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The human cortex is never at rest but in a state of sparse and noisy neural activity that can be detected
at broadly diverse resolution scales. It has been conjectured that such a state is best described as a critical
dynamical process—whose nature is still not fully understood—where scale-free avalanches of activity emerge
at the edge of a phase transition. In particular, some works suggest that this is most likely a synchronization
transition, separating synchronous from asynchronous phases. Here, by investigating a simplified model of
coupled excitable oscillators describing the cortex dynamics at a mesoscopic level, we investigate the possible
nature of such a synchronization phase transition. Within our modeling approach we conclude that—in order to
reproduce all key empirical observations, such as scale-free avalanches and bistability, on which fundamental
functional advantages rely—the transition to collective oscillatory behavior needs to be of an unconventional
hybrid type, with mixed features of type-I and type-II excitability, opening the possibility for a particularly rich
dynamical repertoire.
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I. INTRODUCTION

Neurons in the cerebral cortex fire in a rather irregular
and sparse way, even in the absence of external stimuli or
tasks [1–3]. This activity is also manifested at large scales
in the so-called resting-state networks [4,5]. Understanding
the origin and functionality of such an energetically costly
fluctuating “ground state” is a fundamental question in neu-
roscience, essential to shed light on how the cortex processes
and transmits information [6–10].

Two twin sides of spontaneous neuronal activity are syn-
chronization and avalanches. Depending mostly on cortical
regions and functional states, diverse synchronization levels
across a continuum spectrum are observed. Both synchronous
and asynchronous states are retained to be essential for diverse
aspects of information processing; e.g., neuronal synchro-
nization is at the root of collective oscillatory rhythms, a
crucial aspect for information transmission between distant ar-
eas [11–13], while asynchronous states also play key roles for
information coding [14]. Accumulating evidence—including
results from the Human Brain Project [15]—suggests that
the ground state of spontaneous activity of a healthy cortex
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lies close to the edge of a synchronization phase transition,
neither exceedingly synchronous nor overly incoherent, al-
lowing for transient and flexible levels of neural coherence,
as well as a very-rich dynamical repertoire [10,15,16]. In-
deed, abnormalities in the synchronization level are linked to
pathologies such as, e.g., Parkinsonian disease (excess) and
autism (deficit) [17–19].

On the other hand, neuronal activity is also observed to
propagate in the form of irregular outbursts, termed neu-
ronal avalanches [20–22]. These are cascades of activations
clustered in time and interspersed by periods of relative qui-
escence, which are robustly observed across cortical areas,
species, and resolution scales [10,23–25]. Neural avalanche
sizes (S) and durations (T ) are empirically observed to
be scale free, i.e., their associated probability distributions
exhibit power-law tails P(S) ∼ S−τ , P(T ) ∼ T −α , and the
mean avalanche size obeys 〈S(T )〉 ∼ T γ with γ fulfilling the
scaling relation γ = (α − 1)/(τ − 1), which is a fingerprint
of criticality [26,27]. In other words, neuronal avalanches
are scale free, exhibiting signatures of dynamical critical-
ity [20], with critical exponents close to those of a critical
branching process, describing marginal propagation of activ-
ity [20–22,28].

These empirical observations triggered the development of
the criticality hypothesis, conjecturing that the cortex might
extract crucial functional advantages, e.g., large sensitivity
and optimal computational capabilities, by operating close to
a critical point [20,23,24,29–32]. However, there is still no
consensus on what type of phase transition is required for such
a critical behavior; a critical branching process, as mentioned
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above, is the most common and straightforward interpretation,
but alternative scenarios have been put forward [27,33–36].
Among these, a Landau-Ginzburg theory has been recently
proposed to describe cortical dynamics at a mesoscopic level
suggesting that the cortex might operate in a regime close
to the edge of a synchronization phase transition at which,
quite remarkably, scale-free avalanches emerge in concomi-
tance with incipient oscillations [37]. This scenario had been
previously suggested in the literature [35,37–42] and is sup-
ported by empirical evidence [15,43–45]. In spite of these
advances, a minimal model—simpler than the analytically un-
tractable Landau-Ginzburg theory—capturing the gist of such
a synchronization phase transition and allowing for in-depth
theoretical understanding is still missing.

Here we pose the following questions: can scale-free
avalanches possibly occur at the critical point of the canonical
model for phase synchronization? If not, which is the mini-
mal model for synchronization able to accommodate them?
What type of phase transition does it exhibit? Answering
these questions will pave the road for the more ambitious
goal of constructing a statistical mechanics of cortical net-
works, shedding light on the collective states—with crucial
functional roles—that they sustain, as well as advancing our
general understanding of phase transitions.

II. LACK OF SCALE-FREE AVALANCHES IN THE
ANNEALED KURAMOTO MODEL

We start by analyzing the canonical model for phase
synchronization, customarily used in neuroscience [46–49]
and other fields [50]: the Kuramoto model [50–53]. How-
ever, given that—as revealed by the Landau-Ginzburg
model [37]—node heterogeneity is not an essential ingredient
to generate avalanches, and that, on the other hand, noise is
inherent to neural dynamics, we consider here the annealed
version of the Kuramoto model with homogeneous frequen-
cies [49,50], i.e.,

ϕ̇ j (t ) = ω + J

N

N∑
i=0

sin[ϕi(t ) − ϕ j (t )] + ση j (t ), (1)

where the phase ϕ j (t ) describes the dynamical state of the
jth oscillatory unit, with j ∈ [1, N], ω is a common intrinsic
frequency, η j (t ) is a zero-mean unit-variance Gaussian white
noise with amplitude σ , and J is the coupling strength with all
the neighbors on, e.g., a fully connected network [50–54]. As
is well known, Eq. (1) exhibits a synchronization phase tran-
sition where the synchronization (Kuramoto) order parameter
Z = 〈eiϕ〉 experiences a (supercritical) Hopf bifurcation from
a fixed point to a limit cycle, revealing the emergence of
collective oscillations [51,53].

In what follows, we set to analyze if this model (and
related models) can exhibit scale-free outbursts of activity.
For this purpose, we define and measure avalanches following
the standard protocol in neuroscience [20,23], which relies
on the identification of individual-unit “spikes” (in the case
of models consisting of oscillators spikes can be identified
in an effective way as crossings over a given phase value)
as well as on the definition of a time discretization window,
needed to cluster close-in-time spikes together [20] (details

of the protocol are carefully explained in Appendix A; see
also [55]). Extensive computational simulations (reported in
detail in Appendix B) reveal that neither at the critical point of
Eq. (1) nor around it scale-free avalanches can be found; i.e.,
P(S) and P(T ) always show exponential decays, even if other
standard quantities are known to exhibit scaling for different
versions of the Kuramoto model [56–58].

III. HYBRID-TYPE SYNCHRONIZATION EMERGES
FROM EXCITABLE OSCILLATORS

To search for a better suited minimal model for syn-
chronization with scale-free avalanches, we scrutinize the
Landau-Ginzburg theory (LG) in [37], known to exhibit these
two features in concomitance. In a nutshell, the LG model
consists of a set of diffusively coupled units, each of which
represents a mesoscopic region of the cortex, and is described
by a set of two dynamical equations for the local density
of: (i) neuronal activity and (ii) available synaptic resources,
respectively (see Appendix C for a more detailed presentation
of the model). A salient feature is that as the control param-
eter (which can be taken to be the maximum possible level
of synaptic resources) is increased, each isolated individual
unit can experience an infinite-period bifurcation from a low-
activity fixed point to a limit cycle—with zero-frequency and
fixed-amplitude at the bifurcation point—where both activ-
ity and synaptic resources oscillate in a “spikelike” manner,
i.e., with a phase-dependent angular velocity, in contrast with
the sinusoidal oscillation in the Kuramoto model of Eq. (1),
suggesting that a different minimal model is needed to de-
scribe individual units. Moreover, isolated units can produce
spikes even when they are slightly below threshold owing
to the effect of noise; in other words, they behave as type-I
excitable units [59,60] (see Appendix D for a brief account of
excitability types). Importantly, for sufficiently large values
of the control parameter, the coupled oscillatory units become
synchronized and, at the edge of the synchronization phase
transition, scale-free avalanches emerge [37]. Finally, let us
recall that a similar phenomenology is obtained in a variant of
the LG model, including inhibitory neural populations [37],
a well-recognized key player in the generation of neural
rhythms [61].

