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Abstract: Bacteria have evolved sophisticated signaling mechanisms to coordinate interactions with
organisms of other domains, such as plants, animals and human hosts. Several important signal
molecules have been identified that are synthesized by members of different domains and that play
important roles in inter-domain communication. In this article, we review recent data supporting
that histamine is a signal molecule that may play an important role in inter-domain and inter-species
communication. Histamine is a key signal molecule in humans, with multiple functions, such as
being a neurotransmitter or modulator of immune responses. More recent studies have shown that
bacteria have evolved different mechanisms to sense histamine or histamine metabolites. Histamine
sensing in the human pathogen Pseudomonas aeruginosa was found to trigger chemoattraction to
histamine and to regulate the expression of many virulence-related genes. Further studies have
shown that many bacteria are able to synthesize and secrete histamine. The release of histamine by
bacteria in the human gut was found to modulate the host immune responses and, at higher doses,
to result in host pathologies. The elucidation of the role of histamine as an inter-domain signaling
molecule is an emerging field of research and future investigation is required to assess its potential
general nature.

Keywords: histamine; signal molecule; sensing; Pseudomonas aeruginosa; histamine receptors; chemo-
taxis; gut microbiome

1. Introduction

Bacteria have evolved a large number of signal transduction systems that recognize
different signals and generate, in return, adaptive responses. Major protein families include
transcriptional regulators, two-component systems (TCS), chemoreceptors, proteins in-
volved in the synthesis and hydrolysis of the c-di-GMP and c-di-AMP second messengers,
extracytoplasmic function (ECF) sigma factors and Ser/Thr/Tyr kinases [1]. Stimuli recog-
nized are diverse and include an enormous variety of low molecular weight compounds,
pH, temperature, light or osmotic stress, among others [2,3]. Major forms of signaling
responses are transcriptional regulation, chemotactic movements or alterations in second
messenger levels [1].

Frequently, bacteria establish interactions with organisms of other domains like an-
imals, humans or plants. These interactions can either be of mutual benefit or part of a
virulence strategy. A number of central signal molecules have been described that are
synthesized and secreted by the bacterium as well as by its host. These signal molecules
mediate intra- and inter-species communication that regulates multiple metabolic and
physiological processes in both bacteria and their hosts [4,5]. The investigation of the role
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of these central signal molecules in the inter-domain crosstalk is a rapidly expanding field
of research. A representative example for such central inter-species signals is the auxin
indole-3-acetic acid (IAA) that is a key plant hormone, regulating, among other processes,
plant growth and development [6]. However, IAA is commonly produced and secreted
by bacteria that interact with plants and plays a key role in mediating plant–bacteria
interactions [7,8]. Another example is the crosstalk that exists between the human gastroin-
testinal hormones, epinephrine and noradrenaline, and bacterial autoinducers to modulate
bacterial physiology and metabolism, as well as the host’s inflammatory responses [9].

There is now emerging evidence, reviewed in this article, that histamine may be
another central signal molecule that mediates bacteria–host interactions. Histamine is
primarily known for its central role it plays in humans. It is a human neurotransmitter,
a modulator of inflammatory reactions and the immune response and a key mediator of
several events in allergies and autoimmune diseases [10]. Further activities of histamine
include a participation in cell proliferation, differentiation, hematopoiesis, embryonic
development, secretion of pituitary hormones as well as a regulation of gastrointestinal,
cardiovascular and circulatory functions [11]. Histamine is synthesized from L-histidine by
histidine decarboxylase (HDC). It is primarily secreted by mast cells and basophiles, and it
exerts its function through four different types of histamine receptors, termed H1R, H2R,
H3R and H4R [11].

A wide range of Gram-positive and Gram-negative bacteria were found to possess
HDC-encoding genes and to synthesize histamine [12]. There appear to be two bacterial
HDC superfamilies, namely those that require pyridoxal phosphate as a coenzyme, found
primarily in Gram-negative bacteria, and those in Gram-positive species that employ a
covalently bound pyruvate moiety for catalysis [12]. The regulation of the expression of hdc
genes has been studied in several bacteria. Histidine was found to induce the expression
of hdc genes [13–16], whereas histamine slightly repressed its expression in several lactic
bacteria belonging to the Lactobacillus, Pediococcus and Oenococcus genera [14].

