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Thesis supervised by
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y a mis compañeros del despacho de ‘Los Becarios’ con los que termino esta etapa:
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Finalmente, dedico esta tesis a mis padres, a mi hermano y a Cristina. Gracias
a mis padres por todo su amor y su enorme esfuerzo y sacrificio que han hecho por

iii



mı́ desde que era pequeño para que nunca me faltara de nada y poder alcanzar mis
sueños. A mi hermano Alejandro por ser con quién he compartido toda mi vida, por
esos momentos de risa infinitos y por ser mi mejor amigo. A Cristina por su apoyo
y comprensión, por su cariño, por no dejarme caer nunca y por ser mi compañera
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RESUMEN

En muchos campos cient́ıficos, es habitual encontrar magnitudes caracterizadas por la
evolución de una variable aleatoria a lo largo de algún continuo (proceso estocástico).
A pesar de que los datos experimentales medidos sobre estas variables son claramente
funciones (curvas, superficies o imágenes), históricamente su tratamiento ha sido a través
del análisis multivariante o de series temporales, perdiéndose información importante. Por
suerte, los grandes avances que ha experimentado el sector tecnológico en los últimos
años, han facilitado el seguimiento y reconstrucción de las funciones de forma rápida
y sin esfuerzo, siendo posible trabajar con las funciones completas. En este escenario,
es altamente probable tener datos de alta dimensión, en los que el número de variables
es mayor que el número de individuos muestreados. Este hecho hace que los métodos
estad́ısticos tradicionales no sean adecuados. Dependiendo del propósito final, en esta tesis
se abordan estos datos desde dos perspectivas estad́ısticas diferentes y complementarias:
el Análisis de Datos Funcional (FDA) y el Análisis de la Fiabilidad (RA) basado en las
distribuciones de probabilidad Tipo Fase (PH).

FDA surge ante la necesidad de construir métodos que permitan modelizar datos fun-
cionales, cuyas observaciones suelen ser curvas dependiendo del tiempo u otro argumento
continuo. En las últimas décadas, se viene realizando una intensa investigación en este
campo, en el que se han generalizado la mayoŕıa de las técnicas multivariantes, especial-
mente, métodos de reducción de la dimensión, clasificación y regresión. Destaca el Análisis
de Componentes Principales (FPCA) porque reduce la dimensión y explica la estructura
de variabilidad en términos de un número pequeño de variables incorreladas.

En el campo de la fiabilidad, uno de los objetivos es estudiar el comportamiento de
sistemas complejos, cuyo funcionamiento está condicionado por varios factores incontro-
lables. En este sentido, RA intenta identificar la distribución de probabilidad de los datos
para arrojar luz sobre la variabilidad que hay detrás del funcionamiento de los sistemas.
Una posibilidad es considerar los procesos Markovianos y las distribuciones PH. Esta clase
de distribuciones es capaz de aproximar cualquier distribución no negativa tanto como se
desee gracias a su versatilidad, y permite modelar problemas complejos con resultados bien
estructurados.

Las contribuciones metodológicas de esta tesis se desarrollan en base a problemas de
gran interés impulsados por datos relacionados con las Memorias Resistivas de Acceso
Aleatorio (RRAMs) y la pandemia de COVID-19. Las RRAM despiertan un gran interés
porque son una de las principales fuentes de ingresos en la industria, mientras que para

v



mitigar la propagación del virus, es crucial desarrollar modelos óptimos que ayuden a
tomar buenas decisiones.

Un nuevo enfoque estad́ıstico basado en las distribuciones PH es desarrollado para
analizar la variabilidad de las RRAM, siendo ésta uno de los aspectos clave a resolver.
Tras un exhaustivo estudio experimental se muestra que las distribuciones PH funcionan
mejor que cualquier otra distribución y además, ayudan a conocer mejor el comportamiento
interno de las RRAM.

Se construye un nuevo proceso estocástico de macro-estados considerando el desempeño
interno de los mismos. El tiempo de permanencia en cada uno de estos macro-estado se
distribuye mediante una PH. Se muestra como el comportamiento interno del proceso
es Markoviano, pero tanto la homogeneidad como la Markovianidad desaparecen para el
nuevo modelo de macro-estados. También se obtienen otras medidas asociadas al mod-
elo. La nueva metodoloǵıa permite modelar sistemas complejos de forma algoŕıtmica, en
particular, el ruido producido dentro de las RRAM.

FPCA basado en la expansión de Karhunen-Loève permite describir la evolución es-
tocástica de las RRAM. Sin embargo, es esencial identificar la distribución de las com-
ponentes principales (pc’s) para modelizar todo el proceso. Para ello, se introduce una
nueva clase de distribuciones, llamada distribuciones Tipo-fase Lineal (LPH). A partir de
esta metodoloǵıa se demuestra que, si las pc’s siguen una distribución LPH, el proceso es
caracterizado por una distribución LPH en cada punto.

En relación a las pc’s, a veces su interpretación no es inmediata y se necesita aplicar una
rotación para facilitarla. En este sentido, se desarrollan dos nuevos enfoques de rotación
Varimax funcional basado en la equivalencia entre el FPCA y PCA. El primer método con-
siste en rotar los autovectores, mientras que el segundo rota las cargas de las puntuaciones
de las pc’s estandarizadas. Estas rotaciones son aplicadas para interpretar la variabilidad
de las curvas de positivos por COVID-19 en las comunidades autónomas españolas.

Además, se proponen dos nuevos enfoques paramétricos y no paramétricos para resolver
el problema de la homogeneidad funcional, asumiendo la expansión básica de las curvas.
Estos métodos consisten en aplicar los test de homogeneidad multivariante sobre el vector
de coeficientes básicos y sobre el vector de las puntuaciones de las pc’s. Esta metodoloǵıa
ayudará a analizar qué influencia tienen el material y el grosor empleado en los procesos
de fabricación sobre el funcionamiento de las RRAM.

Para el caso de más de una variable de respuesta funcional, se extiende la metodoloǵıa
anterior basada en el FPCA multivariante para probar la homogeneidad. En particular,
se usa para comprobar si existen diferencias significativas entre los niveles de varios con-
taminantes según la localización geográfica de las estaciones de monitoreo en la Región de
Abruzzo, Italia. Además, se considera un enfoque de medidas repetidas para estudiar si el
nivel de cada contaminante se redujo durante el confinamiento establecido por el Gobierno
Italiano durante la pandemia del COVID-19.

Finalmente, se propone un modelo de regresión múltiple función-sobre-función en
términos de las pc’s para la imputación de datos faltantes en una variable de respuesta
funcional. Se asume que todos los predictores funcionales son completamente observados.
Este método permitirá la imputación de datos faltantes relacionados con el COVID-19.

El contenido de esta tesis está presentado como un compendio de siete publicaciones.
Las versiones completas de los art́ıculos están incluidas en los Apéndices.
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SUMMARY

In many scientific fields, it is usual to find magnitudes characterized by the evolution
of a random variable over some continuum (stochastic process). Despite the experi-
mental data measured on these variables are functions (curves, surfaces or images),
historically their treatment has been through multivariate or time-series analysis,
losing key information. Luckily, the great advances experimented by the technology
sector in last years, have made easier the monitoring and reconstruction of the func-
tions quickly and effortless, being possible to work with the complete functions. In
this scenario, there is a high probability of having high dimensional data, in which
the number of variables is greater than the number of sampling individuals. This
fact makes that traditional statistical methods could not be appropriate. Depend-
ing on the final purpose, in this thesis these data are tackled from two different
and complementary statistical perspectives: Functional Data Analysis (FDA) or
Reliability Analysis (RA) based on Phase-type (PH) probability distributions.

FDA arose facing the need of building robust tools to model and predict func-
tional data, whose observations are normally curves depending on time or any other
continuous argument. In the last two decades, FDA has been subject of intensive
research in which most multivariate techniques have been generalized, specially
dimension reduction, regression and classification methods. Functional Principal
Component Analysis (FPCA) stands out because reduces the dimension and ex-
plains the variability structure in terms of a small number of uncorrelated variables.

In the reliability field, one of the main objectives is to study the behaviour of
complex systems, whose operation is conditioned by several uncontrollable variables.
In this sense, RA attempts to identify the probability distribution of the data to
shed light about the variability behind the systems operation. A suitable solution
is to contemplate the Markovian processes and the PH distributions. This class is
known to be able to approximate any non-negative distribution as much as desired
thanks to its versatility and to model complex problems with well-structured results.

The methodological contributions of this thesis are elaborated in based to data-
driven problems of great interest related to Resistive Random Access Memories
(RRAMs) and COVID-19 pandemic. RRAMs awaken much expectation because
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are one important source of incomes in the industry, whereas for mitigating the
spread of the virus, it is crucial developing suitable models to make correct decisions

A new statistical approach based on PH distributions is developed to analyze
the RRAM variability, which is one of the key issues to solve. A wide comparison
with experimental data shows that the fitted PH distributions works better than the
classic probability distributions and helps to know the RRAM internal performance.

A new stochastic process is built by considering the internal performance of
macro-states in which the sojourn time is PH distributed. It is showed as the internal
behaviour of the process is Markovian but both the homogeneity and Markovianity
is lost for the new macro-state model. Other associated measures are also obtained.
The new methodology allows the modeling of complex systems in an algorithmic
way, in particular, the noise produced inside the RRAMs.

FPCA based on Karhunen-Loève expansion enables to characterize the stochas-
tic evolution of RRAMs. Nevertheless, it is essential to identify the distribution of
the principal components (pc’s) to describe the entire process. In this sense, a new
class of distributions, Linear PH (LPH) distributions, are introduced. Specifically,
it was proved that if the principal components are LPH distributed then the process
follows a LPH distribution at each point.

In relation to pc’s, sometimes their interpretation is not immediate and a ro-
tation is needed to facilitate it. We develop two new functional Varimax rotation
approaches based on the equivalence between FPCA and PCA. One method consists
of rotating the eigenvectors, and the other one, rotates the loadings of the standard-
ized pc’s scores. They are applied to interpret the variability of the positive cases
curves of COVID-19 in the Spanish autonomous communities.

Additionally, two different parametric and non-parametric functional homogene-
ity testing approaches are proposed by assuming a basis expansion of sample curves.
They consists of testing multivariate homogeneity on a vector of basis coefficients
and on a vector of pc’s scores, respectively. This fact will be useful to check the
influence of the material and thickness in the RRAM behaviour.

For the case of more than one functional response variable, the previous method-
ology for testing homogeneity based on multivariate FPCA is extended. It is used
to test if there are differences between the levels of several pollutants in terms of the
location of measuring stations in the Region Abruzzo, Italy. Also, an approach for
repeated measures is considered to study if the level of each pollutant decreased dur-
ing the lockdown established by the Italian Government for COVID-19 pandemic.

Finally, a multiple function-on-function regression model in terms of pc’s is
proposed for the imputation of missing data for the functional response, by assuming
that the multiple functional predictors are completely observed. This approach will
enable to impute missing data related to COVID-19.

The content of this thesis are presented as a compendium of seven publications.
The full version of the papers is included in the Appendices.
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Chapter 1

Introduction

Nowadays, it is quite common to have high dimensional data associated with a great
number of correlated variables, in which the sample sizes tend to be smaller than the
number of variables. The classical statistical regression, classification and prediction
methods are not usually efficient for these data on account of problems related to
the sample size and overfitting. Data providing information about curves or more
general functions that evolve over time, space or other continuous argument, are
a particular case of high dimensional data, whose stochastic modeling belongs to
the probabilistic theoretical framework of stochastic processes. This thesis aims to
address two different analysis perspectives for this kind of processes, which might
be complementary in many applications to study the variability associated with the
analyzed random processes. On the one hand, we develop models for functional
data analysis (Ramsay and Silverman, 2005), which will be estimated from discrete
observations of the sample curves. On the other hand, we tackle the reliability anal-
ysis of complex systems based on the probability Phase-type distributions (Neuts,
1975; 1981) together with the Markovian Arrival Processes (Neuts, 1979).

Functional Data Analysis (FDA) comprehends a wide variety of statistical meth-
ods in which data can be described through functions, e.g., curves, surfaces or im-
ages. Historically, the treatment of this type of data has been carried out by means
of multivariate approaches, since it is technically impossible to register complete
curves in practice. In fact, the curves are discretely observed. FDA acquires body
of doctrine at the end of the last century thanks to the publication of the first
edition of the book entitled ‘Functional Data Analysis’ (Ramsay and Silverman,
1997). Ever since, the number of contributions to this field has gone through the
roof from any area of knowledge. The main reason of this growth is due to the great
computational advances that computers have suffered in last years. The increasing
power of the computers enables the monitoring and analysis of large dataset com-
ing from stochastic processes without too much effort. At this point, the advice
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is to analyze the complete behaviour of these trajectories, instead of working with
the vector of discrete observations at different time points. Otherwise, essential
information such as the continuity or smoothness of the curves could be lost. A
broad revision about the most important FDA aspects from methodological and
computational viewpoint, as well as, many examples of applications can be seen in
Ramsay and Silverman (2002; 2005; 2009), Ferraty and Vieu (2006) and Horvath
and Kokoszka (2012). On this matter, many authors have extended the classical
multivariate statistical techniques to the field of FDA. Several of these techniques
are canonical correlation analysis (Krzysko and Waszak, 2013; Keser and Kocakoç,
2015), cluster analysis (Tokushige et al., 2007; Jacques and Preda, 2014; Fortuna
et al., 2018; Fortuna and Maturo, 2019; Caruso et al., 2021), discriminant analysis
(Araki et al., 2009; Gorecki et al., 2014; Aguilera-Morillo and Aguilera, 2020), linear
regression models (Aguilera et al., 1999), generalized linear models (James, 2002;
Escabias et al., 2004; Muller and Stadtmuller, 2005; Escabias et al., 2014; Guo et al.,
2015), ANOVA problem (Cuevas et al., 2004; Cuesta-Albertos and Febrero-Blande,
2010; Gorecki and Smaga, 2015, Zhang et al., 2019; Aguilera et al., 2020), variable
selection (Gregorutti et al., 2015), classification (Galeano et al., 2015) or confidence
intervals (Lian, 2012; Di-Battista and Fortuna, 2017). Even, the multidimensional
layout (more than one functional variable) has been also considered in FDA (Ben-
henni et al., 2007; Tokushige et al., 2007; Gorecki and Smaga, 2017). Likewise, FDA
is also strongly connected with longitudinal data analysis, when the information is
measured on the same element in different periods of time or conditions (Davidian
et al., 2004; Zhao et al., 2004; Mart́ınez-Camblor and Corral, 2011). The main
tool in this thesis is Functional Principal Component Analysis that is considered
for many reasons the most predominant technique in the area of FDA.

FPCA can be seen as the natural extension of the multivariate Principal Com-
ponent Analysis (PCA) for the case of a continuous time stochastic process (Deville,
1973; 1974). Among other advantages, it reduces the dimension of the problem and
explores the main modes of variation in terms of a small set of uncorrelated vari-
ables, called principal components (pc’s). In particular, FPCA based on Karhunen-
Loève (K-L expansion) provides an orthogonal representation of a stochastic process,
which can be approximated in terms of the most explicative components by truncat-
ing the K-L expansion. This finite-dimension representation is a key tool for using
FPCA in the estimation of functional regression models. Thanks to its outstanding
properties, FPCA has always been object of research. Dauxois et al. (1982) devel-
oped asymptotic theory and statistical inference on FPCA, meanwhile Ocaña-Lara
et al. (1999) focused their attention on the study of FPCA when the metric is
changed in the Hilbert space where the sample functions belong to. On the other
hand, James et al. (2000) and Yao et al. (2005) introduced nonparametric models
to perform FPCA when there is a small number of irregularly space observations
for each sample curve. Hall and Hosseini-Nasab (2006) discuss how the properties
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of functional principal component analysis can be elucidated through stochastic ex-
pansions and related results. Additionally, different Bayesian approaches to FPCA
were considered in Van der Linde (2008) and in Suarez and Ghosal (2017). Besides,
FPCA for multivariate functional data has already been suggested and developed
by several authors (Ramsay and Silverman, 2005; Berrendero et al., 2011; Jacques
and Preda, 2014). An interesting and very useful result was given in Ocaña et al.
(2007). If the basis expansion is taken into account to approximate the real form
of curves, FPCA is reduced to a multivariate PCA of a transformation of the basis
coefficients matrix. The basis expansion approach consists of assuming that curves
belong to a finite-dimension space spanned by a basis. Normally, Fourier and B-
spline bases (Kano et al., 2005; Aguilera and Aguilera-Morillo, 2013) are selected
for periodic data and non-periodic data, respectively. In the meantime, Wavelet
bases (Johnstone and Silverman, 1997; Chui, 2016; Liu et al., 2020) are used when
derivatives are not required and curves have a strong local behaviour. Penalized
estimation approaches were also developed to improve the estimation and inter-
pretation of FPCA results (Silverman, 1996; Aguilera and Aguilera-Morillo, 2013).
There are other possibilities in the literature, but they are not common in practice.

Functional regression models are also object of intensive research in recent years,
and a very important part of the contributions of this thesis are related to them.
The estimation of these models is an ill-posed problem that is usually solved by least
squares penalized approaches and basis expansion of functional parameters and/or
sample curves, reducing in many situation the functional model to a multivariate
linear model in terms of the matrices of the basis coefficients of the response and
predictors variables. Unfortunately, the interpretation is usually difficult because
this multivariate model presents a high multicollinearity. A suitable solution is to
turn the current problem into a linear regression on uncorrelated predictor variables.
For that purpose, approaches based on FPCA (Chiou et al., 2004; Escabias et al.,
2004; Muller and Stadtmuller, 2005; Aguilera-Morillo et al., 2013) or functional
Partial Least Squares (Preda and Saporta, 2005; Escabias et al., 2007; Preda et
al., 2007; Aguilera et al., 2010; Aguilera et al., 2016; Delaigle and Hall, 2017) have
already studied for different functional regression models.

As we said at the beginning, in addition to FDA whose antecedents have al-
ready described, the reliability field also play a fundamental role in the current
thesis. The main objective of the reliability (or survival) analysis is the modeling
and optimization of systems to find certain efficiency and optimal cost. Specially,
facing the presence of non-repairable failures that might produce big costs and ir-
reparable damages. This statistical perspective has a wide scope of application,
such as the medicine or electronic, computational and industrial engineering. In
general terms, reliability analysis is in charge of studying the behaviour of systems,
whose operation is conditioned by several uncontrollable variables. These variables
provoke that systems are subjected themselves to a continuous deterioration. An-
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other notable aspect is that the lifetime (or analogously, the failure time) is random
among distinct experimental units. This means that the systems will not survive the
same time, even though they are manufactured and run under the same conditions.
Consequently, the branch of Statistics, and principally, the Probability Theory, play
a fundamental role in the modeling of systems, given that the life or failure times
will be able to be fitted by some probability distribution. For convenience, we are
making reference to the time, but the reliability analysis can explore other variables
that do not represent time, although it is true that they can be highly correlated
with it. For instance, as it is displayed later, the operation of the resistive memo-
ries is based on the formation and rupture of a conductive filament, whose process
depends on the supplied voltage. Here, the variable of interest is the voltage, but
the process is operating concurrently a certain time.

The first probability distribution employed in the sector of reliability analysis was
the exponential distribution (Epstein and Sobel, 1953). During many years, it has
been considered as the distribution of reference thanks to its outstanding properties,
simplicity and applicability. But as time went by, the exponential distribution
became obsolete because it only models the behaviour of units that fail at constant
rate, independently of the cumulated time. This situation is not very credible
in practice. Since then, other distributions started to be applied such as Erlang,
Weibull, Gamma and Log-Normal distribution, among others (McPherson, 2013).
In the majority of reliability studies is not habitual to further beyond and these
distributions are considered suitable to address any problem. Nevertheless, the
development of new systems with internal structures more and more sophisticated
causes that these distributions do not always achieve an accurate fitting. Therefore,
it is easy to commit misinterpretation of the reality through the results. At this
point, it makes sense to contemplate another approach that improves the quality of
the study. Multiple complex models have been developed by introducing different
aspects of interest. Some examples are multi-state systems, preventive maintenance,
loss of units and multiple repairers. Traditional binary models have been generalized
by multi-state models in order to better describe the evolution of systems that
undergo different operation phases. The multi-state models were proposed at the
middle of the 1970s and ever since, the methodological and applied results have been
increasing (Andersen et al., 1993; Lisnianski and Levitin, 2003; Meira-Machado et
al., 2009). The principal disadvantage of these models is the complexity of the
expressions that are obtained in the modeling, which complicates the interpretation
and applicability of results. In contrast, Markov models provide the opportunity to
develop methodologically the modeling of complex systems in an algorithmic-matrix
form, being the interpretation and the application of results much more simple. Semi
Markov models have been contemplated for multi-state systems (Barbu et al., 2016;
2017), meanwhile recent advances in multi-state systems reliability can be consulted
in Lisnianski et al. (2018). Likewise, Phase-type (PH) distributions come into play



5

when absorbent Markov processes are considered.

PH distributions enable to model complex problems with well-structured results,
thanks to its matrix-algebraic form. PH distributions, which were introduced by
Neuts (1975; 1981), are defined as the distribution of the lifetime up to the absorp-
tion in an absorbing Markov process with finite state space. They constitute a class
of non-negative distributions and fulfil the closure properties (maximum, minimum
and addition). Besides, this class generalises a large number of known distribu-
tions such as exponential, Erlang or Coxian distribution, among others. That is,
these distributions can be expressed with PH structure. However, one of the most
important result related to PH distributions is given by Asmussen’s theorem (As-
mussen, 2000). The PH class is dense in the set of probability distributions on the
non-negative half-line, so any non-negative probability distribution can be approx-
imated as much as desired by a PH distribution. In relation to the fitting of their
parameters by maximum likelihood, we resort to a recurring method called EM al-
gorithm that alternates two steps for the estimation: expectation and maximization.
This algorithm was developed by Asmussen et al. (1996) and assumed by Buchholz
et al. (2014). The main aspects of PH distributions are discussed in depth by He
(2014). Then, taking into account the great power of PH class, the PH distributions,
together with the processes of Markovian arrivals, are considered in many areas of
knowledge to make easier the study of complex systems (Ausin et al., 2004). For
example, in queueing theory (Artalejo and Chakravarthy, 2006; Ramirez-Cobo et
al., 2010) and in risk theory (Asmussen and Bladt, 1996) for continuous-time. Be-
sides, the performance of discrete unitary multi-state systems with different types
of maintenance (Ruiz-Castro, 2014; 2016), as well as redundant complex systems
that evolve in discrete time (Ruiz-Castro and Quan-Lin, 2011; Ruiz-Castro, 2015)
and the case of loss of units (Ruiz-Castro et al., 2018; Ruiz-Castro, 2021) have
been analyzed by means of the PH class accompanied by the Markovian arrival
processes. On the other hand, Ruiz-Castro (2020) and Ruiz-Castro and Dawabsha
(2020) make use of PH distributions in order to model reliability complex sys-
tems, whereas Ruiz-Castro and Zenga (2020) analyze the breast cancer through
them. Furthermore, Coxian distribution has been studied to uncover suitable fits
in general problems from the survival perspective (Marshall and Zenga, 2012). In
particular, this distribution has been considered for patient survival (Marshall and
Zenga, 2009), to forecast elderly patient length of stay in hospital (Gordon et al.,
2018) and to model students’ length of stay at University (Marshall et al., 2013).

The challenge of this dissertation lies in developing models that will be used
in order to tackle problems of great social impact based on the analysis and deci-
sion making (data-driven) from high dimensional data, through the methodological
fields described above. Problems related to electronics and COVID-19 illness are
principally addressed.

In the field of electronics, the current technology of non-volatile memories (those
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that do not need energy to run) is one of the most important sources of incomes
throughout the world in the semiconductor industry. According to important con-
sultants of this sector, the profits are constantly increasing year by year. For exam-
ple, in 2013 the benefits overcame the 13 trillion of dollars in all the world. The main
reason of this success is the massive sale of portable devices (tablets, smartphone,
etc.) and the rise of Solid-State Drive as supports in the domestic computers. The
attractive of RRAMs resides in the small size of the cells that form these memories.
However, the reduction of their cells cannot be undefined and then, the industry is
looking for other possibilities to improve the quality and performance of the gad-
gets. Among others, an option is the development of new devices that give a solution
in short term and do not alter too much the current manufacturing processes. In
this context, the Resistive Random Access Memories (RRAMs) have been stood
as the best candidate to substitute the non-volatile memories employed to date.
RRAMs have shown a fantastic potential (low power of operation, good scalability,
fast speed, etc.) in the present CMOS technology (Waser y Aono, 2007; Waser,
2012; Lanza, 2014; Ielmini y Waser, 2015). The physical and internal properties
have been studied by means of exhaustive experimental analysis (Tsuruoka et al.,
2010; Long et al., 2013; Pan et al., 2014) and through simulation models (Villena et
al., 2016; Aldana et al., 2017; Roldan et al., 2018). Recently, a new mathematical
approach has been introduced in order to describe and simulate complex and ther-
mochemical processes that occur in these devices (Mauri et al., 2015). Nevertheless,
prior to the process of industrialization and commercialization of these memories,
there exists a great needed to study the variability and noise behind the RRAMs’
operation.

Regarding the variability, RRAMs operation is based on the stochastic nature
of resistive switching processes that, in most cases, create (set process) and rupture
(reset process) a conductive filament that changes drastically the device resistance
(Pan et al., 2014; Lanza, 2014; Villena et al., 2017). Figure 1.1 shows the func-
tioning principle of a RRAM: after an initial formation process of the conductive
filament, the supply of voltage provokes the rupture of the filament to reach the
High Resistance State, or rebuild again the filament to return to the Low Resis-
tance State. These changes of resistance give raise to a sample of current-voltage
curves corresponding to the reset-set cycles. The aforementioned variability is trans-
lated to different voltages and currents associated with the reset and set processes,
as well as the behaviour of these curves up to the formation/rupture of the conduc-
tive filament. Several reset-set curves are displayed in Figure 1.2 (left panel). It is
observable as the reset points are characterized by the sudden drop of the current
(rupture of the conductive filament), whereas the set points are determined by the
instant spike of the current (formation of the filament). These points lead to differ-
ent reset-set voltages and currents, which are usually modeled by means of Weibull
distribution (Long et al., 2012; Luo et al., 2012; Pan et al., 2014) in order to shed
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Figure 1.1: Schematic representation about the RRAM operation process.
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Figure 1.2: Left panel) Experimental current versus applied voltage for several
reset (green lines) and set (orange lines) curves, including their corresponding reset-
set points. Right panel) Current versus time trace for two RTN signal with
different number of levels.

light about the statistical properties of the experimental data.
However, Weibull distribution does not work correctly for some resistive mem-

ories and then, other statistical approach is needed. Faced with this scenario, our
motivation is to propose a new methodology based on PH distributions in order to
improve the quality of the fitting. This new approach will be compared by means
of experimental results with the classic probability distributions.

In relation to the noise, Random Telegraph Noise (RTN) is another signifi-
cant issue to bear in mind before the massive industrialization of RRAM memories
(Simoen and Claeys, 2017). RTN are defined as disturbances provoked by several
traps that cause current fluctuations (Puglisi et al., 2015; Gonzalez-Cordero et al.,
2019; 2020). Two different RTN signals can be seen in Figure 1.2 (right panel).
This noise may affect the correct device operating in some applications related to
neuromorphic hardware (Puglisi et al., 2018; Grasser, 2020; Alonso et al., 2021),
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but it can be also useful for other fields, for example, in cryptography (Chen et
al., 2016). While it is true that most of the approaches to RRAMs consider the
variability case; the RTN problem, despite its evident interest, is more rarely con-
sidered in the literature. For this reason, it is crucial to develop new methodologies
that allow to control this kind of noise. From the mathematical viewpoint, the
purpose is to describe the number of levels in the signal (see the marked levels in
red in the right panel of Figure 1.2) and the sojourn time in each of these levels.
Therefore, taking into account the stochastic nature of these traces (processes that
evolves over time) and that the current fluctuations (levels) change randomly, a
theoretical framework based on Markov chains can be contemplated as a suitable
option in order to model and to study the evolution of the signals. In fact, some
authors have already addressed the RTN problem through this approach (Puglisi,
2020). The problem in many applications is that the spent times in each level are
not exponentially distributed, which is pretty fatal for Markov models.

In this work, the goal is to build a new model by assuming that the sojourn time
is Phase-type distributed and that each level is formed by multiple internal states
(no observables) whose behaviour is Markovian. Besides, the stationary distribution
will be calculated through matrix-algorithmic methods, meanwhile the distribution
of the number of visits to a determined macro-state will be given by considering a
Laplace transform.

On the other hand, developing models capable of simulating the internal be-
haviour of RRAM memories is a challenging task both for the industry and for the
academia in the area of semiconductor. The processes of simulation are fundamen-
tal for the introduction of a technology with new integrated electronic circuits. In
this regard, it is very important to have compact methods to check if the devices are
useful and work without failure prior to manufacture them. So far, several authors
have proposed different complex options for RRAMs (Biolek et al., 2009; Shin et
al, 2010; Jimenez-Molinos et al., 2015; Picos et al., 2015). Here, simulated data
are obtained by using compact models that describe the electric current in terms
of voltage through analytical equations. With the purpose of substituting the cur-
rent complex methods, Aguilera-Morillo et al. (2019) conducted FPCA based on
K-L expansion to model, explain and simulate the internal behaviour of RRAMs.
This approach simplifies a lot the aforementioned complex models, given that the
device current can be described only with few random parameters (principal com-
ponents). Therefore, if the distribution of the components is known, the variability
can be analyzed in an intuitive way by interpreting the parameters of the distri-
bution. Moreover, curves like those of 1.2 can be simulated as well. In previous
studies, some transformations have been considered to adjust different distributions
successfully. However, to find the appropriate transformation and its probability
distribution is not an easy task.

Our objective is to develop a new methodology based on PH distribution that
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could be accurately fitted for any transformation. At this regard, we will introduce a
new class of distributions, the Linear Phase-type (LPH) to model the principal com-
ponents. This class will be studied in detail to prove, through the K-L expansion,
that certain linear transformations of the process at each point are PH distributed
and then, the one dimensional distributions of the process will be modeled by the
LPH distributions.

Regardless, the internal performance of these devices, and hence, their corre-
sponding variability, could be influenced both for the type of material and for the
conductive filament thickness used in the fabrication processes. From statistical
viewpoint, the purpose is to decide if there are significant differences in the proba-
bility distribution that generates the set and reset processes associated with RRAMs
fabricated making use of different materials and thicknesses. In other words, test-
ing if several independent samples of curves come from the same population. Faced
with the stochastic nature of the data measured on these memories, our aim is to
introduce new functional parametric and non-parametric approaches to solve this
homogeneity problem. Assuming the basis expansion of the curves, we will propose
to carry out multivariate homogeneity tests on a vector of basis coefficients and, on
the other hand, after applying FPCA, on a vector of principal component scores.

The theoretical framework of stochastic processes also have an important weight
in the applications of data related to medicine. As you would expect, this disser-
tation is also focusing on the modeling of the evolution of the virus SARS-Cov-2
and its impact in other areas such as environment. At the end of January 2020,
the World Health Organization declared worldwide public health emergency due
to the rapid propagation of the virus. Ever since, the impact of the pandemic
has been really devastating, where the number of deceases continues toward the
rise in the whole world (Dong et al., 2020). Even though sanitary and economic
crisis is the main worry of institutions, other areas of society have been also com-
promised: education (Torres-Mart́ın et al., 2021), politics (Greer et al., 2020) and
environment (Zambrano-Monserrate et al., 2020), among others. Thus, mitigating
the virus incidence is the principal challenge of the governments. For that purpose,
the Committee of Experts of each country analyzes the daily data of the pandemic
in order to establish the best measures that help to recuperate as soon as possible
the people’s normal life.

These decisions are substantiated on the results produced by mathematical (sta-
tistical) models. The better the predictive power of the models, the better they will
be able to know the response of the virus in the future. For this reason, the scientific
community is dedicating all its time to the development of tools capable of modeling
and predicting properly the behaviour of the pandemic. Normally, the number of
confirmed cases, deaths, recovered, hospitalized and in intensive care unit people are
usually considered for these models. An interesting comparison between Spain and
Italy before and after their respective national lockdowns by means of quasi-Poisson
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regression is carried out in Tobias (2020). Berihuete et al. (2020) introduce a new
Bayesian indicator to predict the start of a new outbreak. Additionally, Mora et
al. (2020) propose semi-empirical models based on the logistic map with the aim
of forecasting the evolution of these variables in distinct stages of the pandemic in
Spain. Likewise, SIR models are applied in Agarwal and Jhajharia (2021) to ana-
lyze the trend of the illness over the world and more specifically, in India. Besides,
these variables can be also addressed from the field of artificial intelligence through
deep learning methods (Zeroual et al., 2020). On the other hand, Qi et al. (2020)
conducted a generalized additive model in order to check if the number of cases in
30 Chinese provinces is connected with the daily average temperature and relative
humidity. In this sense, the conclusion about if there are relationship between the
spreading of the virus and certain environmental conditions may be influenced by
the selection of the spatiotemporal model (Briz-Redon, 2021). In view of the func-
tional nature of the variables, they have been also tackled from the FDA viewpoint.
FPCA is performed in Tang et al. (2020) to analyze the COVID-19 data in the
United State, meanwhile in Carroll et al. (2020) different functional tools are used
in order to model cumulative curves of COVID-19 positive cases across countries.
A multivariate FDA approach can be seen in Torres-Signes et al. (2021) to forecast
the number of deaths in Spain.

In the face of the effort that Spanish Mathematics Committee requested for
the development of mathematical techniques for the fight against COVID-19, we
propose to use FPCA in order to explain the different modes of variability in the
evolution of number of cases in each Spanish autonomous community. However,
since it is common that the first principal component explains a high percentage of
the total variability because all communities had a growing behaviour, the objective
is to develop new ways of Varimax rotation to make easier the interpretation of the
results. In particular, we will focus on the equivalence between FPCA and PCA
of a transformation of the matrix of basis coefficients. As a natural extension of
the multivariate case, our proposal is to make the rotation on the eigenvectors
or on the loadings of the standardized principal component scores. The first one
will preserve the orthogonality between the eigenfunctions but rotated principal
component scores will be correlated each other, whereas the opposite scenario will
take place for the second method (uncorrelatedness and non-orthogonality). This
two new approaches are complementary to the ways of functional Varimax rotation
proposed by Ramsay and Silverman (2005), where the rotation is made on the weigh
function coefficients and on the weight function values. In both cases, the rotated
component scores are correlated but the rotated eigenfunctions are still orthonormal.

On the other hand, decisions to restrict the propagation of the virus have had
important effects on the air quality. In this sense, several authors revealed that the
air pollution level has been decreased across the world thanks to lockdown measures
adopted by the governments (Agarwal et al., 2020; Mahato et al., 2020; Berman
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and Ebisu, 2020). In this dissertation, we will analyse through functional methods
the impact of quarantine policies on air quality in the district of Pescara-Chieti
(Italy). The hourly average evolution of concentrations for four air pollutants in
two different periods (pre and during lockdown) for different monitoring stations are
available in this study. Some recent studies for environmental data from the FDA
perspective can be seen in Park et al. (2013), Escabias et al. (2013), Hormann et
al. (2015), Aguilera-Morillo et al. (2017) and Gautam and Trivedi (2020). Firstly,
we will extend functional ANOVA techniques for repeated measures to evaluate if
the level of each pollutant is different between the considered periods. Secondly, the
purpose is to build a theoretical development for multivariate functional ANOVA
for independent measures to compare jointly the level of all pollutants according
to the localization of the monitoring stations. This methodology will be based on
the multivariate FPCA and will consists of testing multivariate homogeneity on the
vectors of the most explicative principal component scores.

Anyway, all these models require all input data must be validated in order to
avoid bias in the estimations. In other words, data must be complete and with
the sufficient quality to reach rigorous predictions. Nevertheless, these assumptions
are barely fulfilled during a pandemic. Specially, it is common to have incomplete
data due to changes in the way of registering data or because governments do not
supply information some days, for instance, at weekends. Little and Rubin (2019)
and Graham (2012) study in depth the imputation problem for multivariate data.
For the functional case, He et al. (2011) propose a novel approach for multiple
imputation in a longitudinal data context. Rao and Reimherr (2021) analyze dis-
tinct imputation methods for sparse and irregular functional data settings. When
the response variable is not functional but the predictors have functional character,
scalar-on-function regression can be applied (Ferraty et al., 2013; Ling et al., 2015;
Ling et al., 2016; Crambes and Henchiri, 2019; Febrero-Bande et al., 2019). In our
case, we will consider the situation where the response variable is functional and
there are multiple functional predictors (function-on-function models). The idea is
to use forecast models based on principal components regression for the statisti-
cal imputation of COVID-19 data in order to avoid problems associated with the
multicollinearity.

Summarizing, the main objective of this thesis is to provide important advances
for modeling high dimensional data with applications in areas of high social impact
such as engineering, environment or medicine. In particular, in Appendix A1, a
new approach based on Phase-type distributions is proposed in order to model the
reset/set voltages and currents associated with RRAM processes when the Weibull
distribution does not achieve an accurate fitting. In Appendix A2, we introduce
a novel macro-state stochastic process whose sojourn time in each macro-state is
Phase-type distributed. This model is used to study the performance of RTN signals
when the internal behaviour of levels is not observable. In Appendix A3, a new
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class of distributions called Linear Phase-type distributions is introduced and its
properties deeply studied. After considering the K-L expansion to describe the
stochastic evolution of curves, the purpose is to identify the distribution of the
principal components as well as to identify the distribution of the own process. This
methodology enables to simulate as many reset/set curves of RRAMs as we desire.
Two new Functional Varimax rotation approaches are presented in Appendix A4 to
make easier the interpretation of principal components when almost all variability
falls on one or two principal components. These criterions have been applied in order
to understand the evolution of infections by COVID-19 in the Spanish autonomous
communities during the first wave of the pandemic. In Appendix A5, two different
parametric and non-parametric homogeneity testing approaches are proposed by
assuming a basis expansion of the sample curves. The motivation is to check if the
kind of material and thickness employed for the fabrication of RRAMs influence
in their performance. Likewise, this methodology is extended for multivariate data
case in Appendix A6 to study the differences between the temporal evolution of four
pollutants in terms of the location of the monitoring stations (traffic or background
stations) situated in Abruzzo Region (Italy). Furthermore, the statistics available
in the literature for repeated measures have also been extended considering the
basis expansion of the curves to study whether the level of each of the pollutants
decreased during the lockdown period after Italian Government declared the home
confinement at the middle of March because of COVID-19 pandemic. In Appendix
A7, the extension of the function-on-function linear regression model to the case of
multiple functional predictors is proposed for estimating the curves of hospitalized
and intensive care unit people in terms of confirmed, deceased and recovered curves,
during the first outbreak of COVID-19 in Spain.



Chapter 2

Objectives

2.1 Phase-type distributions for studying variabil-
ity in resistive memories

Before the manufacturing process and commercialization of the Resistive Random
Access Memories (RRAM), it is crucial to analyze the variability behind the RRAM
operation. A great amount of experimental analysis have been carried out in order
to study the physical and internal properties of these devices. Furthermore, mathe-
matical models capable of describing and simulating their behaviour have been also
developed. A crucial aspect is related with the analysis of voltages and currents
(also resistances) related to the processes of formation (set process) and rupture
(reset process) of a conductive filament (Pan et al., 2014; Lanza, 2014; Villena
et al., 2017). The common statistical analysis performed on experimental data is
through Weibull distribution (Luo et al., 2012; Pan et al., 2014; González-Cordero
et al., 2016). The interpretation of its parameters allows us to understand the
performance of these memories better.

However, there are many situations where the Weibull distribution does not
work adequately. A new approach based on Phase-type (PH) distributions (Neuts,
1981) to improve the quality of the modeling is proposed in the current manuscript.
In particular, we fit the reset voltages through PH distributions, which will help us
to study the intermediate states of degradation in the process of destruction of the
conductive filament. An exhaustive comparison will be also conducted to test if the
introduced methodology reaches a better fitting than the classic procedure based
on Weibull distribution.

13
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2.2 A Complex Model via Phase-Type Distribu-
tions to Study Random Telegraph Noise in Re-
sistive Memories

In many applications, such as electronics and computing engineering, the target is to
study the random temporal evolution of complex devices with several performance
levels (macro-states), being possible the existence of internal phases in each one.
Despite the macro-states are visible, the internal states are not. In this point, it is
of great interest to analyze the internal behaviour among levels in order to better
understand the transitions structure and unfolding. For this purpose, it is common
to contemplate Markov processes, but in many situations the sojourn time in each
level does not follow the exponential distribution, which is a crucial issue in this
field. Faced with this scenario, the main objective of this work is to construct a new
stochastic process by considering the internal perfomance of macro-states for which
the sojourn time is Phase-type distributed and only macro-states can be observed.
In addition, measures associated with this new stochastic process (e.g., stationary
distribution and number of visits to a certain macro-state) will be determined by
means of Markovian Arrival Processes (He, 2014).