Guided by these observations, we consider a set of coupled
oscillatory units, each of them represented by the canonical
form of type-I excitable units (see Appendix D) or “active
rotors” as defined by

ϕ̇ = ω + a sin ϕ, (2)

where ω and a are parameters [62,63]. For a > ω the de-
terministic dynamics of each isolated unit exhibits a stable
fixed point at ϕ∗ = − arcsin(ω/a), as well as a saddle point
with the opposite sign. The addition of a stochastic term
ση(t ) can induce fluctuations beyond the saddle, thus gen-
erating large excursions of the phase before relaxing back
to its equilibrium. On the other hand, for a < ω the system
oscillates with phase-dependent angular velocity and, as the
“saddle-node into invariant circle” (SNIC) bifurcation point
ac = ω is approached, the frequency of the oscillations van-
ishes, implying that the period becomes infinite, while the
amplitude remains constant, as in the LG model (let us recall
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FIG. 1. Illustrative diagrams sketching in a qualitative way the phase diagram—underlining the main bifurcations and phases—as
analytically obtained. It reveals the existence of synchronous and asynchronous states, and a collectively excitable regime, separated by
diverse types of bifurcations for the collective order parameter. The central triangular-shaped region (whose size has been increased for clarity)
describes a bistability regime; its vertices correspond to codimension-2 bifurcations (see main text). Finally, there is also a homoclinic line
(Hom) linking the SNL and the BT points. (b) Sketch of the different phases/regimes represented in terms of their corresponding complex
Kuramoto order parameter Z; a point represents each regime in the unit circle (since |Z| � 1) with filled circles describing fixed points, open
circles stand for unstable fixed points with associated limit cycles, and mixed-color circles describe saddles. Bifurcations between different
regimes are indicated as arrows.

that type-I excitability can rely either on a SNIC bifurcation,
as in the equation above, or in a homoclinic bifurcation, as
in the LG model [37]: both types share the common relevant
feature of generating spikelike infinite-period oscillations at
the bifurcation point [59]).

Thus, finally, the full model reads

ϕ̇ j = ω + a sin ϕ j + J

Mj

M j∑
i∈n.n. j

sin (ϕi − ϕ j ) + ση j (t ), (3)

where the sum runs over the (Mj) nearest neighbors of unit
j ∈ 1, 2, . . . , N in a given network. We consider versions
of the model embedded on fully connected (FC) networks
(Mj = N, ∀ j), which are useful for analytical approaches
and on two-dimensional (2D) lattices (as, at large scales, the
cortex can be treated as a 2D sheet [10,37]). Let us remark that
Eq. (3) is sometimes called Shinomoto-Kuramoto model or
Winfree’s ring model [64,65] and has been analyzed in diverse
contexts [64,66–68]. Its collective state can be quantified by
the Kuramoto-Daido parameters:

Zk = 〈eikϕ〉 ≡ 1

N

N∑
j=1

eikϕ j ≡ Rkeiψk , (4)

where k is any positive integer number; for k = 1 this
coincides with the usual Kuramoto parameter. Analytical
progress is achieved in a mean-field approximation (which,
as usual, becomes exact for infinitely large FC networks)
which consists in: (i) writing down a continuity (Fokker-
Planck) equation for the probability distribution of phase
values P(ϕ, t ) [53,64,66–68], (ii) expanding P(ϕ, t ) in power
series, and (iii) writing an infinite hierarchy of coupled equa-
tions for its coefficients (which coincide with the Zk’s; see
Appendix E and [64,67]):

Żk = Zk

(
iωk − k2σ 2

2

)
+ ak

2
(Zk+1 − Zk−1)

+ Jk

2
(Z1Zk−1 − Z̄1Zk+1), (5)

where the bar stands for complex conjugate. The associated
phase diagram has been scrutinized in the literature by using
different low-dimensional closures for this infinite hierarchy
of coupled equations. For instance, using the Ott-Antonsen
(OA) ansatz [69] or other more-refined closures [67,68], one
can obtain the phase diagram, summarized in Fig. 1 (a careful
discussion can be found in Appendices F and G). Inspection of
the phase diagram reveals that there are two main types of col-
lective dynamical regimes: oscillations (synchronous states)
and stable fixed points (corresponding to either high-activity
asynchronous states in the upper part of the diagram or low-
activity states in the lower/right part). These are separated by
different types of bifurcation lines. In particular, for low-noise
amplitudes σ , as the control parameter a is increased, there is
a collective SNIC bifurcation from the oscillatory regime to a
phase characterized by a stable fixed point with very-low spik-
ing activity, but susceptible to collectively react to external
inputs, called the collective-excitability phase. In analogy with
the classification of excitability types we refer to this as type-I
synchronization transition. Conversely, for small values of a,
by increasing σ , one encounters a collective Hopf bifurcation,
a type-II synchronization transition, to a high-activity asyn-
chronous state (see Appendix D for a discussion of excitability
types). Thus, there are two main lines of bifurcations to a
collectively oscillatory phase in the two-dimensional phase
diagram: one of type I and one of type II.

Remarkably, the above two bifurcations lines cannot pos-
sibly intersect each other owing to topological reasons [59],
so there is not such a thing as a “tricritical” point. Instead, in
the region where they come close to each other, there exists a
triangular-shaped region of bistability [green area in Figs. 1(a)
and 1(b)] [66,70] delimited by three bifurcation lines and
three codimension-2 bifurcations [which are signaled by red
circles in Fig. 1(b)]. For the sake of completeness and illus-
tration, Fig. 1(b) presents a sketch illustrating the (complex)
order parameter in the different phases and the different
bifurcation lines. In particular, there is a Bognadov-Takens
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FIG. 2. Phase diagram and bifurcations of Eq. (3) computed us-
ing direct simulations on a fully connected network with N = 5000
oscillators (ω = 1, J = 1). Collective oscillations are computation-
ally detected with the Shinomoto-Kuramoto order parameter (see
Appendix G) [64]. The location of the bistability region was estab-
lished by numerically solving Eq. (5) for the first k = 50 harmonics
(Z51 = 0). The inset shows a zoom of the bistability region, where
codimension-2 points are marked; a star indicates a point with scale-
free avalanches. The three segments (red, green, and blue) indicate
three possible types of transition to synchronization.

(BT) point, where the Hopf-bifurcation line finishes, colliding
tangentially with a line of saddle-node bifurcations; a saddle-
node-loop (SNL) where the line of SNIC bifurcations ends,
becoming a standard saddle-node line; and a cusp, where two
saddle-node bifurcation lines collide. Observe that the bista-
bility region is divided into two halves by the Hopf-bifurcation
line, so the regime of collective excitability coexists with
either oscillations below the Hopf line or the high-activity
asynchronous state above the Hopf line. In other words, in this
region, the Hopf bifurcation occurs in one of the branches of
two coexisting solutions, i.e., in concomitance with bistability.

In order to obtain a highly accurate phase diagram
needed for forthcoming analyses, we complemented the above
analytical approximations (i.e., closures) with extensive com-
putational analyses of the complete stochastic system (size
N = 104) as well as a direct numerical integration of Eq. (5)
truncated at sufficiently large values of k (k = 50). Results
of this combined approach are summarized in Fig. 2 which
shows that the overall shape of the phase diagram is qual-
itatively identical to the one predicted by low-dimensional
closures, but with a slightly smaller bistability region. Re-
markably, a very similar phase diagram, with the same type
of phases and phase transitions is found in 2D lattices (see
Appendix H).

The reader can gain insight into the dynamics in each phase
and around the different transition points by inspecting Fig. 3,
as well as in Supplemental Material 1 [71] which contains a
set of videos for diverse parameter choices.

The moral of these findings is that, to analyze general
synchronization transitions, it is necessary to consider not
only the standard type-I and type-II cases, but also more com-
plex scenarios, including the case in which the transition to
synchrony occurs in concomitance with bistability, i.e., when

incipient oscillations coexist with low-activity asynchronous
states; we call these hybrid-type (HT) synchronization transi-
tions. This is illustrated in Fig. 3 (obtained from simulations
on FC networks) that shows representative raster plots around
each of these possible transition types [colored segments in
Fig. 2 identify these three examples in the phase diagram]:
type-I (SNIC), type-II (Hopf), and HT synchronization transi-
tion, respectively. In particular, it shows results slightly within
the synchronous phase (left), very close to criticality (cen-
tral), and in the asynchronous phase (right). Surprisingly, even
naked-eye inspection already reveals that raster plots nearby
the HT transition exhibit a much larger dynamical richness
(see below for a more quantitative analysis).