Apart from their capacity to synthesize histamine, more recent studies have shown
that some bacteria are able to metabolize histamine. Pseudomonas species are characterized
by an enormous metabolic versatility [17], and de la Torre et al. revealed that P. putida U is
able to grow aerobically in a minimal medium, containing histamine as the sole carbon
source [18]. The degradation of histamine coincided with the appearance of imidazole-
4-acetic acid (ImAA), suggesting that the latter compound is a major intermediate in the
degradation route. The authors showed that 11 proteins (HinABCDFLHGIJK), encoded in
four different genomic regions (clusters hin1 (hinABCD), hin2 (hinFLHG) and hin3 (hinIJ)
and the stand-alone hinK gene), are required for histamine degradation in P. putida U [18].
Of these proteins, one is a histidine permease (HinA), three are transcriptional regulators
(HinB, HinJ and HinK) and the remaining proteins are catabolic enzymes. A six-step
catabolic process converts histamine into aspartic acid that is then converted into the
tricarboxylic acid (TCA) cycle intermediate, fumaric acid [18]. To determine to which
extent other bacteria may be able to degrade histamine, the authors inspected genomes
for the presence of hin genes. These genes were commonly present in strains of the genus
Pseudomonas but absent from any of the as-yet sequenced Gram-positive bacteria [18].

The detection of signal molecules by bacteria can serve several purposes: (i) they
can indicate the presence of a compound of metabolic value or toxicity, or (ii) they can
inform the bacterium of its present environmental niche. For a number of signal molecules,
the physiological purposes of sensing appear to be tightly interwoven and include the
metabolic aspect as well as the aspect of gaining information on the ecological niche.
Histamine may be one of these signals. Bacterial histamine signaling is an emerging field
of research that is reviewed here. In the first part of this article, we reviewed studies
illustrating the histamine sensing capacity of bacteria, whereas we focused attention, in the
second part, on the consequences of bacterial histamine secretion on the host.
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2. Histamine Sensing by Bacteria
2.1. Pseudomonas aeruginosa PAO1

P. aeruginosa is among the most feared human pathogens. It is an opportunistic
pathogen that infects virtually any tissue [19] and is the leading cause of nosocomial
infections, particularly in immunocompromised, cancer, burn-wound and cystic fibrosis
patients [20] and a frequent cause of bacteremia [21]. The World Health Organization
(WHO) has placed P. aeruginosa second on the global priority list of antibiotic-resistant
bacteria to guide research, discovery and development of new antibiotics and has rated
the development of new antimicrobial agents against P. aeruginosa as critical [22]. Strain
PAO1 was found to be able to grow on histamine as a sole carbon and nitrogen source,
indicating that it harbors a functional histamine degradation pathway [23]. In a subsequent
study, it was found that the histamine catabolic pathway described in the non-pathogenic
P. putida U [18] is also highly conserved in the opportunistic human pathogen Pseudomonas
aeruginosa (Figure 1) [24].
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Figure 1. Genes and proteins involved in histamine metabolism, transport, regulation and chemotaxis in P. aeruginosa PAO1.
(A) Genetic organization of genes. (B) The proposed histamine catabolic pathway. Data are based on [18,23,24].

2.1.1. Transcriptional Responses to Histamine Exposure

The effect of histamine on bacterial gene transcript levels was assessed, for the first
time, using P. aeruginosa PAO1 as a model system [24], the primary reference strain for this
pathogen. RNA-seq experiments were conducted, comparing the wild-type (wt) strain in
the absence and presence of 2 mM histamine, and samples were taken 3 h after histamine
addition. This study showed that the transcript levels of approximately 8.5% of the PAO1
genes showed at least a three-fold change. There were, in total, 301 upregulated and
178 downregulated genes, a selection of which is shown in Table 1.

The authors selected nine genes and determined histamine-induced changes in tran-
script levels using quantitative real-time PCR (RT-qPCR), and the results obtained were
consistent with RNA-seq data. Furthermore, additional RT-qPCR studies showed signifi-
cant changes in the transcript levels of the hinD, hinF, pvdS and pqsA genes at a 1000-fold
lower histamine concentration (2 µM), indicative of high-affinity signal recognition [24].
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Table 1. The effect of histamine on P. aeruginosa PAO1 transcript levels. Shown is a selection of genes with altered transcript
levels in an RNA-seq study comparing the wt strain in the absence and presence of 2 mM histamine. Many of these genes
play a role in virulence. In total, approximately 8.5% of the P. aeruginosa genes showed at least a three-fold change. Data
were taken from [24].

Gene ID Name Log2 Fold
Change Description Function/

Comment
Ref.