This work is motivated through the need to explore the variability patterns of
different Random Telegraph Noise signals associated with RRAM memories (Puglisi
et al., 2015; Gonzalez-Cordero et al., 2019; 2020). From the mathematical view-
point, these signals can be seen as stochastic processes where the level of electric
current (current fluctuations) changes randomly. So far, several attempts based on
classical Markov chains have been carried out (Puglisi, 2020). However, the sojourn
time in each state is not exponentially distributed when the RTN signal is large
enough. On this matter, the developed methodology is applied here. This novel
perspective will shed more information about the internal performance of these
gadgets. Besides, Hidden Markov Models (Rabiner, 1989) are proposed for substi-
tuting the graphical techniques used in the sector to compute the number latent
levels hidden into the process. Afterwards, multiple previous studies are conducted
to determine the number of phases in each macro-state.

2.3 Linear Phase-Type probability modelling of
functional PCA with applications to resistive
memories

A stochastic process can be represented by Functional Principal Component Analy-
sis in terms of the Karhunen-Loève expansion. This approach enables to reduce the
dimension of the problem and to describe the main stochastic characteristics related
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to multiple systems using a small set of uncorrelated random variables called prin-
cipal components. Nevertheless, the process will not be characterized entirely until
the probability distribution of the principal components is not identified. Unfortu-
nately, finding a suitable distribution is not an easy task in practice because the
classic probability distributions do not always achieve a rigorous fitting. In order
to solve this handicap, a new approach based on Phase-type (PH) distributions is
introduced in the current work. Thanks to the good properties of PH distributions
and that any non-negative distribution can be approximated as needed through a
PH distribution, it is expected to be able to identify the distribution of the principal
components and thus, characterize the whole process for any given situation. Taking
into account that principal components could take negative values, the main goal
of this work is to introduce a new class of distributions, called Linear Phase-type
distributions, to characterize the distribution of the stochastic process through the
LPH distribution of the principal components. This class of distributions will be
studied in detail to demonstrate that certain linear transformations of the process
at each any time point are Phase-type distributed.

The motivation of this work is to provide a novel solution to an existent problem
in the RRAM context. Aguilera-Morillo et al. (2019) modeled the reset curves by
means of the K-L expansion. This procedure enabled to describe satisfactorily the
main internal characteristic of these devices and awakened a great interest from
the circuit simulation viewpoint thanks to its simplicity. Regrettably, it is essential
to know the distribution of the principal components to simulate the associated
stochastic process. Aguilera-Morillo et al. (2019) made a first attempt to fit the
distribution of the principal components, but without too much success. Under this
outlook, LPH distributions will be fitted in order to try to achieve a more accurate
probability modelling of the principal components of the set/reset curves.

2.4 New Modeling Approaches Based on Varimax
Rotation of Functional Principal Components

Functional Principal Component Analysis is for many reasons a key technique in
the functional data framework. Among other good properties, FPCA reduces the
dimension of the problem and explores the main features characterizing a functional
variable in terms of a small set of uncorrelated variables. Regarding the description
of the dependence structure, there are occasions where the principal components
can not always be interpreted straightforward. In some occasions the problem lies in
the lack of smoothness, which can be solved by means of penalizing the roughness of
the weight functions (Silverman, 1996; Cardot, 2000; Aguilera and Aguilera-Morillo,
2013). In other applications, the difficulty of the interpretation is due to one or two
components explain a very high percentage of variability. A usual way of solving
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this problem consists of rotating the weights functions in order to make easier the
interpretation. In this regard, the main goal of this work is the proposal of two new
functional rotation approaches.

Although there are different options to carry out the rotation in multivariate
analysis, the most used method in practice is the orthogonal rotation, and in par-
ticular, the Varimax criterion. This technique has its origin in Factor Analysis.
Jolliffe (2002) makes a complete review of Varimax criterion in PCA. From a func-
tional viewpoint, Ramsay and Silverman (2005) proposed to apply Varimax rotation
in two different ways: the first one is based on Varimax rotation of the matrix of
values of the weight functions in a grid of equally spaced time points, meanwhile
the second one consists of applying the Varimax method on the matrix of basis
coefficients of weigh functions. Both procedures provide that the rotated principal
component scores are no longer uncorrelated anymore.

In this work, we propose two new techniques for rotation of FPCA based on the
equivalence between FPCA and PCA (Ocaña et al., 2007). The FPCA is equiv-
alent to PCA of a certain transformation of the matrix of basis coefficients. The
first method consists of the rotation of the eigenvectors. Then, the eigenfunctions
remain orthogonal but the rotated component scores are not uncorrelated. The
second approach involves a rotation of the loadings of the standardized principal
component scores. This approach guarantees that rotated scores are uncorrelated
but the orthogonality among eigenfunctions is lost. We carried out a simulation
study to analyze the performance of these approaches by comparing the outcomes
with Ramsay and Silverman’s methods. Besides, an application with data related
to the number of infected by COVID-19 during the first wave in Spain is conducted
in order to analyze the evolution of the pandemic in the country.

2.5 Homogeneity problem for basis expansion of
functional data with applications to resistive
memories

The functional homogeneity problem consists of deciding if several independent sam-
ples of curves have been generated by the same stochastic process. If all independent
samples fulfil the normality assumption, the homogeneity problem is known as one-
way analysis of variance for functional data (FANOVA). This popular technique
has as objective to check the hypothesis of the equality of several mean functions
coming from independent groups. Cuevas et al. (2004), Shen and Faraway (2004),
Ramsay and Silverman (2005), Delicado (2007) or Zhang (2014) tackle this problem
by a broad variety of methods. An interesting comparison of tests for the one-way
functional ANOVA problem can be seen in Gorecki and Smaga (2015). Flores et
al. (2018) propose two new sample tests for homogeneity based on the concept of
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functional depth measures.
In this article, we focus on the fact that the FANOVA model is equivalent to

multivariate ANOVA (MANOVA) when the basis expansion of the curves is con-
sidered. This means that the analysis is reduced to apply the MANOVA tests on a
vector of basis coefficients of the sample curves. However, two problems appear for
this theoretical framework. On the one hand, there are many situations where the
samples curves are not generated by a Gaussian process and therefore, MANOVA
tests can not be conducted. On the other hand, it is well-known that the multi-
variate tests do not work well when the dimension of the problem is high. For the
first issue, some solutions lie in making use of bootstrap/permutation tests, but
for the second matter there are not answers yet. Thus, the main objective of this
work is to provide new solutions to these problems based on basis expansion of
the sample curves. In order to solve the lack of normality, we propose multivariate
non-parametric homogeneity tests (Oja, 2010) on the matrix of basis coefficients.
To reduce the dimension of the problem, a novel methodology based on Functional
Principal Component Analysis is introduced. This procedure consists of testing
homogeneity on the vector of the most explicative principal component scores by
means of parametric or non-parametric tests depending on the nature of the sample
curves.

This methodology is motivated with the purpose of detecting if there are sig-
nificant physical differences between RRAM technologies considering different ma-
terials and thicknesses. That is, if the type of material or thickness employed in
the fabrication of these memories affects to the internal switching operation, whose
behaviour is modeled by a functional variable. The two proposed approaches are
carried out to achieve this goal. The performance of these procedures will be also
tested through an extensive simulation study.

2.6 Detecting changes in air pollution during the
COVID-19 pandemic through Functional Data
Analysis

This work concerns the functional ANOVA when more than one functional response
variable is available in the analysis. Despite its great interest, the multivariate
functional perspective is rarely considered in the literature. As far as we are aware,
only Gorecki and Smaga (2017) deal the multivariate ANOVA for functional data.
They developed permutation tests based on a basis function representation and
tests based on random projections. Here, we propose to extend the parametric and
nonparametric approaches introduced in the previous section, by considering the
multivariate FPCA.

Additionally, the one-way functional ANOVA problem for the case of repeated
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measures (the information is collected for the same subjects in different conditions or
periods of time) is also tackled in the current paper. In particular, a basis expansion
approach for the statistics proposed by Martinez-Camblor and Corral (2011) and
Smaga (2020) to test the equality of two mean functions is considered.

Both methodologies will be applied to study the impact of quarantine policies
on air quality in the district of Pescara-Chieti (Italy). For that purpose, hourly
average measurements collected by the Regional Agency for the Environmental
Protection of Abruzzo about four air pollutants concentrations have been considered
in the analysis. These data were measured in two different periods of time, pre-
lockdown and during lockdown, for different monitoring stations, which are the tools
established to measure and manage the compliance with national ambient air quality
standards. Then, the objective is to ascertain whether the level of each pollutant
has changed during the lockdown period and to assessing the differences between the
temporal evolution of all pollutants in terms of the location of measuring stations
(traffic and background stations).

2.7 COVID-19 data imputation by multiple func-
tion on function principal component regres-
sion

Faced with the need to find models capable of modeling and predicting the evolution
of the worldwide pandemic provoked by COVID-19 illness, both governments and
institutions are investing enormous amount of money in order to provide the best
possible equipment and tools to the scientific community. Although there are many
factors of interest to gauge the situation of the pandemic in a country, the main
researches are focused on the treatment of variables such as number of positive,
recovered and deceased cases, as well as the hospital occupancy rate measured by
the number of hospitalized people and in intensive care units. As the observed data
are curves, different FDA aproaches have been developed (Tang et al., 2020; Torres-
Signes et al., 2021). The inherent problem is that during an epoch of pandemic as
in which we live, it is not common to have complete and high quality data. This
is an essential requirement for the models to be able to provide accurate results.
Then, a mechanism based on FDA for the imputation missing data is proposed in
the current work.

The inspiration of this work is the imputation of missing values after a modi-
fication in the way of registering data in hospitalized and intensive care curves by
some Spanish autonomous communities during the first wave of COVID-19. For
that purpose, we propose to apply functional linear regression for the imputation of
the missing functional responses (curves of hospitalized and intensive care people)
in order to have complete data and to use the predictive models with guarantees.
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In particular, the extension of the function-on-function linear regression models
(Valderrama et al., 2010; Aguilera et al., 2015; Qi and Luo, 2018) is proposed in
this paper for the case of multiple functional predictors (curves of positives, deaths
and recovered people). The functional parameters of this model are estimated in
terms of principal components regression with the completely observed data. Fi-
nally, once all curves are properly homogenized, recorded and smoothed so that they
can be comparable, the missing data are imputed and the relationship between the
hospital occupancy rate and the illness response variables is analyzed through a
canonical correlation analysis in terms of principal components.
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Chapter 3

Methodology

Before proceeding with the specific methodology of each work, we are going to
introduce some basic theoretical aspects considered along this thesis.

3.1 Theoretical framework

3.1.1 Stochastic processes

In the real life it is common to find many systems that evolve over time. The
queue of customers at a service station, spread of a pandemic or movement of a gas
molecule are some examples of phenomena whose behaviour is varying over time.
Depending on whether the evolution of these events is considered random or certain
beforehand, stochastic or deterministic models can be used, respectively, in order
to make predictions about their state in the future. Systems are not inherently
stochastic or deterministic, rather to model an event as stochastic or deterministic
may be subject to the choice of the observer. One of the most important differ-
ences between both approaches is that deterministic models predict an outcome
with absolute certainty, whereas stochastic models provide only the probability
of an outcome (Allen, 2010). In the case of stochastic processes, the underlying
mathematical methodology is based on probability theory. On the other hand, the
nature of the time variable can be discrete or continuous. For the discrete case,
the processes are observed at a discrete set (numerable) of instants, meanwhile the
continuous processes are observed constantly over time. In this last situation, the
evolution of the variable is described by a continuous-time stochastic process. This
thesis is developed in the theoretical framework of the continuous stochastic pro-
cesses (Todorovic, 1992; Taylor and Karlin, 1994; Ross et al., 1996).
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Formally, it is well-known that given T ⊂ R an interval of the real line, a
continuous stochastic process is described as a family of non-numerable random
variables {X(t) : t ∈ T} defined on the same probabilistic space (Ω,A, P ). We
focus on the stochastic processes in which the random variables X(t) are real.

3.1.1.1 Basic hypotheses

A stochastic process can be seen as a random variable with values in a functional
space denoted by H. We assume that this space has structure of Hilbert space
(Young, 1988; Berberian, 1999), given a separable Hilbert space (H, 〈, 〉H), a random
variable on H is defined as a measurable function

X : Ω→ H

ω → X(ω),

such that X−1(B) ∈ A, being B a Borel set of the Borel σ-algebra generated by the
space H.

In this thesis we will focus on observations coming from variables of a contin-
uous stochastic process whose trajectories belong to the functional space L2[T ] of
integrable square functions on T defined by

L2(T ) =

{
f : T → R :

∫

T

f2(t)dt <∞
}
,

with the usual scalar product

〈f, g〉 =

∫

T

f(t)g(t)dt, ∀f, g ∈ L2(t).

Moreover, let us consider that L2(Ω) is the space of real random variables X on
Ω with finite second order moments. Then, a stochastic process (random function)
X is second order if satisfies

E[||X||2] =

∫

Ω

||X(ω)||2dP (ω) <∞, ∀X ∈ L2(Ω),

with || • || being the norm associated to the Hilbert space in which we consider the
random variable. Associated with a second order stochastic process, the following
elements which play a fundamental role throughout this dissertation are defined:

� Mean function

µ : T → R

t→ µ(t) = E[X(t)] =

∫

Ω

X(t, ω)dP (ω).
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� Covariance function

C : T × T → R
(t, s)→ C(t, s) = E[(X(t)− µ(t))(X(s)− µ(s))]

=

∫

Ω

[(X(t, ω)− µ(t))(X(s, ω)− µ(s))]dP (ω).

� Covariance operator

C : L2(T )→ L2(T )

f → C(f)(t) =

∫

T

C(t, s)f(s)ds.

Another interesting definition is the continuity in quadratic mean. A stochastic
process is continuous in quadratic mean if

lim
h→0

E[(X(t+ h)−X(t))2] = 0, ∀t ∈ T.

The property of continuity in quadratic mean of a process guarantees the con-
tinuity of its covariance function (Todorovic, 1992). This fact is crucial because
many of the employed functional techniques require the continuity of covariance
function in T × T . For instance, it allows to obtain the spectral decomposition of
the covariance operator which is key in Functional Principal Component Analysis.

Hereinafter, we assume that {X(t) : t ∈ T} is defined on a probabilistic space
(Ω,A, P ) and that the following hypotheses are true:

H1: The proces is second order.

H2: The process is continuous in quadratic mean.

H3: The sample trajectories belong to the Hilbert space L2[T ] of squared integrable
functions with the usual inner product.

3.1.1.2 Continuous-time Markov processes

Let us assume that we have a stochastic process {X(t) : t ≥ 0} with state space
denoted by S. Then, {X(t) : t ≥ 0} is a continuous-time Markov process if it is
verified that

P [X(tm+1) = xm+1|X(t1) = x1, . . . , X(tm) = xm] = P [X(tm+1) = xm+1|X(tm) = xm],

for any 0 ≤ t1 < . . . < tm < tm+1, possible states x1, x2, . . . , xm+1 ∈ S and for
any m ≥ 0 (Kijima, 2013; Kulkarni, 2016). This means that given the current
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state, the rest of the past is irrelevant to forecast the future. Besides, the process
is homogeneous if for 0 ≤ s < t and i, j ∈ S

pij(t) = P [X(s+ t) = j|X(s) = i] = P [X(t) = j|X(0) = i], ∀s, t.

By considering these values, we can construct the transition probability matrix
P(t) = (pij(t)). This matrix verifies the following properties:

1. pij(t) ≥ 0 ∀i, j and any time t.

2. P(t)e = e, being e a column vector of ones with an appropriate order.

3. P(s+ t) = P(s)P(t), Chapman-Kolmogorov equation.

4. limt→0 P(t) = I, being I the identity matrix with an appropriate order.

There are important elements related to the chain: the initial distribution and
the transient distribution. The initial distribution represents the probability of
being in the state i at the start of the process and it is denoted by pi(0) = P [X(0) =
i], ∀i ∈ S. The second term makes reference to the probability of occupying a state
at time t. It is denoted by pi(t) = P [X(t) = i], ∀i ∈ S with

∑
i pi(t) = 1. Likewise,

the rates of jumps between states are calculated through the derivative at the origin
of the transition probabilities:

� For i 6= j

p′ij(0) = lim
h→0

pij(h)− pij(0)

h
= lim
h→0

pij(h)

h
= qij ,

being qij the transition rate from the state i to the state j.

� For i = j

p′ij(0) = lim
h→0

pij(h)− pij(0)

h
= lim
h→0

pij(h)− 1

h
= qii,

with qii < 0 and being qi = −qii the exit rate from the state i.

Besides, the sojourn time in each state is distributed as an exponential distri-
bution with parameter qi for state i. These results imply that the probability of
jumping to state j after staying a determined exponential time at the state i is
pij = qij/qi, if qi 6= 0. Otherwise, the state would be absorbent. Finally, we define
the following matrix of order m × m in order to sum up the performance of the
chain

Q =




−q1 q12 · · · q1m

q21 −q2 · · · q2m

...
...

. . .
...

qm1 qm2 · · · −qm


 .
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The matrix Q is called infinitesimal generator matrix (Q-matrix) which verifies
that its non-diagonal elements are non-negative, its diagonal elements are negatives
or zero and the sum of elements of each row is equal to zero (conservative matrix).
The Q-matrix and the initial distribution identify the Markov process.

Absorbing Markov processes

A Markov chain is called an absorbing Markov process when it is composed by a
series of transient states and, at least, one absorbing state (Buchholz, 2014). Note
that a state i ∈ S is a transient state if the probability of returning to i is lower
than 1. Also, an state i ∈ S is an absorbing state if the chain does not change the
state once the state i is reached, i.e., the transition probability from i to j is 0 with
i 6= j, being qi = 0 in this case.

Let {X(t) : t ≥ 0} be a continuous-time Markov process with finite transient
state space E = {1, . . . ,m} and one absorbing state m + 1. This process will be
absorbed by the state m + 1 with probability equal to one and its infinitesimal
generator can be expressed by matrix blocks as

Q =

(
T T0

0 0

)
,

being Tm×m the matrix that contains the intensities between transient states and
T0
m×1 the column vector that represents the exit transition rate from each transient

state to the absorbent state. Additionally, the row vector 0 is due to the fact that
it is impossible to leave the absorbing state and 0 is the transition rate out off m+1
state.

3.1.2 Phase-type distributions

A Phase-type probability distribution (PH) with representation (α,T) is defined
as the distribution of the time up to the absorption of a continuous-time Markov
process with m transient states and one absorbing state m+ 1 (Neuts, 1975; 1981).
The 2-tuple (α,T) represents the initial distribution and the transition intensities
matrix among transient states, respectively, with α = (α1, . . . , αm) and αi being
the probability of finding itself initially in phase i. Here, it is crucial to emphasise
that α is a substochastic vector of order m and T is a subgenerator of order m.
Besides, we assume that αm+1 is equal to zero (therefore, we assume that alpha
is a probability distribution). Thus, a non-negative random variable T is phase-
type distributed if its cumulative distribution function is given by the following
expression

F (t) = 1−αeTte = 1−α
( ∞∑

n=0

tn

n!
Tn

)
e, t ≥ 0.
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From the cumulative distribution function the density, the density function is
given by

f(t) = αeTtT0, t ≥ 0,

where T0 = −Te. On the other hand, the reliability function of T is

R(t) = 1− F (t) = αeTte, t ≥ 0,

so that the cumulative hazard rate is determined by

H(t) = −ln(R(t)) = −ln(αeTte), t ≥ 0.

Therefore, the hazard rate is

h(t) =
f(t)

R(t)
=
αeTtT0

αeTte
, t ≥ 0.

Obviously, there exists other functions that are usually considered in reliability
and survival studies or in the area of queueing theory, e.g., availability function,
MTTF (Mean Time Total Failure), etc. But here, we describe the functions that
are more interesting for the applications carried out in this memory.

PH distributions have extraordinary features that make them very attractive
from the modeling viewpoint. The main characteristics of this class of distributions
can be seen in detail in He (2014). However, it is worth highlighting that PH dis-
tributions enable the application and interpretation of the results in a simple way
as well as to express the main associated measures in algorithmic form. Likewise,
the PH class is closed under a series of operations such as maximum, minimum and
addition for independent variables. Furthermore, as we said in the introduction of
this thesis, several classical probability distributions are special cases of PH dis-
tribution, that is, they can be dealt with PH structure. Below, we show the PH
representation of several probability distributions commonly used in practice. They
can be obtained directly by using the aforementioned definitions.

1. Exponential distribution

F (t) = 1− e−λt, t ≥ 0 : α = 1, T = −λ and m = 1.

2. Erlang distribution F (t) = 1−∑m−1
j=0 e−λt(λt)j/j! for t ≥ 0, m ≥ 1 and λ > 0,

α = (1, . . . , 0), T =




−λ λ

−λ . . .

. . . λ
−λ



m×m

.
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3. Hypo-exponential distribution F (v) = 1−∑v
X=0

∑m
i=1 λie

−λiX

(∏m
j=1
j 6=i

λj

λj−λi

)

for v ≥ 0 and λi 6= λj for i 6= j with λi, λj > 0,

α = (1, . . . , 0), T =




−λ1 λ1

−λ2
. . .

. . . λm−1

−λm



m×m

.

4. Hyper-exponential distribution F (v) = 1−∑m
i=1 αi(1− e−λiv) for v ≥ 0 and

λi > 0,

α = (α1, α2, . . . , αm), T =




−λ1

−λ2

. . .

−λm



m×m

.

5. Coxian distribution for λi > 0 with i = 1, . . . ,m and 0 < gj ≤ 1 with
j = 1, . . . ,m− 1,

α = (1, . . . , 0), T =




−λ1 g1λ1

−λ2 g2λ2

. . . gm−1λm−1

−λm



m×m

.

6. Generalized Coxian distribution for λi > 0 with i = 1, . . . ,m and 0 < gj ≤ 1
with j = 1, . . . ,m− 1,

α = (α1, α2, . . . , αm), T =




−λ1 g1λ1

−λ2 g2λ2

. . . gm−1λm−1

−λm



m×m

.

In particular, the modeling studies carried out with microelectronic experimen-
tal data in this thesis converge to the Erlang distribution. In this regard, the mean
time in each state can be computed by 1/λ, and the mean time from the beginning
up to the absorption as m/λ. Besides, the associated variance would be m/λ2.
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Nevertheless, one of the main results in this area is the theorem proposed by
Asmussen (2000). He demonstrated that the PH class is dense in the set of proba-
bility distributions defined on the non-negative half-line. Taking this theorem into
account, it is possible to approximate as much as desired whatever non-negative
distribution by means of a Phase-type distribution.

3.1.3 Basic tools for Functional Data Analysis

The field of Functional Data Analysis aims to analyze sample of functions instead
of vectors in which multivariate analysis is based. In this thesis, we will focus on
the case in which data are curves obtained as trajectories of a stochastic process
(functional variable) verifiying the hypotheses H1, H2 and H3 aforementioned. In
particular, let us assume that x1(t), . . . , xn(t) are realizations of i.i.d. stochastic
processes X1(t), . . . , Xn(t) with the same distribution that X(t).

From sample curves, the following functions are defined:

� Sample mean function

x̄(t) =
1

n

n∑

i=1

xi(t), ∀t ∈ T.

� Sample variance function

σ2
x(t) =

1

n− 1

n∑

i=1

(xi(t)− x̄(t))2, ∀t ∈ T.

� Sample covariance function

Ĉ(s, t) =
1

n− 1

n∑

i=1

(xi(s)− x̄(s))(xi(t)− x̄(t)), ∀s, t ∈ T.

These functions are unbiased and consistent estimators that converge almost
surely to the corresponding population moments (Deville, 1974).

3.1.3.1 Basis expansion approach

One of the biggest problems that we find when working with functional data is the
fact that it is not usual to have the explicit expression of the sample paths. Instead
of that, we count on a series of curves observed at discrete time on a finite set of time
instants {ti0, ti1, . . . , timi

∈ T} ∀i = 1, . . . , n, that could be different for each sample
curve. Because of this fact, the first step in FDA is to reconstruct the functional
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form of the curves. The main approaches are based on non-parametric techniques
(Ferraty and Vieu, 2006) or basis expansions for the sample curves (Ramsay and
Silverman, 2002; 2005). The last perspective is considered here, which consists of
assuming that sample curves belong to a finite-dimension space spanned by a basis
{φ1(t), . . . , φp(t)}. Hence, the sample processes can be expressed as follows

Xi(t) =

p∑

k=1

aijφj(t) = aTi φ(t), i = 1, ..., n, (3.1)

where aij are the basis coefficients of the reconstruction with ai = (ai1, . . . , aip)
T

and φ = (φ1(t), . . . , φp(t))
T . Note that p must be sufficiently large to ensure a

rigorous precision. Another concern topic is the suitable choice of the basis de-
pending on the nature of the curves. Ramsay and Silverman (2002, 2005) make a
wide review about different kinds of bases and ways to proceed, whereas Ramsay
et al. (2009) detail how to do the computation with the software R and Matlab.
The most useful basis systems are Fourier functions for periodic data, B-Spline ba-
sis when non-periodic paths are smooth enough and wavelets basis for curves with
a strong local behaviour. Due to the fact that B-Spline bases will be considered
throughout this dissertation, we briefly summarized them now. More information
about the study of spline functions and their implementation by means of computa-
tional algorithms with B-Splines bases can be seen in Green and Silverman (1994),
De Boor (2001) and Kano et al. (2005, 2011).

Splines of order q + 1 consists of piecewise polynomials of degree q which are
softly joint at a set of knots. Besides, their derivatives are continuous up to degree
q − 1 on the knots. B-Splines of certain degree generate the splines of the same
degree and have no the problem called boundary effect (curve rapidly spreads toward
zero away of the domain). This fact is common in many types of smoothers such
as Kernel smoothers. Theoretically speaking, let us consider that τ0 < . . . < τr
is a partition of knots of the observation interval T . In order to give a formal
definition, we can add more knots to the B-Splines basis, being now the partition
τ−q < . . . < τ−2 < τ−1 < τ0 < . . . < τr < τr+1 < τr+2 < . . . τr+q. At this point,
they can be computed through the following iterative method:

Bj,1(t) =

{
1 τj−2 ≤ t < τj−1

0 otherwise
, j = −1, 0, 1, . . . , r + 4

Bj,q+1(t) =
t− τj−2

τj+q−2 − τj−2
Bj,q(t) +

τj+q−1 − t
τj+q−1 − τj−1

Bj+1,q(t)

q = 1, 2, . . . ; j = −1, 0, 1, . . . , r − q + 4.
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From here on out, cubic B-splines will be used in this document (q = 3).

Depending on whether the sample curves are measured with or without error,
the basis coefficients can be computed by smoothing or interpolation methods, re-
spectively (Aguilera et al., 1995; Aguilera et al., 1996; Ramsay and Silverman,
1997; Valderrama et al., 2000). In particular, if curves are observed with error and
B-Splines are chosen as suitable basis, there are different approaches to estimate
the basis coefficients: regression splines, smoothing splines and penalized splines
(P-Splines). In the former case, the coefficients are computed by Ordinary Least
Squares without penalization, meanwhile in the last two methods, the coefficients
are obtained by Penalized Least Squares. The continuous penalty for smoothing
splines measures the roughness of a function by means of the integrated squared
second derivative, whereas in P-Splines, the penalty is discrete based on the dif-
ferences of certain order between adjacent coefficients. A comparative study of
regression splines and smoothing splines can be consulted in Durban (2009). Dur-
ban (2013) analyzes how to deal with P-Splines in different models. Aguilera and
Aguilera-Morillo (2013) carried out a complete comparison of different types of pe-
nalized smoothing with B-Splines basis. Techniques based on regression splines and
penalized splines have been taking into account in the current document thanks to
their remarkable perfomance with the curves that we have.

Regression splines

Let us suppose that the sample curves are expressed as in Equation (3.1) and a basis
of B-splines is considered. This method consists of obtaining the basis coefficients
by minimizing the least squares error

MSE(ai|xi) = (xi −Φiai)
T (xi −Φiai),

with Φi = (φj(tik))mi×p. Then, the basis coefficients are given by

âi = (ΦT
i Φi)

−1ΦT
i xi.

Therefore, fitted curves can be expressed as follows

x̂i(t) = âTi φ(t), i = 1, ..., n.

Penalized splines

In a similar manner to regression splines and under the same assumptions, we
should minimize the following penalized least squares criterion in order to calculate
the basis coefficients

PMSEd(ai|xi) = (xi −Φiai)
T (xi −Φiai) + λaTi P dai,
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where λ is the smoothing penalty parameter and P d = (∆d)T∆d with ∆d being the
matrix representation of the d-order difference operator. Then, the basis coefficients
for each curve are estimated by

âi = (ΦT
i Φi + λP d)

−1ΦT
i xi.

An important concern about P-Splines is to determine which is the best decision
for the order of the penalty and the smoothing parameter. The usual advice is to
apply a quadratic penalty and to use cross-validation for computing the smoothing
parameter. Regarding the number of knots, a good choice would be to take ap-
proximately one knot for every four observations till around 40 knots as maximum
(Ruppert, 2002).

3.1.3.2 Functional Principal Component Analysis

Functional Principal Component Analysis is the natural generalization of multivari-
ate PCA when the available sample information is a set of sample curves coming
from a continuous-time stochastic process (Deville, 1974). Its main goal is to re-
duce the dimension of the problem and to explain the main modes of variation in
terms of a small set of uncorrelated variables called functional principal components.

Let us consider that we have a sample of functions from {X(t) : t ∈ T} de-
noted by X1(t), . . . , Xn(t). We will assume that the process is centered without loss
of generality. The pc’s are zero-mean variables computed as uncorrelated general-
ized linear combinations of the process with maximum variance. Hence, the j-th
principal component score is defined as

ξij =

∫

T

Xi(t)fj(t)dt, i = 1, . . . , n,

where fj(t) are the weight functions or loadings. These functions are obtained by
maximizing the following objective function

{
maxf var[

∫
t
Xi(t)f(t)]dt

r.t. ||f ||2 = 1 and
∫
fl(t)f(t)dt = 0, l = 1, . . . , j − 1.

Then, the loadings are the solution to the eigenequation

Ĉ(fj)(t) =

∫
Ĉ(t, s)fj(s)ds = λjfj(t),

with Ĉ(fj)(t) being the sample covariance operator, Ĉ(t, s) the sample covariance
function and {λj} a decreasing sequence of non null eigenvalues such that λj =
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var[ξj ]. The sample covariance function can be expressed as follows by assuming
the hypotheses H1, H2 and H3:

Ĉ(s, t) =

n−1∑

j=1

λjfj(s)fj(t),

which provides the following orthogonal representation (Karhunen-Loève expansion)
of sample curves:

Xi(t) =

n−1∑

j=1

ξijfj(t); i = 1, . . . , n.

This representation is optimal because it is the best approximation of the sample
curves in the least squares sense. Besides, this principal component decomposition
can be approximated by truncanting in terms of the first q principal components as
follows:

Xq
i (t) =

q∑

j=1

ξijfj(t),

whose explained variance is given by
∑q
j=1 λj .

A noteworthy result was developed in Ocaña et al. (2007). Keeping in mind
the basis expansion of the sample curves, they proved that the FPCA is equivalent
to multivariate PCA of matrix AΨ1/2, being A = (aij)n×p the matrix of basis
coefficients and Ψ = (Ψij)p×p =

∫
T
φi(t)φj(t)dt the matrix of inner product between

basis functions. In this framework, it is possible to express the principal component
weight function fj in terms of the basis expansion as well, i.e.

fj =

p∑

k=1

bjkφk(t) = bTj φ(t),

where bj = Ψ−1/2vj , with vj being the solutions to the eigenvalue problem
n−1Ψ1/2ATAΨ1/2vj = λjvj . Let us observe that n−1Ψ1/2ATAΨ1/2 is the sam-
ple covariance matrix and the functional pc’s scores are the multivariate principal
components scores of matrix AΨ1/2.

Multivariate FPCA

The PCA of a functional variable can be extended to the case of a vector of func-
tional variables defined on the same probabilistic space. Let us consider a set of
curves Xih(t) with i = 1, ..., n; h = 1, ...,H obtained as observations of a mul-
tivariate functional variable (X1, X2, . . . , XH) . Then, the information for each
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subject is recorded in a vector denoted by Xi(t) = (Xi1(t), ..., XiH(t))T . Besides,
we assume that Xi(t) are i.i.d. multivariate functional variables with mean vec-

tor µ = (µ1(t), ..., µH(t))T and sample matrix covariance function Ĉ such that

Ĉ(t, s) = (Ĉh,h′(t, s)), t, s ∈ T and h, h′ = 1, ...,H. Note that if h = h′, then

Ĉh,h is the covariance function and otherwise, that is h 6= h′, Ĉh,h′ represents the
cross-covariance function.

Ramsay and Silverman (2002) discussed in detail the bivariate FPCA. When
there are more than two response variables, the j-th principal component scores are
determined by

ξij =

∫

T
(Xi(t)− µ(t))Tf j(t)dt =

H∑

h=1

∫

T
(Xih(t)− µh(t))fjh(t)dt,

where f j(t) = (fj1(t), ..., fjH(t))T are the vector of weight functions that maximizes

the variance restricted to
∑H
h=1

∫
T fjh(t)fj′h(t)dt = 1 if j = j′ and 0 otherwise.

These functions are obtained as the solutions to the eigenequation system

Ĉf j = λjf j ,

with Ĉ being the covariance operator and the sequence {λj}j≥1 of positive real
eigenvalues decreasing to zero indicating the amount of variance attributable to
each component.

Hereinafter, we assume that µ(t) = 0. Then, the process can be expressed in
terms of the K-L expansion

Xi(t) =

n−1∑

j=1

ξijf j(t),

which can be truncated by considering the first q principal components as

Xq
i (t) =

q∑

j=1

ξijf j(t).

Multivariate FPCA can be estimated through the basis expansion of the curves
(Jacques and Preda, 2014; Schmutz et al., (2020)). Briefly, if the basis expansion is
considered, the curves can be expressed as

Xi(t) = Φ(t)aTi ,

where the basis coefficients are gathered as ai = (ai11, ..., ai1p1 , ..., aiH1, ..., aiHpH )
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with ph being the number of basis functions for the h-th response variable and

Φ(t) =




φ11(t) · · · φ1p1(t) 0 · · · 0 · · · 0 · · · 0
0 · · · 0 φ21(t) · · · φ2p2(t) · · · 0 · · · 0
...

...
...

...
...

...
...

0 · · · 0 0 · · · 0 · · · φH1(t) · · · φHpH (t)


 .

In general X(t) = AΦ(t)T , where A is the resultant matrix after joining by row
all ai. The spectral decomposition of the covariance operator C becomes

Φ(s)ΣAWbTj = λjΦ(s)bTj ,

with ΣA being the covariance matrix of A, bj being a row-vector that contains

the basis coefficients of f j(t) = Φ(t)bTj and W being the matrix of inner products

between basis functions with dimension
∑H
h=1 ph ×

∑H
h=1 ph. Since the presented

spectral decomposition is true for all s, the expression can be reduced as ΣAWbTj =

λjb
T
j . Now, by considering vj = bjW

1/2, the multivariate FPCA is equivalent

to the multivariate PCA of the matrix AW 1/2, whose covariance matrix can be

diagonalized as W 1/2T

ΣAW
1/2vTj = λjv

T
j .

3.2 Phase-type distributions for studying variabil-
ity in resistive memories

In the field of microelectronics, the academia usually goes to graphical methods in
order to estimate the Weibull distribution parameters (Luo et al., 2012; Long et
al., 2013; Pan et al., 2014). Graphical method is a parametric technique based on
the principle of least squares (Lawless, 2003). It is highly employed thanks to its
simplicity and because it enables us to have a first graphical idea about the quality
of the fitting. Briefly, this technique consists of constructing a point cloud from
observed experimental data and fitting a straight line according to the least squares
criterion. The final form of the cloud will depend on the considered probability
distribution. Specifically, Deaves and Lines (1997) presented the graphical method
to find the Weibull distribution parameters. A revision of this technique for others
distributions, as well as an exhaustive study of simulation to prove the power of PH
distributions against the classic ones can be seen in Acal et al. (2019).

Graphical techniques are not enough to estimate the parameters when PH dis-
tributions are considered. In fact, the process of estimation in this class of distri-
butions is not a simple topic because they are highly redundant in general. Here,
we must use the recursive method called EM algorithm to find the maximum likeli-
hood estimate of the parameters of an underlying distribution from given trace data
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(Asmussen et al., 1996; Buchholz et al., 2014). EM algorithm alternates two steps:
Expectation and Maximization. The first step (E-step) determines the expectation
of likelihood function through the inclusion of latent variables as if they were ob-
servables. The second one (M-step) computes the maximum likelihood estimators
of the parameters by maximising the expected likelihood function obtained in E-
step. The found parameters in M-step are used to start the following E-step and
so on. The computational aspects of the estimation in this field, through statistical
programmes such as R or Matlab, are revised in Ruiz-Castro et al. (2021).

In our application we assume that the variable of interest is the reset voltage
(voltage where the conductive filament is broken) instead of time. Obviously, in a
more general context of reliability analysis, the voltages are usually replaced by the
failure times. Let v1, . . . , vn be a sequence of reset voltages. From theoretical view-
point, these points can be considered as the voltages up to the absorption associated
with an absorbing Markov process. Besides, we suppose that the set {v1, . . . , vn}
are the values of n independent replications of a random variable distributed by
a Phase-type distribution with representation (α,T). EM algorithm optimises the
following likelihood function

L(α,T) =

m∏

i=1

αNi
i

m∏

i=1

exiTii

m∏

i=1

m+1∏

j=1
j 6=i

T
Nij

ij ,

being xi the total time spent in state i, Ni the number of times that the process
began in phase i and Nij the number of jumps between both states. If the current
estimation of PH is (α,T), the conditional expectations of xi, Ni and Nij (step-E)
adopt the following expressions

E(α,T)[xi] =
1

n

n∑

k=1

[∫ vk
0

(
αeT(vk−u)

)T (
eTuT0

)T
du
]
ii

αeTvkT0 ,

E(α,T)[Ni] =
1

n

n∑

k=1

αi(e
TvkT0)i

αeTvkT0 ,

E(α,T)[Nij ] =
1

n

n∑

k=1

[∫ vk
0

(
αeT(vk−u)

)T (
eTuT0

)T
du
]
ii

Tij

αeTvkT0 ,

E(α,T)[Ni,m+1] =
1

n

n∑

k=1

(
αeTvk

)
i
T0
i

αeTvkT0 .



36 CHAPTER 3. METHODOLOGY

Therefore, the M-step results in the estimation of new parameters

α̂i = E(α,T)[Ni] ; T̂ij =
E(α,T)[Nij ]

E(α,T)[xi]
, i 6= j;

T̂
0

i =
E(α,T)[Ni,m+1]

E(α,T)[xi]
; T̂ii = −


T̂

0

i +

m∑

j=1
j 6=i

T̂ij


 .

3.3 A Complex Model via Phase-Type Distribu-
tions to Study Random Telegraph Noise in Re-
sistive Memories

A new macro-state stochastic process is developed in this work in order to model
complex systems formed by different levels (macro-states) whose sojourn time in
these levels does not follow the exponential distribution. The new model is built in
transient and stationary regimes.

The Model

� We assume that the stochastic process {X(t) : t ≥ 0} is composed of r macro-
states. In turn, each macro-state is composed of multiple states, that is,
the macro-state k is formed by nk internal states. We assume that there is
an embedded internal process denoted by {J(t) : t ≥ 0} which is a Markov
process with the following generator matrix expressed by blocks

Q =




Q11 · · · Q1k · · · Q1r

. . .
...

. . .
... · · · Qkk · · ·

...
. . .

...
. . .

Qr1 · · · Qrk · · · Qrr



.

� We consider the following two matrices: Qk represents the transition rate
to the macro-state k; Q−k contains the output velocity to any macro-state,
except to macro-state k. Clearly, Q = Qk + Q−k.

� Due to the internal process verifies the properties of Markovianity and ho-
mogeneity, it is direct to compute the transition probability matrix and the
transient distribution at time t for the process {J(t) : t ≥ 0}:
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– Transition probability matrix. ⇒ P(t) = exp{Qt}.
– Transient distribution at time t. ⇒ a(t) = θP(t), being θ the initial

distribution.

� As it is shown in Appendix A2.2.1, the transition probabilities for the macro-
state process {X(t) : t ≥ 0} is obtained through the Markovian process {J(t) :
t ≥ 0}. Knowing the probability of being in the macro-state i at time s, the
transition between macro-states i → j is expressed in an algorithmic-matrix
form.

