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Chapter 1

Introduction and objectives

This thesis addresses the study of two semilinear elliptic problems that arise in
Riemannian Geometry. More precisely, we are interested in the prescription of cer-
tain geometric quantities on Riemannian manifolds with boundary under conformal
changes of the metric, namely, the Gaussian and geodesic curvatures on a compact
surface and its boundary, and the scalar and mean curvatures on a manifold of
higher dimension.

Most of the results available in the literature concern closed manifolds, whereas the
boundary cases have been less considered. In that regard, we highlight that the
presence of the boundary leads to a wider variety of phenomena, many of which
find no counterpart on the closed versions of these problems. In particular, the
variational approach in Chapter 4, and the compactness and existence arguments of
Chapter 5 are strictly related to the presence of boundary.

Furthermore, the focus of our research concerns the case in which both curvatures
are nonconstant, for which there are only a few known results.

These problems admit a variational structure, so we will discuss the existence of
solutions from the point of view of the Calculus of Variations. Sometimes the energy
functionals considered here are bounded from below and a minimizer can be found;
in other cases, though, this is not possible, and the use of min-max theory is needed.
In the latter situation we are led to the blow-up analysis of solutions of approximated
problems.

The work developed in this thesis has given rise to two research papers, [31] and
[32].

1.1 Motivation of the problems

The main purpose of this thesis is to contribute in the deepening of our understand-
ing of the properties of conformal classes of metrics in Riemannian manifolds. We
refer to [6] for the basics on this topic.
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The most classical example in this field is the Uniformization Theorem, which finds
its origin in the search for canonical metrics on a given surface via conformal trans-
formations. It was conjectured by Klein and Poincaré in [62, 85], and states that
every simply connected Riemannian surface is conformally equivalent to one of three
model spaces: R2, S2 or H2. The result was proved by Koebe and Poincaré using
complex analysis in the works [63, 64, 65] and as a consequence we have that every
compact and oriented Riemannian surface admits a conformal metric with constant
Gaussian curvature.

At this point, one may ask the following question: given a compact closed Rieman-
nian surface (Σ, g) and a function K(x) defined on Σ, can we find a conformal
metric g̃ ∈ [g], such that its Gaussian curvature is equal to K? This problem is
known as the prescribed Gauss curvature problem, and was proposed by Kazdan and
Warner in [60]. If we let g̃ be given by g̃ = eug, it is known that the Gaussian
curvatures Kg and Kg̃ satisfy the relation

−∆gu+ 2Kg = 2Kg̃e
u on Σ, (1.1)

where ∆g stands for the Laplace-Beltrami operator on (Σ, g). Therefore, prescribing
Gaussian curvature K(x) reduces to solve (1.1) for K = Kg̃:

−∆gu+ 2Kg = 2Keu on Σ. (1.2)

Integrating (1.2) on Σ and applying the Gauss-Bonnet theorem, we realise that
this is not always possible, since there is a topological constraint: the sign of K is
conditioned by that of the Euler characteristic of the surface, χ(Σ);

�
Σ

Keu =

�
Σ

Kg = 2πχ(Σ). (1.3)

So far, only the cases χ(Σ) = 0 and χ(Σ) = 1 have been completely understood, see

[60, 78, 79]. An especially delicate case is the so-called Nirenberg’s problem, Σ = S2,
because of the effect of the non-compact group of conformal transformations of the
sphere. In this case, there are other well-known obstructions to the existence of
solutions besides (1.3), such as the Kazdan-Warner conditions detailed in [60]. To
be precise, if u solves (1.2) in S2 and xi : S2 → R is the restriction to the sphere of
a coordinate function in R3, then

�
S2

∇K · ∇xie2udVgS2 = 0. (1.4)

This forbids, for example, the prescription of curvature functions that are affine or
generally functions that are monotone in one Euclidean direction. More examples
were given in [18].
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There is a large amount of literature about the Nirenberg’s problem, and many
sufficient conditions for the existence of solutions are available. For example, in
[79], Moser showed that it is possible to prescribe antipodally symmetric curvatures
on S2, and motivated the study of (1.2) under symmetry assumptions. Existence
results without symmetries were also obtained in [23]. In this work, the authors
proved the following existence result:

Theorem. [23, Th. II] Let K be a positive, smooth function with only nondegenerate
critical points. Suppose that there are at least two local maxima of K, and suppose
that at all saddle points q of K, we have ∆gS2

K(q) > 0. Then K is the Gauss
curvature of a conformal metric g = e2ugS2 on S2.

Struwe demonstrated in [89] that the previous result is sharp to a certain extent,
giving examples of functions K, having exactly two local maxima and a saddle point
q0 with ∆gS2

K(q0) < 0, that cannot be the Gaussian curvature of a conformal metric
in S2. Moreover, the author recovers the existence result by Chang and Yang by
means of the prescribed curvature flow. This geometric flow is determined by the
parabolic evolution equation:

du

dt
= αK −Kg, (1.5)

where g is the family of conformal metrics g(t) = e2u(t)gS2 , g(0) = g0 is a metric
satisfying Vol(S2, g0) = 4π, and α is chosen in such a way that the conformal volume
is preserved, that is,

α

�
S2

Ke2u = 4π,

for all t ≥ 0. In the paper, it is proved the long-existence of the flow (1.5), and that
it evolves g0 towards a conformal metric with Gaussian curvature proportional to
K.

In addition, the results in [23] were extended in [24] to the situation of many local
maxima, using Morse and degree theory.

Theorem. [24] Let K(x) be a positive function on S2, with nondegenerate critical
points, and such that |∇K|+ |∆K| 6= 0 everywhere on S2. Then there is a solution
of (1.2) provided ∑

x∈K−

(−1)ind(x) 6= 1, (1.6)

where K− = {x ∈ S2 : ∇K(x) = 0, ∆K(x) < 0}, and ind(x) denotes the Morse in-
dex of K at the point x.

In higher dimensions, an equivalent result for the Uniformization Theorem is not
expectable because of the tensorial nature of the curvature, which has a number of
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linearly independent components of order 1
12
n2(n2− 1). Thus, if n > 2, it is natural

to consider contractions of the curvature which still provide us some information.
For example, on a compact and closed Riemannian manifold (M, g) of dimension

n ≥ 3, if we consider a conformal metric g̃ = u
4

n−2 g, with u > 0, the scalar curvatures
Sg and Sg̃ satisfy the following relation:

− 4(n− 1)

n− 2
∆gu+ Sgu = Sg̃u

n+2
n−2 on M (1.7)

(see [6, Ch. 5, §1]). The question of finding conformal metrics with constant scalar
curvature was first proposed by Yamabe in [94], and completely solved thanks to the
works of Trudinger, Aubin and Schoen [91, 4, 86]. When the prescribed scalar cur-
vature is an arbitrary function K(x), this is known as the prescribed scalar curvature
problem.

In this case, we also have a restriction for the sign of Sg̃ depending on the conformal
class of M , even though it is not a topological one as in the two-dimensional case.
It can be proved that the Yamable class of M , defined as the infimum

Y (M, g) = inf

{�
M
cn |∇u|2 + Sgu

2(�
M
u2∗dVg

)2/2∗
: u ∈ H1(M), u 6= 0

}
,

only depends on the conformal class of (M, g), that is, Y (M, g) = Y (M, [g]).

When we consider (1.7) with Sg̃ = K zero or negative (in which case (M, g) has to
be of zero or negative Yamabe class respectively), the nonlinear term in (1.7) makes
the associated energy functional coercive and solutions always exist, as proved in
[61] using the method of sub and super solutions. However, in the same paper,
the authors proved that there are obstructions to existence in the positive case. In
particular, they proved the analogue of (1.4) in Sn, namely,

�
Sn
∇K · ∇xiu

2n
n−2 = 0,

for all solutions u of (1.7), where xi : Sn → R are the restriction to the sphere of
the coordinate functions in Rn+1.

Existence results for K positive in positive Yamabe class manifolds were found
later. Inspired by the pioneering work [79], in [43] the authors gave existence results
when K is invariant under a group of isometries without fixed points and satisfies
suitable flatness conditions. Other results with symmetries were obtained in [54, 56].
Theorems for more general functions K were found in [8] and [9] (see also [88]) for
the case of S3, and they can be understood as an adaptation of the results of [24] to
dimension n = 3.
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As a final remark, let us point out that equations (1.1) and (1.7) are of critical type
from the point of view of Partial Differential Equations theory; the exponent n+2

n−2

is the critical Sobolev exponent for the equation (1.7), coming from its geometrical
meaning, while the non-linearity u → eu in (1.1) is, somehow, the analogue of the
critical growth in dimension n = 2.

1.2 The Gaussian-Geodesic prescription problem

The first study subject of this thesis will be equation (1.1) in a surface with bound-
ary, hence boundary conditions are in order. Homogeneous Dirichlet and Neumann
boundary conditions have already been considered in the literature. However, mo-
tivated by its geometric meaning, we will consider a nonlinear boundary condition.

Indeed, our aim is to prescribe not only the Gaussian curvature in Σ, but also the
geodesic curvature on ∂Σ. More precisely, given a metric g̃ = eug, if Kg, Kg̃ = K
are the Gaussian curvatures and hg, hg̃ = h the geodesic curvatures of ∂Σ, relative
to these metrics, then u satisfies the boundary value problem{

−∆gu+ 2Kg = 2Keu in Σ,
∂u
∂η

+ 2hg = 2heu/2 on ∂Σ,
(1.8)

where η denotes the exterior normal vector to ∂Σ. As in the closed version of
the problem, a topological condition links K and h: integrating (1.8) in Σ, by the
Gauss-Bonnet theorem we obtain�

Σ

Kev +

�
∂Σ

hev/2 = 2πχ(Σ). (1.9)

Some versions of this problem have been studied in the literature. The case h = 0 has
been treated in [21] by A. Chang and P. Yang, while the caseK = 0 in [19, 70, 72], see
also the work of Da Lio, Martinazzi and Riviere ([33]) for more recent development
under the perspective of nonlocal operators.

The case of constants K, h has also been considered. For instance, Brendle ([15])
studied the long-existence and behaviour of a parabolic flow, and showed its con-
vergence towards a metric with constant curvatures. More precisely, the author
considers the evolution equation

d
dt
g(t) = − 2

α
(Kg − αλ)g in Σ,

d
dt
g(t) = − 2

β
(hg − βλ)g on ∂Σ,

g(0) = g0,

(1.10)

where Kg is the Gaussian curvature of Σ, hg is the geodesic curvature of ∂Σ, α and
β are positive real numbers and λ(t) is given by

λ(t) =
2πχ(Σ)

αVolg(M) + βVolg(∂M)
.
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Applying the Gauss-Bonnet theorem, one can also assume that

αVolg(M) + 2βVolg(∂M) = 2π (1.11)

for all t ≥ 0, and consequently χ(Σ) < λ < 2χ(Σ). The following convergence result
was achieved:

Theorem. [15, Th. 1.1] The evolution equation (1.10) admits a unique solution
which is defined for all times and converges exponentially to a metric g∞ satisfying
Kg∞ = αλ∞ and hg∞ = βλ∞, being

λ∞ = lim
t→+∞

λ(t).

Moreover, if χ(Σ) = 1 and g0 satisfies (1.11), λ∞ satisfies the equation

(λ∞ − 1)2(α + β2λ∞) = β2λ.

By using complex analysis techniques, explicit expressions for the solutions of (1.8)
with constants K and h and the exact values of the constants are determined if Σ is
a disk or an annulus, see [53, 58]. The case of the half-plane has also been studied,
see [71, 46, 95].

However, the case in which both curvatures are nonconstant has not been much
considered. In [29], some partial existence results are given, but they include a
Lagrange multiplier which is out of control. Moreover, a Kazdan-Warner type of
obstruction to existence has been found in [50] for the case of the disk. In the work
[74], the case of K < 0 in domains different from the disk is treated, and also a blow-
up analysis is performed (see also [7]). Moreover, the authors obtained existence of
solutions using variational techniques, that we now briefly describe.

In the first place, it is shown that the problem (1.8) always admits a solution for
h = 0 and K = sgn(χ(Σ)). Therefore, without loss of generality it can be assumed
that the starting metric is the analogous of the Escobar’s metric, with hg = 0 and
Kg constant. Assume also that K < 0, and consider the energy functional

I(u) =

�
Σ

(
1

2
|∇u|2 + 2Kgu+ 2 |K| eu

)
− 4

�
∂Σ

heu/2,

defined for u ∈ H1(Σ). The authors showed that the behaviour of the functional I
was determined by the scale-invariant quotient D : S1 → R given by the formula

D(x) =
h(x)√
|K(x)|

,

via a trace inequality. The first obtained result concerns the case χ(Σ) < 0.
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Theorem. [74, Th. 1.1] Assume that Kg < 0. Let K,h be continuous functions
such that K < 0 and D < 1 everywhere on ∂Σ. Then (1.8) admits a solution as
minimum of I. If moreover h ≤ 0, then the solution is unique.

