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The knowledge of Mathematics teachers has been a very prominent focus 
of attention in the last decades. However, it leaves aside one of the 
dimensions involved in the development of this type of knowledge, 
specifically the knowledge of Mathematics teacher educators. In this 
paper, we discuss a mathematics teacher educator’s knowledge in the 
context of classes on Euclid’s division algorithm theorem in a Number 
Theory course for prospective secondary teachers. Some indicators of this 
specialized knowledge of mathematics teacher educators are presented 
and discussed.  
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Conocimiento especializado de un formador de profesores de Matemáticas 
para enseñar divisibilidad 
El conocimiento de los profesores de matemáticas ha sido un foco de 
atención muy activo en las últimas décadas. Sin embargo, tales focos 
dejan de lado una de las dimensiones involucradas en el desarrollo de 
dicho conocimiento, específicamente el conocimiento del formador de 
profesores de matemáticas. En este artículo, discutimos el conocimiento 
de un formador en el contexto de un curso de Teoría de números, para 
futuros profesores de secundaria, al probar el teorema del algoritmo de 
división de Euclides. Se presentan y se discuten algunos indicadores de 
este conocimiento del formador. 

Términos clave: Algoritmo de Euclides; Conocimiento especializado del profesor 
de matemáticas; Formador de profesores de matemática; Teoría de números 
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Mathematics Teachers Educators (MTEs) can be considered as “professionals who 
work with practicing teachers and/or prospective teachers to develop and improve 
the teaching of Mathematics” (Jaworski, 2008, p. 1). One of the main roles of 
MTEs is promoting the development of the knowledge of Prospective Teachers 
(PTs), in addition to showing them how to establish connections between their 
training and future practices. Considering that the knowledge of Mathematics 
Teachers (MT) presents specialized components, as suggested by the perspective 
of Mathematics Teachers’ Specialized Knowledge–MTSK (Carrillo et al., 2018), 
MTEs also need to have a special kind of knowledge, which should be related to 
the specificities of their job of teaching teachers. In this sense, this study intends 
to contribute to research about the knowledge of MTEs and its role in teacher 
education, particularly in the context of a Number Theory course for PTs. 

Even if the study of Number Theory has potentialities of many connections 
with school algebra (e.g., integer numbers, divisibility, prime numbers), many 
MTs understand this topic as being unrelated to their pedagogical practice (Smith, 
2002). Divisibility, for example, is frequently treated by PTs as being a trick or a 
procedure to be memorized, rather than a relation between integer numbers (Zazkis 
et al., 2003). 

The topic of divisibility is present since the earliest years of schooling, 
including the division of natural numbers, for example. Integer numbers are 
gradually introduced in the mathematics curriculum, along with some divisibility 
criteria. In this context, there is a natural underlying question: Why is Euclid’s 
division algorithm valid? This question is answered in the foundations of the 
Euclid’s Division Algorithm Theorem (EDAT), frequently presented and proved 
in Number Theory courses. 

The EDAT is a theorem which asserts the existence and the uniqueness of the 
quotient and the remainder and, as many other mathematical results, it is usually 
taught and proven by MTEs in the Number Theory courses. The proof is 
considered a type of mathematical discourse, a kind of narrative that must satisfy 
the established conventions, and which usually includes text and different visual 
resources, with the aim of mediating the mathematical ideas involved (Cooper & 
Zaslavsky, 2017).  

In Brazilian universities, as well as many other countries and regions of the 
world, mathematicians are mostly responsible for the mathematical training of 
secondary PTs. These professionals “act as teacher educators, without explicitly 
identifying themselves in this role” (Leikin et al., 2017, p. 2). In this scenario, our 
focus of research is the knowledge these professionals reveal while teaching. 
Occasionally being in the role of training PTs, they have solid knowledge on the 
scientific field of Mathematics, in which they aim to develop studies, acquiring 
their pedagogical content knowledge with practice (Fiorentini, 2004; Vasco & 
Climent, 2018) and, similarly to what occur with teachers, based on their previous 
experiences as students. 
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This paper is part of a research project which aims to understand and 
characterize, in the scope of Number Theory, the specialized knowledge of 
mathematicians who act as Mathematics Teacher Educators. For this article we 
address the following research question: What elements characterize the 
mathematical knowledge of a Mathematics teacher educator in relation to Euclid’s 
division algorithm theorem?  

LITERATURE REVIEW 
Although the knowledge of MTEs, referred to as Mathematics Teacher Educators’ 
Knowledge by Jaworski (2008), is different than both the knowledge of PTs and 
the knowledge of MTs (Jaworski, 2008; Zopf, 2010; Contreras et al., 2017), it 
shares common points with them, including knowledge about Mathematics, the 
pedagogy related to Mathematics, and the curriculum on which Mathematics 
teachers base their work, whereas the knowledge that is unique to it relates to the 
literature on the teaching and learning of Mathematics, teaching and learning 
theories, and research methodologies that investigate teaching and learning in 
schools/educational systems. 

Based on the Mathematical Knowledge for Teaching (MKT) model (Ball et 
al., 2008), Zopf (2010) observes that the difference between the knowledge of 
MTEs and the knowledge of MTs lies in the mathematical content. While the latter 
teach Mathematics, the former teach the knowledge needed to teach Mathematics. 
The learning goals are also different, since children learn Mathematics for 
themselves, while teachers learn Mathematics for teaching their students. 
Therefore, Zopf (2010) proposes the Mathematical Knowledge for Teaching 
Teachers (MKTT) in order to describe the knowledge of MTEs, which includes 
the knowledge that is necessary for teaching. 