Stationary Distribution

� The objective is to resolve the system given by the balance equation and the
normalization equation that are verified by the stationary distribution in a
matrix and algorithmic form by using matrix-analytic methods. All steps
for the resolution of the system and an algorithm to calculate the stationary
distribution can be seen in Appendix A2.2.2.

� We achieve the stationary distribution for the macro-state process by means of
the internal matrices blocks from the stationary distribution for the embedded
process.

Sojourn Time Phase-Type Distribution

One of the most important aspect related to the new process is to know the probabil-
ity distribution for the sojourn time in each macro-state. Although for the Markov
process J(t), the sojourn time in each internal state is exponentially distributed,
this fact is not corroborated for X(t).

� In Appendix A2.3.1, it is proved that the probability distribution of the ran-
dom sojourn time in each macro-state is Phase-type distributed depending on
the initial observed time.

� Additionally, we show that if the macro-state process has reached the sta-
tionary regime and the process is in the macro-state i, then, the probability
function of the sojourn time is also Phase-type distributed.

� The first step time for the process X(t) from one macro-state to another
macro-state follows a Phase-type distribution.

Number of Visits to a Macro-State

Another interesting topic is the number of visits to a determine macro-state.
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� For its calculus, we have consider a matrix pk(n, s, t), whose element (i, j)
represents the probability that the embedded process is in the internal state
j at time t and has visited n times the macro-state k from s up to time t,
knowing that it was in the internal state i at time s.

� This matrix verifies the differential equations described in Appendix A2.4 and
it is computed by means of the inverse of Laplace transform.

� Once this matrix is obtained, we have determined the number of visits to a
certain macro-state. It can be seen in A2.4.

Expected Number of Visits to a Determined Macro-State

Regarding the expected number of visits to a determined macro-state, by considering
the definition of the expected value and keeping in mind the differential equations,
there are two different ways to compute the mean number of visits to the macro-state
k depending on whether the initial state is considered or not:

� For the case where the initial state is not counted

E[Nk(t)] = θ ·
∫ t

0

P(u)du
(
Qk − Q̃kk

)
· e.

� For the case where the initial state is considered

E[Nk(t)] = θ ·Ak · e + θ ·
∫ t

0

P(u)du
(
Qk − Q̃kk

)
· e,

All the progress up to reach these expressions can be consulted in Appendix A2.4.1.

Parameter Estimation for the stochastic process X(t)

When m independent devices are considered, the purpose is to maximise the fol-
lowing likelihood function to estimate the parameters

L =

m∏

l=1

αxl
0

[
ml−1∏

a=0

e
Q

xl
axl

a
(tla+1−tla)

(
Qxl

ax
l
a+1

)τl
]

e,

where tla corresponds to the transition from macro-state xla to macro-state xla+1,
τl is zero if the last time is a censoring time and one otherwise, Qaa is a square
sub-stochastic matrix whose main diagonal is negative and the rest positive values,
and Qab a matrix with positive elements with

∑r
b=1 Qabe = 0 for any a and b.

Other log-likelihood function is given from the transition probabilities of the process

log L =

m∑

l=1

ml−1∑

a=0

log
(
hxl

ax
l
a+1

(
tla, t

l
a+1

))
.
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3.4 Linear Phase-Type probability modelling of
functional PCA with applications to resistive
memories

In this work we describe a new probability distribution stemmed from Phase-type
(PH) distributions, defined as Linear Phase-type distribution. The formal definition
of a LPH distribution is the following.

� A random variable X follows a Linear Phase-type distribution with represen-
tation (a, b,β,S) if Y = a+ bX for a, b (b 6= 0) ∈ R is Phase-type distributed
with representation (α,T). In this case β = αeTa and S = bT.

From this definition, we have obtained several measures related to a LPH dis-
tribution. For instance, the reliability function of this class of distributions is

RX(x) =

{
βeSxe ; for x > −a

b , b > 0
1− βeSxe ; for x < −a

b , b < 0
.

Besides, it is possible to derive all the moments by means of the function

MX(t) = −β(S + It)−1e−(S+It)a/bS0,

so that the n-th moment is computed as E[Xn] = ∂nMX(t)
∂tn |t=0.

Additionally, LPH class has been studied in detail, thereby achieving important
results. Taking into account the properties of the PH distributions, these outcomes
can be summarized as follows (all the details and demonstrations of them can be
seen in the Appendix A3.2.2).

1. The finite summation of independent LPH distributions with PH distributions
associated follows a LPH distribution.

2. A positive homothecy of a LPH distribution is also LPH distributed.

3. The set of LPH distributions is dense in the set of probability distributions
defined on any half-line of real numbers.

The developed methodology together with these last results makes possible the
modeling of a random variable defined on any semi-line real. Particularly, we display
in next Chapter as the LPH distribution of the principal components is inherited
by the stochastic process through the Karhunen-Loève expansion.
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3.5 New Modeling Approaches Based on Varimax
Rotation of Functional Principal Components

The Varimax rotation can be extended to the field of multivariate Principal Compo-
nent Analysis (PCA). Taking into account that PCA can be performed by consid-
ering Single Value Decomposition (SVD), there are available two different ways to
conduct the Varimax criterion (Jolliffe, 2002). Note that both procedures provide
different results whose properties must be kept in mind when for the interpretation.

� The first possibility consists of rotating the weight matrix (eigenvectors of the
covariance matrix) and scores of the principal components. This approach
guarantees that the orthogonality among axes is maintained but scores will
not be uncorrelated anymore. This fact is a mishap for PCA because it is not
how rotations are usually understood and applied.

� The second technique is based on rotating the loadings (eigenvectors scaled
by the corresponding singular value) and scores of the standardized principal
components. Now, the rotated axes are not orthogonal which provokes that
the projections of the data do not make sense, but the rotated scores remain
uncorrelated.

Anyway, the explained variance by the first q components are still the same after
applying Varimax rotation in both approaches. However, variances redistributed
among rotated components are not arranged in descending order, as it happens
with PCA performed without rotation.

Functional Varimax Rotation

The objective is to develop new modeling approaches based on Varimax rotation
in order to better understand the variability features after applying Functional
Principal Component Analysis. Taking into account the equivalence between FPCA
of a functional variable X and multivariate PCA of AΨ1/2. We propose two new
functional approaches based on Varimax rotation of PCA matrix AΨ1/2, being A the
basis coefficients matrix and Ψ the matrix of inner product between basis functions.

Let us assume that V is the matrix whose columns are the eigenvectors associated
with the covariance matrix of AΨ1/2. Let us denote the j-th column by vj . Then,
Z = (ξij)n×p = (AΨ1/2)V is the matrix whose columns are the principal component
scores. Besides, the basis expansion of eigenfunctions can be expressed in matrix
form as f = BTφ with f = (f1, . . . , fp)

T and B = (bjk)p×p = Ψ−1/2V being the
basis coefficients matrix of eigenfunctions.

FPCA rotation would comprise rotating the first q weight functions as fR
T

q =

fTq R. Thus, the sample functions can be approximated by considering the first q
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principal components as follows

Xq = Zqfq = (ZqR)(RT fq) = ZRq f
R
q ,

where the vector of rotated eigenfunctions is expressed as

fR
T

q = φTBqR = φT (Ψ−1/2Vq)R,

with Bq being the matrix of basic coefficients associated with the first q eigenfunc-
tions and Vq the matrix whose columns are the first q eigenvectors. Hence, there
are four different possibilities to apply the Varimax criterion in FPCA:

R1 Applying VARIMAX rotation criterion to weight function values.

The objective is to calculate a matrix R that maximizes the variance of the
squares of the elements of the matrix

FR
T

q = FTq R,

where Fq is the q × m matrix whose elements are the values of the first q
eigenfunctions evaluated at a grid of time points t1, ..., tm, given by FTq =

ΓTΨ−1/2Vq, with Γ being the p ×m matrix that contains as rows the values
of each basis function at the time points.

R2 Applying VARIMAX rotation criterion to weight function coeffi-
cients.

The method consists of determining a matrix R that maximizes the variability
of the squares elements of BR = BR = Ψ−1/2V R. Then, the rotated principal
factors are given by

fR
T

q = φTBR.

R3 Applying VARIMAX rotation criterion to PCs by rotating the ma-
trix of eigenvectors

The aim is to find a matrix R that maximizes the variability of the squares
elements of the rotated matrix of eigenvectors V Rq = VqR. Then, the rotated
principal factors are given by

fR
T

q = φT (Ψ−1/2V R).

R4 Applying VARIMAX rotation criterion to the standardized PCs by
rotating the matrix of loadings

The goal is to compute a matrix R that maximizes the variance of the squares

elements of the matrix ∆R
q = ∆qR = VqΛ

1/2
q R. Then, the rotated principal

factors are given by

fR
T

q = φT
(

Ψ−1/2∆R
q Λ−1/2

q

)
.
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Methods R3 and R4 would be the main contribution of this work, whereas the
methods R1 and R2 are the options proposed by Ramsay and Silverman (2005).
R3 and R4 are inspired in the possibility of rotation the eigenfunctions instead of
the basic coefficients. A depth discussion about the main features of these rotations
is made in next Chapter.

3.6 Homogeneity problem for basis expansion of
functional data with applications to resistive
memories

Homogeneity problem aims to test if more than two independent samples of func-
tional data have been generated from the same stochastic process. Let us consider
that we have m independent samples of i.i.d. stochastic processes (functional
variables) denoted by {Xij(t) : i = 1, . . . ,m; j = 1, . . . , ni; t ∈ T} with distribution
SP (µi(t), γ(s, t)), ∀i = 1, . . . ,m, with µi(t) and γ(s, t) being the mean function and
the common covariance function associated with each of the m stochastic processes,
respectively. Besides, we assume that {xij(t) : i = 1, . . . ,m; j = 1, . . . , ni; t ∈ T}
are m independent samples of curves which can be seen as realizations of the
stochastic processes aforementioned. All sample curves verify the hypothesis H1,
H2 and H3.

In the context of functional analysis of variance, the objective is to check the
equality of the mean functions among the different obtained samples. This means
to test the following hypothesis

H0 : µ1(t) = · · · = µm(t), ∀t ∈ T,
against the alternative that its negation holds.

We propose two new methods based on basis expansion of functional data to
tackle the FANOVA problem distinguishing if the data are generated by a Gaus-
sian process or another process. The first one consists of testing multivariate ho-
mogeneity on the matrix of basis coefficients, and the second approach resides in
conducting the multivariate analysis of variance on the principal component scores
given by FPCA.

Homogeneity testing on basis coefficients

When the one-way FANOVA problem is considered, functional data can be ex-
pressed in terms of next linear model:

Xij(t) = µ(t) + αi(t) + εij(t), i = 1, . . . ,m; j = 1, . . . , ni,
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where µ(t) is the overall mean function, αi(t) is the main-effect function for the
group i and εij(t) are the error functions i.i.d. SP (0, γ(s, t)).

The main-effect functions are not identifiable so that in order to be estimated
some constraint must be imposed. The most used constraint is

∑m
i=1 αi(t) = 0.

Under this constraint, there has been proved (see Appendix A5.2.1) that FANOVA
testing problem is equivalent to the usual multivariate ANOVA on the matrix of
basis coefficients A = (a(ij)k)n×p with n =

∑m
i=1 ni. At this point, there are two

possibilities:

� From parametric viewpoint, the MANOVA problem can be applied through
one of the following tests: the Wilks’s lambda, the Lawley-Hotelling’s trace,
the Pillai’s trace, and the Roy’s maximum root. The four chances do not
have exact null distribution but they can be approximated by F-test statistics
(Rencher and Christensen, 2012). Nevertheless, the following assumptions
are required: (1) Normality for the basis coefficients; (2) observations are ran-
domly obtained; (3) the dimension of the sample in each group must be larger
than the variables space; (4) homogeneity of variance-covariance matrices in
the m groups; (5) no multicollinearity.

� Unfortunately, the problem inherent is that the processes are seldom Gaus-
sian and therefore, the basis coefficients are not Gaussian either. Hence, other
approaches should be considered facing the impossibility of using the para-
metric tests described earlier. One option would be to perform the bootstrap
and permutation versions of these tests (Gorecki and Smaga, 2015). On the
contrary, we propose to carry out nonparametric multivariate tests such as
the extension of the univariate Kruskal Wallis’s test and Mood’s test (Oja,
2010; Ellis et al., 2017). These procedures are based on the use of the median
instead of mean and moreover, provide a solution when the sample size is
small by means of permutation techniques. The principal difference between
Kruskal Wallis’s test and Mood’s test is that the first one is more powerful
when data are generated from some distribution but at the same time it is
more sensitive with the presence of outliers.

Homogeneity testing on functional principal components

We introduce a new approach based on FPCA in order to solve the FANOVA prob-
lem. Theoretically, now the basis is represented by the eigenfunctions of the covari-
ance operator, meanwhile the coefficients of matrix A are substituted by the most
explicative principal components scores (the first q principal components scores).
The choice of q will be made ensuring that the proportion of variance explained by
the first q principal components is as close as possible to one.
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Under this conceptual framework, we propose again two new procedures (para-
metric and nonparametric methods) to solve the homogeneity problem on the vector
of the first q principal components in the m groups.

� When multivariate normality is satisfied, univariate ANOVA on each princi-
pal component score should be performed, since the principal components are
uncorrelated. It is well-known that uncorrelatedness implies independence for
the multivariate normality case. Then, if the response variables are indepen-
dent, the multivariate tests do not make sense because they are less powerful.
Besides, Bonferroni inequality must be applied to control the Type I error
produced by these multiple ANOVA tests. This correction consists of divid-
ing the overall level by the number of tests, whose result will be the alpha
level for each ANOVA test.

� Nonparametric multivariate tests will be conducted when normality is not
verified.

This new approach is really interesting because reduces notably the great di-
mension problem when a high number of basis functions is selected to achieve an
accurate representation of the curves.

3.7 Detecting changes in air pollution during the
COVID-19 pandemic through Functional Data
Analysis

In the current work, we deal with the functional ANOVA problem for repeated
measures and the multivariate functional ANOVA problem for independent groups
and a vector functional variables.

Functional ANOVA for repeated measures

The objective is to compare two or more mean functions from paired design, in
which we have the repeated functional data for the same subjects submitted to R
conditions or time periods. In this context, it is assumed that the sample functions
can be represented as Xjr(t) with t ∈ T = [a, b], j = 1, ..., n and r = 1, ..., R,
such that E[Xjr(t)] = µr(t). Only two different conditions or periods of time are
evaluated in the current work (R = 2). The goal is to test the hypothesis

{
H0 : µ1(t) = µ2(t) ∀t ∈ [a, b]
H1 : µ1(t) 6= µ2(t) for some t.

For that purpose, Martinez-Camblor and Corral (2011) proposed the following
statistics
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Cn = n

∫

T

(X̄1(t)− X̄2(t))2dt,

where X̄r(t) = n−1
∑n
j=1Xjr(t) is the mean function for each condition or period

of time.
However, Cn does not take the within group variability into account. To solve

this aspect, Smaga (2020) proposed the following two statistics:

Dn = n

∫

T

(
X̄1(t)− X̄2(t)

)2

K̂(t, t)
dt,

En = supt∈[a,b]

{
n
(
X̄1(t)− X̄2(t)

)2

K̂(t, t)

}
,

with K̂(t, t) =
∑n

j=1[(Xj1(t)−X̄1(t))−(Xj2(t)−X̄2(t))]
2

n−1 .
In this paper, Cn, Dn and En are computed by considering the basis expansion

approach. Now, if we generalise the expression (3.1) for this design, the curves are
expressed as Xjr(t) = aTjrφ(t), with j = 1, ..., n and r = 1, 2. Then,

(
X̄1(t)− X̄2(t)

)2
=

(
āT1 φ(t)− āT2 φ(t)

)2

=
(
φ(t)T d̄

)2
= φ(t)T d̄d̄

T
φ(t),

and

K̂(t, t) = V ar(X1(t))− 2Cov(X1(t), X2(t)) + V ar(X2(t))

= Ĉ1(t, t)− 2Ĉ12(t, t) + Ĉ2(t, t)

= φ(t)T (Σ̂1 − 2Σ̂12 + Σ̂2)φ(t),

with d̄ = (d̄1, ..., d̄p)
T = ā1 − ā2 = (ā11, ..., ā1p)

T − (ā21, ..., ā2p)
T , where ārk =

n−1
∑n
j=1 ajrk r = 1, 2; k = 1, ..., p. In addition, Σ̂r is the sample covariance matriz

of the matrix Ar of basis coefficients in the group r, whose elements are Ar = (ajrk),

and Σ̂12 is the sample cross-covariance matrix between A1 and A2. Note for major
clarity that X̄r = n−1

∑n
j=1 aTjrφ(t) = āTr φ(t).

In order to approximate the null distribution of these statistics, different ap-
proaches can be consulted in Martinez-Camblor and Corral (2011), Smaga (2019;
2020). A brief summary can be checked in Appendix A6.2.1.

Multivariate FANOVA for independent measures

The goal is to test the equality of the mean functions coming from independent
groups when more than one functional response variable are considered in the anal-
ysis. The developed methodology for this theoretical framework is the extension of
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the parametric and nonparametric methods proposed in the previous section. In
particular, we focus on the approach based on principal components. We lever-
age that, although the eigenfunctions are vectors of functions, the components are
still scalar. Therefore, the multivariate FANOVA is again reduced to a MANOVA
problem on the vector of the most explicative pc’s scores. We assume the initial
multivariate scenario described in Section 3.1 Multivariate FPCA, but now the mul-
tivariate functional variables are denoted by Xij(t) = (Xij1(t), . . . , XijH(t))T with
i = 1, . . . , g; j = 1, . . . , ni; h = 1, . . . ,H and mean vector µi. Once the principal
component scores are obtained by considering the basis expansion, two different
methodologies are proposed in this paper in order to solve the multivariate testing
problem

H0 : µ1(t) = ... = µg(t) ∀t ∈ [a, b],

against the alternative that its negation holds. Both approaches are based on testing
homogeneity on the vector of the first q principal components scores in the g groups.

� The first one lies in performing univariate ANOVA on each principal compo-
nent by correcting the level of significance when the normality is satisfied.

� The second method consists of applying non-parametric multivariate tests
such as the extensions of the univariate Kruskal Wallis’s test and Moods’s
test when the sample curves are not generated from a Gaussian process.

3.8 COVID-19 data imputation by multiple func-
tion on function principal component regres-
sion

In this article, an extension of the function-on-function regression model for the case
of several functional predictors is introduced for the imputation of missing values of
the functional response. In particular, the objective is to complete the information
of COVID-19 hospitalized and intensive care people curves (functional response
variables) through multiple functional predictors (curves of positive, recovered and
deceased cases).

Multiple function-on-function linear model

The multiple function-on-function linear regression (MFFLR) model enables to es-
timate a functional response Y from a vector of more than one functional predictor
variable, i.e., X = (X1, . . . , XJ)T . By considering that {(xi, yi) : i = 1, . . . , n} with
xi = (xi1, xi2, . . . , xiJ)T , is a random sample from (X,Y ) where each functional
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variable takes take values on the Hilbert space L2(T ) defined above, the model
written in matrix form adopts the following expression

yi(t) = α(t) +

J∑

j=1

∫

T

xij(s)βj(s, t)ds+ εi(t)

= α(t) +

∫

T

xi(s)
Tβ(s, t)ds+ εi(t), i = 1, . . . , n,

where α(t) is the intercept function, β(s, t) = (β1(s, t), β2(s, t), . . . , βJ(s, t))T are
the J coefficient functions, xi(s) = (xi1(s), xi2(s), . . . , xiJ(s))T and εi(t) are inde-
pendent functional errors. Although all variables are defined in the same interval
T , the model can be easily extended to the case of variables with different domains.

There are several approaches in order to estimate the model. The most common
techniques are based on least squares penalized approaches and basis expansion of
sample curves and/or functional parameters. Although this methodology is very
attractive because the problem turns into a multivariate linear model for the ma-
trix of response basis coefficients, the resultant multivariate model presents a high
multicollinearity. One solution would be to represent the response and the predictor
functional variables in terms of the principal components (uncorrelated variables).
Again, we would obtain a multivariate linear model but without multicollinearity.

Functional principal component regression

If we consider the principal component decompositions for the response and the
predictor functional variables, the MFFLR model is reduced to a linear regression
model for each principal component of the functional response Y on all principal
components of the functional predictors. On this subject, by truncating each prin-
cipal component decomposition, the principal component MFFLR model can be
expressed as follows:

ŷi(s) = ȳ(s) +

K∑

k=1

ξ̂yikf
y
k (s) = ȳ(s) +

K∑

k=1




J∑

j=1

∑

l∈Lkj

b̂
xj

kl ξ
xj

il


 fyk (s), (3.2)

with b̂
xj

kl being the linear least squared estimation of the regression coefficients bkl
when βj(s, t) =

∑n−1
k=1

∑n−1
l=1 b

xj

kl f
xj

k (s)fyl (t) is expressed in terms of basis expansion;
fyk are the eigenfunctions of the sample covariance operator of yi(t); ξ

xj

il and ξyik
are the principal component scores of predictor and response functional variables,
respectively. For more information about the theoretical development, see Appendix
A7.3.2.

Additionally, another important aspect is the selection of principal components
of each predictor variable. On this point, the most explicative components might
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be independent or slightly correlated with the response variable. A good option
would be to adapt common selection models procedures based on stepwise and best
subset regression combined with cross-validation for this functional framework.

Imputation of missing response curves

We assume that the information about the predictor variables is totally known
beforehand and only certain values are missing for the response variable. This
means that we have n curves whose evolution is completely observed and m curves
with incomplete observations for the response. Then, the imputation of the missing
response curves has the following steps:

� We estimate the parameters bkl with the complete n curves.

� The principal component scores of predictors {ξxj

il : i = n+ 1, . . . , n+m, l =
1, . . . , n− 1} are computed through the expression given in its definition.

� These scores are substituted in (3.2) in order to estimate the missing response
curves {ymissi (s) : i = n+ 1, . . . , n+m}.

Then, the estimated model can be used to predict new values of the response Y
on a test sample and to provide accurate interpretation of the relationship between
the predictor and the response variables. If objective is to predict the response
variable in a future interval of amplitude k denoted by [T, T + k], (3.2) could be
estimated in terms of the predictor variables in the past interval of time [0, T ].



Chapter 4

Results

We summarise here the main results achieved throughout the research articles which
constitute the current thesis, detailing both theoretical and numerical results.

4.1 Phase-type distributions for studying variabil-
ity in resistive memories

Our intention is to study the inner performance of RRAM memories by estimating
the internal structure of the associated Phase-type distribution. For that purpose,
we make use of EM algorithm given in Section 3.2. Here, we focus on the mod-
eling of reset voltages (voltage at which the conductive filament breaks), but this
approach can be extended to other mesures (resistances and currents) or to the
case of established process data. In order to fit a distribution to these observed
values, we consider multiple general Phase-type distributions. Also, we assume any
internal structure for the transition intensities matrix T. After doing the analysis,
we observed that all cases converged to the same result for a fixed number of phases

α = (1, . . . , 0), and T =




−λ λ 0 0 · · ·
0 −λ λ 0 · · ·
...

...
. . .

. . .
...

0 · · · 0 −λ λ
0 · · · · · · 0 −λ



,

so that, the internal structure of PH representation depends on one parameter.
This structure corresponds to an Erlang distribution with parameters E(m,λ), with
m being the number of phases. Then, we can conclude that the voltage until
the conductive filament is broken can be modeled by an Erlang distribution. The

49
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interpretation of its parameters is very intuitive: the process until the failure of
the conductive filament begins in phase 1 (once the filament has been completely
formed) and it undergoes a degradation evolution of m well differenced states, with
1/λ being the reset voltage mean for each stage. The optimum value was reached

for 15 phases with λ̂ = 9.279325 via the EM algorithm.

Finally, we graphically compare the fit of Weibull and Erlang distribution
through the experimental cumulative risk rate, the reliability function and the haz-
ard rate function. The results achieved with the Erlang distribution are much better
than with the Weibull distribution. As a matter of fact, the accuracy of the fit by
means of Erlang distribution is very outstanding. All computational aspects were
made with the EMpht program and the software R (R Core Team, 2020).

4.2 A Complex Model via Phase-Type Distribu-
tions to Study Random Telegraph Noise in Re-
sistive Memories

A new stochastic process with macro-states is proposed in order to model systems
whose sojourn time in each macro-state is not exponentially distributed and only
macro-states can be observed. It is assumed that the macro-state where the process
is located is known at each instant of time, but its internal behaviour is not observ-
able. Besides, the model is built in transient and stationary regimes and multiple
measures are achieved. Finally, the proposed process to model the RTN signals that
occur within RRAM memories will be considered.

The main theoretical results obtained throughout the work are summarized be-
low. More information on mathematical developments can be found in Appendix
A2.

� The generator of the macro-state stochastic process {X(t) : t ≥ 0} is built
by means of matrix blocks. In turn, each macro-state is made up of multiple
internal states.

� Inside the macro-state process, there is an embedded Markov process, {J(t) :
t ≥ 0}, that represents the internal behaviour of the system.

� The transition probability matrix for the general process X(t) is worked out
in a matrix-algorithmic form by considering the transition probabilities of the
Markov process.

� The process X(t) is non-homogeneous and not Markovian. The process J(t)
verifies both properties.
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� The stationary distribution of X(t) is computed through the internal matrix
blocks in order to reduce the computational cost.

� The sojourn time in any state for the Markov process is exponentially dis-
tributed, meanwhile the sojourn time in each macro-state is Phase-type dis-
tributed.

� If X(t) has reached the stationary regime and the process is in macro-state i,
the probability distribution of the sojourn time is also Phase-type distributed.

� The distribution of the number of visits to a given macro-state between two
different times is obtained from several differential equations and the inverse
Laplace transform.

� The expression of the mean number of visits is developed explicitly depending
on times and if the initial state is considered.

� Two different likelihood functions have been derived in order to estimate the
parameters of the built model.

Regarding the application, we analyze four RTN signals (called RTN25, RTN26,
RTN27 and long-RTN) coming from the same device. The discrepancies between
them lie in the measurement time and the applied voltages that produces the varia-
tions of electric current. The measurement time was approximately about nineteen
minutes for RTN25, RTN26 and RTN27 signals with a supplying of 0.34 volts, 0.35
volts and 0.36 volts respectively, meanwhile, the long-RTN trace was subjected more
than three hours of record with 0.5 volts. In addition, we determine the number of
latent levels into the signals by means of the hidden Markov models. We study the
evolution of these series separately.

� Series RTN25-26-27. After an exhaustive study, it is shown that these sig-
nals have a Markovian behaviour. Thus, the classical methodology on Markov
chains is carried out on them (see Appendix A2.6.1 for more information).

� Serie long-RTN. Once the hidden Markov model is applied, we estimate
the proportion of times that the signal is in each latent state and the sta-
tionary distribution for the continuous Markov process associated with the
latent states. Based on these results, we assume that the best arrangement
is with 4 latent states, since insignificant proportions would be obtained if
more than 4 levels were considered. Given that the spent time in each level
does not follow the exponential distribution, the new approach is carried out.
In particular, Phase-type distributions with a Coxian/Erlang structure have
been considered. The best fit is achieve for the case in which the macro-
states are composed of 2, 2, 4 and 3 internal states, respectively. Likewise,



52 CHAPTER 4. RESULTS

we perform the Anderson-Darling test as an indicator of the goodness of fit,
being its p-values higher than the usual significance level α = 0.05 for the
four cases. Therefore, we assume that the sojourn time in the macro-state
i follows a Phase-type distribution with representation (αi,Ti). In conclu-
sion, the perfomance of the device is regulated by a non-homogeneous process
{X(t) : t ≥ 0} with an embedded Markov process {J(t) : t ≥ 0}. The macro-
states space is {1, 2, 3, 4} and for the embedded process is {1 = i11, 2 = i12, 3 =
i21, 4 = i22, 5 = i31, 6 = i32, 7 = i33, 8 = i34, 9 = i41, 10 = i42, 11 = i43}.

4.3 Linear Phase-Type probability modelling of
functional PCA with applications to resistive
memories

Let us consider that we have a stochastic process, {X(t) : t ∈ T}, that fulfills the
hypotheses H1, H2 and H3. The main objective of this work is to identify the
distribution of the principal components in order to characterize the whole process
through the Karhunen-Loève expansion.

A new class of distributions called Linear Phase-type distributions has been
introduced in which the following results are satisfied:

1. The finite addition of independent LPH distributions with associated PH dis-
tributions follows a LPH distribution.

2. A positive homothecy of a LPH distribution is also LPH distributed.

3. The set of LPH distributions is dense in the set of probability distributions
defined on any half-line of real numbers.

Considering these results, we have proved that

� if the principal components are LPH distributed with the same scale param-
eter, then the process expressed in terms of K-L expansion follows a LPH
distribution at each instant of time. The corresponding representation of the
LPH distribution is provided for the process (see Appendix A3.3).

This result has been considered in order to model the stochastic behaviour of
RRAM memories. In particular, the goal is to fit the current probability distribution
at each voltage in the reset process through the K-L expansion.

� A set of 232 reset curves have been considered in the application.

� Previously, curves were registered in the interval [0,1] and reconstructed by
means of P-Spline. They are denoted as {Ii(u) : u ∈ [0, 1], i = 1, . . . , 232}.
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� After applying FPCA, we observed that more than 99% of the total variability
of the process is explained only with the first principal component. Here, the
curves can be approximated with great precision by truncating the Karhunen-
Loève expansion in the first term.

� Then, the objective is to fit a probability distribution to the scores of the first
principal component. Due to these scores are negative and positive values,
some transformations are necessary to apply PH distributions. We considered
the linear transformation 1 + 1000× ξ1 with ad hoc selection of the slope and
constant parameters. Before this transformation all the scores values belonged
to the interval [-1,1].

� The parameters of a PH distribution with m transient states and any inter-
nal structure for matrix T were estimated by using the EM algorithm. The
optimum value was achieved for 21 phases.

� Besides,an in-depth comparison was made with other classic probability dis-
tributions such as Weibull, Normal and Cauchy. However, neither of them
overcame the fitting reached by the PH distribution. In fact, only the PH dis-
tribution can be accepted according to the p-values provided by the Anderson-
Darling test.

� Therefore, we can conclude that

– 1 + 1000× ξ1 can be modeled by a PH distribution.

– ξ1 follows a LPH distribution with representation (1, 1000,β,S).

– The process is also LPH distributed with representation
(
|f1(u)| − 1000Ī(u)sgn (f1(u)) , 1000sgn (f1(u)) ,αe

T
(

1− 1000
f1(u)

Ī(u)
)
,

1000

f1(u)
T

)
.

4.4 New Modeling Approaches Based on Varimax
Rotation of Functional Principal Components

In this paper, two new methods based on the equivalence between FPCA of ba-
sis expansion of the sample curves and multivariate PCA of a transformation of
the matrix of basis coefficients are introduced to perform the Varimax criterion
in FPCA. The first one consists of rotating the original scores and eigenvectors,
whereas the second methods lies in rotating the standardized scores and loadings.
These methods will be noted as R3 and R4, respectively. Moreover, these tech-
niques are compared with the options inspired by Ramsay and Silverman (2005) for
the same purpose. They proposed to apply the Varimax criterion on the matrix of
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values after evaluating the weight functions in a grid of equally spaced time knots
(R1) or on the matrix of basis coefficients of the eigenfunctions (R2). The most
important theoretical outcomes are described in what follows:

� R1, R2 and R3 provide orthonormal factors but correlated PC scores, mean-
while R4 supplies quite the opposite.

� When orthonormal basis functions are considered to reconstruct the real form
of the curve, R2 and R3 match each other.

� The proportion of redistributed variance among the rotated standardized com-
ponent scores (R4) is the same because of the properties of the SVD decom-
position.

A simulation study was carried out in order to analyze the performance of the
approaches proposed in this work. Also, a comparison with the rest of methods
was done according to the integrated mean squares error (MSE) of each rotated
eigenfunction in relation to the original rotation. The data were simulated from
the approximation of the Wiener process given by its truncated Karhunen–Loève
expansion (see the Appendix A4.3 for more information about this Gaussian process
and how MSE is computed). Besides, 500 replications of 150 sample curves of the
process were simulated for several scenarios: different sample sizes and distinct
number of equally spaced knots in the observed domain [0,1] were contemplated (in
particular, tk = k/m, k = 0, 1, . . . ,m; m = 25, 50, 100). Curves were smoothed by
means of a basis of cubic B-splines of dimension 8. Then, as a result of this study
we can conclude that:

� When the sample size is sufficiently large, the outcomes are very similar.

� The method R3 gets the most accurate results in relation to MSE.

� The method R3 is more robust with respect to the number of observation
nodes of the sample curves.

� It does not make sense to compare R4 with the remainder options due to the
fact that the estimated weight functions are not orthogonal for this method.

Regarding the application, we study the evolution of the number of infected
cases by COVID-19 per 10000 inhabitants in the Spanish autonomous communities
(AC) for the first wave of the pandemic.

� Pre-processing steps are necessary before applying FPCA in order to evaluate
the behaviour of the illness from 20/02/2020 to 27/04/2020. Firstly, all curves
are registered in the interval [0,1]. Besides, since curves are smooth, a cubic
B-spline basis of dimension 10 with equally spaced knots in the interval [0,1]
is chosen to approximate the sample curves. Finally, FPCA is carried out.
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� The first principal component explains more than 99% of the total variability,
so that the interpretation is not an easy task. In fact, only the first compo-
nent could be interpreted. On this matter, the first eigenfunction is positive
and strictly increasing during the entire observation period, being the weight
almost two times bigger at the end of the period than at the beginning. This
means that the number of cases shot up in the ACs over time.

� However, it is obvious to think that not all ACs suffered the same speed of
spreading, but rather each AC had its own rhythm. In this sense, methods
R3 and R4 for functional Varimax rotation were considered on the first four
principal components.

� After rotation, we can see that there are three big groups of ACs according
to evolution of the number of cases during the first wave. It is possible to
interpret the temporal behaviour of them thanks to the rotated eigenfunctions
given by the methods R3 and R4.

� The results given by FPCA were compared with the ones obtained by applying
a functional clustering analysis on the matrix of basis coefficients (Jacques and
Preda, 2014b). We saw that effectively, both methodologies provide similar
results and they are in accordance with other studies about the evolution of
COVID-19 in Spain (Henriquez et al., 2020; Siqueira et al., 2020; Santamaria
and Hortal, 2021).

� These results reveal the power and outstanding performance of the functional
Varimax approaches introduced in this paper.

4.5 Homogeneity problem for basis expansion of
functional data with applications to resistive
memories

Developing new techniques to test the homogeneity of the distributions is the main
motivation of this paper. We introduce two new procedures whose behaviour is
evaluated through a rigorous simulation study. These methods are reduced to check
the multivariate homogeneity on a vector of basis coefficients and on a vector of
principal component scores. In both scenarios we should distinguish whether the
data have been generated by Gaussian processes or not.

� For the parametric design (Gaussian processes), the objective is to checkt
if the mean functions are equal among the different samples. In this case,
classical multivariate ANOVA tests might be applied for both layouts.
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� When Gaussianity is not satisfied, we propose to apply nonparametric mul-
tivariate homogeneity tests such as the extensions of the univariate Kruskal
Wallis’s tests and Mood’s tests. Under this situation, the problem is equiva-
lent to test the equality of the medians in all groups.

Regarding the simulation study, detailed information about the artificial aspects
can be seen in Appendix A5.3. In broad terms, three groups are considered with
three different models for the mean functions (M1, M2 and M3). M1 represents
the situation where the equality of mean functions is true, meanwhile in M3 the
discrepancies between group mean functions are smaller. For different sample sizes
(ni = 15, ni = 25, ni = 35, i = 1, 2, 3), the sample curves are generated at 51
equally spaced time points in the interval [0,1] according to the FANOVA linear
model. Besides, Gaussian and non-Gaussian errors were considered by using five
different values for the dispersion parameter (σ = {0.02, 0.05, 0.10, 0.20, 0.40}). A
cubic B-spline basis of dimension 18 was employed to get the basis coefficients.
On the other hand, Pillai’s trace test (for basis coefficients approach) or multi-
ple ANOVA tests using Bonferroni’s correction (for principal components layout)
and the extension of the univariate Kruskal Wallis’s test (for both designs) were
performed for the parametric and nonparametric cases, respectively. Finally, for
the principal component procedure, different number of components were taken
into account. After the simulation study, we deduce the following strengthens and
weakness of the two new procedures:

� The parameter of error dispersion σ notably affects the tests quality. The
power of the tests may be questioned for large values of σ, especially when
M3 and σ = 0.4 are simultaneously considered. However, similar simulation
studies do not use values as higher as σ = 0.40 (Gorecki and Smaga, 2015).

� Regarding sample sizes, as σ is becoming increasingly large, the tests con-
vert into more conservative when n decreases for the cases where the null
hypothesis is false.

� The choice of the number of principal components plays an important role as
well. The outcomes display that the higher the explained variability for the
components, the better the power of the test. The advice is to overcome the
99% of the total variability, primarily when σ is large.

� In general, the results are really outstanding, except when M3 and σ = 0.4
are given at the same time. The basis coefficients model is slightly better
for the parametric scenario and the principal components approach for the
nonparametric case. The power of the tests causes us concern in the more
extreme situations.
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� Parametric tests are more powerful and therefore, they should be considered
as long as the assumptions are satisfied.

� Precaution when the multiple ANOVA tests are used for a great number of
principal components. We think that the reason why the basis coefficients
procedure has provided superior results for the parametric case is because
we needed eight principal components to explain more than 99% of the total
variability. Then, the significance level in the multiple ANOVA tests is lower
due to Bonferroni’s inequality and the tests are less powerful. Hence, this con-
troversy would disappear when only two or three components were necessary,
as the corrected significance level would not be so small and the acceptance
proportion would increase.

Finally, an application with data from RRAM memories was carried out in or-
der to test if the kind of material and thickness play a fundamental role in RRAM
operation. We have the information about three kind of devices made of differ-
ent materials and thicknesses (see Appendix A5.4 for more information about the
features of the devices). The experimental data associated with these devices are
current/voltage curves associated with the reset cycles. Before applying the method-
ology, all curves were registered in the interval [0,1] and reconstructed by P-Spline
smoothing with B-Spline basis of dimension 20 and penalty parameter λ = 0.5. The
purpose is to test if the sample mean functions of the three technologies are equal or
not. Graphically, it seems that the material and thickness take part an important
role in the RRAM behaviour. We check this suspicion by means of both considered
approaches.

� Basis coefficients approach. We conduct a MANOVA on the matrix of
basis coefficients. After applying the Kolmogorov-Smirnov’s test for the uni-
variate normality of each single basis coefficients and the Kullback’s test for
the homogeneity covariance matrix, neither multivariate normality nor homo-
geneity were accepted. At this point, and due to the presence of outliers, we
consider the nonparametric procedure by means of the univariate Mood’s test.
Keeping in mind that the related p-values were practically null, it is possible
to decide that there are significant physical differences according to the type
of metal for the electrode and dielectric thickness employed in the RRAM
devices.

� Principal components procedure. Once Functional Principal Component
Analysis is applied, we observe that only the first component explains more
than 99% of the total variability of the process, so that the reset process can
be approximated with sufficient precision by considering the Karhunen-Loève
expansion in terms of the first principal component. On this subject, the ho-
mogeneity problem can be reduced to one-way ANOVA for the first principal
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component. Nevertheless, the parametric layout assumptions are not verified
again and then, nonparametric tests must be used. In particular, univariate
Mood’s median test, being the associated p-value smaller than 0.001. Ad-
ditionally, Wilcoxon’s rank sum test is also conducted for the pairwise com-
parisons through the Benjamini’s method for adjusting p-values. Here, all
p-values are also smaller than 0.001. Thus, we can conclude that the sample
mean functions are different and therefore, both material and thickness have
a high impact on RRAM perfomance.

4.6 Detecting changes in air pollution during the
COVID-19 pandemic through Functional Data
Analysis

The main objective of this work is to study the impact of quarantine policies on
air quality in district of Pescara-Chieti, in the Abruzzo Region (Italy). For that
purpose, models for FANOVA with repeated measures and a novel approach for
multivariate FANOVA for independent measures based on multivariate FPCA have
been proposed. On the one hand, we carry out a univariate analysis to evaluate
the behaviour of each pollutant before (BL) and during lockdown (DL), and, on
the other hand, we research if the mean function of all pollutants measured in the
background stations is equal to that of the urban traffic ones. In particular, four
pollutants are available (NO2, PM10, PM2.5 and benzene) and five monitoring
stations are considered (two traffic and three background stations). The dataset
was divided in two time frames of the same length (39 days) for BL and DL. Next,
the phases of the study are summarized:

� A descriptive analysis of the data was applied in order to make visible the daily
variation and weekday concentrations of pollutants BL and DL. It seems that
NO2 decreased DL; PM10 and PM2.5 are independent from the measures
adopted during the COVID-19 nation-wide lockdown because all stations un-
dergo an increase DL; and benzene exhibits different behaviour in background
stations compared to traffic ones.