IV. SCALE-FREE AVALANCHES NEAR THE
HYBRID-TYPE SYNCHRONIZATION TRANSITION

Following the protocol for avalanche detection (Ap-
pendix A) we determined the statistics of avalanche sizes and
durations in these three scenarios. As shown in Fig. 4 for
FC networks, power-law distributed avalanches do not emerge
at the type-II (Hopf) transition (red curves) nor at the type-I
(SNIC) (green curves). For instance, for the Hopf-bifurcation
case results resemble, not surprisingly, those for the annealed
Kuramoto model which also exhibits a type-II collective bi-
furcation, while for the type-I case there are large collective
events recruiting most of the units in the system into anoma-
lously large avalanches, separated by extremely long periods
of quiescence (as illustrated in the raster plot in Fig. 3). In
any case, we observe no signature whatsoever of scale-free
avalanches at any point along the line of SNIC bifurcations
(green dots in Fig. 4; see also Appendix G).

On the other hand, when entering the synchronous phase
through the HT transition, clean scale-invariant avalanche
distributions are observed at criticality. These avalanches
span across many decades and obey finite-size scaling [see
Figs. 4(c) and 4(d) as well as Appendix G]. More specifi-
cally, one can fit exponent values τ ≈ 2.1(1), α ≈ 2.5(1), and
γ −1 ≈ 0.75(5), respectively [72,73]. Observe also that there
is always a peak, corresponding to anomalously system-size
spanning avalanches, but these “bumps” scale with system
size in a scale invariant way (much as in self-organized bista-
bility [74]). Analogous results are found for 2D lattices—even
if with slightly different exponent values: τ ≈ 1.7(1), α ≈
1.9(1), and γ −1 ≈ 0.75(5), which are compatible with the
values reported in experimental works [34]. In both cases,
the scaling relation holds and the corresponding values of γ

coincide with its seemingly robust value reported in [34]. Thus
far we do not have a proper analytical understanding of these
numerical values and their possible universality.

As a complementary measure of complexity at the different
types of transition points, we also computed the probability
distribution of the interspike intervals (ISI), and its asso-
ciated coefficient of variation (CV). Only around the HT
transition, within the bistability region, we found broad ISI
distributions with significant coefficients of variation CV > 1
(see Appendix G). Thus, even if type-I and type-II synchro-
nization transitions are well known to exhibit signatures of
criticality such as finite-size scaling (see, e.g., [75] and [56],
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FIG. 3. Raster plots in a fully connected network of size N = 5000 for each of the three considered cases (as indicated in Fig. 1)—Hopf
(type-II) bifurcation, hybrid-type (HT) synchronization, and SNIC (type-I) bifurcation (from top to bottom)—in the synchronous phase (left
column), right at the transition point or very slightly within the synchronous/oscillatory phase (central column), and in the asynchronous phase
(right column).

respectively)—unlike to HT transitions—they are not able to
generate the higher levels of complexity required for scale-
free avalanches and large dynamical repertoires as observed
in the cortex.

V. DISCUSSION: ON HYBRID-TYPE SYNCHRONIZATION,
CRITICALITY, AND UNIVERSALITY

One could wonder whether the rich phenomenology
emerging around the HT transitions stems from any of the
three special codimension-2 bifurcation points that appear in
the phase diagram (Fig. 1). Remarkably, the saddle-node-loop
(SNL) bifurcation has been previously argued to be necessary
for the generation of high variability and dynamical richness
in neural networks [76,77], and it has also been established
that the crucial features of dynamically rich neural networks
stem from a phase diagram organized around a Bogdanov-
Takens bifurcation [78,79]. As illustrated in the actual phase
diagram (see Fig. 1 and its 2D counterpart in Appendix H)
the bistability region is rather small in the parameter space, so
that all the discussed codimension-2 points are very close to
each other. Thus, providing a clear-cut computational answer
to the question above is a hard problem. Numerically we can
conclude that scale-free avalanches appear when entering the
synchronous phase within the bistability region in the close
vicinity of such codimension-2 bifurcations.

An aspect that needs further analysis is the relationship be-
tween criticality and bistability: these two features are usually
opposed to each other, as they correspond to either continuous

or discontinuous phase transitions, respectively (nevertheless,
we should remind that scale-invariant avalanches can also
appear at discontinuous phase transitions [74,80]). However,
the onset of synchronization in the HT transition occurs within
a region of bistability. The intertwining between criticality
and bistability could well be at the basis of the very rich
dynamical repertoires in this case. It is very plausible, that the
above-described LG theory, and possibly other models [41],
exhibit scale-free avalanches at the edge of synchronization,
since some kind of bistability is also present around the syn-
chronization transition.

Remarkably, the reported complex triangular-shaped
structure—with its bifurcation lines and codimension-2
points—is rather universal and emerges in other models
exhibiting a both type-I and type-II transitions (see, e.g.,
[59,81–83]); in particular, it appears in the paradigmatic and
broadly used (Wilson-Cowan) model of excitatory-inhibitory
networks [84]. Thus, the phenomenology discussed here is
rather universal and not model specific. It is noteworthy that
other scenarios have been described to connect lines of type-
I and type-II transitions—e.g., subcritical Hopf bifurcations
followed by a fold of limit cycles—which also involve a
regime of bistability (see [40]). Note that the phenomenol-
ogy underlying these alternative scenarios is, at its core,
similar to the one displayed at the HT synchronization transi-
tion, including collective excitability and some codimension-2
bifurcation points. The exciting possibility that scale-free
avalanches can also emerge in such cases will be investigated
elsewhere.
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FIG. 4. Avalanche distributions. (a) and (b) Avalanche size and duration distributions for three different types of synchronization transitions
(right at the transition points): type-I (SNIC) transition (green lines, a = 1.024, σ = 0.3); type-II (Hopf) transition (red lines, a = 1.04,
σ = 0.575), and HT transition (blue lines, a = 1.07, σ = 0.499) in FC networks (N = 5000). Only the last one exhibits clear-cut power-law
behavior, both for size and duration distributions. Insets: As in the main figure but for simulations in a 2D lattice (size 642): type-I transition
(a = 0.99, σ = 0.05), type-II transition (a = 0.60, σ = 0.64), and HT synchronization transition (a = 0.98, σ = 0.185). (c) and (d) Finite-size
scaling analysis of P(S) and P(T ) in FC networks of different sizes (as specified in the legend) in the HT regime. Insets: As in the main figures
but for 2D lattices of sizes (N = 162, N = 322, N = 642). (e) Averaged avalanche size as a function of the duration for different system sizes.
Inset: As in the main figure, but for simulations in a 2D lattice for different system sizes. (f) Distribution of avalanche sizes multiplied by sτ to
obtain an asymptotically flat curve (to ease visual inspection of scaling) and rescaled as a function of the system size to collapse the different
curves. As expected from true scale invariance, the distributions become flat and collapse for different system sizes after rescaling. Parameters at
the HT transition (a, σ ) for fully connected networks, N = 500 : (1.07, 0.520), N = 1000 : (1.07, 0.505), N = 5000 : (1.07, 0.496) and 2D
networks, L = 16 : (0.995, 0.192), L = 32 : (0.982, 0.190), L = 64 : (0.98, 0.185), J = ω = 1. Dashed lines are guides to the eye showing
the value of the fitted exponents.

An aspect of our model that might need to be modified
to better reproduce the results in the Landau-Ginzburg the-
ory [37] is that here there are no true absorbing states, i.e.,
states from which the system cannot exit (neither as con-
sequence of the deterministic dynamics nor as the result of
stochasticity). In particular, the noise amplitude in [37] van-
ishes in the absence of activity, while in the present model
such an ingredient cannot be easily implemented: large fluc-
tuations can always excite individual nodes due to the absence
of any bona-fide absorbing state. On the other hand, it is
well established that absorbing states are needed to generate
branching-process exponents (see, e.g., [28]). Thus, further
work is still needed to elucidate what happens in modeling
approaches as ours if absorbing states are included. This prob-
lem will be tackled elsewhere.