The next theorems apply for the case χ(Σ) = 0.

Theorem. [74, Th. 1.2] Assume that Kg = 0. Let K,h be continuous functions
such that K < 0 and

(1) D < 1 everywhere on ∂Σ,

(2)
�
∂Σ
h > 0.

Then (1.8) admits a solution as minimum of I.

Theorem. [74, Th. 1.3] Assume that Kg = 0. Let K,h be C1 functions such that
K < 0 and

(1) D > 1 somewhere in ∂Σ,

(2)
�
∂Σ
h < 0,

(3) ∂TD(p) 6= 0 for any p ∈ ∂Σ with D(p) = 1,

where ∂TD denotes the tangential derivative of D along ∂Σ. Then (1.8) admits a
min-max solution.

1.2.1 The case of the disk

In this thesis we shall consider the case in which χ(Σ) = 1. By the Uniformization
Theorem, we can pass via a conformal map to a disk, obtaining Kg = 0, hg = 1.
Taking this into account we can consider the problem:

{
−∆u = 2Keu in D2,
∂u
∂η

+ 2 = 2heu/2 on S1,
(1.12)

where now K and h are the curvatures to be prescribed. In this particular case, it
is relatively easy to prove existence of solutions for certain constant values of K and
h using purely geometrical arguments.

Proposition 1.1. Let (D2, g0) be the unit disk of R2 with the standard metric. For
all constants h ∈ R and K > 0, there exists g̃ ∈ [g0] with Kg̃ = K and hg̃ = h.

The idea behind this result is to deform the disk into a spherical cap via the stereo-
graphic projection, which is a conformal map. By applying suitable dilations before
and after, one can adjust the radius of the spherical cap and its height, which de-
termine the Gaussian and geodesic curvature of the model.
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In order to formalize these ideas, let us denote by δλ and δµ the dilations in R2 and
R3 of factors λ > 0 and µ > 0, respectively. If π−1 : R2 → S2\{S} is the inverse of
the stereographic projection, then the conformal map Φλ,µ = δµπ

−1δλ satisfies

KΦ∗gS2
=

1

µ2
.

Thus, it is possible to choose µ in such a way that KΦ∗gS2
= K. Moreover, the

image of D2 via Φ is a spherical cap with height depending on λ. Φ(D2) covers S2\S
when λ→ +∞, sending hΦ∗gS2

towards −∞, while it concentrates around {N} when
λ→ 0, making the geodesic curvature diverge positively. By continuity, there exists
a value λ > 0 such that hΦ∗gS2

= h.

Figure 1.1: Φ(D2) for different values of λ > 0.

The case K = 0 and h = 1 is worth discussing too. It admits u = 0 as trivial
solution, that is, to leave the Euclidean metric unchanged. However, any other
conformal transformation of the disk onto itself will produce a conformal pullback
metric with identical curvatures, and therefore a new solution for the problem. It
is known that the group of conformal transformations of the disk coincides with the
group of Möbius transformations preserving D2, namely,

Aut(D2) =

{
T : D2 → D2, T (z) = λ

z − a
az − 1

with |λ| = 1, |a| < 1

}
(1.13)

(see for instance [26]). Since Aut(D2) is non-compact, neither is the set of solutions
of the problem {

−∆u = 0 in D2,
∂u
∂η

+ 2 = 2eu/2 on S1.

When K and h are nonconstant functions, some partial positive results are available:
for the case K = 0, in [19] the following results were found.

Theorem. [19, Th. 1] Let us assume that K = 0 and h > 0 is of C2 class in S1,
and that all its critical points are isolated. Let ĥ be the conjugate function of h, and
suppose that ĥ′(z) 6= 0 for every z ∈ S1 such that k′(z) = 0. Then (1.8) admits
a solution if µ0 6= µ1 + 1, where µ0 and µ1 are the values of local maximum and
minimum of h, respectively, in the region Ω = {z ∈ S1 : h(z) > 0, ĥ′(z) > 0}.
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Theorem. [19, Th. 1’] Assume that K = 0 and h > 0 is of C2 class in S1, it only
has isolated critical points and ĥ′(z) 6= 0 on points z ∈ S1 with h′(z) = 0. If the
harmonic extension of h has saddle points, then (1.8) has a solution.

In [72, 73] other existence results are given for the case K = 0 under symmetry
assumptions on h. The case h = 0 is treated in [21], for instance.

Generally speaking, the non-compact action of the group of conformal maps of the
disk is what renders the case of a disk especially challenging, as it happens in the
Nirenberg problem for Σ = S2. This issue has been treated in [19] for K = 0 (see
also [33]). A blow-up analysis in this case for nonconstant K, h was performed in
[59]. Moreover, the existence of bubbling type solutions in the disk was proved in
[11] using singular perturbation methods. To that aim, the authors first considered
the function

Φ(x) = H(x) +
√
H(x)2 +K(x),

where H denotes the harmonic extension of h to D2, and the perturbed problem{
−∆gu+ 2 = 2Kεe

u in D2,
∂u
∂η

= 2hεe
u/2 on S1,

(1.14)

with Kε = K+εG and hε = h+ε I, being G and I perturbation functions satisfying
certain transversality conditions. Then, if ∇Φ vanishes at some point p ∈ S1, the
authors showed that, for small values of ε > 0, there exist solutions uε of (1.14)
which blow-up around p when ε→ 0.

1.2.2 Objectives and strategies of the proofs

Our principal objective with respect to the problem (1.12) is that of presenting new
existence results for the case of nonconstant K and h.

From the point of view of the Calculus of Variations, one of the main difficulties in
dealing with this problem is that, a priori, there is no clear variational approach.
Therefore, to find a reasonable energy functional and to study its properties becomes
an equally important target of this thesis.

Integrating (1.12), we find:

�
D2

Keu +

�
S1

heu/2 = 2π,

from which it should be clear thatK and h cannot be arbitrarily chosen: for instance,
they cannot be simultaneously non-positive. We will define the parameter ρ as
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ρ =
�
D2 Ke

u = 2π−
�
S1 he

u/2. In order to fix the ideas, assume that 0 < ρ < 2π and
that K and h are positive functions. We will prove that (1.12) is equivalent to:

−∆u = 2ρ Keu�
D2 Keu

in D2,
∂u
∂η

+ 2 = 2(2π − ρ) heu/2�
S1 he

u/2 on S,
(2π−ρ)2

ρ
=

(
�
S he

u/2)
2

�
D2 Keu

for 0 < ρ < 2π.

(1.15)

Compared to the problem of prescribing Gaussian curvature on closed surfaces, here
the quantity ρ is not quantized, and (1.15) cannot be read as a mean-field equation.
Instead, ρ must be treated as a second unknown.

The problem (1.15) is now invariant under the addition of constants to u, and even
if this formulation may seem rather artificial, it has the advantage of being related
to the critical points of a nice energy functional, which we now define:

Definition 1.2. Let K : D2 → R and h : S1 → R be Hölder continuous functions
that are positive somewhere. We define the space of functions

X =

{
u ∈ H1(D2) :

�
D2

Keu > 0,

�
S1

heu/2 > 0

}
,

which is nonempty because of the assumptions on K and h, and the Lagrangian
I : X× (0, 2π)→ R given by

I(u, ρ) =
1

2

�
D2

|∇u|2 − 2ρ log

�
D2

Keu + 2

�
S1

u− 4(2π − ρ) log

�
S1

heu/2 (1.16)

+ 4(2π − ρ) log(2π − ρ) + 2ρ+ 2ρ log ρ.

We highlight the fact that the above functional depends on the couple (u, ρ), where
u ∈ H1(D2) and ρ is a positive real number. As far as we know, a functional with
this geometry has not been considered before in the literature of this problem. In
order to simplify the notation, for a fixed ρ ∈ (0, 2), we denote by Iρ the functional
u→ I(u, ρ) defined for every function u ∈ X.

We obtain existence results by minimizing the functional I. In order to derive
its analytical propierties, we first study the Moser-Trudinger type inequalities (or
Onofri type inequalities), and give generalized versions of them. The interpolation
of these inequalities permits us to show that, for each ρ fixed, the functional Iρ is
bounded from below on X. Since the lower bound does not depend on ρ, we also
obtain one for I.

However, in the case of the disk, the constants in the inequalities are sharp and we
do not get coercivity. This can be understood as a consequence of the non-compact
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action of the group of Möbius transformations of the disk. Indeed, a bounded
sequence of solutions could concentrate around a point of the boundary, sending
the energy to +∞. This behaviour is studied in [59] and the presence of bubbling
solutions is confirmed in [11].

As a first step in the understanding of the problem, we shall impose symmetry
conditions on K, h in order to rule out this phenomenon, in the spirit of Moser [79]
(see also [72, 73]). Being more specific, we fix a symmetry group as follows:

Definition 1.3. We denote by G one of the following groups of symmetries of the
disk:

G is the dihedral group Dk with k ≥ 3, or

G is the group of rotations with minimal angle 2π/k, k ≥ 2, or

G is the whole group of symmetries O(2).

Notice that none of the above groups has fixed points on S1, that is, for each x ∈ S1

there exists φ ∈ G such that φ(x) 6= x. We say that a function f is G−symmetric if
f(x) = f(φ(x)) for all φ ∈ G and for all x in the domain of f .

Under those symmetry assumptions, we can guarantee the distribution of masses
around different points of the boundary, and then we can use the improved Chen-Li
type inequalities to gain coercivity. Finally, in order to find a global minimizer for I,
we need to verify that the minimum of the function ρ→ min I(·, ρ) is not achieved
at the extrema of the inverval. To that aim, our main tools are the analysis of the
limiting cases ρ = 0 and ρ = 2π, and energy estimates involving the minimizers of
those functionals.

Our main result for the disk case is the following:

Theorem 1.4. Let G be as in Definition 1.3, and let K : D2 → R, h : S1 → R
be G−symmetric, Hölder continuous and nonnegative functions, not both of them
identically equal to 0. Then problem (1.12) admits a solution.

Thanks to compactness of solutions, we can also deal with changing sign curvatures
K, h, as long as their negative part is small:

Theorem 1.5. Let G be as in Definition 1.3, and let K0 : D2 → R, h0 : S1 →
R be G−symmetric, Hölder continuous and nonnegative functions, none of them
identically equal to 0. Then there exists ε > 0 such that problem (1.12) admits a
solution for any Hölder continuous and G−symmetric functions K, h with

‖K −K0‖L∞ + ‖h− h0‖L∞ < ε.
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1.3 The Scalar-Mean prescription problem

The second problem that we study in this thesis concerns Equation (1.7) on a com-
pact Riemannian manifold with boundary, under geometric boundary conditions.
More precisely, if (M, g) is a compact Riemannian manifold of dimension n ≥ 3
with boundary ∂M , we are interested in the transformation of the scalar curvature
Sg and the mean curvature on ∂M under conformal charges of the metric.

If g̃ = u
4

n−2 g is a conformal metric and we write Sg̃ = K, and hg̃ = H, then the
following transformation rule holds (see [29]):{

−cn∆gu+ Sgu = Ku
n+2
n−2 in M,

2
n−2

∂u
∂η

+ hgu = Hu
n
n−2 on ∂M.

(1.17)

In the literature, we can find several problems associated to that equation. They
have been less investigated than the closed case, but still there are results worth
commenting.

The first one is the analogue of the Yamabe problem, that is, to study if it is possible
to deform g conformally in such a way that the new scalar curvature of M and the
mean curvature of its boundary are constant. Analytically, this is equivalent to
solve (1.17) with K = K0 and H = h0 constants. A first criterion for existence of
solutions was given in [29], though they depend on unknown Lagrange multipliers.

Escobar worked on the case h0 = 0 and K equal to a positive constant, now known
as Escobar’s problem, and proved existence of solutions except for non-locally con-
formally flat manifolds of dimension n ≥ 6, with umbilical boundary and null Weyl
tensor on ∂M , see [40, 41, 42]. Later on, more general results that complemented
those by Escobar were given by Han and Li ([52, 51]). They proved existence of
solutions for any constant h0 ∈ R when either M is locally conformally flat with
umbilic boundary (but not conformally equivalent to the Euclidean half-sphere), or
n ≥ 5 and the boundary is non-umbilic. We refer to [77] and the references therein
for the most recent progress in the topic.

The case of variable functions has been studied in specific situations.
Existence results for the case H = 0 are given in [67, 12, 13], while the works
[1, 36, 25, 93] concern the scalar-flat version of the problem.