Similarly, Contreras et al. (2017) bases himself on the MTSK model (Carrillo, 
et al., 2018) to state that the knowledge mobilized by MTEs and teachers have 
differences when considering Mathematical Knowledge (MK) and Pedagogical 
Content Knowledge (PCK), as the knowledge of MTEs is broader in terms of reach 
and depth, i.e., it has a more coherent and solid theoretical structure; moreover, 
MTEs have more experience with the validation/construction of mathematical 
knowledge. On the other hand, PCK relates to the characteristics of learning of 
PTs, to how the contents should be taught in teacher education, and to the different 
ways to organize the content of teacher education.  

The proposals of Zopf (2010) and Contreras et al. (2017) have common 
features beyond being grounded in Shulman’s model and considering what is 
already known about the teacher’s knowledge to create models pertaining to the 
knowledge of MTEs. One of these features concerns the teacher education goals: 
in Zopf’s proposal, the teacher education goal is developing the Mathematical 
Knowledge for Teaching (Ball et al., 2008) of PTs, while in Contreras et al.’s 
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proposal, it is developing their specialized knowledge (Carrillo, et al., 2018). For 
more information on the development of specialized knowledge in teacher 
education, see Escudero et al. (2021) and Carrillo et al. (2019). 

Furthermore, the models developed by these two research groups are situated 
in very specific contexts, involving the observation of the practices of experienced 
MTEs and researchers who already work to develop MKT or MTSK in teacher 
education. However, when taking into account the peculiarities of MTEs such as 
the one who participated in our investigation, who are also mathematicians with 
no prior contact with the MTSK model, instead of trying to base ourselves on the 
perspective of Contreras et al. (2017), we used the model to search for indicators 
of a MTE’s knowledge, revealed while the participant acted in a teacher education 
context, focusing on his MK. Thus, our more global aim is also to contribute with 
the expansion of the MTSK model to the MTE knowledge, also considering the 
results from Contreras et al. (2017). 

MATHEMATICS TEACHERS’ SPECIALIZED KNOWLEDGE: 
THEORETICAL PERSPECTIVE 

In Carrillo et al. (2018), the authors discuss the MTSK model. Teacher’s 
professional knowledge is considered specialized, and the specificities of the 
mathematical knowledge are considered within three subdomains: the Knowledge 
of Topics (KoT), the Knowledge of the Structure of Mathematics (KSM) and the 
Knowledge of Practices in Mathematics (KPM), similarly to PCK, which is also 
subdivided into three subdomains: the Knowledge of Mathematics Teaching 
(KMT), the Knowledge of Features of Learning Mathematics (KFLM), and the 
Knowledge of Mathematics Learning Standards (KMLS). At the center of the 
model stands the domain of the teacher’s beliefs, which are related to all 
subdomains. Even if we consider the complexity of teachers’ knowledge and the 
intertwined nature of all its dimensions—mathematical and pedagogical, here we 
focus our attention on the Mathematical dimensions of a mathematician knowledge 
who acts as Teacher Educator. 

Knowledge of Topics 
KoT describes what and in what way Mathematics teachers know the topics they 
teach. It involves thoroughgoing knowledge of mathematical content, such as 
concepts, facts, rules, and theorems (Carrillo et al., 2018). This subdomain 
includes the types of problems to which contents can be applied, with their contexts 
and meanings, properties and principles, procedures and definitions, connections 
between items pertaining to the same topic, and ways of representing these 
contents. 

It includes four categories related to contents within the definable areas of 
knowledge making up the Mathematics syllabus: procedures; definitions, 
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properties and foundations; registers of representation and phenomenology and 
applications.  

The procedures category refers to teachers’ knowledge on how to do (e.g., find 
the solution using algorithms, both conventional and alternative); “when to do” 
(e.g., sufficient, and necessary conditions to apply an algorithm); why something 
is done in a certain way (e.g., the principles underlying algorithms), and the 
characteristics of the resulting object. 

The definitions, properties and foundations category comprises knowledge of 
mathematical properties and their underlying principles, in addition to knowledge 
of mathematical definitions, including how to choose the appropriate sets of 
properties to characterize mathematical objects. Moreover, the teacher’s 
knowledge of images and examples of mathematical objects also falls within this 
category. 

The registers of representation category concerns the knowledge of different 
ways in which a topic can be represented, e.g., arithmetic and algebraic registers, 
natural language, graphs, pictographs, and so on. 

Finally, the phenomenology and applications category is related to the 
teacher’s knowledge of phenomena or situations, organized by topics (Gómez & 
Cañadas, 2016), also including the teachers’ awareness of their uses and 
applications. 

Regarding KoT, in the context of the Number Theory, particularly Euclid’s 
division algorithm theorem, the knowledge of MTEs includes, for example, 
definitions and results used for proving it, such as the definition of absolute value 
and the well-ordering principle. 

Knowledge of the Structure of Mathematics 
KSM describes the teacher’s knowledge of connections between mathematical 
items. There are two types of connections: temporal connections, related to 
sequencing, associated with the increase in complexity or with simplification; and 
inter-conceptual connections, related to the demarcation of mathematical objects 
(Carrillo et al., 2018). It is divided into four categories, as follows:  

In the connections based on increased complexity category, an item is related 
to posterior content, and elementary Mathematics is viewed from a more advanced 
perspective (Klein, 1908). On the other hand, the connections based on 
simplification category acknowledges the links of present with past content; thus, 
more advanced Mathematics is contextualized in a more elementary content. 

The auxiliary connections category concerns the necessary participation of an 
item in major processes. Finally, the transverse connections category pertains to 
contents with common features related by an underlying concept.  

