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Resumen

Esta memoria se centra en el estudio de uno de los problemas que
aparece en la Mecánica Cuántica: la medida. Primeramente se ha
hecho una revisión bibliográfica sobre los postulados de la teorı́a
cuántica, los tipos de medidas actuales, el entrelazamiento y su relación
con la desigualdad de Bell y por último, el experimento del amigo de
Wigner. Todo esto ha servido de base para implementar un código que
simule uno de estos tipos de medidas y permita estudiar la evolución
temporal de los valores esperados de diferentes sistemas con sus re-
spectivos hamiltonianos en función del periodo con el que se mide
sobre él.

Abstract

This memory focuses on the study of one of the problems that ap-
pears in Quantum Mechanics: measurement. First, a bibliographic re-
view has been made on the Quantum Mechanics postulates, the current
types of measurements, entanglement and its relationship with Bell’s
inequality and finally, the Wigner’s friend experiment. All this has set-
tled the basis to personally implement a source code that simulates one
of these types of measurements and allows us to study the temporal
evolution of the expectation values of different systems with their re-
spective Hamiltonians based on the period with which it is measured.
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1 Introduction.

All sciences have their origin on the observation of nature. We acquire knowledge about
reality, which is thought to be objective, measuring it using an active process. In order to
do that we make an apparatus interacts with the physical system that we are studying,
so that a property of that system can affect a property of the apparatus. Since both
interact, measuring one property of a system necessarily causes a disturbance to some of
its properties. Classical physics assumes that the physical property which is measured
objectively exits prior to the interaction while quantum physics is incompatible with
measuring some unknown but pre-existing reality [1].

The measurement problem in quantum physics is describing how a superposition of
many possible values becomes a single measured value, that is the system collapse. This
is illustrated by a though experiment called the Schrödinger’s cat experiment.

A cat is placed inside a box with a poison which is released if a radioactive atom
decays. This is a quantum event that determines the state of the cat, which is a macro-
scopic object used as a measuring device. Thus, if the cat is alive when opening the box,
the atom will not have disintegrated and if it is dead it will have. Nevertheless, before
opening the box, the atom is in a quantum superposition of states: its excited and funda-
mental states, which evolve over time according to the Schrödinger equation. Therefore,
the cat that interacts with the atom must also be in a superposition of states: alive and
dead. Each of these possibilities will be associated to a specific probability amplitude.
However, a single particular observation of the cat does not find a superposition state:
the cat is always either alive or a dead. After opening the box, i.e., measurement, the cat
is definitely dead or alive. So the point is interpreting how this probabilities turn into a
real well-defined classic outcome.

Quantum mechanics has different interpretations and each one deals with the mea-
surement problem its own way. The most popular one are the Copenhagen interpre-
tation, the many-worlds interpretation, Bohm interpretation and the objective-collapse
theories.

In this TFG we will deal with the measurement problem in quantum physics. First, in
Sec. 2, a base is introduced in quantum mechanics key concepts that allow us to under-
stand the rest of the reading. In Sec. 3 we continue to examine the main characteristics of
the different types of measurement. In Sec. 4 we focus on another key point in quantum
physics: entanglement, which manifests in the violation of the famous Bell inequality.
Actually, it leads to one of the counter-intuitive behaviours that has still no solution and
of which several interpretations are developed such as the many-worlds interpretation.
In Sec. 5 we explain the type of measurement that we have chosen to be simulated and
the scenarios to be measured. In Sec. 6 we show the results of the simulation when the
system has not been measured and in Sec. 7 when it has. For the latter case, a study has
also been made based on the measurement-time. In Sec. 8 all the simulation results are
summed up. Finally, in Sec. 9 we try to summarize all the conclusions obtained from the
study carried out in this TFG.
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2 Quantum mechanics general framework.

Quantum theory combines physical reality and mathematical formalism. It provides us
with a set of laws so that we can identify the different states of a quantum system, their
evolution, and their measurement probabilities and outcomes over a set of macroscopic
tests which have been prepared in a specific way. It is important to note that those proba-
bilities are computed over an ensemble of preparations but not over a unique one. Before
getting into the topic, we will refresh some key concepts such as the quantum mechanics
postulates and Heisenberg’s uncertainty principle.

Postulate 1: Quantum system states. A quantum system is defined by a Hilbert
space, H, which contains all the possible system states represented as | ψ >∈ H with
< ψ | ψ >= 1.

The simplest quantum system is the qubit which is defined by a two-dimensional
vector space, {| 0 >, | 1 >}, with state vectors of the form:

| ψ >= α0 | 0 > + α1 | 1 > ; |α0|2 + |α1|2 = 1, (2.1)

where α0, α1 ∈ C are the transition amplitudes and let us compute the probability
distribution of the state, |αj|2 = | < j|ψ > |2.

Note that two parallel state vectors that differ just on their phase represent the same
physical state but are not equivalents. Experimentally, each vector state is a well-defined
system preparation. When it comes to measurements what it is used is its probability
distribution, |αj|2, so a phase shift does not affect them. However, if we take a look at the
transition amplitude from |αj > to any other vector state |φ > , that is < φ|αj >, a phase
shift does make the difference.