� For the functional reconstruction of pollutant curves, each sample curve was
approximated in terms of a basis of cubic B-splines of dimension 20. With 20
basis functions, we capture the trend and local behaviour of the curves.

� In order to statistically analyze the effect of the lockdown on the mean of each
pollutant, functional ANOVA for repeated measures is considered. In partic-
ular, the statistics Dn and En are contemplated to control the between and
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within group variability. Besides, a permutation method is used to approxi-
mate their null distributions (this method is explained in detail in Appendix
A6.4.2). The results showed that there are significant differences in the mean
curves of each pollutant in both time periods.

� With the objective to evaluate if the behaviour of the background stations is
different in relation to the traffic stations both for BL and for DL, the multi-
variate functional ANOVA is carried out. Additionally, functional ANOVA for
each variable separately has been also applied. For both theoretical designs,
the approach based on FPCA is considered. That is, the tests consist of test-
ing homogeneity on the vectors of the most explicative principal component
scores, being four components the optimum number of principal components
(we guarantee more than 99% of the total variability with four components).
Besides, the extension of the univariate Kruska-Wallis’test with the permuta-
tion version is conducted in order to solve the problem of small sample size.

– For the BL period, we found differences between both groups of stations
due to PM10, although there are evidences against benzene as well.

– For the DL period, the multivariate test is not capable of detecting dif-
ferences between the groups, but the univariate functional ANOVA does
stablish that the level of benzene variates according to the groups. This
fact is confirmed graphically.

4.7 COVID-19 data imputation by multiple func-
tion on function principal component regres-
sion

The main goal of this work is to complete the missing values related to the curves
of hospitalized and intensive care people due to COVID-19 illness in several Span-
ish autonomous communities between February 2nd and April 27th, 2020. Taking
into account the functional nature of these response variables, a functional linear
regression model can be considered to make the imputation. The predictor vari-
ables of this model will be the curves of confirmed cases, deceased and recovered
people, whose evolution is completely observed over time. Given that the predictors
have also a functional behaviour, we propose to use a multiple function-on-function
regression linear (MFFLR) model based on principal components in order to avoid
the multicollinearity problem.

Briefly, we showed in last Chapter that, if the basis expansion of sample curves is
considered and we truncate each principal component decomposition, the MFFLR
model is equivalent to a multivariate linear regression model in terms of a reduced
set of response and predictor principal components.



60 CHAPTER 4. RESULTS

Previously to the process of imputation, several steps are necessary to make
the curves comparable. This is fundamental because each AC followed a dif-
ferent criterion for recording the data and the size of the population varies a
lot according to the AC. Therefore, all curves were properly homogenized, reg-
istered and smoothed. All the details of these phases can be seen in Appendix A7.2.

Subsequently, we proceed to the imputation of the missing data. Predictor
variables are completely observed for all ACs and only the response variables have
missing values in some ACs. In particular, we do not have the entire information of
four ACs in the curves associated with the hospitalized and in intensive care units
(ICU) people. Those ACs whose evolution is totally known will be considered as
training sample in the model.

� After applying the Functional Principal Component Analysis for each variable,
we observe that only with the first principal component we explain almost all
variability of the variables.

� In addition, only the first principal component of each predictor variable was
highly and significantly correlated with the first principal component of each
response variable.

� Then, the principal component MFFLR model is reduced to the linear regres-
sion of first principal component of the response in terms of the first principal
component of each of the predictors.

� The model provided good outcomes for the training sample. These statement
is corroborated through the determination coefficient and the square root of
the mean squared errors.

� Regarding the missing curves, the model yields a pointwise estimation of the
response variables. That is, we obtain an estimation of the evolution of these
curves if the ACs would not have modified the way of recording at the middle
of the first wave. In fact, the model captures really well the trend of the curves
up to the change.

Finally, we apply a canonical correlation analysis based on the first principal
component scores. The objective is to study the association between the hospital
occupancy rate (HOR) and the illness response (RI). HOR is formed by the response
variables used in the process of imputation, meanwhile RI is composed by those
variables dealt as predictors in the model. After the analysis (see Appendix A7.4.2
for more information about the results), we conclude that both groups of variables
are highly correlated each other and moreover, each of the first canonical variables
have an important predictive power over the opposite set of variables.
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Conclusions

5.1 Phase-type distributions for studying variabil-
ity in resistive memories

One of the biggest problems when Phase-type distributions are considered in appli-
cations is the estimation of the parameters. The fact that Phase-type distributions
do not have a unique representation increases more difficulty to the optimization
problem. For that reason, once the likelihood function is built from a sample of a
Phase-type population with general representation, a solution is to use the EM al-
gorithm to estimate the parameters and to check the efficiency of the methodology.
Thanks to the great power of Phase-type distributions, we apply this technique to
a major current issue in microelectronic experimental data. In the semiconductor
industry, an essential aspect to better understand the RAMM internal behaviour
is the analysis of the variability associated with the RRAM operation. To date,
Weibull distribution is commonly used to model the current, resistance and voltage
related to the variability mentioned above. Weibull distribution has worked up rel-
atively well but the development of more sophisticated memories has produced that
it becomes obsolete in last years. In this sense, the accuracy of the fitting is not as
desirable as we can expect, and therefore, another distribution must be considered.

This paper introduces a new perspective that replaces the current methodology
and resolves the lack of precision problem. As we anticipated before, we propose
a new approach based on Phase-type distributions. Estimation and selection of
parameters of the Phase-type distribution via EM algorithm provide the Erlang
distribution as the best fit, for any number of phases. This means that the internal
system of the devices in terms of voltage is governed by a Phase-type distribution
with Erlang structure instead of general structure. Then, we conclude that the
voltage until the conductive filament breaks follows an Erlang distribution. From
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the physical viewpoint, after the process of forming of the conductive filament,
(phase 1) it undergoes a sequential degradation through a series of well differentiated
phases (first parameter of the Erlang distribution), being the mean reset voltage the
inverse of the second parameter of the distribution. After an exhaustive analysis,
we reach the conclusion that Phase-type distributions, and in particular, Erlang
distribution, achieves better results than the Weibull distribution. Therefore, we
look forward that the Phase-type distributions framework will play an important
role in the analysis of data experimental measures in RRAM from now on.

5.2 A Complex Model via Phase-Type Distribu-
tions to Study Random Telegraph Noise in Re-
sistive Memories

Many real situations require the analysis of systems whose performance depends
on several macro-states that evolve over time. Although these macro-states are ob-
servable, their inner phases are not recognized beforehand. Knowing the internal
behaviour it is crucial to understand how these systems work in practice. Markov
chains are normally conducted to model the stochastic process and then, the ex-
ponential distribution is considered as the most suitable option to adjust the spent
time in each level. Unfortunately, sometimes this methodology does not achieve
an accurate fit and therefore, another perspective should be contemplated. On
this matter, a novel stochastic process is introduced by considering the internal
performance of macro-states in which the sojourn time in each one is Phase-type
distributed depending on the initial observed time. Thus, we assume that each
macro-state is composed of internal states. This new model is built in transient and
stationary regimes. Additionally, measures associated with this process are also
derived making use of matrix analysis, Laplace transform technique and a series of
algorithms given along the work. A really important result is that the homogene-
ity and Markovianity are lost for the new macro-states model, but the embedded
internal process maintains both properties.

This methodology has been considered in the context of RRAM memories. An
essential topic related to the RRAMs is the Random Telegraph Noise signal that
is produced inside the processes of operation. From the electronics perspective, it
is crucial to analyze the current fluctuation between levels and the sojourn time in
each of these levels. On the one hand, Hidden Markov Models have been proposed
in order to determine the number of levels and to substitute the employed graphical
techniques in the sector until now. Regarding the modeling of the signal, Markov
models do not supply rigorous fittings when the signal is sufficiently large. So far,
researchers usually consider piecewise signals to analyze them separately. However,
the dependence structure and the possible relationships between the different pieces
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are ignored by means of this methodology. At this point, we conducted the new
methodology proving that the sojourn time in each level can be modeled through a
Phase-type distribution. This result is of great interest because sheds light over the
device’s internal process. In particular, we showed that a latent state of long RTN
signal coming from a resistive memory is composed of multiple states. Hence, we
can conclude that this new approach is a good candidate to replace the common sta-
tistical analysis carried out to model long RTN signals. Naturally, this methodology
can be extended to the rest of memories, not only to the RRAM context.

5.3 Linear Phase-Type probability modelling of
functional PCA with applications to resistive
memories

Motivated by the characterization and simulation of the stochastic processes associ-
ated with the RRAM memories, a new class of distributions called Linear Phase-type
distributions have been introduced in the current work. These distributions haven
been developed by studying important features such as the closure and density. Its
algorithmic-matrix structure makes easier the subsequent computational implemen-
tation of the results. Under these properties, it has been proved that certain linear
transformations of LPH distributions are in the same class. As a consequence, if
the principal components are LPH distributed, then the K-L expansion provides
that the distribution of the process at each time point are Phase-type distributed
and therefore, the one-dimensional distribution of the process follows a LPH distri-
bution.

These distributions enable to model the principal components in a matrix-
algorithmic form, when the processes are represented accurately through the Func-
tional Principal Component Analysis based on the K-L expansion. Adjusting the
probability distribution of the principal components is really important in order to
recognise the random evolution of the process.

The results have been carried out to fit the stochastic perfomance of RRAMs.
In this case, one principal component is considered and the explicit representation
of the LPH is given for the stochastic process at each point.

5.4 New Modeling Approaches Based on Varimax
Rotation of Functional Principal Components

Functional Principal Component Analysis is an important technique to explain the
main patterns of variation in functional data. The problem attached to many situ-
ations is that the interpretation of the principal components is not always a simple
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task. Specially, in those applications where the most part of the explained variance
is accounted only for one or two components at much. Then, a solution would be
to carry out some type of rotation in the weight functions in order to synthesize the
factor structure and redistribute the variability among the components. From this
perspective, the orthogonal Varimax criterion is without doubt the most famous ro-
tation for its properties and simpleness. The main drawback of Varimax rotation is
that it is not able to retain the two fundamental features of FPCA: orthogonality of
the weight functions and uncorrelatedness of the components. So far, we know just
two mechanisms are available to make the Varimax rotation in FPCA, but neither
of them is directly applied on weight functions. On the one hand, one of the method
consists of rotating the matrix that contains the values of the eigenfunctions at set
of time knots (R1). On the other hand, the second method rotates the weight
function coefficients after considering a basis expansion (R2). In both procedures,
the orthogonality is held up but the rotated scores are correlated.

Here, we propose two new approaches based on the Varimax rotation by con-
sidering the equivalence between FPCA and PCA of a transformation of the basis
coefficients matrix of the curves. One is based on rotating the matrix of eigenvec-
tors, which provides the orthogonality of the axis but not the uncorrelatedness of
the scores (R3). The second one lies in rotating the loadings matrix of the stan-
dardized principal components, where the rotated scores are still uncorrelated but
the axis are not orthogonal anymore (R4). After a detailed simulation study, we
conclude that (R3) guarantees a more accurate fitting versus the other rotations
that share the same characteristics (R1 and R2). In addition, it is also more ro-
bust with respect to the number of discrete time observation of the sample curves.
Finally, by means of the combination of (R3) and (R4), we have been able to in-
terpret the behaviour and evolution of the number of positive cases by COVID-19
in the Spanish autonomous communities during the first wave of the pandemic in
the country. We look forward that these new procedures are welcomed in future
investigations in any branch of the knowledge to study the variability structure of
a functional data set.

5.5 Homogeneity problem for basis expansion of
functional data with applications to resistive
memories

The motivation of answering to the problem about if there are significant statisti-
cally differences in the probability distribution of more than two independent sample
of curves leads the current work. In particular, we focus on the situation of a func-
tional response variable and a categorical variable that forms the groups associated
with the independent samples. This layout is clearly tackled through the functional
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analysis of variance. Although this technique is totally recognized in many areas of
knowledge, the functional nature of the dependent variable (the samples are now
curves instead of vectors) makes more complicated the study. In the literature some
approaches are available to solve the issue when the sample curves are generated
by a Gaussian process, in which the homogeneity problem is reduced to check the
equality of the group mean functions. Likewise, bootstrap techniques have been
proposed for the case of lack of normality.

In this regard, we develop two new procedures by assuming the basis expansion
of the sample curves. The first one is based on conducting a multivariate analysis
of variance on the matrix of basis coefficients, meanwhile the second one consists of
reducing the dimension of the problem by means of Functional Principal Compo-
nent Analysis and to apply the MANOVA test on the vector of the most explicative
principal components scores. Parametric or nonparametric solutions are given de-
pending on whether the MANOVA typical assumptions are verified. Likewise, an
extensive simulation study has been performed to test the performance of these new
methodologies. The study has revealed that the sample size and dispersion param-
eter of errors have a high influence in both approaches, but in general, they have
provided excellent results for parametric and nonparametric designs. Additionally,
an application has been carried out in order to shed light about the variability be-
hind RRAM memories operation. There are suspicions that the type of material
and thicknesses used in the processes of manufacturing play an important role on
RRAM operation. Taking into account that the experimental data measured on
these memories are curves, the two new proposals have been considered here.

Finally, we would like to highlight the great interest that the principal component
approach may awaken in applications where the dimension of the basis is large and
the sample size is small. In many occasions, the FANOVA problem could be reduced
to a simple MANOVA for the first q principal components, with q being small.

5.6 Detecting changes in air pollution during the
COVID-19 pandemic through Functional Data
Analysis

The current work addresses the functional ANOVA problem for two different the-
oretical frameworks. The first one consists of having repeated functional data of a
single variable for the same subjects submitted to different conditions or whose in-
formation is taken on distinct time periods. Specifically, we dealt with the problem
where the goal is to test the equality of mean functions measured on two different
conditions or instants. Faced with this scenario, we extend the statistics available in
the literature by considering the basis expansion of the curves. The second concern
is focused on the multivariate functional ANOVA problem for independent mea-
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sures. This means that there are several independent groups in which more than
one functional response variable is observed. Now, the objective is to check the
equality of the multivariate dimensional group mean functions. A novel approach
based on multivariate FPCA has been introduced, where the problem is reduced
to test multivariate homogeneity on the vectors of the most explicative principal
components.

These approaches are motivated to analyze the impact of quarantine policies
on air quality in the Abruzzo Region (Italy). The available data represent the
evolution of four air pollutants during two different periods of time (pre and during
home confinement) coming from several monitoring stations. Then, the first goal is
to detect if there are significant differences between the monitoring stations classified
by their geographic location (traffic and background stations). Secondly, we want
to study whether the level of each of the pollutants decreased during the lockdown.
The proposed functional ANOVA has proven to be beneficial to monitoring the
evolution of air quality before and during the lockdown tenure and to assessing
the homogeneity of groups, individuated according to the location of measuring
stations.

5.7 COVID-19 data imputation by multiple func-
tion on function principal component regres-
sion

The first notified case of SARS-CoV-2 was in December in Wuhan, in central China’s
Hubei province. Such has been the velocity of propagation of the virus that the
countries were not able to confront the illness, which has been reflected in a high
number of deceased people (Dong et al., 2020). Faced this catastrophic situation, all
governments in collaboration with the scientific community are attempting to make
correct decisions with the objective of mitigating the COVID-19 pandemic as soon
as possible. The countries adopt measurements more or less restrictive on people’s
life according to the predictions made by the statistical models. However, the good
performance of these models depends on the quality of the data, which is not usually
really satisfactory during a pandemic. Specially, it is habitual to find situations
where the data are incomplete. For instance, see the case that motivates this work:
a modification in the way of registering data provoked missing values in hospitalized
and intensive care curves during the first wave of COVID-19 in several Spanish
autonomous communities. In order to solve this problem, we propose a principal
components multiple function-on-function regression model for the imputation of
missing data. This approach enables to forecast the functional responses (the curves
of hospitalized and intensive care people) from multiple functional predictors (the
curves of positive cases, deaths and recoveries). Note that to obtain the predictions
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of these ACs, it is necessary to estimate the model by means of a training sample
(rest of ACs) whose information is entirely known beforehand.

This functional linear regression model has displayed a suitable behaviour for the
training sample, since the similarity between observed and forecasted trajectories
is well for both functional responses. With regard to the predictions for the ACs
that changed the way of recording, the model captures the trend of the curves up to
the change. Thus, the imputation represents the temporal evolution of these ACs
if they would not have modified the mode of data registering. Likewise, a canonical
correlation analysis based on the first principal component scores has been carried
out in order to analyze how the hospital occupancy rate (number of hospitalized
people and intensive care units admissions) is connected with the illness response
(number of positive cases, deaths and recovered people). We have showed that
both groups of variables are highly correlated each other, being the first canonical
variable a good overall predictor of the opposite set of variables. In this sense, the
number of positives, deaths and hospitalized exhibited a larger predictive power
than the remainder one.
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Chapter 6

Conclusiones

6.1 Phase-type distributions for studying variabil-
ity in resistive memories

Uno de los principales problemas que presentan las distribuciones Tipo-fase es la
estimación de sus parámetros. El hecho de que no tengan una representación única
añade aún más dificultad al problema de la optimización. La solución más común
en la práctica es utilizar el algoritmo iterativo EM y comprobar la eficiencia del
ajuste. Esta técnica es aplicada para resolver un problema de gran interés dentro
del ámbito de la electrónica. En particular, la industria de los semiconductores
está centrada en el análisis de la variabilidad asociada al funcionamiento de las
memorias RRAM con el fin de entender mejor su comportamiento interno. Esta
variabilidad es traducida en diferentes corrientes, resistencias y voltajes que suelen
ser modelizados a través de la distribución Weibull. Esta distribución ha mostrado
unos buenos resultados, pero el desarrollo de memorias cada vez más sofisticadas ha
provocado que en los últimos años no consiga un ajuste tan deseable como cabŕıa
esperar, y por tanto, otra distribución debe ser considerada.

En este art́ıculo se introduce una nueva perspectiva que reemplaza la
metodoloǵıa actual y resuelve el problema de la falta de precisión. Como se ha
dicho, se propone un nuevo enfoque basado en las distribuciones Tipo-fase. Después
de los procesos de estimación y selección de parámetros a través del algoritmo EM,
se ha llegado a la conclusión de que la distribución Erlang es la mejor opción para
modelizar el voltaje de fallo (voltaje en el que se rompe el filamento). Esto significa
que el sistema interno de las memorias está gobernado por una distribución PH con
estructura Erlang en lugar de con una estructura general. Por tanto, se concluye
que el voltaje hasta que se rompe el filamento conductor sigue una distribución
Erlang. Desde el punto de vista f́ısico, una vez el filamento ha sido formado (fase

69



70 CHAPTER 6. CONCLUSIONES

1) sufre un proceso de degradación de una serie de fases bien diferenciadas (primer
parámetro de la distribución Erlang), siendo el voltaje medio de fallo el inverso del
segundo parámetro de la distribución. Después de un análisis exhaustivo se concluye
que el enfoque propuesto logra mejores resultados que la distribución Weibull. Por
tanto, se espera que este marco teórico juegue un papel importante en el análisis
experimental de datos procedentes de las RRAM de aqúı en adelante.

6.2 A Complex Model via Phase-Type Distribu-
tions to Study Random Telegraph Noise in Re-
sistive Memories

Muchas aplicaciones reales requieren el análisis de sistemas cuyo comportamiento
depende de varios macro-estados que evolucionan en el tiempo. Aunque estos macro-
estados son observables, las fases internas no son conocidas de antemano. Conocer
el comportamiento interno es esencial para entender cómo funcionan estos sistemas
en la práctica. Normalmente, las cadenas de Markov son aplicadas para modelar
procesos estocásticos, asumiendo que la distribución exponencial es la mejor opción
para ajustar el tiempo de permanencia en cada nivel. Desgraciadamente, a veces
esta metodoloǵıa no logra un ajuste preciso y por tanto, otra metodoloǵıa debe
ser considerada. A este respecto, en este trabajo se introduce un novedoso proceso
estocástico considerando el comportamiento interno de los macro-estados, en los
cuales, el tiempo de permanencia en cada uno es modelizado a través de una dis-
tribución Tipo-fase dependiendo el tiempo observado inicial. Asumimos que cada
macro-estado está compuesto por múltiples estados internos. Este nuevo modelo
es construido en régimen estacionario y transitorio, y además, se obtienen algunas
medidas asociadas haciendo uso del análisis matricial, la transformada de Laplace
y una serie de algoŕıtmicos que son dados a lo largo del trabajo. Un resultado
importante acerca de este modelo es que no se cumplen ni la propiedad de la homo-
geneidad ni la de la Markovianidad, aunque ambas śı son verificadas para el proceso
interno incrustado.

Esta metodoloǵıa ha sido aplicada en el contexto de las memorias RRAM para
modelizar las señales de Ruido Telegráfico Aleatorio (RTN) que son producidas
dentro de las mismas memorias cuando están funcionando. Desde el punto de vista
electrónico, es importante analizar las fluctuaciones de corriente entre niveles y el
tiempo de permanencia en cada uno de estos niveles. Por un lado, los modelos de
Markov ocultos son propuestos para determinar el número de niveles y substituir las
técnicas gráficas empleadas hasta ahora en el sector. En cuanto a la modelización
de la señal, los modelos de Markov no son un buen candidato cuando la señal es
lo suficientemente larga. Expertos de esta área suelen considerar trozos de señales
y analizarlas por separado, pero de esta manera se está ignorando la estructura de
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dependencia y las posibles relaciones entre las distintas partes. En este sentido,
se aplica la metodoloǵıa propuesta en este trabajo, obteniéndose que el tiempo de
permanencia en cada nivel sigue la distribución Tipo-fase. Este resultado es de gran
interés porque arroja luz sobre el proceso interno de las memorias. En particular, se
muestra que un espacio latente de señales RTN largas está compuesto por múltiples
estados. Por tanto, se pone de manifiesto que este enfoque, el cual se puede utilizar
para otras memorias, es un buen candidato para reemplazar los actuales análisis
estad́ısticos llevados a cabo en este campo.

6.3 Linear Phase-Type probability modelling of
functional PCA with applications to resistive
memories

Ante la motivación de caracterizar y simular los procesos estocásticos asociados
con las memorias RRAM, en este trabajo se introduce una nueva clase distribu-
ciones llamada distribuciones Tipo Fase Lineal (LPH). Estas distribuciones han
sido desarrolladas estudiándose importantes caracteŕısticas como la densidad o las
propiedades de clausura. Además, su estructura algebraico-matricial facilita la pos-
terior implementación de los resultados. Bajo estas propiedades, se demuestra que
ciertas transformaciones de las distribuciones LPH pertenecen a la misma clase.
Como consecuencia, si las componentes principales son LPH distribuidas, entonces
la expansión de Karhunen-Loève proporciona que la distribución del proceso en
cada instante de tiempo sigue una distribución PH, y por tanto, la distribución
unidimensional del proceso sigue una distribución LPH.

Estas distribuciones permiten modelar las componentes principales de forma
algebraico-matricial cuando los procesos son representados de manera precisa a
través del FPCA basado en la expansión de K-L. Ajustar la distribución de proba-
bilidad de las componentes principales es crucial para conocer la evolución aleatoria
del proceso.

Estos resultados han sido aplicados para ajustar el comportamiento de las
RRAM. En este caso, solo se ha necesitado una componente principal y la repre-
sentación expĺıcita de la distribución LPH ha sido dada para el proceso estocástico
en cada punto.

6.4 New Modeling Approaches Based on Varimax
Rotation of Functional Principal Components

El Análisis de Componentes Principales Funcional es una técnica que permite ex-
plicar los principales patrones de variación en datos funcionales. El problema ad-
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junto en muchas situaciones es que la interpretación de las componentes principales
no es siempre sencilla, especialmente, en aquellas aplicaciones donde la mayor parte
de la varianza explicada recae sobre una o dos componentes a lo sumo. Entonces,
una solución seŕıa aplicar algún tipo de rotación en las autofunciones con el fin de
sintetizar la estructura factorial y redistribuir la variabilidad entre las componentes.
Desde esta perspectiva, la rotación Varimax es sin lugar a dudas la más famosa por
sus propiedades y simpleza. El principal inconveniente de la rotación Varimax es
que no es capaz de retener las dos caracteŕısticas fundamentales del FPCA: ortogo-
nalidad de las autofunciones e incorrelación de las puntuaciones de las componentes.
Hasta la fecha, solo existen dos mecanismos para realizar la rotación en FPCA, pero
ninguna de ellas son aplicadas directamente a las autofunciones. Por un lado, uno
de los métodos consiste en rotar la matriz que contiene los valores de las autofun-
ciones en un conjunto de nodos (R1). Por otro lado, el segundo método rota los
coeficientes de las autofunciones después de considerar la expansión básica de las
curvas (R2). En ambos procedimientos, la ortogonalidad es mantenida, pero las
puntuaciones rotadas son correladas.

En el presente art́ıculo, proponemos dos nuevos enfoques basados en la rotación
Varimax considerando la equivalencia entre el FPCA y el PCA tras una transfor-
mación de la matriz que contiene los coeficientes básicos de las curvas. El primero
está basado en la rotación de la matriz de autovectores, el cual garantiza la ortog-
onalidad de los ejes pero no la incorrelación de las puntuaciones (R3). El segundo
rota las cargas de la matriz de las componentes estandarizadas, donde las com-
ponentes rotadas siguen siendo incorreladas pero los ejes no son ortogonales (R4).
Tras un estudio de simulación profundo, se concluye que (R3) proporciona un ajuste
más preciso en comparación con los otras rotaciones con las que comparte las mis-
mas caracteŕısticas (R1 y R2). Además, es más robusta con respecto al número de
observaciones en tiempo discreto de las curvas muestrales. Finalmente, combinando
(R3) y (R4), se ha interpretado el comportamiento y la evolución del número de
casos positivos por COVID-19 en las comunidades autónomas españolas durante la
primera ola de la pandemia en el páıs. Se esperan que estos nuevos procedimientos
sean bienvenidos en futuras investigaciones en cualquier área del conocimiento para
estudiar la estructura de variabilidad de un conjunto de datos funcional.

6.5 Homogeneity problem for basis expansion of
functional data with applications to resistive
memories

La motivación de este trabajo radica en dar respuesta al problema sobre si exis-
ten diferencias estad́ısticamente significativas en la distribución de probabilidad de
más de dos muestras independientes de curvas. En particular, nos centramos en la
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situación en la que se dispone de una variable de respuesta funcional y una variable
categórica que forma los grupos asociados con las muestras independientes. Este
diseño es claramente abordado a través del análisis de la varianza funcional. Aunque
esta técnica es totalmente reconocida y empleada en muchas áreas del conocimiento,
la naturaleza funcional de la variable dependiente (las muestras son curvas en lugar
de vectores) dificulta el estudio. En la literatura se encuentran disponibles algunos
enfoques para resolver la cuestión planteada cuando las muestras son generadas por
un proceso Gaussiano. En este caso, el problema de la homogeneidad es reducido a
evaluar la igualdad de las funciones media de los grupos. Asimismo, técnicas boot-
strap son también propuestas para cuando no se verifica el supuesto de normalidad.

A este respecto, se desarrollan dos nuevos procedimientos asumiendo la ex-
pansión básica de las curvas. El primer método se basa en aplicar un análisis
de la varianza multivariante sobre la matriz de coeficientes básicos, mientras que el
segundo consiste en reducir la dimensión del problema utilizando el FPCA y aplicar
los test MANOVA sobre los vectores de las puntuaciones de las componentes más
explicativas. Se proporcionan soluciones paramétricas y no paramétricas según si
se verifican o no las condiciones clásicas del MANOVA. Asimismo, se ha llevado
a cabo un amplio estudio de simulación para estudiar el buen funcionamiento de
estas dos nuevas metodoloǵıas. El estudio ha revelado que tanto el tamaño mues-
tral como el parámetro de dispersión tienen una alta influencia en el desempeño de
los test, pero en general, ambos enfoques logran buenos resultados para los diseños
paramétricos y no paramétricos. Además, estos enfoques han sido utilizados para
analizar la variabilidad que hay detrás del funcionamiento de las memorias RRAM.
En particular, se aborda el problema de si el tipo de material y grosor empleado
en los procesos de fabricación de las memorias, juegan un papel importante en el
funcionamiento de las RRAM, cuyo comportamiento es estocástico.

Finalmente, se hace hincapié sobre el gran interés que puede despertar el en-
foque de las componentes principales en aplicaciones donde la dimensión de la base
es grande y el tamaño de la muestra es pequeño. En muchas ocasiones, el problema
FANOVA podŕıa ser reducido a un simple MANOVA para las primeras q compo-
nentes principales, siendo q bastante pequeño.

6.6 Detecting changes in air pollution during the
COVID-19 pandemic through Functional Data
Analysis

Este trabajo aborda el problema del ANOVA funcional desde dos marcos teóricos
diferentes. El primero se ocupa de la situación en la que se dispone de datos fun-
cionales repetidos de una variable, tras someter a los sujetos a diferentes condiciones
o tras medirles la información en distintos periodos de tiempo. Concretamente, se
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trata el problema donde el objetivo es comprobar la igualdad de funciones medias
medidas en dos condiciones o instantes diferentes. Ante este escenario, se extiende
los estad́ısticos ya disponibles en la literatura considerando la expansión básica de
las curvas. La segunda cuestión que concierne al actual art́ıculo está centrada en
resolver el problema del ANOVA funcional multivariante para medidas independi-
entes. En este diseño se trabaja con varios grupos independientes, definidos por una
variable categórica, en los que se observan más de una variable de respuesta fun-
cional. Entonces, el objetivo es evaluar la igualdad de los vectores de las funciones
media de los grupos. Para tal propósito, se ha introducido un novedoso enfoque
basado en el FPCA multivariante, donde el problema se reduce a aplicar los test
de homogeneidad multivariante en los vectores de las componentes principales más
explicativas.

Ambos enfoques vienen motivados con el fin de analizar el impacto que han
tenido las poĺıticas de confinamiento en la calidad del aire en la Región de Abruzzo
(Italia). Los datos disponibles representan la evolución temporal de cuatro contam-
inantes durante dos peŕıodos de tiempo (antes y durante el confinamiento domicil-
iario). Estos datos han sido recogidos por varias estaciones de monitoreo. Por tanto,
el primer objetivo es detectar si existen diferencias significativas entre las estaciones
de monitoreo clasificadas según su localización geográfica (estaciones situadas en
zonas con mucho tráfico o en las afueras). En segundo lugar, se quiere estudiar si
el nivel de cada uno de los contaminantes se redujo durante el periodo de confi-
namiento. Los métodos propuestos han resultado ser beneficiosos para monitorear
la evolución de la calidad del aire antes y durante el confinamiento, aśı como para
evaluar la homogeneidad de los grupos, individualizados según la ubicación de las
estaciones de medición.

6.7 COVID-19 data imputation by multiple func-
tion on function principal component regres-
sion

El primer caso notificado de SARS-CoV-2 fue en Diciembre en Wuhan, en la provin-
cia china de Hubei. Tal ha sido la velocidad de propagación del virus que los páıses
no han sido capaces de hacer frente a la enfermedad, lo cual se ha visto refle-
jado en un alto número de fallecidos en todo el mundo (Dong et al., 2020). Ante
esta catastrófica situación, todos los gobiernos en colaboración con la comunidad
cient́ıfica están intentando tomar decisiones correctas con el objetivo de frenar la
pandemia lo antes posible. Los páıses adoptan medidas más o menos restrictivas
en la vida de las personas según las predicciones que obtienen a través de los mod-
elos estad́ısticos. Sin embargo, el buen desempeño de estos modelos depende de
la calidad de los datos, que no suele ser muy satisfactoria en épocas de pandemia.



75

Especialmente, es habitual encontrar situaciones en los que los datos estén incom-
pletos. Por ejemplo, véase el caso que motiva este trabajo: una modificación en
el cambio de registro de los datos provocó valores faltantes en las curvas de per-
sonas hospitalizadas y en cuidados intensivos durante la primera ola de COVID-19
en varias comunidades autónomas españolas. Con el fin de resolver este problema,
se propone un modelo de regresión función-sobre-función múltiple en componentes
principales para la imputación de datos faltantes. Este enfoque permite predecir las
respuestas funcionales (curvas de personas hospitalizadas y en cuidados intensivos)
a partir de múltiple predictores funcionales (las curvas de casos positivos, fallecidos
y recuperados). Téngase en cuenta que para obtener las predicciones de estas comu-
nidades, es necesario estimar el modelo a través de una muestra de entrenamiento
(el resto de comunidades) cuya información es totalmente conocida de antemano.

Este modelo de regresión lineal funcional ha mostrado un comportamiento ade-
cuado para la muestra de entrenamiento, ya que las trayectorias observadas y
predichas son bastantes similares para ambas respuestas funcionales. Con respecto
a las predicciones para aquellas comunidades que cambiaron la forma de registro, el
modelo captura la tendencia de las curvas hasta el cambio mencionado. Por tanto,
la imputación representa la evolución temporal de estas comunidades si ellas no
hubieran modificado el modo de registro. Asimismo, un análisis de correlaciones
canónicas basado en las puntuaciones del primer componente principal ha sido lle-
vado a cabo para analizar la relación entre la tasa de ocupación hospitalaria (número
de personas hospitalizadas y en cuidados intensivos) y la respuesta de la enfermedad
(número de positivos, fallecidos y recuperados). Se ha mostrado que ambos grupos
de variables están altamente correlados entre śı, siendo la primera variable canónica
un buen predictor para el conjunto de variables opuesto. En este sentido, el número
de positivos, fallecidos y hospitalizados exhiben un poder predictivo más importante
que el resto.
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Open research lines

We briefly describe the main current research lines in which we are working in
keeping with the results and conclusions obtained throughout this thesis.

� Appendix A1. Sometimes the fitting by the PH distributions presents cer-
tain weaknesses in distribution tails, or even, being suitable the adjustment,
the number of parameters to be estimated is really high. In this sense, a solu-
tion is to develop a new methodology based on the mixture of PH distributions.
A new distribution called the multiple cut-point phase type distribution will
be introduced. This new distribution will enable to reduce the number of
parameters in the estimate. For instance, if only one cut point is required, the
number of parameters to estimate would be three in an Erlang distribution
(the value of the cut point and the value for each Erlang distribution). Several
measures such as the Laplace transform and therefore the moments will be
studied. The EM-algorithm will be considered for the estimation. A parallel
study will be conducted for the discrete case.

� Appendix A2. Neither homogeneity nor Markovianity are verified for the
macro-state model developed in the current work. The objective is to develop
new non-homogenous Markov processes and semi Markov processes with PH
distributions. Afterwards, the models would be compared.

� Appendix A3. So far, the RRAM’s set and reset processes have been tackled
separately in the literature. However, there is a dependence structure between
each other, since a set cycle takes place once the reset cycle has finished and
vice versa. Then, the efforts will be focused on the joint modeling of reset-set
cycles by using mixed multivariate ARIMA-FPCA models.

� Appendix A4. In this work, two new Varimax rotation for functional data
have been introduced. These approaches are based on the equivalence between
FPCA and PCA of a transformation of the matrix of basis coefficients. This
result can be generalized for different types of rotation such as the oblique
rotations.
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� Appendix A5-A6. A novel approach based on FPCA is proposed in the
currents articles to address the FANOVA problem for independent groups,
both for the univariate and for multivariate design. These methodologies will
be extended for repeated measures to solve current problems in biomechanics.
In fact, the first results have been obtained for solving the two-way FANOVA
problem with repeated measures in one of the categorical predictors. This
methodology has been applied to test if there are significant statistical dif-
ferences between gait curves of children going to school by using trolleys or
backpacks with a considerable load (data from Sport and Health Institute of
the UGR). This work is currently being written and will be submitted for
publication soon.

� Appendix A7. The imputation of the missing data for each functional re-
sponse variable has been carried out separately. This fact is ignoring possi-
ble relationships between the response variables. Therefore, one of the first
subject to address in the near future is the generalization of the function-on-
function models for a multivariate scenario.
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first months of the covid-19 pandemic in spain. Health Policy and Technology,
9(4):560–574, 2020.
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[169] A. J. Suárez and S. Ghosal. Bayesian estimation of principal components for
functional data. Bayesian Analysis, 12(2):311–333, 2017.

[170] C. Tang, T. Wang, and P. Zhang. Functional data analysis: An application
to covid-19 data in the united states, 2020.

[171] H. M. Taylor and S. Karlin. An Introduction to Stochastic Modeling. Academic
Press, 1994.

[172] A. Tobias. Evaluation of the lockdowns for the sars-cov-2 epidemic in italy
and spain after one month follow up. Science of The Total Environment,
725:138539, 2020.

[173] P. Todorovic. An Introduction to Stochastic Processes and Their Applications.
Springer-Verlag New York, 1992.

[174] S. Tokushige, H. Yadohisa, and K. Inada. Crisp and fuzzy k-means clustering
algorithms for multivariate functional data. Computational Statistics, 22:1–16,
2007.

[175] C. Torres-Mart́ın, C. Acal, M. El-Homrani, and A. C. Mingorance-Estrada.
Impact on the virtual learning environment due to covid-19. Sustainability,
13(2), 2021.



BIBLIOGRAPHY 93
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Abstract

Functional principal component analysis (FPCA) based on Karhunen-Loève (K-L) expansion allows
to describe the stochastic evolution of the main characteristics associated to multiple systems and
devices. Identifying the probability distribution of the principal component scores is fundamental to
characterize the whole process. The aim of this work is to consider a family of statistical distributions
that could be accurately adjusted to a previous transformation. Then, a new class of distributions,
the linear-phase-type, is introduced to model the principal components. This class is studied in
detail in order to prove, through the K-L expansion, that certain linear transformations of the
process at each time point are phase-type distributed. This way, the one-dimensional distributions
of the process are in the same linear-phase-type class. Finally, an application to model the reset
process associated with resistive memories is developed and explained.

1 Introduction

Among the electron devices with greater potential in the current microelec-
tronic industry landscape are Resistive Random Access Memories (RRAMs).
The number of indexed publications in this field has skyrocketed and therefore,
the attention of the academic community as well as the electronics companies’
development teams is fixed on them. The applications of these new devices
range from non-volatile memory circuits, security modules for cryptography and
neuromorphic computation [10].

The stochastic nature of the physical mechanisms behind RRAM resistive
switching (RS) operation makes the statistical modelling of the inherent de-
vice stochasticity essential. The key issue here rests upon the need to correctly
explain variability in the current/voltage curves associated with long series of
successive RS cycles [3, 11, 13, 1], i.e., cycles of continuous reset and set pro-
cesses. If the device charge conduction is filamentary, the most common case,
RS cycles get translated into rupture and rejuvenation of conductive filaments
that dramatically changes the device resistance [7]. The modelling of the current
versus voltage curves in these devices is of most importance for circuit design.
Therefore, in this context, and taking into consideration that the experimental
data we have are curves, an approach based on functional data analysis (FDA)
can be applied in order to accurately model resistive memory characteristics.

A deep description of the main FDA methods with applications in different
fields was developed in [12]. Functional principal component analysis (FPCA)
based on Karhunen-Loève (K-L) expansion provides an orthogonal representa-
tion of an stochastic process in terms of uncorrelated random variables, called
principal components (p.c.’s). The K-L expansion can be truncated so that the
process is approximated in terms of the most explicative p.c.’s [2]. A three step
algorithm for estimating FPCA from the reset curves (current versus voltage
curves) of a sample of RRAM cycles was proposed in [3]. This new type of
modelling can be very attractive from the circuit simulation viewpoint because
it allows to describe the main characteristics of these devices, such as variabil-
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ity. Making use of this technique, the implementation of variability in compact
models for RRAMs can be greatly simplified.

Nevertheless, identifying the probability distribution of the principal compo-
nents is fundamental to characterize the whole process through the K-L expan-
sion. In previous studies, several authors have considered different transforma-
tions and used them as a starting point, they have fitted different distributions
successfully. However, to find the appropriate transformation and its probability
distribution is not an easy task. The aim of this work is to consider a family
of statistical distributions that could be accurately adjusted for any transforma-
tion. In this respect, a new methodology is developed by considering phase-type
distributions (PH) that were applied in [1, 11] for modelling the reliability func-
tions associated to RRAM reset points, among others parameters. This class of
distributions have been also considered in other multiple science fields such as
queueing theory and reliability ([16], [14], [15]). The properties of this distribu-
tion class are very interesting and allow to achieve results in a well structured
form. The developments and results can be expressed in an matrix-algorithmic
and computational way. One of the main advantages of this class is that any
non-negative distribution can be approximated as needed through a PH distribu-
tion [9]. In order to fit this distribution, the p.c.’s scores should be transformed
previously to positive values. In fact, in this research, it is proved that for several
transformations, the fit obtained is more accurate by considering PH distribu-
tions than any other distribution. A new class of distributions are introduced,
the linear-phase-type distributions (LPH) defined as variables for which there is
a linear transformation that is PH distributed. This class is studied in detail in
order to prove, through K-L expansion, that certain linear transformations of
the process at each time point is PH distributed too.