Function

Histamine-mediated upregulation

Histamine metabolism, transport and regulation

PA5390 hinG 7.9 Probable peptidic bond hydrolase

Histamine utilization

[24]

PA5391 hinH 10.9 Hypothetical protein

PA5392 hinL 10.7 Conserved hypothetical protein

PA5393 hinF 11.1 Conserved hypothetical protein

PA0219 hinD 10.0 Probable aldehyde dehydrogenase

PA0221 hinC 10.0 Probable aminotransferase

PA0220 hinA 9.5 Histamine transporter Histamine transport

PA0218 hinK 4.8 Transcriptional regulator Histamine-mediated
regulation

PA0222 8.7 Solute-binding protein Possibly transport

Iron acquisition

PA0931 pirA 3.2 Ferric enterobactin receptor PirA [25]

PA2385 pvdQ 6.3 3-oxo-C12-homoserine lactone
acylase PvdQ

Siderophore pyoverdin
synthesis, secretion,

regulation and
pyoverdin-Fe uptake

[26]

PA2386 pvdA 7.5 L-ornithine N5-oxygenase

PA2389 pvdR 2.6 PvdR

PA2390 pvdT 2.4 PvdT

PA2392 pvdP 4.1 PvdP

PA2394 pvdN 5.9 PvdN

PA2395 pvdO 6.3 PvdO

PA2396 pvdF 3.4 Pyoverdine synthetase F

PA2397 pvdE 6.3 Pyoverdine biosynthesis protein PvdE

PA2398 fpvA 6.0 Ferripyoverdine receptor

PA2399 pvdD 2.9 Pyoverdine synthetase D

PA2400 pvdJ 3.0 PvdJ

PA2413 pvdH 5.6 L-2,4-diaminobutyrate:2-ketoglutarate
4-aminotransferase

PA2424 pvdL 5.8 PvdL

PA2425 pvdG 6.2 PvdG

PA2426 pvdS 5.7 Sigma factor PvdS

PA0472 fiuI 3.1 ECF sigma factor FiuI Ferrichrome activated [27]

PA2468 foxI 2.5 ECF sigma factor FoxI Ferrioxamine activated [28]

PA3410 hasI 2.9 ECF sigma factor HasI Heme activated [29]

PA4168 fpvB 3.3 Second ferric pyoverdine receptor FpvB Pyoverdine transport [30]
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Table 1. Cont.

Gene ID Name Log2 Fold
Change Description Function/

Comment
Ref.

Function

PA4221 fptA 1.7 Fe(III)-pyochelin outer membrane
receptor precursor

Siderophore pyochelin
synthesis and transport [31]

PA4226 pchE 3.1 Dihydroaeruginoic acid synthetase

PA4228 pchD 4.1 Pyochelin biosynthesis protein PchD

PA4229 pchC 3.6 Pyochelin biosynthetic protein PchC

PA4230 pchB 2.7 Salicylate biosynthesis protein PchB

PA4231 pchA 2.3 Salicylate biosynthesis
isochorismate synthase

PA4687 hitA 3.3 Ferric iron-binding periplasmic
protein HitA

Iron transport [32]
PA4688 hitB 3.2 Iron (III)-transport system

permease HitB

Quorum sensing

PA0996 pqsA 3.4 Probable coenzyme A ligase

Pseudomonas quinolone
signal (PQS) quorum

sensing system
[33]

PA0997 pqsB 3.8 PqsB

PA0998 pqsC 3.8 PqsC

PA0999 pqsD 3.8 3-oxoacyl-[acyl-carrier-protein]
synthase III

PA1000 pqsE 3.6 Quinolone signal response protein

PA1001 phnA 3.5 Anthranilate synthase components I and
II (important for PQS synthesis)

PQS synthesis [34]
PA1002 phnB 3.0

Secretion system

PA1718 pscE 2.3 Type III export protein PscE
Type III secretion

apparatus [35]PA1721 pscH 1.9 Type III export protein PscH

PA1715 pscB 1.8 Type III export apparatus protein

Regulation

PA0707 toxR 1.9 Transcriptional regulator ToxR Exotoxin A expression [36]

PA0612 ptrB 2.0 Repressor PtrB Type III secretion system
expression [37]

PA1431 rsaL 2.0 Regulatory protein RsaL Virulence and biofilm
formation [38]

PA2227 vqsM 2.4 Transcriptional regulator VqsM Quorum sensing and
virulence [39]

PA2686 pfeR 3.1 PfeR response regulator
Enterobactin receptor [40]

PA2687 pfeS 2.6 PfeS sensor kinase

PA3006 psrA 1.8 Transcriptional regulator PsrA Type III secretion system [41]

PA4315 mvaT 2.3 Transcriptional regulator MvaT Type III secretion system [42]

PA5124 ntrB 4.0 NtrB kinase Invasiveness and
Virulence

[43]
PA5125 ntrC 3.7 NtrC response regulator

Others

PA4760 dnaJ 3.2 Heat shock protein Pyocyanin production [44]

PA4761 dnaK 3.7 Chaperone DnaK Translocation across the
intestinal epithelia cells [45]
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Table 1. Cont.