For the complete problem with variable curvatures, we highlight the work [2], which
contains perturbative results about nearly constant curvature functions on the unit
ball of Rn. In this article, the authors first considered (1.17) on the unit ball of Rn

equipped with an arbitrary Riemannian metric g, and K = 1, H = c ∈ R:{
−cn∆gu+ Sgu = u

n+2
n−2 in B,

2
n−2

∂u
∂η

+ hgu = cu
n
n−2 on Sn−1,

(1.18)
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and proved existence of solutions for any metric g close enough to the standard
metric g0 on B, in the following sense:

Theorem. [2, Th. 1] Given M > 0, there exists ε0 > 0 such that, for every
0 < ε < ε0, every c > −M and g ∈ Gε, (1.18) admits a positive solution, being Gε
the set of bilinear forms on B defined by

Gε =
{
g ∈ C∞(B) : ‖g − g0‖L∞(B) ≤ ε, ‖∇g‖Ln(B) ≤ ε, ‖∇g‖Ln−1(Sn−1) ≤ ε

}
.

After that, perturbed versions of (1.18) were studied, namely,

(Pε)

{
−cn∆gu+ Sgu = (1 + εK(x))u

n+2
n−2 in B,

2
n−2

∂u
∂η

+ hgu = (c+ εH(x))u
n
n−2 on Sn−1.

(1.19)

Concerning (1.19), the following existence results were obtained when either H = 0
or K = 0 :

Theorem. [2, Th. 2] Assume H = 0 and that there exists a point of global maximum
(resp. minimum) p of K|Sn−1 such that

∇TK(p) · p < 0
(
resp. ∇TK(p) · p > 0

)
.

Then, for |ε| small enough, (1.19) admits a positive solution.

Theorem. [2, Th. 3] Assume that H = 0 and that K is a Morse function satisfying

∇TK(x) · x 6= 0 for every critical point x of K|Sn−1 ,

and ∑
x∈crit(K|Sn−1)
∇TK(x)·x<0

(−1)indx 6= 1.

Then, for |ε| small enough, (1.19) admits a positive solution.

Theorem. [2, Th. 4] Assume that K = 0 and that H ∈ C∞(Sn−1) is a Morse
function satisfying

∆TH(x) 6= 0 for every x ∈ critH,

and ∑
x∈crit(H)

∆TH(x)<0

(−1)indx 6= 1.

Then, for |ε| small enough, (1.19) admits a positive solution.
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Moreover, in the work [35], the case of variable K and H, with K > 0, was treated
in the half sphere S3

+, and a blow-up analysis is performed. Finally, the work [28]
addresses the problem for negative curvatures, but solutions are obtained up to
Lagrange multipliers. The setting is that of a compact Riemannian manifold (M, g0)
of dimension n ≥ 3, and as in [40], the authors consider the Sobolev quotient

Q(M,∂M) = inf
g∈[g0]

�
M
Sg + 2(n− 1)

�
∂M

hg

Volg(∂M)
n−2
n−1

.

Inspired by Brendle’s original work [15], in [28] the authors defined the following

geometric flow g(t) = u(t)
4

n−2 g0 by:
dg
dt

=
(
α(t)Sg

K
− λ(t)

)
g in M,

dg
dt

=
(
β(t)hg

H
− λ(t)

)
g on ∂M,

u(0) = u0 ∈ C∞(M),

(1.20)

where K and H are negative smooth functions defined on M and ∂M respectively,
and, given two constants a, b > 0,

α(t) =
1

a

(�
M

|K| dVg
) 2

n

, β(t) =
1

b

(�
∂M

|h| dsg
) 1

n−1

λ(t) =

�
M

(
cn |∇u|2g0

+ Sg0u
2
)
dVg0 + 2(n− 1)

�
∂M

hg0u
2dsg0

a
(�

M
|K| dVg

)n−2
n + 2(n− 1)b

(�
∂M
|h| dsg

)n−2
n−1

.

The following result was obtained:

Theorem. [28][Th. 1.1] Let (M, g0) be a compact manifold of dimension n ≥ 3
such that

−∞ < Q(M,∂M) < 0.

Then, if K is a smooth negative function defined on M and H is a smooth negative
function on ∂M , for any given initial data the flow (1.20) exists for all time and
converges towards a smooth metric g∞ ∈ [g0] satisfying

Sg∞ =
λ∞
α∞

K, hg∞ =
λ∞
β∞

H,

being

α∞ = lim
t→+∞

α(t), β∞ = lim
t→+∞

β(t), and λ∞ = lim
t→+∞

λ(t).
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1.3.1 Objectives and strategies of the proofs

Our goal here is to consider (1.17) with variable functions K < 0 and H of arbitrary
sign, and to give results about existence of solutions and bubbling behaviour. In
fact we obtain some counterparts of the results in [74], which was dealing with the
two-dimensional case for domains with positive genus. As we will see, there are
many differences when the dimension is higher than two.

To state our theorems, we first reduce the problem to a simpler situation using a re-
sult by Escobar, which states that every compact Riemannian manifold of dimension
n ≥ 3 with boundary admits a conformal metric whose scalar curvature does not
change sign and its boundary is minimal (see [41]). This implies that, without losing
generality, via an initial conformal change one can start with hg = 0 and Sg = S
not changing sign. In what follows, we will assume that the starting metric is
the one given by Escobar, as well as the fact that n ≥ 3.

In view of (1.17), we are led to find positive solutions of the boundary value problem:{
−4(n−1)

n−2
∆gu+ Su = Ku

n+2
n−2 on M,

2
n−2

∂u
∂η

= Hu
n
n−2 on ∂M.

(1.21)

The variational formulation of (1.21) is classical; weak solutions can be obtained as
critical points of the following energy functional, defined on H1(M):

I(u) =
2(n− 1)

n− 2

�
M

|∇u|2 +
1

2

�
M

Su2− 1

2∗

�
M

K |u|2
∗
− (n−2)

�
∂M

H |u|2
]

, (1.22)

where 2∗ = 2n
n−2

and 2] = 2(n−1)
n−2

are the critical Sobolev exponents for M and ∂M ,
respectively. As written before, we will assume that K < 0, so that the third term
in the right-hand side of (1.22) is positive. The interaction between this term and
the boundary critical term will be crucial for the behaviour of the energy functional.

Via a trace inequality we show that, in fact, the nature of the functional is ruled
by a quotient of the prescribed curvatures at the boundary, which also allows us
to compare both terms. For convenience, we define the scaling invariant function
Dn : ∂M → R by

Dn(x) =
√
n(n− 1)

H(x)√
|K(x)|

. (1.23)

Depending on whether Dn is strictly less than 1 or not, we find ourselves in two
completely different scenarios. We notice that boundaries of geodesic spheres in
hyperbolic spaces satisfy Dn > 1, while Dn = 1 at boundaries of horospheres.
Therefore, when Dn ≥ 1, there might be blow-ups for (1.21) with such profiles.
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Assuming that Dn(x) < 1 for every x ∈ ∂M , it turns out that K shadows H, and
the corresponding positive term in I dominates the one at the boundary involving
H. The result is that the functional becomes coercive and a global minimizer can
be found.

Our first result concerns the case when the Escobar metric satisfies S < 0, and
compared to [29, 28], we can solve the original geometric problem without any extra
Lagrange multiplier.

Theorem 1.6. Suppose K < 0, and that Dn as in (1.23) verifies Dn < 1 everywhere
on ∂M . Then, if S < 0, (1.21) admits a solution.

If S = 0, extra hypotheses are needed to rule out the possibility of the minimizer
beging identically zero, so the solution we obtain is geometrically admisible.

Theorem 1.7. Suppose K < 0 on M and Dn < 1 on ∂M . Then, if S = 0 and�
∂M

H > 0, (1.21) admits a solution.

On the other hand, if there exists p ∈ ∂M such that Dn(p) > 1, we can construct
a sequence of functions ui, with masses concentrated around p, such that the en-
ergy I(ui) tends to −∞. While this prevents the existence of minimizers, in three
dimension we can use the Mountain-pass Theorem to obtain a solution for (1.21).

Theorem 1.8. Let n = 3, assume that S = 0, K < 0 and that H is such that

(1)
�
∂M

H < 0,

(2) Dn(p) > 1 for some p ∈ ∂M , and

(3) 1 is a regular value for Dn.

Then, (1.21) admits a positive solution.

We will explain below why we have a dimensional restriction in Theorem 1.8, while
giving an outline of the proof. To prove the existence of Min-Max solutions it is
necessary to show that Palais-Smale sequences of approximate solutions converge.
For doing this, two main difficulties occur: first, one needs to show their boundedness
in norm, which is unclear in our case due to the triple homogeneity of the Euler-
Lagrange functional. Second, because of the presence of critical exponents in (1.21),
even bounded Palais-Smale sequences may not converge.

To deal with the first issue we make use of Struwe’s monotonicity trick, see §3.3,
consisting in perturbing the problem by a parameter for which the energy is mono-
tone. Moreover, we will use a subcritical approximation to guarantee compactness
of Palais-Smale sequences. Hence, we will consider the following situation.

Let (Ki)i be a sequence of regular functions defined on M such that Ki → K in
C2(M) and let (Hi)i be a sequence of smooth functions on ∂M such that Hi → H in
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C2(∂M). Assuming that K < 0, we consider positive solutions (ui)i to the perturbed
problem {

−4n−1
n−2

∆gui + Sui = Kiui
pi on M,

2
n−2

∂ui
∂η

= Hiui
pi+1

2 on ∂M,
(1.24)

namely critical points of the energy functional:

Ii(u) =
2(n− 1)

n− 2

�
M

|∇u|2 +
1

2

�
M

Su2− 1

pi + 1

�
M

Ki|u|pi+1−4
n− 1

pi + 3

�
∂M

Hi|u|
pi+3

2 ,

(1.25)
with pi ↗ n+2

n−2
. The question is then whether such solutions could be uniformly

bounded from above, in which case they would converge to a solution of the original
problem (1.21). Assuming the contrary, take (ui) as detailed above, and define its
singular set as

S = {p ∈M : ∃xi → p such that ui(xi) is unbounded}.

In this regard, we have the following compactness result.

Theorem 1.9. Let (ui) be a sequence of solutions of (1.24), and S the associated
singular set. Then

(1) S ⊂ {p ∈ ∂M : Dn(p) ≥ 1}.

Therefore, we can write S = S0 t S1, with S1 = S ∩ {Dn > 1} and S0 =
S ∩ {Dn = 1}. In dimension n = 3, we have further:

(2.1) S1 is a finite collection of points.

(2.2) If S ≤ 0, then S1 = ∅.

(2.3) If Ii(ui) is uniformly bounded and 1 is a regular value of Dn, then S0 = ∅.

The above result gives a description of two types blow-up points, gathered in the sets
S0 and S1. The different blow-up profiles are in correspondence with the different
type of solutions for the following problem in the half-space{

−4(n−1)
n−2

∆v = K(p)v
n+2
n−2 on Rn

+,
2

n−2
∂v
∂η

= H(p)v
n
n−2 on ∂Rn

+,
(1.26)

where p ∈ S . Solutions to (1.26) were classified in [30] (see also [71]) as follows:

? If Dn(p) < 1, then (1.26) admits no solutions.
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? If Dn(p) = 1, the only solutions are 1−dimensional and given by:

v(x) = vα(x) :=

(
2√

n(n− 2)
xn + α

)−n−2
2

, (1.27)

for any α > 0.

? If Dn(p) > 1, the solutions are called bubbles and given by

v(x) = bβ(x) :=
(n(n− 2))

n−2
4 β

n−2
2(

|x− x0(β)|2 − β2
)n−2

2

, (1.28)

with x0(β) = −Dn(p)β, en ∈ Rn, for β > 0 arbitrary.

We would like to emphasize that blow-up profiles can have infinite volume, contrarily
to what happens in the case without boundary, at least in low dimensions. The
development of a blow-up analysis in a situation of an infinite number of blow-up
points or blow-up profiles with infinite volume is one of the main goals of this thesis.
Moreover, both types of blow-up behaviour are indeed possible; the one around
points of S1 can be understood by the invariance of the problem under conformal
maps of the disk, in analogy with what happens in the closed case. But in this
framework we can have blow-up around infinite sets S0. An explicit example of this
phenomenon will be given later on in this thesis.

Compared to the two-dimensional case studied in [74] we have more rigidity in the
classification, since for the half-plane other solutions are generated by meromorphic
functions, see [46]. On the other hand, in the two-dimensional case one can make
use complex-analytic tools which are not availabe in higher dimensions.

To deal with loss of compactness at points where Dn > 1, we perform a precise study
on the behaviour of blow-ups, showing that, in dimension n = 3 they are isolated and
simple and therefore they form a finite collection (see also as for [35] in this regard).
Once this is proved, we are able to determine the behaviour of solutions also away
from such points, dismissing this kind of blow-up by some integral estimates which
hold true when S ≤ 0.