In addition to this introduction, the paper has three other sections. The new
LPH distributions and their main properties are studied in detail in Section 2.
Then, the one-dimensional LPH distributions of the process are obtained from
the LPH distributions of the p.c.’s through the K-L expansion. Finally, the
proposed methodology is applied on different samples of current/voltage curves
associated to RRAM devices in Section 4.

2 LPH modelling

In reliability, computer and electronic engineering, physics, queues theory and
other fields, multiple probability distributions are frequently used, including the
exponential, Erlang and Weibull distributions. Most of them involve calculations
that may become unmanageable, due to the analytic expressions required. PH
play an important role in this respect. This type of distributions enables us to
express the main results in an algorithmic and computational way. This class of
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distribution was described in detail in [9].

2.1 PH distributions

Definition 1 A nonnegative random variable X is a PH distribution if its reli-
ability function is given by

R (x) = P {X > x} = αeTxe ; x ≥ 0,

where α is a substochastic vector of order m, T a subgenerator of order m (ma-
trix m ×m where all diagonal elements are negative, all off-diagonal elements
are non-negative, invertible and all row sums are non-positive) and, throughout
the paper, e is a column vector of ones with appropriate order.

A PH distribution can be defined as the time up to the absorption in an
absorbent Markov chain with initial distribution and generator for the transient
states α and T, respectively. In this case, (α,T) is called the representation of
the PH distribution.

Multiple good properties of these distributions are described in [9]. One
of the main properties is that of PH distributions can approximate arbitrarily
closely any probability distribution defined on the nonnegative real line.

2.2 LPH distributions

A new probability distribution class is defined in this subsection. This class
is called the linear-phase-type distribution class (LPH). A LPH distribution is
defined as follows.

Definition 2 A random variable X follows a LPH distribution if Y = a+ bX is
PH distributed for a and b (b 6= 0) in R.

If the representation of Y is (α,T) then the reliability function of X (LPH)
is

RX (x) = P (X > x) =

{
βeSxe ; for x > −a

b ; b > 0
1− βeSxe ; for x < −a

b ; b < 0
,

where β = αeTa, S = bT and e is a column vector with appropriate order.
In this case, will we denote the 4-tuple (a, b,β,S) as the representation of the
corresponding LPH.

The density function of this class of distributions is given by

fX (x) =

{
−βeSxS0 ; for x > −a

b ; b > 0
βeSxS0 ; for x < −a

b ; b < 0
,
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1 where S0 is the column vector -Se=-bTe=bT0.

The moment-generating function is given by MX (t) =

−β(S + It)
−1
e−(S+It)a/bS0, and then E [Xn] = ∂nMX(t)

∂tn

∣∣∣
t=0

.

From this expression the first and second moments are

E [X] = −βe−Sa/bS−1e− a
b

E
[
X2
]

= 1
b2

[
2βe−Sa/bS−1

(
1
b2 S−1 + a

b I
)
e + a2

]
.

Consequently,

V ar (X) =
1

b4

[
2βe−Sa/bS−2e−

(
βe−Sa/bS−1e

)2
]
.

Let’s see that the finite addition of independent PH distributions or
homothecy of PH distributions is PH distributed.

Result 1 (Summation of independent PH distributions)
Let {Yi; i = 1, . . . , n} be a finite sequence of independent PH distributions with
representation (αi,Ti) for i=1,...,n. Then, the variable Wn =

∑n
i=1 Yi is PH

distributed with representation (ρn,Ln) given by ρn = (α1,0) and

Ln =




T1 T0
1 ⊗α2

T2 T0
2 ⊗α3

T3 T0
3 ⊗α4

. . .
. . .

Tn−1 T0
n−1 ⊗αn

Tn



,

where ⊗ is the Kronecker product defined as follows. Let A and B be two
matrices with order m×n and k× l respectively. Then, A⊗B is a matrix with
order mk × nl defined as (aijB).

Proof.
The proof of this result is developed through induction. It is well known that
the distribution of W2 is given by the convolution of Y1 and Y2. If we denote
to the distribution function of Yi as Fi then the distribution function of W2,
convolution of F1 and F2, denoted by ∗, is

1Throughout the paper, if A is a matrix then A0= -Ae being e a column vector of ones
with appropriate order
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W2 (t) = F1 ∗ F2 (t) =

∫ ∞

0

F1 (du)F2 (t− u) du.

It is well-known that the Laplace-Stieltjes transform of the convolution is
the product of the Laplace-Stieltjes transforms and that there is a biunivocal
relationship between the original distribution and its Laplace-Transform.

Given the distribution function of a PH distribution with representation
(αi,Ti), then its Laplace-Stieltjes transform is given by

F ∗i (s) = αi(sI−Ti)
−1

T0
i .

Then,

W ∗2 (s) = ρ2(sI− L2)
−1

L0
2 = (α1,0)

(
sI−T1 T0

1 ⊗α2

0 sI−T2

)−1(
0

T0
2

)

= (α1,0)

(
(sI−T1)

−1
(sI−T1)

−1
T0

1α2(sI−T2)
−1

0 (sI−T2)
−1

)(
0

T0
2

)

= α1(sI−T1)
−1

T0
1 ·α2(sI−T2)

−1
T0

2 = F ∗1 (s) · F ∗2 (s) .

We assume that Wn−1 =
n−1∑
i=1

Yi is PH-distributed with representation
(
ρn−1,Ln−1

)
. Given that Wn = Wn−1 + Yn and ρn =

(
ρn−1,0

)
and Ln =(

Ln−1 L0
n−1

0 T0
n

)
, then

W ∗n (s) = ρn(sI− Ln)
−1

L0
n =

ρn−1(sI− Ln−1)
−1

L0
n−1 ·αn(sI−Tn)

−1
T0
n = W ∗n−1 (s) · F ∗n (s) .

Corollary 1
Let {Xi; i = 1, . . . , n} be a finite sequence of independent LPH distributions
with PH-distributions associated given by {Yi = ai + bXi; i = 1, . . . , n} with
representation (αi,Ti) for i=1,...,n. Then, the variable Λn =

∑n
i=1Xi is LPH

distributed with representation

(
n∑
i=1

ai, b,ρne
Ln

n∑
i=1

ai
, bLn

)
.

Proof.

From result 1,
n∑
i=1

Yi = bΛn +
n∑
i=1

ai is PH with representation (ρn,Ln). Then,

Λn = 1
b

n∑
i=1

Yi− 1
b

n∑
i=1

ai is LPH with representation

(
n∑
i=1

ai, b,ρne
Ln

n∑
i=1

ai
, bLn

)
.
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Next, we show that a positive homothecy of a PH distribution is also PH
distributed.

Result 2
Let Y be a PH distribution with representation (α,T) then the variable γY
is PH distributed with representation (α, 1

γT) , being γ a non-negative real
number.
The proof of this result is immediate. Thus,

P (γY > t) = P (Y > t/γ) = αe
1
γTte ; t > 0.

Corollary 2
Let X be a LPH distribution with representation (a, b,β,S), then the variable

γX is LPH with representation
(
|γ| a, b · sgn(γ),β, 1

γS
)

, being γ a non-zero

real number, | · | the absolute value function and sgn(·) the sign function.

Proof.
If X is a LPH distribution with representation (a, b,β,S), then there exist a and
b such that Y = a+ bX is PH(α,T) where β = αeTa and S = bT.

Then, from Result 2 we have that any homothecy of a LPH distribution is
also LPH distributed.

� If γ > 0, γY = γa+ bγX is PH
(
α, 1

γT
)

.

Then,

γX is LPH with representation
(
γa, b,αeTa, bγT

)
≡
(
γa, b,β, 1

γS
)

.

� If γ < 0, −γY = −γa− b (γX) is PH
(
α, −1

γ T
)

.

Then,

γX is LPH with representation
(
−γa,−b,αeTa, bγT

)
≡

(
−γa,−b,β, 1

γS
)
.

Therefore γX is LPH distributed with representation
(
|γ| a, b · sgn(γ),β, 1

γS
)
.

Result 3 (Density of the LPH class)
The set of LPH distributions is dense in the set of probability distributions de-
fined on any half-line of real numbers.
Proof.
This theorem is proved from the classical result for PH distributions: the set
of PH distributions is dense in the set of probability distributions on the non-
negative half-line. Let W be a random variable defined on w > c for any real
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number c. It is immediate that W − c is defined on the nonnegative half-line.
Then, there exists a variable Y , PH distributed, so closed as desirable to W − c.
Therefore, the variable X = Y + c, which is LPH, approximates to the initial
variable W .
A similar reasoning can be done for the case when W is defined on w < c for
any real number c. In this case −W + c is defined on R+. Then, there exists a
variable Y , PH distributed, so closed as desirable to −W + c. For this case, the
variable X = −Y + c, which is LPH, approximates the initial variable W .

3 LPH modelling of functional PCA

Let X be a functional variable whose observed values are curves, and let us
assume that X = {X (t) : t ∈ T} is a second order stochastic process, contin-
uous in quadratic mean, whose sample functions belong to the Hilbert space
L2 (T ) of square integrable functions with the usual inner product 〈f, g〉 =∫
T
f (t) g (t) dt, ∀f, g ∈ L2 (T ) .
In order to reduce the infinite dimension of a functional variable and to ex-

plain its dependence structure by a reduced set of uncorrelated variables, mul-
tivariate PCA was extended to the functional case [6]. The functional principal
components (p.c.’s) are obtained as uncorrelated generalized linear combinations
of the process variables with maximum variance (Var). Then, the j−th p.c. score
is given by ξj =

∫
T

(X (t)− µ(t)) fj (t) dt, where the weight function or loading
fj is the value of the argument f(t) that maximizes de objective function with
the corresponding constraints

{
V ar

[∫
T

(X (t)− µ(t)) f (t) dt
]

subject to ‖f‖2 = 1 and
∫
f` (t) f (t) dt = 0, ` = 1, . . . , j − 1.

It can be shown that the weight functions are the eigenfunctions of the co-
variance operator C. That is, the solutions to the eigenequation C(fj)(t) =∫
C (t, s) fj (s) ds = λjfj(t), where C (t, s) is the covariance function and

λj = V ar[ξj ]. Then, the process admits the following orthogonal representa-
tion (K-L expansion):

X (t) = µ(t) +
∞∑

j=1

ξjfj (t) ,

with µ(t) being the mean function. This principal component decomposition can
be truncated providing the best linear approximation of the sample curves in the
least squares sense Xq (t) = µ(t) +

∑q
j=1 ξjfj (t) , whose explained variance is

given by
∑q
j=1 λj .

There are three main groups of rules for choosing the number of principal
components.
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The first one consists of ad hoc rules-of-thumb that work very well in prac-
tice. The most used chooses a cut-off of total variability, somewhere between
90 − 95%, and selects the smallest value of components for which this chosen
percentage is exceeded. A graphical procedure, named scree-graph, consists of
ploting the number of components against the eigenvalues and retaining the
number of components defining an ‘elbow’ in the graph.

The second type of rules is based on formal tests of hypothesis and makes
distributional assumptions, as multivariate normality, that are often unrealistic.
The Bartlett’s test to decide if the last eigenvalues are equal can be sequentially
used to find the number of components that are not noise.

The third group consists of statistically based rules, most of which do not
require distributional assumptions, based on computationally intensive methods
such as cross-validation and bootstrapping.

A detailed study on principal components selection rules can be seen in Chap-
ter 6 in [8].

The main objective of this work is to model the whole process from the
random principal components. Given that PH distributions are dense in the
non-negative probability distributions, we show that if the principal components
are LPH distributed with the same scale parameter, then the one-dimensional
distributions of the process are also LPH.

Corollary 3
Let us assume that each principal component ξj is LPH distributed with repre-
sentation (aj , b · sgn (fj(t)) ,βj ,Sj) for a real number t and j = 1, . . . , q. Then,
the centered process X(t)− µ(t) is also LPH distributed with representation




q∑

j=1

|fj (t)| aj , b,ρje
Lq

q∑
j=1
|fj(t)|aj

, bLq


 ,

with ρq = (α1,0) and

Lq =




1
|f1(t)|T1

1
|f1(t)|T

0
1 ⊗ α2

1
|f2(t)|T2

1
|f2(t)|T

0
2 ⊗ α3

. . .
. . .

1

|fq−1(t)|Tq−1
1

|fq−1(t)|T
0
q−1 ⊗ αq

1

|fq(t)|Tq



,

where |fj(t)| is the absolute value of fj(t).

Proof.
From Corollary 2, it is deduced that for a real number t,
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if fj (t) > 0 then fj (t) ξj is LPH with representation
(
fj (t) aj , b,βj ,

1
fj(t)

Sj

)
,

if fj (t) < 0 then fj (t) ξj is LPH with representation
(
−fj (t) aj , b,βj ,

−1
fj(t)

Sj

)
.

Then, from Corollary 1,
q∑
j=1

ξjfj (t) is also LPH.

4 Application

The devices employed in this paper are composed of a metal-oxide-semiconductor
stack whose metal electrode used was copper (200 nm thick), a dielectric 10 nm
thick (HfO2) and a bottom electrode made of /Si-n+. The resistive memories
were fabricated and measured at the Institute of Microelectronics of Barcelona
(CNM-CSIC). The variability of these devices is generated by an inherent
stochastic process that changes extremely the inner resistance of the device by
means of resistive switching physical mechanisms. The experimental data consist
of a sample of current-voltage curves corresponding to the reset-set cycles asso-
ciated with the formation and rupture of a conductive filament that shorts the
electrodes and changes drastically the device resistance. From the mathemat-
ical viewpoint, the main objective here is to determine the current probability
distribution at each voltage in the reset process by means of the K-L expansion
and the LPH distributions previously introduced .

In this study, we have 232 reset curves denoted by {Ii(v) : v ∈
[0, Vi−reset], i = 1, . . . , 232} with Vi−reset being the reset voltage. Before ap-
plying FPCA to characterize the whole process through the K-L expansion, we
must carry out some important previous steps proposed in [3]. Briefly, this ap-
proach consists in synchronising all curves in the same interval due to the reset
voltage is different for each curve, and using P-spline smoothing to reconstruct
all reset curves since we only have discrete observations at a finite set of current
values until the voltage reset for each curve. In this paper, the initial domain
was transformed in the interval [0,1] and a cubic B-Spline basis of dimension 20
with 17 equally spaced knots and penalty parameter λ = 0.5 was considered.
Figure 1 shows all the smoothed registered curves in the interval [0,1], denoted
by {I∗i (u) : u ∈ [0, 1], i = 1, ..., n}, and the estimation of the mean function
(red line).

Then, FPCA is estimated and the percentages of variance explained by the
first four p.c.’s are 99.42, 0.44, 0.08 and 0.04, respectively. Let us observe that
only the first p.c. explains more than 99% of the total variability of the process.
Hence, by considering the K-L expansion, principal component decomposition of
the registered reset curves can be truncated in the first term as follows: I∗1(u) =

I
∗
(u) + ξ∗1f

∗
1 (u), u ∈ [0, 1]. This approach can be used for circuit simulation in
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Figure 1: Sample group mean function (dashed red line) and all the P-spline
smoothed registered curves.

Distribution p-value K-S p-value Anderson-Darling LogL
PHD 0.11 0.054 18.11

Weibull 0.004 0.004 0.78
Normal 0.02 0.006 7.79
Cauchy < 0.001 < 0.001 -42.30

Table 1: Comparison among all distributions is considered. P-values of the
Kolmogorov-Smirnov and Anderson-Darling tests, and the value of the maximum
log-likelihood are showed for each distribution.
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this type of devices. Nevertheless, the probability distribution of the first p.c. is
unknown.

In order to fit a probability model to the scores of the first p.c. different
distributions were employed but none of them could be accepted (p-value asso-
ciated with Kolmogorov-Smirnov test was < 0.01 in all of them). Then, some
transformation is necessary. In this study, the LPH distributions associated
with the linear transformation 1 + 1000 × ξ∗1 is considered. The p.c. is multi-
plied by 1000 because the standard variation of the principal component is very
small, with minimum and maximum values of the component equal to 3.2e−04

and 7e−04, respectively. These facts produce a great number of phases in the
corresponding PH distribution estimated (more than 1000 produced exploding
effects). After that, all values were in [−1, 1] and then 1 is added (to consider
a PH distribution). Although the constant and slope values could be calculated
by maximum likelihood (we are working on it), in this paper they were found
ad hoc, taking into account that PHD are non-negative variables (the values of
the first p.c. are positives and negatives).

The EM algorithm was used for estimating the parameters of a PHD with m
transient stages and any internal structure for matrix T ([4][5]). This method-
ology has also been applied to estimate the parameters of the PH distributions
embedded in the study of the variability in resistive memories. The algorithm
is described in [1]. The optimum value was reached for 21 stages. Besides, in
order to prove that PHD is better than any other distribution, Weibull, Nor-
mal and Cauchy distributions were fitted as well. Their estimation by maxi-
mum likelihood are W (β = 4.4344, λ = 1.0897), N(µ = 0.9958, σ = 0.234) and
C(γ = 0.9252, δ = 0.1505), respectively. The results provided by all of them are
given and compared in Table 1. Thus, taking into account the logL value and
the p-values of the K-S and the Anderson-Darling tests, the best distribution
to get an accurate fit of the first p.c. score is the PH distribution. In fact, at
5% significance level, only the PH distribution can be accepted to model the
first p.c. score according to the p-values provided by the Kolmogorov-Smirnov
and Anderson-Darling tests. This conclusion can be achieved graphically. The
cumulative hazard rate (topleft), the density function (topright), the cumulative
distribution function (bottomleft) and the reliability function (bottomright) of
data with the fitting by means of PH, Weibull, Normal and Cauchy distribu-
tions are displayed in Figure 2. In order to sum up, we have proved that the
considered linear transformation of the first p.c. is PH distributed with repre-
sentation (α,T). Therefore, the first p.c. score can be modelled through a LPH
distribution with representation (1, 1000,β,S). Finally, the reset process I∗1(u)
is LPH distributed as well with representation
(
|f∗1 (u)| − 1000I

∗
(u)sgn (f∗1 (u)) , 1000sgn (f∗1 (u)) ,αe

T

(
1− 1000

f∗1 (u)
I
∗
(u)

)

,
1000

f∗1 (u)
T

)
.
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Figure 2: The cumulative hazard rate (topleft), the density function (topright),
the cumulative distribution function (bottomleft) and the reliability function
(bottomright) of experimental data with the fitting by means of PH, Weibull,
Normal and Cauchy distributions.
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5 Conclusions

A new probability distribution class with good properties, the LPH class, has
been introduced to model the principal components in a matrix and algorithmic
form. Multiple properties of this distribution class are developed, including
that the LPH class is dense in the probability distribution class defined on any
half-line of real numbers. Functional principal components analysis provides a
representation of a stochastic process through uncorrelated random variables
called principal components. It is of great interest identifying the probability
distribution of these components to analyse the random behaviour of the process.
In this work, it has also been proved that the process, characterized through the
K-L expansion, follows a LPH distribution at each point. The results have been
applied to model the stochastic behaviour of resistive memories. In this case, one
principal component is considered and the explicit representation of the LPH is
given for the stochastic process at each point.
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Abstract

Functional Principal Component Analysis (FPCA) is an important dimension reduction technique
to interpret the main modes of functional data variation in terms of a small set of uncorrelated
variables. The principal components can not always be simply interpreted and rotation is one of the
main solutions to improve the interpretation. In this paper, two new functional Varimax rotation
approaches are introduced. They are based on the equivalence between FPCA of basis expansion
of the sample curves and Principal Component Analysis (PCA) of a transformation of the matrix
of basis coefficients. The first approach consists of a rotation of the eigenvectors that preserves
the orthogonality between the eigenfunctions but the rotated principal component scores are not
uncorrelated. The second approach is based on rotation of the loadings of the standardized princi-
pal component scores that provides uncorrelated rotated scores but non-orthogonal eigenfunctions.
A simulation study and an application with data from the curves of infections by COVID-19 pan-
demic in Spain are developed to study the performance of these methods by comparing the results
with other existing approaches.

1 Introduction

Nowadays, the great advancement of technology makes it common to have high-
dimensional data associated with a large number of highly correlated variables.
Functional data is a type of high-dimensional data in which a large number of
observations of one or more variables are available at a continuous argument,
usually time, on a sample of individuals. Therefore, a sample of functional data
is a set of functions (curves, surfaces, etc.) that vary in a continuous argument
such as time. Examples of data of this type are given in very diverse areas such
as life sciences, environment, economics, chemometrics and electronic, among
others. Functional Data Analysis (FDA) deals with the statistical modeling of
this type of data. A detailed study of the main FDA methodologies as well as
relevant applications and computational aspects are described in the books by
[26, 25, 24, 10, 14].

The most common FDA technique is Functional Principal Component Anal-
ysis (FPCA) introduced by [9] as a generalization of the reduction dimension
multivariate technique PCA to the case in which the data are functions instead
of vectors. The first papers on this topic were framed in the theory of sec-
ond order stochastic processes with the Karhunen–Loève (KL) expansion being
the main tool. Thanks to this probabilistic result, the sample functions are
reconstructed in terms of a small set of uncorrelated variables called principal
components, whose interpretation allows to explain the main modes of variation
in the functional data set. The theoretical aspects related with the properties,
asymptotic theory and inference results of FPCA in the general framework of
Hilbertian random functions were deeply studied in [8, 23, 12].

Most of the functional data can not be observed directly so that the latent
stochastic process of interest must be reconstructed from discrete observations of
each sample curve on a fixed or random time grid, which can be dense or sparse
and different for the sample individuals. One usual form of reconstructing the
functional form of sample curves is by an expansion in terms of basis functions
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such as Fourier, B-splines or wavelets [3, 4, 6, 1, 5, 19]. The equivalence between
FPCA of basis expansion of functional data and certain multivariate PCA in
terms of the basis coefficients data matrix was studied in [23]. On the other hand,
different Bayesian approaches to FPCA were considered in [31, 30]. In addition,
nonparametric methods to perform functional principal components analysis for
the case of irregularly spaced longitudinal data (sparse) were developed [16, 20].

The problem inherent to many applications is that interpreting the compo-
nents is not always straightforward. It is known that the greatest contribution
in the structure of a functional principal component is given by the process vari-
ables associated with the greatest values of the corresponding weight curve at
certain time points [11]. In some cases the principal components are difficult to
interpret because the estimated weight functions have a lot of variability and
lack of smoothness. One way to solve this problem is based on penalizing the
roughness of the weight functions. Several penalized FPCA approaches were
developed to improve the estimation of the principal weight functions in the
case of smooth curves observed with error [28, 7, 2]. In other cases, the first
principal component explains a very high percentage of the total variance and
is a straightforward average or size effect. These problems are usually solved by
a rotation of the weight functions that simplifies the component structure and
therefore makes the interpretation easier. The main drawback of rotation is that
it is not able to retain the two crucial properties of FPCA: uncorrelatedness of
the components and orthogonality of the weight functions. The most popular
rotation method is Varimax [17]. This criterion has been extended to FPCA in
two different way: the first one is based on Varimax rotation of the matrix of
basis coefficients of the weight functions, and the other one is based on Varimax
rotation of the matrix of values of the weight functions in a grid of equally spaced
time points [26]. Varimax criterion could be unhelpful when data have a strong
seasonal behaviour leading to a periodic structure as well as trends and isolated
features in the weight curves. This is because Varimax rotation does not take
into account the dependence structure in functional data at nearby time points.
In order to solve this problem, a functional factor rotation based on canonical
correlation was introduced in [18] as a means of extracting nearly-periodic di-
rections in the data (principal periodic components). In this paper, two new
approaches for rotation of FPCA are introduced. Both are based on the equiv-
alence between FPCA and multivariate PCA of certain transformation of the
matrix of basis coefficients of the sample curves [22]. On the one hand, Vari-
max rotation of the eigenvectors provides orthonormal rotated eigenfunctions
but the associated principal components are not uncorrelated anymore. On
the other hand, Varimax rotation of the loadings associated with the standard-
ized principal components yields uncorrelated components with non-orthogonal
eigenfunctions.
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After this introduction, theoretical aspects related with the Varimax func-
tional rotation are developed in Section 2. The behaviour of the proposed rota-
tion methodologies is tested on a simulation study in Section 3, where the results
are compared with other functional Varimax approaches previously developed
in the literature. An application on COVID-19 infection curves is developed in
Section 4. Finally, a detailed discussion of the results is given in Section 5.

2 Rotation in Functional Principal Component
Analysis

Let us begin by a brief summary on Varimax rotation of multivariate PCA before
introducing the functional Varimax rotation approaches.

2.1 Rotation in PCA

The rotation of principal components has its origin in the Factor Analysis (FA)
whose goal is to find out the dependence structure among several variables by
expressing them in terms of a small number of non-observable latent variables
called factors. The aim of rotation of the matrix of factor loadings (multiplication
by an orthogonal matrix R) is to facilitate the interpretation so that each factor
is associated with a small block of observed variables. That means that the
columns of the rotated loading matrix have high values for several variables and
low for the remainder (the most elements either close to zero or far from zero,
and with as few as possible values taking intermediate values). This approach
gives raise to different criteria for defining the type of rotation which is designed
to simplify the structure of loadings. Varimax, quartimax and promax are the
most usual orthogonal methods meanwhile oblimax provides oblique factors by
allowing R to be not necessarily orthogonal. The contributions of this paper are
based on Varimax criterion which is the most applied in practice thanks to its
good interpretation results. This type of rotation can be extended to PCA in
order to simplify the structure of the problem and to facilitate the interpretation.

Formally, let X be a data matrix associated with a sample of size n of p
random variables (X1, . . . , Xp). Let us suppose without loss of generality that
the variables are centered. PCA can be applied by means of Singular Value
Decomposition (SVD), that is, X = UDV T where U is a (n×p) unitary matrix,
D is a (p×p) diagonal matrix whose principal diagonal is formed by the singular
values and V is a (p× p) orthogonal matrix whose columns are the eigenvectors
of the covariance matrix of X given by Σp×p = XTX/(n − 1) = V ΛV T , with
Λ being a diagonal matrix whose elements are the eigenvalues of Σ. Then, the
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following principal component representation is obtained:

X = UD × V T = ZV T ,

where Z = UD are the principal components (PCs) scores and the columns of
matrix V are also called principal directions or axes of the PCA. It is well known
that the eigenvectors associated with different PCs are orthogonal (V TV = I)
and that all the p unrotated components are uncorrelated ZTZ/(n − 1) = Λ.
On the other hand, the standardized PC scores (uncorrelated scores with unit
variance) denoted by Z̃ are given by Z̃ = ZΛ−1/2 = ZD−1

√
n− 1 = U

√
n− 1,

so that the data matrix is expressed as X = Z̃∆T , with ∆ = V D/
√
n− 1 being

the loadings associated with the standardized PCs which are eigenvectors scaled
by the corresponding singular values.

There are two different ways to perform the rotation that provide different
interpretation results. Thus, by considering the first q < p p.c’s, X can be
approximated by means of SVD as Xq = UqDqV

T
q and the orthogonal rotation

matrix R can be inserted through the following two possibilities:

1. Xq = (UqDqR)(RTV Tq ) = ZRq V
TR
q .

2. Xq = (UqR)(RTDqV
T
q ) = Z̃Rq ∆TR

q .

One is based on rotating the loadings of PCs (eigenvectors) and the other
in rotating the loadings of the standardized PCs (eigenvectors scaled by the
singular values). In the first option the new scores provided by the rotation will
not be uncorrelated anymore although the axes do will remain orthogonal. This
is not how PCA is usually understood and applied. For that reason, it is quite
common not to call them anymore rotated PCs but only rotated components.
By contrast, in the second option the rotated loadings are not orthogonal axes
but the rotated scores continue to be uncorrelated. Any of these approaches
can be considered but in order to interpret the results it is important to take
these properties into account. In fact, and according to our research, even the
experts in this field do not reach an agreement about what method is better or
what approach must be considered more often in practice. Therefore, it seems
reasonable to conclude that there is not an ideal method for rotating the PCs
and any of them can be employed. Another important aspect has to do with
the amount of variance explained by the rotated components. After applying
the Varimax rotation, the variance explained by the first q components remains
unchanged and gets redistributed among the rotated components so that the
quantities are not arranged in descending order.

Let us remember that in Varimax rotation the matrix R is computed by
maximizing the variance of the coefficients that define the effect of each factor
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on the observed variables. Then, in PCA R is chosen to maximize the variability
of the squares elements of the rotated matrix of eigenvectors/loadings. In any
case, the amount of explained variance by each rotated component is determined
by the following formula:

V TRk =
δk∑q
k=1 δk

× V Tq,

where δk is the kth value of the diagonal of ZR
T
ZR and V Tq is the proportion

of total variance captured by the first q PCs. Let us observe that the criterion of
rotating the loadings provides the same proportion of variance explains by each
one of the rotated standardized components. This fact is due to the properties
of the matrix U from the SVD analysis.

2.2 Rotation in Functional PCA

For many reasons, FPCA is the basic tool in FDA. It is an extension of PCA
which is crucial to reduce the infinite dimension of functional data and to explain
the variability and dependence structure of functional variables in terms of a
reduce set of uncorrelated variables called functional PCs [9].

Let {xi(t) : t ∈ T, i = 1, . . . , n} be a size n sample of curves associated
with a second order and quadratic mean functional variable X defined on a
probabilistic space (Ω,A, P ), whose sample curves belong to the space L2(T ) of
square integrable functions on a real interval T , with the natural inner product
defined as

〈f, g〉 =

∫

T

f(t)g(t) dt , ∀f, g ∈ L2[T ].

Let us also assume without loss of generality that the functional variable X is
centered.

The principal components are uncorrelated generalized linear combinations
with maximum variance (Var). In general, the j -th principal component score
is given by

zij =

∫

T

xi (t) fj (t) dt, i = 1, . . . , n,

where the weight function (loading) fj is obtained by maximizing the variance
{
Maxf V ar

[∫
T
xi (t) f (t) dt

]

r.t. ‖f‖2 = 1 and
∫
f` (t) f (t) dt = 0, ` = 1, . . . , j − 1.

This problem is solved in term of the eigenanalysis of the sample covariance
operator C. That is, the solutions to the second order integral equation

C(fj)(t) =

∫
c (t, s) fj (s) ds = λjfj(t),
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where c (t, s) is the sample covariance function and λj = V ar[zj ]. Then, the
following principal component decomposition of the sample curves is obtained:
xi (t) =

∑n−1
i=1 zijfj (t) , that can be truncated in the qth term providing the best

least squares linear approximation of the sample curves xqi (t) =
∑q
i=1 zijfj (t) ,

with explained variance given by
∑q
i=1 λi. The most usual criterion for choosing

the number of PCs consist of selecting the first q components whose proportion
of explained variance is close to one (at least 0.75–0.8 in most cases).

In order to estimate the eigenvalues and eigenvectors, it is usual to as-
sume that sample paths belong to a finite-dimension space generated by a basis
{φ1(t), ..., φp(t)}, so they can be expressed as

xi(t) =

p∑

j=1

aijφj(t) = a′iΦ(t), i = 1, ..., n,

where p must be sufficiently large to get an accurate representation of the curves.
The selection of the type and dimension of the basis is a crucial problem that
must be solved by keeping in mind the characteristics of the curves. Normally,
Fourier basis is used when the curves are periodic, B-spline basis is employed
for non-periodic smooth paths and wavelet basis for data with a strong local
behaviour. Once the basis is selected, the basis coefficients are commonly ap-
proximated by least squares from noisy discrete time observations of each sample
curve.

In this context, FPCA is equivalent to multivariate PCA of matrix AΨ1/2,
with A = (aij)n×p being the matrix of basis coefficients and Ψ1/2 being the
squared root of the matrix of inner products between basis functions Ψ =
(Ψij)p×p =

∫
T
φi(t)φj(t)dt, i, j = 1, ..., p [22]. Then, the PC weight functions

admit the following basis expansion:

fj(t) =

p∑

k=1

bjkφk(t),

where the vector bj of basis coefficients is given bj = Ψ−1/2vj where the vj
are computed as the eigenvectors of the sample covariance matrix of AΨ1/2.
Then, Z = (zij)n×p = (AΨ1/2)V is the matrix whose columns are the PC
scores of AΨ1/2 and V the one whose columns are its associated eigenvectors.
In matrix form, the basis expansion of weight functions would be f = BTΦ,
with f = (f1, . . . , fp)

T being the vector with the eigenfunctions, B the matrix

of basis coefficients Bp×p = (bij) = Ψ
−1/2
p×p Vp×p, V the matrix with columns the

eigenvectors of the covariace matrix of An×pΨ
1/2
p×p, and Φ = (φ1, . . . , φp)

T , the
vector of basis functions.
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2.2.1 Functional Varimax Rotation

Two different ways of functional varimax rotation were proposed so far [26]. One
is based on rotating the matrix of basic coefficients of the eigenfunctions and the
other, coarser, on rotating the matrix of values of the eigenfunctions in a grid of
equally spaced time points. In both cases the rotated component scores are no
longer uncorrelated although the weight functions (axes) after rotation are still
orthonormal. At this point, the new methodology that we propose for rotating
the functional PCs consists of rotating PCA of the matrix AΨ1/2, based on the
statement that FPCA is equivalent to multivariate PCA of this matrix. This is
the main contribution of the current study in addition to doing an exhaustive
revision about different ways of functional Varimax rotation and a comparison
study among them. As a natural extension of the multivariate case, our proposal
considers two different possibilities depending whether the rotation is done on
the eigenvectors or on the loadings of the standardized principal component
scores. This way, the rotation of the functional principal components is inspired
by the theory of rotation of factor analysis presented in previous subsection by
considering the multivariate viewpoint in the FDA context.

More formally, FPCA rotation would consists of rotating the first q PC weight

functions as fR
T

q = fTq R. This way, the vector n× 1 with the sample functions
is approximated in terms of the first q PCs as

Xq = Zqfq = (ZqR)(RT fq) = ZRq f
R
q ,

where the vector of rotated eigenfunctions is expressed as fR
T

q = ΦTBqR =

ΦT (Ψ−1/2Vq)R with Bq being the matrix of basic coefficients associated with
the first q eigenfunctions and Vq the matrix whose columns are the first q eigen-
vectors. This expression was our inspiration to propose a methodology based on
directly rotating the eigenvectors instead of the methodology based on rotating
the basic coefficients proposed by [26].

Thus, the chances in order to rotate functional PCA are the following:

R1 Applying the VARIMAX rotation criterion to weight function values.

In this case, the purpose would be to find a matrix R that maximizes the
variance of the squares of the elements of the matrix

FR
T

q = FTq R,

where Fq is the q ×m matrix whose elements are the values of the first q
eigenfunctions evaluated at a grid of time points t1, ..., tm, given by FTq =

ΓTΨ−1/2Vq, with Γ being the p×m matrix that contains as rows the values
of each basis function at the time points.
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R2 Applying the VARIMAX rotation criterion to weight function coefficients.

In this occasion, the goal is to calculate a matrix R that maximizes the
variability of the squares elements of BR = BR = Ψ−1/2V R. Then, the
rotated principal factors are given by

fR
T

q = φTBR.

R3 Applying the VARIMAX rotation criterion to PCs by rotating the matrix
of eigenvectors.

Here, the objective is to determine a matrix R that maximizes the variabil-
ity of the squares elements of the rotated matrix of eigenvectors V Rq = VqR.
Then, the rotated principal factors are given by

fR
T

q = φT (Ψ−1/2V R).

R4 Applying the VARIMAX rotation criterion to the standardized PCs by
rotating the matrix of loadings

Hence, this method consists of computing a matrix R that maximizes the

variance of the squares elements of the matrix ∆R
q = ∆qR = VqΛ

1/2
q R.

Then, the rotated principal factors are given by

fR
T

q = φT
(

Ψ−1/2∆R
q Λ−1/2

q

)
.

The two last functional Varimax approaches (R3 and R4) are the main contri-
bution of this paper based on Varimax rotation of the multivariate PCA of AΨ1/2

matrix, which is equivalent to functional PCA of X. On the other hand, methods
R1 and R2 are not new and are considered in this paper only for comparison
purpose in the simulation study. Let us observe that in the case of orthonormal
basis functions, approaches R2 and R3 match. Moreover, with the first three
methods the rotated factors are ortonormal but the rotated components are not
uncorrelated, meanwhile with the last one the opposite happens.

3 Simulation Study

The good performance of the two functional Varimax approaches introduced in
this paper (R3 and R4) is tested on simulated data. The results will be compared
with the ones provided by approaches R1 and R2 discussed in the book by [26].

The data are simulated from the approximation of the Wiener process (Brow-
nian motion) given by its Karhunen–Loève (KL) expansion truncated in the qth
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term. This is a Gaussian process with covariance function given by C(t, s) =
σ2min(t, s). The KL expansion of this process is given as follows in terms of the
eigenvalues and eigenfunctions of the covariance operator:

X(t) =
∞∑

k=1

√
λkξkfk(t), (1)

where the PCs ξk are independent Gaussian random variables with mean zero

and variance one, the eigenvalues are given by λk = σ2

(k−0.5)2π2 and the eigen-

functions by fk(t) =
√

2sin((k − 0.5)πt). In this study, the cut-off q = 8 and
a dispersion parameter σ = 0.2 were considered. Then, 500 samples of 150
sample curves of the process X(t) given by Equation (1) were simulated at dif-
ferent number of equally spaced knots in the observed domain [0, 1]. Three
different scenarios were considered by defining the time points as tk = k/m, k =
0, 1, . . . ,m;m = 25, 50, 100. Different sample sizes were also considered but the
results are not included in the paper because they were quite similar for sample
sizes large enough.

First, least squares approximation of each sample curve was performed in
terms of a basis of cubic B-splines of dimension 8. The sample curves of one of the
simulated samples are displayed in Figure 1. Then, functional PCA and the four
considered functional Varimax approaches for rotating the first four components
were performed. Table 1 shows an example of the amount of variance explained
by the first four PCs and the redistribution of the variances after applying the
three type of rotation of the eigenfunctions aforementioned. Let us observe that
the criterion of rotating the loadings (R4) is not included in this table because
the same proportion of variance is distributed among the rotated standardized
components (24.48%). This fact is due to the properties of the matrix U from
the SVD analysis.

153



0.0 0.2 0.4 0.6 0.8 1.0

−
0
.4

−
0
.2

0
.0

0
.2

0
.4

 

F
−

D
a
ta

Figure 1: Sample of 150 simulated sample curves of the KL expansion of the
Wiener process truncated in the fourth term.

Table 1: Percentages of variance explained by the first four PCs and their redis-
tribution after the three types of Varimax rotation of the eigenfunctions.

PC FPCA R1 R2 R3
1 80.4 23.2 22.0 23.5
2 10.8 11.6 49.5 9.3
3 4.5 24.9 7.6 44.2
4 2.2 38.2 18.8 20.9

In Figure 2, the estimated eigenfunctions (FPCA) and their functional Vari-
max rotations by the four considered approaches (R1, R2, R3 and R4) are dis-
played for one of the simulated samples next to the original rotation of the the-
oretic values for the first four eigenfunctions. Theoretically, the rotated eigen-
functions with the first three approaches should resemble their corresponding
original rotation. In order to draw general conclusions, the integrated mean
squares error (MSE) of each rotated eigenfunction with respect to the original
rotation is computed as the squared root of

‖fRi − f̂Ri ‖2 =

∫

T

[
fRi (t)− f̂Ri (t)

]2
dt =

∫

T




p∑

j=1

dijφj (t)




2

dt = d′iΨdi,
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where di = (di1, . . . , dip)
′

is the vector with the differences between the basis
coefficients of each original rotated eigenfunction and the ones of its estimation
by using the different type of functional rotations. The boxplots of the MSEs
for the rotated eigenfunctions estimated by using R1, R2 and R3 with 26, 51
and 101 observed time points for 500 simulations of the Wiener process were
plotted in Figure 3. Rotation R4 is included in these boxplots although the
estimated eigenfunctions are not orthogonal and the comparison with the other
approaches makes no sense. Let us observe that the new Varimax rotation of the
eigenfunctions introduced in this paper (R3) provides the most accurate results,
which are also more robust with respect to the number of observation nodes of
the sample curves.
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Figure 2: Eigenfunctions after applying FPCA analysis and the four type of
rotation explained.
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Figure 3: Box plots for the integrated MSEs of the rotated eigenfunctions es-
timated by using R1, R2, R3 and R4 rotation approaches with 26, 51 and 101
basis knots on 500 simulations of the Wiener process.

4 COVID-19 Data

In order to show up the usefulness of rotation to facilitate the interpretation of
the principal components, an application with data from COVID-19 pandemic
has been developed. The functional data are the number of daily cumulative
informed cases of COVID-19 for seventeen autonomous communities (ACs) in
Spain from 20/02/2020 to 27/04/2020 (first wave of COVID-19). Data source: .
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The sample curves, denoted by x1(t), . . . , x17(t), are daily observed starting the
day that at least one case is reported. Therefore, the period of observation and
the number of observations are different for each AC. In order to homogenize
the data, the number of cases per 10,000 inhabitants is considered and the first
observation for each curve corresponds to the day that exceeds by first time the
maximum of the first reported values. Then, all the curves were registered in the
common interval [0, 1]. A detailed description of basis approaches for functional
data registration can be seen in [26].

