lower and upper limit respectively) de- 
rived from Eq. (12) with S e ( 𝜃sMac ) = 0.85. 
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rom both 𝜃( 𝜓) and K ( 𝜃) data. The WOF is computed as follows: 

OF = 𝑤 

∑𝑙 

𝑖 =1 

[
𝜃( 𝜓 ) obs i − 𝜃( 𝜓 ) si m i 

]2 
∑𝑙 

𝑖 =1 

[
𝜃( 𝜓 ) obs i − 𝜃( 𝜓 ) obs i 

]2 
+ ( 1 − 𝑤 ) 

∑𝑘 

𝑖 =1 

[
ln 
(
1 + 𝐾 ( 𝜃) obs i 

)
− ln 

(
1 + 𝐾 ( 𝜃) si m i 

)]2 
∑𝑘 

𝑖 =1 

[ 
ln 
(
1 + 𝐾 ( 𝜃) obs i 

)
− ln 

(
1 + 𝐾 ( 𝜃) obs i 

)] 2 (13) 

here l and k refer to the total number of experimentally measured data
or the 𝜃( 𝜓) and K ( 𝜃) curves, respectively (in this case, l = 9 and k = 4).
( 𝜓) obs i and 𝐾 ( 𝜃) obs i correspond to the observed data derived from the
aboratory, and 𝜃( 𝜓) si m i and 𝐾 ( 𝜃) si m i correspond to simulated values of
he Kosugi model. The weighting parameter, w , rules the relative weight
ssigned to the fit of the 𝜃( 𝜓) and K ( 𝜃), with w set to 0.5 providing the
est compromise between the fit of 𝜃( 𝜓) and K ( 𝜃) simultaneously. 

The goodness of fit of the measured volumetric water retention data
o the simulated 𝜃( 𝜓) using the bimodal Kosugi model was assessed us-
ng the Nash–Sutcliffe efficiency coefficient, NSE 𝜃( 𝜓) , and the root mean
quared error, RMSE 𝜃( 𝜓) , as follows: 

S 𝐸 𝜃( 𝜓 ) = max 

⎧ ⎪ ⎨ ⎪ ⎩ 1 − 

∑𝑙 

𝑖 =1 

[
𝜃( 𝜓 ) obs i − 𝜃( 𝜓 ) si m 𝑖 

]2 
∑𝑙 

𝑖 =1 

[
𝜃( 𝜓 ) obs i − 𝜃( 𝜓 ) obs i 

]2 ; 0 
⎫ ⎪ ⎬ ⎪ ⎭ (14) 

MS 𝐸 𝜃( 𝜓 ) = 

√ √ √ √ √ 

∑𝑙 

𝑖 =1 

[
𝜃( 𝜓 ) obs i − 𝜃( 𝜓 ) si m i 

]2 
𝑙 

(15) 

he goodness of fit of the measured hydraulic conductivity data to the
imulated K ( 𝜃) using the bimodal Kosugi model was assessed using the
ash–Sutcliffe log efficiency coefficient, NSLE K ( 𝜃) , and the root mean

quared log error, RMSLE K ( 𝜃) , as follows: 

SL 𝐸 𝐾 ( 𝜃) = max 

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 
1 − 

∑𝑘 

𝑖 =1 

[
ln 
(
1 + 𝐾 ( 𝜃) obs i 

)
− ln 

(
1 + 𝐾 ( 𝜃) sim i 

)]2 
∑𝑘 

𝑖 =1 

[ 
ln 
(
1 + 𝐾 ( 𝜃) obs i 

)
− ln 

(
1 + 𝐾 ( 𝜃) obs i 

)] 2 ; 0 
⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭ 
(16) 

MSL 𝐸 𝐾 ( 𝜃) = 

√ √ √ √ √ 

∑𝑘 

𝑖 =1 

[
ln 
(
1 + 𝐾 ( 𝜃) obs i 

)
− ln 

(
1 + 𝐾 ( 𝜃) sim i 

)]2 
𝑘 

(17) 