Gene ID Name Log2 Fold
Change Description Function/

Comment
Ref.

Function

Histamine-mediated downregulation

Regulation

PA0173 cheB2 −2.1 CheB2 methylesterase

Che2 pathway, unknown
function, involved in

virulence
[46,47]

PA0174 cheD −2.2 CheD deamidase

PA0175 cheR2 −2.4 CheR2 methyltransferase

PA0176 mcpB/aer2 −2.3 Aer2/McpB chemoreceptor

PA0177 cheW −1.9 CheW coupling protein

PA4293 pprA −2.5 Sensor kinase PprA Quorum
sensingregulation [48]

PA4296 pprB −1.6 Response regulator PprB

Motility

PA1930 mcpS −2.1 Chemoreceptor McpS Chemotaxis [49]

PA2561 ctpH −2.4 Inorganic phosphate (Pi) specific
chemoreceptor CtpH

Pi is a major virulence
signal [50,51]

Others

PA4299-4306
Flp-tad-

rcp
locus

−2.3 to −4.8 Formation of type IVb pili Aggregation and biofilm
formation [52]

PA4236 katA −2.1 Major catalase KatA Osmoprotection and
virulence [53]

Histamine exposure caused significant changes in histamine-related genes, such as
genes encoding enzymes for histamine metabolism (HinCDFLHG), transport (HinA) and
regulation (HinK) (Table 1, Figure 1).

Of note are the large changes that have been observed for the genes involved in
histamine metabolism that ranged from a 240- to 2200-fold increase in the presence of
histamine [24]. Many of the identified histamine-regulated genes were either directly
or indirectly related to different virulence processes (Table 1). A large number of the
upregulated genes were associated with iron uptake, such as those encoding proteins for
the synthesis and secretion of the pyoverdin and pyochelin siderophores, iron transport or
different ECF sigma factors (Table 1). Further upregulated genes encoded proteins involved
in the synthesis of the Pseudomonas quinolone quorum sensing signal (PQS) or the type III
secretion system. Another group of upregulated genes had regulatory functions, such as the
transcriptional regulators ToxR, PtrB, MvaT, VqsM, PsrA and RsaL (Table 1) that regulate
diverse processes, such as the expression of genes encoding the primary toxin endotoxin
A [36], quorum sensing proteins [39] or the type III secretion system [41]. Alternatively,
several of the downregulated genes also had regulatory functions (Table 1) [24], such as
components of the Che2 chemosensory pathway, which is of unknown function but related
to virulence [46,47], or the quorum-sensing PprAB two-component system [48]. In addition,
two chemotaxis chemoreceptors were downregulated, including CtpH, a chemoreceptor
specific for inorganic phosphate, a major signal regulating P. aeruginosa virulence [51].

2.1.2. A Large Part of Histamine-Dependent Transcriptional Responses Are Mediated by
the Transcriptional Regulator HinK

Among the genes that were upregulated in the presence of histamine was hinK,
encoding a LysR-type transcriptional regulator. HinK was first identified in P. putida U, and
it regulates histamine catabolism in this strain, together with the transcriptional regulators
HinB and HinJ, as described above [18]. In PAO1, the hinK gene was found to be next to
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the hinDAC genes that were involved in histamine metabolism and transport (Figure 1).
To assess the role of HinK in the histidine-mediated regulation, the authors conducted
RNA-seq experiments, comparing the wt with the hinK mutant in the presence of histamine,
showing a significantly changed pattern in the gene transcript levels with respect to the
experiment comparing the histamine-free and -supplemented wt strain [24]. To verify
whether HinK controls the expression of the hinDAC genes, the authors constructed a hinD
promoter-lux transcriptional fusion. In the wt strain, the addition of histamine caused
an important increase in the transcriptional activity, whereas no changes were observed
in the hinK mutant, a phenotype reversed by mutant complementation [24]. Analogous
experiments showed that HinK also regulates the transcription of the hinFLHG operon
(Figure 1) as well as its own expression [24]. Electrophoretic mobility shifts revealed that
HinK binds to the hinD and hinF promoters, and a conserved sequence motif in both
promoters was identified as the HinK operator site [24].