The first step for estimating FPCA is to approximate the sample curves in
terms of an appropriate functional basis by using least squares smoothing. A
B-spline basis of dimension 10 with equally spaced knots in the interval [0, 1]
was chosen in this paper for the functional representation of each curve. Figure
4 shows all the smoothed sample curves.
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Figure 4: B-spline smoothing of the number of daily cumulative informed cases
by COVID-19 per 10,000 inhabitants for seventeen autonomous communities in
Spain.

Second, FPCA was performed in order to reduce the dimension of the prob-
lem and to explain the different modes of variability in the data. As the first
principal component explains more than 99% of the total variability the results
are not easy to interpret (Table 2). The estimated first four weight functions are
displayed in Figure 5 (black line). Let us observe that the first eigenfunction is
positive and strictly increasing through the entire observation period, and in ad-
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dition, the weight placed on the cases at the end is about two times higher than
at the beginning. This could lead to interpret that the most important mode of
variation between ACs represents a quick increase in cases as time passed with
the infection curve out of control. The rest of the components are difficult to
interpret since they account for much smaller and insignificant proportions of
the total variation.

Table 2: Percentages of variance explained by the first four PCs of COVID-19
data per 10,000 inhabitants for seventeen autonomous communities in Spain.

PC FPCA Rotation R3
1 99.32 44.36
2 0.52 38.14
3 0.12 0.67
4 0.03 14.82

Third, in order to obtain weight functions and PC scores much easier to in-
terpret, the two Varimax rotation approaches introduced in this paper (R3 and
R4) are carried out on the first four PCs. This way, the variability explained by
the first four rotated components is divided in different proportions, which can
be seen in Table 2. Let us now observe that the first two rotated components
explain more than a 82% of the total variability with the main mode of variation
accounting a 44% and the second a 38% approximately. The first four rotated
eigenfuntions are shown in Figure 5. Taking into account their explained vari-
ances, only the first two rotated components will be interpreted. The first two
eigenfunctions plotted as positive and negative perturbations of the mean func-
tion are shown in Figure 6 with the first row corresponding to the rotation of
eigenvectors (R3) and the second one to the rotation of loadings (R4 approach).
The scores of the seventeen Spanish ACs on the first two rotated principal com-
ponents of COVID-19 cases are displayed in Figure 7 for R3 (left) and R4 (right)
rotation approaches, where the location of each AC is shown by the abbreviation
of its name assigned in Table 3.
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Figure 5: The first four principal component weight curves for COVID-19 data
(eigenfunctions in solid black line) and the rotated eigenfunctions after applying
the Varimax rotation criterion to the matrix of eigenvectors (R3 approach in
dotted green line) and to the loadings (R4 approach in dashed cyan line).

Let us begin by interpreting the results given by R3 approach (rotation of
eigenvectors). Now, the first eigenfunction is easier to interpret and represents
those ACs that had an increase more or less constant until the 70% of the ob-
served period where the number of cases shot up leaving the curve out of control.
The three highest scores are assigned to La Rioja (RI), Madrid (MD) and Castilla
la Mancha (CM), which were the communities with more problems controlling
the infections and the largest negative scores to Canarias (CN), Murcia (MC)
and Andalućıa (AN), which were the communities that better controlled the
infection curve. On the other hand, the behaviour of the second eigefunction
represents those ACs which suffered an increase relatively rapid between the
40% and 70% of the period but they managed to have the curve under control
from that moment.
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Regarding R4 approach (rotation of loadings), the behaviour of the first
and second eigenfunctions is very similar to the unrotated ones. That is, the
first is associated with those ACs that did not control the curve because as the
days passed, the number of cases increased very quickly. On the other hand, the
second eigenfunction could be influenced by the ACs which controlled the number
of cases since the time representing the 60% of the observed period. These
conclusions are corroborated by Figures 5 and 6. Les us observe from Figure
7 (left) the high correlation between the first two rotated PCs scores provided
by approach R3 that establishes two clearly differentiated groups between the
autonomous communities: those ACs which managed to control moderately the
curve of number of cases (third quadrant) and the ones that lost control of
the cases by reaching numbers really concerning (first quadrant). On the other
hand, thanks to the uncorrelation between the rotated PCs scores, approach R4
provides a much better clustering of AC. This can be seen in the biplot on the
right in Figure 7 where each of these two groups is divided in other two so that
four groups can be clearly distinguished.
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Figure 6: The mean curve of COVID-19 cases and the effects of adding (+) and
subtracting (−) a suitable multiple of each PC weight curve (eigenfunction).
The first row corresponds to the rotation of eigenvectors (R3) and the second
one to the rotation of loadings (R4 approach).
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Figure 7: The scores of the seventeen Spanish autonomous communities on the
first two rotated principal components of COVID-19 cases. The location of each
AC is shown by the abbreviation of its name assigned in Table 3.

Table 3: Abbreviation of the seventeen Spanish autonomous communities.

Andalućıa, AN Castilla-La Mancha, CM Madrid, MD
Aragón, AR Castilla-León, CL Murcia, MC
Asturias, AS Cataluña, CT Navarra, NC
Islas Baleares, IB Comunidad Valenciana, VC Páıs Vasco, PV
Canarias, CN Extremadura, EX Rioja, RI
Cantabria, CB Galicia, GA

In fact, these conclusions agree with the results obtained after applying func-
tional data clustering [15]. In particular, it has been considered the approach
based on performing clustering using the basis expansion coefficients in terms of
the basis of cubic B-splines aforementioned. Due to the fact that La Rioja (RI)
could be an outlier, the K-medoids method, which is more robust than K-means,
is applied next to Manhattan distance as similitude measure. Moreover, as the
dataset is not too large, the algorithm called Partitioning Around Medoids is
considered. In order to identify the optimum number of clusters, the reduc-
tion of intra-cluster total variance was evaluated for a range of values K (elbow
method). It can be seen in the left panel of Figure 8 that the reduction seems
to stabilize by starting at 4 cluster. Finally, the clustering results appear in the
right panel of Figure 8 which is very similar to the biplot in the right panel of
Figure 7. This is in accordance with multiple studies about the infections by
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COVID-19 pandemic in Spain [13, 21, 27, 29], what corroborate the good in-
terpretation and classification results provided by the new rotation approaches
introduced in this paper.
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Figure 8: Scores of the number of cumulative informed cases by COVID-19 per
10,000 inhaibtans of seventeen autonomous community of Spain.

5 Discussion

FDA try to solve problems where the involved sample data are functions that
vary over some continuum, usually time. One of the most important techniques
in the field of FDA is Functional Principal Component Analysis, whose main
purpose is to reduce the dimension of the problem and to explain the depen-
dence structure of data in terms of a reduce set of uncorrelated variables called
functional principal components. The interpretation of these components helps
to understand the main characteristics and modes of variation of the underline
stochastic process. Nevertheless, there are many situations in which this task
is not easy. One is the case when the first PC represents a size effect that ex-
plains a very high percent of the total variability. The most common tool to
solve this problem in PCA is Varimax rotation that redistributes the explained
variance among all rotated components to make easier the interpretation. So
far, there were only two approaches available in the literature to apply Varimax
rotation in the FDA context, but neither of them is a direct rotation of eigen-
functions. The first one consists of rotating the values of the weight functions
evaluated at the time points (R1), while the second one is based on rotating
the weight function coefficients (R2). Both methods retain the orthogonality of
the axis but the new scores will not be uncorrelated anymore. In this paper,
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two new approaches based on the equivalence between FPCA of basis expansion
of the sample curves and PCA of a transformation of the matrix of basis coeffi-
cients are proposed: one is based on applying the Varimax criterion to principal
components by rotating the matrix of eigenvectors (R3), and the other makes
use of the Varimax criterion on the standardized principal components by ro-
tating the matrix of loadings (R4). The first one guarantees the orthogonality
of the rotated eigenfunctions and in the second one the rotated scores are still
uncorrelated. Moreover, all of them are compared in an exhaustive simulation
study. From this study it can be concluded that R3 provides the most accurate
rotated eigenfunctions and is also more robust with respect to the number of
discrete time observations of the sample curves. Finally, an application with
the curves of infections by COVID-19 pandemic in Spain has been developed.
Through the combination of these two new varimax approaches (R3 and R4), it
has been possible to distinguish different behaviors in the evolution of infections
in the Spanish autonomous communities during the first wave of the pandemic.
These results are in agreement with other studies done in the country about this
matter [13, 21, 27, 29]. These Varimax FPCA approaches are expected to be
welcomed and highly employed in future researches in different areas of science
thanks to their ability to facilitate the interpretation of the main patterns of
variation in the data.
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Abstract

The homogeneity problem for testing if more than two different samples come from the same pop-
ulation is considered for the case of functional data. The methodological results are motivated by
the study of homogeneity of electronic devices fabricated by different materials and active layer
thicknesses. In the case of normality distribution of the stochastic processes associated with each
sample, this problem is known as Functional ANOVA problem and is reduced to test the equality
of the mean group functions (FANOVA). The problem is that the current/voltage curves associated
with Resistive Random Access Memories (RRAM) are not generated by a Gaussian process so that
a different approach is necessary for testing homogeneity. To solve this problem two different para-
metric and nonparametric approaches based on basis expansion of the sample curves are proposed.
The first consists of testing multivariate homogeneity tests on a vector of basis coefficients of the
sample curves. The second is based on dimension reduction by using functional principal component
analysis of the sample curves (FPCA) and testing multivariate homogeneity on a vector of principal
components scores. Different approximation numerical techniques are employed to adapt the exper-
imental data for the statistical study. An extensive simulation study is developed for analyzing the
performance of both approaches in the parametric and non-parametric cases. Finally, the proposed
methodologies are applied on three samples of experimental reset curves measured in three different
RRAM technologies.

1 Introduction

The methodological results in this paper linked to homogeneity tests for func-
tional data are motivated by the study of variability in Resistive Random Access
Memories. In this work, the devices under study were fabricated making use of
different materials for the metal electrodes and dielectrics of different thicknesses.
RRAMs are currently considered a serious contender for non-volatile memory
applications. These devices operate under the principles of resistive switching
(RS), i.e., their internal resistance is switched between different values by chang-
ing the nature and features of charge conduction within a dielectric layer. Many
different developments are being considered in the research of these devices such
as fabrication and characterization; also, the simulation and modeling facets are
under study for this emerging technology [9, 20].

The use of devices based on RS for cryptographic applications is based on
the inherent stochasticity of their operation. The device resistive state changes
in many cases because of the creation (set) or destruction (reset) of a conductive
filament that is formed by the random movement of ions in a dielectric. The
result of this randomness is a sample of current-voltage curves corresponding to
reset-set cycles with variability. So, the variability turns into different voltages
and currents within the set and reset processes for each cycle. The analysis of
the statistics of the RS operation is essential to understand the devices underly-
ing physics [1, 18, 13]. It is necessary to theoretically investigate the stochastic
characteristics of RRAMs (directly related to variability), from both the math-
ematical point of view and the compact modeling perspective. The variability
characterization will be essential to develop the infrastructure for device and
circuit design software tools.
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As the experimental data set connected to each device is a group of current/-
voltage curves associated with the reset/set cycles of the device, functional data
analysis (FDA) methodologies could be the ideal tool to explain the associated
variability. Nowadays, FDA is a leading research topic in statistics in which the
methods developed for samples of vectors are becoming extended to the case
of samples of curves. Besides, the interest in methodological developments as
well as in applications to fields such as life science, chemometrics, environment,
economy, electronics, among others, are growing continuously. A good review of
the main FDA methods, interesting applications and computational algorithms
with the free software R can be seen in the books [15, 16, 14]. The sample
curves are usually observed at a finite set of discrete points so that the first step
in FDA is usually the smoothing of each sample curve through its representation
as a linear combination of basis functions. A comparison of different types of
penalized smoothing with B-splines basis was performed in [3].

The basic tool in FDA is functional principal component analysis (FPCA)
that reduces the dimension of the stochastic process generating the sample curves
by providing a small set of uncorrelated scalar variables that represent the most
important variation modes in the sample. Different penalized PCA approaches
for B-spline expansions of smooth functional data were introduced in [2]. FPCA
was recently applied to model the variability of the reset processes associated
with RRAM devices [4]. In the FDA context, the problem in the present work
consists of testing homogeneity for several independent samples of experimental
data obtained from different RRAMs. The aim is to characterize the device
variability by considering different metals as electrode materials and dielectrics
of different thicknesses in the fabrication process. The homogeneity problem
addressed in this contribution consists of deciding if several independent samples
of curves have been generated by the same stochastic process (homogeneity), so
that they have equal probability distributions. In order to solve this problem,
different parametric and non-parametric approaches based on basis expansion of
the sample curves are proposed here.

In the case of normality distribution of the stochastic processes associated
with each sample, the homogeneity problem is known as the multi-sample prob-
lem or one-way ANOVA problem for functional data, and it is equivalent to
equality of the mean functions among the different samples (FANOVA). A de-
tailed description and comparison of tests for the one-way ANOVA problem for
functional data can be seen in [10, 21]. Taking into account the basis expan-
sion of the sample curves, the FANOVA is reduced to a multivariate ANOVA
(MANOVA) with the vector of basis coefficients of the sample curves as depen-
dent variable and the categorical variable representing the groups as independent
variable. The problem is that the current/voltage curves associated with RRAMs
are not generated by a Gaussian process so that a different approach is necessary
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for testing homogeneity. Multivariate non-parametric homogeneity tests [12] on
the vector of basis coefficients are considered in this paper to solve the problem.
Other important problem is that multivariate homogeneity tests do not perform
well with high-dimensional vectors and the number of basis functions needed for
an accurate approximation of the sample curves is usually high. In order to solve
it, a new approach based on dimension reduction by using FPCA of the sample
curves and testing homogeneity on the vector of the most explicative principal
components scores is introduced.

Apart from this introduction, the manuscript scheme consists of a theoreti-
cal development of functional homogeneity test procedures adapted to the data
measured for the devices under study (Section 2), a simulation study to evalu-
ate the performance of the testing approaches in Section 3, an application with
data from resistive memories and the corresponding discussion in Section 4, and
finally, the main conclusions in Section 5.

2 Statistical homogeneity tests for basis expan-
sion of functional data

Let {xij(t) : i = 1, . . . ,m; j = 1, . . . , ni; t ∈ T} denote m independent samples
(groups) of curves defined on a continuous interval T. Let us assume that they
are realizations of i.i.d. stochastic processes (functional variables) {Xij(t) : i =
1, . . . ,m; j = 1, . . . , nit ∈ T} with distribution SP (µi(t), γi(s, t)),∀i = 1, ...,m,
with µi(t) being the mean function and γi(s, t) the covariance function associated
with each of them stochastic processes. Let us also assume that all sample curves
belong to the Hilbert space L2[T ] of the square integrable functions on T , with
the natural inner product defined by

< f |g >=

∫

T

f(t)g(t)dt for all f, g ∈ L2[T ].

The homogeneity of the m samples of curves means that they have been gener-
ated by the same stochastic process SP (µ(t), γ(s, t)) with the same probability
distribution ∀i = 1, ...,m. This problem has been recently considered from dif-
ferent points of view. If the processes are Gaussian, then the problem is known
as the multi-sample problem or one-way ANOVA problem for functional data
(see the book [21] for a detailed study). A comprehensive comparison of tests for
the one-way ANOVA problem for functional data was developed in [10]. More
recently, an approach based on the concept of functional depth measures was in-
troduced in [7]. In this paper we focus on basis expansion of functional data and
propose two different type of approaches. One consists on testing multivariate
homogeneity on the random vector of basis coefficients for the m groups, and the
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other is based on testing multivariate homogeneity on the associated functional
principal components (p.c.’s).

Then, the starting point is to assume that the sample curves belong to a finite-
dimension space spanned by a basis {φ1 (t) , . . . , φp (t)} , so that each stochastic
process is represented by its vector of basis coefficients. Let us assume that

Xij(t) =

p∑

k=1

aijkφk(t) i = 1, . . . ,m; j = 1, . . . , ni, (1)

where aijk are scalar random variables with finite variance and p is sufficiently
large to assure an accurate representation of each process. In vector form
Xij(t) = a′ijΦ(t) with aij = (aij1, ..., aijp)

′ being the vectors of basis coeffi-
cients and Φ(t) = (φ1(t), ..., φp(t))

′. On the one hand, the selection of the type
and dimension of the basis (Fourier, B-splines, wavelets, polinomials, etc) is
an important problem that must be solved by taking into account the sample
curve characteristics. In the application in this paper a base of cubic splines is
chosen because the analysed current/voltage curves are smooth enough. Other
useful basis systems are Fourier functions for periodic data, piecewise constant
functions for counting processes or wavelets bases for curves with strong local
behavior. On the other hand, the basis coefficients are usually estimated by least
squares (with or without penalization) from discrete-time noisy observations. A
good review about different ways to proceed and how to do it with the software
R can be studied in the books [16, 14].

2.1 Homogeneity testing on basis coefficients

The first type considered approach consists of performing a multivariate ho-
mogeneity test on the m samples of the basis coefficient vector {aij : i =
1, . . . ,m; j = 1, . . . , ni}.

When the processes are Gaussian, the one-way ANOVA problem for func-
tional data is equivalent to equality of the mean functions among the different
samples provided that the covariance functions in the groups are equal (ho-
moscedastic case) or different (heteroscedastic case). This problem can be for-
mulated as the hypothesis test of equality of the unknown group mean functions
of the m samples

H0 : µ1(t) = · · · = µm(t),∀t ∈ T, (2)

against the alternative that its negation holds.
In the case of the one-way FANOVA problem (2) the functional data verify

the following linear model:

Xij(t) = µ(t) + αi(t) + εij(t), i = 1, ...,m, j = 1, ..., ni, (3)
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where µ(t) is the overall mean function, αi(t) is the i-th main-effect function, and
εij(t) are the subject-effect functions (i.i.d. errors) with distribution SP (0, γ(s, t))
∀i = 1, . . . ,m; j = 1, . . . , ni, and γ(s, t) being the common covariance function
in the homoscedastic case.

The main-effect functions are not identifiable so that in order to be estimated
some constraint must be imposed. The most used constraint is

∑m
i=1 αi(t) = 0.

Under this constraint you have that µi(t) = µ(t) +αi(t). Then, by assuming the
basis expansion in 1, the unbiased estimators of the functional parameters in
model 3 are given by

� µ̂(t) = x(t) = a′Φ(t),

� α̂i(t) = x̄i(t)− x̄(t) = (a′i − a′) Φ(t),

� ε̂ij(t) = xij(t)− xi(t) =
(
a′ij − a′i

)
Φ(t),

where x̄ and x̄i(t) are the usual unbiased estimators of the grand mean function
and the group mean functions, respectively, and, ā and ai are the correspond-
ing unbiased estimators of the grand mean vector and the group mean vector
associated with the coefficient vectors aij .

Taking into account the basis expansions of the sample curves the FANOVA
testing problem is equivalent to the usual multivariate ANOVA test (MANOVA)
for the matrix of basis coefficients A =

(
a(ij)k

)
n×p , with n =

∑m
i=1 ni. This is

equivalent to test the equality of mean vectors for the basis coefficients in the
m groups. This problem is solved by using one of the well known MANOVA
tests: the Wilks’s lambda, the Lawley-Hotelling’s trace, the Pillai’s trace, and
the Roy’s maximum root. In most cases, the exact null distributions of these
four test criteria can not be computed, and approximate F-tests statistics are
often used in computer programs. A detailed explanation on these tests can be
seen in [17].

The main requirements for estimating a one-way MANOVA model are: 1)
observations are randomly and independently sampled from the population; 2)
the sample size in each group must be larger than the number of dependent
variables; 3) dependent variables are multivariate normally distributed within
each group; 4) homogeneity of variance-covariance matrices in the m groups;
and 5) no multicollinearity.

When the m samples of vectors coefficients are not Gaussian, the F-type tests
described earlier can not be applicable. Other approaches based on bootstrap
versions of these tests methods may be considered [10]. In this paper non-
parametric multivariate homogeneity tests based are considered to solve this
problem. Specifically, the extensions of the univariate Kruskal Wallis’s test and
Moods’s test [12, 6] that try to check whether the medians are equal in all
groups, are applied in the simulation and the application developed in Section 3
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and 4, respectively. The Moods’s test is less sensitive with the outliers than the
Kruskall Wallis’s test but it is less powerful when the data are generated from
some distributions as, for instance, the normal distribution.

Let us finally observe that unbalanced sample sizes can lead to unequal vari-
ances between samples that could affect to the statistical power and type I error
rates of parametric (ANOVA type) tests [19]. In fact, equal sample sizes maxi-
mize statistical power. On the other hand, nonparametric rank-based tests could
lead to paradox results due the non-centralities of the test statistics which may
be non-zero for the traditional tests in unbalanced designs. A simple solution is
the use of pseudo-ranks instead of ranks [5].

2.2 Homogeneity testing on functional principal compo-
nents

This new approach for solving the homogeneity problem with functional data
consists of reducing the infinite dimension of the stochastic procecess by using
FPCA and then performing a multivariate homogeneity test on the vectors of
the most explicative principal components scores.

FPCA provides the following orthogonal decomposition of the process (Karhunen-
Loève expansion):

Xij(t) = µ(t) +

∞∑

k=1

fk(t)ξijk, (4)

where {fk} are the orthonormal eigenfunctions of the covariance operator asso-
ciated with its decreasing sequence of non null eigenvalues {λk}, and {ξk} are
uncorrelated zero-mean random variables (principal components) defined by

ξijk =

∫

T

fk(t)(Xij(t)− µ(t))dt.

The k-th p.c. ξk has the maximum variance λk out of all the generalized linear
combinations of the functional variable which are uncorrelated with ξl (l =
1, .., k − 1).

By truncating the expression (4), the process admits a principal component
reconstruction in terms of the first q principal components so that the sum of
their explained variances is as close as possible to one. Then, in vector form
the functional variable X(t) is approximated by Xq

ij(t) − µ(t) = ξ′ijf(t), with
ξij = (ξij1, ..., ξijq)

′ being the vectors of principal components scores and f(t) =
(f1(t), ..., fq(t))

′.
In practice, and assuming the basis expansion of sample curves given in

1, the functional PCA is equivalent to multivariate PCA of matrix AΨ
1
2 [11],

with Ψ
1
2 being the squared root of the matrix of inner products between basis
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functions Ψ = (Ψij)p×p =
∫
T
φi (t)φj (t) du. Then, the principal component

weight function f̂k admits the basis expansion f̂k (t) = b′kΦ(t), so that, the

vector bk of basis coefficients is given by bk = Ψ−
1
2uk, where the vectors uk are

computed as the solutions to the eigenvalue problem n−1Ψ
1
2A′AΨ

1
2uk = λkuk,

where n−1Ψ
1
2A′AΨ

1
2 is the sample covariance matrix of AΨ

1
2 .

Again, we propose two different ways to solve the problem of homogeneity
of the vector of the first q principal components in the m groups. In the case of
multivariate normality of the vector of principal components scores, a MANOVA
testing procedure based on the F-type statistics is not advisable because the de-
pendent variables are uncorrelated. In this case, we propose to perform univari-
ate ANOVA on each p.c. score that has more power than MANOVA analysis. In
order to control the Type I error when conducting these multiple ANOVA tests,
the additive Bonferroni inequality will be applied so that the alpha level for each
ANOVA test is given by the overall level divided by the number of tests. On the
other hand, if normality is not verified, then non-parametric multivariate tests
will be applied.

3 Simulation study

In this section, an extensive simulation study with artificial data is developed
to check the performance of the two functional homogeneity approaches: one is
based on testing homogeneity on the basis coefficients and the other on testing
homogeneity on the principal components.

In this study, three groups have been considered (m=3) with the following
three different models for the mean functions:

� M1 : µi(t) = 0.1| sin (4πt)| i = 1, 2, 3,

� M2 : µi(t) = 0.05i| sin (4πt)| i = 1, 2, 3,

� M3 : µi(t) = 0.025i| sin (4πt)| i = 1, 2, 3.

Let us observe that M1 corresponds to situations where H0 is true while M2 and
M3 corresponds to situations where H0 is false. In M3 the differences between
the means are smaller so that the testing problem is more difficult.

In addition, two different type of error functions are added to simulate a sam-
ple of functional data in the interval [0,1] for each case according to the model in
Equation 3. For the parametric approaches (Gaussian case), an approximation of
the standard Wiener process given by its Karhunen-Loève expansion truncated
in the qth term is used. This is a Gaussian process with covariance function
given by C(t, s) = σ2 min (t, s). The Karhunen-Loeve expansion of this process
is given as follows in terms of the eigenvalues and eigenfunctions of its covariance
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operator: ε(t) =
∑∞
k=1

√
λkξkfk(t), where the p.c.’s ξk are independent Gaussian

random variables with mean zero and variance one, the eigenvalues are given by

λk = σ2

(k− 1
2 )2π2 , with the associated eigenfunctions fk(t) =

√
2 sin

((
k − 1

2

)
πt
)
.

The truncation point in this study is q = 20, and five different values for the
dispersion parameter (σ = 0.02, σ = 0.05, σ = 0.10, σ = 0.20, σ = 0.40) are con-
sidered. For the non-parametric approaches, the error functions are computed
in the same form as the exponential, adequately centered, of ε(t) (log-normal
distribution).

Then, i.i.d. samples, with three different sample sizes (ni = 15, ni = 25, ni =
35; i = 1, 2, 3), are simulated at 51 equally spaced time points in the interval
[0, 1] for each one of the thirty considered functional models. Finally, 1000
Monte Carlo replications are developed for each one of the ninety considered
cases (three mean models*two type of error *five dispersion parameters*three
sample sizes). In order to obtain the basis coefficients for each sample curve
from its discretized values in the interval [0,1], least squares approximation in
terms of a basis of cubic B-splines of dimension 18 was used in all cases. All
the computations were obtained with the packages fda [14] and npmv [6] of
statistical software R. As indicator of the test performance, the observed accep-
tance proportions at a significance level 0.05 under every considered model were
computed. Three different number of p.c.’s were considered for the principal
component approach: the first three p.c.’s, the first five p.c.’s and the first eight
p.c.’s that explain approximately a 95%, a 97%, and a 99% of the total variabil-
ity, respectively. The results for the two testing parametric approaches with the
F-type tests (Gaussian errors) appear in Table 1. MANOVA testing with the
Pillai statistics was conducted for the basis coefficients approach and multiple
univariate ANOVA for the principal component approach, using Bonferroni’s
inequality for preserving the overall significance level. On the other hand, the
results for the non-parametric approaches (Log-normal errors) appear in Table
2. The multivariate extension of the Kruskall-Wallis univariate test was used to
compute the p-values.

Next, a discussion of the simulation experiment is presented that can help to
show the practical utility of the proposed methodology:

1. An important key point to keep in mind is the dispersion parameter σ. It
seems that the testing performance depends strongly on the error disper-
sion, getting worse as σ increases in all cases. In fact, when σ = 0.40 the
power of the tests is too small, especially in the case of the model M3 in
which the differences between the group means are smaller. This must be
taken into account for future analysis because previous simulation studies
of this type (see [10]) do not consider a value of σ higher than 0.20.

2. Another interesting point has to do with sample sizes. For small values of
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σ the sample size does not have an important effect in the power of the
test. However, the sample size plays a fundamental role when σ increases,
as the test converts into less conservative for the cases M2 and M3.

3. Regarding to the number of p.c.’s selected for the testing procedure, it
can be seen in Tables 1 and 2 that the greater the number of p.c.’s, the
better results the tests achieve. In fact, the tests don’t behave well in the
situations where the variability explained is lower than 99% and the term
σ is large. So, it would be recommendable to consider a number of p.c.’s
that guarantees around the 99% of the variability.

4. For the model M1 (H0 is true), both the parametric and the non-parametric
tests provide excellent results. The acceptance proportions are greater than
0.938 in all the cases.

5. In the case of model M2, the results obtained in the parametric case with
the basis coefficients and with eight p.c.’s are really good, even when the
dispersion is very high (σ = 0.4). Only some problems are detected when
the sample size is small in this case. Nevertheless, the tests provide slightly
better results for the basis coefficients approach. On the other hand, the
outputs for M2 when we consider the non-parametric tests change a bit in
comparison with the previous situation. Now, the basis coefficients model
does not work very well when the sample is not large enough for σ = 0.20
and for σ = 0.40, with the acceptance proportion being 0.169 and 0.706,
respectively. Instead, if we consider the approach with 8 p.c.’s the results
are much better, only having controversy when ni = 15 and σ = 0.40 just
like in the parametric case.

6. The behavior of results with model M3 are very similar to the case of
model M2, basis coefficients approach is slightly better in the parametric
case but it occurs the opposite in the non-parametric case. In addition,
the tables bring to light the lack of power of both tests (parametric and
non-parametric) when the differences among group means are small and σ
is large. We are rather concerned with the frequency of a correct decision
in these situations.

To sum up, we can firstly conclude that the parametric tests are more power-
ful than the non-parametric ones and, for that reason, they must be considered
when the conditions of validity are satisfied. Another important aspect to keep
in mind is the reduction of the dimension provided by the principal component
approach. This approach can be really interesting when the number of depen-
dent variables (basis coefficients) is large and the problem is reduced to testing
homogeneity on a small number of p.c’s. Based on the results of this simulation
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study, it can be concluded that the principal component approach explaining
a 99% of variability gives better results than the basis coefficients approach in
the non-parametric case. Regarding to the parametric case, the fact of using
the Bonferroni’s inequality for correcting the significance level in the multiple
ANOVA tests on the p.c.’s, could be the reason for a slight decrease in the
power with respect to the basis coefficient approach in this study where 8 p.c.’s
are needed to explain at least a 99% of the total variability. This problem dis-
appears in practice when only two or three components are necessary so that
the corrected level of significance is not so small and the acceptance proportion
would increase.

4 Application results and discussion

In this paper, we will use experimental data measured at the Institute of Micro-
electronics of Barcelona (CNM-CSIC) where the devices were also fabricated.
The devices are based on a metal-oxide-semiconductor stack [8]. The metal
electrodes employed were Ni and Cu, the dielectrics (HfO2) and Si-n+ was em-
ployed as bottom electrode. In particular, the following devices were used: De-
vice 1 (DV1): Ni/HfO2 (20 nm thick)/Si-n+, Device 2 (DV2) Ni/HfO2(10 nm
thick)/Si-n+, Device 3 (DV3): Cu/HfO2(20 nm thick)/Si-n+. The I–V charac-
teristics were measured using a HP-4155B semiconductor parameter analyzer. A
negative voltage was employed although we used the absolute value for easiness
in the numerical analysis. The functional homogeneity approaches presented
here will be applied to decide about the existence of significant statistical differ-
ences between the three devices considered.

More precisely, RRAM operation is based on the stochastic nature of resistive
switching processes; these, in the most cases, create and rupture conductive
filaments that change drastically the resistance of the device. These processes
are known as set and reset, respectively. Moreover, the resistance change gives
rise to a sample of current-voltage curves corresponding to the reset-set cycles,
where the mentioned variability is translated to different voltages and currents
related to set and reset processes for each cycle. See the set and reset curves in
Figure 1 of reference [4] and the variation of the set and reset voltages, where
the current drastically increases or drops off.

In this study, we have information about 2782 reset curves corresponding
to the device with the nickel electrode and the dielectric 20 nanometres thick
(Device 1), 1742 reset curves for the device with nickel electrode and a dielectric
10 nanometres thick (Device 2) and 233 reset curves for devices with a copper
electrode and a dielectric 20 nanometres thick (Device 3), denoted as {Iij(v) :
v ∈ [0, Vij−reset]} being i = 1, 2, 3 the type of device and j = 1, ..., ni the sample
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Mean ni Model σ=0.02 σ=0.05 σ=0.10 σ=0.20 σ=0.40

M1

15

Basis coef. 0.949 0.956 0.951 0.957 0.944
3 p.c.’s 0.938 0.954 0.968 0.959 0.949
5 p.c.’s 0.948 0.944 0.941 0.945 0.958
8 p.c.’s 0.958 0.955 0.946 0.946 0.942

25

Basis coef. 0.952 0.953 0.953 0.964 0.951
3 p.c.’s 0.952 0.942 0.953 0.948 0.959
5 p.c.’s 0.954 0.962 0.945 0.948 0.950
8 p.c.’s 0.962 0.947 0.951 0.954 0.956

35

Basis coef. 0.949 0.953 0.944 0.948 0.946
3 p.c.’s 0.951 0.956 0.951 0.952 0.959
5 p.c.’s 0.949 0.953 0.954 0.953 0.948
8 p.c.’s 0.951 0.955 0.960 0.943 0.957

M2

15

Basis coef. 0 0 0 0 0.170
3 p.c.’s 0 0 0.001 0.448 0.852
5 p.c.’s 0 0 0 0.043 0.681
8 p.c.’s 0 0 0 0.003 0.298

25

Basis coef. 0 0 0 0 0.005
3 p.c.’s 0 0 0 0.265 0.789
5 p.c.’s 0 0 0 0.006 0.595
8 p.c.’s 0 0 0 0 0.042

35

Basis coef. 0 0 0 0 0
3 p.c.’s 0 0 0 0.157 0.746
5 p.c.’s 0 0 0 0.001 0.552
8 p.c.’s 0 0 0 0 0.007

M3

15

Basis coef. 0 0 0 0.181 0.783
3 p.c.’s 0 0 0.465 0.879 0.937
5 p.c.’s 0 0 0.043 0.724 0.914
8 p.c.’s 0 0 0.004 0.307 0.752

25

Basis coef. 0 0 0 0.005 0.537
3 p.c.’s 0 0 0.286 0.802 0.925
5 p.c.’s 0 0 0.009 0.607 0.879
8 p.c.’s 0 0 0 0.044 0.627

35

Basis coef. 0 0 0 0 0.330
3 p.c.’s 0 0 0.178 0.724 0.903
5 p.c.’s 0 0 0 0.485 0.880
8 p.c.’s 0 0 0 0.004 0.466

Table 1: Observed acceptance proportions for each scenario at a significance
level 0.05 in the case of Gaussian errors.
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Mean ni Model σ=0.02 σ=0.05 σ=0.10 σ=0.20 σ=0.40

M1

15

Basis coef. 0.984 0.983 0.975 0.982 0.982
3 p.c.’s 0.960 0.951 0.957 0.946 0.960
5 p.c.’s 0.967 0.965 0.950 0.950 0.951
8 p.c.’s 0.966 0.972 0.952 0.959 0.970

25

Basis coef. 0.966 0.962 0.978 0.964 0.972
3 p.c.’s 0.951 0.943 0.945 0.964 0.930
5 p.c.’s 0.951 0.958 0.955 0.961 0.953
8 p.c.’s 0.943 0.950 0.955 0.963 0.959

35

Basis coef. 0.960 0.959 0.971 0.967 0.967
3 p.c.’s 0.947 0.950 0.941 0.949 0.956
5 p.c.’s 0.954 0.949 0.958 0.957 0.950
8 p.c.’s 0.960 0.964 0.952 0.957 0.949

M2

15

Basis coef. 0.005 0.009 0.011 0.169 0.706
3 p.c.’s 0 0 0.001 0.525 0.894
5 p.c.’s 0 0 0 0.041 0.793
8 p.c.’s 0 0 0 0 0.365

25

Basis coef. 0 0 0 0 0.136
3 p.c.’s 0 0 0 0.309 0.865
5 p.c.’s 0 0 0 0 0.663
8 p.c.’s 0 0 0 0 0.046

35

Basis coef. 0 0 0 0 0.010
3 p.c.’s 0 0 0 0.18 0.795
5 p.c.’s 0 0 0 0 0.568
8 p.c.’s 0 0 0 0 0.006

M3

15

Basis coef. 0.007 0.025 0.142 0.697 0.940
3 p.c.’s 0 0.001 0.484 0.890 0.933
5 p.c.’s 0 0 0.044 0.775 0.910
8 p.c.’s 0 0 0.001 0.322 0.863

25

Basis coef. 0 0 0 0.112 0.784
3 p.c.’s 0 0 0.325 0.840 0.916
5 p.c.’s 0 0 0 0.636 0.908
8 p.c.’s 0 0 0 0.039 0.716

35

Basis coef. 0 0 0 0.006 0.606
3 p.c.’s 0 0 0.157 0.776 0.917
5 p.c.’s 0 0 0 0.542 0.887
8 p.c.’s 0 0 0 0.002 0.557

Table 2: Observed acceptance proportions for each scenario at a significance
level 0.05 in the case of Log-normal errors
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size of the group i. It would have been interesting to have at our disposal
data related to RRAMs fabricated with a copper electrode and a dielectric 10
nanometres thick, but for reasons connected to the fabrication plans, it was not
possible.

From mathematical viewpoint, and before applying FDA, the reset curves
require some previous transformations because they are not defined on the same
domain (reset voltages are different in each curve due to variability), and we only
have discrete observations at a finite set of current values until the reset voltage
is achieved in each curve. In order to solve these problems, [4] proposed a simple
FDA approach to analyze these kind of curves prior to apply some specific statis-
tical FDA techniques. Firstly, the initial domain [0, Vij−reset] was transformed
in the interval [0, 1] in a way that every registered sample curve I∗ij(u)(u ∈ [0, 1])
has a new set of arguments given by transformation u = v/Vij−reset. Secondly,
taking into account that the curves are smooth enough, P-spline smoothing with
B-spline bases was used to reconstruct all reset curves. The principal reasons
why P-spline are usually considered a great accurate approximation of sam-
ple curves, are less numerical complexity and computational cost, and that the
choice and position of knots is not determinant, so that it is sufficient to choose
a relatively large number of equally spaced basis knots [2]. In this paper, for
each reset curve of the three devices, it has been considered a cubic B-spline
basis of dimension 20 with 17 equally spaced knots in the interval [0, 1] and a
penalty parameter λ = 0.5. In order to select the same smoothing parameter for
all the sample paths a leave-one-out cross validation procedure was used.

Let us remember that the aim is to test if there are significant differences
between RRAMs of the three different technologies under study. The first step
is to test the equality of the three unknown mean functions by using the one-way
FANOVA approach under the assumption that the reset curves of each group
are generated by a Gaussian process with the same covariance operator. The
estimation of the sample mean function in each group is displayed in Figure 1
(bottom-right) next to all the corresponding smoothed registered curves. Graph-
ically, it seems that there are differences depending on the type of material and
thickness.

In order to test the equality of the three unknown mean functions, MANOVA
on the matrix of basis coefficients A(4757×20) could be applied (see Subsection
2.1) so that we have 20 dependent quantitative variables (the dimension of the
B-spline basis) and one independent categorical variable (the three types of de-
vices). It is well known that the main purpose of this technique is to compare
the mean vectors of the three samples for significant differences. Equality of the
mean vectors implies that the three single means are equal for each dependent
variable. Before applying MANOVA, we must verify that the vectors of ba-
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sis coefficients of each device technology have multivariate normal distribution
with equal covariance matrices. However, these hypothesis are not fulfilled for
the considered reset curves. As a matter of fact, the p-values associated with
the Kullback’s test or M-Box’s test for the homogeneity of covariance matrices,
and the p-value linked with the Kolmogorov-Smirnov’s test for the univariate
normality of each single basis coefficient are all < 0.001. This means that the
assumptions of multivariate normality and homogeneity of covariance matrices
are not true. Therefore, the second step consists of using a non-parametric test
for the homogeneity of the vectors of basis coefficients in the three devices. In
this application, due to the high presence of outliers, the extension of the uni-
variate Mood’s test which is based on spatial signs is employed (see results in
Table 3). Taking into account that the associated p-value is less than 0.001, we
can conclude that the reset voltage distribution is different according the kind of
metal for the electrode and dielectric thickness used in the RRAM technologies.