Postulate 2: System evolution. A closed quantum system evolves according to a
unitary transformation, i.e., the same state vector, | ψ >, in two different times, t, t0, is
related by a unitary operator, U , which depends only on those times.

| ψ(t) >= U (t− t0)| ψ(t0) >; UU † = U †U = 1. (2.2)

An alternative formulation of this postulate is given by Schrödinger’s equation, where
H = H† is the system’s Hamiltonian:

ih̄
d | ψ >

dt
= H | ψ > . (2.3)

Solving that differential equation, we can connect both of them:

| ψ(t1) >= exp
{
−iH(t1 − t0)

h̄

}
| ψ(t0) >= U(t1, t0) | ψ(t0) > . (2.4)

Postulate 3: Quantum measurements. In general, the measurement process is rep-
resented by a set of measurement operators, {Mm}, which has m outcomes and satisfies
the law of probability conservation,

∑
m

M†
m Mm = 1. (2.5)
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The probability of measuring m is given by Eq. (2.7) and its final state associated would
be:

| ψm >=
Mm | ψ >√

p(m)
, (2.6)

p(m) =< ψ | M†
m Mm | ψ > . (2.7)

Although measurements are performed by classical devices, the results have a proba-
bilistic intrinsic nature. That has to do with the intrinsic quantum system behaviour
and not with imperfections on the preparations, nor the measurement process or the
measurement apparatus themselves.

When we are measuring it is important to know whether the vector states that we
want to distinguish are orthogonal or not. If they are then a set of observables can be
defined in order to determine the state measuring with perfect reliability. However, if
they are not then there is no way to achieve this purpose with a general measurement.
For example in quantum computing information is codified using a quantum system
by an emitter. It defines the system’s initial quantum state which will be the message
transmitted to a receptor. Eventually, the receptor will need to measure the system’s
state in order to decode it. If the transmitted messages are not orthogonal to each other,
then the receptor will have limitations on determining the initial quantum state without
ambiguity and here it is where error in communication arises.

Proof.

Let’s take two vector states |ψ1 >, |ψ2 > with < ψ1|ψ2 > 6= 0 and < ψj|ψj >= 1 for
j = 1, 2. Now, we define a set of observable satisfying < ψj | M†

i Mi | ψj >= δij for i,j
= {1, 2} with ∑m = M†

m Mm = 1. Next, we decompose |ψ2 > on a linear combination
of a parallel state to |ψ1 > and an orthogonal one to it, |φ > (Eq. (2.8)) and compute
explicitly < ψ2 | M†

2 M2 | ψ2 >.

|ψ2 >= α|ψ1 > +β|φ >; |α|2 + |β|2 = 1, (2.8)

< ψ2 | M†
2 M2 | ψ2 > =< (α∗ < ψ1|+ β∗ < φ|) | M†

2 M2 | (α|ψ1 > +β|φ >) >

= |β|2 < φ | M†
2 M2 | φ >≤ |β|2 ∑

i
< φ | M†

i Mi | φ >

= |β|2 < φ|φ >

= |β|2

< 1.

(2.9)

This way we have arrived to a contradiction of the initial hypothesis.

End of proof.

Heisenberg uncertainty principle. Associated to the measurement of two different
observables, represented by their operators A and B, over an ensemble of identical states,
|ψ >, there is an uncertainty that would depend on their commutator.

• If [A, B] = 0 then exits a common eigenstate basis with associated eigenvalues,
that is, if we measure A on some particles and B on the others and compute their
standard deviation we would get that both can be measured with total precision if
the measurement device are good enough.

A|ai, bj >= ai|ai, bj > . (2.10)
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B|ai, bj >= bj|ai, bj > . (2.11)

• If [A, B] 6= 0 and we measure A on some particles and B on the others and compute
their standard deviation we would get that their product satisfies the following
inequality called Heisenberg’s uncertainty principle:

(∆A)(∆B) ≥ | < ψ|[A, B]|ψ > |
2

. (2.12)

Postulate 4: Composite quantum system. The Hilbert space that holds the state
vectors of a quantum system, which is composed of N systems with hamiltonians Hi,
is given by its tensor product. Thus, HT = H1 ⊗ ...⊗Hj ⊗ ...⊗HN and its state vector
must be | ψT >= | ψ1 > ⊗...⊗ | ψj > ⊗...⊗ | ψN > [1], [2].

3 Type of measurements.

At postulate 3 we have introduced general measurements on quantum mechanics. From
now on, we will focus on giving some light to their scopes and on how to perform them.
We will start from projective measurements which are quite widespread and after that,
we will introduce the mathematical formalism of positive operator-value measurements.
Next, we will introduce the interaction with the measurement device by the weak mea-
surements and the measurement time by the nondemolition measurements. Finally, we
will explain the protective measurements which are not performed over an ensemble of
identical particles but on a single one.

3.1 Projective measurements.

Projective measurements, quite often called strong measurements, are the most popular
ones and require the definition of observables as hermitic operators, M† = M, which
according to the spectral theorem can be discomposed on a set of orthonormal projectors,
{Pm}, as follows:

M = ∑
m

mPm (3.1)

where P2
m = Pm = P†

m. Besides, we can get a projective measurement from a general one
just asking for the additional condition of:

M†
m′Mm = δm′m Mm, (3.2)

Then, using the properties Eq. (3.1) and Eq. (3.2) is easy to compute the expectation
value of an observable as:

< M >= ∑
m

mp(m) = ∑
m

m < ψ | P†
mPm | ψ >=< ψ | ∑

m
mPm | ψ >=< ψ | M | ψ > .