Even if the minimal model studied here is exceedingly
simple to be a realistic model of the cortex, it can provide
us with insight on the basic dynamical mechanisms needed
to generate its complex dynamical features. Furthermore, it
is well established that diverse control, self-organization (or
“homeostatic”) mechanisms are able to regulate a network
to lie around some target regime or point [80,85–87]. Thus,
a cortical neural network with dynamics akin to that of the
present simple model could be self-organized to the region
near the HT synchronization transition [74,80,88], and by
doing so, it could rapidly shift its behavior from synchronous
to asynchronous, to collective excitability, or up-and-down
transitions in a dynamical way, allowing for an extremely rich

and flexible dynamical repertoire derived from operating at
such an edge of the edge. We hope this work opens the door for
novel research lines, including renormalization group analy-
ses [89]), paving the way to the long-term goal of constructing
a statistical-mechanics of the cortex.
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APPENDIX A: DEFINITION AND MEASUREMENT OF
AVALANCHES

The protocol to measure neuronal avalanches is based on
the one first proposed by Beggs and Plenz [20], which has
been widely employed in analyzing both experimental and
theoretical data (e.g., [23,34,37,79,90]). This protocol allows
one to study the structure of the spatiotemporal clusters of
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FIG. 5. Construction of raster plots. The individual noisy os-
cillators can display spikelike events; these can be detected by
translating their phases into “activities” via the transformation y(t ) =
1 + sin ϕ(t ); then, by thresholding, the activity variable y(t ) one can
define spikes as done, e.g., in local-field-potential measurements.
The top panel shows the activity of three randomly selected oscil-
lators and the bottom one their corresponding spiking events as a
function of time. The symbol size of each event accounts for the
total time-integrated activity over the threshold. The left and right
cases correspond to the synchronous phase and the bistability region,
respectively.

neuronal activity, e.g., spikes in individual neurons or peaks
of the negative local field potentials. Here we discuss how the
protocol is adapted for the case considered in this paper of
phase oscillators, illustrated in Fig. 5.

(1) For each unit j, one needs to define its “activity.” Once
the activity is defined, a spike of a given oscillator j is a
transient event occurring whenever its phase ϕ j (t ) crosses
a given threshold value which corresponds to a significant
activity. In particular, it is possible to define the activity as
y j = 1 + sin ϕ j that takes large (small) values (close to 2, 0)
when the phase crosses π/2 (−π/2).

(2) A threshold yth is defined such that whenever y j

crossed, a “spiking event” starts to be tracked; it finishes when
y j goes again below threshold. The total integral of y j − yth

along such a large-activity time window is the size s j of the
local event at the initiation time t k

j . k = 1, 2, . . . , label the
sequence of spikes.

(3) The complete set of spikes for all units j (at times t k
j

and sizes sk
j ) defines a raster plot employed for the subsequent

analyses.
(4) The interevent interval (IEI) between all couples of

consecutive spikes (regardless of which unit generated them)
is computed, and its probability distribution P(IEI) and its
average value 〈IEI〉 are computed. A timescale �t = 〈IEI〉 is
used to discretize the raster plots in time bins.

(5) An avalanche is defined as a series of spikes in between
two empty bins (with no spike) such that all consecutive time
bins include some activity. The sum of all sk

j in between

such two empty bins is the avalanche size S, while avalanche
duration T is defined as the time elapsed between the two
limiting empty bins.

(6) The probability distribution function (histogram) of
avalanche sizes and durations is then computed.

The empirical detection of avalanches in noisy data and/or
in continuous time series is often exposed to some potential
pitfalls that are important to underline.

(1) First of all, it relies on an arbitrary choice of a thresh-
old for detecting spikes of activity. In our case, selecting a
threshold yth (e.g., yth = 1.6) ensures that background noise
around the fixed point is filtered and only significant excur-
sions in the phase value are considered.

(2) It also relies on the choice of the time bin size as
the average interevent interval; this choice has been made
in accordance with the usual one in neuroscience analy-
ses [20,23,34,91].

(3) Let us also remark that, instead of using the activity y j

with its corresponding threshold, we could have alternatively
defined a spike each time the oscillator hits a predefined phase
value, such as π/2. This method does not allow to integrate
the “size” for each event, but it makes no difference with
the previous one. However, in our particular case, we seek to
mimic the dynamics by [37] and actual LFP recordings, where
each event has a size. Therefore, we stick to the threshold
yth = 1.6 for simulations.

(4) Let us finally stress that computational model analy-
ses, like the ones reported here, do not suffer from severe
subsampling effects that may strongly impair empirical mea-
surements of avalanches [92–94].

APPENDIX B: AVALANCHES IN THE ANNEALED
KURAMOTO MODEL

Without loss of generality we fix J = 1 and ω = 1—that
is not relevant as a change of variables to a corotating ref-
erence frame can be used to set ω = 0—leaving σ as the
only free parameter. Then, σc = 1 indicates the critical point
for infinitely large systems. Due to the finite size N of the
considered networks, the precise location of the critical point
needs to be computationally estimated; in particular, as usu-
ally done in finite-size scaling analyses, σc is estimated as the
value of σ such that the variance of the order parameter R is
maximal [37,53]. As shown in Figs. 6(a) and 6(b), showing
results of our computer simulations for a system of N = 500
units, the critical point is located at σc ≈ 0.98 (and shifts
progressively towards 1 as N is increased). Observe that at the
estimated critical point, owing to finite-size effects, the level
of synchronization is R 
 0.2. This is illustrated in Fig. 6(c),
which shows three characteristic raster plots within the syn-
chronous phase σ = 0.9, the critical point σc(N = 500) ≈
0.98, and the asynchronous phase σ = 1.1, respectively.

As an important technical remark, we should empha-
size that in numerical simulations of the annealed Kuramoto
model, for any finite size N , the integration step δt needs
to be small enough as to have sufficient time resolution,
i.e., δt < �t = 〈IEI〉, so that avalanches can be measured.
Observe that this might depend on N ; in particular, in the
asynchronous phase, as the number of neurons N grows, the
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FIG. 6. Avalanche statistics in the annealed Kuramoto model on
fully connected networks. (a) Kuramoto order parameter (R) as a
function of the noise intensity σ for a finite network size N = 500.
(b) The Kuramoto critical point is defined as the point of maximum
variance of the order parameter χ which occurs at σc = 0.98 (verti-
cal dashed line). (c) Raster plots of the annealed Kuramoto model
at the synchronous phase (σ = 0.95, left plot), the critical point
(σc = 0.98, central plot), and the asynchronous phase (σ = 1.1, right
plot). (d) Distributions of size events in the three phases for the same
representative values of σ as above. (e) Distribution of time events in
all the three phases for the same parameter values. Let us underline
the lack of power-law distributions at criticality, i.e., when the system
undergoes a collective Hopf bifurcation. Parameter values: ω = 1
and J = 1.

〈IEI〉 decreases, and thus one needs progressively smaller
integration steps to measure avalanches. In the limit N → ∞,
the asynchronous raster plot has an average interevent interval
〈IEI〉 → 0 and, consequently, one could say that avalanches
are not well defined if a fixed time bin was considered. On
the other hand, by considering sufficiently small δt’s for each
case, our computational analyses—summarized in Figs. 6(d)
and 6(e)—show that the avalanche statistics do not exhibit
heavy tails.

Finally, a careful mathematical analysis of this model and
its avalanches in the thermodynamics limit will be addressed
elsewhere.

