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It has been recently discovered that the measles virus can damage pre-exist-
ing immunological memory, destroying B lymphocytes and reducing the
diversity of non-specific B cells of the infected host. In particular, this implies
that previously acquired immunization from vaccination or direct exposition
to other pathogens could be partially erased in a phenomenon named
‘immune amnesia’, whose effects can become particularly worrisome
given the actual rise of anti-vaccination movements. Here, we present the
first attempt to incorporate immune amnesia into standard models of epi-
demic spreading by proposing a simple model for the spreading of two
concurrent pathogens causing measles and another generic disease.
Different analyses confirm that immune amnesia can have important conse-
quences for epidemic spreading, significantly altering the vaccination
coverage required to reach herd immunity. We also uncover the existence
of novel propagating and endemic phases induced by immune amnesia.
Finally, we discuss the meaning and consequences of our results and their
relation with, e.g. immunization strategies, together with the possibility
that explosive types of transitions may emerge, making immune-amnesia
effects particularly dramatic. This work opens the door to further develop-
ments and analyses of immune-amnesia effects, contributing also to the
theory of interacting epidemics on complex networks.
1. Introduction
The measles virus is among the most contagious human pathogens; it can cause
severe symptoms and death, mostly during childhood and, as such, it rep-
resents a serious problem for global public health, targeted by the World
Health Organization (WHO) [1,2]. In spite of the 73% global drop in measles
deaths achieved thanks to improved vaccination policies in the period 2000–
2018, measles is still common in many developing countries; indeed, over
500 000 cases were reported worldwide in 2019, more than a half of which in
Africa [3]. Also in the USA as well as in Europe, where measles is considered
endemic in at least 10 countries, outbreaks are becoming ubiquitous in recent
years—with a 30% overall increase from 2017 to 2018—mostly as a consequence
of anti-vaccination movements [4,5]. Moreover, the WHO has recently raised
the alarm over the increasing chance of measles outbreaks due to poor vacci-
nation coverage as the COVID-19 pandemic progresses, with millions of
children at risk of missing out on measles vaccines [6].

Given the magnitude of the problem, it should come as no surprise that, as
of 2016, there were already over 100 mathematical models proposed in the lit-
erature to specifically reproduce and predict the evolution of measles outbreaks
[7]. In spite of this wealth of modelling approaches, there is a crucial aspect of
measles that is still systematically neglected and that has the potentiality to be
more harmful than the outbreaks themselves: immune amnesia (IA).

Building over a previous series of works that linked childhood mortality and
severe immunosuppression with preceding measles-virus infection [8–10],
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Figure 1. Sketch of the transitions between the eight allowed system states.
Green (orange) cells correspond to measles (X ) disease states. For the sake of
clarity, demographic processes are not included.
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conclusive empirical evidence has been very recently found that
measles can wipe out acquired immunity to other infectious dis-
eases through a mechanism called IA [11–13]. More specifically,
measles infection has been shown to destroy B lymphocytes
(specific to whichever other pathogens) and to reduce the diver-
sity of non-specific B cells, thus limiting severely the acquired
defenses in the adaptive immune system (regardless of whether
these have been achieved by means of vaccination or direct con-
tact with a pathogen) [4,11–13]. In fact, previous studies with
rhesus macaques [8], as well as with unvaccinated children
[11,13],hadmeasuredadepletionofup to70%of theexistinganti-
body repertoire across individuals aftermeasles infection, even if
there is a large subject-to-subject variability. As amatter of fact, it
hasbeen long reported that themajorityofmeasles-relateddeaths
are not due to themeasles virus itself, but to secondary infections
caused by the associated immunosuppression [14,15], hence the
importance of taking into account IA into the broader field of
epidemic mathematical modelling [16].

In this work, we give a first step towards bridging this
gap by incorporating the possibility of measles-induced IA
into standard models of epidemic spreading for an arbitrary
infectious disease co-occurring with measles outbreaks. Start-
ing from an initial situation where vaccination coverage is
assumed to grant herd immunity for a certain infectious dis-
ease—i.e. a sufficient number of vaccinated individuals so
that the disease can hardly spread across the population—
could measles outbreaks wipe out such immunity to the
point where sizeable secondary epidemics are unleashed? If
that was the case, the aforementioned recent increase in
measles outbreaks worldwide could be a greater threat than
previously thought. Even worse, a potential herd-immunity
strategy relying on vaccination for COVID-19 could be hin-
dered by the effects of measles outbreaks, all the more in
countries where measles vaccination coverage during this
health crisis is at its lowest.

To analyse these issues, here we develop a relatively
simple mathematical model that sheds light on the effects
of IA over the dynamics of a second epidemic disease coexist-
ing with outbreaks of measles. In particular, we perform
mathematical analyses and extensive computer simulations
of a modified susceptible–infectious–recovered (SIR) model
that accounts for two coupled diseases, vaccination coverage,
and possible demographic effects, as well as, crucially, the
possibility of IA.

We start considering homogeneously mixed populations,
i.e. fully connected networks, and perform standard
mean-field calculations that allow us to derive, e.g. analytical
estimates for the minimum measles-vaccination coverage
needed to maintain herd immunity for the second epidemics.
Then, we extensively analyse, both theoretically and computa-
tionally, the impact that the structure of the underlying
network of contacts can have on the results. In all cases, we
elucidate the possible emergence of IA-induced phases,
where the X disease becomes propagating/endemic just as a
consequence of IA effects.

Before closing, let us emphasize that for the sake of math-
ematical tractability our model considers a number of
simplifying assumptions. Among others, let us underline that:
(i) it assumes that infection with the measles virus erases the
totality of the pre-existing memory cells in all cases, while this
percentage has been shown to vary across individuals [10,11];
(ii) it assumes that there is no spontaneouswaning of immunity
neither formeasles nor for the secondary infection, even though
waning immunity is a well-documented fact [17,18] that has
already been analysed in simple mathematical modelling
approaches [19–22]; (iii) it does not consider any explicit age-
structure or population heterogeneity. We remark that all
these ingredients can be straightforwardly implemented as
additional layers of complexity in our model, and in particular
we analyse the effects of considering an ‘imperfect’ IA in one of
the appendices.
2. The SIR-IA model
In order to mimic the effects of IA on a given population, we
extend the SIR model—either with or without demographic
dynamics—[23–27] to account for two co-occurring diseases:
measles (M) and a second generic infectious disease to which
we refer by X hereon. For the sake of illustration, we consider
X to be COVID-19 as a guiding example, and use its associated
epidemic parameters. We name this SIR-like model with IA,
SIR-IA model.

As in the standard SIR dynamics [23–26], in the SIR-IA
model each of the N individuals within the focus population
can be either susceptible to be infected (S), infected (I ), or
resistant (R), for each of the two diseases. Thus, there are a
total of nine possible states: i, j∈ {SS, SI, SR, IS, II, IR, RS,
RI, RR}, denoting the state of individuals that are simul-
taneously in state i∈ {S, I, R} for measles and j∈ {S, I, R} for
disease X. It is important to remark that:

— State II representing individuals infected simultaneously
of both diseases will be dismissed in first approximation
as highly unlikely, given the short recovery periods.

— Resistant populations include not only recovered individuals
but also those who achieved immunity through vaccination.

The model dynamics is defined by a master equation
including the set of possible transition rates between these
states. This can be numerically integrated in an exact way
by using the Gillespie algorithm [28] (see below). The set of
possible transitions between states, together with the corre-
sponding rates at which they occur, are schematically
depicted in figure 1 (see also table 1 for a definition of
model parameters together with their base-line values). In



Table 1. Epidemic parameters used to model measles (M ) and COVID-19
(X ) epidemics. Infectivity and recovery periods for each disease were taken
from [29–31] to match the reported R0 values (e.g. for COVID-19 we took
R0 = 3.4; although recent studies suggest a shorter infectivity period for
COVID-19, this does not significantly affect the forthcoming conclusions).
COVID-19 vaccination coverage was set to a high value to ensure initial
herd immunity in the homogeneous-mixing approach.

symbol base-line value

measles infectivity rate βM 2.1 d−1

measles recovery rate γM 1/8 d−1

COVID-19 infectivity rate βX 0.25 d−1

COVID-19 recovery rate γX 1/14 d−1

immigration/emigration rate μ 1/365 d−1

COVID-19 vaccination coverage vX 0.9
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particular, following the standard notation, βM, βX and γM, γX
denote the infectivity and recovery rates for measles and dis-
ease X, respectively. Note that IA is explicitly implemented
within the term +γMρIR in equation (3.1e), which drags
X-recovered individuals back into the pool of X-susceptible
ones, in the case they had been infected with measles. The
parameters, vX and vM represent the vaccination coverage
for each disease, i.e. the probability that a new individual
added into the system is vaccinated against measles and dis-
ease X, respectively. For COVID-19, it has been estimated that
around a 65% of the population should be resistant (either
through vaccination or naturally acquired immunity) in
order to reach herd immunity [32]. Hence, to study to what
extent IA effects can affect a potentially achieved COVID-19
herd immunity, we consider a hypothetical large vaccination
coverage value, vX = 0.9.