(3.3)
This gives us the following standard deviation formula associated to observations of M:

(∆M)2 =< M − < M >>2=< M2 > − < M >2 . (3.4)

On the other hand, a general measurement can be expressed in terms of projective mea-
surements if (1) it is possible to add an auxiliary system to our current one, i.e., the
Hilbert space can increase its dimension; and (2) any arbitrary unitary operation can be
done on the total system space [2].
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3.2 POVM, Positive Operator-Value Measurements.

Since the vast majority of the measurements performed in labs are destructive, POVMs
focus not on the final system state but on getting information of it. POVMs are defined by
a set of positive operators {Em} that satisfies ∑ Em = 1 and where p(m) =< ψ | Em | ψ >.

The set {Em} is just a mathematical formalism that has no physical meaning and it
may be discomposed, but not in a univocal way, on the form Em = M†

m Mm where {Mm}
is a general measurement and has its physical meaning.

This mathematical method is specially used when we are looking forward to distin-
guishing non-orthogonal states. It allows us to measure and depending on the outcome
to determine the state with total reliability or not extract information at all [2].

Example.

Given the states |ψ1 >= |1 >, |ψ2 >= (|0 > −|1 >)/
√

2 with < ψ1|ψ2 > 6= 0 and
< ψj|ψj >= 1 for j = 1, 2. As we have concluded earlier it is impossible to distinguish
them with total reliability, (Eq. (2.9)).

Now, we define a set of observable E1, E2, E3 satisfying ∑m = Em = 1 that describes a
POVM measure.

E1 =

√
2

1 +
√

2
|0 >< 0|, (3.5)

E2 =

√
2

1 +
√

2
(|0 > +|1 >)(< 0|+ < 1|)

2
, (3.6)

E3 = 1− E1 − E2. (3.7)

It is straight noticed that < ψ1 |E1| ψ1 >= 0 and < ψ1 |E2| ψ1 >= 0, so there is no
probability of getting E1 if we have the state | ψ1 > and the same can be said to E2 and
| ψ2 >. Therefore, if we measure the outcome E1, we are totally sure that the system state
is | ψ2 >. The identical reasoning is applied to measuring E2 and knowing that the state
will be | ψ1 >. However, if E3 is measured, then nothing about the system state can be
said.

End of example.

3.3 Weak measurements.

Weak measurements reveal us information about the amplitudes of a quantum state.
Instead of collapsing the state into eigenvectors of the observable operator and measur-
ing a clear eigenvalue, the state is biased by a small angle and the measurement device
shows a superposition of several eigenvalues.

First of all, we weakly couple the quantum system, | ψ > (Eq. (3.8)), and the quantum
measurement device, | φd > (Eq. (3.9)), using an interaction Hamiltonian , Hint (Eq.
(3.10)), where g(t) is the coupling impulse function between systems and T its coupling
time.

The observable is given by A = A† where A | aj >= aj | aj >. The position and
momentum operators associated to the detector are Xd, Pd where Xd| x >= x| x >,
[Xd, Pd] = ih̄ and the variable x represents the measuring needle position whose wave
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function distribution is a Gaussian around 0 with variance σ2.

| ψ >= ∑
j

αj| aj >; αj =< aj | ψ > . (3.8)

| φd >=
∫

x
| x >< x | φ > dx =

∫
x

φ(x)| x > dx; φ(x) = (2πσ2)−1/4e−x2/4σ2
. (3.9)

Hint = g(t)A⊗ Pd;
∫ T

0
g(t)dt = 1, (3.10)

with g(t) any function that satisfies the above condition. Therefore, the evolution of the
total system | Φ(t) > would be:

| Φ(t) >= exp {−i/h̄Hintt} | Φ(0) >= exp
{
−i/h̄

∫ t

0
g(t)A⊗ Pd dt

}
| ψ > ⊗| φd >,

(3.11)

| Φ(t) >= ∑
j

αj exp
{
−i/h̄

∫ t

0
g(t)ajPd dt

}
| aj > ⊗| φd > . (3.12)

Since the exponential term is a translational operator itself, it just translates the detector’s
distribution without deformation and generates an entanglement.

| Φ(t) >= ∑
j

αj| aj > ⊗| φd(x− aj) > . (3.13)

It is important to note that the variance, σ, controls the | φd(x − aj) > overlapping and
therefore, whether the measurement process will be weak or strong (see Fig. 1). The
higher the variance, the weaker the measurement. After that, we measure the device.
That will collapse the needle’s device position, i.e., give an outcome vale, and bias the
system’s vector in the direction that corresponds to the needle’s outcome value. For a
measurement to be weak, the standard deviation of the measurement outcome should
be larger than the difference between the eigenvalues of the system.

