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According to the classical theory of Brownian motion, the mean-squared displacement of diffusing
particles evolves linearly with time, whereas the distribution of their displacements is Gaussian. However,
recent experiments on mesoscopic particle systems have discovered Brownian yet non-Gaussian regimes
where diffusion coexists with an exponential tail in the distribution of displacements. Here we show that,
contrary to the present theoretical understanding, the length scale λ associated with this exponential
distribution does not necessarily scale in a diffusive way. Simulations of Lennard-Jones systems reveal a
behavior λ ∼ t1=3 in three dimensions and λ ∼ t1=2 in two dimensions. We propose a scaling theory based
on the idea of hopping motion to explain this result. In contrast, simulations of a tetrahedral gelling system,
where particles interact by a nonisotropic potential, yield a temperature-dependent scaling of λ.
We interpret this behavior in terms of an intermittent hopping motion. Our findings link the Brownian
yet non-Gaussian phenomenon with generic features of glassy dynamics and open new experimental
perspectives on the class of molecular and supramolecular systems whose dynamics is ruled by rare events.
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I. INTRODUCTION

In one of his celebrated 1905 papers, Einstein proposed a
statistical interpretation of Brown’s observation based
on the corpuscular constitution of matter [1,2]. Einstein’s
theory predicted two concomitant properties for the prob-
ability density function (PDF) of displacements of the
Brownian particles: Its shape must be Gaussian and its
variance, the mean-squared displacement (MSD), must
grow linearly (diffusively) with time. Since the seminal
experiments conducted by Perrin more than 100 years ago
[3], these two predictions were routinely validated and the
coexistence between Gaussianity and diffusivity became a
paradigm. Exceptions to this long-standing paradigm
were first observed in the realm of anomalous diffusion
[4–8], where nonlinear time dependences of the MSD

coexist with both Gaussian and non-Gaussian PDFs of
displacements [4,5].
Recent experiments have found a new class of counter-

examples to this paradigm. Several mesoscopic particle
systems present a time regime where linear diffusion
coexists with a non-Gaussian PDF of displacements char-
acterized by an exponential tail e−r=λðtÞ as a function of the
displacement r [9–15]. The exponential tail is controlled by
a time-dependent length scale λðtÞ, which evolves as a
power law: λðtÞ ∼ tβ with β > 0. This Brownian yet non-
Gaussian regime appears in a variety of systems, including
colloidal beads moving on the top of lipid tubes [9,10],
nanospheres in entangled protein suspensions [9], binary
mixtures of colloidal hard spheres [11], microspheres in
biological hydrogels [12], and passive tracers in suspen-
sions of eukaryotic swimmers [13]. Some of these works
report values for β compatible with 1=2 [9–11,13] that have
motivated theoretical models based on the idea of diffusing
diffusivities [16–20]. These models assume a hetero-
geneous dynamics: Particles move according to a time-
dependent diffusion coefficient which leads to a Brownian
yet non-Gaussian regime with exponential asymptotics
[16–18]. In these models, the variance of the exponential
λ2ðtÞ is responsible for the total MSD: λ2ðtÞ ∼MSDðtÞ ∼ t.
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However, more recent experiments have measured a value
of β significantly smaller than 1=2 [12], challenging an
explanation based on diffusing diffusivities. Far from being
an exotic phenomenon with an appealing historical back-
ground, this problem has deep implications in the under-
standing of a broad class of systems which are driven by
rare events [10].
Here we study by computer simulations the equilibrium

dynamics of representative models of glass formers with
isotropic and nonisotropic interactions [21,22]. Our main
result is that the length scale λ associated with the Brownian
yet non-Gaussian regime scales in a nonuniversal way. For
systems where particles interact by an isotropic potential,
the exponent controlling the evolution of the exponential
tail is β ¼ 1=d, where d is the system dimension. We
quantitatively explain this result by a scaling argument
based on the idea of hopping motion [22,23]. In glass
formers where particles interact by a nonisotropic potential,
the exponent β also depends on the temperature. This
dependence becomes more obvious when the system,
which behaves as a strong glass former [21], enters into
the Arrhenius regime. We interpret this result as the
consequence of an intermittent particle-hopping motion
at low temperatures. Finally, we show that the dynamics in
the Brownian yet non-Gaussian regime for all the explored
systems is the result of mixing the anomalous diffusion of
individual particles.

II. EXPONENTIAL TAIL AND
SYSTEM DIMENSION

We study by molecular dynamics simulations the equi-
librium dynamics of isotropic Lennard-Jones particles in
two [24] and three dimensions by the Kob-Andersen binary
mixture [25] (see Sec. VI). In both cases, the binary nature
of the interaction potential is designed to result in a glassy
system and, therefore, avoid crystallization even at a
very low temperature. In particular, this system shows
the super-Arrhenius behavior characteristic of fragile glass
formers [21,24]. This model also shares many fundamental
dynamic and structural properties with other representative
systems with isotropic interaction. For instance, its relax-
ation dynamic mechanism (including the emergence of
dynamic heterogeneities) and structural patterns are similar
to those observed in other molecular liquids [25,26],
colloidal hard spheres [27–29], models of soft spheres
[30], and even granular materials [23]. We cover for this
system a wide range of temperatures, from the liquid state
(slightly above the system onset temperature) to 1.03Tc,
where Tc is the estimated system mode coupling temper-
ature (see Sec. IV).
We first measure the particleMSD; see Figs. 1(a) and 1(b).

For all temperatures, the MSD presents a characteristic
short-time local ballistic motion (∼t2) and a long-time
diffusive regime (∼t). Upon cooling, the MSD develops a
plateau at intermediate times resulting from an increasingly

long local residence time, a common feature of all glass-
forming liquids [22]. We characterize the ensemble distribu-
tion of displacements by means of the self-part of the van
Hove function [31]

Gsðr⃗; tÞ ¼
1

N

�XN
i¼1

δ½r⃗ − Δr⃗iðtÞ�
�
; ð1Þ

whereGsðr⃗; tÞ is the fraction of particles (from a total number
N) which are displaced by Δr⃗iðtÞ ¼ r⃗iðtÞ − r⃗ið0Þ ¼ r⃗ in a
time t. Since both systems are isotropic, we explore the
distribution of displacements as a function of the radial
coordinate r ¼ jr⃗j and define

Pðr;tÞ≡Wðr;tÞ=rd−1¼ϕdGsðr;tÞ; d∈f2;3g; ð2Þ

(a) (b)

(c) (d)

(e) (f)