As for ‘demographic’ parameters, the death and birth rates
for all individuals—regardless of their possible disease state—
have been set to a common value μ. These rates can also be
interpreted—looking at the problem from a meta-population
perspective—as describing emigration and immigration pro-
cesses. In particular, this latter interpretation justifies the use
of relatively large rate values (table 1). In individual-based sto-
chastic simulations of the model, any removed individual is
instantaneously replaced by a new-arrived one, thus keeping
a fixed population size.

For the sake of simplicity, we begin by studying the case of
homogeneouslymixedpopulations and thenanalysemore struc-
tured populations with a non-trivial underlying network of
contacts. We study versions of the model with either no explicit
demography (i.e. μ = 0) or explicit demographic effects μ≠ 0. In
the first case, much as in the standard SIR model, there cannot
possibly be any non-trivial stationary endemic state, while in
the second such states can possibly exist [16]. We investigate in
parallel all these possible scenarios to illustrate the generality of
the conclusions from complementary perspectives.
3. Results
3.1. Homogeneously mixed populations
To gain insight into the model key features, we employ a
standard mean-field approximation which, as usual, is exact
in the limit of infinitely large homogeneously mixed
populations. This, leads rather straightforwardly to the fol-
lowing set of eight differential equations (sometimes called
‘rate equations’) [23]:

_rSS ¼� bXrSS(rSI þ rRI)� bMrSS(rIS þ rIR)� mrSS

þ m(1� vX(1� vM)� vM(1� vX)� vMvX), ð3:1aÞ
_rSI ¼ bXrSS(rSI þ rRI)� gXrSI � mrSI, ð3:1bÞ

_rSR ¼� bMrSR(rIS þ rIR)þ gXrSI � mrSR

þ mvX(1� vM), ð3:1cÞ
_rIS ¼ bMrSS(rIS þ rIR)� gMrIS � mrIS, ð3:1dÞ

_rRS ¼� bXrRS(rSI þ rRI)þ gM(rIS þ rIR)

� mrRS þ mvM(1� vX), ð3:1eÞ
_rIR ¼ bMrSR(rIS þ rIR)� gMrIR � mrIR, ð3:1fÞ
_rRI ¼ bXrRS(rSI þ rRI)� gXrRI � mrRI (3:1g)

and _rRR ¼ gXrRI � mrRR þ mvMvX (3:1h)

where ρij is the population fraction in state ij.
3.1.1. SIR-IA model without demography
Let us begin by analysing the case with no demography, i.e.
with μ = 0. In this scenario, the only role of vM and vX is to
determine the initial fraction of vaccinated population of M
and X diseases, respectively. To simplify the forthcoming
mathematical analyses, let us define iM = ρIS + ρIR and sM =
ρSS + ρSR as the total fraction of infectious and susceptible
individuals of measles, and their counterparts iX = ρSI + ρRI
and sX = ρSS + ρRS for the disease X. Let us remark that
states SI and IS are not counted as susceptible ones (neither
for measles nor for X disease) since states II have been neg-
lected, as previously said.

To analyse the situation in which herd immunity for the
disease X is potentially erased by the effect of IA, we
assume that the population fraction vX vaccinated against X
is sufficiently high to initially avoid spreading the disease
(i.e. iX≈ 0 prior to the onset of a measles outbreak). Note
that, under this assumption, from equations (3.1a), (3.1c),
(3.1e) and (3.1f ) one readily derives the standard SIR-model
mean-field equations for measles dynamics

diM
dt

¼ bMiMsM � gMiM (3:2)

and

dsM
dt

¼ �bMiMsM: (3:3)

From equation (3.2), it is clear that a small seed (of size ϵ≪N)
of M-infectious individuals introduced in a population of
initially susceptible and resistant individuals grows exponen-
tially if diM/dt > 0, anddecays to 0 if this is negative. Therefore,
since sM(0) = (N (1− vM)− ϵ)/N≈ 1− vM is the initial fraction
ofM-susceptible tomeasles, the epidemic threshold separating
the above two regimes is specified by the condition

vyM ¼ 1� 1
RM
0
, (3:4)

where, as usual, the basic reproduction number RM
0 ¼

bM=(mþ gM)—defined as the average number of secondary
infections generated by a primary case in a completely suscep-
tible population [16]—has been introduced for measles.
Therefore, vyM is the herd-immunity threshold and represents
the minimum fraction of M-vaccinated population needed to
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prevent measles spreading. For the considered parameter
values (table 1) it follows thatRM

0 � 17 and vyM � 0:95, numbers
that emphasize the well-known high infective power of the
measles virus.

In what respects the X disease and in the absence of IA, one
can easily derive from equations (3.1a), (3.1b), (3.1d) and (3.1g)
an epidemic-threshold condition analogous to equation (3.4)

vyX ¼ 1� 1
RX
0
, (3:5)

which results into RX
0 � 3:5 and vyX � 0:65 for the parameters

in table 1. Let us underline that, in this IA-free case, both dis-
eases are uncoupled and, hence, their respective thresholds are
independent of each other.

To start scrutinizing the full problem, including immune-
amnesia—which turns out to be much more intricate from an
analytical viewpoint—we start by performing computational
analyses of the stochastic model (see Methods for technical
details). In particular, we run simulations of the SIR-IA sto-
chastic model by implementing a Gillespie algorithm as
follows: beginning with an initial seed of ϵM M-infectious
individuals, we let an outbreak of measles spread through
the population (for which we set vM , vyM); once it fades
out, we add at some initial time T a second seed consisting
of ϵX X-infectious individuals who will potentially spread
disease X through the system. Figure 2 illustrates the result-
ing time courses of epidemics as obtained from stochastic
simulations averaged over many realizations. In particular,
for the case in which the vaccination coverage vX is only
slightly above the herd-immunity threshold vyX (i.e.
vX * vyX) the figure clearly shows that—on average—much
larger outbreaks occur under the influence of IA. It also
reveals that, not surprisingly, the duration of the outbreaks
is shorter when IA effects are considered, as the disease
takes over the susceptible population in a much faster way.
The inset of figure 2 illustrates how these results change
quantitatively with the M vaccination coverage, vM: as
naively expected, (i) the total outbreak size grows and (ii)
the time elapsed between measles and X outbreak peaks
becomes shorter as vM is reduced. Observe also that X epi-
demics can only break out (i.e. become supercritical) if vM
is set below a minimum, critical vaccination threshold
vyyM(m ¼ 0) , vyM, which represents the minimum population
fraction that needs to be vaccinated against measles in order to pre-
serve herd immunity for disease X even in the presence of IA effects.

Last but not least, let us stress that, in spite of the fact that
one needs to deal with a set of eight differential equations, we
have been able to find an analytical solution for vyyM(m ¼ 0) as
a function of other parameters. The detailed calculations,
which are obtained as a limiting case of the more general pro-
blem of a general network architecture, can be found in
appendix B.1. Figure 2 confirms that the analytically derived
threshold (blue dotted line in the inset), is in excellent agree-
ment with computational results, a conclusion that remains
true for other choices of parameter values. A summary of
the analytical and computational results is provided by
figure 3 which explicitly illustrates the existence, for a broad
range of parameter values, of a propagating phase which
emerges as a mere consequence of IA effects.
3.1.2. SIR-IA model with demography
In general, introducing demographic dynamics such as
birth/death and/or emigration/immigration processes into
a SIR-like model, opens up the possibility for stable endemic
states, with a non-zero fraction of infectious individuals, to
appear. For this, it is necessary that such processes occur at
a fast-enough pace so that a flux of new susceptible individ-
uals is constantly generated to ‘feed’ the contagion process,
otherwise the epidemics necessarily vanish [16].
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As a first test to analyse the demographic version of the
model, with μ≠ 0, we verified the existence of endemic
states by numerically solving the mean-field equations
(3.1a)–(3.1h) with μ > 0 (see table 1) and X-vaccination cover-
age vX . vyX, for which the X-disease-free state is stable in the
absence of IA effects. In particular, the green curve in figure
4a shows that a measles endemic state is found as soon as
the fraction vM drops below a certain measles herd-immunity
level vyM � 0:95. This result has been also verified by means of
direct Gillespie simulations of the full stochastic model as
well as proved analytically, as shown below. Figure 4a also
reveals that—even if it has been obtained for a large X-vacci-
nation coverage value—an X-disease endemic state exists
(orange curve) provided vM drops below a certain critical
threshold value vyyM(m = 0). Such an X-disease endemic
state is purely induced by IA effects, i.e. it is a IA-induced
endemic phase.1

We also analysed the dependence of vyyM on RX
0 by solving

for the stationary states of equations (3.1a)–(3.1h); the ende-
mic states are represented by blue diamonds in figure 4b.
Clearly, the larger the virulence of the X disease the larger
the value of vyyM. Observe in particular, that as RX

0 ! 1, vyyM
approaches that of the critical point for measles outbreak
vyyM � vyM, implying that as soon as an outbreak of measles
takes place, an epidemic of X may emerge taking over the
newly generated pool of IA-induced susceptible individuals,
in spite of the fact that the population was massively vacci-
nated for the X disease (vX � vyX). Similarly, figure 5 shows
the fraction of infected individuals in the stationary state
(colour coded) as a function of both, vM and vX. Results for
two different X diseases are shown: a mildly infectious one
with (a) R0 = 1.3 and (b) COVID-19, with an estimated R0 =
3.4. It can be observed that, not surprisingly, the region in
the vaccination parameter space where X-disease endemic
states appear becomes larger with increasing RX

0 , but in
both cases—even in the limit of stringent vaccination policies
for the X disease, vX≈ 1—an IA-induced endemic state can
appear if M-vaccination drops below a critical threshold
level vyyM. The exact value of this threshold (which marks the
boundary of the stable endemic region) will depend on vX.
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Note also that the shift between endemic and disease-free
states is a gradual one, as it corresponds to a continuous
phase transition in the present case of homogeneously
mixed populations.