APPENDIX C: BIFURCATIONS IN THE SINGLE UNIT OF
THE LANDAU-GINZBURG MODEL

The Landau-Ginzburg model [37] was a pioneer in
proposing that scale-free avalanches occur at the edge of a
synchronization phase transition. It relies on a model for the
dynamics of individual mesoscopic regions in the cortex. Each
such region (or “unit”) is characterized by two dynamical vari-

FIG. 7. Nullclines of the single mesoscopic unit of the Landau-
Ginzburg model (C1). Characteristic flow diagrams and nullclines of
the Landau-Ginzburg mesoscopic unit, for three different values of ξ .
The nullclines for the activity ρ (black lines) can display two types
of solutions depending on the value of the available resources R: up
(ρ 
= 0 for large values of R), down (ρ = 0 for small values of R),
and bistability between these two for intermediate values of R. Black
dashed lines represent unstable fixed points ρ∗. Nullclines Ṙ = 0 are
represented by red dashed lines. The only stable fixed point for low
values of the order parameter ξ is the absorbing state ρ∗ = 0 (black
point). (b) When ξ is increased, the R nullcline intersects the unstable
branch of the ρ nullcline, giving rise to a limit cycle (red solid line).
(c) When ξ is large enough, the up-state fixed point becomes the only
stable solution.

ables: its level of (mesoscopic) neuronal activity ρ(t ) and the
amount of available synaptic resources R(t ). The dynamics (at
a deterministic level, i.e., excluding fluctuations) is described
by

ρ̇(t ) = (R(t ) − a)ρ + bρ2 − ρ3 + h,

Ṙ(t ) = 1

τR
(ξ − R) − 1

τD
Rρ, (C1)

where a, b > 0 are constants, h is a very small external
driving (that can be set to 0 in the absence of external
stimuli), η(t ) is a zero-mean Gaussian white noise, and ξ

is the maximum amount of available synaptic resources,
which serves as a control parameter which regulates the sys-
tem state. In the second equation τR and τD represent the
timescales of recovery and depletion of synaptic resources,
respectively.

Observe that the equation for the activity ρ—assuming the
amount of synaptic resources R is fixed—is the minimal form
of a first-order phase transition with hysteresis (or saddle-
node bifurcation). It displays a quiescent (or “down”) state
ρ = 0 when R � a, and an active or “up” state for R > a.
On the other hand, the second equation accounts for the dy-
namics of the level of synaptic resources and includes a slow
charge/recovery term (dominating when activity is low), and
a fast discharge/consumption, which dominates the dynamics
in the presence of activity ρ 
= 0.

A simple analysis of Eqs. (C1) shows that the system be-
havior depends on the value of the maximum allowed synaptic
resources, ξ (see Figs. 7 and 8). If ξ < a, the only fixed point
is a quiescent state of low activity. For larger values of ξ ,
the two nullclines of Eq. (C1) intersect at an unstable fixed
point, giving rise to a limit cycle, i.e., to relaxation oscillations
in which both ρ(t ) and R(t ) oscillate. Finally, if ξ is large
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FIG. 8. Bifurcations of the single unit dynamics of the Landau-
Ginzburg model. Stable fixed points of Eq. (C1) are represented as
a continuous line, while unstable ones correspond to dashed lines.
Parameters: a = 1.0, b = 1.5, τR = 103, τD = 102, h = 0. (a) As the
control parameter ξ is increased, the down-state fixed point loses its
stability via a homoclinic bifurcation. (b) Period of oscillations as a
function of the control parameter ξ . The set of equations (C1) was
integrated for a fixed long time to compute the period as the average
time between spikes (jumps to the up branch). Points marked in red
indicate that the number of spikes used for computing the average
period were relatively low (because of costly statistics). Note that
as ξ → ξc, larger simulations are required (increasing integration
error). The data are much better fitted by a logarithm (characteristic
of homoclinic bifurcations) than by a square-root fit (characteristic
of SNIC bifurcations) [62]. All numerical solutions are found using
Wolfram Mathematica.

enough, an up state (fixed point with nonvanishing activity)
emerges. For more details we refer to [37,88].

Figure 8 illustrates the bifurcation diagram of Eq. (C1) as
the control parameter ξ is varied. In agreement with what
just described, values ξ < a leads to a down steady state
with vanishing activity and nondepleted synaptic resources,
i.e., R = ξ . At ξc = a there is an infinite-period homoclinic
bifurcation into a limit cycle. To determine if this bifurca-
tion is homoclinic or rather a saddle node into an invariant
circle (SNIC) one, we have explicitly measured the average
period between oscillations and plotted against the control
parameter. The result displays a logarithmic decay of the
period [see Fig. 8(b)], a typical feature of homoclinic bi-
furcations [62]. Finally, as the control parameter is further
increased, one encounters another homoclinic bifurcation at
which the limit cycle disappears, giving rise to an up fixed
point.

APPENDIX D: A NOTE ON DIFFERENT TYPES OF
EXCITABILITY AND BIFURCATIONS

A system is defined as excitable when it presents a single,
stable equilibrium, but a sufficiently strong input can drive the
system in a large excursion in the phase space before return-
ing later to the stable fixed point [59,60,95]. Many physical
and biological systems exhibit excitability [60]. Excitability
is a concept of particular importance in the context of neu-
roscience, where neurons are at rest, and a super-threshold
signal is able to evoke a significant response (e.g., a spike),
returning at the end to the resting state. Different types of
neurons may respond differently to the same input, leading

FIG. 9. Excitability and bifurcations. Side-by-side comparative
sketch of infinite-period (SNIC) and Hopf bifurcations, which are
representative examples of type-I and type-II excitability, respec-
tively. Note that the firing rate is directly related with frequency of
oscillations: vanishingly small firing rates correspond to arbitrarily
large firing frequencies.

to the so-called “excitability classes” [59,95]. The most usual
classes are excitability classes I and II [59]. Type-I excitability
is characterized by continuous growth of the spiking rate when
the input current is continuously increased, while type-II ex-
citability involves a sudden jump in the spiking rate under the
same circumstances. In bifurcation theory, type-I excitability
corresponds to situations where the corresponding limit cycle
appears with a vanishing frequency, i.e., infinite-period bifur-
cations, while in type-II excitability, limit cycles emerge with
a finite, nonvanishing frequency [59].

Two representative examples of bifurcations correspond-
ing to classes I and II are the SNIC and Hopf bifurcation,
respectively, as sketched in Fig. 9. The homoclinic bifurcation
is common in neuronal models [77] and belongs to class I
neuronal excitability, as the SNIC bifurcation. Both are dif-
ferentiated only by the critical exponents of the firing rate.
A comprehensive summary of the relationship between ex-
citability classes and bifurcations can be found, for example,
in [96].

It should be noted that the mean-field phase diagram
described in the main text includes these two main types
of excitability near the bistability region, where the system
behaves as collectively excitable. The bistability region is
surrounded by other types of bifurcations such as saddle
nodes and codimension-2 bifurcations, where lines of stan-
dard (codimension-1) bifurcations intersect. Codimension-2
points, which in our case include Bogdanov-Takens, saddle-
node-loop, and cusp bifurcations, can display richer dynam-
ics [59,76–78].

We have classified synchronization transitions using a
nomenclature that resembles that of excitability classes. In
type-I synchronization, oscillations emerge at the transition
point with zero frequency (infinite period) and finite ampli-
tude, while in type-II synchronization, oscillations are born
with a fixed nonvanishing frequency. The phenomenology
becomes richer in “hybrid-type” synchronization transition,
where the codimension-2 bifurcations and bistability are
present.
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APPENDIX E: MATHEMATICAL ANALYSIS OF
GLOBALLY COUPLED OSCILLATORS

To assess the collective behavior of the system of coupled
oscillators, here we reproduce with detail the derivation of
the equations for the order parameter and discuss different
closure methods. Most of these calculations can be found in
the literature, but we reproduce them here in a self-consistent
way for the sake of clarity. Our model is described by the set
of stochastic equations,

ϕ̇ j = ω + a sin ϕ j + J

Mj

M j∑
i∈n.n. j

sin (ϕi − ϕ j ) + ση j (t ). (E1)

It is convenient to remove one parameter, fixing, e.g.,
ω = 1. Here we also set J = 1, leaving a and σ as the only
free parameters. For completeness we verify a posteriori that
results are robust to changes in J (Appendix F).

1. Order-parameter equations

Equation (E1) is very similar to the previously discussed
annealed Kuramoto model, except for the additional term
a sin(ϕ) which induces an inhomogeneity in angular veloc-
ity across the unit circle of each oscillator. As discussed in
Appendix G (in particular, in Appendix G 1), such an in-
homogeneity makes the Kuramoto parameter inadequate to
characterize the phase diagram of the present model as, for
a 
= 0, there is a particular phase value around which each
oscillator tends to spend most of the time. For uncoupled
oscillators, this occurs for ϕ = ± arcsin(ω/a) where the angu-
lar velocity is minimal; this heterogeneity in angular velocity
leads to a nonvanishing value of the Kuramoto order parame-
ter, even when oscillators are uncoupled or, more in general,
when they are asynchronous.