FIG. 1. MSD and exponential tails for the Kob-Andersen binary
mixture. (a) MSD for the 3D system at different temperatures
from the liquid state to the deep supercooled regime: T ¼ 0.7,
0.6, 0.54, 0.50, 0.475, and 0.45. (b) MSD for the 2D system at
different temperatures covering a similar range as in (a): T ¼ 0.6,
0.50, 0.45, 0.40, 0.36, and 0.34. The unit of length is equal to the
particle diameter (see Sec. VI for the definition of the time and
temperature units). Normalized self-part of the van Hove function
Pðr; tÞ for the 3D system at T ¼ 0.45 (c) and for the 2D system at
T ¼ 0.40 (d), where the selected times are marked by dots in the
corresponding MSD in (a) and (b). Dashed lines in (c) and
(d) show the extent of the exponential range. Characteristic length
λ as a function of time for the 3D (e) and 2D (f) systems: In both
cases, temperatures are as in (a) and (b), respectively. Again, dots
signal those times corresponding to Pðr; tÞ in (c) and (d).
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whereWðr; tÞ is thePDF to have a radial displacement r,d the
system dimension, and ϕd the Jacobian angular prefactor
(e.g., ϕ2 ¼ 2π and ϕ3 ¼ 4π) [31]. With this definition, we
count the fraction of particles which have displaced radially
by r normalized (up to prefactors) by rd−1 to account for
the volume of the shell within the range r to rþ dr. In this
context, a purely Gaussian diffusion would result in
Pðr; tÞ ∼ e−r

2=4DðTÞt, beingDðTÞ the temperature-dependent
diffusion coefficient.
The distribution Pðr; tÞ presents a Gaussian behavior at

short distances and an exponential decay at large distances:
Pðr; tÞ ∼ e−r=λðtÞ, where λðtÞ is a characteristic length that
increases with time [Figs. 1(c) and 1(d)]. We observe this
exponential decay both at low [3D, Fig. 1(c)] and inter-
mediate temperatures [2D, Fig. 1(d)]. Qualitatively similar
behaviors to those presented in Figs. 1(c) and 1(d) appear
at all the explored temperatures. This observation is
compatible with previous works on glassy systems [23]
predicting exponential decays (with logarithmic corrections
at large r) for the PDFs of displacements.
To discriminate the r ranges corresponding to the

Gaussian and exponential regimes of Pðr; tÞ and, therefore,
accurately estimate λðtÞ, we implement a nonparametric
Kolmogorov-Smirnov test (see Sec. VI). The distinction
between the two regimes is more evident at a low temper-
ature (in particular, at short and intermediate times), being
the two regimes separated by an inflection point in Pðr; tÞ.
At longer times, the Gaussian range extends up to larger
distance and therefore becomes dominant. In turn, the range
of the exponential tail shrinks and thus becomes marginal
at long times. Eventually, this takeover leads to a purely
Gaussian distribution of displacements as prescribed by the
central limit theorem (CLT).
As for the MSD, the growth of λ with time is charac-

terized by three distinct regimes [Figs. 1(e) and 1(f)]. At
short times, when the MSD is ballistic, λðtÞ rapidly
increases. Displacements within this short time are typi-
cally smaller than the particle diameter [Figs. 1(c) and 1(d)]
and, therefore, reflect the particle local heterogeneous
dynamics. At intermediate times, when the MSD manifests
a plateau, λðtÞ increases in a slower way. In this regime,
only a small fraction of particles has abandoned their initial
local cage and are able to jump over distances on the order
of a few particle diameters [Figs. 1(c) and 1(d)]. At long
times, λðtÞ increases steeply again. In the same time regime,
the MSD is compatible with diffusive behavior [Figs. 1(a)
and 1(b)]. In the following, we focus on this Brownian yet
non-Gaussian regime [10].
Our first goal is to explore the scaling of λðtÞ within the

Brownian yet non-Gaussian regime. We define the time t0
at which the 2D and 3D Lennard-Jones systems start to be
diffusive [MSD(t ≥ t0) ∼t]. In practice, we define t0 as the
time at which the exponent μ characterizing the scaling of
the MSD with time equal to 1 up to a tolerance of 5%; see
Sec. VI for details. We compare the scaling with time of

MSDðtÞ1=2 and λðtÞ in the time regime t ≥ t0 for different
temperatures (Fig. 2). In both systems, the scaling of the
MSD is diffusive, MSD1=2ðt ≥ t0Þ ∼ t1=2. In contrast, the
scaling of λðtÞ is dimension dependent:

λðt ≥ t0Þ ∼ tβðdÞ: ð3Þ

The exponent β does not appreciably depend on the
temperature within the diffusive time window t ≥ t0.
However, β clearly depends on the system dimension,
with a value compatible with β ¼ 1=2 in two dimensions
and β ¼ 1=3 in three dimensions. While the value β ¼ 1=2
in two dimensions is consistent with the diffusive scaling of
the MSD, the scaling of λ in three dimensions does not
seem to be trivially related to that of the MSD. The fact that
the scaling of λ and the MSD are not, in general, trivially
linked descends from the fact that the weight of the
exponential tail compared to the rest of the distribution
is time dependent. While λ is a property of the exponential
tail only, the MSD is determined by the entire distribution.

(a)

(b)

FIG. 2. Brownian yet non-Gaussian regime for the Kob-
Andersen binary mixture. Double-log plot of MSD1=2 (squares)
and λ (circles) as a function of time for the 3D (a) and 2D (b) Kob-
Andersen systems at different temperatures: T ¼ 0.45, 0.5,
and 0.6 (3D), and T ¼ 0.4, 0.5, and 0.6 (2D). Here, t0 is the
temperature- and system- dependent time at which each system
reaches a μ value compatible with 1 within numerical uncertainty,
i.e., MSD(t ≥ t0) ∼ tμ≅1. To determine t0, we numerically com-
pute the local exponent μðtÞ controlling the time evolution of the
MSD(t), i.e., MSDðtÞ ∼ tμðtÞ (see Sec. VI). Dashed lines in (a) and
(b) serve as a reference.
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In this respect, the relative contribution of the exponential
tail to the MSD diminishes, with the start of the exponential
range moving to larger and larger displacements, as time
increases. The scaling of λ also contrasts with the inter-
pretation of the Brownian yet non-Gaussian regime based
on diffusing diffusivities [10,16,18], where λ2ðtÞ ∼MSD
ðtÞ ∼ t. However, the time evolution we observe for
λðt ≥ t0Þ in three dimensions agrees with recent experi-
ments on microspheres diffusing in biological gels [12],
where β < 1=2 and the total PDF of displacements presents
a Gaussian core, which grows with time, and a marginal
exponential tail, which tends to disappear with time.
These observations suggest a general dependence

βðdÞ ¼ 1=d, with d ∈ f2; 3g. We propose a theory for
such a scaling behavior as an outcome of hopping motion, a
signature of all glass-forming liquids below the onset
temperature [22]. The exponential tail of Pðr; tÞ originates
from a minority of particles able to escape from their initial
cage and perform a large displacement for times of the
order of t0. We call these particles hoppers and denote
by NhðtÞ their number at time t. Since the system is at
equilibrium, we assume that hoppers escape from their cage
at a constant rate ω:

NhðtÞ ≈ ωNt ∼ t: ð4Þ
Equation (4) is valid in a time range where NhðtÞ ≪ N,
being, therefore, ω−1 ≫ t. We now use that the functional
form of the mass density of hoppers ρhðr; tÞ as a function of
the distance at time t coincides with that of Pðr; tÞ for t ≈ t0
and is, therefore, exponential:

Pðr; tÞ ∼ ρhðr; tÞ ¼ ρ0e−r=λðtÞ; t ≈ t0: ð5Þ
We consider ρ0 to be independent of time for times of the

order of t0; i.e., the source of hoppers at r ¼ 0 remains
at constant density for t ≈ t0 since NhðtÞ ≪ N. This
assumption is consistent with the behavior of Pðr; tÞ
observed in Figs. 1(c) and 1(d), and also clearly manifested
by the Pðr; tÞ shown in the Appendix C, where all the
exponential tails at different times cross at a common value
at r ≈ 0. The number of hoppers at a time t ≈ t0 therefore
scales as

NhðtÞ ∼
Z

∞

0

rd−1ρhðr; tÞdr

∼
Z

∞

0

rd−1e−r=λðtÞdr ∼ λdðtÞ: ð6Þ

Combining Eqs. (4) and (6), we finally obtain

λðtÞ ∼ t1=d: ð7Þ

The scaling argument embodied in Eqs. (4)–(6), and
leading to Eq. (7) would, in principle, hold for all d. In
particular, we also test Eq. (7) in Appendix A for d ¼ 4 for

the Lennard-Jones system investigated, also confirming
its validity. Nevertheless, the general extension of our
scaling argument needs subsequent investigation. In
particular, works based on a mode-coupling-theory for-
malism predict changes in the dynamics of four-point
correlators at higher dimensions whose hypothetical
effect on the observables studied here should be inves-
tigated [32]. Apart from that, and due to the observed
emergence of finite-size effects in 2D simulations
[33–35], we test and confirm Eq. (7) for a much more
larger 2D Lennard-Jones system in Appendix B, in
accord with recent experiments in 2D systems [36].
Summarizing, our argument to explain λðtÞ ∼ t1=d is

based on three assumptions: (1) Hoppers leave their local
environment at a fixed hopping rate [Eq. (4)]; (2) hoppers
fill the space isotropically [Eq. (6)]; (3) the restriction
to a time regime t ≈ t0 where NhðtÞ ≪ N. We test these
assumptions individually for d ¼ 2, 3 in Appendix C. Once
the majority of the particles have abandoned their initial
position (t ≫ t0) and present a statistically equivalent
jumping record, the last assumption breaks. At such a long
time, the PDF of displacements results from a large number
of independent and equally distributed displacements and
is, therefore, Gaussian by virtue of the CLT.

III. EXPONENTIAL TAIL AND NONISOTROPIC
INTERACTIONS

We now investigate the evolution of λðtÞ when particles
interact by a nonisotropic potential. To this purpose, we
consider a three-dimensional system of tetravalent patchy
particles [37–39]. Such particles have four sticky spots
tetrahedrally distributed on their surface which provide a
strongly directional interaction with fixed valence. Upon
cooling, the dynamics slows down and the system develops
an amorphous, highly connected tetrahedral network [40].
This model has already shown its capability for capturing
some fundamental dynamic and structural features, such as
the emergence of an amorphous tetrahedral order present in
different classical systems with nonisotropic interactions
such as atomistic models of water, silicon, and silica
[37,40–44]. We investigate the equilibrium dynamics of
this system, which shows the Arrhenius behavior character-
istic of a strong glass former [21,40] at moderate density by
Brownian dynamics simulations (see Sec. VI) and explore
the emergence of the Brownian yet non-Gaussian regime.
Our study covers a wide T range from the liquid state
(slightly above the percolation threshold) to the deep
Arrhenius regime, where the great majority of the particles
are tightly bound to their neighbors [37].
In contrast to the Lennard-Jones systems, the scaling of

λðtÞ clearly depends on T for the tetrahedral gelling
system (Fig. 3). While at high temperature λðtÞ ∼ t1=3,
compatible with the 3D Lennard-Jones system, the expo-
nent β decreases upon cooling the system below the
Arrhenius temperature [37,40], reaching values β ≈ 1=6
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for temperatures deeply into the Arrhenius regime. Thus,
our argument leading to βðdÞ ¼ 1=d independent of T
[Eqs. (4)–(7)] does not hold for the gelling system at low T.
To understand this discrepancy, we individually
test the hypotheses underlying our scaling theory (see
Appendix C). We find that in this system, Eq. (4) is not
satisfied for the gelling system: In particular, the number
of hoppers appears to grow sublinearly with time. This
observation points to a scenario where the production of
hoppers becomes more and more intermittent as the
temperature decreases. Such a phenomenon seems to be
absent in the Lennard-Jones systems, where our scaling
theory holds in all the range of temperatures we explore
(see the Appendix). We stress that Eq. (6) is satisfied by our
tetrahedral gelling system (see Appendix C) despite the
system displaying a fractal structure [40]. This result
should, however, be confirmed in other systems showing
nontrivial structures [45,46].
We summarize the behavior of the exponent βðT; dÞ for

the three systems (see Fig. 4). For the two Lennard-Jones
systems, β markedly depends on the system dimension
[Eq. (3)] and is practically independent of T (with, at most,
a very modest decrease in 3D). Our theoretical argument
[Eqs. (4)–(7)] predicts that other systems with isotropic
interactions, such as hard and soft spheres, should present

the same behavior. Instead, β clearly depends on the
temperature for the tetrahedral gelling system. This depend-
ence is stronger once the system enters into the Arrhenius
regime, where the diffusion coefficient decreases exponen-
tially upon cooling [40] (inset in Fig. 4), thereby revealing a
connection between a defining feature of the dynamics
observed in strong glass formers and the emergence of
rare events. At higher temperatures, where connectivity is
low [37], β attains a value compatible with that of the 3D
Lennard-Jones system (≅1=3).

IV. NON-GAUSSIANITY AND DYNAMICS
BY POPULATION

We now look further into the coexistence between linear
diffusion and non-Gaussian distributions of displacements
in 3D. To this aim, we discriminate the particles into
populations according to their potential energy E at t ¼ 0
as in Ref. [40]. For the tetrahedral gelling system, this
procedure leads to five different particle populations
characterized by the number of bonds per particle
(i ∈ f0; 1; 2; 3; 4g) at t ¼ 0, being Eji the potential energy
of population i (where Eji > Ejj when i < j) [40]. For the
3D Lennard-Jones system, we arbitrarily define two pop-
ulations with a marked difference in their initial potential
energies: one including the 1% of particles with the highest
potential energy and the other one including the 1% of
particles with the lowest potential energy, both at t ¼ 0.