In summary, the value of the transition point vyyM(m = 0)
has been numerically shown to depend on both the
infectivity RX

0 and the vaccination coverage vX for the
disease X (as well as on other parameters such as μ). In
what follows, in order to get a deeper understanding of the
phenomenon as well as a better quantitative description of
the phase diagram we derive analytical expressions for
such dependencies.

3.1.3. SIR-IA model with demography: theoretical results
Let us first analyse the possible stable fixed points of
equations (3.1a)–(3.1h) as a function of vM. Starting from
equations (3.1a), (3.1c), (3.1e) and (3.1f ) one can write

diM
dt

¼ bMiMsM � gMiM � miM (3:6)

and

dsM
dt

¼ �bMiMsM � bXiXrSS � msM þ m(1� vM): (3:7)

Assuming, as above, initial herd immunity for the X disease,
i.e. vX . vyX, one can approximate iX≈ 0 and readily find the
two steady-state solutions of equations (3.6) and (3.7): a
disease-free one, (iM

* , sM
* ) = (0, 1− vM) and an endemic one

(i�M, s
�
M) ¼ (RM

0 ((1� vM)� 1)m=bM, 1=RM
0 ). A standard linear

stability analysis allows us to recover the existence of a tran-
scritical bifurcation at vyM ¼ 1� 1=RM

0 where these two fixed
points exchange their stability; thus the system shifts in a con-
tinuous or smooth way from a non-propagating to an
endemic state. Observe that this transition point is a natural
extension of the threshold for μ = 0, even when no endemic
state existed in that case, but just a separation between propa-
gating and quiescent phases. Similarly, for the X disease,
using the joint variables iX and sX

dsX
dt

¼ �bXsXiX � bMrSSiM þ gMiM � msX þ m(1� vX) (3:8)

and

diX
dt

¼ bXsXiX � gXiX � miX: (3:9)

Note that it is not possible to solve exactly the above
equations for their fixed points, as they do not form a
closed set: equation (3.8) depends on the fraction ρSS of
individuals susceptible to both, measles and X disease, as
well as on the fraction iM of measles infectious population.
However, assuming that a steady state for measles has been
reached, it is possible to show that r�SS ¼ (1� vX)=RM

0 ; using
this and searching for steady-state solutions of equations
(3.8) and (3.9), one can compute the minimum value of vM
preventing the existence of a stable X-endemic state,
thus obtaining an expression for vyyM (see appendix A for a
detailed derivation).

This can be further simplified in the typical case under
consideration where the immigration rate is much smaller
than the measles recovery rate, μ≪ γM, resulting in:

vyyM � 1
vX

1� 1
RX
0

� �
� 1
RM
0
¼ vyX

vX
� 1
RM
0

(3:10)
which depends not only on the R0’s of both diseases but also
on the vaccination coverage for disease X, as computationally
observed above. Note also that the rightmost expression in
equation (3.10)—written in terms of vyX rather that RX

0 —
underlines the relationship between the two vaccination
thresholds. This result is illustrated in figure 6, which
shows the three resulting phases for a generic X disease: (i)
disease-free, (ii) IA-induced endemic, and (iii) endemic, as
well as their phase boundaries in the (vM, vX=v

y
X) plane.

Observe that, since we assumed vX � vyX, then trivially
vyyM � 1� 1=RM

0 ¼ vyM must hold, with both critical points
coinciding for vX ¼ vyX. Similarly, as 0 � vyyM � 1, one readily
sees that the existence of a non-trivial second threshold vyyM
is limited by the constraint vX=v

y
X � RM

0 (these two limits
are marked with arrows in figure 6). Therefore, an immune-
amnesia-induced endemic phase for X disease exists under broad
conditions for realistic parameter values.

All the above analytical results, derived from linear stab-
ility analyses with some additional approximations, have
been confirmed by numerically determining the fixed
points for the full system of mean-field equations
(3.1a)–(3.1h), without invoking any approximation beyond
numerical accuracy (see Material and methods). Moreover,
one can also cross-check the consistency between these
analytical approaches and the previous results from compu-
tational simulations, for example, by looking at figures 4a
and 5, which reveal that the analytical predictions for vyyM,
as given by equation (3.10), explain well both the onset of
the X outbreak in the deterministic calculation (figure 4a)
and its dependence on RX

0 and vX (figure 5).
3.2. SIR-IA model on structured networks
After two decades of frantic activity on the development of the
theory of complex networks, by now it is broadly recognized
that the structure of the underlying network of contacts
plays a crucial role in spreading phenomena such as epidemics
[26,33–39]. Thus, to have a broader view on IA effects, here we
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Figure 7. Analysis of epidemic size and thresholds in ER and power-law
degree distributed networks. Outbreak sizes (as measured by the difference
between X-resistant individuals before and after the introduction of one
single X-infectious individual in the system) are presented for ER networks
with different average degrees (a) and power-law networks with different
degree exponents α (c). The dependence of the vaccination threshold, vyyM ,
with the average network degree for ER networks (b) and α exponent for
power-law networks (d ), respectively, is compared with the corresponding
analytical predictions given by the heterogeneous mean-field approximation.
Stochastic simulations were performed in networks of size N = 105 and N =
5 × 105 for ER and power-law networks, respectively. Error bars are computed
as the standard deviation over 200 realizations. The rest of parameters were
chosen according to table 1.

royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

18:20210153

7

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

16
 J

ul
y 

20
21

 

scrutinize the behaviour of the SIR-IA model beyond the
homogeneous-mixing approach, considering more structured
topologies such as Erdős–Rényi (ER) random networks
and power-law degree-distributed networks [34,40–42] (see
Methods).

In order to make further progress, we make some simpli-
fying assumptions: (i) vaccination for both measles and X is
considered to be performed in a random way across the net-
work (i.e. there is no ‘targeted-immunization’ programme
selecting preferentially specific nodes for vaccination accord-
ing to, e.g. their network centrality or connectivity [43–46]).
(ii) As in the previous analyses, we impose that vx . vyx to
analyse how herd immunity can be potentially lost by IA
effects. (iii) For simplicity, we limit ourselves here to the
analytically more-tractable non-demographic version of the
SIR-IA model (i.e. μ = 0).

We first report on computational findings for stochastic
(Gillespie) simulations of the SIR-IA model on structured
networks. Let us remark that, in order to compare ER
networks with different average connectivity (or ‘degree’)
〈k〉, we defined an infectivity per contact β0 so that β = β0〈k〉,
with bX

0 ¼ 0:017 and bM
0 ¼ 0:14. Within this convention, the

values presented in table 1 are recovered for an average
network degree 〈k〉≈ 20. These same values of bX

0 and bM
0

were also used in power-law degree distributed networks,
but in this case the average connectivity 〈k〉 = u (1− α)/(2−
α) was kept fixed by changing the minimum node degree u
according to the chosen exponent α.

Figure 7a shows results of the mean epidemic size for
X-disease outbreaks occurring on ER networks with different
average connectivity, as a function of the measles vaccination
coverage vM. It can be readily noticed that the vaccination
threshold vyyM grows and the transition becomes sharper as
〈k〉 is increased. Remarkably, the transition becomes very
abrupt for large mean degrees, implying that a small vari-
ation in the measles vaccination level can induce a dramatic
effect on the typical size of the subsequent X-disease out-
breaks. For instance, for 〈k〉≥ 30, lowering the vaccination
coverage from vM = 0.9 to vM = 0.82 (a reduction on the
number of vaccinated individuals of just an 8% of the popu-
lation size) entails an increase of two orders of magnitude in
the subsequent X-outbreaks.

On the other hand, for power-law degree distributions
pk∼ k−α, numerical simulations reveal that reducing α leads
to larger values of vyyM, as illustrated in figure 7c. The figure
also shows that, in this case, the transition becomes more
abrupt as larger values of α are considered. In light of these
results, one could wonder whether the transition could even-
tually become discontinuous or explosive for larger values of
〈k〉 or α, as it has been shown to occur in other models
with cooperative contagion [47–49].

Remarkably, the dependence of the vaccination threshold
on the average network degree and exponent α can be
described using the heterogeneous mean-field approach, a gener-
alization of the mean-field theory that groups all nodes with
the same degree into a common class [39], which has been
shown to be accurate (up to finite size corrections) when
applied to epidemic models that do not posses non-trivial
steady states [50]. For the SIR-IA model, the calculations turn
out to be a mathematical ‘tour the force’, so the details are
deferred to appendix B, and here we just present the final
results for both ER and power-law degree-distributed
networks.