In the scope of Euclid’s division algorithm theorem, the MTE’s KSM includes, 
for example, connections between it and posterior topics in the Number Theory 
course, such as linear congruence. 
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Knowledge of Practices in Mathematics 
Practice in Mathematics means that the object of said practice is Mathematics 
itself. The focus is on the work of doing mathematics, rather than teaching them. 
It is defined as any mathematical activity carried out systematically, representing 
a pillar of mathematical creation and conforming to a logical basis for the creation 
of rules (Carrillo et al., 2018, p. 243). The knowledge of Mathematics teachers 
about these practices involves proving, justifying, and defining, making 
deductions and inductions, and giving examples and understanding the role of 
counterexamples.  

KPM can be general or specific to a topic. The former includes knowledge 
about how Mathematics is developed beyond considering any concept (e.g., 
knowing the meaning of necessary and sufficient conditions). It relates to the 
knowledge involved in performing general mathematical tasks, along with 
knowledge of how a demonstration can be applied, of the different characteristics 
of definitions (Mamona-Downs & Downs, 2016), of the argumentation practices 
available (Stylianides et al., 2016), of heuristic approaches to problem solving, and 
of theory-building practices. On the other hand, the latter relates to a specific 
instance of general KPM associated with the peculiarities of the topic in question 
(Carrillo et al., 2018), and concerns, for example, the use of heuristic strategies to 
address specific topics.  

In summary, KPM pertains to the teacher’s knowledge about ways of 
applying, validating, exploring, generating, and communicating mathematical 
knowledge (Delgado-Rebolledo & Zakaryan, 2019). The KPM of MTEs includes, 
for example, to know the different types of proof, such as proof by contradiction, 
used to justify the fact that the remainder is less than the divisor in Euclid’s division 
algorithm theorem, for instance. 

CONTEXT AND METHODS 
Our investigation had a qualitative approach, with adoption of an instrumental case 
study (Stake, 2006) as research method to obtain information about the subject’s 
knowledge that could be included in the theory about the knowledge of MTEs. In 
order to answer the research question, we discuss the moment in which an MTE 
presents and proves Euclid’s division algorithm theorem in a Number Theory 
course for secondary PTs. The participant Andre (a pseudonym) has a Bachelor’s 
degree, a Master’s degree, and a PhD in Mathematics. Since completing the 
master’s degree, his research interests lie in Algebra and Geometry. Andre has 
been working at the mentioned university for five years, where he teaches students 
of different undergraduate courses, such as Mathematics, Physics and Chemistry. 
In the period during which his classes were observed, Andre had been teaching the 
Number Theory course to undergraduate Mathematics students for the second time 
in his academic career. 
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Andre's case study is part of a larger research which aims to understand the 
knowledge of MTEs, in particular those who teach Number Theory to prospective 
upper and lower secondary mathematics teachers. The results reported in this paper 
are exclusively based on this participant. 

The Number Theory course in this study is a 15-week course, offered once in 
each semester as a common discipline for prospective teachers and undergraduate 
Mathematics students. Furthermore, the PTs are supposed to take these classes in 
the 6th semester of their undergraduate course. The course includes standard 
contents of a first course in Number Theory, such as divisibility, prime numbers, 
linear congruence, Diophantine equations and primitive roots. 

Data collection occurred between March and July 2018, in a Brazilian 
university, comprising interviews, audio recordings and field notes. The first 
interview was conducted at the beginning of the semester, to clarify points 
regarding topics that would be taught by the MTE; and a second interview was 
carried out at the end of the semester, looking for to better understand aspects of 
the MTE's practice and knowledge that remained unclear, as well as offering 
feedback on the results of the research. 

Class observations and recordings aimed at identifying the evident specialized 
knowledge in the MTE's practice. There were two types of short interviews: before 
each class, with the objective of obtaining his previous image of the lesson 
(Schoenfeld, 2000; Ribeiro et al., 2012), and after each class to discuss aspects 
associated with the reasons that led Andre to follow a certain way. 

In its turn, the researcher's field notes aimed to fully transcribe the content 
written by the MTE on the blackboard, as well as providing the writing of 
comments and questions about the events of each class. Starting from the 
transcript, each class was divided in episodes (Ribeiro et al., 2012), and in this 
paper we discuss one of such episodes, where Andre proves Euclid’s division 
algorithm theorem, to present and discuss his knowledge. For clarity purposes, 
only the transcript of this episode had its lines numbered. 

For each episode, the MTE’s mathematical knowledge was identified and then 
the evidence and the content of that revealed knowledge were organized, structured 
by the subdomain to which it refers. For the analysis of the Mathematical 
Knowledge revealed by Andre, we used the categories proposed by Carrillo et al., 
(2018) assigning an acronym to the indicators (e.g., KSMt1) consisting of the 
initials of the subdomain in question, plus the representative letter(s) of the 
associated category, followed by a sequential number according to the order they 
appear in the text (Table 1). For clarity purposes, this table only includes the 
categories present in the analysis. To highlight the knowledge revealed by Andre, 
we inserted a parenthesis with these acronyms accompanied by a brief description 
of the MTE’s knowledge.  

Table 1 presents a synthesis of the subdomains of MK and the categories in 
which they are divided. 
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Table 1 
Subdomains and categories of Mathematical Knowledge 

Subdomains Categories Acronyms  

KoT Definitions, properties, and foundations KoTd1 

Phenomenology and applications KoTph1 
Procedures KoTp1 

Registers of representation KoTr1 
KSM Connections based on simplification KSMs1 

Connections based on increased complexity KSMc1 
Transverse connections KSMt1 

KPM Ways of proceeding KPMwp1 
Ways of validating KPMwv1 

Note. KoT=knowledge of topics; KSM=knowledge of the structure of mathematics; 
KPM=knowledge of practices in mathematics. 