FIG. 3. Brownian yet non-Gaussian regime in the tetrahedral
patchy system. Double-log plot of MSD1=2 (squares) and λ�
(circles) as a function of time for the tetrahedral patchy system at
different temperatures. To make evident the spread of curves
at different temperatures, we present a rescaled value λ� for the
different temperatures to make them start from an almost
common value at t0. As in Fig. 2, t0 is the temperature-dependent
time at which the tetrahedral system reaches a value of μ
compatible with 1. We cover a wide T range from the liquid
state to the deep Arrhenius regime: T ¼ 0.1025, 0.105, 0.11,
0.115, and 0.14 (see Sec. VI). The Arrhenius temperature, i.e., the
temperature at which the T dependence of the diffusion coef-
ficient becomes exponential, is TA ≈ 0.115 [37,40] (see also
Sec. VI and Fig. 4). Dashed lines serve as a reference. The unit of
length is taken as the patchy particle hard-sphere diameter (see
Sec. VI). The figure also shows a sketch of a tetrahedral patchy
particle.

FIG. 4. Compendium of β exponents. βðT; dÞ in the time
regime t ≥ t0 as a function of the temperature for the three
systems investigated. Here, To stands for the onset temperature
for the two Lennard-Jones systems and for the percolation
temperature for the tetrahedral gelling system (see Sec. VI).
The explored T range goes from the liquid state to the deep
supercooled regime. Horizontal dashed lines serve as a refer-
ence for 1=2 and 1=3. A vertical arrow signals the temperature
TA at which the tetrahedral gelling system enters into the
Arrhenius regime [40]. Inset: diffusion coefficient DðTÞ (ob-
tained from the measured MSD) as a function of the temper-
ature for the tetrahedral gelling system (dashed line serves as a
reference for the exponential low-T Arrhenius behavior which
starts at TA) [40].
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The time evolution of the MSD for the different
populations at fixed T is presented in Figs. 5(a) and 5(b).
Populations with high potential energy at t ¼ 0 show a
superdiffusive regime at short times which is compensated
with the subdiffusive motion associated with the popula-
tions with low potential energy. In particular, for the
tetrahedral system, we see that this subdiffusive motion
is dominant and represents almost the total MSD. The
reason is that, for the chosen temperature, the system is

already highly percolated [40], and the populations having
a low energy at t ¼ 0 are much more larger (number of
particles) than the populations having a high energy at
t ¼ 0. Thus, while particles with high potential energy are
briefly connected to the gel network, low-energy particles
are retained for a longer time to the network, resulting in a
plausible source for subdiffusion. At intermediate times,
the distinct populations reach different values of the MSD
at their respective plateaus. This difference is more pro-
nounced for the tetrahedral liquid due to its lower density.
When abandoning the plateau, populations with high
potential energy at t ¼ 0 show subdiffusive motion, while
populations with low potential energy at t ¼ 0 present
superdiffusive motion. This is particularly clear when
looking at the μðtÞ exponent obtained from the slope of
the MSD: When leaving the plateau, populations starting
with a high potential energy present μðtÞ < 1, whereas
populations starting with a low potential energy show
μðtÞ > 1 [Figs. 5(c) and 5(d)].
The mixing of anomalous diffusions is concomitant with

a change in the energy of each population: Particles starting
with a high (low) potential energy show a decrease
(increase) in their energy which slows down (boosts) their
dynamics [Figs. 5(e) and 5(f)]. At long times, once the
particles lose the memory of their initial state and pass
through all the possible energy states, all the populations
show the same average energy while their dynamics
converge to a common diffusive trend. It is worth high-
lighting that this convergence happens at very long times
pointing to the existence of a long-term memory of the
potential energy. In addition, this convergence shows a
common relaxation time which is independent of the
particle population. All this phenomenology reduces to a
simple intuition: When a particle is in a high- (low-) energy
state, it moves faster (slower) than the average. For large
times, when all the particles have passed through all the
possible fast and slow states, the sampled distributions of
displacements for all populations are equivalent, and the
total PDF of displacements becomes Gaussian as dictated
by the CLT.
Before collapsing into a common diffusive trend, there

exists a time window where the different populations still
show μðtÞji ≠ 1∀ i, with μðtÞ ≅ 1 for the total number of
particles (shaded region in Fig. 5). This time window
corresponds to the Brownian yet non-Gaussian window
where the exponential tail is still detectable despite the
system as a whole showing μðtÞ ≅ 1. This observation helps
us understand why within this diffusive time window, Pðr; tÞ
is not necessarily Gaussian: The distinct populations have
not yet converged and, therefore, their sampled dynamic
states are not yet equivalent, resulting in a non-Gaussian
PDF of displacements. Our results show that the observed
exponential tail originates from mixing anomalies: Within
the Brownian yet non-Gaussian regime, each individual
population shows its own anomalous diffusion [μðtÞji ≠ 1].

(c) (d)

(a) (b)

(e) (f)

FIG. 5. Dynamics by particle population. Left column cor-
responds to the 3D Kob-Andersen binary mixture and shows
the time evolution of different observables discriminated into
two particle populations: (a) MSDðtÞ, (c) μðtÞ [MSDðtÞ ∼ tμðtÞ],
and (e) difference between the average potential energy of each
population E½Eji�, and the system average potential energy
E½E�. Yellow (green) lines correspond to the population that
includes the 1% of the particles with the highest (lowest)
potential energy at t ¼ 0. Right column corresponds to the
tetrahedral gelling system and shows the same observables as
those appearing in the left column [(b), (d), and (f)]. The five
colored lines correspond to the five populations having a
different number of bonds (i ∈ f0; 1; 2; 3; 4g) at t ¼ 0 (lines
from yellow to green). Black lines in the whole figure represent
observables averaged over all particles. The shaded regions
mark out the extent of the Brownian yet non-Gaussian time
window, where the exponential tail is still detectable and μðtÞ ≅
1 for the total number of particles. Inset in (a) shows a detail of
the MSD corresponding to the shaded time window. The chosen
temperatures correspond to the deep supercooled regime (3D
Kob-Andersen binary mixture) and the Arrhenius regime
(tetrahedral liquid). For both systems, the different populations
evolve in such a way that the corresponding observables pass
from a short-time behavior (where the particles still retain the
information of their initial mechanical state) to a long-time
regime, where the particles have lost memory of their initial
state and the different populations converge to a common trend.
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We further show that, within the Brownian yet non-Gaussian
regime, the anomalous diffusion of each population (which
is a dynamic feature) can be associated with its initial
potential energy (which is a structural feature).