HinK is composed of a DNA binding- and ligand-binding domain (LBD), and ex-
periments were conducted to identify the signal that binds and activates HinK. Several
pieces of evidence indicate that HinK does not recognize histamine directly but instead
imidazole-4-acetic acid (ImAA), which corresponds to an intermediate in the metabolic
pathway converting histamine into aspartic acid, as described above (Figure 1B). Elec-
trophoretic mobility shift assays revealed that micromolar concentrations of ImAA caused
HinK binding at its target DNA, namely hinD and hinF promoters, an observation that was
not made using a variety of related compounds, including histamine [24]. These data are
not fully consistent with the relatively low affinity, of 1.56 mM, for the binding of ImAA to
HinK [24]. The authors reported the three-dimensional structure of the apo HinK protein
and ImAA binding studies to site-directed HinK mutants indicate that the ligand binds
between both lobes of the LBD in a manner similar to other LysR type transcriptional
regulators [24].

2.1.3. HinA Is a Histamine Transporter Permitting Histamine Uptake and Sensing by HinK

HinA is an APC (amino-acid-polyamine-organocation)-type transporter, and several
pieces of evidence indicate that it is the primary histamine transporter. In P. putida U, a
mutant in the hinA gene was unable to take up tritium-labelled histamine, a phenotype
that was reversed by complementation with the hinA gene [18]. Wang et al. refered to
P. aeruginosa PA0220 as the HinA homologue [24]; however, the sequence identity between
both proteins, with 17%, is very modest. They showed that the deletion of P. aeruginosa
hinA significantly reduced the transcriptional activity from the hinD promoter that was
found to be controlled by HinK in response to histamine, which supports the notion that
HinA is the primary histamine transporter. Transporters often employ extracytosolic
solute binding proteins that present the transport substrate to the permease [54]. In close
vicinity to the hinA gene is a gene encoding a solute-binding protein, PA0222 (Figure 1A),
and histamine was found to increase its transcript levels by 400-fold (Table 1). However,
microcalorimetric titrations of purified PA0222 showed that it bound γ-aminobutyrate with
nanomolar affinity but failed to recognize histamine [55]. The potential role of PA0222 in
histamine transport is thus unclear.

2.1.4. Histamine and HinK Regulate P. aeruginosa Virulence

Based on the observation that histamine induces the expression of many virulence-
related genes, Wang et al. conducted experiments to elucidate, in more detail, the role
of histamine in P. aeruginosa virulence [24]. Using the Drosophila melanogaster model, the
authors showed that histamine treatment increased bacterial virulence, whereas no change
in virulence was noted for the hinK mutant, a phenotype that was reversed by complemen-
tation with hinK. The same strains were analyzed in a mouse acute lung infection model.
In accordance with the above data, the deletion of hinK caused a significant reduction in
virulence as compared to the wt and the complemented mutant strain [24]. The data thus
indicate that histamine is a signal molecule that regulates P. aeruginosa virulence.
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2.1.5. Histamine Chemotaxis

P. aeruginosa PAO1 and P. putida KT2440 were found to move chemotactically to
histamine [23]. The onset of chemotaxis occurred for P. aeruginosa at the unusually low
concentration of 500 nM, whereas initial responses of P. putida were observed at 5 µM.
Over the entire histamine concentration range tested, i.e., 500 nM to 50 mM, the magnitude
of chemotaxis of PAO1 was well superior to that of KT2440 [23]. Maximal responses of
PAO1 were detected at 5 mM. Strain PAO1 has 26 chemoreceptors, of which 23 were
predicted to stimulate the chemotaxis pathway [46,56]. Experimentation with a number of
chemoreceptor mutants revealed that the histamine chemotaxis was not based on a single
chemoreceptor, like for many other chemoeffectors studied, but on the concerted action of
the TlpQ, PctA and PctC chemoreceptors [23]. Interestingly, mutants in pctA and pctC failed
to respond to a high histamine concentration (i.e., 5–50 mM), whereas the tlpQ mutant did
not respond to low concentrations (i.e., 500 nM–500 µM) [23]. Therefore, the combined
action of three chemoreceptors with different sensitivities broadened the response range,
a finding reminiscent of the action of the CtpL and CtpH chemoreceptors for inorganic
phosphate [50,57]. Like histamine, inorganic phosphate is of central physiological rel-
evance, since it is a key signal that regulates the expression of many virulence-related
genes [51,58]. It is tempting to speculate that the recognition of a specific signal molecule
by multiple chemoreceptors reflects a particular physiological relevance of the signal. PctA
and PctC have previously been shown to bind and mediate chemoattraction to different
proteinogenic amino acids and γ-aminobutyrate [59–61]. Both receptors possess a dCache
type LBD [62] that binds proteinogenic amino acids and γ-aminobutyrate directly [59,60].
However, microcalorimetric titrations of the individual PctA and PctC LBDs with his-
tamine did not show binding [23]. It was thus suggested that histamine recognition by both
receptors occurs via the binding of solute-binding proteins [23], an indirect mechanism for
the activation of different bacterial sensor proteins that appears to be widespread among
bacteria [63].