ANALYSIS AND DISCUSSION 
This section will present an overview of the episode selected for analysis in this 
paper. First, we present a brief interview, conducted before class, in which Andre 
presents his goals for the day. Then, we present and discuss the episode in which 
Andre proves EDAT, analyzing his mathematical knowledge. Subsequently, we 
include the after-class interview, in which the MTE comments on the proof of 
EDAT. 

The interview before class 
Researcher:  What are your goals for today’s class? 

Andre:  Today’s class? Well, I’m going to introduce prime numbers, right? I’m 
already introducing them with divisibility properties. I can show [the 
students] that every positive integer is a finite product of primes. Only 
existence and uniqueness require a little more time, but with existence 
alone I can already prove that there are an infinite number of primes, and 
that there are infinitely many primes of the form 4𝑘 + 3. If there’s time 
left I intend to introduce the greatest common factor and some properties 
of the greatest common factor, such as Bezout’s theorem... Oh! And 
Euclid’s division algorithm theorem, I’m introducing it today! With 
proof. 

Based on the interview before class, we can note that the MTE intends to present 
several results in this class, as he does in all classes. This gives a general idea of 
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how his classes are organized, always focusing on presenting as much content as 
possible. Andre’s remark that he plans to present the proof of EDAT refers to the 
interview held at the beginning of the semester, in which he was asked about the 
importance of proofs. 

EDAT’s introduction and its discussion 
Andre had introduced the topic of divisibility at the end of the previous class, by 
presenting its definition and some basic properties. The analyzed episode is part of 
a class, which the teacher educator started by defining prime numbers. Thereafter 
he proved the existence part of the Fundamental Theorem of Arithmetic1, that there 
are infinite prime numbers, and he defined Greatest Common Factor2 as well as he 
proved some properties3. In the episode described below, the MTE introduces and 
proves Euclid’s Division Algorithm Theorem (EDAT): considering 𝑎 ∈ ℤ and 𝑏 ∈
ℤ!∗ , there are unique integers r and q, such that 𝑎 = 𝑏𝑞 + 𝑟, where 0 ≤ 𝑟 < 𝑏. 

Andre introduces EDAT (Figure 1) by drawing the students’ attention to the 
connections between it and linear congruence, which will be presented later in the 
course. Andre also notes that EDAT must be proved in two parts: existence and 
uniqueness.  

 
Figure 1. Euclid’s division algorithm theorem written on the blackboard 

He starts by considering the set 𝑆 of all possible non-negative remainders of the 
division of 𝑎 by 𝑏 (Figure 2). Naturally, the first step is to prove that 𝑆 is not empty, 
so Andre tells the students to find an integer 𝑥 such that the expression 𝑎 − 𝑏𝑥 is 
non-negative, which they are unable to do. One of the students apologizes for his 
incorrect answer, and Andre discusses the importance of the students asking 
questions as well as the need for observing the details of the theorem’s wording, 
after which he provides the correct answer (Figure 3). Since 𝑆 is a non-empty set 
of non-negative integers, it has a minimal element, referred to by Andre as 𝑟. 
Subsequently, the MTE proves that this element satisfies the theorem’s conditions 
(Figure 4), as the existence of 𝑟 implies the existence of 𝑞. 
280  (Writing on the blackboard)  

281 Andre: Now it’s time for tonight’s main event! Euclid’s Division Algorithm 
Theorem. Let’s start by considering two 

 
1 Any integer greater than 1 can be written as a finite product of prime numbers. 
2 The Greatest Common Factor of two integer numbers is the largest positive integer number that 
divides each one of these integers. 
3 Such as “If 𝑑 = 𝑔𝑐𝑑(𝑎, 𝑏) 	⇒ 𝑔𝑐𝑑 ,!

"
, #
"
- = 1”. 
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282  integers, 𝑎 and 𝑏. Actually, I’m leaving 𝑏 as positive so there are no 
problems. So 

283  there exist, and are unique, integers 𝑞 and 𝑟, such that 𝑎 is equal 𝑏 times 
𝑞, plus 𝑟, with 𝑟 being positive, 

284  but strictly smaller than 𝑏. Ok? 

Andre’s choice of making 𝑏 > 0 [282] means that he is introducing a particular 
version of EDAT. In the general version, the only condition is that 𝑏 needs to be a 
non-zero integer. The MTE probably did this to save time, since considering 𝑏 ≠
0 would divide the proof into more cases. Another possibility is that Andre 
believes that proving the theorem while keeping 𝑏 positive would imply the 
validity of this proof also in case it was negative, although he does not mention 
this to the students. Regardless of the proof, it would be important to present the 
full version of EDAT, since this is the one that should be remembered by the 
students, especially those hoping to become teachers. 
285 Andre: So, in a few classes taking place  

286  sometime in the future, the division algorithm will be a direct 
287  consequence of the congruencies we’ll find when studying the 

arithmetic modulo 𝑛. But for now, we’re  
288  proving it with the tools that we have. 

In the above transcript, Andre establishes a connection between EDAT and linear 
congruence [286-287], two different content items with features in common, 
connected by the underlying notion of divisibility (KSMt1–Knowledge of 
transverse connections between Euclid’s Division Algorithm Theorem and linear 
congruence). Andre also explicitly makes connections between EDAT and other 
concepts during an interview at the beginning of the semester: 
Andre:  [...] for example, I could consider... the division algorithm simply as 

modular arithmetic. Once we know ℤ!, we know that... every number 𝑧 is 
congruous with some alpha module n. Right? But what does that mean? 
That it always exists and is unique. This is Euclid’s division algorithm 
theorem. That’s pretty much the same thing, isn’t it? So, I can prove 
Euclid’s division algorithm theorem, but when I prove that the ℤ! ring is 
well defined, that everything works correctly, Euclid’s algorithm can be 
seen as a… consequence. Right? (Transcript of the initial interview). 