On the other hand, around blow-up points with Dn = 1, the terms
�
M
|∇ui|2,�

M
|Ki|uipi+1 and

�
∂M

Hiui
pi+3

2 diverge. Assuming boundedness of the energies
Ii(ui), (which is natural for min-max sequences) we can show that they converge
weakly towards the same measure after proper normalization. Using then a domain-
variation technique we show that at such blow-up points the gradient of Dn along
∂M at {Dn = 1} must vanish, contradicting our assumption on the regularity of
this level. Compared to a similar step in [74] for the two-dimensional case, we have
to choose arbitrary deformations tangent to ∂M .
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Methodology

As can be seen, the realization of our objectives requires extensive knowledge of
various branches of mathematics, such as Elliptic Partial Differential Equations,
Functional Analysis, Calculus of Variations or Geometry. For the development of
this thesis, we applied the following methodology:

i. A cotutelle regime. Through the codirection agreement between the Scuola
Normale Superiore and the University of Granada, we have been able to take
advantage of the wide range of Ph.D courses offered by the former, as well as
to attend the seminars and workshops held at both institutions.

Among the courses attended, the following have had a direct impact on the
academic training required for the preparation of this thesis: Riemannian Ge-
ometry, Elliptic Partial Differential Equations, Variational Methods, Confor-
mal Geometry. Moreover, others such as Initial Data Sets in General Relativity
and Geometric Flows have enhanced the education in other disciplines.

ii. Communication of the results obtained in this thesis. In addition to their
publication in high-level mathematical journals, we have been concerned with
presenting our results in the form of posters and seminars at various scientific
events, such as the Bienal congress of the Royal Spanish Mathematical Society,
the Seminar of Young Researchers of the University of Granada, the Séminare
Jeunes Chercheurs of the University of Cergy-Pointoise and the 5th. Congress
of young researchers of the Royal Spanish Mathematical Society.

iii. Continuous mobility and permanent contact with the mathematical community.
The international framework in which the thesis is placed has facilitated the
interaction with other research groups, such as the Calculus of Variations and
Geometric Measure Theory research group of Pisa, as well as the participation
in congresses in different parts of Europe.

Our program has been decisively affected by the outbreak of the COVID-
19 sanitary crisis. The research work carried out since the beginning of the
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pandemic has been done telematically, as well as the follow-up of seminars and
conferences. In addition, it has cancelled the research stays planned for the
year 2020/21.

iv. Use of online resources. The online libraries of both institutions, as well as
their agreements with electronic publishing portals such as MathSciNet and
Springer Link, have provided, free of charge, all the bibliographic resources
necessary for the completion of the project. In addition, the licenses for math-
ematical software like Wolfram Mathematica provided by the Scuola Normale
Superiore have been useful for the computation of explicit solutions of some
problems of this thesis.

Finally, the financial support has been ideal for a project of these characteristics.
The Marie Sklodowska-Curie fellowships of the Istituto Nazionale di Alta Matemat-
ica were proposed specifically for the attainment of a Ph.D in Mathematics at one
of the most notorious institutions in Italy, thus setting us in an excellent framework
for the production of high quality doctoral thesis.
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Notation and preliminaries

In this chapter we set the notation that we will be using during in this thesis, we
remind basic definitions in Differential Geometry and Calculus of Variations, and
develop some analytical tools needed for the study of the functionals that we will
consider.

3.1 Notation

Given a set A ⊂ X in a metric space, we will denote

(A)r = {x ∈ X : dist(x,A) < r} .

If Ω is a domain in a Riemannian manifold M , or in the half space Rn
+, we will use

different notation for each portion of its boundary: ∂0Ω stands for Ω ∩M , while
∂+Ω represents ∂Ω ∩M. The unit normal vector to ∂Ω pointing outwards will be
denoted by η.

For functions defined on ∂M , we will add the superscript T for their derivatives. For
instance, if ∇f is the gradient of a function f, ∇T f will be use to denote its tangential
gradient on ∂M.

When we consider the domain of definition of our functionals, the superscript G will
denote the restriction to G−symmetric functions, for instance

XG = {f ∈ X : f is G− symmetric} .

Concerning the integrals, we shall only consider the Lebesgue measure and, unless
it is necessary, we will omit the volume element. The symbol

�
f will be used to

denote the mean value of f, that is

 
Ω

f =
1

|Ω|

�
Ω

f.
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We will often work in geodesic coordinates centered at some point of M . In that
situation, |x− y| will denote the Riemannian distance in M between the points with
coordinates x and y, respectively.

In our estimates we sometimes write C to denote a positive constant, independent
of the variables considered, that can vary from line to line, or also within the same
one. For the sake of simplicity, we sometimes use the notation

Cn =
4(n− 2)

n− 2
.

3.2 Function spaces

We will deal with compact Riemannian manifolds (M, g), and mainly consider the
following spaces of functions u : M → R :

� Lp(M), the spaces of Lebesgue integrable functions with the norm ‖·‖Lp .
� H1(M), the Sobolev space with the norm

‖u‖2
H1(M) =

�
M

|∇u|2 +

�
M

u2.

� C∞0 (M), the space of C∞ functions with compact support on M .

� H1
0 (M), the closure of C∞0 (M) in H1(M).

We recall the fact that the well-known Sobolev embeddings and the Rellich-Kondrachov
theorem still work in compact manifolds (see [55, §3.3]).

Theorem. Let (M, g) be a compact Riemannian manifold of dimension n. If we
write 2∗ = 2n/(n− 2), then

(i) If n > 2, H1(M) ⊂ Lp(M) for all 1 ≤ p ≤ 2∗. The embedding is continuous,
and compact provided 1 ≤ p < 2∗.

(ii) If n = 2, H1(M) ⊂ Lp(M) for all 1 ≤ p <∞, and the embedding is continuous
and compact.

By combining the Poincaré inequalities with the Sobolev embeddings, we get the
Sobolev-Poincaré inequalities. Namely, one has the following.

Theorem. Let (M, g) be a compact Riemannian manifold of dimension n. Then,
for every p with 1 ≤ p ≤ 2∗, there exists a positive constant C, that depends on M
and p, such that for any u ∈ H1(M),(�

M

|u− u|p
)1/p

≤ C

(�
M

|∇u|2
)1/2

.

If n = 2, then the previous inequality holds for every 1 ≤ p < +∞.
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If M is a manifold with boundary ∂M , then we have the following trace embedding,
that can be consulted in [82, Th. 6.2]

Theorem. Let (M, g) be a compact Riemannian manifold of dimension n with
boundary ∂M . If we write 2] = 2(n− 1)/(n− 2), then

(i) If n > 2, the trace operator u → u|∂M is continuous from H1(M) to Lp(∂M)
for every 1 ≤ p ≤ 2], and compact provided 1 ≤ p < 2].

(ii) If n = 2, the trace operator u→ u|∂M is continuous and compact from H1(M)
to Lp(∂M) for every 1 ≤ p <∞.

3.2.1 Existence of trial functions

In the following lemma we prove the existence of certain trial functions that will
be used for adapting some inequalities to our framework. It also serves to illustrate
the so-called Tonelli’s direct method in Calculus of Variations, used to prove the
existence of a minimizer for a given functional.

Lemma 3.1. Let M be a compact manifold of dimension n ≥ 2 with C1 boundary
∂M . Let p1, p2 be two real numbers satisfying

2n/(n+ 2) ≤ p1 ≤ ∞ and 2(n− 1)/n ≤ p2 ≤ ∞ if n > 2, or

1 < p1 ≤ ∞ and 1 < p2 ≤ ∞ if n = 2.

Given f ∈ Lp1(M) y h ∈ Lp2(∂M), the contour problem{
−∆u = f in M,

∂u
∂η

= h on ∂M,
(3.1)

admits a weak solution in H1(M) if and only if
�
M
f +

�
∂M

h = 0.

Proof. Integrating by parts the first equation:�
M

f =

�
M

−∆u = −
�
∂M

∂u

∂η
= −

�
∂M

h.

Conversely, it is clear that the Lagrangian associated to (3.1) is the following:

I(u) =
1

2

�
M

|∇u|2 −
�
∂M

hu−
�
M

fu,

defined for u ∈ H1(M). The continuity of I follows from the embeddings of the
preceding section and Hölder’s inequality. Moreover, we have the following bounds:�

M

fu ≤ C1‖f‖Lp1 (M)‖u‖H1(M), (3.2)
�
∂M

hu ≤ C2‖h‖Lp2 (∂M)‖u‖H1(M). (3.3)
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We notice that, for every c ∈ R :

I(u+ c) = I(u)− c
(�

M

f +

�
∂M

h

)
= I(u),

which means that the energy functional I is invariant under the addition of constants.
Therefore, we can reduce ourselves to functions u ∈ H1(M) with

�
M
u = 0. For these

functions, the Poincaré-Sobolev inequality grants the existence of a constant C > 0
such that

‖u‖H1(M) ≤ C‖∇u‖L2(M), ∀u ∈ H1(M). (3.4)

Combining (3.2), (3.3) and (3.4), we get a lower bound for I:

I(u) ≥ C3‖u‖2
H1(M) − C1‖f‖Lp1 (M)‖u‖H1(M) − C2‖h‖Lp2 (∂M)‖u‖H1(M),

where C1, C2, C3 > 0. In particular

lim
‖u‖H1(M)→+∞

I(u) = +∞ (3.5)

and its infimum exists. Consider (uk) a sequence in H1(M) with
�
M
uk = 0 for every

k ∈ N and such that

uk → α = inf
{
I(u) : u ∈ H1(M)

}
.

By (3.5), (uk) must be bounded, so up to taking a subsequence we can assume that
uk ⇀ u0 ∈ H1(M), since H1(M) is a reflexive space. Since the second and third
terms of the functional are linear and continuous in u, we can pass to the limit and
obtain: �

∂M

huk →
�
∂M

hu0,

�
M

fuk →
�
M

fu0.

Finally, using the fact that the function u→
�
M
|∇u|2 is weakly lower-semicontinuous:

lim inf
n→+∞

�
M

|∇uk|2 ≥
�
M

|∇u0|2.

Consequently, I(u0) ≤ α and u0 is a minimizer.

3.3 The Mountain-pass Theorem and Struwe’s monotonic-
ity trick

Let E be a Banach space, and denote by E−1 its dual. By saying that a functional
I ∈ C1(E,R) has the mountain pass geometry, we mean that there exist two points,
e1 = 0, e2 in E such that:

(MP-1) I(0) = 0, and there exist ε > 0 and ρ > 0 such that I(x) > ε if ‖x‖ = ρ.

(MP-2) ‖e2‖ > ρ and I(e2) ≤ 0.
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In that case, it is known that setting Γ = {γ ∈ C ([0, 1], E) : γ(0) = 0, γ(1) = e2},
the real value c ∈ R given by

c = inf
γ∈Γ

max
t∈[0,1]

I(γ(t)) > 0, (3.6)

called the mountain pass level, is a good candidate for being a critical level of I.
Indeed, the celebrated Mountain pass theorem from [3] claims that:

Theorem. Suppose that I ∈ C1(E,R) satisfies (MP-1) and (MP-2). Let c ∈ R be
as in (3.6), and assume that every Palais-Smale sequence at the level c possess a
convergent subsequence. Then, there exists e ∈ E such that I(e) = c and I ′(e) = 0.

By looking at the proof given in [3], one sees that the mountain pass geometry
implies the existence of a Palais-Smale sequence (ui) for I at level c, that is to
say, I(ui) → c and I ′(ui) → 0 in E−1. Therefore, it is enough to prove that this
particular subsequence admits a convergent subsequence. This is usually done in
two steps: first one proves that (ui) is bounded and, assuming E is reflexive, this
yields to the existence of u ∈ E such that ui ⇀ u. The second step is to prove that
ui → u strongly in E, and use the continuity of I and I ′ to conclude that I(u) = c
and I ′(u) = 0. However, in general, it is unclear that the Palais-Smale sequences at
the level c are bounded.

Struwe’s monotonicity trick is probably the most relevant contribution to the prob-
lem of finding conditions on I ensuring the existence of a bounded Palais-Smale
sequence. It first appeared in [90], and here we give a version adapted for its use in
our problems, inspired by [57].

Theorem. Let E be a Banach space, and let J ⊂ R+ be an interval. We consider
a family (Iλ)λ∈J of C1 functionals on E of the form

Iλ(u) = A(u)− λB(u), ∀λ ∈ J,

where either A(u) ≥ 0 or B(u) ≥ 0 for all u ∈ E and such that either A(u)→ +∞
or B(u) → +∞ as ‖u‖E → +∞. We assume that (MP-1) and (MP-2) hold for
every λ ∈ J , and we call cλ the associated mountain pass level to Iλ, defined in
(3.6). Then, for almost every λ ∈ J , there is a sequence ui in E such that

(i) Iλ(ui)→ cλ,

(ii) I ′λ(ui)→ 0 in E−1, and

(iii) (ui) is bounded.