In particular, for ER networks, calling q ¼ sM1 (T)=(1� vM)
to the fraction of degree-1 M-susceptible individuals at the
time T of inserting an X-infectious seed with respect to the
initially M-susceptible population fraction, we found the
following equation:

q(1� vM) e kh i(q�1) � log (q)=Reff
M � (1� vM) ¼ 0, (3:11)

where Reff
M ¼ bM

0 =gM. Defining the auxiliary function ζ(q) =
q vX(1 + 〈k〉q) e−〈k〉(1−q) we were able to derive a closed
equation for the vaccination threshold as a function of par-
ameter values

vyyM(q) ¼
1=Reff

X � 1þ kh ið Þ þ z(q)
z(q)� vX 1þ kh ið Þ : (3:12)

This expression, when inserted into equation (3.11), can be
numerically solved, leading to an analytical determination
of vyyM. Figure 7b shows such a theoretical solution (black-
dashed line) as a function of the network average degree,
together with the computational results obtained by aver-
aging over many runs of the stochastic simulations of the
model running on ER networks with different averaged
connectivities.

On the other hand, for power-law degree-distributed net-
works with α > 3 we defined j ¼ log ((1� vM)=sMu )—where u
is now the minimum degree of a node in the network—and
vyX ¼ 1� (hki=Reff

X hk2i), which is the corresponding threshold
in a standard SIR model with vaccination [46]. In terms of
these quantities, we obtained (see appendix B.3),

vyyM ¼ (a� 3)ja�3G(3� a, j)� vyX=vX
((a� 3)ja�3G(3� a, j)� 1)

: (3:13)
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with the constraint

(1� vM)(e�j � (a� 2)ja�2G(2� a, j)� 1)

þ gM
ub0

M
j ¼ 0 (3:14)

needed to determine ξ. Conversely, for scale-free networks
(i.e. 2 < α≤ 3) one finds that outbreaks do not propagate
only if vM = vX = 1, i.e. the whole population needs to be vac-
cinated for both diseases to prevent the epidemic. This result
is in consonance with the well-known phenomenon of van-
ishing epidemic threshold in BA networks [48,51–53]: all
single nodes need to be vaccinated to prevent epidemic
propagation, a result that stems from the existence of super-
spreaders, i.e. network hubs. However, our analytical results
predict also that, for the SIR-IA model, the M-vaccination
threshold for the propagation of an X-disease outbreak
depends also on the X-vaccination coverage and, hence, the
vaccination threshold can saturate even in scale-rich networks,
with α > 3 (see figure 7d, where for vX = 0.9 a minimum
M-vaccination level preventing an X outbreak is defined
only in networks with a * 3:4). Nevertheless, it is important
to remark that these result are strictly valid only in the infinite
size limit (N→∞), in which the second-moment of the
degree distribution truly diverges in scale-free networks. In
fact, for 〈k〉 = 15 and α = 3, we found a vaccination threshold
clearly below 1 in stochastic simulations (figure 7d ). This
phenomenon that should come as no surprise, since finite
size effects in the SIR model have been shown to be respon-
sible for the appearance of non-trivial thresholds in scale-free
networks at sufficiently low transmission rates [52].

As shown in figure 7b,d, the analytical results match quite
well the values of vyyM found in stochastic simulations. In both
ER and power-law networks, small disagreements with com-
putational results are most likely rooted in finite-size effects
and the associated possibility of stochastic fade-out that
occurs in finite networks and not in infinitely large ones;
however, performing a proper finite-size analysis to study
such effects is beyond the scope of the present work [54–56].

Finally, to the question of whether discontinuous tran-
sitions could be found in power-law networks with
sufficiently high values of α, application of the hetero-
geneous-mean-field theory to our model predicts that—
provided a non-trivial vaccination threshold exist in the
large-N limit—transitions between a quiescent and a propa-
gating phase are always continuous independently of the α
exponent (see appendix B.3) and a similar conclusion holds
for ER networks even in the limit of large average connectiv-
ities. Still, it remains to be carefully investigated how other
structural aspects such as clustering, geography and network
modularity, to name but a few, could affect such a conclusion.
4. Conclusion and discussion
We have seen that, when measles vaccination policies
are relaxed, the expected herd immunity for any secondary
infectious disease X can be lost owing to the proliferation
of individuals affected by IA. In particular, under IA
effects, the epidemic threshold is shifted so that severe out-
breaks can take place even under extensive X vaccination.
We have studied the conditions under which measles vacci-
nation can prevent such outbreaks. To support the
generality of our findings, we considered two different
variants of the SIR-IA model: one in which all the state
transitions are given by infectious/recovery processes, and
a second version in which demographic effects are also
taken into account. For both models, we were able to
derive—under homogeneous-mixing assumptions—analyti-
cal expressions for the epidemic threshold in terms of the
fraction of people vaccinated against measles, which were
able to reproduce with significant accuracy the results
obtained through simulations. Remarkably, the analytical
results also allowed us to construct a full phase diagram in
both models, where three distinct phases were found:
quiescent, endemic/propagating and, more remarkably,
IA-induced endemic/propagating phases.

We have also studied the persistence of the generic X dis-
ease under IA when more realistic network architectures—
beyond the homogeneously mixed population paradigm,
were considered. In particular, when the SIR-IA model is
implemented in random ER networks, it was shown that
larger fractions of M-vaccination coverage are necessary to pre-
vent outbreaks as the average network connectivity increases.
We remark that this dependence is highly nonlinear (as also
shown by our analytical results), with the epidemic threshold
decaying very fast at low connectivity values. Thus, when
fighting an outbreak in ER networks under IA effects, it is
likely that measures taken to lower the average connectivity,
even without imposing full confinement—e.g. limiting the
allowed number of individuals in gatherings—can indeed
have a profound impact on spreading of the disease.

At the other end of the spectrum, for scale-free networks
the vaccination threshold is equal to unity, implying that the
whole population needs to be vaccinated against both diseases
to prevent epidemic propagation; this is the counterpart of the
well-known phenomenon of vanishing epidemic threshold,
and is predicted by our analytical calculations in the limit of
very large networks. The fact that outbreaks persist even
when a large percentage of the population is vaccinated mani-
fests not only the key role of hubs (i.e. super-spreaders) in the
spreading process but also the scarce effectiveness of vaccine
uptake measures when these are randomly administrated (as
opposed to, e.g. targeting the most connected nodes [44,46]).
Aiming for a more profound understanding of this effect, we
considered general power-law degree-distributed networks
which drift from the scale-free to the random regime by con-
sidering values of α > 3. As shown by stochastic computer
simulations, the vaccination threshold becomes non-trivial
once the network presents a non-divergent second moment,
scaling with the exponent α as predicted by the analytically
derived expression in the limit of N→∞.

Let us also discuss the nature of the transition between
the propagating and quiescent regimes. It was shown in
[57] and further investigated in [47,48,58,59], that cooperative
epidemics can show hybrid-type phase transitions for large
enough α in the limit of large system sizes. Although per-
forming a detailed analysis of this important issue is
beyond our scope here (and is left for a further work), the
implications of a possible discontinuous transition are enor-
mous from the dynamical perspective, opening the door to
catastrophic regime shifts [60,61]: under such conditions—
with just a slight reduction in the fraction of the vaccinated
population—the system could suddenly undergo a transition
from a quiescent state with overall herd immunity to a state
in which anomalously large pandemics could surge. As dis-
cussed for the homogeneous-mixing case, at the epidemic
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threshold we find a second-order phase transition, which
holds at first sight when more realistic networks are con-
sidered. Nevertheless, we see that the transition becomes
more abrupt as we consider larger mean degrees in ER
networks, or greater exponents α in power-law degree
distributed networks. For the latter, however, application of
the heterogeneous mean-field theory to our model predicts
a continuous phase transition independently of the value of
α. More realistic network architectures including clustering,
modularity or embedding into a metric space, as well as poss-
ibly temporally changing networks, still need to be analysed
to have a full view of the potential effects of IA on real popu-
lations. Furthermore, the possibility of finding actual first-
order transitions when further cooperative interactions are
implemented is left for future work. In particular, let us
note that during lockdown periods to fight COVID-19, vacci-
nation coverage for measles decreases, thus creating a
feedback loop that could enormously enhance the impact of
a future M-outbreaks and thus of IA.

Our results not only pave the way to the study of coopera-
tive contagions from the perspective of immunization (in
comparison with other works, in which cooperativity is mod-
elled as changes in infectivity or recovery rates [57,59,62]), but
also open a branch of new exciting questions. For example, it is
known that vaccination strategies targeting the hubs in scale-
free networks can effectively reduce to finite values the epi-
demic threshold [63]. It would be therefore very relevant to
study the effects that using different immunization strategies
for each disease (e.g. random and targeted vaccination) have
on the existence or absence of an epidemic threshold in
scale-free networks. Let us also emphasize that we have devel-
oped an advanced version of the heterogeneous mean-field
approach which can be applied to derive analytical results in
similar problems of cooperative contagion or, more in general,
when different epidemics coexist, influencing each other.