In order to circumvent this problem analytically, it is pos-
sible to consider the hierarchy of higher-order moments of the
variable eiϕ , i.e., the so-called Kuramoto-Daido parameters
Zk :

Zk = 〈eikϕ〉 ≡ 1

N

N∑
j=0

eikϕ j ≡ Rkeiψk , (E2)

where k = 1, 2, . . . ,∞ and of which the Kuramoto order
parameter Z1 is a particular case. For convenience we will use
either the notation in terms of amplitudes or phases (Rk and
ψk) to represent the complex-valued Kuramoto-Daido param-
eters Zk . Using standard trigonometric relations, Eq. (E1) can
be rewritten as a function of Z1(t ) = R1(t )eiψ1(t ), leading to
the following set of Langevin equations:

ϕ̇ j (t ) = ω + a sin ϕ(t ) + JR1(t ) sin[ψ1(t ) − ϕ j (t )] + ση(t ),
(E3)

where the mean-field nature of the coupling is evident.
In order to solve these equations we employ a standard

procedure to deal with coupled oscillators [50,64,67,97,98].
The first step is to consider a large number of oscillators
N → +∞, so that the system can be described in the con-
tinuum limit using the probability density to find an oscillator
around any given phase value ϕ, i.e., P(ϕ)dϕ. The following
Fokker-Planck equation gives the evolution of such a proba-

bility density,

∂t P(ϕ, t ) = σ 2

2
∂2
ϕP(ϕ, t )

− J∂ϕ

[(
ω + a sin ϕ + Z1e−iϕ + c.c.

2i

)
P(ϕ, t )

]
,

(E4)

where the identity R1 sin(ψ1 − ϕ) = (Z1e−iϕ + Z̄1eiϕ )/(2i)
has been used to simplify the forthcoming algebra. As the
density P(ϕ, t ) is periodic in the angle variable, it can be
expanded in Fourier series:

P(ϕ, t ) = 1

2π

+∞∑
k=−∞

pk (t )eikϕ, (E5)

and pk = p̄−k , where the bar stands for complex conjugate. It
turns out that the Kuramoto-Daido parameters coincide with
these coefficients:

Zk =
∫ 2π

0
P(ϕ, t )eikϕdϕ = p−k . (E6)

Plugging the series expansion (E5) into the Fokker-Planck
equation one obtains an infinite set of differential equations,
one for each of the parameters Zk , i.e., for the Kuramoto-
Daido parameters Zk (observe that, as Z−k = Z̄k , it suffices
to analyze the order parameters with k � 0). To obtain dif-
ferential equations for each Zk , note that after performing the
derivatives and doing some algebra, all the terms can be writ-
ten as (2π )−1 ∑

k f (Zk, Zk+1, Zk−1, . . .)eikϕ for some function
f . Then, since the exponentials eikϕ are the Fourier-basis ele-
ments, we can identify all parameters mode by mode, leading
to an equation for the evolution of each Kuramoto-Daido order
parameter [67,68]. The resulting set of equations,

Żk = Zk

(
iωk − k2σ 2

2

)
+ ak

2
(Zk+1 − Zk−1)

+ Jk

2
(Z1Zk−1 − Z̄1Zk+1), (E7)

constitutes an exact description of the system.
As reported below, we solved Eq. (E7) including up to

k = 50 harmonics (i.e., imposing Z51 = 0) and monitored the
order parameters (see Appendix G 1). We found an excellent
agreement with direct simulations, including a small bistable
phase [67,97], as shown in Fig. 1(c) of the main text. However,
even if the bistable phase exists in the thermodynamic limit,
its exact location is affected by finite-size effects in direct
simulations.

In order to proceed analytically, given that all equations are
coupled, one needs to find a dimensional sound reduction or
“closure” to truncate the infinite hierarchy [98,99]. Different
closures have been proposed in the literature of coupled oscil-
lators. In what follows, we discuss three of them.

2. Approximate solutions or closures

In deterministic, noise-free systems, an exact solution to
Eq. (E7) is provided by the Ott-Antonsen ansatz [69], which
consists of writing Zk (t ) = [Z (t )]k , so that the first moment
already contains all the relevant information. On the other
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hand, the situation is more complicated for stochastic systems
for which the Ott-Antonsen ansatz does not provide an exact
solution [68,98]. In particular, using the Ott-Antonsen ansatz
and writing Z (t ) = R(t )eiψ (t ) leads to the system of equations

Ṙ = 1

2
R[J (1 − R2) − σ 2] − 1

2
a(1 − R2) cos ψ,

ψ̇ = ω + a(1 + R2) sin ψ

2R
. (E8)

Remarkably these equations are the same as those obtained
by Childs and Strogatz in the case of deterministic oscilla-
tors with heterogeneous (quenched) frequencies distributed as
a Lorentzian [70]. However, only the deterministic system
is exactly solved by the Ott-Antonsen ansatz, while in the
stochastic case it gives an approximation of order O(σ 2) [68].

In order to increase the precision of the closure, one can
assume that the global phase is distributed as a (wrapped)
Gaussian with some mean ψ (t ) and variance �(t ) [67]:

P(ϕ, t ) = 1√
2π�

+∞∑
k=−∞

exp

[
− (ψ − ϕ + 2πk)2

2�

]
. (E9)

The Kuramoto-Daido parameters can be explicitly com-
puted via direct integration,

Zk (t ) =
∫

dϕP(ϕ, t )eikϕ = e− 1
2 k2�(t )eikψ (t ). (E10)

Plugging this ansatz into Eq. (E7) leads to

ψ̇ (t ) = ω + ae−�/2 cosh � sin ψ, (E11)

�̇(t ) = σ 2 + 2 sinh �(ae−�/2 cos ψ − Je−�). (E12)

Observe that Eq. (E10) allows one to write Zk as a function
of only the first mode [68] Z giving a functional form very
similar to the Ott-Antonsen ansatz:

Zk = |Z|k2−kZk . (E13)

Let us remark that the Ott-Antonsen ansatz is equivalent to the
assumption of a Lorentzian distribution for the angles. That is,
changing Eq. (E9) to a Lorentzian distribution and following
the same procedure, one recovers the Ott-Antonsen ansatz.
The wrapped Gaussian approximation is slightly superior to
the Ott-Antonsen one, but, as we will see shortly, it is not good
enough as to generate a precise phase diagram (see Fig. 11
below for a comparison).

A way to go beyond the Ott-Antonsen and the Gaussian
ansatzes is to consider more harmonics in the expansion.
Tyulkina et al. [68,98] proposed to use the circular cumu-
lants of the order parameters to generate a better closure.
The advantage of the cumulant expansion is that all cumu-
lants, except χ1 = Z , vanish when the Ott-Antonsen ansatz
is selected, so choosing additional nonzero cumulants gives
rise to systematic corrections to the Ott-Antonsen solution,
order by order in such an expansion. In particular, the first
three cumulants are given by χ1 = Z , χ2 = Z2 − Z2, χ3 =
(Z3 − 3ZZ2 + 2Z3)/2. Selecting Z and χ2 to be different
from 0 but fixing χ3 = 0 gives Z3 = Z3 + 3Zχ2, effectively
closing the infinite system [100]. Substituting this last in the
equation for the first three harmonics, the resulting system

reads

Ż = 1
2 (J − σ 2 + 2iω)Z + a(Z2 − 1 + χ2)

− J (Z|Z|2 + χ2Z̄ ),

χ̇2 = 2χ2(iω + aZ ) − σ 2(2χ2 + Z2) − 2Jχ2|Z|2. (E14)

Note that imposing χ2 = 0 leads to the Ott-Antonsen ansatz,
as expected. This closure provides us with a noticeable quanti-
tative improvement on where the Hopf and SNIC bifurcations
are located, which coincide very well with the results of
numerical integrations. However, simple parameter inspection
did not render any bistability using the reduction by Tyulkina
et al. Given the size of the bistable region in phase space,
finding the bistability probably needs a more systematic study,
such as the one we did solving the system for k = 50 harmon-
ics, where bistability is clear as we showed in Fig. 1. Although
losing the possibility of bistability in analytical approaches re-
lying on some closures is a well-known problem in stochastic
processes [99].