For computing the average of all eigenvalues, since the probability density to get the
needle’s position x is given by Eq. (3.14) and |ai − aj| << σ, we can approximate p(x) to
a normal distribution centered around the average of all eigenvalues (Eq. (3.15)).

p(x) = (2πσ2)−1/2 ∑
j
|αj|2e−(x−aj)

2/2σ2
, (3.14)

p(x) ≈ (2πσ2)−1/2e−(x−∑j |αj|2aj)
2/2σ2

. (3.15)

Finally, if we prepare an ensemble of identical particles and we weakly measure part of
them by its position operator, X, and the rest by its conjugate operator, P, we will obtain
a lower bound by the variance of the detector’s operator:

∆X ≥ ∆Pd, (3.16)

∆P ≥ ∆Xd. (3.17)

Since the detector performs a strong measurement, it satisfies the uncertainty principle
(Eq. 2.12). Therefore, the variances of the particle’s operators satisfy it too [3].

∆X∆P ≥ ∆Xd ∆Pd ≥ h̄. (3.18)
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Figure 1: Overlapping depending on σ for fixed eigenvalues a1 = −1 and a2 = 1.
Top-left: Strong measurement with σ = 0.25. System’s vector collapses. Top-right:
Weak measurement with over overlapping σ = 0.75. Vague information on the needle’s
outcome value. Bottom: Weak measurement with overlapping, σ = 0.50. Optimal weak
measurement.

3.4 Nondemolition measurements.

As it is stated on Heisenberg’s uncertainty principle (Eq. (2.12)) the more accurate is the
measurement of one observable, A, the more unpredictable will be the measurement of
the observable B if [A, B] 6= 0 and that is something intrinsic to the quantum system
and inevitable that has to do with extracting information out of the particle. If all the
information is reinserted to the particle with no trace of it left anywhere, that is, the
backward process is perfect then the disturbance in the particle state can be undone.

Quantum Non Demolition (QND) methods give us a chance to circumvent the effects
of the Heisenberg’s uncertainty principle, that is, from demolishing the possibility of a
second accurate measurement. We define a QND measurement of an observable Â as
a sequence of precise measurements of Â such that the result of each one is completely
predictable from the result of the first one.

Besides, we define QND observables as the ones that do not contaminate the free
evolution of the system so they allow us to measure with high-precision but evade the
back-action effect on the system. Â is a QND observable if and only if [Â(ti), Â(tj)] = 0.

If it is satisfies [Â(ti), Â(tj)] = 0 for all times then Â is a continuous QND observ-
able but if it just satisfies it for some special ones, then it is called a stroboscopic QND
observable. For instance, in a free particle energy and momentum satisfies that condi-
tion so they are continuous QND observables and in a harmonic oscillator position and
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momentum are stroboscopic QND observables.

In order to let the information enter on the measuring apparatus, its interaction
Hamiltonian with the system must depend on Â and [Â(t), ˆHint(t)] = 0 guarantees
no direct instantaneous back action of the measuring apparatus on Â. If Â is the only
system observable in ˆHint, then there is neither direct nor no direct back action.

We can couple the system to a classical external force F(t) that can be inferred from
Â(t) and then it is called QNDF observable. For a harmonic oscillator Hamiltonian, Ĥ =
1
2 mω2X̂2, by a sequence of stroboscopic measurements one can monitor a classical force
F(t) = F0 cos(ωt+ α) using the quantum system. For this Hamiltonian if α = π/2, 3π/2,
then the optimal times for the stroboscopic measurements are t = 0, π/ω, 2π/ω, .... On
the other hand, if α = 0, π, then the optimal times for the stroboscopic measurements
are t = π/2ω, 3π/2ω, ... [4, 5, 6].

3.5 Protective measurements.

In general, expectation values are statistical properties obtained of a N identical particle
ensemble. In this particular situation the expectation value of an observable can be found
performing just a measurement over a single photon. A photon polarized with angle θ

may be written as |ψθ >= cos(θ)|0 > + sin(θ)|1 > and the polarization operator is
defined as P = |0 >< 0| − |1 >< 1|. In order to avoid the state collapse after measuring,
we need to protect it. There are two protection methods: the active and the passive one.
We will focus on the active one through the Zeno effect, that is totally effective only in
the ideal case. Zeno effect let us freeze the unitary time evolution of an initial quantum
state by for instance measuring it frequently enough.

If we measured the expectation value of the polarization of a photon polarized with
angle π/6, |ψπ/6 >=

√
3

2 |0 > + 1
2 |1 >, we would get < P >= 0.5 (Eq. (3.19)).

< ψπ/6|P|ψπ/6 >=
3
4
− 1

4
= 0.5. (3.19)

In figure 2 we represent the outcome that would give protective measurements (in red)
versus projective ones (in blue) over the same ensemble of identical states |ψπ/6. For
the first one there is an unique outcome distribution around the observable expectation
value, < P >= 0.5, for all the measurements over protected photons. For the second
one there are two probability distributions around the eigenvalues ±1 for non-protected
photons [7].

4 Entangled systems.

The aim of measuring a system is clearly to get information of it. If the initial state
is known then we will probably try to define its physics properties and vice versa. In
Quantum Physics there are two kinds of states: separable and entangled. Separable
states are pure states of composite systems that can be factorized as a product of states
associated with each subsystem but entangled cannot. This intrinsic characteristic of
entangled states shows surprising results [8].
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Figure 2: In red, protective measurement distribution about the polarization expectation
value for ψπ/6, < P >= 0.5. In blue, projective measurement distributions about the
polarization eigenvalues ±1.