The present work can be extended in a number of ways to
include further biological and epidemiological details. For
instance, in appendix C, we consider a version of the model
in which IA is only partial, as infection with the measles
virus does not usually remove all existing memory cells, but
just a fraction of them; as naively expected, and explicitly
demonstrated in appendix C, this effect diminishes the
impact of IA reducing the size of the IA-induced endemic
phase. Similarly, one could also consider waning immunity
for both measles and the secondary disease [17–22]; such effects
can be easily implemented in our model by allowing for
spontaneous transitions from recovered to susceptible states.
In this case, these effects would add up to IA, further
enlarging the endemic phase and reducing the quiescent one.
It remains a challenging goal for further studies to quanti-
tatively analyse these diverse types of immunity loss when
they occur in concomitance. Finally, additional aspects
such as age-structured populations, spatial distributions, sea-
sonality, etc., could be implemented in our model. Careful
analyses of all these possibilities will certainly contribute to
build a more clear picture of the quantitative epidemiological
aspects of immune amnesia, but are beyond the scope of the
present work.

It is our hope that this work makes it clear the importance
of keeping measles vaccination (and vaccination in general)
at levels that are as high as possible, to prevent IA effects to
have a strong negative impact at a global level. We also
hope that this work fosters further investigations along
these lines as well as novel developments in other directions
taking advantage of the techniques we have set up.

5. Material and methods
The steady-state solutions reported in figures 4b and 5 were
obtained by solving equations (3.1a)–(3.1h) for their fixed points.
The eigenvalues of the associated Jacobian matrix were then ana-
lysed to determine their possible stability [64]. Only the resulting
stable fixed points are plotted in such figures. Likewise, the deter-
ministic trajectories in the standard mean-field approximation
shown in figure 4b (insets) were obtained by integrating equations
(3.1a)–(3.1h) with Matlab ode23 function, which implements an
explicit Runge–Kutta (2,3) pair algorithm [65]. On the other
hand, simulations of the stochastic dynamics were performed
through the standard Gillespie algorithm in the homogeneous
mean-field approach [28] and through a network-adapted Gillespie
for any other network structure, as described in [66]. Unless other-
wise specified, initial conditions for the simulations were set in
agreement with the vaccination rates following ρ0 = {ρSS = (1− vM)
(1− vX)− (εX + εM), ρSI = εX, ρSR = 0, ρIS = εM, ρIR = 0, ρSR = (1−
vM)vX, ρRS = vM(1− vX), ρRR = vMvX}. To obtain the deterministic
solutions (figures 4b and 5), we set εM = εX = 50/N, while for the
stochastic simulations we chose εM = 1/N and εX = 0, introducing
one X-infectious individual only after the measles outbreak has
fade out. In all cases, the total population size was fixed to N = 105.

In what respect structured networks, ER graphs were con-
structed following the standard algorithm as described in [40],
while for power-law degree-distributed networks we used the
configuration model [67] to generate a first graph from which
we then removed all multiple and self-connections. Although
this last step may introduce correlations within the networks,
they are negligible for all purposes when α > 3 and large
system sizes are considered [68].
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Endnote
1Let us remark that vyyM depends on μ and, in particular, it does not
coincide for the cases with and without demography.

Appendix A. SIR-IA model with demography in
homogeneous networks
We begin the analytical study by assuming that, initially, the
number of X-infectious individuals is very low due to a high-
vaccination coverage vX & 1. Under this approximation,
equations (3.2) and (3.3) of the main text describing the evol-
ution of the total fraction of susceptible and infectious
individuals of measles, can be written as

diM
dt ¼ bMiMsM � gMiM � miM

and dsM
dt ¼ �bMiMsM � msM þ m(1� vM):

)
(A 1)
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In this way, the dimensionality of the problem is largely
reduced, allowing us to compute the quiescent (Q) and ende-
mic (E) stationary states in the now independent set of
variables {iM, sM}

jQ ¼ (i�QM , s�QM ) ¼ (0, 1� vM)

and jE ¼ (i�EM , s�EM ) ¼ m(RM
0 (1�vM)�1)

bM
, 1
RM
0

� �
:

9=
; (A 2)

To analyse the stability of the above fixed points, we compute
the Jacobian associated with the linearization of equations
(3.2) and (3.3) around a point in which there is no infectious
individuals of X (i.e. iX = 0), as we assumed to be above the
herd-immunity threshold for this disease. Therefore, lineariz-
ing around any point (iM

* , sM
* , iX = 0), we have

JM ¼ bMs�M � (gM þ m) bMi�M
�bMs�M �bMi�M � m

� �
: (A 3)

If vM is chosen as the control parameter, one can perform a
stability analysis by evaluating the determinant (Δ) and the
trace (τ) of JM at the each of the fixed points [64]. Thus, the
disease-free fixed point ξQ is a stable focus of the linearized,
X-disease-free system if vM . 1� 1=RM

0 , and a saddle-node
otherwise. On the other hand, the endemic stationary state ξE
only exists provided vM , 1� 1=RM

0 , and it is always a stable
focus. Therefore, the epidemic threshold for the propagation
of measles is given by the critical value vyM ¼ 1� 1=RM

0 .
Now, to study the epidemic threshold for X using a simi-

lar approach requires of some approximations. In particular,
we assume that a stationary state for the measles variables
sM and iM is reached (regardless if endemic or quiescent)
before the evolution of disease X can significantly progress.
This a reasonable assumption because, on one hand, the
dynamics of measles occurs at a faster timescale (shorter
recovery period and faster infection rate). Moreover, we
start with an initial state for X that is over herd immunity,
and thus activity (in terms of the fraction of X infectious indi-
viduals) is very low until IA effects can convert a large
fraction of resistant individuals into susceptibles. Within
this approximation, it is possible to solve equations (3.8)
and (3.9) in the main text for the stationary states, obtaining

cQ ¼ (i�QX , s�QX ) ¼ 0, i�M
m (gM � bMr

�
SS)þ (1� vX)

� �
and cE ¼ (i�EX , s�EX ) ¼ i�M(gM�bMr�SS)þm(1�vX�(1=RX

0 ))
gXþm , 1

RX
0

� �
,

9=
;

(A 4)

where iM* and ρSS* denote the steady-state fraction of M-
infectious and fully susceptible individuals, respectively.

Beginning with a scenario where the system is in a dis-
ease-free stationary state ξQ for measles, we find

cQ,1 ¼ (i�QX,1, s
�Q
X,1) ¼ (0, 1� vX)

and cE,1 ¼ (i�EX,1, s
�E
X,1) ¼ m

bX
(RX

0 (1� vX)� 1), 1
RX
0

� �
:

9=
; (A 5)

Note that these stationary states are the X-counterparts of ξQ
and ξE. This symmetry reflects the fact that, without a preced-
ing outbreak of measles and its consequent IA effects, the
evolution of the X infection should follow that of an indepen-
dent SIR model with vaccination and demographic
dynamics, where the endemic state ψE is stable provided
vX , vyX ¼ 1� 1=RX

0 .
Let us move now to the more interesting case in which

there is a endemic measles stationary state, given by ξE.
Since now equations (3.8) and (3.9) do not form a closed
set, we first proceed to estimate ρSS using sM = ρSS + ρSR
and equation (1c). Assuming stationarity in the number
of M-infectious individuals and low initial fraction of
X-infectious (iX≈ 0), one can write

drSR
dt

� �bMrSRi
�2
M � mr�SR þ mvX(1� vM) ¼ 0, (A 6)

from where r�SR ¼ vX=RM
0 and r�SS ¼ (1� vX)=RM

0 . It is impor-
tant to remark that these are not truly stationary states,
but serve us as an estimation of the expected distribution of
M-susceptibles near the measles endemic state ξE before the
onset of an X outbreak. Let us nevertheless carry on with the
analysis and impose fixed values ρSS* and i�M ¼ i�EM in equation
(A 4). One then obtains the following pair of stationary states:

cQ,2 ¼ (i�QX,2, s
�Q
X,2) ¼ 0, gM

bM
(RM

0 (1� vM)� 1)
�

þ (1� vX) vM þ 1
RM
0

� ��
and cE,2 ¼ (i�EX,2, s

�E
X,2) ¼ m

mþgX
s�QX,2 � 1

RX
0

� �
, 1
RX
0

� �
:

9>>>>=
>>>>;

(A 7)

As before, one can linearize the above system around each
of these solutions. Studying the determinant and trace of the
resulting Jacobian matrix in each point

JX ¼ �m� bXi�X �bXs�X
bXi�X bXs�X � (gX þ m)

� �
, (A 8)

allows us to conclude that the X-disease-free steady state ψQ,2

is a stable focus if s�QX,2 , 1=RX
0 , and a saddle-node otherwise;

whereas ψE,2 is a stable focus only when s�QX,2 . 1=RX
0 and

does not exist otherwise. Therefore, writing the explicit
form found for s�QX,2 and taking vM as the control parameter,
one finally obtains the epidemic threshold for the X disease
in terms of the fraction of M-vaccinated population

vyyM ¼ (1=RX
0 )� (1� vX)(1=RM

0 )þ (gM=bM)(1� RM
0 )

1� vX � (RM
0 gM=bM)

: (A 9)

In the typical case in which μ≪ γM, one can approximate
gM=bM � 1=RM

0 , and the vaccination threshold presented in
equation (3.10) of the main text is recovered

vyyM � 1
vX

1� 1
RX
0

� �
� 1
RM
0
¼ vyX

vX
� 1
RM
0
: (A 10)