The combined Nash–Sutcliffe efficiency coefficient, 𝑁𝑆𝐸 , and root
ean squared error, 𝑅𝑀𝑆𝐸 , are computed as the average of the previ-

us coefficients for 𝜃( 𝜓) and K ( 𝜃): 

𝑆𝐸 = 

𝑁 𝑆 𝐸 𝜃( 𝜓 ) + 𝑁 𝑆𝐿 𝐸 𝐾 ( 𝜃) 
(18)
2 

5 
𝑀𝑆𝐸 = 

𝑅𝑀 𝑆 𝐸 𝜃( 𝜓 ) + 𝑅𝑀 𝑆𝐿 𝐸 𝐾 ( 𝜃) 

2 
(19) 

.3. Scenarios in constraining bimodal soil Kosugi hydraulic parameters 

Different scenarios ( Tables 2 and 3 presented in the results section) to
erive the bimodal soil Kosugi hydraulic parameters from inverse mod-
lling are considered using the set of constraints described in Section 2.2 .
he scenarios are compared to the reference scenario (scenario A) where
ll hydraulic parameters are optimized except for 𝜃s which is derived
rom total porosity. Scenario B derives 𝜃r from 𝜎, removing one degree
f freedom in the optimization scheme; scenarios C and D use a fixed
alue for 𝜎Mac or 𝜓 mMac , removing two degrees of freedom; scenario E
xes simultaneously 𝜎Mac and 𝜓 mMac , removing three degrees of free-
om. Finally, scenarios F and G additionally include dynamically con-
training 𝜎 and 𝜓 m 

, where 𝜃r is freely optimised or 𝜃r is derived from 𝜎,
espectively. 

The relevance of the constraints presented in Section 2.2 to derive
he bimodal Kosugi hydraulic parameters is demonstrated by optimizing
he parameters exclusively from 𝜃( 𝜓) data. In order to compare to the
orresponding K ( 𝜃) curve, a known value of K s is provided from scenario
. Like in the previous approach, degrees of freedom are progressively

emoved by fixing 𝜎Mac and 𝜓 mMac (scenario H), additionally deriving

r from 𝜎 (scenario I), and dynamically constraining 𝜎 and 𝜓 m 

, with 𝜃r 
reely optimised and 𝜃r derived from 𝜎 (scenarios J and K respectively).

. Results 

.1. Parsimonious Kosugi bimodal 𝜃( 𝜓) and K ( 𝜃) model 

This section shows the goodness of fit for 𝜃( 𝜓) and K ( 𝜃) for different
cenarios where the hydraulic parameters are progressively constrained.
he sensitivity for each of the constraints is evidenced by the corre-
ponding decrease in the goodness of fit. 

The soil hydraulic parameters ( 𝜃r , 𝜎, 𝜓 m 

, K s , 𝜃sMacMat , 𝜎Mac , and
 mMac ) are optimized using the bimodal 𝜃( 𝜓) and K ( 𝜃) model de-
cribed in Section 2.1 . This is performed by matching the simulated 𝜃( 𝜓)
nd K ( 𝜃) values with the experimentally measured data described in
ection 3.1 . 𝜃s was not optimized but directly derived from total poros-
ty using measured values of the dry bulk density and particle density
 𝜃s equals 96.5% of total porosity). 

Table 2 summarises the NSE coefficients and RMSE of the fit between
bserved and simulated 𝜃( 𝜓) and K ( 𝜃) using the different constraints for
he hydraulic parameters, as described in Section 2.2 . Simulated values
or 𝜃( 𝜓) and K ( 𝜃) are obtained with the optimized hydraulic parameters
n each case (scenario A to G in Table 2 ). NSE values close to 1 as well
s RMSE values close to 0 indicate perfect agreement between observed
nd simulated 𝜃( 𝜓) and K ( 𝜃). 