The conclusion is that, for λ in a dense subset of J , we have bounded Palais-Smale
sequences. If we can pass to the limit, we will obtain solutions for approximated
problems.
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In our work, we are interested a specific value λ0 ∈ J. Therefore, the drawback is
that we need to consider a sequence of solutions of approximated problems, uλ, and
try to pass to the limit in λ. There are several advantages in this method, compared
to considering arbitrary Palais-Smale sequences. In fact, uλ solves an approximate
problem, and then it is suitable for the application of tools such as regularity of
solutions, blow-up analysis or Pohozaev-type identities.

3.4 Conformal maps

Definition 3.2. Let (M, g) be a Riemannian manifold. Another metric g̃ on M is
said to be conformal to g if it can be written in the form g̃ = ρ(x)g, where ρ is a
positive, differentiable function on M called the conformal factor. We will denote
by [g] the family of conformal metrics to g on M .

Conformal metrics can be induced from conformal maps, which have the property
of preserving angles between tangent vectors.

Definition 3.3. We say that a diffeomorfism ϕ : (M1, g1) → (M2, g2) is conformal
if the pullback metric ϕ∗g2 ∈ [g1].

An example of a conformal map that we will use in this thesis is the inverse of
the stereographic projection, π−1 : (C, |dz|2) → (S2\{N}, g0), which satisfies the
equality

(π−1)∗g0 =
4(

1 + |z|2
)2 |dz|

2 .

We highlight a result by Escobar that concerns the existence of certain conformal
metric on a Riemannian manifold with boundary. Its usefulness is to give a simpler
starting metric for the study of our problems.

Lemma. [41, Lemma 1.1]. If (Mn, g0) is a compact Riemannian manifold with
boundary and n ≥ 3, there exists a conformal metric to g0 whose scalar curvature
does not change sign and the boundary is minimal.

3.5 Moser-Trudinger inequalities

The Moser-Trudinger inequalities (see [21, 78, 79, 91]) can be understood as limiting
versions of the Sobolev inequalities for compact surfaces, and they are powerful tools
for the study of the energy functional (4.1), since they allow us to control the non-
linearities of exponential type with linear terms.

Our starting point is the following well-known result by Moser:

Theorem 3.4. Let (Σ, g) be a compact Riemannian surface with C1 boundary. Then
there exists a constant C > 0, depending only on the geometry of Σ, such that
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(i)
�

Σ
e4πu2 ≤ C, ∀u ∈ H1

0 (Σ) with
�

Σ
|∇u|2 ≤ 1,

(ii)
�

Σ
e2πu2 ≤ C, ∀u ∈ H1(Σ) with

�
Σ
u = 0 and

�
Σ
|∇u|2 ≤ 1.

Notice that, in (i), the constant 4π is sharp. Moser himself gave an explicit example
of a sequence (uk) in H1

0 (Σ) with
�

Σ
|∇u|2 ≤ 1 such that

�
Σ

eαuk
2 →∞, α > 1.

Moreover, the statement in (ii) is false if we remove the assumption
�

Σ
u = 0, since

we could apply it to u + a for every a > 0 and contradict the theorem for large
values of a.

Moser-Trudinger inequalities were generalized for higher dimensions by Fontana, see
[45]. We are specially interested in weaker versions of them, also called Onofri type
inequalities.

Corollary 3.5. Let (Σ, g) be a compact surface with C1 boundary. Then there exists
a constant C ∈ R, depending only on Σ, such that

log

�
Σ

eu ≤ 1

16π

�
Σ

|∇u|2 + C ∀u ∈ H1
0 (Σ), (3.7)

and

log

�
Σ

eu ≤ 1

8π

�
Σ

|∇u|2 +

 
Σ

u + C ∀u ∈ H1(Σ). (3.8)

The first inequality is classical, whereas the second is given in [21]. We give their
proofs below to show how they are derived from Theorem 3.4. In both cases, the
constant is optimal.

Proof. (i) Let u ∈ H1
0 (D2). By Cauchy’s inequality,

u ≤ 4πu2�
Σ
|∇u|2

+

�
Σ
|∇u|2

16π
.

Then,

eu ≤ exp

(
4πu2�

Σ
|∇u|2

)
exp

(�
Σ
|∇u|2

16π

)
.

Now we integrate on Σ, take logarithms and apply Theorem 3.4, (i).

(ii) Analogously, take u ∈ H1(Σ) and consider the function v = u −
�

Σ
u, which

satisfies
�

Σ
v = 0. Again by Cauchy’s inequality,

eu ≤ exp

( 
Σ

u

)
exp

(
2πv2�

Σ
|∇v|2

)
exp

(�
Σ
|∇v|2

8π

)
.

Finally, we integrate on Σ, take logarithms and apply (ii) of Theorem 3.4.
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For the non-linear boundary terms of the functional I, we will use an analogous
version of Theorem 3.4 for the boundary of a compact surface that can be found in
[69], for instance.

Theorem 3.6. Let (Σ, g) be a compact surface with C1 boundary. Then there exists
a constant C > 0, depending only on Σ, such that

log

�
∂Σ

eπu
2 ≤ C, ∀u ∈ H1(Σ) with

�
Σ

|∇u|2 ≤ 1 and

�
∂Σ

u = 0. (3.9)

With the same proof of Corollary 3.7, we obtain a weaker version of (3.9):

Corollary 3.7. Let (Σ, g) be a compact surface with C1 boundary. Then there exists
a constant C > 0, depending only on Σ, such that

log

�
∂Σ

eu ≤ 1

4π

�
Σ

|∇u|2 +

 
∂Σ

u + C, ∀u ∈ H1(Σ). (3.10)

In the case of the disk, the above inequality with C = 0 is the so-called Lebedev-
Milin inequality, see [83]. Our intention is to interpolate the previous inequalities to
get a lower bound for the functional I. To do that, it is convenient to manipulate
inequality (3.8) so that the mean value of u in Σ is replace by its average in ∂Σ. This
is possible thanks to certain trial functions, whose existence is granted in Lemma
3.1.

Proposition 3.8. Let (Σ, g) be a compact Riemannian manifold with C1 boundary.
Given f ∈ Lp(Σ) and h ∈ Lq(∂Σ), with 1 < p, q ≤ ∞ satisfying

�
Σ
f 6= 0 and�

∂Σ
h 6= 0, there exist constants Ci ∈ R such that

(i) log

�
Σ

ev ≤ 1

8π

�
Σ

|∇v|2 +

�
Σ
fv�

Σ
f

+ C1,

(ii) log

�
Σ

ev ≤ 1

8π

�
Σ

|∇v|2 +

�
∂Σ
hv�

∂Σ
h

+ C2,

(iii) log

�
∂Σ

ev ≤ 1

4π

�
Σ

|∇v|2 +

�
Σ
fv�

Σ
f

+ C3, and

(iv) log

�
∂Σ

ev ≤ 1

4π

�
Σ

|∇v|2 +

�
∂Σ
hv�

∂Σ
h

+ C4, ∀v ∈ H1(Σ).

In particular, taking h = 1 in (ii):

log

�
Σ

ev ≤ 1

8π

�
Σ

|∇v|2 +

 
∂Σ

v + C, ∀v ∈ H1(Σ). (3.11)

Proof. We only show the proof for (i), as the subsequent claims can be obtained
with analogous reasoning. However, for each case we point out the trial function
required to achieve the conclusion.
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The problem {
−∆w = 4π

(
f�
Σ f
− 1
|Σ|

)
in Σ

∂w
∂η

= 0 on ∂Σ

admits a solution in H1(Σ) by Lemma 3.1. Therefore, we can fix a solution w and
apply (3.8) to v + w, obtaining:

log

�
Σ

ev+w ≤ 1

8π

�
Σ

|∇v|2 +
1

4π

�
Σ

〈∇v,∇w〉+

 
Σ

v + C.

Using the fact that

log

�
Σ

ev+w ≥ C + log

�
Σ

ev,

after integrating by parts we are left with:

log

�
Σ

ev ≤ 1

8π

�
Σ

|∇v|2 +
1

4π

�
∂Σ

∂w

∂η
v − 1

4π

�
Σ

(∆w)v +

 
Σ

v + C.

Finally, we use the equation satisfied by w to conclude:

log

�
Σ

ev ≤ 1

8π

�
Σ

|∇v|2 +

�
Σ
fv�

Σ
f

+ C.

For (ii), (iii) and (iv), we repeat the above steps using, respectively, solutions of the
following problems:{

−∆w = − 4π
|Σ| in Σ,

∂w
∂η

= 4π h�
∂Σ h

on ∂Σ,

{
−∆w = 2π f�

Σ f
in Σ,

∂w
∂η

= − 2π
|∂Σ| on ∂Σ,

and

 −∆w = 0 in Σ,

∂w
∂η

= 2π
(

h�
∂Σ h
− 1
|∂Σ|

)
on ∂Σ.

3.5.1 Localized versions

As we will see, the direct application of the above inequalities guarantees the exis-
tence of a finite infimum for the functional I, but it is not enough to have coercivity
because a minimizing sequence could concentrate and explode in a single point on the
boundary of the disk. Intuitively, imposing a symmetry condition like in Definition
(1.3) dismisses that possibility, but in order to give a rigurous analytical argument,
we must introduce local versions of the inequalities above. This idea dates back to
[5], and are known as Chen-Li type inequalities (see [27] for more details).

The next one is a localized version for Corollary 3.5, but we follow the proof given
in [75]:
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Proposition 3.9. Let (Σ, g) be a compact surface with C1 boundary, Σ1 ⊂ Σ and
δ > 0 such that (Σ1)δ ∩ ∂Σ = ∅. Then, for every ε > 0, there exists a constant
C ∈ R, depending on ε and δ, such that

16π log

�
Σ1

eu ≤
�

(Σ1)δ
|∇u|2 + ε

�
Σ

|∇u|2 + C, (3.12)

for all u ∈ H1(Σ) with
�

Σ
u = 0. If we allow (Σ1)δ ∩∂Σ 6= ∅, then (3.12) holds with

coefficient 8π:

8π log

�
Σ1

eu ≤
�

(Σ1)δ
|∇u|2 + ε

�
Σ

|∇u|2 + C. (3.13)

Proof. We define the cut-off function fδ : Σ→ [0, 1], given by

fδ =

{
1 if x ∈ Σ1,
0 if x ∈ Σ\(Σ1)δ/2.

The condition (Σ1)δ ∩ ∂Σ = ∅ implies that fδu ∈ H1
0 (Σ), and we can apply the first

statement in Corollary 3.5:

16π log

�
Σ1

eu = 16π log

�
Σ1

efδu ≤ 16π log

�
Σ

efδu ≤
�

Σ

|∇(fδu)|2 + C.

By Leibniz’s rule:

16π log

�
Σ1

eu ≤
�

Σ

u2|∇fδ|2 + 2

�
Σ

fδu〈∇u,∇fδ〉+

�
Σ

fδ
2 |∇u|2

≤ Cδ

�
Σ

u2 + 2

�
Σ

fδu|∇u||∇fδ|+
�

(Σ1)δ
|∇u|2 . (3.14)

The central term can be bounded using Cauchy’s inequality, obtaining:�
Σ

fδu|∇u||∇fδ| ≤ Cδ

�
Σ

u|∇u| ≤ Cε,δ

�
Σ

u2 + ε

�
Σ

|∇u|2 . (3.15)

Combining (3.14) and (3.15):

16π log

�
Σ1

eu ≤
�

(Σ1)δ
|∇u|2 + ε

�
Σ

|∇u|2 + Cε,δ

�
Σ

u2. (3.16)

Finally we address the term
�

Σ
u2. Let a ∈ R, η = |{x ∈ Σ : u(x) ≥ a}| and

(u− a)+ = max {0, u− a}. Clearly we have u ≤ (u− a)+ + a. By direct application
of (3.16) to (u− a)+, we obtain:

16π log

�
Σ1

eu ≤ 16π log

(
ea
�

Σ1

e(u−a)+

)
≤ 16πa+ log

�
Σ1

e(u−a)+

≤ 16πa+

�
(Σ1)δ
|∇u|2 + ε

�
Σ

|∇u|2 + Cε,δ

�
Σ

(
(u− a)+

)2
(3.17)
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By the Sobolev, Hölder and Poincaré-Sobolev’s inequalities:

�
Σ

(
(u− a)+

)2
=

�
{u≥a}

(
(u− a)+

)2 ≤ η1/2

(�
Σ

(
(u− a)+

)4
)1/2

≤ η1/2‖(u− a)+‖2
H1(Σ) ≤ Cη1/2

�
Σ

|∇u|2 . (3.18)

Again, by Poincaré-Sobolev:

aη ≤
�
{u≥a}

u ≤
�

Σ

|u| ≤ C

(�
Σ

|u|2
)1/2

≤ C

(�
Σ

|∇u|2
)1/2

. (3.19)

If we apply Cauchy’s inequality in (3.19), we get:

a ≤ θ

�
Σ

|∇u|2 +
C2

η2θ
, ∀θ > 0. (3.20)

Thus, mixing (3.17), (3.18) and (3.20):

16π log

�
Σ1

eu ≤ 16πθ

�
Σ

|∇u|2 +

�
(Σ1)δ
|∇u|2

+ ε

�
Σ

|∇u|2 + Cε,δη
1/2

�
Σ

|∇u|2 + C,

and it is enough to take θ = 1
16π

y η1/2 ≤ ε
Cε,δ

to have (3.12).