4.1 Bell inequality.

In EPR article [9] it was first pointed out that entangled system properties were not
described well enough by quantum mechanics and in 1964 Bell published its local hidden
variable model (LHVM) based on the ideas of realism, locality and free will [10]. They
led him to an inequality for the statistics correlations on measurements of a bipartite
system.

For a bipartite system with dichotomic observables (A1, A2) over the subsystem A
and (B1, B2) over the subsystem B, the inequality reads as follows:

‖< A1B1 > + < A1B2 > + < A2B1 > − < A2B2 >‖ ≤ 2. (4.1)

For instance, we can choose A1 = σ1
x , A2 = σ1

z , B1 = − 1√
2
(σ2

z + σ2
x) and B2 = 1√

2
(σ2

z −
σ2

x), where σx, σy, σz are the Pauli’s matrices. Next, we will compute those quantities for
a separable state, ψsep = |01 >, and an entangled one, ψent = 1√

2
(|01 > −|10 >). So

then, we will need to compute over the two different systems Eq. (4.2). In Eq. (4.3) an
example is done in order to illustrate the operational method followed.

1√
2

∥∥∥− < σ1
x(σ

2
z + σ2

x) > + < σ1
x(σ

2
z − σ2

x) > − < σ1
z (σ

2
z + σ2

x) > − < σ1
z (σ

2
z − σ2

x) >
∥∥∥ ,

(4.2)

< 01| 1√
2

σ1
x(σ

2
z − σ2

x)|01 >=
1√
2

(
1 0 0 0

)
0 0 1 −1
0 0 −1 −1
1 −1 0 0
−1 −1 0 0




1
0
0
0

 = 0. (4.3)

For the separable system the inequality is satisfied, since:∥∥∥∥0 + 0− 1√
2
+

1√
2

∥∥∥∥ = 0 ≤ 2. (4.4)

For the entangled system the inequality is violated, since:∥∥∥∥ 1√
2
+

1√
2
+

1√
2
+

1√
2

∥∥∥∥ = 2
√

2 > 2. (4.5)
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The inequality violation is due to the entanglement. That is why computing this in-
equality can be used as a first filter for classifying quantum states once we have fixed the
dichotomic observables [10].

4.2 Wigner’s friend experiment.

Wigner’s friend is a thought experiment related with the measurement problem. We
consider an observer (”the friend”) who performs measurements on a quantum system
inside an isolated lab. The system is in a superposition state so when it is measured by
the friend it collapses. Besides, there is an external observer, Wigner, who also performs
measurements on the lab and everything that is inside of it and controls them coherently.
When his friend has performed the measured for Wigner the superposition still remains.
This seems to lead to a contradiction between observer’s perspectives.

The extended Wigner’s friend scenario (EWFS, Fig. 3) considers the bipartite of the
Wigner’s friend experiment, introducing two superobservers: Alice and Bob, and their
respective friends: Charlie and Debbie with their own labs. Each friend has one particle
from an entangled pair and makes a measurement on it. Assuming freedom of choice,

Figure 3: Extended Wigner’s friend scenario [11].

locality and observer-independent facts, Brukner [11] derived a Bell inequality which
could be violated in quantum mechanics and a recent six-photon experiment has proved
it. Later, assuming Local Friendliness which includes No-Superdeterminism, Locality
and Absoluteness of Observed Events (AOE) an experiment has been performed.

1. No-Superdeterminism: any set of events on a space-like hypersurface is uncorre-
lated with any set of freely chosen actions subsequent to that space-like hypersur-
face.

2. Locality: The probability of an observable event is unchanged by conditioning on
a space-like-separated free choice.

3. Absoluteness of Observed Events: An observed event is a real single event, and not
relative to anything or anyone.
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Conclusions obtained in the experiment were independent of the quantum state and
the measurements of it since the inequalities are independent of the measurement appa-
ratus. The violation of the inequalities implies neglecting some of the LF assumptions
and that is actually, the study line of some quantum theories including:

• QBism, relational interpretation and many-worlds interpretation neglect absolute-
ness of observed events.

• Bohmian Mechanics violates locality.

• Retrocausality, superdeterminism and other mechanics theories neglects
no-superdeterminism [12].

5 Computational simulation algorithm.

In this section we will put into practice all the knowledge acquired so far with the goal
of designing a simulation of a nondemolition measurement on a bipartite system. In
particular, we have found them interesting because if we choose the measurement time
wisely, we can obtain not only the eigenvalue of the observable measured over one of
the systems, but also keep the expectation value temporal evolution of both systems
invariant. We will study it for different initial system states and Hamiltonians in order
to check how the system would evolve if the measurement were not a nondemolition
one.

I have developed a code in order to study nondemolition measurements of a separa-
ble two qubit system, |ψsep >, and an entangled one, |ψent >, evolving them according
to Schrödinger’s equation with a separable, Hsep, and an entangled Hamiltonian, Hent,
during fifty seconds. Besides, I have computed Bell inequalities in order to test that its
implementation was right.