Table 2 shows that the fit of the bimodal Kosugi hydraulic functions
hen optimizing the seven hydraulic parameters (scenario A) for the
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Table 3 

Nash–Sutcliffe log efficiency coefficient ( NSLE K ( 𝜃) ) values and root mean squared log errors 
( RMSLE K ( 𝜃) ) from fitting bimodal Kosugi K ( 𝜃) with different constraints of the hydraulic parame- 
ters according to Section 2.2 and using the soils described in Pollacco et al. (2020) . 𝜃s is derived from 

total porosity, 𝜎 and 𝜃sMacMat are optimized for all simulations, and K s is derived from scenario G in 
Table 2 . N opt is the number of optimized parameters in each case. 

Scenario N opt 𝜃r 𝜓 m 𝜎Mac 𝜓 mMac NSLE K ( 𝜃) RMSLE K ( 𝜃) 

H 4 Opt Opt 𝜎Mac ( 𝜓 MacMat ) 𝜓 mMac ( 𝜓 MacMat ) 0.113 0.0044 

I 3 𝜃r ( 𝜎) Opt 𝜎Mac ( 𝜓 MacMat ) 𝜓 mMac ( 𝜓 MacMat ) 0.310 0.0031 

J 4 Opt Opt: 𝜓 m ( 𝜎) 𝜎Mac ( 𝜓 MacMat ) 𝜓 mMac ( 𝜓 MacMat ) 0.661 0.0018 

K 3 𝜃r ( 𝜎) Opt: 𝜓 m ( 𝜎) 𝜎Mac ( 𝜓 MacMat ) 𝜓 mMac ( 𝜓 MacMat ) 0.709 0.0017 

Fig. 4. Comparison between estimated values 
of 𝜎 and 𝜓 m using scenario H and K ( Table 3 ) 
with estimated values of 𝜎 and 𝜓 m from sce- 
nario G ( Table 2 ). Straight line corresponds to 
the 1:1 line. 
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ntire data set used in Pollacco et al. (2020) is excellent, with a com-
ined NSE very close to unity ( 𝑁𝑆𝐸 = 0.987) and a combined RMSE very
lose to zero ( 𝑅𝑀𝑆𝐸 = 0.0040). It is expected that reducing the number
f optimized hydraulic parameters and constraining them would reduce
he goodness of fit. First, the number of optimized parameters was re-
uced to six (scenario B), deriving 𝜃r from 𝜎 using Eq. (5) as presented
n Section 2.2.1 , with a marginal decrease in the goodness of fit com-
ared to the scenario A ( Δ𝑁𝑆𝐸 = 0.007 and Δ𝑅𝑀𝑆𝐸 = 0.0016). In
he next step (scenario C), only five parameters were optimized, by also
etting 𝜎Mac as a function of 𝜓 MacMat through Eq. (8) with fixed val-
es for 𝜓 MacMat and P 𝜎 , as described in Section 2.2.2 . The goodness
f fit is slightly reduced compared to scenario A ( Δ𝑁𝑆𝐸 = 0.015 and
𝑅𝑀𝑆𝐸 = 0.0018). Next (scenario D), 𝜓 mMac was set as a function of
 MacMat through Eq. (6) with a fixed value for 𝜓 MacMat , while 𝜎Mac is
ptimized. This required optimizing five parameters, leading to a small
urther decrease in the goodness of fit compared to scenario A ( Δ𝑁𝑆𝐸 =
.023 and Δ𝑅𝑀𝑆𝐸 = 0.0020). As expected, 𝜎Mac is more sensitive than
 mMac to the fit. The combination of the previous two scenarios reduces

he number of optimized parameters to four when, apart from relating

r to 𝜎, simultaneously setting both 𝜎Mac and 𝜓 mMac as a function of
 MacMat (scenario E). The reduction in the goodness of fit compared to
cenario A is still negligible ( Δ𝑁𝑆𝐸 = 0.027 and Δ𝑅𝑀𝑆𝐸 = 0.0023). 