2.1.6. The Chemoreceptor TlpQ Binds Histamine at its Ligand-Binding Domain with
High Affinity

In contrast to PctA and PctC, the LBD of the TlpQ chemoreceptor bound histamine
directly [23]. Microcalorimetric titrations of the TlpQ sensor domain revealed a dissociation
constant of 0.64 µM that corresponded to an affinity significantly higher than the average
for ligand recognition by chemoreceptor LBDs [64]. In addition to histamine, TlpQ also
recognized structurally related polyamines, namely putrescine, cadaverine, spermidine,
agmatine and ethylenediamine, with a similarly high affinity [23]. As stated above, the
magnitude of histamine chemotaxis in P. putida KT2440 was inferior to that of P. aeruginosa
PAO1. This finding may be related to the fact that the LBD of the McpU chemoreceptor, the
TlpQ homologue in KT2440 [65], recognizes histamine with a 40-fold lower affinity [23].

Like PctA and PctC, the TlpQ chemoreceptor has a dCache type LBD, and its 3D
structure in a complex with histamine has been solved by X-ray crystallography [23]
(Figure 2). The TlpQ-LBD is composed of two structural α/β modules, and histamine was
bound at the membrane distal module, like in the very large majority of other characterized
dCache domains [59,65–68]. The molecular detail of histamine recognition by human
receptors has recently been deciphered by reporting three dimensional structures of the
Histamine H1 receptor [69] and the β3 GABAA receptor in a complex with histamine [70]
(Figure 2).
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Figure 2. Bacterial and human histamine receptors. (A) Shown is the ligand-binding domain of the
TlpQ chemoreceptor from P. aeruginosa PAO1 (PDB ID 6FU4), the human histamine H1 receptor (PDB
ID 7DFL) and the human β3 GABAA receptor (PDB ID 7A5V). Bound histamine is shown in stick
mode in the lower part of the figure. These structures have been published in [23,69,70]. (B) Zoom
on the histamine binding sites of the receptors shown above.
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The comparison of TlpQ-LBD with the two human receptors thus shows that the
proteins involved in histamine sensing in bacteria and humans are entirely different.
In the human H1 receptor, histamine is recognized within the membrane by several
transmembrane helices, whereas histamine is bound to the extracytosolic part of the β3
GABAA receptor, where it is recognized by a curved β-sheet. Although the 3D structures of
the three histamine receptors are entirely different, there was a certain parallelism between
TlpQ and the β3 GABAA receptor in the molecular detail of ligand recognition that is
illustrated in Figure 3.
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Figure 3. Parallelism in the mode of histamine recognition by P. aeruginosa TlpQ-LBD and the
human β3 GABAA receptor. The interaction of histamine within the different binding pocket was
automatically generated at the PDBe, using Arpeggio [71]. Non-covalent interactions are shown by
the following colored dashed lines: red, hydrogen bonds; green, hydrophobic interactions; brown,
weak hydrogen bonds; and purple, pi-pi interactions. The thickness of each dash is related to the
interaction-distance. Hydrophobic, negatively charged, aromatic and polar residues are colored
in blue, magenta, green and cyan, respectively. For clarity, only some representative interactions
are shown.

In both cases, the primary and secondary histamine amino groups are coordinated
by negatively charged amino acids and a series of tyrosine residues that interact with the
linear and cyclic parts of histamine.