If we allow Σ1 ∩ ∂Σ 6= ∅, fδu ∈ H1(Σ), and we need to use (3.8) in Corollary 3.5:

8π log

�
Σ1

eu ≤ 8π log

�
Σ

efδu ≤
�

Σ

|∇(fδu)|2 + 8π

 
Σ

fδu + C. (3.21)

We have the bound: 
Σ

fδu ≤
1

2

 
Σ

fδ
2 +

1

2|Σ|

�
Σ

u2 ≤ Cδ + C

�
Σ

u2.

Repeating the above steps, we are led to:�
Σ

|∇(fδu)|2 ≤
�

(Σ1)δ
|∇u|2 + ε

�
Σ

|∇u|2 + Cε,δ

�
Σ

u2 + C.

Putting together the previous two inequalities and (3.21), and bounding
�

Σ
u2 as

before, we finish the proof for (3.13):

8π log

�
Σ1

eu ≤
�

(Σ1)δ
|∇u|2 + ε

�
Σ

|∇u|2 + C,

as desired.
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Figure 3.1: For (3.12), the set Σ1 must be away from the boundary (left), while it
can contain a portion of it in (3.13) (center). In fact, Chang and Yang proved in
[21] that (3.12) is false if δ = 0 (right).

If the function u has mass in several separated regions satisfying the hypothesis
of Proposition 3.9, the bounds improve with the number of such regions. This
information is collected in the following corollary (see for instance [75] for the case
l = 2; the case of general l is analogous).

Corollary 3.10. Let (Σ, g) be a compact manifold with C1 boundary, l ∈ N and
Σ1, . . . ,Σl ⊂ Σ for which there exits δ > 0 such that (Σi)

δ ∩ (Σj)
δ = ∅ if i 6= j and

(Σi)
δ∩∂Σ = ∅ for every i = 1, . . . , l. Moreover, assume that there exists a γ ∈ (0, 1

l
)

in such a way that �
Σi
eu�

Σ
eu
≥ γ, ∀i = 1, . . . , l (3.22)

Then, for every ε > 0, there exists a constant C ∈ R, depending on ε, δ and γ, such
that

16lπ log

�
Σ

eu ≤ (1 + ε)

�
Σ

|∇u|2 + C, ∀u ∈ H1(Σ) with

�
Σ

u = 0, (3.23)

and, if we allow (Σi)
δ ∩ ∂Σ 6= ∅,

8lπ log

�
Σ

eu ≤ (1 + ε)

�
Σ

|∇u|2 + C, ∀u ∈ H1(Σ) with

�
Σ

u = 0. (3.24)

Proof. We will only do the proof for (3.23), since it can be easily adapted to prove
(3.24). We start applying (3.12) to each Σi, obtaining

16π log

�
Σi

eu ≤
�

(Σi)δ
|∇u|2 + ε

�
Σ

|∇u|2 + C.

By (3.22):

13π log

�
Σi

eu ≥ C + 16π log

�
Σ

eu.
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Therefore,

16π log

�
Σ

eu ≤
�

(Σi)δ
|∇u|2 + ε

�
Σ

|∇u|2 + C.

Finally, summing on i ∈ {1, . . . , l}:

16πl log

�
Σ

eu ≤
�

Σ

|∇u|2 + lε

�
Σ

|∇u|2 + C.

We also need localized versions of Corollary 3.7. We just follow the steps of Propo-
sition 3.9 and the subsequent corollary.

Proposition 3.11. Let (Σ, g) be a compact manifold with C1 boundary, and Γ1 ⊂
∂Σ. Then, for every ε, δ > 0, there exists a constant C ∈ R, depending on ε and δ,
such that

4π log

�
Γ1

eu ≤
�

(Γ1)δ
|∇u|2 + ε

�
Σ

|∇u|2 + C, ∀u ∈ H1(Σ) with

�
Σ

u = 0.

Proof. As we did for 3.9, we consider a cut-off function fδ : Σ→ [0, 1] defined by:

fδ =

{
1 if x ∈ Γ1,
0 if x ∈ Σ\(Γ1)δ/2.

We have fδu ∈ H1(Σ), and we can apply Corollary 3.7:

4π log

�
Γ1

eu = log

�
Γ1

efδu ≤ log

�
∂Σ

efδu

≤
�

Σ

|∇(fδu)|2 + 4π

 
∂Σ

fδu + C. (3.25)

As in the proof of Corollary (3.9), we have the following estimates:

 
∂Σ

fδu ≤ Cδ + C

�
Σ

u2,
�

Σ

|∇(fδu)|2 ≤
�

(Σ1)δ
|∇u|2 + ε

�
Σ

|∇u|2 + Cε,δ

�
Σ

u2 + C.

Combining the inequalities above with (3.25), and bounding
�

Σ
u2 as in Corollary

3.9:

4π log

�
Γ1

eu ≤
�

(Γ1)δ
|∇u|2 + ε

�
Σ

|∇u|2 + C.
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Corollary 3.12. Let (Σ, g) be a compact manifold with C1 boundary, l ∈ N and
Γ1, . . . ,Γl ⊂ ∂Σ for which there exists δ > 0 such that (Γi)

δ ∩ (Γj)
δ = ∅ if i 6= j.

Furthermore, assume that there is γ ∈ (0, 1
l
) such that

�
Γi
eu�

∂Σ
eu
≥ γ, ∀i = 1, . . . , l. (3.26)

Then, for every ε > 0 there exists a constant C ∈ R, depending on ε, δ and γ, in
such a way that

4lπ log

�
∂Σ

eu ≤ (1 + ε)

�
Σ

|∇u|2 + C, ∀u ∈ H1(Σ) with

�
Σ

u = 0. (3.27)

Proof. Following the proof of Corollary 3.10, we apply Proposition 3.7 to each Γi,
obtaining:

4π log

�
Γi

eu ≤
�

(Γi)δ
|∇u|2 + ε

�
Σ

|∇u|2 + C.

Using hypothesis (3.26),

4π log

�
Γi

eu ≥ 4π log

�
∂Σ

eu + C.

Hence,

4π log

�
∂Σ

eu ≤
�

(Γi)δ
|∇u|2 + ε

�
Σ

|∇u|2 + C.

Finally, summing on i ∈ {1, . . . , l}:

4lπ log

�
∂Σ

eu ≤
�
⊔
i(Γi)

δ

|∇u|2 + εl

�
Σ

|∇u|2 + C

≤
�

Σ

|∇u|2 + εl

�
Σ

|∇u|2 + C,

as desired.

In order to show that our symmetry assumptions together with the localized versions
of the Moser-Trudinger inequalities described above transform into coercivity for the
functional, we will need to use a particular covering for the unit disk D2. We do the
construction in the following Lemma:

Lemma 3.13. For every δ > 0, there exists a finite open covering of D2,
Rδ = {Σi : i = 1, . . . , n0(δ)}, such that, either

(i) (Σi)
δ ∩ S1 = ∅, or
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(ii) Σi = ({xi})δ for some xi ∈ S1.

Proof. For every r > 0, the family of open sets {({x})r ⊂ D2 : x ∈ S1} forms a
covering of S1. By compactness, we can extract a finite covering{

Σi = ({xi})r : xi ∈ S1, i = 1, . . . , k0(r)
}

(3.28)

such that S1 ⊂
⋃k0

i=1 Σi. Up to taking a smaller r > 0, we can assume that the

compact set K = D2\
⋃k0

i=1 Σi is nonempty. Since K and S1 are disjoint compact
sets, it is possible to take 0 < s(r) < 1

2
dist(K, S1), and a finite open covering of K,{

Σ̃i : i = 1, . . . , k1(s)
}
, (3.29)

in such a way that (Σ̃i)
s ∩ S = ∅. The union of (3.28) and (3.29) is the covering we

are looking for.

To conclude the section, we see an important application of Theorems 3.4 and 3.6,
which states the compactness of the embedding exp : H1(Σ)→ Lp(Σ) and its trace
exp : H1(Σ) → Lp(∂Σ), for 1 ≤ p < ∞. This will be relevant when applying
Tonelli’s direct method to the funcional (1.16). We start with some observations on
the condition

�
Σ
u = 0:

Proposition 3.14. Let (Σ, g) be a compact surface with C1 boundary, and a ∈ R.
For each ε > 0 there exists a constant C ∈ R, depending on a and ε such that

�
Σ

e2π(1−ε)u2 ≤ C, ∀u ∈ H1(Σ) with

�
Σ

|∇u|2 ≤ 1 and

 
Σ

u = a.

Proof. The function u − a satisfies the conditions of Theorem 3.4. Its application
gives: �

Σ

e2πu2−4πua ≤ Ce−2πa2

.

By Cauchy’s inequality, for every ε > 0 we have

ua ≤ εu2

2
+
a2

2ε
,

and consequently
�

Σ

e2π(1−ε)u2 ≤ Ce−2πa2(1− 1
ε

) = Ca,ε,

as we wanted to prove.

If we pay attention to the definition of Ca,ε, it is clear that, when ε→ 0, the inequal-
ity does not provide any information unless a = 0. This remarks the importance of
such condition in Theorem 3.4. Analogously:
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Proposition 3.15. Let (Σ, g) be a compact manifold with C1 boundary, and a ∈ R.
For every ε > 0 there exists a constant C ∈ R, depending on a and ε such that

�
∂Σ

eπ(1−ε)u2 ≤ C, ∀u ∈ H1(Σ) with

�
Σ

|∇u|2 ≤ 1 and

 
∂Σ

u = a

Proof. We apply Theorem 3.6 to u− a and proceed as in Proposition 3.14.

Proposition 3.16. Let (Σ, g) be a compact surfaces and uk be a sequence in H1(D2)
such that uk ⇀ u0 ∈ H1(Σ). Then, up to considering a subsequence,

(i) euk → eu0 for Lp(Σ), con 1 ≤ p <∞,

(ii) euk → eu0 for Lp(∂Σ), con 1 ≤ p <∞.

Proof. Given a, b ∈ R, by the Mean Value Theorem we have the inequality

|ea − eb| ≤ e|a|+|b||a− b|.

In particular,

|euk − eu0|p ≤ ep(|uk|+|u0|)|uk − u0|p. (3.30)

To prove (i), we integrate (3.30) on Σ and apply Hölder’s inequality:

�
Σ

|euk − eu0|p ≤
(�

Σ

e2p(|uk|+|u0|)
) 1

2
(�

Σ

|uk − u0|2p
) 1

2

.

By Cauchy’s inequality, for every ε > 0:

eu ≤ e
1
2ε e

u2ε
2 = Cεe

u2ε
2 .

We choose ε in such a way that

0 ≤ ε

2
<

(1− δ)2π�
Σ

2p|∇(|uk|+ |u0|)|2
,

where δ is an arbitrarily small positive number. Substituting and applying Propo-
sition 3.14: �

Σ

e2p(|uk|+|u0|) ≤ C

�
Σ

e
ε
2

2p(|uk|+|u0|)2

≤ C

�
Σ

exp

(
2π(1− δ)(|uk|+ |u0|)2�

Σ
|∇(|uk|+ |u0|)|2

)
≤ C.

Finally, �
Σ

|euk − eu0|p ≤ C

(�
Σ

|uk − u0|2p
) 1

2

.
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Claim (i) follows from Rellich-Kondrachov Theorem.

To prove (ii), we integrate 3.30 on ∂Σ and repeat the previous steps to get:

�
∂Σ

|euk − eu0|p ≤
(�

∂Σ

e2p(|uk|+|u0|)
) 1

2
(�

∂Σ

|uk − u0|2p
) 1

2

. (3.31)

We take ε > 0 such that

0 ≤ ε

2
<

(1− δ)π�
Σ

2p|∇(|uk|+ |u0|)|2
,

with δ > 0 small enough. Using Cauchy’s inequality, Proposition 3.15 and operating
as before, we get to:

�
∂Σ

e2p(|uk|+|u0|) ≤ C

�
∂Σ

exp

(
π(1− δ)(|uk|+ |u0|)2�

Σ
|∇(|uk|+ |u0|)|2

)
≤ C,

We plug the previous inequality in (3.31), obtaining

�
∂Σ

|euk − eu0|p ≤ C

(�
∂Σ

|uk − u0|2p
) 1

2

.