APPENDIX F: BIFURCATION ANALYSIS OF THE
OTT-ANTONSEN EQUATIONS

To gain analytical insight into the structure and topological
organization of the phase diagram, here we analyze the bifur-
cation diagram of the approximation provided by the simpler
Ott-Antonsen closure, Eqs. (E8), i.e.,

Ṙ = 1

2
R[J (1 − R2) − σ 2] − 1

2
a(1 − R2) cos ψ,

ψ̇ = ω + a(1 + R2) sin ψ

2R
. (F1)

Observe first that, for a fixed value of R, the equation of
the collective phase ψ is the normal form of a saddle node
into an invariant circle (SNIC) bifurcation. On the other hand,
the equation for Ṙ is almost the same as in the annealed
Kuramoto model, but adding a perturbation proportional to
the “excitability parameter” a. The above set of equations
is difficult to study analytically, but its bifurcations can be
obtained following the same procedure of Childs and Strogatz
who studied this system with a fixed value of σ = √

2 [70].
The main idea is as follows: in the annealed Kuramoto

limit (a = 0) the system undergoes a Hopf bifurcation; on the
other hand, individual (uncoupled) oscillators, i.e., for J = 0,
exhibit a SNIC bifurcation. Hence, by continuity in solutions,
we expect two branches of these two types of bifurcations to
be present in Eq. (E8).

Calling Q the Jacobian at a fixed point, at Hopf bifurca-
tions trQ = 0 while in a saddle-node det Q = 0 [62]. Thus,
imposing one of these conditions, together with the fixed
point equations Ṙ = ψ̇ = 0, leads to a set of equations for the
parameters of the system as a function of the fixed point values
R∗ and ψ∗. Since such values are bounded, one can use these
equations as parametric equations of the bifurcation curve,
without computing explicitly the values of the fixed points and
their stability.

Let us start with the Hopf bifurcation. Between parameters
and fixed points, there are six unknowns: R∗, ψ∗, ω, a, J , and
σ . Remember that in the simulations we fixed ω = J = 1 to
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leave a and σ as the only free parameters. In what follows,
we obtain equations for the bifurcations, written in a paramet-
ric form a = a(R∗, ψ∗, ω, J ) and σ = σ (R∗, ψ∗, ω, J ). After
some algebra, it turns out that not all the dependencies are
necessary. Solving for Ṙ = ψ̇ = trQ = 0, there are three re-
maining parameters. We can choose any parameters to solve
for, but it turns out (as shown in [70]) that solving for R,
cos ψ and sin ψ is highly convenient. Note that these are only
two parameters, since the sine and cosine are not independent
function as sin2 ψ + cos2 ψ = 1. Of course one could have
tried to directly solve for ψ and a, but it is easier to obtain
expressions for the trigonometric functions and then extract
a:

aH =
√

J − σ 2

J + σ 2

√
4ω2(J + σ 2)2 + J2(J − σ 2)2

2J
. (F2)

Note that, in this case, we obtained a parametric curve for the
Hopf bifurcation aH = aH (ω, J, σ ), without requiring spe-
cific knowledge about the location of the fixed points. In
particular, as J is kept fixed, it is possible to derive a curve
aH = aH (ω, σ ).

In what respects saddle-node bifurcations, the calculation
is a bit more involved since solving for the same three vari-
ables gives high-degree polynomials for R that cannot be
explicitly solved. For this reason we choose to solve for ω,
cos ψ and sin ψ , since in this way the parameters do not
depend on ψ . After solving and simplifying the resulting
equations, one obtains

ωS = (1 + R2)3/2

2(1 − R2)2

×
√

J (1 − R2)[2σ 2 − J (1 − R2)2] − σ 4(1 + R2),

(F3)

aS =
√

2R2

(1 − R2)2

√
[J (1 − R2) − σ 2][2σ 2 − J (1 − R2)2].

(F4)

Since 0 � R � 1, and one needs to explore all the possible
fixed points, there are two free parameters to choose. Given
that J is kept fixed in our simulations, we dismiss it and obtain
ω and a as functions of σ . The saddle-node lines enclose a
“collective excitable” phase, which is type-I excitable. This
can be easily seen by realizing, as discussed above, that phase
dynamics are again of the form ψ̇ = ω + c sin ψ for fixed
Kuramoto order parameter R, with the angular speed taking
the role of the external input usually employed to classify
excitability classes.

The manifolds of Hopf and SNIC bifurcations could be
drawn together in a three-dimensional space, using ω, a, and
σ as coordinates. An alternative easy way to visualize them is
to make projections into the (a, σ ) two-dimensional space for
different values of J (see Fig. 10). Since we set ω = 1, and in
each such projection J is fixed, the Hopf bifurcation is then
obtained as aH = aH (σ ), while the saddle node is obtained by
solving Eqs. (F4) as a parametric curve, depending on R and
σ . Figure 10 shows that there is a bistability region delimited
by a Hopf line and two saddle-node lines for different values

FIG. 10. Bifurcations in the Ott-Antonsen approximation. Rep-
resentation of the solutions of the equations (F2) and (F4) for
different values of the coupling constant J . Blue lines describe
branches of Hopf bifurcations, while the red lines correspond to
saddle bifurcations. All the graphs, for different values of J , are
zooms made to underline the existence of a region surrounded by
the Hopf bifurcation (blue line) on the one side and saddle node
bifurcations (red lines) on the others. Such a region is crucial as it
describes a regime of bistability: all the selected values of J display
a small bistable region, whose size decreases with J .

of J . This region decreases in size as the coupling decreases
until it disappears for sufficiently low values of J .

APPENDIX G: COMPUTATIONAL ANALYSES AND
RESULTS

1. Phase diagram of the full model

As we have seen, deriving all the phases and transitions
between them analytically is a difficult task, and thus, one
needs to resort to computational analyses. First of all, an
adequate order parameter needs to be defined. As discussed
above, the usual Kuramoto order parameter, R = |Z|, is not a
good choice for inhomogeneous oscillators, because |〈Z〉t | 
=
0 even when they are uncoupled or asynchronous, due to the
different amount of time they spend at diverse phase values.

We employed the so-called Shinomoto and Kuramoto (SK)
parameter that solves this problem, being able to discrimi-
nate between synchronous and asynchronous regimes [64]. In
particular, we consider the—computationally more efficient—
variant of such a parameter employed by Lima and
Copelli [40]:

S =
√

〈|Z|2〉t − |〈Z〉t |2 (G1)

to distinguish the synchronized phase (S 
= 0) from asyn-
chronous or excitable states (S = 0).
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FIG. 11. Comparison between the results obtained for analytical
closures and direct simulations. Shinomoto-Kuramoto parameter S
along the Hopf and SNIC bifurcations, as measured both in sim-
ulations and numerical solutions obtained from different closures
(as specified in the legend). Parameters: ω = J = 1. Hopf, a = 0.5.
SNIC, σ = 0.275. Direct simulations are performed in a fully con-
nected network of size N = 103 (see Appendix G 3 for computational
details.)

The main result of our computational analyses is the phase
diagram reported in Fig. 1 of the main text. The different
phases are identified computationally as follows:

(1) A nonvanishing S value characterizes the synchronous
region.

(2) The asynchronous and collective excitability regions
are both characterized by S = 0. To detect this second regime
one needs to perturb the system and analyze its collective
response (or lack of it).

(3) The regime of bistability is challenging to study nu-
merically since in finite networks, fluctuations can drive the
system to jump between the two coexisting states. To deter-
mine this region, the analytical solution was computed by
solving for the first 50 terms in the series expansion (E7).
It was then computationally verified that, for large enough
network sizes, two alternative stable states exist within such
a region.

2. Accuracy of different closures

For completeness we checked the accuracy of the differ-
ent considered closures by comparing them with the results
of computational analyses. In order to do so, the different
ansatzes or closures: (i) the Ott-Antonsen [Eqs. (E8)], (ii)
the Gaussian closure [Eqs. (E12)], and (iii) the equations
proposed by Tyulkina et al. [Eqs. (E14)] were solved near
the Hopf and SNIC bifurcation branches and compared the
results–shown in Fig. 11—with those of direct simulations of
Eq. (E1) as reported above. We would like to remark that, up
to our knowledge, it is the first time that the accuracy of the
different closures to locate different kind of bifurcations has
been formally checked.

The conclusion is that the ansatz by Tyulkina et al. [98]
fits more accurately both the Hopf and SNIC branches than
the other ones. The Gaussian ansatz captures very well the
phenomenology near the SNIC bifurcation but not near the
Hopf one. On the other hand, the Ott-Antonsen solution does
not predict the transition accurately at any of the bifurcations.