2.2. Escherichia coli

Whereas a significant part of the transcriptional responses in P. aeruginosa appear to
be related to the sensing of a histamine metabolite by the HinK transcriptional regulator,
the two-component system AtoSC appears to be involved in histamine sensing in E. coli.
Inspection of the sequence of the AtoS sensor kinase in Pfam [72] indicated that it has
two transmembrane regions that flank a potential periplasmic sensor domain that is un-
annotated, but homology modeling using Phyre2 [73] indicated that it is likely to form an
α/β fold, similar to an sCache domain. In addition, AtoS has a cytosolic PAS domain that
may also be involved in signal sensing. On the other hand, the AtoC response regulator
is a member of the NtrC-NifA family of transcriptional regulators and is composed of an
N-terminal receiver domain, followed by an AAA+_ATPase and DNA-binding domain [74].
AtoSC is encoded upstream of the atoDAEB gene cluster that encodes proteins involved
in the catabolism of short chain fatty acids (SCFAs) [75], and AtoSC was found to control
the expression of this operon [76,77]. SCFAs are important signal molecules in the human
gut microbiome. They are produced in the colon following microbial fermentation of
dietary fibers, are important energy sources for colonocytes and regulate the assembly
and organization of tight junctions [78]. Abnormalities in SCFA levels, either caused by
dysbiosis (i.e., alteration of gut microbiota homeostasis) or diet, were suggested to play
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a role in a number of pathologies, such as type-2 diabetes, obesity, inflammatory bowel
disease, colorectal cancer or allergy [79].

The direct action of the AtoSC TCS on the expression of the atoDAEB operon also mod-
ulated the synthesis of the complexed poly-(R)-3-hydroxybutyrate (cPHB), a ubiquitous cell
compound that contributes to Ca2+ homeostasis [80]. In addition, AtoSC also contributes
to the regulation of flagellar gene expression and was thus shown to modulate motility and
chemotaxis [81]. Spermidine and acetoacetate are the effectors of the AtoSC system [82,83].
Multiple pieces of evidence have suggested that AtoSC activity is modulated by Ca2+ that
may act as a co-signal [84,85]. However, the molecular detail and the corresponding sensor
domains of these effectors have so far not been established.

Evidence has been presented showing that histamine interferes with AtoSC activ-
ity. Histamine was shown to increase atoC transcription and to reduce cPHB biosynthe-
sis [84,86]. cPHB biosynthesis requires SCFAs [83], and the interference of histamine with
SCFA metabolism and levels may play a regulatory role in the gut. Furthermore, low
concentrations of histamine enhanced motility and chemotaxis in E. coli, whereas the
opposite effect was noted when histamine was present at higher levels [81]. This histamine-
mediated regulatory effect was not observed in a strain that contained a truncated version
of AtoC that lacked the receiver domain [81]. However, the molecular mechanism by which
histamine modulates AtoSC function remains unknown.

3. Histamine Release by Bacteria and Its Consequences

Apart from the fact that bacteria sense histamine, there is evidence that bacterial-
derived histamine has multiple consequences, for example, on host health [78] and food
safety [87]. In fact, histamine levels are monitored in a number of different foods as a
measure of food freshness [88,89]. This is particularly relevant for seafood products, where
bacteria-secreted histamine can provoke food poisoning [87]. The list of microorganisms
that secrete histamine in seafood is long and includes Gram-positive and Gram-negative
species. Most abundant are Enterobacteriaceae belonging to genera such as Morganella,
Enterobacter, Hafnia, Proteus and Photobacterium, as well as different pseudomonads and
lactic acid bacteria of the genera Lactobacillus and Enterococcus [87].

The effect of histamine secretion by human intestinal bacteria on its host is a more re-
cent but rapidly expanding field of research. Initial in vitro studies showed that histamine
suppressed the chemokine and proinflamatory cytokine secretion in human monocyte-
derived dendritic cells [90]. Murine studies showed that the administration of the histamine-
secreting Lactobacillus rhamnosus had an anti-inflammatory effect, as evidenced by a reduc-
tion in the secretion of various interleukines and tumor necrosis factor α. This effect was
lost in animals deficient in the histamine 2 receptor, indicating that microbiota-derived his-
tamine could be immunomodulatory [90]. Administration of another Lactobacillus species,
L. saerimneri, that is able to secrete approximately 100-fold more histamine as compared
to L. rhamnosus, resulted, next to a variety of immune responses, in animal weight loss
and signs of deteriorating health [91]. The authors suggested that the amount of histamine
secreted by a microbe may be critical in determining the nature of the effect.