Finally, we are going to test homogeneity on the functional principal com-
ponents computed from the P-spline smoothing of the sample curves. The per-
centages of variance explained by the first four principal components are 99.639,
0.284, 0.046 and 0.020, respectively. Let us observe that only the first princi-
pal component explains more than 99% of the total variability of the process.
Hence, by truncating K-L expansion 4 the reset process can be represented as
I∗1(u) = I

∗
(u) + ξ∗1f

∗
1 (u), u ∈ [0, 1], where ξ∗1 is an scalar random variable

called first principal component score and f∗1 is a function that represents the
principal component weight curve. Thus, the problem of homogeneity is re-
duced to one-way ANOVA for the first principal component if this variable is
normal distributed and with the same variance in the three devices. However,
neither the normality nor the homogeneity of variance are accepted for these
data so that the p-values associated with the corresponding tests (Kolmogorov-
Smirnov’s test for the univariate normality and Levene’s Test for homogeneity
of variance) are less than 0.001. Again, the ANOVA methodology can not be
applied and so, non-parametric tests are used in order to test the differences
among group means of the first p.c. Specifically, univariate Mood’s median test
is used for the general homogeneity hypothesis (see results in Table 3). It could
be also interesting to test whether there are differences among pairs of devices in
order to prove if the dielectric thickness or the electrode material by separated
play some important role in the RRAMs operation. Wilcoxon’s rank sum test
is applied for the pairwise comparisons by means of the Benjamini’s method for
adjusting p-values. In both cases the associated p-values are less than < 0.001.
On the other hand, the p-values provided by Wilcoxon’s rank sum test for the
pairwise comparisons are also smaller than 0.001. Based on these results we can
conclude that the distribution of the first p.c. are significantly different for the
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Chi-squared df p-value
Basis coef. 5516.5 40 < 0.001
First p.c. 2538.2 2 < 0.001

Table 3: Chi-squared test statistic, the degrees of freedom of its approximated
chi-squared distribution and the p-value for the Mood’s median test

three considered devices. Therefore, it can be highlighted in what is referred
to the reset curves of the technologies under consideration here that the type
of metal employed for the electrodes and the dielectric thickness have a high
influence on RRAMs operation and in the statistical information linked to their
inherent variability.

5 Conclusions

The aim of this work is to decide if there are significant differences in the proba-
bility distribution that generates the reset processes associated with RRAMs fab-
ricated making use of different materials for the electrodes and using dielectrics
of different thicknesses. From the methodological point of view, this homogene-
ity problem consists of testing if different samples (groups) of curves come from
the same population. Several FDA approaches have been proposed in literature
when the stochastic processes associated with each sample are Gaussian. This
problem is known as multi-sample problem or FANOVA and consists of testing
the equality of the group mean functions. If the normality assumption is not
true some bootstrap approaches were developed. In this paper, two different
parametric and non-parametric homogeneity testing approaches are proposed
by assuming a basis expansion of the sample curves. Both are reduced to testing
multivariate homogeneity (parametric and non-parametric), the first one on a
vector basis coefficients and the second one on a vector of principal component
scores. The different proposals are motivated by the statistical study of the
variability in the three samples of reset curves analyzed at the end of the paper.
On the other hand, an extensive simulation study has been developed to check
the practical performance of the testing approaches. In this study, the influence
of sample size and variability of errors has been revealed, in addition to the im-
provement in the behavior of the tests with the principal component approach
for the non-parametric case.
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Figure 1: Sample group mean functions (bottom-right) and all the P-spline
smoothed registered curves for each type of device.
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Abstract

Faced with novel coronavirus outbreak, Italy as many other most hard-hit countries, in the Spring
of 2020, adopted a lockdown strategy to contrast the spread of virus. Many studies have already
documented that the COVID-19 control actions have resulted in improved air quality locally and
around the world. Following these lines of research, in this paper, we analyze the impact of social
distancing, travel limitations and restrictions placed upon economic activities on air quality changes
in the urban territory of Chieti-Pescara (Central Italy), identified as an area of greatest criticality
in terms of air pollution. Concentrations of NO2, PM10, PM2.5 and benzene, measured in five
monitoring stations, are used to evaluate air pollution changes in the area of interest. We track the
air quality data over two specific periods: from 1st February to 10th March 2020 (before lockdown

period) and from 11st March 2020 to 20th April 2020 (during lockdown period). The impact of
lockdown on air quality is assessed by using functional data analysis methodologies. Our work
makes an important contribution to the analysis of variance for functional data. Specifically, we
propose a theoretical development for multivariate FANOVA for independent measures, based on
multivariate functional principal components analysis of the sample curves and testing multivariate
homogeneity on the vectors of the most explicative principal components scores. The functional
analysis of variance has proven to be beneficial to monitoring the evolution of air quality before and
during the lockdown tenure and to assessing the homogeneity of groups, individuated according to
the location of measuring stations.

1 Introduction

After the discovery of the first case in Wuhan (China) in December 2019, the
current outbreak of COVID-19, caused by severe acute respiratory syndrome
coronavirus 2 (SARS-COV-2) has dramatically affected all the countries. On
January 30 2020, the World Health Organization (WHO) declared worldwide
public health emergency and in March 11 2020, due to widespread global infec-
tion, the WHO authorities categorised the new Coronavirus as pandemic [47].
To contain the virus and save lives, governments around the word have been tak-
ing a range of actions and measures, such as social and travel restrictions. More
specifically, coronavirus pandemic has forced nations under partial or complete
lockdowns, resulted in prohibition of unnecessary commercial activities in peo-
ple’s daily lives; prohibition of any types of gathering by residents; restrictions
on private (vehicle) and public transportation. Different studies (see, among
others, [18, 7, 40, 32, 28]) have already documented the effects of COVID-19
lockdown measures on many aspects of human activities. Certainly, COVID-19
has severe negative impact on the world activities as well as on local econ-
omy. In the major economics across the globe, lockdown will directly affect the
Gross Domestic Product (GDP) of each country. Meanwhile, efforts to restrict
transmission of the SARS-CoV-2 have had outstanding effects on the ecosystems
which are being greatly recovered. In many cities where lockdown measures have
been implemented, the decline in economic activities, the non-functioning of in-
dustries, the drop in road transport, have contributed to mitigate air pollution.
In this respect, several researchers around the world reported that there is a
considerable reduction of air pollution level across geographies. For instance, [8]
investigated the changes in levels of air pollutants across USA during COVID-
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19 pandemic. They reported a significant reduction on NO2 (up to -25.5%) and
an overall decline in PM2.5, compared with pre-lockdown phase. [26] found a
radically improvement for air quality indexes in 88 Indian cities only four days
of beginning of the lockdown. [2] recorded a visible improvement in air qual-
ity parameters in some cities of India and China, selected on the basis of their
availability of historical air pollution data, population density, monitoring sta-
tion network, and the number of positive COVID-19 cases per million people.
[48] studied the effects of quarantine policies on air pollutants concentrations in
Quito, Ecuador. Using parametric methods, they detected a significant reduc-
tion of NO2 and PM2.5 since the introduction of lockdown measures. However,
there was a noticeable growth in ozone levels. The similar trends of reducing
air pollution and increasing air quality due to introduction of lockdowns were
observed in several other countries as well, such as Malaysia [23], in Wuhan
(China), Turin and Rome (Italy), Nice (France), Valencia [42].
In this study, we focus on investigating the possible effects of the lockdown due
to the COVID-19 pandemic on air quality in the Pescara-Chieti urban area,
Abruzzo (Italy), identified as an area of greatest criticality in terms of air pol-
lution. Data of monitoring stations of the regional air quality network managed
by the Regional Agency for the Environmental Protection (ARTA) of Abruzzo
have been collected and examined. We compared data from the 1st February to
the 10th March 2020, before the beginning of the main limitations on personal
mobility, with data from the 11st of March to the 20th of April, during the adop-
tion of lockdown restrictions. Measured concentrations of NO2, PM10, PM2.5

and benzene were used to evaluate air pollution changes. Commonly, strategies
used in monitoring air quality refer to descriptive statistics, box-plots, autocorre-
lation analysis and spatio-temporal models. Unfortunately, in the monitoring of
environmental pollutants, the temporal observations of the different pollutants
and for the different stations have not always been referred to the same instants
of time. As a result, the implementation of classical statistical procedures might
be problematic. Besides, for interpretative purposes, it is convenient to rely
on statistical methods able to capture the speed and acceleration of pollutants
variation over time. For these reasons, in our research, to overcome the weak-
ness of classical statistical procedures and to effectively detect to what extent
extreme changes in human behaviour after the quarantine policies adopted by
the Italian Government have affected air quality, we followed an approach based
on functional data analysis (FDA).

During the two last decades, it has emerged an important literature in this
methodological framework. A comprehensive introduction to the foundations
and applications of FDA can be found in [35, 36], whereas nonparametric func-
tional methods are summarised in a monograph by [16]. As it is well known,
FDA extends the classical multivariate techniques to data transformed in func-
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tions or curves, with the advantage of reducing thousands of observations to a
few coefficients but conserving relevant information about the functional form.
Recently, the use of FDA methods for environmental data has received atten-
tion (see, among others, [13, 17, 5, 46, 31, 39, 14, 21, 6, 18]). Also in this study,
rather than simply considering the data as vectors to apply classical multivariate
analysis methods, which may lead to a loss of useful information, we explicitly
exploit the functional form of environmental data. The FDA makes it possible
to work with the entire time spectrum of pollutants time series and detect small
deviations from the normal behaviour of the data. Our goal in this paper is to
ascertain whether the level of each pollutant has changed during the lockdown
period. In other terms, we want to test the equality of mean functions related
to each pollutant in two different periods of time: before and during lockdown
days. The theoretical framework involves the use of FDA tools for repeated
measures, and in particular, the analysis of variance. In the literature there are
not many works related to this matter for the field of FDA. In this work, a basis
expansion approach for the statistics proposed by [27] and [45] to test the equal-
ity of two mean functions is considered. On the other hand, in order to check
the differences between the temporal evolution of all pollutants in terms of the
location of measuring stations a novel approach for multivariate FANOVA for
independent measures is introduced. This is based on multivariate functional
principal components analysis of the sample curves of all pollutants and testing
multivariate homogeneity or MANOVA (gaussian data) on the vectors of the
most explicative principal components scores. This new methodology is the ex-
tension of the parametric and nonparametric approaches proposed by [3] for the
univariate functional case.

The paper is organized as follows. Section 2 introduces the theoretical frame-
work. Section 3 is dedicated to illustrate the study area, the monitoring stations
where air quality data have been collected and some explorative analysis of pol-
lutants used for this research. In Section 4, our method is applied to checking
for differences between air quality data collected from the monitoring stations
placed in the urban area of Chieti-Pescara. Finally, Section 5 concludes the
paper.

2 Theoretical framework

Let Xijr = (Xijr1, ..., XijrH), i = 1, ..., g, j = 1, ..., ni, r = 1, ..., R be a sample of
vectors of curves. Note that g represents the number of independent groups, H
is the number of observed response variables, R denotes the number of different
periods of time (or conditions) where the response variable is observed (repeated
measures) and n =

∑g
i=1 ni is the sample size. It is considered that these

189



curves are realizations of a H-dimensional stochastic process X = (X1, ..., XH),
whose components are second order and continuous in quadratic mean stochastic
processes with sample paths belonging to the Hilbert space L2[T ] of squared
integrable functions on T , with the natural inner product

< f, g >=

∫

T
f(t)g(t)dt , ∀f, g ∈ L2[T ].

2.1 FANOVA for repeated measures

The goal is to test the equality of mean functions associated with the observa-
tion of a functional variable in two different conditions or periods of time for the
same subjects. For instance, the problem laid out in this paper about the evolu-
tion of the quality of the air before and during the lockdown. That is, whether
the level of each pollutant has changed during the lockdown. The theoretical
framework involves the use of tools for repeated measures, and in particular,
the analysis of variance. In the literature there are not many works related to
this matter for the field of FDA. [27] introduced the first testing procedure for
this problem by keeping in mind the between group variability. They proposed
three different approaches in order to approximate the null distribution. The
first technique consisted of applying a bootstrap parametric method through re-
sampling some involved Gaussian processes. The second and third methods were
based on non-parametric approaches via bootstrap and permutation tests. Later,
[44] proposed another perspective focused on the Box-Type approximation. In
that study, the four methods were compared, turning out to be the Box-Type
approximation the most efficient option from the computational viewpoint. In
relation to size control and power all of them gave similar results, and its be-
haviour with finite samples was very satisfactory. However, both works agree
that for very small sample size, the bootstrap tests are lightly nonconservative.
[45] adapted two new statistics from the classical paired t-test to the functional
data framework. This new approach is more powerful than the testing proce-
dures aforementioned because takes the within group variability into account as
well. The distributions of the statistics were also approximated by parametric
methods based on asymptotic distributions as well as non-parametric bootstrap
and permutation approaches. The simulation study proved that the asymptotic
and Box-Type tests are not recommended because of their liberality. [45] sug-
gested the permutation tests, although the non-parametric bootstrap methods
also worked correctly. Nevertheless, it was emphasized that there are evidences
that the procedures proposed tend to be nonconservative for small sample size.
On the other hand, the false discovery rate for functional data has been recently
introduced in [30] for the continuous statistical testing of the null hypothesis
along the functional data domain, which can be seen as an extreme case of the
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multiple comparisons problem.
In what follows, a single functional variable is considered because they are

going to be dealt separately. In this context, it is assumed that the sample
functions can be represented as Xjr(t) with t ∈ T = [a, b], j = 1, ..., n and r =
1, ..., R, such that E[Xjr(t)] = µr(t). Only two different conditions or periods
of time are evaluated in the current work (R = 2). Besides, each trajectory can
be expressed as Xjr(t) = µr(t) + ejr(t) where ejr(t) are independent random
functions centered in mean. In this kind of problem the pursued goal is to test
the hypothesis {

H0 : µ1(t) = µ2(t) ∀t ∈ [a, b]
H1 : µ1(t) 6= µ2(t) for some t.

[27] proposed the following statistics in order to solve the statistical hypoth-
esis testing

Cn = n

∫

T

(X1(t)−X2(t))2dt,

where Xr(t) = n−1
∑n
j=1Xjr(t) is the mean function for each condition or

period of time. This statistics avoid the homoscedasticity assumption.
Due to Cn only takes the between group variability, [45] proposed the fol-

lowing two statistics in order to consider both the between and within group
variabilities

Dn = n

∫

T

(
X1(t)−X2(t)

)2

K̂(t, t)
dt,

En = supt∈[a,b]

{
n
(
X1(t)−X2(t)

)2

K̂(t, t)

}
,

with K̂(t, t) =
∑n

j=1[(Xj1(t)−X1(t))−(Xj2(t)−X2(t))]
2

n−1 .
One of the biggest problems in practice is that curves are observed at a

finite set of times because it is impossible to observe a set of functions con-
tinuously in time. Thus, the first step would be to reconstruct the functional
form of the curves. [16] proposed to use non-parametric techniques for this pur-
pose, meanwhile [35, 36] suggested an approach based on basis expansions of the
sample curves. This last strategy consists of assuming that curves belong to a
finite-dimension space spanned by a basis {φ1(t), ..., φp(t)}, so that they can be
expressed as

Xjr(t) =

p∑

k=1

ajrkφk(t) = a′jrφ(t) , j = 1, ..., n; r = 1, 2,

where ajrk represent the basis coefficients of the reconstruction for the corre-
sponding sample curve with ajr = (ajr1, ..., ajrp)

′ and φ(t) = (φ1(t), ..., φp(t))
′.
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Note that p must be sufficiently large to guarantee an accurate approximation
of the original curve. Besides, it is necessary to choose properly the dimension
and the type of basis by keeping in mind the nature of the curves. There are
numerous basis systems but the most employed ones are Fourier functions (for
periodic data), B-spline (for non-periodic and smooth data) and wavelets (for
curves with strong local behaviour). Finally, sample trajectories can be observed
with error or without error. For the first case, least squares approximation is
usually used in order to estimate the basis coefficients, whereas for the second
case some interpolation method could be applied. For more details about these
methodologies, [36] carried out an exhaustive study and [34] implemented them
with the software R.

In this paper, Cn, Dn and En are computed by considering the basis expansion
approach. In fact, it is direct to prove that

(
X1(t)−X2(t)

)2
= (a′1φ(t)− a′2φ(t))

2

=
(
φ(t)′d

)2
= φ(t)′dd

′
φ(t),

and

K̂(t, t) = V ar(X1(t))− 2Cov(X1(t), X2(t)) + V ar(X2(t))

= Ĉ1(t, t)− 2Ĉ12(t, t) + Ĉ2(t, t)

= φ(t)′(Σ̂1 − 2Σ̂12 + Σ̂2)φ(t),

with d = (d1, ..., dp)
′ = a1 − a2 = (a11, ..., a1p)

′ − (a21, ..., a2p)
′, where ark =

n−1
∑n
j=1 ajrk r = 1, 2; k = 1, ..., p. In addition, Σ̂r is the sample covariance

matriz of the matrix Ar of basis coefficients in the group r, whose elements are
Ar = (ajrk), and Σ̂12 is the sample cross-covariance matrix between A1 and A2.
Note for major clarity that Xr = n−1

∑n
j=1 a′jrφ(t) = a′rφ(t).

2.2 Multivariate FANOVA for independent measures

Now the idea in this kind of analysis is a little bit different than the case of
repeated measures. The aim is to test the equality of the mean functions com-
ing from independent groups. For example, the evolution of level of benzene in
the air in two different regions. If there is only a response variable (e.g. level
of benzene), the problem is known as univariate FANOVA. Likewise, another
fundamental aspect in these studies is the number of factors that determine
the different groups. If there exists only one factor (e.g. regions) the problem
is called one-way FANOVA. There are several existing methods for testing the
one-way FANOVA problem [15, 10, 49, 50]. A robust simultaneous confidence
band for the difference of mean functions of two independent populations was
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introduced in [25]. On the other hand, [19] made a detailed comparison of tests
for the one-way FANOVA problem with approaches based on a basis expan-
sion of curves. These tests were inspired by the idea of the B-Spline method of
[41]. In this line, [3] suggested a novel approach by using Functional Principal
Component Analysis (FPCA). This method consists of testing multivariate ho-
mogeneity on a vector of principal components scores. However, although there
are available many works for the univariate functional case, the natural exten-
sion for the multivariate case (more than one functional response variable) had
not been studied deeply. Permutation tests based on a basis function represen-
tation and tests based on random projections are studied in [20]. Here, a novel
approach based on multivariate FPCA is introduced for dealing with the multi-
variate FANOVA problem. This new methodology can be seen as the extension
of the parametric and nonparametric approaches proposed by [3].

Let us consider a set of curves Xijh(t) with i = 1, ..., g, j = 1, ..., ni and
h = 1, ...,H are a set of curves. Then, the information for each subject is
a vector of curves denoted by Xij(t) = (Xij1(t), ..., XijH(t))′. Besides, it is
assumed thatXij(t) are i.i.d. multivariate functional variables with mean vector
µi = (µi1(t), ..., µiH(t))′ and matrix covariance function C such that C(t, s) =
(Ch,h′(t, s)), t, s ∈ T and h, h′ = 1, ...,H. Note that if h = h′, then Ch,h is the
covariance function and otherwise, that is h 6= h′, Ch,h′ represents the cross-
covariance function. Now, the aim is to test

H0 : µ1(t) = ... = µg(t) ∀t ∈ [a, b], (1)

against the alternative that its negation holds.
In the field of FDA, it is very common to deal with high dimension data.

These type of data are defined as data associated to a great number of highly
correlated variables where the sample size is too much small. For this reason, one
of the most important techniques in FDA is FPCA. This tool reduces the dimen-
sion of the problem and explains the main characteristics and modes of variation
of the curves in terms of a reduce set of uncorrelated variables called functional
principal components (PC’s). Basis theory on FPCA was first introduced by [12]
and asymptotic properties were studied in [11]. Penalized estimation approaches
for univariate FPCA were later developed in [43] and [4]. Recently, a new vari-
max rotation for FPCA has been performed in [1]. [35] presented a detailed
study of the basis expansion estimation for univariate FPCA and discussed its
extension to the case of bivariate functional data. It is immediate to adapt this
theory when more than two response variables are considered. PC’s are obtained
as generalized linear combinations with maximum variance. Formally, the m-th
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principal component scores are determined by

ξijm =

∫

T
(Xij(t)− µ(t))′fm(t)dt

=
H∑

h=1

∫

T
(Xijh(t)− µh(t))fmh(t)dt,

where µ(t) = (µ1(t), ..., µH(t)) is the overall mean function and fm(t) =
(fm1(t), ..., fmH(t))′ are the vector of weight functions (or loadings) that max-

imizes the variance subject to
∑H
h=1

∫
T fmh(t)fm′h(t)dt = 1 if m = m′ and 0

otherwise. These functions are obtained as the solutions to the eigenequation
system

Cfm = λmfm,

with C being the covariance operator and the sequence {λm}m≥1 of positive real
eigenvalues decreasing to zero indicating the amount of variance attributable to
each component. The aforementioned system can be written in detail as follows:

∫
T C11(s, t)fm1(t)dt+ ...+

∫
T C1H(s, t)fmH(t)dt = λmfm1(s)∫

T C21(s, t)fm1(t)dt+ ...+
∫
T C2H(s, t)fmH(t)dt = λmfm2(s)

...∫
T CH1(s, t)fm1(t)dt+ ...+

∫
T CHH(s, t)fmH(t)dt = λmfmH(s).

Highlight that each PC is a zero-mean random variable with maximum variance
and uncorrelated with the remainder of PC’s. Hence, in the multidimensional
context and similar to the univariate setting, the vectorial process admits the
following orthogonal decomposition known as Karhunen-Loève expansion

Xij(t) = µ(t) +
∞∑

m=1

ξijmfm(t).

This decomposition can be truncated so that the sample curves can be opti-
mally approximated (in the least squares sense) in terms of the first q PC’s,
Xq
ij(t) = µ(t) +

∑q
m=1 ξijmfm(t). The parameter q is normally chosen so that

the explained cumulative variability is as close as possible to one. With this
approach, the dimension of the problem is considerably reduced.

Multivariate FPCA with basis expansions was first introduced by [22] and
later summarized in [38]. The main ideas are briefly explained hereafter. If the
basis expansion is considered, Xij(t) can be expressed as

Xij(t) = Φ(t)a′ij ,
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where the basis coefficients are gathered as aij = (aij11,
..., aij1p1 , aij21, ..., aij2p2 , ..., aijH1, ..., aijHpH ) with ph being the number of
basis functions for the h-th response variable and

Φ(t) =




φ11(t) · · · φ1p1(t) 0 · · · 0 · · · 0 · · · 0
0 · · · 0 φ21(t) · · · φ2p2(t) · · · 0 · · · 0
...

...
...

...
...

...
...

0 · · · 0 0 · · · 0 · · · φH1(t) · · · φHpH (t)


 .

In general X(t) = AΦ′(t), where A is the resultant matrix after joining by row
all aij . Thus, whether the mean vector is subtracted to each row of X(t), the
spectral decomposition of the covariance operator C becomes

Φ(s)ΣAWb′m = λmΦ(s)b′m,

with ΣA being the covariance matrix of A, bm being a row-vector that con-
tains the basis coefficients of fm(t) = Φ(t)b′m and W =

∫
T Φ(t)′Φ(t)dt

being the matrix of inner products between basis functions with dimension∑H
h=1 ph ×

∑H
h=1 ph. Since the showed spectral decomposition is true for all

s, the expression can be reduced as ΣAWb′m = λmb
′
m. Now, by considering

um = bmW
1/2, the multivariate FPCA is equivalent to the multivariate PCA

of the matrix AW 1/2, whose covariance matrix can be diagonalised as follows

W 1/2′
ΣAW

1/2u′m = λmu
′
m.

Therefore, the PC’s are given by

ξijm = a′ijWbm.

[37] implemented in the software R [33] the package called ‘funHDDC ’ that
provides the principal component scores for the multivariate case.

Once the multivariate PC scores are computed, two different ways for solv-
ing the multivariate testing problem (1) are proposed in this paper, both are
based on testing homogeneity on the vector of the first q principal components
scores in the g groups. The first consists of performing univariate ANOVA on
each principal component by correcting the level of significance for the normal-
ity case. It is well-known that whether the multivariate normality is suitable,
the uncorrelatedness implies independence and then, it does not make sense to
consider a multivariate approach. Otherwise, when the multivariate normality
is not satisfied, the option is to apply non-parametric multivariate tests such
as the extensions of the univariate Kruskal Wallis’s test and Moods’s test. In
addition, it is recommended to use the permutation version of these tests when
the sample size is small [29].
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Figure 1: Abruzzo and Chieti-Pescara metropolitan area

3 Air quality data and studied period

This section gives details about the study area with respect to its geographic
characteristics and the monitoring stations used to collect air quality data. In
addition, the dataset employed to derive insights into research problem has been
analysed with descriptive statistics and visualization tools. For high quality
graphics, we used the ‘openair’ R package [9].

3.1 Description of study region

In this work, we closely examine the air quality of the metropolitan area of
Chieti-Pescara, situated in the Abruzzo region, along the Adriatic coast of cen-
tral Italy. The Chieti-Pescara metropolitan area (Fig.1) is a territory, identified
according to a functional criterion, formed by six municipalities, Pescara, Mon-
tesilvano, Chieti, Francavilla al Mare, San Giovanni Teatrino, Spoltore, covering
a total area of 159.33 km2 , and accounting for around 281,101 inhabitants at
31/12/2019.

The configuration of Chieti-Pescara urban area is limited by the sea, in the
North-East, and by hilly reliefs in the South-West. The central city is formed by
the two provincial capitals: Chieti, not in a central position for the municipali-
ties of the province, and the city of Pescara, which are extremely close to each
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other (approximately 12 Km). Pescara city, located on the centre of a metropoli-
tan area (on the coast), is the administrative and commercial heart of Abruzzo
and in a few decades, it has become the most populated city of the region, with
120,000 inhabitants. It developed on a flat territory, with a surface of 33.62 km2,
whose urban area develops around the terminal stretch of the homonymous river
and a restricted coastal area.
The Chieti-Pescara conurbation is characterised by a system of infrastructures,
which is one of the strongholds of the Abruzzo: significant and industrial sites
are located around this pole. However, the progressive growth of the industrial
activity, the increased road travel, the urban expansion, make the metropolitan
area the locus of growing environmental concerns, for the rising levels of energy
and resource consumption, greenhouse gas emissions and air quality pollution.
For these reasons, the conurbation of Chieti-Pescara has been identified as a
mitigation area by the “Plan for the Protection of Air Quality”, drafted by the
Abruzzo Region, in accordance with current Italian legislation (Legislative De-
cree 155/2010). That document has highlighted the need to reduce the impact
on the population of the air pollution levels that characterize this urban terri-
tory. Also, in the Plan, there is the inventory of the main sources of polluting
emissions (updated to 2012), which in this area largely sees the contribution of
non-industrial combustion plants (mainly domestic heating plants) as regards
particulate emissions (78.5% of the total for PM10 , 88.8% for PM2.5 and 88.4%
for benzene), while for nitrogen oxides road traffic prevails (49.7%), with indus-
trial combustion plants in second place with 23.6 %.

3.2 Data

This study tracks four pollutants over two specific periods: from 1st February
to 10th March 2020 (before lockdown period) and from 11st March 2020 to 20th

April 2020 (strict lockdown period). The analyses include measures of NO2,
PM10, PM2.5 and benzene (C6H6) obtained from the automatic reporting plat-
form, run by Regional Agency for the Environmental Protection of Abruzzo
Region (ARTA). These variables are measured in micrograms per cubic meter
(µg/m3) and information are obtained from five monitoring sites. The spatial
location of all five monitoring stations is shown by blue points in Figure 1.
The air monitoring stations of Pescara (Via Firenze) and Montesilvano are de-
signed as Urban Traffic type (UT) and are located where the pollution level is
most influenced by traffic emissions from neighboring roads with medium-high
traffic intensity; conversely, air quality data collected from the monitoring sta-
tions of Pescara (Teatro d’Annunzio), Chieti and Francavilla are deemed Urban
Background measuring stations (UB), located where the pollution level is not
influenced mostly by emissions from specific sources and are representative of
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Table 1: Net and % variation of pollutants concentration levels in the urban
area of Chieti-Pescara

UT UB

Net variation fi mo th ch fr

NO2 -13.9 -14.7 -21.2 -10.3 -7.6
PM10 5.1 3.7 5.7 4.3 7.3
PM2.5 2.9 2.2 3.1 4.4 4.1
Benzene -0.31 -0.15 0.22 0.18 0.04

% variation

NO2 -57.9 -58.7 -65.2 -54.8 -49.1
PM10 20.5 16.8 22.0 19.4 40.8
PM2.5 19.0 15.6 19.8 26.7 34.4
Benzene -32.57 -27.56 40.06 19.63 4.27

Acronyms of monitoring stations:

fi=Via Firenze; mo=Montesilvano; th=Teatro d’Annunzio; ch=Chieti; fr=Francavilla
al Mare

the population average exposure. Hourly measurements of pollutants have been
collected from February to April 2020.

3.3 Descriptive statistics and graphical analysis

After the implementation of strict lockdown measures starting from 11st

March 2020, air pollution of the urban area of Chieti-Pescara has witnessed a
substantial improvement. Table 1 highlights the net and percentage variations
of each pollutant, in each monitoring site, before and during the lockdown.
It can be noticed that NO2 has shown the most significant declining trend.
In particular, the concentrations of this pollutant were approximately 50%
lower compared to the previous average. On the other hand, we recorded an
increase of PM10 and PM2.5 concentrations during the lockdown weeks, whereas
benzene levels dropped in the traffic measuring stations and increased in the
background monitoring sites. A trend analysis of 24-hour daily average data
for the four pollutants was also considered for the above stated periods in all
monitoring stations to better understand the impact in the levels of pollutants
accumulation amid the lockdown period.

Figure 2 allows to capture the changes in concentrations of four pollutants
for the pre-lockdown and during-lockdown period. The reduction of NO2 dur-
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ing the lockdown is clearly visible and marked in all monitoring sites and is
due to the collapse of vehicular flows, even if differences emissions in magni-
tude exist depending on the stations. The behaviour of atmospheric particular
matter (PM10 and PM2.5) seems to be rather independent from the measures
adopted during the COVID-19 nation-wide lockdown: background and traffic
stations undergo an increase during the period of lockdown directives. This
implies that the monitoring sites might be under the effect of multiple non-
transportation related emission sources. In particular, the noticeable increase of
PM2.5 concentration level during the strict lockdown phase is mainly ascribable
to the increase of domestic solid fuel burning. Besides, a pertinent amount of
PM10 and PM2.5 has a meteorological origin. Particular matter concentrations
may also fluctuate with inter-seasonal dissimilarity in meteorological conditions.
Thus, the higher PM10 and to a lesser extent PM2.5 episodes, occurred at the
end of March (29-31 March), were recorded during a massive advection of dust
from the Central Asia (Aral Sea). Concerning the benzene concentrations, as
stated earlier, it appears that this pollutant exhibits very different behaviours
in background stations compared to traffic ones. In the latter, there is a decline,
albeit contained, due to the reduction of vehicular flows during the lockdown,
while in the former there is stability or even slight increases, probably due to
domestic heating systems and the role of weather variables. To get a comprehen-
sive understanding of how lockdown policies have affected air pollution, we also
look at the weekly concentrations of each pollutant at background and traffic
stations before and during the restriction periods. From Figures 3 and 4, it is
evident that on Sunday, the traffic during the lockdown phase is virtually zero,
therefore the concentrations of NO2, pollutant specifically linked to vehicle emis-
sions, reduce more than in the other days of the week. It is worth noting that
“Teatro d’Annunzio” measuring station seems to be affected by traffic emissions
in an anomalous way being it a background site. Also the inspection of weekly
concentrations reveals that the impact of restrictions measures on PM10 and
PM2.5 is the most complex of the four pollutants studied: we are not able to
detect consistent patterns with vehicular flows even if the small sample size, only
five weeks and half, could affect the empirical findings. More in detail, among
the background monitoring stations, that of “Teatro d’Annunzio” results more
subject to the natural component of PM10, probably due to marine aerosol: this
station is about 200 m from the sea, with no buildings in the way. Regard-
ing the weekly benzene concentrations, the comparison between the two traffic
monitoring sites indicates that “Via Firenze” is more subject to the emissions
arising from combustion (mainly domestic heating) compared to those due to
traffic road. Conversely, the traffic station of “Montesilvano” being on the edge
of the urban area is especially exposed to road traffic emissions.
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Figure 2: Daily variation of pollutants for stations before and during lockdown
occurred on 10th March
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Figure 3: Weekly concentrations of each pollutant at traffic stations before (left
panel) and during (right panel) lockdown
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Figure 4: Weekly concentrations of each pollutant at background stations before
(left panel) and during (right panel) lockdown
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4 Results

We now illustrate the use of testing procedures previously described to ascertain
whether the level of each pollutant has changed during the lockdown period. As
pointed out in Section 3, to reveal the impact of restriction measures due to the
COVID-19 on the air quality, the obtained environmental datasets were divided
in two time frames, of the same length (39 days): i) pre-lockdown (February 1,
2020-March 10, 2020) and ii) during-lockdown (March 11, 2020-April 18, 2020).
From a theoretical viewpoint, we have longitudinal functional data corresponding
with the observation of the same functional variables in two different periods of
time.

4.1 Functional reconstruction of pollutant curves

As a first step of our data analysis, we reconstructed the functional form of
curves from the initial points that come from the discrete values measured
in the study. To convert the discretely observed data to smooth functions,
the reconstruction of curves is made by using a cubic B-spline smoothing.
The B-spline functions are one of the most prominent spline basis, used for
non-periodic functions, which is proven to be numerically stable and flexible [36].
Initially, in tailoring a basis system to fit our data, we used 7 basis functions.
This option is conservative: it allows to capture the trend of curves but not
their local behaviour. To recover the underlying functions of the observed
data, we were increasing the number of basis functions up to 20. This choice
preserves important information about the real form of the curves. Figure 5
illustrates the shape the data would take after smoothing them into these basis
systems. It is clear that the increase of the number of basis functions produces
smaller differences between the smoothed sample curves and the observed data
(see Figure 6). Hereinafter, an approximation of each sample curve in terms of
a basis of cubic B-splines of dimension 20 is considered.

4.2 FANOVA for repeated measures results

Before moving on more complex studies, we carried out a univariate analysis
to evaluate the behaviour of each pollutant before and during lockdown. To
statistically confirm the effect of lockdown on the mean of each pollutant, we
first implemented the FANOVA for repeated measures, as defined in Section 2.1.
Specifically, we apply the statistics Dn and En which are the best to control
the between and within group variability that there are behind the repeated
measures design. In order to construct the tests based on these statistics, a per-
mutation method is used to approximate their null distributions. This technique
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Figure 5: Functional approximation, using 7 and 20 basis functions, of some pol-
lutants for stations before lockdown (upper panel) and during lockdown (lower
panel)
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Figure 6: Functional approximation, using 20 basis functions, of pollutants for
stations before lockdown (upper panel) and during lockdown (lower panel)
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Table 2: FANOVA for repeated measures on the test statistics Dn and En

p-value Dn En
NO2 0.034 0.035
PM10 0.000 0.034
PM2.5 0.028 0.030
Benzene 0.049 0.070

consists of a random permutation of each sample unit. Let us denote the original
data by X = (X1, X2, . . . , Xn) where Xj = (Xj,1, Xj,2) (j = 1, . . . , n), and the
resampling vectors by X∗ = (X1∗, . . . ,Xn∗) with Xj∗ = (Xj,1∗, Xj,2∗) being
a random permutation of the sample unit Xj . This process is repeated ∆ times,
with ∆ a number sufficiently large, so that Dδn∗ and Eδn∗ are calculated for each
replication, being δ = 1, . . . ,∆. Later, p-values are obtained as the proportion
of times that Dδn∗ and Eδn∗ overcome Dn and En, respectively. Here, the p-values
were obtained from 2000 replications. The results of the proposed testing proce-
dures are shown in Table 2. The p-values of all tests are less than the significance
level α = 0.05 for NO2, PM10 and PM2.5. For benzene, En shows no differences
between both periods, but it is very close to the limit region. Therefore, and
taking into account the sample size, we have evidence to reject the null hypoth-
esis for benzene and we state that there are also differences in the mean curves
of this pollutant in the pre and during lockdown phases.

4.3 Multivariare FANOVA results for independent mea-
sures

Once the impact of the lockdown has been studied, a further step of our data
analysis has involved the assessment of equality of mean functions of individual
groups. In our context, the groups have been individuated according to the lo-
cation of the monitoring sites. In more detail, our interest lies in investigating
if the mean function of all the pollutants measured in the background stations
is equal to that of the urban traffic ones. The multivariate analysis of variance
is carried out both before and during lockdown tenure to detect differences at-
tributable to the government restrictions. This comparison has been evaluated
firstly globally, considering all the pollutants together, and then for each variable
separately. In Table 3 the results for multivariate and univariate FANOVA based
on FPCA are displayed. On this matter, four principal components are chosen
for both cases (multivariate and univariate analysis), since more than a 99% of
total variability is explained with four components in all situations. Besides,
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Table 3: Multivariate FANOVA for independent measures

p-value BL DL
All pollutants 0.000 0.302
NO2 0.562 0.272
PM10 0.000 0.306
PM2.5 0.889 0.685
Benzene 0.186 0.000

Acronyms:

BL=Before Lockdown; DL=During Lockdown

due to the fact that the normality is in question and the sample size is really
small, the extension of the univariate Kruskal-Wallis’s test with the permutation
version is conducted by means of ‘MNM’ R package.

Looking at the results of pre-lockdown phase, we found that the groups
are different from each other and the main discrimination is ascribable to the
PM10 concentrations. Furthermore, it seems that there could be indications of
significance as well regarding the benzene because the p-value is 0.186 and by
increasing the sample size we could reject the homogeneity in this pollutant.
Conversely, the multivariate test is not able to distinguish the two groups in
the lockdown period. In fact, the p-value for the multivariate test is equal to
0.30. However, when we carry out the univariate tests, we record significant
differences between the groups in relation to the benzene. This appreciation
is also corroborated by the visual inspections of Figures 7 and 8. A possible
explanation for these results can be found in the simulation study performed by
[3] where it was shown that these approaches tend to be very conservative for
small sample sizes.

5 Conclusions

Recent studies suggested that lockdown measures, adopted by the most hard-
hit countries around the world in the Spring of 2020 to prevent the spread of
COVID-19, have had a positive significant impact on air quality. In this paper,
a novel approach for multivariate functional analysis of variance for independent
measures is presented, as a methodology for a more effective understanding of
the impact of lockdown on four critical air pollutants, measured in five monitor-
ing sites in the urban area of Chieti-Pescara (Central Italy). Being a powerful
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Figure 7: Mean function per pollutant of each group before lockdown
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Figure 8: Mean function per pollutant of each group during lockdown
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approach to modelling temporal observations, which is complementary to the
usual time series techniques, the FDA allowed us to reconstruct the temporal
profiles of the studied pollutants for the lockdown and unlock phases in each
measuring station. We have found significant reduction in NO2 levels during
the lockdown period albeit some differences in magnitude are recorded accord-
ing to the monitoring station. These results are in line with the findings of
other published studies on this topic [26, 8, 18, 24] in which significant NO2

reductions for different locations have been determined. Unlike the NO2 pollu-
tant, for particular matter, that is for PM10 and PM2.5, the monitoring stations
experienced an increase during the quarantine weeks. Besides, less clear was
the impact of lockdown on benzene levels: the concentrations of this pollutant
were smaller in the traffic stations while an increasing trend was observed in
the background measuring sites. Equally important was to determine if these
differences were statistically significant. In this respect, the functional analysis
of variance has proven to be beneficial to monitoring the evolution of air quality
before and during the lockdown tenure and to assessing the equality of mean
functions of individual groups, individuated according to the location of mea-
suring sites. The considered FANOVA approaches based on basis expansion of
sample curves, dimension reduction by using FPCA of pollutants curves and
testing homogeneity on the vector of the most explicative principal component
scores have made this analysis feasible providing contrasted evidence to reject
the null hypothesis of equality in the mean functions of all pollutants, both in
the time frame considered and the localization of monitoring stations.

In general, the FDA framework has provided a valid understanding and
knowledge of the temporal behaviour of air pollutants in a kind of controlled
experiment such that offered by the lockdown. The COVID-19 restrictions re-
duced the anthropogenic emissions and created an “unprecedented scenario” in
which the source of road traffic has been drastically dropped out. We believe
that the results of this study are of interest for environmental protection agencies
involved in developing policies to achieve air quality improvements, encouraging
them to establish mechanism to reduce pollution emissions.
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Domı́nguez, F. Requena, J. J. Merelo, M. Lacasaña, J. de Dios Luna, J. J.
Dı́az-Mochón, J. A. Lorente, and P. Carmona-Sáez. DatAC:A visual ana-
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multivariate functional data in group-specific functional subspaces. Comput
Stat, 35:1101–1131, 2020.

[39] N. Shaadan, S.M. Deni, and A.A. Jemain. Assessing and Comparing
PM10 Pollutant Behaviour using Functional Data Approach. Sains Malays,
13(22):11473–11501, 2013.

[40] K. Shehzad, M. Sarfraz, and S. G. M. Shah. The impact of COVID-19
as a necessary evil on air pollution in India during the lockdown. Environ
Pollut, 266:115080, 2020.

210



[41] Q. Shen and J. Faraway. An F test for linear models with functional re-
sponses. Stat Sin, 14(4):1239–1257, 2004.

[42] P. Sicard, A. De Marco, E. Agathokleous, Z. Feng, X. Xu, E. Paoletti,
J. J. D. Rodriguez, and V. Calatayud. Amplified ozone pollution in cities
during the COVID-19 lockdown. Sci Total Environ, 735:139542, 2020.