V. CONCLUSIONS AND PERSPECTIVES

Brownian yet non-Gaussian transport has recently
attracted great interest for its unexpected but ubiquitous
presence. It is at the heart of the more general problem of
understanding, in a comprehensive way, the rare event
dynamics present in many complex systems. Our study
brings new insights into this appealing phenomenon. First,
we show numerically that for canonical liquid models
where particles interact by an isotropic potential, the
exponent controlling the evolution of the observed expo-
nential tail is not universal but depends on the system
dimension: βðdÞ ¼ 1=d. This important finding contrasts
with the universality predicted by the current theoretical
interpretations. We rationalize this observation by a theo-
retical scaling argument which does not depend on the
specific functional behavior of the interaction potential.
For that reason, we expect other representative systems
with significantly different potentials, such as hard and
soft spheres, to show a similar scaling behavior. Second,
we show that dimension is not the only factor affecting
the evolution of the exponential tail. In systems where
particles interact by a nonisotropic potential, β also
depends on the temperature. Contrary to the isotropic
models investigated in this work (which behave as fragile
glass formers), the specific nonisotropic system inves-
tigated here behaves as a strong glass former. Therefore,
the temperature dependence shown by β for the non-
isotropic system reveals a new fundamental feature
discriminating the dynamics of fragile and strong glass
formers, with far-reaching consequences for understand-
ing and classifying glasses. It also establishes a connec-
tion between the emergence of the generic Arrhenius
regime representative of strong glass formers and their
hopping dynamic mechanism. Third, we show that the
time regime where the Brownian yet non-Gaussian trans-
port occurs is characterized by a mixed anomalous
diffusion of different particle populations. These popula-
tions are characterized by a configurational property: their
potential energy. We expect our findings for the models
investigated here to hold for a large variety of systems.
In this respect, the canonical systems we choose in our
study share a common fundamental structural and
dynamic phenomenology with other representative sys-
tems defined by different isotropic and nonisotropic
potentials, e.g., hard or soft spheres [27,29,30], and water,
silicon, or silica [41–44].
Taken in a broad sense, our results bring new research

perspectives, imposing severe constraints to future theories
and calling for new experiments. Future theoretical models
should account for the dimension and temperature

dependences that we observe in this work. For instance,
the seminal work by Chaudhuri et al. [23] and the large
deviation model proposed by Barkai and Burov [47] predict
exponential tails in the PDF of displacements (with
logarithmic corrections at large r) using a continuous-time
random-walk (CTRW) formalism. These two approaches
do not suggest a dimension-dependent behavior of the
characteristic length λ ∼ t1=d. Other works employing the
idea of diffusing diffusivity [16–20,48] lack a dependence
on dimension as well. Similar conclusions hold for other
approaches to Brownian yet non-Gaussian diffusion, e.g.,
models mixing CTRW and diffusing diffusivity [49],
polymerization models where the fluctuating size of a
diffuser generates a diffusing diffusivity process [50,51],
diffusion in a fluctuating corrugated channel [52], and
colossal Brownian yet non-Gaussian diffusion induced by
nonequilibrium noise [53]. Future models should also
explain the mixed anomalous diffusion observed in our
numerical simulations during the Brownian yet non-
Gaussian time regime. In our view, this is a crucial yet
challenging task. We speculate on the idea of incorporating
a CTRW formalism with correlated jumps, one feature that
is usually missing in previous works.
From a practical perspective, our results can a priori be

tested in several real systems regulated by different control
parameters, not necessarily the temperature. For instance,
we expect colloidal glass- and gel-forming liquids [22,23]
to present a similar phenomenology as the one we describe
in this paper when studied as a function of other param-
eters, e.g., packing fraction. In addition, non-Gaussian tails
have also been reported recently in granular systems [54],
where shear stress plays the role that temperature plays in
the systems we study here. Complex biological media
controlled by pH have also shown Brownian yet non-
Gaussian transport, where the measured value of β is
compatible with our results [12]. Finally, we expect a
similar phenomenology as the one we report in this work in
nonequilibrium active systems, where transport is con-
trolled by an energy of metabolic origin [55,56]. In this
respect, non-Gaussian regimes have indeed been found in
active biological systems constituted by animate energy-
consuming particles, for example, in cell migration proc-
esses [57] and in the transport of different organelles in the
cytoplasm of animal cells [58].

VI. METHODS

A. Lennard-Jones system

We perform two- and three-dimensional molecular
dynamics simulations of a Kob-Andersen binary mixture
[24]. In both cases, we first run simulations in the
canonical ensemble to equilibrate the system at a fixed
temperature. From them, we run simulations in the
microcanonical ensemble to evaluate the dynamic observ-
ables presented in this article. The interaction between a
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particle of species α and a particle of species β is given by
the Lennard-Jones potential

VαβðrÞ ¼ 4ϵαβ

��
σαβ
r

�
12

−
�
σαβ
r

�
6
�
; α; β ∈ fA; Bg;

ð8Þ

where A and B are the labels for the two species, and
r is the distance between the centers of mass of the
two particles. For both systems, σAA ¼ 1, σAB ¼ 0.8,
σBB ¼ 0.88, ϵAA ¼ 1, ϵAB ¼ 1.5, and ϵBB ¼ 0.5. The
potential is truncated and shifted at r ¼ 2.5σαβ [25]. All
the results are given in reduced units, where σAA is the unit
of length, ϵAA the unit of energy, and σAA

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m=48ϵAA

p
the

unit of time (being m ¼ 1 the mass of the particles).
Temperature T is controlled during the equilibration
process by an Andersen thermostat with an effective
mass of 48 reduced units [24] with Boltzmann’s constant
set to 1.
The number of particles for each species of the 2D

system is N2D
A ¼ 6500 and N2D

B ¼ 3500 with a total
number density ρ2D ¼ ðN2D

A þ N2D
B Þ=L2 ¼ 1.16, being

L ¼ 92.78 the length of the square simulation box [24].
For the 3D system, we use a different composition with
N3D

A ¼ 6400 and N3D
B ¼ 1600 for a total number density

ρ3D ¼ ðN3D
A þ N3D

B Þ=L3 ¼ 1.20, being L ¼ 18.80 the
length of the cubic box [25]. These compositions avoid
the emergence of a crystal structure even at a very low
temperature. We cover temperature ranges T ∈ ½0.34; 0.75�
(2D) and T ∈ ½0.45; 0.9� (3D). For both systems (2D and
3D), the lowest temperature we investigate is 1.03Tc, where
Tc is the mode coupling temperature of the glass transition
as estimated from data coming from numerical simulations
[24,59]. The onset temperatures for the 2D and 3D systems
are T2D

o ¼ 0.75 [60] and T3D
o ¼ 0.9 [61] (Fig. 4 in the main

text). Both systems show at low T the super-Arrhenius
dynamic behavior characteristic of fragile glass formers
[24]. We use for both systems a velocity Verlet algorithm
with a time step depending on the temperature: δt2D ¼ 0.02
(δt2D ¼ 0.01) for T ≤ 0.6 (T > 0.6) and δt3D ¼ 0.02
(δt3D ¼ 0.01) for T ≤ 0.7 (T > 0.7). The runs extend over
107 and 5 × 107 time steps for the 2D and 3D systems,
respectively.
The results shown in this article correspond in both

cases to particles of the species A. For the 2D system, we
average over 50 independent simulations (around 325 000
individual particle trajectories) for each value of the
temperature running on a high-end CPU processor cluster
with a total amount of CPU time of 11.5 years. For the 3D
system, we average over 70 independent simulations
(around 450 000 individual particle trajectories) for each
value of the temperature with a total amount of CPU time
of 18.5 years.