To further constrain optimization of the hydraulic parameters, the
ange of feasible values for 𝜎 and 𝜓 m 

is dynamically constrained using
q. (12) , as described in Section 2.2.3 , so that the combination of both
arameters is physically possible. Scenario F, with five optimized pa-
ameters, presents the results corresponding to the scenario where 𝜎 and
 m 

are dynamically constrained, with 𝜎Mac and 𝜓 mMac set a function of
 MacMat , and optimizing 𝜃r freely within its feasible range, as indicated

n Table 1 . Once again, the reduction of the goodness of fit compared to
cenario A remains negligible ( Δ𝑁𝑆𝐸 = 0.063 and Δ𝑅𝑀𝑆𝐸 = 0.0033).
inally, scenario G also includes deriving 𝜃r from 𝜎, reducing to four the
umber of optimized parameters, with satisfactory goodness of fit com-
ared to scenario A ( Δ𝑁𝑆𝐸 = 0.079 and Δ𝑅𝑀𝑆𝐸 = 0.0036). Therefore,
cenario G allows a reduction of the number of optimized parameters for
he bimodal Kosugi hydraulic model from seven to four without com-
romising the goodness of fit and while maintaining the hydraulic pa-
 b  

6 
ameters within their physical limits. Although it is well known that the
mpact of 𝜃r in the goodness of fit is significant, this result also highlights
he robustness of the constraint associated with this parameter. 

.2. Deriving a unique set of bimodal Kosugi hydraulic parameters from 

( 𝜓) data and K s 

To demonstrate the robustness of the proposed methodology, this
ection shows the relevance of the constraints presented in section 2.2 to
erive the bimodal Kosugi hydraulic parameters exclusively from 𝜃( 𝜓)
ata. The full set of hydraulic parameters also requires K s in order to
escribe the K ( 𝜃) curve, but this value can be independently obtained
ither by estimating from 𝜃( 𝜓) ( Pollacco et al., 2017 , 2013b ) or mea-
ured from infiltration tests ( Fernández-Gálvez et al. , 2019 ). Constrain-
ng the hydraulic parameters significantly improves the fit of the K ( 𝜃) ,
ithout using K ( 𝜃) data, and at the same time the estimated hydraulic
arameters are physically feasible. 

Soil hydraulic data sets do not systematically have experimental
easurements of both 𝜃( 𝜓) and K ( 𝜃) available to fit the full set of hy-
raulic parameters ( Pollacco et al. , 2017 ). The number of experimen-
ally measured data is larger and with less uncertainty for 𝜃( 𝜓) than for
 ( 𝜃). This is because K ( 𝜃) is technically more challenging to measure
nd has higher variability. For the following scenarios the set of exper-
mental data used in this work did not measure K s . Therefore, the esti-
ated value from scenario G in Table 2 was used as the reference value

o derive, using the constraints presented in Section 2.2 , the rest of the
ydraulic parameters of the bimodal Kosugi functions when only 𝜃( 𝜓)
ata and K s are available. As shown in Section 4.1 , computing 𝜎Mac and
 mMac from 𝜓 MacMat enables the optimized hydraulic parameters to be
ore physical and only slightly reduces the goodness of fit. Therefore,

n this section we compute 𝜎Mac and 𝜓 mMac from 𝜓 MacMat . 
The results presented in Table 3 are organized similarly to Table 2 ,

sing different sets of the constraints described in Section 2.2 for the
ptimization of the hydraulic parameters. Scenario H optimizes four hy-
raulic parameters, with 𝜎Mac and 𝜓 mMac set as a function of 𝜓 MacMat ,
nd optimizing 𝜃r freely within its feasible range. In scenario I the num-
er of optimized hydraulic parameters is reduced to three by using the
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B  
elationship between 𝜃r and 𝜎 ( Eq. (5) ), resulting in a small improve-
ent in the goodness of fit for K ( 𝜃). Scenario J required optimizing four
ydraulic parameters by dynamically constraining 𝜎 and 𝜓 m 

through
q. (12) and using an optimized value for 𝜃r , resulting in a significant
mprovement in the goodness of fit. Finally, scenario K optimized three
ydraulic parameters, similar to scenario J, but including the constraint
f 𝜃r with 𝜎, resulting in further improvement in the fit for K ( 𝜃). As
xpected, the NSLE K ( 𝜃) and RMSLE K ( 𝜃) are not as good as in Table 2 be-
ause the fit of the hydraulic parameters does not include K ( 𝜃) data. On
he other hand, using the constraints presented in Section 2.2 systemat-
cally improved the goodness of fit for the hydraulic parameters while
eeping them within their physical range. 