[43] B. W. Silverman. Smoothed Functional Principal Component Analysis by
Choice of Norm. Ann Stat, 24(1):1–24, 1996.

[44] L. Smaga. Repeated measures analysis for functional data using Box-type
approximation with applications. REVSTAT, 17(4):523–549, 2019.

[45] L. Smaga. A note on repeated measures analysis for functional data. AStA
Adv Stat Anal, 104(1):117–139, 2020.

[46] M.J. Valderrama, F.A. Ocaña, A.M. Aguilera, and F.M. Ocaña Peinado.
Forecasting pollen concentration by a two-step functional model. Biomet-
rics, 66, 2010.

[47] WHO 2020. Coronavirus disease (COVID-19) pandemic.
https://www.who.int/emergencies/diseases/novel-corona virus-2019.

[48] M. A. Zabrano-Monserrate and M. A. Ruano. Has air quality improved in
Ecuador during the COVID-19 pandemic? A parametric analysis. Air Qual
Atmos Health, 13:929–938, 2020.

[49] J.T. Zhang. Analysis of Variance for Functional Data. CRC Press, 2014.

[50] J.T Zhang, M.Y. Cheng, C.J. Tseng, and H.T. Wu. A new test for one-way
ANOVA with functional data and application to ischemic heart screening.
Comput Stat Data An, 132:3–17, 2019.

211



212 APPENDICES

A7 COVID-19 data imputation by multiple func-
tion on function principal component regres-
sion

� Acal, Christian; Escabias, Manuel; Aguilera, Ana M.; Valderrama, Mariano
(2021)

� COVID-19 data imputation by multiple function on function principal com-
ponent regression

� Mathematics, in press

Mathematics
JCR Year Impact Factor Rank Quartile

2019 1.747 28/235 Q1



Abstract

The aim of this paper is the imputation of missing data of COVID-19 hospitalized and intensive
care curves in several Spanish regions. Taking into account that the curves of cases, deceases and
recovered people are completely observed, a function-on-function regression model is proposed to
estimate the missing values of the functional responses associated with hospitalized and intensive
care curves. The estimation of the functional coefficient model in terms of principal components
regression with the completely observed data provides a prediction equation for the imputation of
the unobserved data for the response. An application with data from the first wave of COVID-19
in Spain is developed after properly homogenizing, registering and smoothing the data in a common
interval so that the observed curves become comparable. Finally, Canonical Correlation Analysis
on the functional principal components is performed to interpret the relationship between hospital
occupancy rate and illness response variables.

1 Introduction

The virus SARS-CoV-2 has been the main global concern ever since its start at
the end of 2019 in China. Its rapid propagation has put on alert all areas of
society, not only the field of medicine. Nevertheless, a year and half later from
the beginning of the pandemic, the virus incidence does not seem to decrease
and the number of deaths continues its upward trend throughout the world.
To get some idea of extremely negative impact of the pandemic, Coronavirus
Disease (COVID-19) has caused a total of 2.780.266 deaths over the planet as
of 28/03/2021 according to the real-time database developed by Johns Hopkins
University [19]. At the same time, another crucial topic derived from the illness is
the economic crisis that devastates all countries. For instance, the unemployment
rate is up 5.1% in last three months of 2020 in UK according to official data.

In order to combat this terrible situation, there is a great need to understand
the development of the pandemic. Knowing its behaviour will enable correct
decision making to mitigate the spread of the virus and to recover people’s daily
life as soon as possible. On this matter, the science community is focusing all
its efforts on developing new techniques capable of modelling and predicting
the evolution of the COVID-19. The main variables of interest that gauge how
the epidemiological situation stands in a country are the number of positive,
recovered and deceased cases. Another important indicator is the number of
people who are hospitalized or in intensive care units. From a mathematical
viewpoint, many authors have already attempted to tackle these variables from
different statistical perspectives. A new Bayesian indicator is introduced in [10]
to forecast the beginning of a new wave. In [37], semi-empirical models based
on the logistic map are considered in order to predict the variables in different
phases of the pandemic in Spain. Likewise, [2] apply SIR models to analyse
the trend of the disease over the world and more specifically, in India. These
variables are also addressed from the time series design by considering quasi-
Poisson regression and two piece scale mixture normal distribution when there is
lack of symmetry in the error’s distribution in [52, 35], respectively. Additionally,
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[56] make an exhaustive comparison of five deep learning methods to forecast the
number of new cases and recovered cases in Italy, Spain, France, China, USA and
Australia. Regarding the role of the environmental conditions in the evolution
of the illness, [44] study if the number of cases in China is connected with the
daily average temperature and relative humidity through a generalized additive
model. On this point, [11] show how the choice of the spatio-temporal model
may affect the relation between the spread of the virus and certain environmental
conditions. Information theory metrics are also used to understand how time
series associated with the pandemic are interconnected or causally related each
other [55]. In addition, how the incubation period distribution could vary by
age and gender is investigated in [42]. On the other hand, a new family of
distributions is introduced in [36] to model daily cases and deaths in Egypt and
Saudi Arabia.

Taking into account the nature of the variables of interest, an approach based
on Functional Data Analysis (FDA) is proposed in the current paper for data
imputation. FDA is a modern branch of the statistics that aims to analyse the
information coming from curves or functions that evolve over time, space or
other continuous argument. Under this definition, it is clear that the number of
COVID-19 positive, recovered, deceased, hospitalized and intensive care people
come from the observation of functional variables. FDA is usually applied in
many areas of knowledge as Biosciences, Environment, Economy, Chemomet-
rics and Electronics, among others. A detailed review about the most impor-
tant FDA methodologies, applications and computational aspects can be seen
in books [48, 47, 46, 26, 30]. In this regard, some works focused on revealing
complex patterns of COVID-19 illness from a FDA viewpoint have been devel-
oped. Functional Principal Component Analysis (FPCA) and functional time
series approaches based on dynamic FPCA are applied in [51] for explaining
variability and predicting COVID-19 confirmed and death cases in the United
States. On the other hand, a new Varimax rotation approach for FPCA is in-
troduced in [1] to better interpret the main modes of variability in COVID-19
confirmed cases in the first wave in Spain. Time-varying FDA methods for mod-
eling the cumulative COVID-19 curves of cases by pooling data across countries
are applied in [12]. A multivariate FDA approach has also been considered for
spatio-temporal prediction of COVID-19 mortality counts in Spain [53].

All statistical models require complete and high quality data to be able to
provide accurate predictions, but, unfortunately, neither of these aspects are
normally fulfilled during a pandemic. In the first wave of COVID-19 in Spain, a
change in the way of recording data in some Autonomous Communities produced
incomplete data in hospitalized and intensive care curves. In this paper, a func-
tional linear regression model is proposed for the imputation of these missing
curves so that complete data are available to be able to estimate the predictive
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models with guarantees. Although there are many works related to the impu-
tation in multivariate data [34, 27], there is a lot to be done in the functional
framework yet. A novel approach for multiple imputation based on functional
mixed effects models was proposed by [29] in a longitudinal data context. Differ-
ent solutions for scalar-on-function regression with missing observations in the
response are considered in [25, 32, 33, 15, 24]. Besides, an extension to mul-
tiple functional regression imputation that handles both scalar and functional
response variables related to EEG data is proposed in [14]. Likewise, different
FDA imputation methods under sparse and irregular functional data settings
are performed in [49]. The extension of the function-on-function linear regres-
sion (FFLR) model [5, 54, 45] to the case of multiple functional predictors is
proposed in this paper for estimating the curves of hospitalized and intensive
care people (functional responses) from the curves of confirmed, deceased and
recovered cases (functional predictors).

In addition to this introduction, the manuscript scheme consists of a descrip-
tion of the data where the process of homogenization, registration and smoothing
of the sample curves is detailed in order to make them to be comparable (Section
2). The theoretical framework on multiple function-on-function linear regression
and the imputation procedure based on principal components regression appear
in Section 3. An application on COVID-19 data in the Spanish Autonomous
Communities during the first wave of the pandemic is developed in Section 4.
Finally, Section 5 contains a discussion about the results obtained throughout
this paper.

2 Data homogenization, registration and smooth-
ing

Spain is organized administratively in autonomous communities (ACs) or ter-
ritorial governments that have transferred health affairs. This territorial or-
ganization consists of 17 ACs plus two autonomous cities (Ceuta and Melilla)
located on the African continent and which have been excluded from the analyses
presented here because they have no exclusive competences in the organization
of health care assumed by the Spanish government. The 17 ACs are, in al-
phabetical order: Andalućıa, Aragón, Asturias, Islas Baleares, Islas Canarias,
Cantabria, Castilla La Mancha, Castilla León, Cataluña, Extremadura, Galicia,
Madrid, Murcia, Navarra, Páıs Vasco, La Rioja and Valencia. The population is
highly variable between different ACs. While Madrid, Catalunya and Andalućıa
have more than six, seven and eight million inhabitants, respectively, (6,663,394,
7,675,217 and 8,414,240), La Rioja has approximately three hundred thousand
inhabitants (316,798).
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The first wave of the Covid-19 pandemic in Spain occurred between February
2nd and April 27th, 2020. In those early days of the pandemic, Spanish author-
ities published daily and accumulated data of the evolution of the pandemic in
Spain based on the information communicated by the different ACs. Specifi-
cally, the data published daily correspond to the following variables: number
of confirmed (positive) cases, hospitalized people, people in intensive care units
(ICUs), recovered people and deceased persons. The observed data for some
of the ACs can be seen in Figure 1. The problem that arose, and gave rise to
this work, is that some ACs (Castilla La Mancha, Castilla León, Madrid and
Galicia) modified the recording of the data associated with people in ICU and
hospitalized people from a specific day (see Figure 2). The mathematical action
against COVID-19 of the Spanish Mathematics Committee called for the devel-
opment of a meta-predictor (collaborative prediction) based on the predictions
from different models/algorithms, contributed by interested researchers, which
builds optimized combinations of them, disaggregated by ACs. Therefore, the
imputation of the missing hospitalized and ICU data is fundamental to building
forecasting models to be able to provide optimal predictions of the evolution of
the pandemic through these variables. In order to solve this problem, a func-
tional regression model is proposed in this paper to estimate the expected form
of the missing accumulated data of ICU admissions and hospitalizations from
the observed accumulated data of cases, deaths and recoveries.

From now on, the time evolution of COVID-19 cases, deceases, recoveries,
hospitalizations and ICU admission will be considered as functional variables
that will be denoted as X1(t), X2(t), X3(t), Y1(t) and Y2(t), respectively (the
X−variables will be considered as predictors and the Y−variables as responses
in the functional regression models). The observed data are the number of daily
cumulative informed values of these five functional variables for the seventeen
ACs in Spain from 20/02/2020 to 27/04/2020. Then, a random sample of curves
{(xij(t), yik(t)) : i = 1 . . . , 17; j = 1, 2, 3; k = 1, 2} observed daily are available.

Before carrying out the functional analysis of the data it becomes necessary
a data registration given the absence of uniformity in the publication of the
observations. This means that in the same functional variable the first day with
available data and the number of discrete observations in each AC are different.
For example, in Andalućıa the first recorded data of hospitalized persons was on
March, 10th in which 32 hospitalized people were registered and for this variable
there were 49 discrete observations in this AC. On the other hand, in Madrid
the first recorded data of hospitalized persons was on March, 12th in which 1304
hospitalized people were registered, and the number of discrete observations in
this AC was 47. However, the curves of positive cases recorded 62 and 63 discrete
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Figure 1: Discrete daily observations of accumulated positive cases, deaths, hos-
pitalizations, ICU admissions and recoveries in Madrid, Andalućıa, Cataluña
and La Rioja.
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Figure 2: Discrete daily observations of accumulated hospitalizations and ICU
admissions in Madrid, Castilla La Mancha, Castilla León and Galicia.

observations in Andalućıa and Madrid, respectively. In addition, the population
size of each AC could influence the adjustments of the proposed models, as larger
numbers of cases have been observed in larger communities, and the different
size of the population of the different ACs makes impossible to compare data
between them. In order to avoid both problems, the number of cases per 10000
inhabitants is considered and the first observation for each curve corresponds to
the day that exceeds for the first time the maximum of the first reported values,
discarding the previous ones.

After data homogenization, the period of observation and the number of
discrete observations of each functional variable for each AC continue being
different. An important constraint of FDA methods is that all sample curves of
a functional variable must be observed in the same domain. Classic solutions to
this problem are based on registration of all curves in a common interval (see
[48]). In this paper we propose to register all curves in the interval [0, 1] by
applying the FDA methodologies to the synchronized curves defined by

x∗ij(u) = xij(Tij−start + u(T − Tij−start)),

y∗ik(u) = yik(Tik−start + u(T − Tik−start)) ∀u ∈ [0, 1],

where [Tij−start, T ] and [Tik−start, T ] are the observed domains for the i−th pre-
dictor and the k−th response curves, respectively (i = 1, . . . , 17; j = 1, 2, 3; k =
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1, 2). From now on, and by abuse of notation that helps simplify the exposition,
xij and yik will represent the registered curves.

2.1 From discrete daily observations to curves

Although functional data are sets of curves, their true functional form is unknown
and the recorded data are observations of each curve at a finite collection of time
points. Then, the first step in FDA is to reconstruct the functional form of the
curves from the observed discrete data.

There are different approaches to the processing of functional data among
which we can highlight the classic ones based on basis representation of the
curves [48] and the ones based on local-polynomial regression [26]. In this pa-
per, basis expansions of the curves are considered by assuming that each of
the functional variables (X1, X2, X3;Y1, Y2) generating the sample curves, are
smooth stochastic processes with trajectories in the space L2([0, 1]) of squared
integrable functions in the interval [0, 1]. In what follows, the basis expansion
approach is illustrated for a random sample of a functional variable defined on
a general interval T. In our data set, this procedure must be performed on each
of the five considered functional variables for which the type and dimension of
the basis could be different.

Consider a random of sample curves {xi(t) : i = 1, . . . , n; t ∈ T} from a
functional variable X with values in L2(T ), and let us assume that noisy obser-
vations xik are available for each curve at a set of time knots ti1, ti2, . . . , timi ∈ T,
that is

xik = xi(tik) + εik i = 1, . . . , n; k = 1, . . . ,mi.

Let us also suppose that the sample curves belong to a finite-dimensional space
generated by a basis of functions {φ1(t), . . . , φp(t)}. Therefore, each curve of the
functional data set admits a basis representation in the form

xi(t) =

p∑

j=1

aijφj(t), i = 1, . . . , n. (1)

The functional form of each curve is then determined by the vector of its basis co-
efficients ai = (ai1, . . . , aip)′, that can be estimated in different ways, with least
squares approximation being the most common method that provides the follow-
ing estimation: âi = (Φ′iΦi)

−1Φ′ixi, where Φi = (φj(tik))mi×p, j = 1, . . . , p, k =
1, . . . ,mi.

The type of basis must be selected according to the characteristics of the
curves in the functional data set. The most common basis are B-splines and
trigonometric functions (see for example [48]). The former generates spaces
of spline functions, piecewise polynomials functions that are smoothly joined
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and have good local behaviour. The latter provides suitable spaces for periodic
functions. Many other bases have been used in practice, such as bases of wavelets
which are more appropriate for curves with discontinuities and sharp spikes. An
application of wavelet approximation from sample curves of lupus and stress
level was developed in [5]. A robust estimation of the mean function, together
with a simultaneous confidence band, based on polynomial spline estimation is
developed in [31].

In this paper, a basis of cubic B-splines of dimension ten with equally spaced
knots has been used to approximate the five samples of curves of COVID-19
from their daily discrete data. Least squares approximation was performed on
each curve for estimating the basis coefficients. The cubic regression splines of
all curves considered here can be seen in Figure 3.

3 Functional linear regression imputation with
missing values in the response

Motivated by the imputation of the missing curves of COVID-19 hospitalized
and intensive care people, a functional linear regression model with functional
response and several functional predictors is proposed in this paper. The gen-
eral formulation of this multiple function-on-function linear regression (MFFLR)
model and its estimation in terms of functional principal components regression
are summarized in this section.

3.1 Multiple function-on-function linear model

The multiple function-on-function linear model allows to estimate a functional
response Y from a vector of J functional predictor variables denoted by X =
(X1, . . . , XJ)′. Let us consider a random sample from (X,Y ) denoted by {(xi, yi) :
i = 1, . . . , n} with xi = (xi1, xi2, . . . , xiJ)′, and let us assume that all func-
tional variables take values on the Hilbert space L2(T ) of the squared inte-
grable functions on the interval T, with the usual inner product defined by
< f, g >=

∫
T
f(t)g(t)dt, ∀t ∈ T.

Then, the functional linear model is formulated as

yi(t) = α(t) +
J∑

j=1

∫

T

xij(s)βj(s, t)ds+ εi(t), i = 1, . . . , n, (2)

where α(t) is the intercept function, βj(s, t) are the J coefficient functions and
εi(t) are independent functional errors.
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Figure 3: Curves of accumulated positive cases, deaths, recoveries, hospitaliza-
tions and ICU admissions.

221



Model 2 can be written in matrix form as

yi(t) = α(t) +

∫

T

xi(s)
′β(s, t)ds+ εi(t), i = 1, . . . , n,

where xi(s) = (xi1(s), xi2(s), . . . , xiJ(s))′ and β(s, t) =
(β1(s, t), β2(s, t), . . . , βJ(s, t))′.

This expression considers that all functional variables are defined in the same
interval T, but this is not a restriction and the model can be easily generalized
for different domains in each of the functional variables. The estimation of this
model is an ill-posed problem that is usually solved by least squares penalized
approaches and basis expansion of functional parameters and/or sample curves
[48]. Some of the basis expansion approaches reduce the model to a multivariate
linear model for the matrix of response basis coefficients in terms of the matrix of
predictors basis coefficients. The main problem is that this multivariate model
is affected of high multicollinearity which causes an inaccurate estimation of the
parameters. Despite the good predictive ability of the model, this fact makes
its interpretation more difficult. The most studied solutions avoid the need
for cross-validation to estimate the penalty parameter by reducing the problem
to linear regression on uncorrelated predictor variables. Approaches based on
functional PCA [13, 20, 38, 9, 22, 4] and functional Partial Least Squares (PLS)
[43, 21, 6, 17, 23, 3] have been widely studied in literature in the context of
different functional regression models.

In this paper, a principal components regression approach is considered. It
can be seen as an extension of the principal components prediction models devel-
oped in [7, 8] for predicting a functional variable in a future interval of time from
its evolution in the past. In the so called PCP models, the functional response
and the functional predictor correspond to the same functional variable but ob-
served in different time periods. In the present approach, truncated principal
component decompositions of the functional response and the functional predic-
tors turn the functional linear model in a multivariate linear model in terms of
a reduced set of response and predictor principal components.

3.2 Functional principal component regression

Let us consider the principal component decompositions of both, the response
and the predictor functional variables, given by

xij(t) = xj(t) +
n−1∑

l=1

ξ
xj

il f
xj

l (t), yi(t) = y(t) +
n−1∑

l=1

ξyilf
y
l (t), (3)
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where the principal components scores are given by

ξ
xj

il =< xij − x̄j , fxj

l >=
∫
T

(xij(t)− x̄j(t))fxj

l (t)dt,

ξyil =< yi − ȳ, fyl >=
∫
T

(yi(t)− ȳ(t))fyl (t)dt,
(4)

with the weight functions f
xj

l and fyl being the eigenfunctions of the sample
covariance operators of xij(t) and yi(t), respectively. The principal compo-
nents scores are centered uncorrelated scalar variables with maximum variance
given by the eigenvalues associated with their weight functions: V ar(ξ

xj

il ) =
λ
xj

l , V ar(ξ
y
il) = λyl .

Theoretical and asymptotic properties of FPCA for Hilbert-valued random
functions were studied in [18, 16, 41, 28, 50]. In the case of a basis expansion for
each functional variable (see Equation 1), each functional PCA is equivalent to
multivariate PCA of the matrix AΨ1/2, with A = (aij) being the n×p matrix of
basis coefficients and Ψ being the p× p matrix of inner products between basis
functions, Ψ = (Ψij) =< φi, φj >, i, j = 1, ..., p. The vector of basis coefficients
of the the l−th PC weight function fl(t) is given by bl = Ψ−1/2vl, where vl is
the l−th eigenvector of the sample covariance matrix of AΨ1/2 (see [40] for a
detailed study).

The principal component decompositions given in Equation 3 turn the MF-
FLR Model 2 into a linear regression model for each PC of the functional response
Y on all PCs of the functional predictors

ξyik =

J∑

j=1

n−1∑

l=1

b
xj

kl ξ
xj

il + εik, i = 1, . . . , n; k = 1, . . . , n− 1, (5)

with the functional coefficients given by βj(s, t) =

n−1∑

k=1

n−1∑

l=1

b
xj

kl f
xj

k (s)fyl (t).

By truncating each principal component decomposition the following prin-
cipal component multiple function-on-function linear regression (PC-MFFLR)
model for the functional response is obtained:

ŷi(s) = y(s) +

K∑

k=1

ξ̂yikf
y
k (s) = ȳ(s) +

K∑

k=1




J∑

j=1

∑

l∈Lkj

b̂
xj

kl ξ
xj

il


 fyk (s), (6)

with b̂
xj

kl being the linear least squared estimation of the regression coefficients
bkl.

Different selection model approaches have been developed to select the opti-
mum PCs of each predictor variable (subsets Lkj) to be considered in Model 6
when it comes to estimating the first J PCs of the response variable. It is well
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known that PCs are ordered according to their explained variability and that
the most explanatory components of the predictor variable might not be the
most correlated with the response variable. In the case of the simple function-
on-function linear model with only one predictor, a procedure that selects pairs
of response/predictor PCs based on both, explained variability and correlation,
was developed in [5]. A supervised version of FPCA that estimates the PCs
by considering the correlation of the functional predictor and response variable
was developed for the scalar-on-function regression model [39]. Usual selection
models procedures based on stepwise and best subset regression combined with
cross-validation can be adapted to this functional regression context.

3.3 Imputation of missing response curves

Let us consider that all the predictor variables Xj are completely observed and
only the response variable Y has missing values. Let us assume without loss of
generality that in the sample the first n values of the response are observed and
the last m values are missing. That means that there are n complete observed
curves for all variables and m incomplete observations that are missing values
for the response.

In order to estimate the missing response curves, the parameters bkl in Model
5 are estimated with the complete n sample curves of response and predictors.
Then, the missing response curves {ymiss

i (s) : i = n + 1, . . . , n + m} are esti-
mated by computing the principal component scores of predictors {ξxj

il : i =
n + 1, . . . , n + m, l = 1, . . . , n − 1} given by the Expression 4, and substituting
them in the Equation 6. Then, the estimated PC-MFFLR model can be used
to predict new values of the response Y on a test sample and to provide accu-
rate interpretation of the relationship between the predictor and the response
variables.

If the objective is to predict the response variable in a future interval, a
regression model of type 6 could be estimated for predicting the response variable
Y (s) in the future interval of amplitude k denoted by [T, T + k], in terms of the
predictor variables (X1(t), . . . , XJ(t), Y (t)) in the past interval of time [0, T ].
In the case of the COVID-19 data, the parameter k must be selected taking
into account the average number of days it takes for a person to develop severe
symptoms and need to be admitted to the hospital.

4 Covid-19 application results

Let us remember that the main aim of this paper is the imputation of hospi-
talized and intensive care curves for those ACs with missing data. To do it,
multiple function-on-function linear regression approaches are developed here.
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In addition, a canonical correlation analysis (CCA) is performed to interpret the
relationship between variables related with hospital occupation (hospitalized and
intensive care people) and illness response (positive, deceased and recovered peo-
ple). Computational results were obtained with the free software R (’fda’ and
’yacca’ R-packages for FPCA and CCA, respectively).

4.1 Data imputation

The imputation problem is solved by applying a multiple function-on-function
linear regression for each of the responses Y1(t) (hospitalized) and Y2(t) (inten-
sive care) from the three functional predictors X1(t) (sick), X2(t) (deceased)
and X3(t) (recovered). Both functional regression models are estimated from
the data of the thirteen ACs with complete data (training sample). Then, the
predictions for the four ACs with missing data (Castilla La Mancha, Castilla
León, Galicia and Madrid) are used for data imputation.

The first step is the estimation of the functional PCs for each of the five func-
tional predictors. As a result, the first PC explained almost all variability of the
five predictors (99.32%, 98.73%, 97.97%, 98.59%, 96.37% for X1, X2, X3, Y1, Y2,
respectively). Figures 4 and 5 show the weight functions associated to each
first PC, and the perturbations of the sample mean curves obtained by adding
and subtracting a multiple of them. In order to obtain weight functions and PC
scores much easier to interpret, two new functional Varimax rotation approaches
were introduced in [1] with application to COVID-19 confirmed people.

After obtaining these functional principal components analysis, we consider
a training sample composed by all the ACs except Castilla La Mancha, Castilla
León, Galicia and Madrid, which will be considered as the prediction sample.

Taking into account that the first component of X1(t), X2(t) and X3(t)
were revealed highly and significantly correlated with the first components of
Y1(t) and Y2(t), meanwhile the other cross-correlations between PCs were not
significant, the function-on function linear regression models were reduced to
following linear models for the first PC of the response in terms of the first PC
of each of the predictors:

ξ̂yk

i1 = γ0 + ξx1
i1 γ

yk

1 + ξx2
i1 γ

yk

2 + ξx3
i1 γ

yk

3 + εyk

i , k = 1, 2; i = 1, . . . , 17.

These models allow to accurately estimate the first component of Y1(t) and
Y2(t) from the first components of X1(t), X2(t) and X3(t) with a determination
coefficient of R2 = 0.9249 and R2 = 0.7443, respectively. Finally, the Karhunen-
Loève expansion in terms of the predictor principal components, provides the
following prediction equation for Y1(t) and Y2(t) :

ŷik(t) = yk(t) + ξ̂yk

i1 f
yk

1 (t), k = 1, 2; i = 1, . . . , 17. (7)
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Figure 4: First weight PC functions, sample mean curves and the perturbations
for each functional response: ȳk ± 2

√
λyk

1 fyk

1 ; k = 1, 2.
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Figure 5: First weight PC functions, sample mean curves and the perturbations
for each functional predictor: x̄j ± 2

√
λ
xj

1 f
xj

1 , j = 1, 2, 3.
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AC RMSE(yi1) RMSE(yi2)
Andalućıa 0.77577948 0.13645363
Aragón 1.51075014 0.16559390
Asturias 3.05564828 0.05135305
Islas Baleares 0.47397162 0.30168996
Islas Canarias 1.17563681 0.04168788
Cantabria 0.91993038 0.06896749
Catalunya 3.45656121 0.62176527
Valencia 0.92591220 0.04144271
Extremadura 3.30961380 0.59974926
Murcia 1.62014752 0.11596922
Navarra 1.26109742 0.20248242
Páıs vasco 4.46884752 0.30765768
La Rioja 3.37692798 0.22644853

Table 1: Root mean squared prediction errors for Hospitalizations (yi1) and ICU
admissions (yi2) curves in the different training ACs.

In order to evaluate the prediction ability of these models, the square root of
the mean squared errors between observed and predicted curves are calculated
by the expression

RMSE(yik) =

(∫ 1

0

(yik(t)− ŷik(t))2dt

) 1
2

k = 1, 2; i = 1, . . . , 13.

These results can be seen in Table 1 where it can be observed that the predictions
for ICU admission curves are more accurate. Some of the observed and estimated
training curves can be seen in Figures 6 and 7 next to confidence bands for the
predicted curves. These confidence bands are obtained by pointwise confidence
intervals, computed for each fixed time point tp as follows:

ŷik(tp)± 2× ŜE(ŷik(tp)), k = 1, 2,

where ŜE(ŷik(tp)) = ŜE(ξ̂yk

ik )fyk

1 (tp), k = 1, 2 with ŜE(ξ̂yk

ik ) being the standard
error of the PC prediction given by the corresponding multiple linear regression
fit.

Finally, the expected curves provided by the regression models in Equation
7 for hospitalizations and ICU admissions in the badly recorded ACs, next to
their confidence bands and observed curves, are drawn in Figures 8 and 9.

The prediction of the missing curves by using the PC-MFFLR considered
models, provides a pointwise estimation of hospitalizations and ICU admissions
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Figure 6: Observed and predicted curves (with pointwise confidence bands) of
hospitalizations and ICU admissions in some of the training ACs.
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Figure 7: Observed and predicted curves (with pointwise confidence bands) of
hospitalizations and ICU admissions in some of the training ACs.
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Figure 8: Observed and predicted curves (with pointwise confidence bands) of
hospitalizations and ICU admissions in Castilla La Mancha and Castilla León.
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Figure 9: Observed and predicted curves (with pointwise confidence bands) of
hospitalizations and ICU admissions in Madrid and Galicia.
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that corrects the inaccurate reported data. These pointwise predictions next to
their anomalous values for the first and last days of the first wave of COVID-
19 in Castilla La Mancha, Castilla León, Madrid and Galicia can be seen in
Table 2. The obtained predictions can be considered as an imputation of the
real behaviour of these curves in the observation period if the mode of data
communication would not have changed. Thus, in Castilla La Mancha on April
27, 8464 people were reported as hospitalized and the imputation provides by the
model is 9062 cases; in Castilla León 7777 versus 7658; in Galicia 2758 versus
3511; and in Madrid 5039 versus 30587. For ICU admissions the differences
between the registered and imputed cases are again evident. It can be seen that
in Castilla La Mancha on 27 April 584 people were registered as admitted in
ICU and the model gives an estimation of 871; in Castilla León 522 versus 674;
in Galicia 73 versus 236; and in Madrid 780 versus 3111.

4.2 Canonical Correlation Analysis

Once the missing data have been imputed and complete curves are available for
the 17 ACs, the relationship between the variables related to the number of peo-
ple admitted in hospitals (hospitalized and ICU people) and the ones affected
by the disease (sick, deceased and recovered) can be studied. Canonical Corre-
lation Analysis (CCA) on the two sets of first principal components associated
with these functional variables, is applied to explore this relationship without
necessarily distinguishing between independent and dependent variables. The
analysis makes sense because the correlations between PCs in the two groups
are very high what suggests that the variables are not linearly independent.

In agreement with the above, the first principal component of each func-
tional variable is selected to carry out the analysis. Thus, the dataset consists of
a sample of the seventeen Spanish ACs in an attempt to determine which factors
influence in the hospital occupancy rate. The two groups of variables are, on the
one hand, Hospital occupancy rate (HOR) formed by the first PC of hospitalized

people and of ICU people (ξ̂y1

1 , ξ̂y2

1 ), and on the other hand, Illness response (IR)
comprised by the first PC of positive people, of deceased people and of recov-
ered people (ξ̂x1

1 , ξ̂x2
1 , ξ̂x3

1 ). The estimates of the squared canonical correlations
between the two canonical variables for each pair appear in Table 3, next to
the outcomes associated with the Barlett’s test for testing the null hypothesis
that the two canonical variate pairs are uncorrelated. As a result, it can be
concluded that both canonical pairs are significantly correlated and dependent
each on other (there is relationship between the two sets of variables).

Note that the squared canonical correlations represent, for each pair, the
percentage of variance in one canonical variate explained by the variation in
the other one, but say nothing about the extent to which the canonical vari-
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Hospitalizations
Castilla La Mancha Castilla León Galicia Madrid

Time Obs Pred Obs Pred Obs Pred Obs Pred
1 635 413 476 495 557 570 1518 1351
2 838 565 629 630 906 676 2337 1779
3 1547 735 798 784 1043 809 2337 2247
4 1826 932 977 961 1147 961 3710 2772
5 2162 1164 1197 1163 1250 1120 3778 3371
6 2162 1436 1457 1394 1338 1276 5168 4059
7 2707 1758 1823 1656 1447 1424 6338 4853
8 2977 2124 2214 1948 1630 1564 7388 5768
9 3018 2520 2648 2259 1767 1698 8441 6794
· · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · 8173 8200 7080 6970 2609 3171 8191 28159
· · · 8199 8317 7174 7064 2652 3222 7930 28482
· · · 8243 8430 7264 7155 2674 3270 7464 28802
· · · 8304 8542 7397 7246 2694 3316 7077 29120
· · · 8342 8654 7506 7336 2707 3362 6601 29434
· · · 8385 8763 7555 7424 2722 3407 6183 29740
· · · 8417 8868 7653 7508 2735 3449 5892 30037
· · · 8444 8969 7703 7586 2746 3484 5441 30320
· · · 8464 9062 7777 7658 2758 3511 5039 30587

ICU admissions
Castilla La Mancha Castilla León Galicia Madrid

Time Obs Pred Obs Pred Obs Pred Obs Pred
1 23 37 24 35 29 27 77 127
2 23 45 43 44 35 35 102 152
3 29 56 54 54 47 44 135 184
4 37 70 69 67 55 53 180 224
5 37 88 85 83 69 63 180 273
6 65 110 106 102 86 74 253 332
7 76 136 120 124 98 85 253 404
8 142 167 137 150 112 96 340 488
9 182 202 170 178 123 107 491 587
· · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · 531 784 501 615 108 237 1111 2826
· · · 534 793 503 622 101 237 1076 2853
· · · 537 801 505 628 96 238 1024 2878
· · · 546 809 508 634 92 239 981 2903
· · · 553 817 510 639 87 239 949 2930
· · · 559 826 511 645 90 239 892 2962
· · · 565 838 515 653 85 239 873 3001
· · · 579 852 518 662 83 238 821 3050
· · · 584 871 522 674 73 236 780 3111

Table 2: Pointwise imputation of hospitalizations and ICU admissions for the
first and last days of the first COVID-19 wave in Castilla La Mancha, Castilla
León, Madrid and Galicia.
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Figure 10: Scatterplot for the first (left) and second (right) canonical variate
pairs.

ates themselves account for variation in the original variables. Then, around
95.4% of the variation in the first canonical variate for HOR (U1) is described
by the variation in the first canonical variate for IR (V1), and almost 71% of
the variation in U2 is explained by V2. This fact suggests that both canonical
correlations are important. Figure 10 displays how the values of the canonical
variates are spread over the plane. The linear relation in each pair is clearly
visible in these scatterplots. Likewise, it is possible to draw conclusions about
which ACs behave similarly during the first wave. The results are in concordance
with multiple studies about the COVID-19 pandemic in Spain (see for example
[1]).

Canonical Corr. Squared Canonical Corr. Stat df p-value
0.9765693 0.9536876 55.82721 6 <0.001
0.8398669 0.7053764 15.88673 2 <0.001

Table 3: Estimates of the canonical correlations next to χ2 values associated with
Bartlett’s omnibus statistic, degrees of freedom and p-values for each canonical
variate pair.

Additionally, the estimated canonical coefficients (loadings) for the HOR and
RI variables are in Table 4 and Table 5, respectively. The magnitudes of these
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coefficients give the contributions of the individual variables to the corresponding
canonical variable. Hence, the canonical variables are determined as follows:

U1 = −0.1767528× ξy2

1 + 0.1214623× ξy1

1

U2 = −3.2637387× ξy2

1 + 0.2556912× ξy1

1

V1 = 0.0336045× ξx1
1 + 0.1877252× ξx2

1 − 0.0044276× ξx3
1

V2 = 0.1094736× ξx1
1 − 1.0135127× ξx2

1 + 0.0047968× ξx3
1

U1 U2

ICU -0.1767528 -3.2637387
Hospitalized 0.1214623 0.2556912

Table 4: Canonical coefficients for HOR variables.

V1 V2

Cases 0.0336045 0.1094736
Deceased 0.1877252 -1.0135127
Recovered -0.0044276 0.0047968

Table 5: Canonical coefficients for IR variables.

Once the raw canonical coefficients have been estimated, the following step
is to interpret each canonical component. For that purpose, the squared corre-
lations between the variables in each group and the canonical components are
computed in Table 6 and 7 for HOR and IR groups, respectively. These pa-
rameters indicate the fraction of HOR and IR variance associated with each of
their components separately. Let us observe that for the second canonical vari-
ables (U2, V2) none of the correlations are large so that this pair provides very
little information about the variables. Regarding the first canonical variate pair
(U1, V1), all the correlations with the variables are uniformly high. This means
that U1 and V1 are an overall measure of HOR and IR variables, respectively,
with U1 being highly correlated with hospitalizations and V1 more correlated
with positive cases and deceased people.

These outcomes expose that the level of saturation in the hospitals are deter-
mined especially by the number of hospitalized people, meanwhile response to
pandemic is governed by the number of positive cases and deaths. Despite the
fact that the number of people in UCI and the number of recovered people play
also an important role over the canonical variates, their contribution is smaller.
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U1 U2 V1 V2

ICU 0.8158880 0.184111953 0.7781023 0.129868216
Hospitalized 0.9970756 0.002924353 0.9508986 0.002062769

Table 6: Squared correlations between the HOR variables and the canonical
variables.

V1 V2 U1 U2

Cases 0.9660682 0.03366429 0.9213272 0.02374600
Deceased 0.9269440 0.07237154 0.8840149 0.05104917
Recovered 0.7485881 0.04012734 0.7139192 0.02830487

Table 7: Squared correlations between the IR variables and the canonical vari-
ables.

U1 U2 V1 V2

HOR - - 0.86450046 0.06596549
RI 0.83975376 0.03436668 - -

Table 8: Total fraction of HOR (IR) variance accounted by IR (HOR) variables,
through each canonical variate in first row (second row).

Finally, a canonical redundancy analysis is performed in order to study the
percentage of variance of one group of variables that is accounted by the other
(in the usual least squares sense). The results of this analysis can be seen in
Table 8 and the correlations between each set of variables and the opposite group
of canonical variates in Tables 6 and 7. Table 8 shows that both components
of the first canonical pair are a good overall predictor of the opposite set of
variables, since the explained proportions of variance for HOR and IR are 0.864
and 0.839, respectively. Nevertheless, despite the correlation for the second
pair was significant, these variables does not account for a great amount of
variability. This statement is corroborated by the squared correlations displayed
in Table 6 and 7. These measures indicate that the first canonical variate of
IR group has an outstanding predictive power for the number of hospitalized
(95.09%) and a considerable influence for the number of people in ICU (77.81%)
as well. Similar interpretations are reached for the first canonical variable of
HOR, which is a superb predictor of the number of cases and deaths (92.13%
and 88.40%, respectively), and to lesser extent, of the number of recuperated
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(71.39%). The second canonical variables add virtually nothing given that the
fraction of variance in each variable set attributable to the other group through
the respective canonical variates barely overcome the 10% of the total variability.

5 Conclusions

The current economic and sanitary crisis provoked by the virus SARS-CoV-2 is
concentrating all of the planet’s attention since the World Health Organization
declared the worldwide emergency state in the middle of March 2020. In order
to control the propagation of the virus, the scientific community is immersed
in the development of statistical models that enable the governments to con-
trol the behaviour of the pandemic and to mitigate the devastating effects of
COVID-19 illness. Thus, it is essential to build powerful models to be able to
guarantee accurate predictions. Taking into account the nature of the variables
of interest (for instance, number of positive cases, deceases, recovered, hospi-
talised and people in intensive care units), a wide variety of models have been
tackled by considering Functional Data Analysis methodologies. Nevertheless,
good performance of these models depends on the quality of the data, which is
not always as good as one might expect, especially in periods of pandemic where
the data are usually incomplete. On this matter, an extension of function-on-
function linear regression is proposed for the imputation of missing values in the
response, where the functional coefficients are estimated by means of principal
components regression. The motivation for this work is to forecast the curves of
hospitalized and intensive care people (functional responses) from the curves of
positive cases, deaths and recoveries (functional predictors) for several Spanish
Autonomous Communities that changed the way of recording data related to
hospital occupancy rate. The imputation of these curves is made once the linear
model is estimated with a training sample composed by the remainder of commu-
nities that did not modify their way of data registering. The performance of the
model is outstanding for the training sample, since the observed and predicted
curves are very similar for both functional responses. Regarding the predic-
tion sample, the obtained forecasts can be considered as an imputation of what
should have been the real behaviour of these curves in the observation period if
the mode of data communication would not have changed. It can be observed
that the model captures the trend of the curves up to the change. Addition-
ally, once the missing data were imputed, a canonical correlation analysis was
carried out in order to study the possible relationship between the two groups
of variables: hospital occupancy rate (number of hospitalized people and ICU
admissions) and illness response (number of positive cases, deaths and recovered
people). The first principal component score of each variable was selected to
make the canonical analysis, since only the first principal component explains
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almost all the variability of the five functional variables. After an exhaustive
analysis, both sets of variables have shown to be highly correlated with each
other and moreover, each of the first canonical variables is a good overall pre-
dictor of the opposite group of variables. At this point, the variables with more
predictive power are the number of hospitalizations, positives and deceases. To
sum up, the present document introduces a new mechanism for the imputation of
missing at random functional response curves and shows the relationship among
interesting functional variables associated with the COVID-19 pandemic.
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