A.1. SIR-IA model without demography in
heterogeneous networks

The heterogeneous mean-field (HMF) approach [39] is a
degree-block approximation carried out by assuming that
nodes with the same degree k are statistically equivalent,
i.e. belong to the same connectivity class. Within this frame-
work, the total fraction of X-infectious individuals at each
degree-class, iXk , obeys

diXk (t)
dt

¼ bX
0 ks

X
k uX � gXi

X
k , (A 11)

where uX ¼ (1=hki)Pk kpki
X
k is the density function, defined

as the fraction of infected nodes in the neighbourhood of a
susceptible node with degree k, and can be shown to be inde-
pendent of k if the network has no degree-correlations [51].
Multiplying both sides of the above equation by the excess
degree, kpk/〈k〉, and summing over all possible values of k,
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we get an equation for the evolution of the density function
for X-infectious

duX
dt

¼ 1
kh ib

X
0 k2sX
� �

uX � gXuX: (A 12)

Placing a single X-infectious individual at time T, the condition
for an outbreak to spread in the mean-field approximation is
trivially given by dθX(T )/dt > 0. Hence, the epidemic
threshold is determined by the condition

k2sX(T)
� � ¼ kh i

Reff
X

(A 13)

where Reff
X ¼ bX

0 =gX is an effective R0 per contact. To estimate
the critical value 〈k2sX(T )〉 for which the epidemic breaks out,
we need an expression for the minimum fraction of X-suscep-
tible individuals in each degree-class at the time T of inserting
the X-seed

sXk (T) ¼ rSSk (T)þ rRSk (T): (A 14)

Using the same approximation as in the casewith μ≠ 0, we con-
sider that an outbreak of measles propagates and dies out
before a seed of X-infectious individuals is placed in the
system at time T (i.e. iMk (t) ¼ 0, 8t � T and iXk (t) ¼ 0,
8t , T). If this is the case, then ρRS is a ‘dead-end’ state for
t≤T, and three sources contribute to its value at t =T:

— Initial fraction of M-resistants that are not resistant for
X: rRSk (0) ¼ vM(1� vX).

— Fully susceptible individuals that became resistant for
measles after undergoing an infection (ρSS→ ρRS):
rSSk (0)� rSSk (T) ¼ (1� vM)(1� vX)� rSSk (T).

— X-resistants who became infected with measles, and
lost their immunity due to IA effects (ρSR→ ρRS):
rSRk (0)� rSRk (T) ¼ (1� vM)vX � rSRk (T).

Hence, summing up all contributions one obtains

sXk (T) ¼ 1� vMvX � rSRk (T): (A 15)

The epidemic threshold for X depends therefore on the frac-
tion rSRk (T) of M-susceptible individuals who are X-resistant
at the end of the measles outbreak. During the latter, iXk ¼ 0
8k, and thus we can write

drSSk (t)
dt ¼ �bM

0 kr
SS
k uM

and drSRk (t)
dt ¼ �bM

0 kr
SR
k uM:

9=
; (A 16)

Dividing the above equations and integrating

rSRk (T) ¼ rSRk (0)
rSSk (0)

 !
rSSk (T): (A 17)

Now, since vaccination is randomly performed with the same
probability across all nodes, we have rSRk (0) ¼ (1� vM)vX and
rSSk (0) ¼ (1� vM)(1� vX) 8k, whence

rSRk (T) ¼ vX
1� vX

rSSk (T) ¼ vX
1� vX

(sMk (T)� rSRk (T))

¼ vXsMk (T): (A 18)

This relation between rSRk (T) and sMk (T) allows us to finally
write equation (A 15) as an expression linking the fraction
of X and M-susceptibles at time T

sXk (T) ¼ 1� vMvX � vXsMk (T): (A 19)
It follows then that the value vyyM at which the epidemic
threshold takes place, according to equation (A 13), is given by

k2
� �

(1� vyyMvX)� vX k2sM(T)
� � ¼ kh i

Reff
X
: (A 20)

All that remains now is to determine the fraction of M-suscep-
tibles at the end of the measles outbreak. To do so, we follow a
similar approach to the one presented in [69] for a standard SIR
model. Let us define the minimum degree of any node in a net-
work by u=min(k) and write the equation for the rate of change
of M-susceptible individuals in the class of degree k

dsMk
dt

¼ �bM
0 ks

M
k uM: (A 21)

Noticing that dsMk =ds
M
u ¼ ksMk =us

M
u , one can then write

sMk (t) ¼ C0(sMu (t))
k=u: (A 22)

with C0(k) ¼ sMk (0)=(s
M
u (0))

k=u ¼ (1� vM)
1�(k=u). Therefore, the

fraction of susceptible individuals for each degree class at the
end of the measles outbreak can be expressed as

sMk (T) ¼ (1� vM)
sMu (T)
1� vM

� �k

: (A 23)

Note how, with the above relation, it is possible to determine the
fraction of M-susceptible individuals at any time and degree-
class k just by studying the minimum-degree class. We intro-
duce now the variable z(t) ¼ � log (sMu (t)), so that

_z ¼ � _sMu (t)
sMu (t)

¼ b0
MuuM: (A 24)

In terms of this new quantity and using equation (A 23), one can
write the density function for M-infectious nodes as

_uM ¼ 1
kh i
X
k

kpk
diMk
dt

¼ b0
M

kh i
X
k

pkk C0(k)(sMu )
k=uuM � gMuM

¼ uM
b0
M

kh i
X
k

pkk2C0(k) e�(kz=u) � gM

 !
:

(A 25)

Dividing by equation (A 24)

du
dz

¼
P

k pkk C0(k) e�(kz=u)

u kh i � gM
b0
Mu

, (A 26)

and noticing that iM(0)∼ 0 implies θM(0)∼ 0, with z(0) =−log
(1− vM), one can integrate the above equation to obtain

uM ¼ (1� vM) 1�
X
k

pk
kh i k((1� vM) ez)

�(k=u)

 !

� gM
b0
Mu

(zþ log (1� vM)): (A 27)

At the end of the measles outbreak θM(z(T )) = 0, and one
finally obtains an equation for sMu (T) that will obviously
depend on the degree distribution pk of the network under
consideration

0 ¼ (1� vM) 1�
X
k

pk
kh i k

1� vM
sMu (T)

� ��(k=u)
 !

� gM
b0
Mu

log
1� vM
sMu (T)

� �
:

(A 28)

Armed with equations (A 20), (A 23) and (A 28), we are now in
a position to confidently explore the effects of different net-
works topologies on the epidemic threshold.
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A.2. Homogeneous networks
In a homogeneous network, all nodes have the same degree
〈k〉 (i.e. pk = δ(k− 〈k〉)), so all connectivity classes are equal.
Thus, we have sMk ¼ sM, with u = 〈k〉, and equation (A 28) is
reduced to

0 ¼ (1� vM)� sM(T)� 1
RM
0
log

1� vM
sM(T)

� �
: (A 29)

Solving for sM(T ), we find the following self-consistency
equation

sM(T) ¼ (1� vM) e�RM
0 ((1�vM)�sM(T)): (A 30)

Similarly, if all nodes have the same degree 〈k〉, equation
(A 20) for the epidemic threshold can be easily reduced to

vyyM ¼ vyX
vX

� sM(T): (A 31)

Note that, in the case in which μ≠ 0, the stationary state for
the fraction of M-susceptibles is given by sM(T) ¼ 1=RX

0 , and
we recover the epidemic threshold found in equation (A 10).
Equations (A 30) and (A 31) allow us to reproduce an
equivalent—and in fact, very similar—phase diagram to the
one found for the demographic model (see figure 3 in the
main text).
A.3. Erdős–Rényi
For an ER network and if 〈k〉≪N, the binomial distribution
typical of random networks can be approximated by a
Poisson distribution, pk = (〈k〉k/k!) e−〈k〉. Moreover, in the
limit of very large networks, one can assume u = 1 to be the
minimum degree in the network. In terms of this distribution,
we can write

X
k

pk
kh i k((1� vM) ez)

�k ¼ e� kh iX
k

kh ik�1

(k � 1)!
((1� vM) ez)

�k

¼ e� zþ kh ið Þ

1� vM
exp

kh i e�z

1� vM

� �
: (A 32)

Therefore, equation (A 28) can be expressed as

0¼sM1 (T)e
kh i(sM1 (T)=(1�vM)�1)� 1

Reff
M
log

sM1 (T)
1�vM

� �
�(1

�vM), (A 33)

which has a trivial solution sM1 (T)¼sMk (T)¼1�vM, representing
the case in which no measles-epidemic has taken place. On the
other hand, making use of equation (A 23) we have

k2sM(T)
� �¼(1�vM)e� kh iX

k

k2

k!
kh isM1 (T)
1�vM

� �k

¼e� kh i kh isM1 (T)1F0 2,1;
kh isM1 (T)
1�vM

� �

¼ kh isM1 (T)
kh isM1 (T)
1�vM

þ1
� �

e kh i(sM1 (1)=(1�vM)�1),

where 1F0(a, b; z) is the generalized hypergeometric function
[70]. Thus, using that 〈k2〉= 〈k〉(〈k〉+ 1) for ER networks, the
epidemic threshold condition is written as