B. Tetrahedral system

We perform three-dimensional Brownian dynamics sim-
ulations of tetravalent patchy particles in the canonical
ensemble. The number of particles is N ¼ 10 000 with a
length of the cubic simulation box L ¼ 25.98σ, being σ the
particle hard-sphere-like diameter, here taken as the unit of
length. The number density is ρ ¼ N=L3 ¼ 0.57. For this
density, the system develops a homogeneous amorphous
tetrahedral network even at a very low temperature [40,62].
The interaction potential comprises a spherical steep
repulsion and a short-range attraction. The interaction
between a generic pair of particles 1 and 2 is given by

Vð1; 2Þ ¼ Vc:m:ð1; 2Þ þ VPð1; 2Þ; ð9Þ

where Vc:m:ð1; 2Þ is the repulsive part of the potential
between particles 1 and 2, whereas VPð1; 2Þ is the attractive
part of the potential between the patches of particles 1 and
2. These potentials are modeled as follows:

Vc:m:ð12Þ ¼
�

σ

r12

�
p
; ð10Þ

VPð12Þ ¼ −
XM
i¼1

XM
j¼1

ϵ exp

�
−
1

2

�
rij12
α

�q�
: ð11Þ

Here, r12 is the distance between the center of mass of
particles 1 and 2, rij12 is the distance between patch i on
particle 1 and patch j on particle 2, and M ¼ 4 is the
number of patches per particle. The four patches are
tetrahedrally distributed on the surface of the particles.
Exponents in Vc:m:ð1; 2Þ and VPð1; 2Þ are taken as p ¼ 200
and q ¼ 10 to resemble the functional behaviors of a hard
sphere and a square well interaction, respectively. We select
α ¼ 0.12 as the patch diameter to avoid having more than
one bond per patch and ϵ ¼ 1.001, for which the minimum
of the attractive part of the potential energy in a bounded
configuration is u0 ≡minVPð12Þ ¼ −1. Temperature T is
measured in units of the potential well, taking Boltzmann’s
constant as 1. The unit of time is σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m=ju0j

p
, being m ¼ 1

the mass of the particles. To integrate the equations of
motion, we use a velocity Verlet algorithm with a fixed time
step δt ¼ 0.001 using a modified Brownian thermostat
which explicitly avoids unphysical decorrelations in the
particle velocity [38,63]. The longest runs extend over
7 × 109 time steps for the lowest temperatures (T ¼ 0.105
and T ¼ 0.1025). All simulations are performed using the
OXDNA simulation package running on GPUs [64].
We investigate temperatures within the range T ∈

½0.1025; 0.16�, covering a slowing-down of the dynamics
of 4 orders of magnitude. The dynamics of this system
exhibits Arrhenius behavior at low temperature, a signature
of strong glass formers [40]. The temperature at which the
system enters into the Arrhenius regime is TA ≅ 0.115
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[37,40] (Fig. 4 in the main text). We take as the onset
temperature for this system T0 ¼ 0.16 (Fig. 4 in the main
text). Above this temperature, the system is not completely
percolated into an infinite cluster, and the MSD does not
present any detectable plateau [37].
We evaluate dynamic observables by an average of 50

independent simulations (500 000 individual particle tra-
jectories) per each value of the temperature. The total
amount of GPU time is approximately two months, which
for this system corresponds to more than three years of
CPU time on a high-end processor [64].

C. Estimation of λðtÞ
We determine λðtÞ via maximum likelihood assuming an

exponential probability density of displacements from a
given threshold rt. The likelihood at time t is given by

Lt ¼
YMt

i¼1

exp

�
−
ri − rt
λt

�
=λt; ð12Þ

where Mt is the number of individual particle trajectories
with a displacement ri larger than rt at time t. We consider
for convenience the minus logarithm of the likelihood

lt ¼ − logLt ¼
XMt

i¼1

ri − rt
λt

þMt log λt: ð13Þ

We then obtain the λ̂t that minimizes lt with respect to λt:

∂lt
∂λt

				
λt¼λ̂t

¼ 0 ⇒ λ̂t ¼
1

Mt

XMt

i¼1

ðri − rtÞ: ð14Þ

It is desirable to have the lowest possible threshold rt so
that more data are included in the estimation while still
having a statistically significant exponential tail. In order to
achieve this, we use a standard iterative procedure for
power-law tail evaluation [65]. We start with a very large
threshold rt and compute λ̂t by means of Eq. (14). At this
point, we perform a test of statistical significance: If the test
is passed, i.e., the data are well represented by the estimated
exponential distribution, we decrease the threshold rt by
0.025σ (being σ the particle diameter) and repeat the
procedure; if the test fails, we stop the procedure and
take λðtÞ ¼ λ̂t.
The statistical test we use is the nonparametric

Kolmogorov-Smirnov test [66], which measures how
extreme the distance is between the theoretical cumulative
distribution under the null hypothesis (where the data are
sampled from the theoretical distribution) and the empirical
cumulative distribution. The distance between distributions
is measured by the Kolmogorov-Smirnov statistics,

KSMt
¼ sup

riðtÞ
jFnull(riðtÞ) − Femp(riðtÞ)j; ð15Þ

where FnullðxÞ is the cumulative distribution under the null
hypothesis (exponential distribution with exponential rate
λ̂t) and FempðxÞ the empirical cumulative distribution. The
null hypothesis is accepted (rejected) when the p value is
greater (smaller) than 0.05 [66].

D. Estimation of μðtÞ, t0, and β

We define yt ≡MSDðtÞ. Since each yt is obtained as an
average over many independent and equivalent simulations
(see previous sections), we assume that it is normally
distributed. We denote by ȳ1;T and σ1;T the mean and
standard deviation of this distribution for a discrete time
interval ft1;…; tTg. The corresponding likelihood is