Andre expressed these connections in the initial interview when he was asked 
about the topics, he considers fundamental in the Number Theory course. When 
stating that EDAT can be seen as a consequence of modular arithmetic, he 
establishes a connection based on increased complexity, viewing EDAT from a 
more advanced point of view (KSMc1–Knowledge of connections between EDAT 
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and modular arithmetic based on increased complexity). On the other hand, in the 
same interview, Andre establishes another type of connection: 
Andre:  If I’m talking to an elementary school student, I could say: imagine that we 

have a set of caramels. I want to know if I can make small bags with three 
caramels each, and then check if every small bag I have has three caramels. 
This is divisibility. [...] Euclid’s algorithm [...] would be understood by the 
child as the fact that I can take the small bags with three caramels each, 
and... know exactly how many caramels the spare bag has. (Transcript of 
the initial interview). 

In the above transcript, when asked about an elementary school student’s 
understanding of divisibility and Euclid’s division algorithm, Andre contextualizes 
advanced Mathematics (EDAT) in elementary Mathematics (divisibility) 
(KSMs1–Knowledge of connections between EDAT and divisibility based on 
simplification). 

When he states that the theorem should be proven in two parts (existence and 
uniqueness) [289-291], Andre demonstrates that he knows how to prove existence 
and uniqueness (KPMwp1–Knowledge of how to prove existence and uniqueness 
by splitting the proof into two parts). 
289 Andre: Here [pointing to the blackboard in Figure 1] it says that my proof must 

290  be written in two parts. First I need to prove they [𝑞 and 𝑟] exist, and 
then I need 

291  to prove they are unique. By now, we know that the most 
292  difficult part is the existence. Regarding the uniqueness, let us suppose 

that there exist two, and 
293  then see that they are the same. 

In addition, Andre knows how to perform the general mathematical task of proving 
uniqueness [292-293]: assuming there exists two, and then verifying that they are 
the same (KPMwp2–Knowledge of how to prove uniqueness). 
295  (Writing on the blackboard)  
296 Andre: First, let’s consider this set [Figure 2]. So, let’s take all the sets 

(integers) of the form 𝑎 − 𝑥𝑏, 
297  where 𝑎 and 𝑏 are the numbers I assigned them at the beginning, 𝑥 is an 

integer and 𝑎 − 𝑥𝑏 is 
298  non-negative. Ok? Let’s take this subset of integers. 

Here, it is possible to identify a heuristic approach to this topic: the choice of an 
appropriate set 𝑆 of natural numbers [296-298] to analyze a property of that set, 
namely, the existence of a minimal element. 
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Figure 2. Set S written on the blackboard 

When he starts working with set	𝑆, Andre notes that because it is non-empty, since 
it is a subset of non-negative integers [300-301], it admits a minimal element 
(KoTd1–Knowledge of the non-empty property of any set of non-negative 
integers). 
299 Andre: I would like to prove that it [𝑆] is not  
300  empty. Because it is not just a subset of integers. It is a subset of 
301  non-negative integers. This is one of my hypothesis, that these integers 

are non-negative. 
302  We know that a non-empty subset of ℤ"# always admits a minimal 

element. Let’s 
303  explore this. First, I have to prove that it is not empty. To this 

304  end, it is enough to show there is an element in there. Am I right? What 
is that element? 

Then, he reminds the students of the fact that all sets composed of non-negative 
integers have a minimal element [302], i.e., he refers to the well-ordering principle 
(KoTd2–Knowledge of the well-ordering principle according to which all sets of 
non-negative integers have a minimal element). When he refers to the non-negative 
integers as ℤ#$ [302], Andre shows that he knows how to represent this subset of 
integers (KoTr1–Knowledge of how to represent ℤ#$ for non-negative integers). 
Additionally, he observes that to prove that 𝑆 is non-empty, it is necessary to 
exhibit one of its elements [303-304] (KPMwv1–Knowledge of how to justify that 
a set is non-empty). 

Subsequently, Andre tries to exhibit one of the elements of 𝑆, based on this 
set’s characteristics. 
319 Andre: No, that is okay. Do not apologize. Do not apologize, this question 

allows us to see 

320  the details, that every detail that is written is important. It’s not 𝑎 and 
it’s not 𝑥 = 0. What is 

321  the number that we know is positive? It is 𝑏. So, to get around this, I 
would put the 

322  minus in 𝑎 to obtain a positive sum. The only problem is that I do not 
know if 𝑎 is 

323  positive or negative. […] 

324  (Writing on the blackboard) 
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325  So, I obtain minus the absolute value of 𝑎. Now there’s no problem. 
Since I have the 

326  absolute value of 𝑎, I can calculate 𝑎 plus the absolute value of 𝑎 
multiplied by 𝑏. 𝑏 is strictly 

327  positive, based on the theorem’s initial condition. So, this means that 
there is at least one. 

328  Thus, this value is greater than or equal to zero. 

When discussing the importance of the students’ questions [319-320], he expresses 
his belief of the need to perceive and consider all the theorem’s conditions, as well 
as his understanding that this is an aspect to be developed together with his 
students. By choosing an appropriate 𝑥, such that 𝑎 − 𝑥𝑏 ≥ 0, Andre manages to 
exhibit one of the elements of 𝑆 [325], showing that this set is not empty [327] 
(KoTp1–Knowledge of how to demonstrate that S is non-empty). 
330 Andre: So, 𝑆 is not empty. If non-empty 𝑆 is a subset of it (ℤ"#), 𝑆 admits a 

minimal element. If there is a 

331  minimal element, I must call it something. The magic is that I call it 𝑟. 