The trace embedding T : H1(Σ)→ Lq(∂Σ) is compact for every q ≥ 1, because it is
the composition of a compact embedding and a continuous function. Therefore, up
to taking a subsequence, we can assume that ‖uk − u0‖L2p(∂Σ) → 0, giving in turn

�
∂Σ

|euk − eu0|p → 0.

3.6 Solutions of the limit problem in Rn
+

Throughout the rest of the chapter, we will develop analytical tools that specifically
concern (1.21). Therefore, our framework will be that of a Riemannian manifold of
dimension n ≥ 3.

When performing blow-up analysis, one is usually concerned with certain limit prob-
lems after a proper rescaling of solutions. In this case, we are interested in solutions
with constant curvatures in the half-space:{

−4(n−1)
n−2

∆v = K(p)v
n+2
n−2 on Rn

+
2

n−2
∂v
∂η

= H(p)v
n
n−2 on ∂Rn

+

, (3.32)

The following result appears in [30]:
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Proposition 3.17. The following assertions hold true:

(0) If Dn(p) < 1, then (1.26) admits no solutions.

(1) If Dn(p) = 1, the only solutions are 1−dimensional and given by:

v(x) = vα(x) :=

(
2√

n(n− 2)
xn + α

)−n−2
2

, (3.33)

for any α > 0.

(2) If Dn(p) > 1, the solutions are called bubbles and given by

v(x) = bβ(x) :=
(n(n− 2))

n−2
4 β

n−2
2(

|x− x0(β)|2 − β2
)n−2

2

, (3.34)

with x0(β) = −Dn(p)β, en ∈ Rn, for β > 0 arbitrary. In this case, we highlight
the following assymptotic behaviour:

lim
|x|→+∞

|x|n−2 bβ0(x) = (n(n− 2))
n−2

2 β0

n−2
2 (3.35)

for any fixed β0 > 0.

3.7 Domain-variations

In order to derive global properties of blowing-up solutions to our problem, we will
make use of domain-variations, with calculations that are gathered in this subsection.
For variation vector fields of radial type these coincide with the classical Pohozaev
identity, but we will need more general ones in Section 5.3. We start with some
definitions that will be useful here and in further sections of the thesis.

Definition 3.18. Given a point p ∈ ∂M , a function u : M → R and a vector field
F : M → TM , we define Bp(u, F ) : ∂M → R,

Bp(u, F ) = Cn| · −p|
(

(F · η)2 − 1

2
|F |2

)
+ 2(n− 1)uF · η. (3.36)

If the point p is clear from the notation we will drop the subscript and write simply
B(u, F ).

Lemma 3.19. Given regular functions f, g : M → R and h : ∂M → R, and
exponents 0 ≤ p ≤ n+2

n−2
, 0 ≤ q ≤ n

n−2
, consider a positive solution u ∈ C2(M) of

− Cn∆u+ gu = fup on M, (3.37)
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with Cn = 4(n−1)
n−2

, and F : M → TM any smooth vector field. Then,

Cn

�
M

DF (∇u,∇u)− Cn
2

�
M

|∇u|2 divF − 1

p+ 1

�
M

fF · ∇(up+1)

+
1

2

�
M

gF · ∇(u2) = Cn

�
∂M

(∇u · F )
∂u

∂η
− Cn

2

�
∂M

|∇u|2 F · η, (3.38)

where DF (∇u,∇u) :=
∑n

k,j=1∇jF
kuku

j.

Proof. Let us introduce the vector field Y = (∇u · F )∇u − 1
2
|∇u|2 F : a direct

computation shows that

divY =
n∑
j=1

∇jYj =
n∑

k,j=1

∇jF
kuku

j + (∇u · F ) ∆u− 1

2
|∇u|2 divF. (3.39)

Finally, multiply (3.37) by ∇u · F and integrate by parts, using (3.39).

Corollary 3.20. Consider the domain Ω = B(0, r)+ ⊂ Rn
+, and let u be as in

Lemma 3.19. Define:

PΩ(u) =
1

p+ 1

�
Ω

up+1X · ∇f +

(
n

p+ 1
− n− 2

2

) �
Ω

fup+1

− 1

2

�
Ω

u2X · ∇g−
�

Ω

gu2 +
r

2

�
∂+Ω

gu2 − r

p+ 1

�
∂+Ω

fup+1. (3.40)

Then, if u solves also 2
n−2

∂u
∂η

= huq on ∂M , we have that

PΩ(u) =

�
∂+Ω

B(u,∇u) + 2(n− 1)

(
n− 2

2
− n− 1

q + 1

) �
∂0Ω

huq+1

+
2(n− 1)

q + 1

�
∂(∂0Ω)

huq+1(X · ν)− 2(n− 1)

q + 1

�
∂0Ω

uq+1(∇h ·X), (3.41)

Proof. We first apply Lemma 3.19 with F = X, taking into account that divX = n
and DX(∇u,∇u) = |∇u|2. We obtain:

−2(n− 1)

�
Ω

|∇u|2 − 1

p+ 1

�
Ω

fX · ∇(up+1) +
1

2

�
Ω

gX · ∇(u2)

= Cn

�
∂Ω

(∇u ·X)(∇u · η)− Cn
2

�
∂Ω

|∇u|2 (X · η). (3.42)

Moreover, using the Divergence Theorem,�
Ω

fX · ∇(up+1) =

�
∂Ω

fup+1X · η −
�

Ω

up+1X · ∇f− n
�

Ω

fup+1; (3.43)
�

Ω

gX · ∇(u2) =

�
∂Ω

gu2X · η −
�

Ω

u2X · ∇g− n
�

Ω

gup+1. (3.44)



40 Chapter 3: Notation and preliminaries

Multiplying (3.37) by u and integrating by parts we can relate the last two terms,
namely

n− 2

2

�
Ω

fup+1 − n− 2

2

�
Ω

gu2 = 2(n− 1)

�
Ω

|∇u|2 − 2(n− 1)

�
∂Ω

u
∂u

∂η
. (3.45)

Combining (3.43) and (3.44) with (3.45) and pugging them into (3.42), we obtain:

−1

p+ 1

�
∂Ω

fup+1X · η +
1

p+ 1

�
Ω

up+1X · ∇f− 1

2

�
Ω

u2X · ∇g

+
1

2

�
∂Ω

gu2X · η −
�

Ω

gu2 +

(
n

p+ 1
− n− 2

2

) �
Ω

fup+1

= Cn

�
∂Ω

(∇u ·X)
∂u

∂η
− Cn

2

�
∂Ω

|∇u|2 (X · η) + 2(n− 1)

�
∂Ω

u
∂u

∂η
. (3.46)

Taking into account that the exterior normal vector to ∂Ω satisfies

η(x) =

{
x
r

if x ∈ ∂+Ω,
−en if x ∈ ∂0Ω,

we proceed to study the right-hand side of (3.46). Integrating by parts we have�
∂0Ω

∂u

∂η
(X · ∇u) =

n− 2

2(q + 1)

�
∂0Ω

hX · ∇(uq+1)

=
n− 2

2(q + 1)

(�
∂(∂0Ω)

huq+1(X · ν)−
�
∂0Ω

uq+1(X · ∇h)− (n− 1)

�
∂0Ω

huq+1

)
.

Therefore,

Cn

�
∂Ω

(X · ∇u)
∂u

∂η
= Cn

�
∂+Ω

r

(
∂u

∂η

)2

+ Cn

�
∂0Ω

(X · ∇u)
∂u

∂η

= Cn

�
∂+Ω

r

(
∂u

∂η

)2

+
2(n− 1)

q + 1

�
∂(∂0Ω)

huq+1(X · ν)

− 2(n− 1)

�
∂0Ω

uq+1(X · ∇h)− 2(n− 1)2

q + 1

�
∂0Ω

huq+1. (3.47)

In addition,
−Cn

2

�
∂Ω

|∇u|2 (X · η) = −Cn
2
r

�
∂+Ω

|∇u|2 (3.48)

2(n− 1)

�
∂Ω

u
∂u

∂η
= 2(n− 1)

�
∂+Ω

u
∂u

∂η
+ (n− 1)(n− 2)

�
∂0Ω

huq+1. (3.49)

Finally, notice also that, by (3.37)

n− 2

2

�
∂0Ω

huq+1 =

�
∂0Ω

u
∂u

∂η
.

Identity (3.41) is a consequence of (3.46), (3.47), (3.48) and (3.49).
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As a final goal of this section, we study a particular case of Corollary 3.20 that will
be useful later on.

For any fixed constant a > 0, define the function G(x) = a |x|2−n: direct computa-
tions show that

B(G,∇G) = −2(n− 1)

(
(n− 2)a2

|x|2n−3
− 2

(n− 2)a2

|x|2n−3
+

(n− 2)a2

|x|2n−3

)
= 0.

Furthermore, we have the following result:

Proposition 3.21. Define the function h : B(r)+ → R as

h(x) = G(x) + b(x),

for any function b ∈ C1(B(r)+). Then,

lim
r→0

�
∂+Ω

B(h,∇h) = −(n− 1)(n− 2)ωn−1a b(0). (3.50)

Proof. The fact that B(G,∇G) = 0 implies

B(h,∇h) = Br(b,∇b)−
6a(n− 1)

rn−1
(X · ∇b)− 2a(n− 1)(n− 2)

rn−1
b(x).

Integrating on ∂+Br, and taking into account that |∂+Br| = 1
2
ωn−1r

n−1, we obtain:

�
∂+Br

B(h,∇h) =

�
∂+Br

B(b,∇b)− 3a(n− 1)ωn−1

 
∂+Br

X · ∇b

− a(n− 1)(n− 2)ωn−1

 
∂+Br

b.

We conclude by taking the limit r → 0.

3.8 An explicit example of blow-up with infinite singular
set for (1.21)

Here we show that the cardinality of the singular set S0 = S ∩ {Dn = 1} can be
infinite. Indeed, consider ρ > 1 and the function uρ : B(0, 1) ⊂ Rn → R as:

uρ(x) =
( 2ρ

ρ2 − |x|2
)n−2

2
.

It is easy to check that uρ solves:
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{
−4(n−1)

n−2
∆u = −n(n− 1)u

n+2
n−2 on B(0, 1),

2
n−2

∂u
∂η

+ u = Hρu
n
n−2 on ∂B(0, 1),

(3.51)

where Hρ = ρ2+1
2ρ

. As ρ→ 1, Hρ → 1 but K = −n(n− 1). In this case, the function

uρ diverges on the whole boundary ∂B(0, 1) = S0.

Obseve that the function u gives rise to a model of the Hyperbolic space in a ball
of radius ρ > 1, and hence Hρ is nothing but the mean curvature of the sphere of
Euclidean radius 1 in such a model.



Chapter 4

The Gaussian-Geodesic prescription problem on D2

This chapter is devoted to the study of (1.12). Firstly, we formalise our varia-
tional approach and derive properties of the associated Energy Functional using the
Moser-Trudinger type inequalities developed in Chapter 3. Under the symmetry as-
sumptions described in Definition (1.3), the functional is coercive and a minimizer
can be found. As a first consequence, we obtain existence results for the limiting
cases ρ = 0 and ρ = 2π, associated to the cases of prescribing h with K = 0 and K
with h = 0, respectively. As we will see, their analysis represent a first step in the
proof of Theorem 1.4.

4.1 Variational study of the problem

As commented in the introduction, we will be working with the functional I given
in (1.16), defined on the space

X× (0, 2π) =

{
u ∈ H1(D2) :

�
D2

Keu > 0,

�
S1

heu/2 > 0

}
.

Lemma 4.1. X is non-empty if and only if K and h are positive somewhere.

Proof. We reduce ourselves to prove that if K and h are positive somewhere then
X is non-empty, as the reciprocal is immediate. By continuity, since there exists
x0 ∈ Int(D2) such that K(x0) > 0, then there exists r > 0 such that ({x0})r ∩ S = ∅
and K(x) > 0 for all x ∈ ({x0})r.

Moreover, there is x1 ∈ S satisfying h(x1) > 0, and again by continuity we get s > 0
such that h(x) > 0 for all x ∈ ({x1})s∩S. Without loss of generality we can assume
({x0})r ∩ ({x1})s = ∅. Now, call Ωr

0 := ({x0})r and Ωs
1 := ({x1})s, and consider a

cutoff function ϕ ∈ H1(D2) satisfying

ϕ(x) =


a if x ∈ Ω

r/2
0 ,

b if x ∈ Ω
s/2
1 ,

0 if D2\ (Ωr
0 ∪ Ωs

1) ,
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where a and b are real constants yet to be determined. We see that:�
S1

heϕ/2 =

�
Ω
s/2
1 ∩S1

heϕ/2 +

�
(

Ωs1\Ω
s/2
1

)
∩S1

heϕ/2 +

�
S1\Ωs1

heϕ/2

≥ eb/2
�

Ω
s/2
1 ∩S1

h+

�
S1\Ωs/21

h = C1e
b/2 + C,

being C1 > 0 and C ∈ R. We can choose b large enough so that�
S1

heϕ/2 > 0.