L1;T ¼
YtT
t¼t1

exp

�
−
ðyt − ȳ1;TÞ2

2σ21;T

�
 ffiffiffiffiffiffiffiffiffiffiffiffiffi
2πσ21;T

q
: ð16Þ

As in the previous section, we consider the minus
logarithm of the likelihood

l1;T ¼ − logL1;T

¼
XtT
t¼t1

ðyt − ȳ1;TÞ2
2σ21;T

þ T
2
log 2π þ T log σ1;T : ð17Þ

We then assume that ȳ1;T and σ1;T scale with the same
power-law exponent μ1;T within the discrete time interval
ft1;…; tTg: ȳ1;T ¼ atμ1;T and σ1;T ¼ ctμ1;T , with a, c ∈ Rþ.
This assumption is valid when deviations from normality
are small, where the variance σ21;T scales as 2y2t =ðT − 1Þ
and, therefore, σ1;T ∼ ȳ1;T . This common scaling results in

l1;T ¼
XtT
t¼t1

ðyt − atμ1;T Þ2
2c2t2μ1;T

þ T
2
log 2π þ T log cþ μ1;TT log t: ð18Þ

This function is minimized with respect to μ1;T , a,
and c via the L-BFGS-B algorithm implemented in
SCIPY.OPTIMIZE.MINIMIZE [67] and following the procedure
detailed in Ref. [68].
In Eq. (18), μ1;T corresponds to the discrete window

given by ft1;…; tTg, which is chosen to cover one decade
in time. To associate μ1;T with a specific time, we choose
the middle time in the sequence, i.e., tð1þTÞ=2, being T an
odd natural number. In this way, the value t0 associated
with the entrance to the diffusive regime is the middle time
in that sequence ft1;…; tTg for which μ1;T ¼ μðtð1þTÞ=2Þ≡
μðt0Þ ¼ 0.95. The reason for this choice is that μ ¼ 1 is an
asymptotic limit (t → ∞) which is approached from below
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but never reached. The criterion μ ¼ 0.95 ensures that the
exponent μ is compatible with μ ¼ 1 up to our measured
standard error, which is equal to 0.05 on average.
Finally, to estimate β we consider time windows of

one decade starting at t0 (see Figs. 2 and 3), with the
exception of those simulations where the Brownian yet
non-Gaussian regime does not cover one decade in
time (see, for instance, T ¼ 0.1025 in Fig. 3). Then we
fit λðt ≥ t0Þ by a least-squares regression assuming a
power law λðt ≥ t0Þ ¼ a1tβ þ a2, with a1; a2 ∈ Rþ as free
parameters.
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APPENDIX A: SCALING IN A 4D
LENNARD-JONES SYSTEM

In this Appendix, we provide evidence of the scaling
behavior λðtÞ ∼ t1=d for the Lennard-Jones system in
d ¼ 4 from the analysis of the exponential tails of
Pðr; tÞ ¼ ϕ4Gðr; tÞ, where ϕ4 ¼ 2π2 [see Eq. (2)]. We
perform simulations for a 4D Kob-Andersen binary
mixture with the same interaction parameters and units
defined in Sec. VI for d ¼ 2, 3. We simulate a system with
N ¼ 104 particles (5 times the number of particles used in
Ref. [24]), with NA ¼ 6500 and NB ¼ 3500. The linear
size of the simulation box is L ¼ 8.493581. The total
simulation time is 1.6 × 105, and the total number of
independent trajectories of A particles analyzed 1.3 × 104.
The composition and number density is the same as in
Ref. [24] for d ¼ 4. We investigate two temperatures using
an integration time step δt4D ¼ 0.02. The higher T is an
intermediate temperature which presents an incipient
plateau at intermediate times for the MSD, whereas the
lower temperature presents a marked plateau at inter-
mediate times [Fig. 6(a)]. With the chosen temperatures.
we enclose a wide range from the beginning of the glassy
dynamics to the inner supercooled regime, leaving a more
detailed study of the functional behavior of βðTÞ in 4D to
future studies.
As in Fig. 2, we fit in Fig. 6(b) the scaling of λðtÞ for

the 4D Lennard-Jones system within a time window where
t ≥ t0 for the two temperatures investigated. This scaling is
compatible with λðtÞ ∼ tβ. The fitted values of β are βðT ¼
0.750Þ ¼ 0.29� 0.05 and βðT ¼ 0.675Þ ¼ 0.28� 0.04.

Both of these values are compatible with the theoretical
value β ¼ 1=4 as predicted by the argument embodied
in Eqs. (4)–(6).
Because of computer limitations, our statistics for the 4D

Lennard-Jones system results in a time window smaller
than one decade. For t≳ 4t0 the data become noisy, and the
exponential tails are in general not accepted by the
Kolmogorov-Smirnov test within a sufficiently large r
range. To verify the reliability of the results, we perform
an additional chi-squared goodness-of-fit test using three
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FIG. 6. MSD and Brownian yet non-Gaussian regime for the
4D Kob-Andersen binary mixture. (a) Double-log plot of
the MSD for the two temperatures investigated, covering the
whole time regime from ballistic to diffusive motion. We
mark by vertical dashed lines the time windows correspond-
ing to the analyzed Brownian yet non-Gaussian regime for
each temperature. (b) Double-log plot of MSD1=2 (squares)
and λ (circles) as a function of time for the 4D Kob-Andersen
binary mixture at different temperatures: T ¼ 0.750 and
0.675. Here, t0 is the temperature-dependent time at which
the system reaches a μ value compatible with 1 within
numerical uncertainty, i.e., MSD(t ≥ t0) ∼ tμ≅1 (see Sec. VI).
The analyzed time windows correspond to the time regimes
signaled by vertical dashed lines in (a). Dashed lines
representing power-law behaviors in (a) and (b) serve as a
reference.
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families of fundamental increasingly monotonic func-
tions, all of them with two free parameters. First, we fit
λðtÞ within the explored time window using the power law
predicted by our scaling argument αtβ, with α > 0 and
β > 0 as free parameters. Second, we fit λðtÞ using the
family αeβt, exactly for the same time window and the
same number of points (50 in the plot). Finally, we fit λðtÞ
using the family αþ β logðtÞ, again for the same time
window and number of points. Thus, for the same number
of degrees of freedom, the goodness of the test for the
power law is greater than 99% for the two temperatures
investigated, whereas the goodness of the exponential
family is less than 30% and the logarithmic family less
than 1%. This statistical test supports the power-law
behavior and the value β ≅ 1=4 predicted by our scaling
argument.

APPENDIX B: FINITE-SIZE EFFECTS IN A 2D
LENNARD-JONES SYSTEM

In this Appendix, we explore whether finite-size effects
influence our results for the 2D Lennard-Jones system. We
compare the system presented in Sec. VI with an equivalent
larger system (same composition, number density, and
interaction parameters). We choose an intermediate temper-
ature T ¼ 0.6 already presented in Fig. 2(b). The larger
system has a total number of particles N ¼ 4 × 104, with
NA ¼ 2.6 × 104 and NB ¼ 1.4 × 104, i.e., 4 times the
number of particles in the system described in Sec. VI.
The linear size of the simulation box is L ¼ 185.56246
(twice the size in the system described in Sec. VI). The total
simulation time is 2 × 104, and the total number of
independent trajectories of A particles 6 × 105 (the same
number of trajectories in the system described in Sec. VI
at T ¼ 0.6).
In Fig. 7(a), we show a comparison of the MSD for the