Here, Andre uses the well-ordering principle (KPMwp3–Knowledge of how to use 
the well-ordering principle to prove EDAT) to draw attention to the fact that 𝑆 has 
a minimal element [330], and names this element 𝑟 [Figure 3]. 

 
Figure 3. Proof that S is non-empty, written on the blackboard 

After naming r, the minimal element of set 𝑆 [332], Andre tries to justify that it 
satisfies the conditions of EDAT, i.e., he will verify if 𝑟 ≥ 0 and 𝑟 < 𝑏 (KPMwv2–
Knowledge of how to justify that the minimal element of 𝑆 meets EDAT’s 
conditions). Thus, Andre notes that if 𝑟 is an element of 𝑆, then 𝑟 ≥ 0 [333-334]. 
332 Andre: Then let us see if this r is  
333  exactly what I want. Ok! First property: 𝑟, which I already know is 
334  greater than or equal to zero. Since 𝑟 is an element of this form, the 

minimal element of this set [set 𝑆], 
335  is an element of it. All elements in this set are non-negative, including 

𝑟. 

In the next excerpt, Andre reveals that he knows how to construct set 𝑆 (KPMwp4–
Knowledge of how to construct the necessary set S of non-negative integers that is 
in the core of the proof of EDAT, satisfying the theorem’s conditions) such that its 
minimal element (𝑟) satisfies the conditions of EDAT (𝑎 = 𝑏𝑞 + 𝑟) [337-340]. 
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337 Andre: What is the set that I considered? I chose exactly all integers  
338  of the form 𝑎 − 𝑥𝑏. This means that I’m considering all relations  
339  in which 𝑎 is equal to 𝑥 times 𝑏 plus one integer. Thus, set 𝑆 is 

chosen  

340  precisely to satisfy this relationship. Am I right? So, I need to define 
[…]  

341  the smallest of the remainders, and then check if it satisfies 
342  this condition [𝑎 = 𝑏𝑞 + 𝑟, in the theorem]. 

Continuing the proof, Andre intends to prove, by contradiction [380-382], that the 
remainder is less than 𝑏.  
379  (Writing on the blackboard)  
380 Andre: I need to prove that 𝑟 is strictly less than 𝑏. Let’s 
381  prove it by contradiction. So, […] I will assume that 𝑟 is greater than 

or equal to 𝑏. It’s the 
382  opposite. Thus, this will result in a contradiction. 

Figure 4 shows what Andre wrote on the blackboard about this. 

 
Figure 4. Proof that 𝑟 is strictly less than 𝑏 

Now, he explains that to do this, it is necessary to deny the thesis [400-401] 
(KPMwv3–Knowledge of the steps of a proof by contradiction). Then, after 
assuming that	𝑟 ≥ 𝑏, Andre does some algebraic manipulations and considers   
𝑞 = 𝑥, leading to the conclusion that 𝑟 − 𝑏 belongs to 𝑆, which contradicts the fact 
that 𝑟 is the minimal element in this set. This kind of proof by contradiction is 
frequently used in Algebra. When the thesis is contested, a conflict in relation to 
the minimality of an element arises (KPMwv4–Knowledge of how to prove that 
the remainder is less than the divisor based on a conflict in relation to the 
minimality of an element of set 𝑆). 
400 Andre: Finding a contradiction means that the 
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401  hypothesis I’m basing myself on is absurd. So, it is impossible for 𝑟 
to be greater than or equal 

402  to 𝑏, which implies that 𝑟 must be strictly smaller than 𝑏. In this way, 
we 

403  (…) prove that there are those integers  
404  𝑞 and 𝑟 satisfy the initial condition. 

Once the existence of the quotient and the remainder has been proven, Andre 
begins proving the uniqueness of these elements by assuming that there are a pair 
of quotients and a pair of non-negative remainders that are smaller than the divisor, 
both satisfying the theorem’s decomposition (Figure 5).  

 
Figure 5. Two decompositions written on the blackboard. 

Thus, he concludes that each of these pairs are equal, i.e., based on the supposition 
that there are two Euclidean decompositions, he was able to prove that these 
decompositions coincide. Both decompositions must result in the same dividend, 
so by conveniently rearranging this equation, Andre concludes that the divisor 
must divide the difference of the remainders (Figure 6).  

  
Figure 6. Conclusion written on the blackboard 

Then, since the difference of the remainders is smaller than the divisor, the 
conclusion is that the only possibility for this difference is zero, which implies that 
the remainders are equal. 
405  (Writing on the blackboard) 

406 Andre: I’ve found these two numbers, now I have to prove that both 
407  are unique. And to prove that, like I said earlier, let’s assume 

408  there are two. What does that mean? That there are 𝑞, 𝑞′ and 𝑟, 𝑟′ 
integers such that 𝑎 can be expressed 

409  as 𝑞$𝑏 + 𝑟′ or as 𝑞𝑏 + 𝑟. So we have two representations of 𝑎 in the 
form we want. 
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This equality and the fact that the divisor is positive allows inferring that the 
quotients’ difference is also zero; thus, the quotients are equal (Figure 7). 