Another study reported that the abundance of histamine-secreting bacteria is increased
in the gut of adult asthma patients. This study thus challenged the widespread concept
that human mast cells and basophiles are the principal histamine sources. These data thus
also suggest that bacterial-derived histamine contributes to histamine-mediated patholo-
gies [92]. In addition, data indicting another link between bacterial-derived histamine
and pathology was reported by Gallardo et al. [93]. The authors compared gut microbiota
composition and metabolome in stool samples obtained from healthy children and children
with diarrhea positive for diarrheagenic E. coli (DEC). Metabolomic studies revealed higher
histamine concentrations in the DEC group as compared to healthy children, and altered
histamine levels were associated to certain gut microbiota species such as Enterobacter hor-
maechei, Bifidobacterium stercoris and Shigella spp. [93]. More recent studies have suggested
that bacterial histamine release in the gut does not only cause a local modulation of the host
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immune system, but can also have immunological consequences at distant mucosal sites,
such as in the lung [94]. E. coli was engineered to secrete histamine and administered orally
to mice [94]. The authors observed an anti-inflammatory response in the lung, as evidenced
by reduced inflammatory cell numbers in bronchoalveolar lavages. Experimentation with
mice deficient in the histamine 2 receptor (H2R) showed that the anti-inflammatory ef-
fect of bacterial-derived histamine is partially mediated by this receptor [94]. During
the investigation of the impact of different metabolites produced by gut bacteria on host
physiology, the effect of bacteria-produced histamine was evaluated [95]. Gut bacteria of
the Morganella morganii and Lactobacillus reuteri species were found to produce histamine
in vivo during the colonization of the mouse intestine, and L-His dietary supplementation
increased histamine production by these bacteria. In this study, the authors found that
bacteria-derived histamine was associated with increased mice colon motility and fecal
output and that treatment with histamine receptor antagonists largely blocked the effect of
bacterial histamine on colon motility [95].

Irritable bowel syndrome (IBS) is a common gastrointestinal disorder, and accumu-
lating evidences at both preclinical and clinical levels indicates an involvement of enteric
microbiota in its pathogenesis [96]. Histamine levels and the abundance of hdc genes
was determined in both healthy and IBS patients using metabolomics and metagenomics
data from the integrative Human Microbiome Project. These analyses revealed that IBS
patients presented higher levels of histamine and bacterial hdc genes [95]. Subsequent
studies also showed that supernatants from colonic samples of IBS patients contained
increased histamine levels, and expression levels of the histamine receptors H1R and H2R
were upregulated in IBS patients [97]. The authors thus hypothesized that a dysbiosis with
increased histamine-secreting or HDC-containing bacteria was potentially associated with
the development and aggravation of IBS [96].

4. Outlook

The knowledge available on the role of histamine as a bacterial signal molecule is
summarized in Figure 4.
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Figure 4. Summary of data available on histamine sensing and secretion by bacteria. On the left,
histamine sensing by the TCS AtoSC in E. coli. On the right, histamine assimilation and chemotaxis in
P. aeruginosa. Lower part: Many bacteria synthesize histamine by a decarboxylation of histidine using
the histidine decarboxylase (HDC) and secrete histamine. Blue arrows: metabolic pathways; orange
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arrows: gene expression regulation; grey arrows: activation of biological processes; dotted lines:
hypothetical interaction; LBD: ligand-binding domain; SBP: solute-binding protein; ImAA: imidazole-
4-acetic acid; HinA: permease for the histamine uptake; HinCD: enzymes for the conversion of
histamine to ImAA; HinFLHG: enzymes for the conversion of ImAA to aspartic acid; HinK: LysR-
family response regulator; IM: inner membrane.

The elucidation of the role of histamine as a signal molecule for inter-domain commu-
nication is an emerging field of research that requires future efforts. So far, the information
on histamine sensing is restricted to P. aeruginosa, P. putida and E. coli, and studies need to
be conducted to determine to which extent other species show similar responses. The main
physiological roles of chemotaxis are gaining access to compounds that serve for growth,
the perception of information on the environmental niche or the localization of sites that are
suitable for attachment or invasion. For key signal molecules that are of metabolic value,
like histamine, it has to be determined whether the primary motivation of chemotaxis is
related to metabolism or the capacity to infect hosts. There is initial evidence that bacterial
histamine secretion in the gut microbiome is associated with digestive disorders. In this
context, important gaps in knowledge to be closed are the determination of environmental
factors that may trigger histamine release and to determine the capacity of histamine release
for strains typically found in the gut microbiome. Such information would facilitate the
diagnosis of histamine-related disorders from the composition of the patients’ microbiome.
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Abbreviations

cPHB poly-(R)-3-hydroxybutyrate
DEC diarrheagenic E. coli
ECF extracytoplasmic function
HDC histidine decarboxylase
IAA indole-3-acetic acid
IBS Irritable bowel syndrome
ImAA imidazole-4-acetic acid
LBD ligand binding domain
PQS Pseudomonas quinolone signal
TCS two-component system
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