1
Reff
X
¼ kh iþ1ð Þ(1�vyyMvX)

�vX sM1 (T)
kh isM1 (T)
1�vyyM

þ1

 !
e kh i((sM1 (T)=(1�vyyM))�1)

" #
, (A34)

with sM1 (T) given by

sM1 (T)e
kh i(sM1 (T)=(1�vyyM)�1)� 1

Reff
M
log

sM1 (T)

1�vyyM

 !
�(1�vyyM)¼0: (A35)

In order to simplify these expressions further, one can observe
that sM1 (T) must necessarily be a fraction q of the initial
number of susceptibles (i.e. sM1 (T) ¼ qsM1 (0) ¼ q(1� vM)) and
then rewrite the above equations as

1
Reff
X

¼ kh i þ 1ð Þ(1� vyyMvX)

� vX e� kh i q(1� vyyM) kh iqþ 1ð Þ e kh iq
h i

(A 36)

and

q(1� vyyM) e
kh i(q�1) � 1

Reff
M
log (q)� (1� vyyM) ¼ 0: (A 37)

Regrouping terms in the epidemic threshold condition and
defining ζ(q) = qvX(1 + 〈k〉q) e−〈k〉(1−q), we finally obtain

vyyM(q) ¼
1=Reff

X � 1þ kh ið Þ þ z(q)
z(q)� vX 1þ kh ið Þ : (A 38)

which can be inserted in equation (A 37) to obtain a mathemat-
ical expression depending solely on q. We can then solve
this equation to finally study the dependence of vyyM with
the network average degree, as done in the upper-right
panel of figure 6.
A.4. Power-law degree-distributed networks
These networks are characterized by a probability distri-
bution of the form pk =C0k

−α, where C0 is determined
through the normalization condition

Pkmax
k¼u pk ¼ 1. Further-

more, for networks with a large number of nodes, one can
resort to the continuum formalism and replace the sums by
integrals over k. Working in the limit of N→∞, we then
have pk ¼ (a� 1)ua�1k�aQ(k � u). In terms of this probability
distribution function, one can write

X
k

pk
kh i k((1� vM) ez)

�k
u � (a� 1)u

kh i ja�2
ð1
j

e�xx(2�a)�1 dx

¼ (a� 2)ja�2G(2� a, j), (A 39)

where we have used x = (k/u)ξ, with j ¼ log ((1� vM)=sMu );
〈k〉 = ((1− α)/(2− α))u is the average degree of the
network, and G (a, z) is the upper incomplete gamma func-
tion [70]. Inserting the above result into equation (A 28) one
obtains

j

uReff
M

¼ (1� vM)(1� (a� 2)ja�2G(2� a, j)): (A 40)

On the other hand, equation (A 23) can be used again to per-
form an equivalent analysis of 〈k2sM(T )〉 to the one for ER
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networks

k2sM(T)
� � ¼ (1� vM)(a� 1)ua�1

X1
k¼u

k2�a sMu (T)
1� vM

� �k=u

� (1� vM)(a� 1)ua�1
ð1
u
k2�a e�j(k=u) dk

¼ (1� vM)(a� 1)u2ja�3
ð1
j

e�xx(3�a)�1 dx

¼ u2(1� vM)(a� 1)ja�3G (3� a, j): (A 41)

Finally, the vaccination threshold condition reduces to

hki
Reff
X

¼ hk2i(1� vyyMvX)� vXu2(1� vyyM)(a� 1)ja�3G (3

� a, j), (A 42)

which, using hk2i ¼ ( 1�a
3�a )u

2 and noticing that vyX ¼ 1
�(hki=Reff

X hk2i) is just the immunization threshold in the stan-
dard SIR model (derived in the thermodynamic limit) for
power-law degree distributed networks [46], can be written
as

vyyM ¼ (a� 3)ja�3G (3� a, j)� vyX=vX
(a� 3)ja�3G (3� a, j)� 1

: (A 43)

with a condition over sMu (T) given in terms of ξ by equation
(A 40). Although one could in principle solve the system
given by equations (A 40) and (A 42), we show in what fol-
lows that it is possible to derive the epidemic threshold
from a slightly different approach that we believe is more
informative. Beginning with the equations for the total frac-
tion of susceptibles and resistants for X, and assuming as
usual that measles outbreaks precede X outbreaks, we can
write

dskX
dt ¼ �b0

Xks
k
XuX

and drkX
dt ¼ gXikX:

9=
; (A 44)

Solving each equation between the time T at which the X seed
is introduced and t

skX(t) ¼ skX(T) e
�b0

Xk

ðt
T
uX(t) dt

and rkX(t) ¼ rkX(T)þ gX

ðt
T
ikX(t) dt:

9>>>=
>>>;

(A 45)

Defining fX ¼ Ð tT uX(t)dt one can then write

fX ¼
X
k

pk
kh i k

ðt
T
ikX(t) dt ¼

1
kh i
X
k

pkk
rkX(t)� rkX(T)

gX

� �
: (A 46)

Using ikX(t) ¼ 1� skX(t)� rkX(t) and skX(T) ¼ 1� rkX(T)

_fX ¼ 1
kh i
X
k

pkkikX(t) ¼ 1� 1
kh i
X
k

pkk(skX(t)þ rkX(t))

¼ �gXfþ sX(T)kh i
kh i � 1

kh i
X
k

pkkskX(T) e
�b0

XkfX :

One can now make use of equation (A 19) and 〈k2〉 = ((1 − α)/
(3− α))u2, replacing again the infinite sums by integrals over
k to obtain

_fX ¼ �gXfX þ 1� vMvXþ
� vX(1� vM)(a� 2)ja�2G (2� a, j)

� (1� vMvX)(a� 2)xa�2G (2� a, x)

þ vX(1� vM)(a� 2)(xþ j)a�2G (2� a, xþ j): (A 47)

where for ease of notation we have defined x ¼ b0
XufX. On

the other hand, provided s≠ 0,− 1,− 2,…; it is possible to
expand the upper incomplete gamma function as [71]

xa�2G (s, x) ¼ xa�2G (s)�
X1
n¼0

(� 1)nxn

n!(sþ n)
, (A 48)

where G (a) can be naturally extended to negative arguments
a < 0 by means of the recursive relation G (aþ 1) ¼ aG (a).
Applying the former identity, and after several manipulations,
one can show that

(xþ y)a�2G (s, xþ y) ¼ xa�2G (s, x)þ ya�2G (s, y)þ 1
s

þ G (s)[(xþ y)a�2 � xa�2 � ya�2]

þ x
X1
n¼1

(� 1)nyn

n!(sþ 1þ n)
� 1
2
x2
X1
n¼1

(� 1)nyn

n!(sþ 2þ n)
þO(x3),

(A 49)

which allow us to re-express equation (A 47) as

_fX ¼�gXfXþ1�vX

� (1�vX)(a�2)xa�2G (2�a, x)

þvX(1�vM)(a�2)x
X1
n¼1

(�1)njn

n!(3�aþn)

�1
2
vX(1�vM)(a�2)x2

X1
n¼1

(�1)njn

n!(4�aþn)

þvX(1�vM)(a�2)G (2�a)[(xþj)a�2�xa�2�ja�2]þO(

(A50)

Expanding G (2�a,b0
XufX) and regrouping everything we are

finally left with

_fX ¼�gXfX

� (1�vX)(a�2)
x

(3�a)
� x2

2(4�a)

� 	

þvX(1�vM)(a�2)x
X1
n¼1

(�1)njn

n!(3�aþn)

" #

þ1
2
vX(1�vM)(a�2)x2 �

X1
n¼1

(�1)njn

n!(4�aþn)

" #

� (1�vXvM)(a�2)G (2�a)xa�2

þvX(1�vM)(a�2)G (2�a)[(xþj)a�2�ja�2]þO(f3
X):

(A51)

The goal now is to rewrite the infinite series back in terms of
gamma functions using equation (A 48). To do so, one can
add and subtract the missing n = 0 terms that complete the
series and use the identity Y(s, x)¼ sG (s)�G (s, x) [70] to
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obtain

_fX ¼�gXfX� (1�vXvM) x
(a�2)
(3�a)

�x2
(a�2)
2(4�a)

� 	

þvX(1�vM)(a�2)xja�3Y(3�a, j)

�1
2
vX(1�vM)(a�2)x2ja�4Y(4�a, j)

� (1�vXvM)(a�2)G (2�a)xa�2

þvX(1�vM)(a�2)G (2�a)[(xþj)a�2�ja�2]þO(f3
X):

(A52)

We remark that, although the lower incomplete gamma func-
tion Y(s, x)¼ R x0 ts�1 e�tdt is in principle defined for Re(s) > 0, it
is possible to extend its domain to any non-integer s < 0 by
using Y(sþ1, x)¼ sY(s, x)�xs e�x [71]. Finally, although we
have expanded _f up to second order, the above expression
can be easily generalized to any desired cut-off order imax,
writing it in a more compact way

_fX ¼�gXfXþ (a�2)
Ximaxþ1

i¼2

(�1)ixi�1

(i�1)!
(1�vXvM)
(a� i�1)

þvX(1�vM)
�

ja�i�1Y(iþ1�a, j)



þ (1�vMvX)xa�2G (3�a)�vX(1�vM)G (3�a)[(xþj)a�2

�ja�2]þO(fimax
X ): (A53)

Now, to obtain the epidemic threshold we analyse the stability
of the quiescent fixed point ϕ0 = 0, knowing that if _fX ¼ f(fX),
then l¼ @f

@f jf0
¼ 0 gives the bifurcation point. Before, we pro-

ceed to study the different cases, note that in the vicinity of
ϕ0 one can write the binomial sum (for any real α) as
(xþj)a�2 ¼ ja�2þP1

k¼1C(a�2, k)xkja�2�k, where C(s, k) =
(s(s− 1)(s− 2) · · · (s + 1− k))/k!. This can simplify a bitequation
(A 53), which can be re-arranged—after grouping together
terms of the same order—as

_fX ¼�gXfXþ (a�2)ub0
X

"
(1�vXvM)
(a�3)

�vX(1�vM)

tja�3G (3�a, j)

#
fX

(a�2)
Ximaxþ1

i¼3

(�1)i(ub0
X)

i�1

(i�1)!