 
Figure 7. Conclusion written on the blackboard 

By assuming that there are a pair of quotients (𝑞, 𝑞′) and a pair of non-negative 
remainders (𝑟, 𝑟′) that are smaller than the divisor, both satisfying the theorem’s 
decomposition (Figure 5), Andre evidences that he knows how to prove the 
uniqueness of these elements [406-409] (KPMwp5–Knowledge of how to prove 
the uniqueness of the remainder and the quotient in the proof of EDAT). 
412  (Writing on the blackboard) 
413 Andre: So, let’s consider that I can write zero as 𝑎 − 𝑎. There’s 
414  nothing complicated about that, right? But now the same thing 
415  has two different descriptions. So, this equality is 𝑞 − 𝑞′𝑏 plus 𝑟 −

𝑟′. First 
416  I know that 𝑏 divides 𝑟′ − 𝑟. It’s because if it is equal to zero, I can 

put 𝑟′ − 𝑟 on the other 
417  side, so if 𝑟′ − 𝑟 is equal 𝑞′𝑏, that means 𝑏 is a divisor of both of 

them. 

After some algebraic manipulations and using the concept of divisibility [413-415] 
(KoTd3–Knowledge of the fact that, according to the definition of divisible, an 
integer 𝑎 divides an integer 𝑏 if 𝑏 is a multiple of 𝑎), Andre states that the divisor 
must divide the difference of the remainders [415-417] (Figure 6). Subsequently, 
he claims that the absolute value of this difference is less than 𝑏 [418]. 
418 Andre: Next, I know that 𝑟 − 𝑟′ is smaller than 𝑏. That’s explained by the 

hypotheses. (…) 

419  This proof will differ a bit from the proof 
420  in the textbook, because I condensed it a little. In the textbook, 

there’s another one that is 
421  equivalent to it. 

Here, Andre mentions that he opted for a different proof than the one described in 
textbook [418-421], showing his preference for a shorter, or, as the MTE himself 
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observes, more condensed version of the proof of uniqueness, which students may 
find a little harder to understand. 
425  (Writing on the blackboard) 

426 Andre: So, for the same reason I told you 
427  that 𝑟 − 𝑟′ is smaller than 𝑏, 𝑟$ − 𝑟 is also smaller than 𝑏. […] 
429  But when we have these two differences, the absolute value of 𝑟 −

𝑟′ is 
430  less than the absolute value of 𝑏, which in this case is 𝑏 because I'm 

assuming it’s 
431  positive. Right? Ok. But since it's the absolute value, it implies that 

𝑟 = 𝑟′. 

Considering the first and second remarks, Andre concludes that 𝑏 divides the 
difference of the remainders and, at the same time, the difference of the remainders 
is less than 𝑏. Thus, this difference has to be zero, so 𝑟 = 𝑟′. 
440  (Writing on the blackboard) 

441 Andre: And if 𝑟 = 𝑟′, then (𝑞 − 𝑞$)𝑏 = 0, but if 𝑏 is strictly positive, then 
442  𝑞 must be equal to 𝑞′. 

Based on the fact that 𝑟 = 𝑟′ and that 𝑏 is positive, Andre concludes that 𝑞 = 𝑞′ 
[441-442], thus successfully proving EDAT (Figure 7).  

We can note that this way of proving the theorem is very succinct (especially 
in relation to uniqueness), demonstrating the MTE’s beliefs about elegant proofs. 
Andre was asked about proofs in the after-class interview and clarified his views 
on this matter, as can be seen in the next section.  

After proving EDAT, Andre observes that this result may be applied, for 
example, to the proof of infinitude of prime numbers of the form 4𝑘 + 3, which 
reveals his awareness of the uses and applications of EDAT (KoTph1–Knowledge 
of the fact that Euclid’s division algorithm theorem has applications in Number 
Theory, such as in the proof of infinitude of prime numbers of the form 4𝑘 + 3). 
The table 2 summarizes the mathematical knowledge revealed by Andre during 
the class while presenting and proving Euclid’s division algorithm theorem. 
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Table 2 
Subdomains, categories, and indicators of Andre’s Mathematical Knowledge 

Categories Knowledge indicators 

KoT 

Definitions, 
properties and 
foundations 

KoTd1 –Knowledge of the non-empty property of any set of non-
negative integers 

KoTd2 –Knowledge of the well-ordering principle, according to 
which all sets of non-negative integers have a minimal element 

KoTd3 –Knowledge of the fact that, according to the definition of 
divisible, an integer 𝑎 divides an integer 𝑏 if 𝑏 is a multiple of 𝑎 

Phenomenology 
and applications 

KoTph1 –Knowledge of the fact that Euclid’s division algorithm 
theorem has applications in Number Theory, such as in the proof 
of infinitude of prime numbers of the form 4𝑘 + 3 

Procedures KoTp1 –Knowledge of how to demonstrate that S is non-empty 
by indicating one of its elements 

Registers of 
representation 

KoTr1 –Knowledge of how to represent non-negative integers for 
ℤ"# 

KSM 

Connections 
based on 
simplification 

KSMs1 –Knowledge of connections between EDAT and 
divisibility based on simplification 

Connections 
based on 
increased 
complexity 

KSMc1 –Knowledge of connections between EDAT and modular 
arithmetic based on increased complexity, considering EDAT as a 
consequence of the modular arithmetic 

Transverse 
connections 

KSMt1 –Knowledge of transverse connections between Euclid’s 
Division Algorithm Theorem and linear congruence, connected by 
the underlying notion of divisibility 

KPM 
Ways of 
proceeding 

KPMwp1 –Knowledge of how to prove existence and uniqueness 
by splitting the proof into two parts 
KPMwp2 –Knowledge of how to prove uniqueness by assuming 
that there are two elements and then verifying if they are the same 
KPMwp3 –Knowledge of how to use the well-ordering principle 
to prove EDAT 
KPMwp4 –Knowledge of how to construct the necessary set S of 
non-negative integers that is in the core of the proof of EDAT, 
satisfying the theorem’s conditions 
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Categories Knowledge indicators 
KPMwp5 –Knowledge of how to prove the uniqueness of the 
remainder and the quotient in the proof of EDAT 

Ways of 
validating 

KPMwv1 –Knowledge of how to justify that an arbitrary set is 
non-empty by presenting one of its elements 
KPMwv2 –Knowledge of how to justify that the minimal element 
of S meets EDAT’s conditions, i.e., 𝑟 ≥ 0 and 𝑟 < 𝑏 
KPMwv3 –Knowledge of the steps of a proof by contradiction: 
denying the thesis and then confirming it by finding a 
contradiction 

KPMwv4–Knowledge of how to prove that the remainder is less 
than the divisor based on a conflict in relation to the minimality of 
an element of set 𝑆 

Note. KoT= Knowledge of Topics; KSM= Knowledge of the Structure of Mathematics; 
KPM=Knowledge of Practices in Mathematics. 