• Initial states:

|ψsep >=
1
2
(|0 > +|1 >)1 ⊗ (|0 > +|1 >)2 =

1
2
(|00 > +|01 > +|10 > +|11 >), (5.1)

|ψent >=
1√
3
(|00 > −|10 > −|11 >). (5.2)

• Interaction Hamiltonians:

Hsep = h̄ω(σ1
z + σ2

z ), (5.3)

Hent = h̄ω(σ1
z ⊗ σ2

z ). (5.4)

To calculate the time evolution of the system, I have used Euler’s algorithm (ec. 5.5)
with ∆t = 0, 0001 s. I have measured periodically X1 and computed the expectation
values < σ1

x >,< σ2
x >,< σ1

z > and < σ2
z > every 0,001 s.

|ψ(t0 + ∆t) >= exp
(
− iH∆t

h

)
|ψ(t0) >≈ (1 + i/hH∆t)|ψ(t0) > . (5.5)
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For the observables associated to the operators σx and σz we define its eigenstates as
|σ↑x >= 1√

2
(|0 > +|1 >), |σ↓x >= 1√

2
(|0 > −|1 >), |σ↑z >= |0 > and |σ↓z >= |1 >, having

both of them eigenvalues ±1 as specified:

σx|σ↑x >= |σ↑x >, σx|σ↓x >= −|σ↓x > . (5.6)

σz|σ↑z >= |σ↑z >, σz|σ↓z >= −|σ↓z > . (5.7)

Both Hamiltonians have an oscillating frequency, ω, that will determine the period of
< σ1

x >,< σ2
x > oscillations. Once we have estimated it, we fix this parameter on

our simulation and run two different measurement processes: measuring the system
every T/4 and every T/2. Additionally, we will fix a quantum system and an evolution
Hamiltonian and will modify the measurement-time in the range T ∈ [T/4, T/2]. We
will make special attention to their neighbourhood, e.g., T/4 + T/30 and T/2− T/30.
Each measurement process will be run for an ensemble of N = 10000 identical systems
so that we can get the statistics with a standard deviation of 1/

√
N.

The code developed in this TFG can be found at this link.

6 System expectation value evolution with no measurements.

Figure 4: Expectation value evolution without measurement being performed for dif-
ferent systems and Hamiltonians. Top-left: Hsep, |φ >sep. Top-right: Hsep, |φ >ent.
Bottom-left: Hent, |φ >sep. Bottom-right: Hent, |φ >ent.

In figure 4, the expectation values of < σ1
x >,< σ1

z >,< σ2
x >,< σ2

z > are plotted
for t ∈ [0,50] s for the four system and evolution situations without measurement being
performed.

https://github.com/cristinaagh/Non-demolition-measurements
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If there is no initial interaction between qubits, that is, if the system is separable (Fig.
4 (top-left) and Fig. 4 (bottom-left)), then < σ1

x >, < σ2
x > oscillate independently for

each qubit between its eigenvalues -1 and 1. On the other hand, < σ1
z > and < σ2

z >

values are constant with time and equal to zero. However, if qubits initially are linked
since the system is entangled (Fig. 4 (top-right) and Fig. 4 (bottom-right)), then < σ1

x >,
< σ2

x > keep oscillating but have a different amplitude and phase. < σ1
z > and < σ2

z >

are constant but take different values. Hence, when no measurement is performed, the
evolution with time for a well-defined system is determined by its Hamiltonian and
its initial state as it has been stated in Postulate 2 (Eq. (2.3)). Finally, we estimate the
oscillation period that depends only on the Hamiltonian frequency which we have fixed
to h̄ω = 1 in order to get a time reference interval to perform the measurements. Hence,
for all the cases being analysed the period is T = 3.142 s.

7 System expectation value evolution measuring σ1
x periodi-

cally.

As it has been explained, we have measured the system with different measurement-
times in order to determine the optimal one, i.e., the one that perturbs the system the less.
This measurement method let us get information of the observables without dramatically
modifying their expectation value time evolution so that we can keep measuring it.

7.1 No disturbance measurement-time.

Figure 5: Expectation value evolution with measurement being performed each T/2 for
different systems and Hamiltonians. Top-left: Hsep, |φ >sep. Top-right: Hsep, |φ >ent.
Bottom-left: Hent, |φ >sep. Bottom-right: Hent, |φ >ent.
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If we set the time measurement-time to T/2, and the initial state is separable then
for both the separable Hamiltonian (Fig. 5 (top-left)) and the entangled one (Fig. 5
(bottom-left)) the system will be measured when < σ1

x >, < σ2
x >= ±1. As these are

their operator eigenvalues, the system has a high probability of being on the eigenstate
associated to that eigenvalue. That is why when we measure the system, they will
collapse to the eigenstate associated to the eigenvalue that we have measured so we will
expect the system disturbance to be minimal.

Following the same reasoning, if the initial state is entangled then the system will be
measured when < σ1

x >, < σ2
x >= ±2/3 for both the separable Hamiltonian (Fig. 5 (top-

right)) and the entangled one (Fig. 5 (bottom-right)). Since these are not the operator
eigenvalues the system collapses to the eigenstate associated to the eigenvalue measured.
This breaks the entanglement and the system becomes separable so from this moment it
will have the same behaviour as explained before for the separable one. Once again we
expect the system disturbance to be minimal.