"
(1�vXvM)
(a� i�1)

�vX(1�vM)

ja�i�1G (iþ1�a, j)

#
fi�1
X

þ (1�vMvX)(ub0
XfX)

a�2G (3�a)þO(fimax
X ): (A54)

Two different cases need to be distinguished depending on
whether the networks are scale-free or not

1. If 2 < α < 3 (i.e. the network is scale-free) then the term
fa�2
X dominates with

l � (1� vMvX)(a� 2)xa�3G (3� a), (A 55)

and since fa�3
0 ! 1, we will find λ = 0 only if, trivially,

vX = vM = 1. This is the counterpart of saying that the
epidemic threshold vanishes, in agreement with the
well-known result in scale-free networks [26,34].
2. If otherwise α > 3, the leading order is given by the linear
term and we can write

l � (a� 2)ub0
X

(1� vXvM)
(a� 3)

� vX(1� vM)ja�3G (3� a, j)
� 	

� gX: (A 56)

One could, for instance, fix vM and write the epidemic
threshold in terms of vX

vyyX ¼ vyX
vM þ (1� vM)(a� 3)ja�3G (3� a, j)

, (A 57)

where vyX ¼ 1� (hki=Reff
X hk2i) ¼ 1� ((a� 3)=((uReff

X )�
(a� 2))) is the expected epidemic threshold for a SIR
model with random vaccination in a power-law degree-
distributed network [46]. As a sanity check, note that
one can retrieve the expected epidemic threshold for an
independent disease in two different ways: by setting
vM = 1, or by letting ξ≈ 0 and taking the asymptotic
behaviour of the upper-incomplete gamma function,
ja�3G (3� a, j) �! (a� 3)�1. It is also not difficult
to show that (as expected) vyyX � vSIRX . Using
ja�3G (3� a, j) � e�j

a�3 and suM(T) � 1� vM one can write

vM þ (1� vM)(a� 3)ja�3G (3� a, j)

� vM þ (1� vM) e�j ¼ vM þ suM(T) � 1, (A 58)

which proves that the denominator in equation (A 57)
is always smaller than or equal to one. On the other
hand, it is also possible to derive the exact value of the epi-
demic threshold in terms of the fraction of M-vaccinated
individuals, recovering equation (A 43). Remarkably,
both vyyX and vyyM can be computed numerically using the
relation between vM and ξ given by equation (A 40),
although in the main text the analysis is limited to the
latter quantity.

Finally, equation (A 54) can help us to discern the nature
of the bifurcation within our HMF approach. Developing the
sum up to second-order terms in ϕX

_fX ¼ �gXfX þ (a� 2)ub0
X

�
(1� vXvM)
(a� 3)

� vX(1� vM)

ja�3G (3� a, j)

#
fX

� 1
2
(a� 2)(ub0

X)
2

"
(1� vXvM)
(a� 4)

� vX(1� vM)

ja�4G (4� a, j)

#
f2
X

þ (1� vMvX)(ub0
XfX)

a�2G (3� a)þO(f3
X): (A 59)

1. If 3 < α < 4: _f � af� jcjfa�2 with b≠ 0, which is the form
of a transcritical bifurcation. _f ¼ 0 admits therefore a sol-
ution with arbitrary small ϕ≠ 0 when we are slightly
above the epidemic threshold, and the transition is
continuous.
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2. If 4 < α: _f � afþ bf2. Using that ja�4G (3� a, j) �
e�j=a� 4 [71] and suM(T) � 1� vM one can write

(1� vXvM)
(a� 4)

� vX(1� vM)ja�4G (4� a, j)

� 1� vXvM � vXsuM(T)
(a� 4)

� 1� vX
(a� 4)

� 0: (A 60)

It follows that b < 0 and the transition is therefore
continuous.
Appendix B. The effect of partial immune
amnesia
In the following section, we show that a more general model in
which immunity to disease X is lost with some probability p
(rather than with certainty) is qualitatively similar to the case
p = 1 that has been discussed throughout the paper. In particu-
lar, we prove mathematically that an extended version of the
SIR-IA model (in the case with demography and homo-
geneous underlying networks) presents a vaccination
threshold ~vyyM that is analogous in form to the one derived in
the main text. Figure 8a shows a sketch of the extended version
of the model: an individual in the IR state nowmoves to the RS
state (i.e. loses immunity to X disease due to IA) with a rate
pγM or becomes fully immune (RR) with rate (1− p)γM.

Thus, it is straightforward to see that only equations (3.1e)
and (3.1h) from the main set of dynamical equations in the
main text need to be modified

_~rRS ¼ �bXrRS(rSI þ rRI)þ gM(rIS þ prIR)
�mrRS þ mvM(1� vX)

and _~rRR ¼ gXrRI � mrRR þ mvMvX þ gM(1� p)rIR

9=
;

(B 1)

Since the dynamics of the measles outbreak is left
unchanged under this modification, the stationary states
ξQ = (0, 1− vM) and jE ¼ ((m(RM

0 (1� vM)� 1))=bM, 1=RM
0 )

remain as calculated in appendix A. For disease X on the
other hand, one can write

d~sX
dt ¼ d(rSSþ~rRS)

dt ¼ dsX
dt � (1� p)gMrIR

and d~iX
dt ¼ d(rSIþrRI)

dt ¼ diX
dt :

)
(B 2)
The stationary states for the above equations are

~cQ ¼ (~i
�Q
X , ~s�QX ) ¼ 0, s�QX � gM(1�p)

m r�IR
� �

and ~cE ¼ (~i
�E
X , ~s�EX ) ¼ i�EX � gM(1�p)

gXþm r�IR,
1
RX
0

� �
,

9=
; (B 3)

where s�QX and i�EX denote the corresponding values in the
same stationary states when p = 1, and ρIR

* is the fraction of
measles-infectious individuals that are resistant for disease
X at the end of the measles outbreak. To estimate this last
fraction, let us note that

drIR
dt

¼ 0()r�IR ¼ bMr
�
SR

gM þ m
i�M ¼ vXi�M, (B 4)

where r�SR ¼ vX=RM
0 , as derived in appendix A. Taking the

more interesting situation in which there is an endemic
measles stationary state given by ξE, we can finally obtain
the epidemic threshold condition by setting
~s�QX ¼ s�QX � (gM(1� p)=m)vXi�M ¼ 1=RX

o with s�QX ¼ s�QX,2 and
i�M ¼ i�EM (for a detailed derivation of all these previously
calculated quantities see appendix A)

1
RX
o
¼ gM

bM
(RM

0 (1� ~vyyM)� 1)þ (1� vX) ~vyyM þ 1
RM
0

� �

� gM(1� p)
m

� �
vX

m(RM
0 (1� ~vyyM)� 1)

bM

 !
: (B 5)

Finally, solving for ~vyyM

~vyyM ¼ (1=RX
0 )� (1� vX)(1=RM

0 )þ (~gM=bM)(1� RM
0 )

1� vX � (RM
0 ~gM=bM)

, (B 6)

where we have defined ~gM ; gM(1� vX(1� p)) to recover an
expression for the vaccination threshold that has the same
form as equation (A 9) in the main text. Figure 8b shows
the different dynamical regimes that can be found for differ-
ent values of p, using the above equation to determine the
boundary between the purely endemic and IA-induced ende-
mic states. Observe how, as p becomes smaller (i.e. losing
immunity through IA effects becomes less likely), the
region in which one can find an IA-induced endemic state
(delimited by the white dashed line in each case) shrinks.
Nevertheless, from a qualitative point of view the system
behaves in the same way as before and one can still find an
IA-induced endemic phase in which herd immunity can be
lost despite vaccination efforts.
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Finally, let us remark that one could also consider partial
IA in such a way that affected individuals have a reduced
(but non-zero) re-infection rate to other diseases. Similarly,
it is possible to account for spontaneous waning immunity
(at the risk of losing mathematical tractability) just by intro-
ducing new rates for transitions from recovered to
susceptible states. These extensions are nevertheless beyond
the scope of the present work.
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