Fig. 4 compares the optimized 𝜎 and 𝜓 m 

hydraulic parameters es-
imated from 𝜃( 𝜓) and K s data using the constraint scenarios H and
, with the values estimated from 𝜃( 𝜓) and K ( 𝜃) data using scenario G,
hich was considered as the reference. The goodness of fit progressively

mproves from scenario H to K, while the dispersion in the comparison
etween predicted values to scenario G for 𝜎 and 𝜓 m 

decreases signifi-
antly. Coefficients of determination between predicted values from sce-
ario K and scenario G for 𝜎 and 𝜓 m 

are 0.999 and 0.934, respectively.
redicted values from scenario K slightly overestimate values obtained
rom scenario G for 𝜎 (slope = 0.982) and 𝜓 m 

(slope = 0.768). 

. Conclusions 

We present in this paper a procedure to derive physical and unique
oil hydraulic parameters to describe the bimodal Kosugi hydraulic func-
ions, 𝜃( 𝜓) and K ( 𝜃), from inverse modelling. The full methodology is
nly applicable to the Kosugi hydraulic model, where the representation
f the 𝜃( 𝜓) and K ( 𝜃) functions is directly related to the pore size distri-
ution. In the proposed approach, 𝜃s is derived from total porosity, 𝜃r 
s derived from 𝜎, 𝜓 MacMat is considered constant, and 𝜎Mac and 𝜓 mMac 
re derived from 𝜓 MacMat . We also use a dynamic physical constraint
n the relationship between 𝜎 and 𝜓 m 

to reduce non-uniqueness. The
onstraint for 𝜃r improves the goodness of fit, although the values used
n the expression relating 𝜃r with 𝜎 rely on the fit of experimental data
rom a specific New Zealand dataset, and it would require validation
ith data collected from other regions. We describe how to satisfactorily

educe the number of derived hydraulic parameters from eight to four,
hile ensuring that the derived parameters are physically consistent.
herefore, only 𝜎, 𝜓 m 

, 𝜃sMacMat and K s are optimized while 𝜎 and 𝜓 m 

re dynamically constrained. The methodology is easily implemented in
n inverse modelling scheme, and the physical constraints also speed up
he optimization process. 

The goodness of fit between the measured and simulated values from
he estimated hydraulic parameters of 𝜃( 𝜓) and K ( 𝜃) shows the rel-
vance of the constraints proposed. By progressively constraining the
ydraulic parameters, we demonstrate the benefit of the optimal com-
ination of constraints without compromising the fit of the 𝜃( 𝜓) and
 ( 𝜃) functions. Also, the robustness of the methodology is demonstrated
y deriving the bimodal Kosugi hydraulic parameters exclusively from
( 𝜓) and K s data, enabling satisfactory prediction of K ( 𝜃) without hav-
ng measured K ( 𝜃) data. 

The advantage of deriving optimal hydraulic parameters that are
hysically sound has a wide range of applications, such as the possi-
ility for better predicting the impact of soil management practices on
he pore size distribution ( Drewry et al. , 2019 ). Moreover, having a re-
uced number of hydraulic parameters that are physical reduces uncer-
ainty and allows an improved and faster optimization for characteriza-
ion of soil hydraulic properties for hydrological and climate modelling.
he benefits of using the constraints presented in this paper can also
e applied when the hydraulic parameters are inverted from time se-
ies of soil water content, the results for which will be presented in
 following paper. Additional analyses of constraining the Kosugi hy-
raulic parameters will also be performed for K s with methods derived
y Pollacco, et al. (2013b) and Pollacco et al . (2017) . Another benefit
7 
f the proposed methodology is that we expect to derive a unique set
f hydraulic parameters when the parameters are derived from particle
ize distribution or infiltration tests (e.g. Pollacco et al., 2020 ). 
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