As we can see on simulations, for a T/2 measurement-time the expectation value
evolution has not changed in any case but for the first measurement on the entangled
system, that is, measuring the system each T/2 seconds has exactly the same expectation
value time evolution as no measuring it at all. In this particular case the collapse does
not dramatically modify the qubit states.

For < σ1
z >, < σ2

z > we see that for an initial separable system the value remains
unalterable but for an initial entangled one it decreases in module, as we measure, until
it reaches a constant value with time: both of them zero when the system is separable,
and a negative and a positive one, respectively, when the system is entangled.

7.2 Maximal disturbance measurement-time.

On the other hand, if we set the measurement-time to T/4 then the disturbance is total in
the first qubit and depending on the Hamiltonian and the initial state it will have effect
on the second qubit or not.

Initially < σ1
x > oscillates as no measurements have been performed yet. The first

measurement comes at T/4 when < σ1
x >= 0 so at this time both σ1

x eigenstates are
almost equally probable. On an identical system ensemble statistics < σ1

x > amplitude
will decrease exponentially until it reaches zero. If we keep computing < σ1

x >, no new
information will be obtained.

Separable Hamiltonian and separable system. In figure 6 (top-left) we can see the
< σ1

x > oscillations and its amplitude exponentially decreases as it has been predicted.
Since the system and the Hamiltonian are separable, measuring qubit one does not affect
qubit two. That is why < σ2

x > oscillates for all times and < σ2
z > remains constantly

equal to zero as if the system was not have been measured. Finally, < σ1
z > decreases

quicker than < σ1
x > until it reaches a negative constant value.

Separable Hamiltonian and entangled system. In figure 6 (top-right) we can see
again the < σ1

x > oscillations and its amplitude exponentially decreases as it has been
predicted. Since the system is entangled and the Hamiltonian is separable, measuring
qubit one does not affect qubit two. As said for T/2 we just need to consider the first
measurement that modifies the oscillation’s amplitude but the evolution is analogous
from this moment. The same results are applied to < σ2

z > so its behaviour is equal
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Figure 6: Expectation value evolution with measurement being performed each T/4 for
different systems and Hamiltonians. Top-left: Hsep, |φ >sep. Top-right: Hsep, |φ >ent.
Bottom-left: Hent, |φ >sep. Bottom-right: Hent, |φ >ent.

to the one described at T/2. Qubit two perceives no measure effect. Finally, < σ1
z >

increases quicker than < σ1
x > decreases until it reaches a negative constant value.

Entangled Hamiltonian and separable system. In figure 6 (bottom-left) we can see
the < σ1

x > oscillations and its amplitude exponentially decreases as it has been pre-
dicted. Now, since the system is separable and the Hamiltonian is entangled, measuring
qubit one affects qubit two. That is what makes < σ2

x > amplitude decreases to zero.
As we can see the decaiment is quicker for < σ1

x > than for < σ2
x >. That is because

qubit one is been directly measured and qubit two is the one that suffers the effect of the
system being measured. Finally, < σ1

z > decreases quicker than < σ1
x > until it reaches

a negative constant value and < σ2
z > remains constantly equal to zero.

Entangled Hamiltonian and entangled system. In figure 6 (bottom-right) we can
see the < σ1

x > oscillations and its amplitude exponentially decreases as it has been
predicted. Now, since the system is entangled and the Hamiltonian too, measuring
qubit one affects qubit two evolution. That is what makes < σ2

x > amplitude decrease to
zero too. As we can see the decaiment is quicker for < σ1

x >, which is the qubit that is
been directly measured, than for < σ2

x >, which is the one that suffers the effect of the
measured.

7.3 Disturbance dependence on the measurement-time.

At this point, we choose to study the expectation value evolution for the entangled
system with entangled Hamiltonian. We have discussed before the expectation value
evolution for a measurement-time of T/2 and T/4 and now, we will focus on its evolution
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about T/4 and T/2.

Figure 7: Expectation value evolution for Hent, |φ >ent being measured. Left: Measure-
ment each T/4+T/30. Right: Measurement each T/2-T/30.

For T/4 (Fig. 6 (bottom-right)) the dumping is maximum and the amplitude de-
creases quicker than for any other measurement-time. At t = 7 s, < σ1

x > oscillates no
more. It takes a little more to < σ2

x > in order to be totally dumped but at t = 35 s
it is. As we increase the measurement-time, T/4 + T/30 (Fig. 7 (left)), their oscillating
character last a second more before it gets totally dumped again, so at the end of the day
the behaviour would be the same as for T/4. For a greater measurement-time, T/2-T/30
(Fig. 7 (right)), that is about T/2, we clearly distinguish two regions: the one which has
the behaviour of the expectation value evolution at T/2 (Fig. 5 (bottom-right)) and the
one which has the one of T/4. Its range will depend on how close we are to T/2. The
closer we are, the oscillations will last the most. That’s due to the fact that at t → ∞ all
the displacements from T/2, that is, all the T/30 will sum up and its contribution will be
relevant for the system and will make it collapse to the T/4 expectation value evolution.