The after-class interview  
Researcher:  About Euclid’s division algorithm theorem... 
Andre:  Yes. 

Researcher:  You commented that you simplified the proof of the textbook. 
Andre:  Yes! 

Researcher:  Do you remember what else was there? 
Andre:  It is this part of 𝑞𝑟$ − 𝑟 < 𝑏, the 𝑟 − 𝑟′ < 𝑏, noting that the rest has to 

be between 0 and 𝑏. 
Researcher:  Did you think it was not necessary? 
Andre:  No, it's another proof, equivalent, mine is shorter. So it's more elegant. 

Researcher:  I understand. 
Andre:  There is not a single proof. But usually, the shortest proofs are the most 

elegant. And with these two observations, without having to write an 
extra part, I already got the result I wanted. 

According to Lai and Weber (2014), notwithstanding mathematicians are in 
general responsible for the teaching of advanced university mathematics courses, 
their training focuses on writing proofs for disciplinary, rather than pedagogical, 
purposes. In this case, the disciplinary purposes are more related to proofs 
produced to advance the discipline, rather than to proofs produced to facilitate 
understanding of the concepts involved. In fact, Andre seems more interested to 
conclude the uniqueness of the proof to move on to the next concepts in the course. 
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On the other hand, even when aiming to present pedagogical proofs, Weber (2012) 
and Harel and Sowder (2009) found that mathematicians reported have a limited 
pedagogical arsenal with which to achieve their pedagogical goals with respect to 
proof. These limitations are naturals and understandable, since many 
mathematicians do not receive any pedagogical preparation (Fiorentini, 2004), 
which is not an obstacle to teaching their courses. Although it is not an obstacle, 
this lack of pedagogical arsenal can cause disadvantages in teacher education, 
since the MTE aims and practices relate to teach mathematics to prospective 
teachers without making the connections to the future mathematical practices – 
focus on the mathematics instead of on the knowledge to teach mathematics – 
(Zopf, 2010). 

The appreciation for elegant proofs (Alsina & Nelsen, 2010) is common 
among mathematicians, although such proofs can represent obstacles for students, 
in particular for prospective mathematics teachers, who need to develop 
specialized knowledge, concatenating mathematical and pedagogical knowledge, 
to perform their profession. Considering that “[…] a proof is an argument to 
convince the reader that a mathematical statement must be true” (ibid, p. xix), one 
can consider that the reader cannot be convinced of this truth if it does not fully 
understand the proof. 

SOME CONCLUSIONS AND FINAL COMMENTS 
According to Lesseig (2016), studies documenting the lack of understanding of 
teachers about proofs suggest that the prominence of their role should be 
emphasized in teacher education. One way of understanding what mathematical 
knowledge is required to support the use of proofs to teach Mathematics in schools 
is to investigate the mathematical knowledge of MTEs. 

In this paper, we analyzed the mathematical knowledge of a mathematician 
teaching a course for prospective teachers, based on the perspective of MTSK. To 
this end, we searched for evidence of the MTE’s knowledge of topics (definitions, 
properties, procedures, registers of representation, and phenomenology and 
applications in the topic divisibility), knowledge of the structure of mathematics 
(connections based on increased complexity, connections based on simplification 
and transverse connections involving EDAT), and knowledge of practices in 
mathematics (ways of proceeding and ways of validation).  

Considering that mathematical argumentation, reasoning, justification, and 
proof indisputably constitute an important field of mathematical competencies 
(Bersch, 2019; Alfaro et al., 2020), we obtained indicators of Andre’s KPM related 
to ways of proceeding and ways of validation. These indicators also contribute to 
the investigation of the KPM of the mathematics teachers at the university level 
(e.g., Vasco & Climent, 2018; Delgado-Rebolledo & Zakaryan, 2019). 
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The focus is not to evaluate or to prescribe which should be the knowledge of 
MTEs. Our interest was investigating the knowledge of the MTE who participated 
in our case study, considering the Brazilian teacher education context, where 
mathematicians are responsible for teaching future teachers. In this sense, our 
findings can support the development of a model for the specialized knowledge of 
MTEs, as suggested by Contreras et al. (2017).  

Analyzing Andre’s teaching practices and looking for indicators allowed us to 
identify categories of this MTE’s mathematical knowledge. Since Number Theory, 
which naturally includes the topic of divisibility, is still a course where both 
prospective and experienced teachers reveal difficulties (e.g., Smith, 2002; Zazkis 
et al., 2003), it requires further research, focusing on the articulated discussions 
between the mathematical and pedagogical knowledge revealed by MTEs when 
teaching divisibility.  

Another pertinent question is whether there are differences in the mathematical 
and pedagogical knowledge revealed by MTEs with dissimilar profiles and 
experiences. Furthermore, we suggest that future studies further investigate the 
specialized knowledge of mathematicians working in teacher education in a 
context of partnership with mathematical educators. 
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