two systems. We appreciate only a tiny difference in the
diffusive regime, where the larger system seems to present
a slightly greater diffusion coefficient than the small
system. Thus, as shown in Fig. 7(b), while the two
systems arrive at the diffusive regime almost at the same
time, there is a small shift in both the MSD and λ within
the Brownian yet non-Gaussian regime. In any case,
when comparing the dynamics of the two systems
within this regime, we see that both systems present a
common power-law behavior compatible with β ¼ 1=2,
as already documented for the small system in Sec. II. The
fitted values are βðlargeÞ ¼ 0.45� 0.05 and βðsmallÞ ¼
0.47� 0.04. This comparison confirms that finite-size
effects negligibly affect our main result for 2D Lennard-
Jones systems: the power-law dependence λðtÞ ∼ t1=2 in
the Brownian yet non-Gaussian regime.
We perform an additional comparison for two static

observables: potential energy and pressure. The probability
densities of the potential energy for the small and large

systems are peaked at about the same mean value: −3.139
for the large system and −3.140 for the small system;
see Fig. 8(a). The difference between the two distributions
is in their standard deviations: δEðlargeÞ ¼ 0.007 and
δEðsmallÞ ¼ 0.015. As expected by the law of large
numbers, the standard deviation decreases when increasing
the number of particles as δEðsmallÞ=δEðlargeÞ≈ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nlarge=Nsmall

p ¼ 2. In Fig. 8(b), we show similar results
for the pressure: a common mean value of 6.60 for the
two systems and a factor 2 in the standard deviations,
δPðlargeÞ ¼ 0.06 and δPðsmallÞ ¼ 0.12.
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FIG. 7. MSD and Brownian yet non-Gaussian regime for
two 2D Kob-Andersen binary mixtures of different size.
(a) Double-log plot of the MSD at T ¼ 0.6 for the large
and small system, covering the whole time regime from
ballistic to diffusive motion. We mark by vertical dashed
lines the time window corresponding to the analyzed Brow-
nian yet non-Gaussian regime. (b) Double-log plot of MSD1=2

(squares) and λ (circles) as a function of time for the large
and small system at T ¼ 0.6. Here, t0 is the temperature-
dependent time at which the systems reach a μ value
compatible with 1 within numerical uncertainty, i.e., MSD
(t ≥ t0) ∼ tμ≅1 (see Sec. VI). The analyzed time window
corresponds to the time regime signaled by vertical dashed
lines in (a). Dashed lines representing power-law behaviors in
(a) and (b) serve as a reference.
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APPENDIX C: TESTING THE SCALING
ARGUMENT

We test the scaling argument embodied in Eqs. (4)–(6)
of the main text. We first consider the 3D Lennard-Jones
and 3D tetrahedral gel systems at their respective lowest
temperatures. We wish in particular to show why the
scaling argument fails for the tetrahedral system at low
T, given as a result a β exponent significantly smaller than
1=3 (see Fig. 4 in the main text).
We first focus on Pðr; tÞ at different times within the

diffusive yet non-Gaussian regime (t ≥ t0); see Fig. 9. The
different exponential tails extend up to r ¼ 0 (straight lines
in Fig. 9) and all intersect approximately at a common value
at r ¼ 0. Therefore, Eq. (5), which assumes a nonevolving
ρ0, is well satisfied for both systems. At short distances,
Pðr; tÞ decreases with time for the 3D Lennard-Jones
system. In contrast, Pðr; tÞ for the tetrahedral gelling
system presents two favorable distances (inset in Fig. 9,
right) at which the probability increases with time, at least
within the time regime investigated. One distance corre-
sponds to the average first neighbor distance (r ≅ 1) and
the other one corresponds to the tetrahedral neighbor
distance (r ≅ 1.7). This result is consistent with the under-
lying amorphous tetrahedral structure at low T which still
manifests itself, despite many particles having already
jumped. In other words, some particles have moved to a
position at time t, which was occupied by another particle
at t ¼ 0.
Our next step is to test Eq. (4) of the main text,

which establishes a linear relation between the number
of hoppers within the diffusive yet non-Gaussian regime
and time: NhðtÞ ≈ ωNt ∼ t. We estimate NhðtÞ by integrat-
ing for both systems the exponential tails shown in
Fig. 9. This is presented in Figs. 10(a) and 10(b). While
the 3D Lennard-Jones system satisfies Eq. (4) for the
lowest T investigated [NhðtÞ ∼ t], the tetrahedral gelling
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FIG. 8. Potential energy and pressure for two 2D Kob-Ander-
sen binary mixtures of different size. (a) Probability density of the
potential energy per particle for the large and small system at
T ¼ 0.6 monitored every 20 time units for a total time 2 × 104.
(b) Probability density of pressure for the large and small system
at T ¼ 0.6 monitored as in (a).
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system presents a power-law behavior compatible with
NhðtÞ ∼ t1=2, in violation of Eq. (4).
Two different, but nonmutually exclusive, mechanisms

could explain why Eq. (4) fails for the tetrahedral system.
First, the tetrahedral system maintains a underlying struc-
ture at times greater than t0. This structure is revealed by the
two peaks in the inset of Fig. 9 (right). This means that
some particles that have already jumped to a distance
corresponding to one of these peaks could in principle jump
back to their original positions, thus abandoning the
exponential tail. Such a mechanism would slow down
the growth of NhðtÞ with time. Second, we also speculate
that the tetrahedral system could produce hoppers inter-
mittently in time. In this way, the tetrahedral system would
present avalanches in the production of hoppers alternated
with periods of scarce production. As a result, the empirical
total production of hoppers given by NhðtÞ would not be
linear before reaching the final Gaussian regime, at which
all the particles have already jumped. We leave a detailed
test of these hypotheses for future studies.

Finally, we directly test Eq. (6) of the main text by
plotting Nh versus λ in Figs. 10(c) and 10(d). We obtain
NhðλÞ from NhðtÞ at a fixed time t and take the λ value
corresponding to this time t. In this case, the behavior of
both systems is compatible with Eq. (6): NhðλÞ ∼ λd¼3. In
summary, the results of Fig. 10 show NhðtÞ ∼ t and
NhðλÞ ∼ λ3 for the 3D Lennard-Jones system and NhðtÞ ∼
t1=2 and NhðλÞ ∼ λ3 for the tetrahedral system. These
behaviors result in λ ∼ tβ¼1=3 for the 3D Lennard-Jones
system and λ ∼ tβ¼1=6 for the tetrahedral system (see the β
exponent at lowest temperature for the 3D Lennard-Jones
and the tetrahedral systems in Fig. 4 in the main text).
For completeness, we test our scaling argument in the 2D

Lennard-Jones system at T ¼ 0.36. The common inter-
section of the exponential tails is shown in Fig. 11(a), the
predicted behavior NhðtÞ ∼ t is presented in Fig. 11(b), and
the behavior NhðλÞ ∼ λ2 in Fig. 11(c). All these partial
results lead to λ ∼ t1=2, as predicted by the scaling argument
[Eqs. (4)–(6)].
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