8 Simulation conclusions.

In a measurement-time of T/2 it is obtained that when measuring < σ1
x > over a sep-

arable or entangled system with a separable or entangled Hamiltonian, the evolution
of the expectation values < σ1

x >,< σ1
z >,< σ2

x > and < σ2
z > remains the same as

if the system had not been measured. For T/4 < σ1
x > oscillations get dumped and

the behaviour of < σ2
x > allows us to distinguish between an entangled or a separable

Hamiltonian since if it is separable then it continues oscillating but if it is not then the
amplitude decays to zero as quick as far we are from T/2. The expectation values of σz

end up getting a constant value over time in all cases. The initial state and the Hamilto-
nian only determine whether this value will be greater than, less than, or equal to zero.
Therefore, it gives us not much information about the evolution. Finally, if we fix a state
and modifies the measurement-time in the range T ∈ [T/4, T/2], as we increase T, the
oscillations will dump later and for T/2 they are not dumped at all. Therefore, it can
be concluded that in the case of wanting to extract information from a system without
modifying its expectation values, we must take into account the frequency of oscillation
that characterizes its Hamiltonian to set the measurement-time according to it to T/2. In
the case of not achieving this, the < σ1

x > dumping will appear earlier as we are closer
to T/4, i.e., further from T/2, and will affect < σ2

x > oscillations if the Hamiltonian is
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entangled.

9 Final conclusions.

This TFG focuses on the theoretical and practical analysis of the measurement problem
in quantum physics.

In the theoretical field, we have begun by recalling concepts of quantum mechan-
ics, such as its postulates and the uncertainty principle, which are crucial to the correct
understanding of the problem. Next, an investigation was carried out on the types of
measurements which focus on the computation of the expectation value of an observ-
able, on the measurement of an observable or on the determination of the initial quantum
state. Thus, projective measures, POVMs, weak measurements, nondemolition measure-
ments, and protective measurements were found of special interest. In general lines,
projective measurements are the most common and widespread in quantum physics. In
them, when measuring an observable, an eigenvalue of its associated operator is ob-
tained as a result and the system collapses to its associated eigenstate. Secondly, POVMs
are an excellent mathematical tool in order to solve the problem of indistinguishable
non-orthogonal states. Thus, in some cases it reports with absolute certainty the state
of the system and in others it cannot provide any information about it, depending on
the measured result. On the other hand, weak measurements take advantage of the
interaction between the system and the measuring device to avoid the collapse that char-
acterizes projective measurements and to keep a system state as close as possible to the
initial one. They try to know the transition amplitudes of the quantum state and this
has the cost of losing information about the value of the observable. They just obtain
an average value of its eigenvalues. Next, nondemolition measurement’s scope is to de-
fine an optimal measurement-time based on the Hamiltonian of the system. This time is
defined as the one in which measuring disturbs the quantum state the less. Therefore,
it allows us to make predictions about the result of the measurement of the observable
along the time. Finally, protective measure goal is to protect the polarization state of a
photon when it is measured. This way we are able to obtain the expectation value of its
polarization with a single measurement on it.

Once we have known various types of measurements that could be simulated, we
focused on the study of the different types of quantum states. According to their be-
haviour they are divided into: separable, the state of the total system can be expressed
as the tensor product of several subsystems, and entangled states, it cannot. Due to this
fact some of the theoretical predictions made before the incorporation of entanglement
to quantum theory were violated, for example, Bell’s inequality. Besides, it gave rise
to counter-intuitive behaviours like the Wigner’s friend experiment, which is still stud-
ied today, emerging new hypotheses about locality, superdeterminism and absoluteness
of observed events. Extended versions of this one that incorporate relativity and the
transmission of information between observers have been proposed recently and it has
given rise to many physical currents such as QBism, the many-worlds interpretation and
retrocausality.

Regarding the practical field, we have focused on developing an own code that imple-
ments the nondemolition measurements. This has allowed us to study different scenarios
and draw conclusions based on the measurement-time on them. Before, the importance
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of entanglement in quantum theory was already highlighted. Therefore, four types of
systems and evolutions were chosen combining the two possibilities that were available:
separable or entangled initial system and separable or entangled evolution. The evo-
lution was determined in all cases by the Hamiltonian to which a characteristic period
could be associated. First, we studied it without carrying out measurements on the first
subsystem. Then, for a measurement-time in the interval of a quarter of the period
and half of the period, it was studied how the disturbance of the state of the system
changed. It was obtained that for a measurement-time equals to half the Hamiltonian
period, the dynamics of the first subsystem was not modified by the measurement and
neither was that of the second subsystem, except for the collapse of the entangled system
to the separable after the first measurement in both Hamiltonians. On the contrary, for
a measurement-time equals to a quarter of the period, the disturbance was maximal and
the information on the state of the first subsystem was lost exponentially if the mea-
surement process continued. In the latter case, if the Hamiltonian was entangled, then
information about the state of the second subsystem was also lost exponentially, although
it had not been measured directly. Therefore, it was concluded that the nondemolition
measurement for the four scenarios studied corresponded to a measurement-time of half
the Hamiltonian period.
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