FIG. 12. Avalanches at and away from the hybrid-type syn-
chronization transition. (a) Avalanche size and avalanche-duration
distributions for a network of size N = 5000 evaluated at the
hybrid-type synchronization transition (a = 1.07, σc = 0.496) and
two other nearby points, slightly away from it. The figure includes:
(a) avalanche size and duration distributions for several values of the
noise intensity σ (see legend) with fixed ac = 1.07 and (b) avalanche
size and duration distributions for several values of the excitability
a (see legend) keeping σc = 0.496 fixed. Power-law behavior is
observed only at the hybrid-type transition.

However, the ansatz by Tyulkina et al. [98] is not able to
predict the existence of the bistability phase, while the other
two do so. Solving the complete system of equations for
the Kuramoto-Daido parameters, at least five harmonics are
needed in order to find the bistability region.

3. Avalanches at different types of bifurcations

Here we further investigate whether scale-free avalanches
emerged when we moved away from the bistability region.
Results at the different type of bifurcations are reported in
Fig. 1 of the main text, which displays raster plots com-
puted at either a (type-II) Hopf (upper panels) or at a (type-I)
SNIC bifurcation point (lower panels), respectively, as well as
within the synchronous and asynchronous phases surrounding
them. Here we show results for values slightly below, at, and
above the bifurcation. As discussed at extent in the main
text, scale-free avalanches (with power-law distributed sizes
and durations) emerge only in the vicinity of the hybrid-type
synchronization transition; when the system is moved away
from it, scaling behavior as well as scale-free behavior breaks
down (see Fig. 12), while near the bistability region scale-free
distributed avalanches remain (see Fig. 13).

4. Dynamical variability

As a complementary measure of complexity at the differ-
ent transition points, we have also computed the probability
distribution of the interspike intervals (ISI), along with its
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FIG. 13. Avalanches close to the hybrid-type synchronization
transition. Avalanche size and avalanche-duration distributions for a
network of size N = 5000 evaluated at the hybrid-type synchroniza-
tion transition (a = 1.07, σc = 0.496) and two other nearby points,
slightly to the left of it. Power-law behavior is observed only in the
bistable region close to the hybrid-type synchronization.

associated coefficient of variation (CV):

CV = 〈σISI/μISI〉, (G2)

where μISI and σISI are the mean and standard deviation of
the interspike interval for each oscillator, respectively, and 〈·〉
indicates an average over units. It is important to distinguish
between the interspike interval of each single unit, and the
interval between any two consecutive spikes in a network.
When looking at avalanches, the second option is preferred,
since it gives a small timescale able to resolve the internal
structure of avalanches. On the other hand, to measure the CV
one focuses on interspike intervals of individual oscillators.

For a Poisson process one expects an exponential distribu-
tion of ISIs along with a CV = 1; as a rule of thumb, CV > 1
is the fingerprint of irregular spiking activity. Figure 14 shows
the probability distribution of the ISIs and the CVs for the dif-
ferent phases and transitions, as determined in computational
analyses. Only two cases exhibit CV > 1: the hybrid-type
synchronization transition, as well as a small neighborhood
around it in the bistable regime; they are also the only two

FIG. 14. ISI distributions and CVs for fully connected networks.
Probability distributions for interspike intervals (ISI) for different
phases and bifurcations as shown in the legend. The coefficients of
variation for each case are indicated also in the legend. Parameter
values: Synchronous regime, σ = 0.5, a = 0.5; Hopf bifurcation,
a = 0.5, σ = 0.92; collectively excitable phase, σ = 0.5, a = 1.12;
hybrid-type synchronization transition: σ = 0.5, a = 1.07; bistable
regime: σ = 0.5, a = 1.072. Network size N = 5000.

FIG. 15. Spatiotemporal dynamics on two-dimensional systems.
The figure shows three rows, each one with six different frames
corresponding to six different times on a running simulation, for
the following cases: Upper row: near the different bifurcations
SNIC (a = 1, σ = 0.08); central row: near a Hopf bifurcation (a =
0.5, σ = 0.65); and lower row: hybrid-type synchronization tran-
sition (a = 0.98, σ = 0.185). Blue color indicates lack of activity,
while red color stands for maximum activity levels (identified as
1 + sin φ j). Near the SNIC transition, noise fluctuations generate
wavefronts that propagate in the system. At the Hopf transition,
there is some background activity whose level grows and shrinks
periodically. At the hybrid-type synchronization transition, the spa-
tiotemporal patterns are more complex, being a mixture of the two
aforementioned types; in particular, the system sometimes falls in
the excitable state. Simulations performed for N = 642 with periodic
boundary conditions. Videos showing the evolution for both cases
and the other phases can be found in Supplemental Material 1 [71].

cases characterized by a broad distribution of ISI values. Thus,
a high level of variability—similar to that observed in the
cortex—is only found in the region around the hybrid-type
synchronization transition, but not in the neighborhood of
either standard Hopf or SNIC bifurcations.

APPENDIX H: PHASE DIAGRAM FOR THE MODEL ON
TWO-DIMENSIONAL LATTICES

Computational analyses in 2D systems reveal a very sim-
ilar phase diagram to the mean-field one but with a richer
phenomenology (as graphically illustrated in Fig. 15). There
are three main phases, in a nutshell: a synchronous regime, an
asynchronous one, and a collectively excitable phase, much as
in the mean-field case. In the asynchronous regime, clusters
of activity appear, propagate, and vanish dynamically, with
an averaged constant network activation level (smaller/larger
close to the SNIC/Hopf transition, respectively) but with no
overall synchronization. On the other hand, within the syn-
chronous phase, activity wane and washes and periods of
overall quiescence are followed by bursts of overall activity
that spreads quickly from different focuses. Such a collec-
tive propagation requires some level of synchronization (let
us recall that a perfectly phase-synchronous state does not
exist in 2D [97] as rotational symmetry cannot possibly be
broken in low-dimensional systems; there are always some
“topological defects” in the system preventing it to exhibit
perfect synchronization, as it happens in well-known models
of equilibrium statistical mechanics [101] and also in the
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Kuramoto model [53]). Finally, the excitable state has all units
in the down regime, with almost no activity, but is susceptible
to respond to external perturbations or inputs.

Let us discuss the observed phenomenology at the different
bifurcation lines separating these phases:

(i) Nearby the type-I synchronization transition, at the
SNIC bifurcation (slightly within the synchronous phase),
oscillating activity appears in the form of traveling waves.
Visual inspection reveals, e.g., the presence of typical spiral
patterns typical of two-dimensional excitable systems (see
Supplemental Material 1 [71] for videos, and Fig. 15 upper
row).

(ii) Nearby the type-II synchronization transition, at the
Hopf bifurcation (slightly within the synchronous phase), the
overall level of activity oscillates in time (i.e., the system
“breathes”) and is spatially distributed in fragmented clusters
(see Fig. 15, central row).

(iii) Near the hybrid-type synchronization transition, the
dynamical behavior is much more complex: somehow in be-
tween the overall oscillatory behavior along the Hopf line and
the emergence of wave fronts at the SNIC line (see Fig. 15
bottom row).

Thus, even if we are not attempting to quantify spatiotem-
poral complexity here, it is clear that more complex dynamics
emerge around the HT synchronization transition. As shown
in Fig. 16 the computationally obtained phase diagram in the
case of two-dimensional lattices has a structure qualitatively
identical to the mean-field case, including the same phases.

FIG. 16. Phase diagram for a 2D lattice of coupled excitable
oscillators for different values of σ and a, using the Shinomoto-
Kuramoto (SK) order parameter (color coded). Reddish colors stand
for asynchronous states, while blueish colors correspond to par-
tially synchronized ones. As in the FC-network case, the system
can desynchronize either through a supercritical Hopf bifurcation or
through a SNIC bifurcation. In an intermediate region it is possible
to find a hybrid-type synchronization transition (yellow star). This is
characterized as the point where power-law distributed avalanches
obeying finite-size scaling appear. Symbols describe the coordi-
nates for which the videos of Supplemental Material 1 [71] were
recorded: “Hopf” bifurcation (black triangles); “SNIC” bifurcation
(green squares), and the HT transition point (white circles and yellow
star).
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