Furthermore,�
D2

Keϕ =

�
Ω
r/2
0

Keϕ +

�
Ω
s/2
1

Keϕ +

�
D2\(Ωr0∪Ωr1)

Keϕ +

�
Ωs1\Ω

s/2
1

Keϕ

+

�
Ωr0\Ω

r/2
0

Keϕ ≥ ea
�

Ω
r/2
0

K − ebC2‖K‖∞ + C = C ′1e
a − C ′2eb + C.

Thus, a can also be chosen in such a way that�
D2

Keϕ > 0.

Critical points of I are in correspondence with weak solutions of the problem (1.15).
We now can demonstrate that this formulation is equivalent to the original one.

Lemma 4.2. Problems (1.12) and (1.15) are equivalent.

Proof. Proving that every solution of (1.12) is a solution of (1.15) is immediate, as
we just need to take ρ =

�
D2 Ke

u = 2π −
�
S1 he

u/2 > 0. Reciprocally, if u ∈ X solves
(1.15), we can apply the invariance of (1.15) under addition of constants and get,
for any C ∈ R :

−∆(u+ C) = 2ρ
Keu+C

eC
�
D2 Keu

,

∂(u+ C)

∂η
+ 2 = 2(2π − ρ)

heu/2

e
C
2

�
S1 heu/2

.

If we want u+ C to be a solution for (1.12), we need C ∈ R such that

eC =
ρ�

D2 Keu
, e

C
2 =

(2π − ρ)�
S1 heu/2

.

The third equation of (1.15) tells us that both conditions are actually the same.
Thus, it is enough to choose C = log ρ− log

�
D2 Ke

u.
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As it happens with problem (1.15), the functional I is invariant under the addition
of constants. This information allows us to consider functions with null mean in Σ
when we work on energy estimates, as we did for the proof of Lemma 3.1.

Proposition 4.3. Let I be the energy functional defined on (1.16), and C ∈ R.
Then I(u+ C, ρ) = I(u, ρ) for every u ∈ X and ρ ∈ (0, 2π).

Proof. Clearly, for every u ∈ X, ρ ∈ (0, 2π) and C ∈ R :

I(u+ C, ρ) = I(u, ρ)− 2ρC + 2
∣∣S1
∣∣C − 2(2π − ρ)C = I(u, ρ),

as desired.

As we anticipated, the combined use of the inequalities (3.10) and (3.11) allows us
to prove that I is bounded from below in H1(D2).

Proposition 4.4. There exists a constant C ∈ R such that Iρ(u) ≥ C for every
u ∈ X and every ρ ∈ [0, 2π].

Proof. Let us denote by L : (0, 2π)→ R as the correction term in (1.16), that is

L(ρ) = 4(2π − ρ) log(2π − ρ) + 2ρ+ 2ρ log ρ.

It is clear that

lim
ρ→0

L(ρ) = 8π log(2π), lim
ρ→2π

L(ρ) = 4π + 4π log(2π).

Then, L can be continuously extended to the compact interval [0, 2π]. Thus, there
exists a constant M > 0 such that |L(ρ)| ≤ M for all ρ ∈ [0, 2π]. Moreover, by the
continuity of K and h, there are constants M1,M2 ∈ R such that

log

�
D2

Keu ≤ log

�
D2

eu + C, log

�
S1

heu/2 ≤
�
S1

eu/2 + C.

Then, for every a, b ∈ R:

Iρ(u) ≥ 1

2

�
D2

|∇u|2 − 2ρ log

�
D2

eu − 4(2π − ρ) log

�
S1

eu/2 + 2

�
S1

u+ C

=
8π − 2a− b

16π

�
D2

|∇u|2 +
a

8π

�
D2

|∇u|2 +
b

16π

�
D2

|∇u|2

− 2ρ log

�
D2

eu − 4(2π − ρ) log

�
S1

eu/2 + 2

�
S1

u+ C.

The functional I is invariant under the addition of constants, so we can assume that�
D2 u = 0 and apply inequalities 3.10 and 3.11, taking a = 2ρ and b = 4(2π − ρ),

obtaining:

Iρ(u) ≥ −2ρ

 
S1

u− 2(2π − ρ)

 
S1

u+ 2

�
S1

u+ C = C.

We highlight that the constant C does not depend on ρ.
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Proposition 4.4 states that the functional I is bounded from below, but we do
not achieve coercivity. The reason behind this is the non-compact action of the
conformal group of the disk. This effect appears also in the Nirenberg problem in
the sphere, for instance, and makes the problem rather difficult.

In Chapter 3 we have seen that, the more regions the mass of a function is separated
in, the better bounds we obtain using the previous local versions of the Moser-
Trudinger inequalities. If a function is concentrated in an interior point of the
disk, equation (3.23) of Proposition 3.10 with l = 1 gives us a lower bound which is
sufficient to achieve coercivity, but that is not the case when a function concentrates
around a boundary point. Restricting ourselves to spaces of G−symmetric functions,
with G being a symmetry group without fixed points in S1, excludes this possibility,
since we can always find a second point in the boundary where it concentrates.
Hence we will obtain coercivity by interpolating (3.23) with l = 1 and (3.24) and
(3.27) with l = 2.

Lemma 4.5. Let G be as in Definition (1.3). There exist δ > 0 and γ ∈ (0, 1) such
that, for every u ∈ H1

G(D2), one of the following holds:

(i) Either there exists Σ0 ⊂ D2 such that (Σ0)δ ∩ S1 = ∅ and

�
Σ0
eu�

D2 eu
≥ γ, or

(ii) There exist Σ1 = ({x0})r and Σ2 = ({x1})r, with x0, x1 ∈ S1, such that
(Σ1)δ ∩ (Σ2)δ = ∅ and �

Σi
eu�

D2 eu
≥ γ, i = 1, 2.

Proof. We start proving the following weaker result: there exist γ ∈ (0, 1) and δ > 0
such that, for every u ∈ H1(D2), one of the following claims holds:

(i) There exists Σ1 ⊂ D2 with (Σ1)δ ∩ S1 = ∅ and
�
Σ1

eu
�
D2 eu

≥ γ, or

(ii*) There exists Σ1 = ({x0})r such that
�
Σ1

eu
�
D2 eu

≥ γ.

Reasoning by contradiction, we deny both (i) and (ii*). Let Rδ be the open covering
for D2 constructed in Lemma 3.13, which is compound only of open sets as in (i)
and (ii*), and take 0 < γ < 1

k
. There exists uγ ∈ H1(D2) such that:

�
D2

euγ ≤
n∑
i=1

�
Σi

euγ < γ
n∑
i=1

�
D2

euγ = kγ

�
D2

euγ .
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Therefore, 1 ≤ kγ, a contradiction. Assume (ii*) holds, and fix Σi0 ∈ Rδ, Σi0 =
({x0})r for some x0 ∈ S1. Since G does not have fixed points in S1, there exists
φ ∈ G such that φ(x0) 6= x0. By continuity, up to taking a smaller r > 0 (and thus,
a bigger covering), we can assume that

(φ(Σi0))δ ∩ (Σi0)δ = ∅.

Finally, by the area formula:�
φ(Σi0 )

eu�
D2 eu

=

�
Σi0

eu�
D2 eu

≥ γ, ∀u ∈ H1
G(D2),

being φ(Σi0) = ({φ(x0)})r because of the nature of φ.

Figure 4.1: Here G = D3 = 〈a, b : a3 = b2 = Id, ab = ba−1〉.
The dots represent G · x0.

Lemma 4.6. Let G be as in Definition (1.3), and u ∈ H1
G(D2). There exist δ > 0,

γ ∈ (0, 1
2
), and Γ1,Γ2 ⊂ S1 satisfying (Γ1)δ ∩ (Γ2)δ = ∅ and

�
Γi
eu�

S1 eu
≥ γ, i = 1, 2.

Proof. Reasoning as before, it is easy to prove the existence of 0 < γ < 1 and
Γ1 ⊂ S1 such that �

Γ1
eu�

S1 eu
≥ γ, ∀u ∈ H1(D2).

To that aim, we consider a finite covering of S1 of the form

R′ =
{

Γi = BS1(xi, r) : xi ∈ S1, i = 1, . . . , k0(r)
}
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and reason by contradiction: for a fixed 0 < γ < 1
k
, there exists uγ ∈ H1(D2)

satisfying �
S1

euγ ≤
n∑
i=1

�
Γi

euγ < γ

n∑
i=1

�
S1

euγ = γk

�
S1

euγ .

Thus, 1 < γk, which is a contradiction for large enough values of k. Let Γi0 =
BS1(x0, r) be such subset. Following the proof of Lemma 4.5, given δ > 0 small
enough, up to taking a smaller r > 0, we can assume that there exists φ ∈ G, with
φ(x0) 6= x0, that satisfies φ(Γio) = BS1(φ(x0), r) and

(φ(Γi0))δ ∩ (Γi0)δ = ∅.

Finally, by the area formula:

�
g(Γi0 )

eu�
S1 eu

=

�
Γi0
eu�

S1 eu
≥ γ,

as desired.

Corollary 4.7. Let G be as in Definition (1.3). For every ε > 0, there exists a
constant C ∈ R, depending on ε, such that

(a) 16π log

�
D2

eu ≤
�
D2

|∇u|2 + ε

�
D2

|∇u|2 + C ∀u ∈ H1
G(D2) with

�
D2

u = 0,

(b) 32π log

�
S1

e
u
2 ≤

�
D2

|∇u|2 + ε

�
D2

|∇u|2 + C ∀u ∈ H1
G(D2) with

�
D2

u = 0.

Proof. Let u ∈ H1
G(D2), and apply Lemma 4.5. If (i) holds, then we are under the

hypothesis of Corollary 3.10, and we can apply equation (3.23) with l = 1, obtaining
(a). The same happens if (ii) is true, via (3.24) with l = 2. (b) follows from Lemma
4.6 and (3.27) with l = 2.

The previous estimates provide us the coercivity of the functional I in a space of
symmetric functions.

Lemma 4.8. Let G be as in Definition (1.3). If K and h are G−symmetric func-
tions, positive somewhere, then XG is non-empty.

Proof. We will follow the proof of Lemma 4.1, constructing a G−symmetric test
function ϕ for each type of group in 1.3.

Take x0 ∈ IntD2 such that K(x0) > 0, and x1 ∈ S1 with h(x1) > 0. If G has finite
order, then the orbits G · x0 and G · x1 are discrete and finite, hence it is possible to
consider a small radius s > 0 such that

i. ({x})s ∩ ({y})s = ∅ for every x, y ∈ G · xi with x 6= y, i = 0, 1.
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ii. ({x})s ∩ ({z})s = ∅ for every x ∈ G · x1 and z ∈ G · x0.

iii. ({x})s ∩ S1 = ∅ for every z ∈ G · x0.

It is enough to consider the disconnected domains

Ωs
i =

⋃
x∈G·xi

({x})s, i = 0, 1.

and repeat the steps of the proof for Lemma 4.1. On the other hand, if the order
of G is infinite, then by continuity K is a radial function and h is constant and
positive. For this case, we can consider a test function of the form ϕ(x) = ψ(|x|),
where ψ : [0, 1]→ R is given by

ψ(r) =


a if r = r0

b if r = 1
0 for r outside small neighbourhoods of r0 and 1,

and r0 ∈ [0, 1) is such that K(x) > 0 for |x| = r0.

Proposition 4.9. Let G be as in Definition (1.3), and K, h Hölder-continuous and
G−symmetric functions. Given ρ ∈ (0, 2π), the functional Iρ defined on 1.16 is
coercive on XG, that is to say,

lim
‖u‖H1(D)→+∞

u ∈ XG

Iρ(u) = +∞.

Proof. Let (uk) be a sequence in XG, which is not empty due to Lemma 4.8. Since
Iρ is invariant under the addition of constants by Proposition 4.3, we can assume
without loss of generality that

�
D2 uk = 0 for every k ∈ N. As in the proof of

Proposition 4.4, we get the following lower bound.

Iρ(uk) ≥
1

2

�
D2

|∇uk|2 − 2ρ log

�
D2

euk − 4(2π − ρ) log

�
S1

e
uk
2 + 2

�
S1

uk + C.

We rewrite the previous inequality: for every a, b ∈ R we have:

I(uk, ρ) ≥ 16π − 2a− b
32π

�
D2

|∇uk|2 +
a

16π

�
D2

|∇uk|2 +
b

32π

�
D2

|∇uk|2 + 2

�
S1

uk

− 2ρ log

�
D2

euk − 4(2π − ρ) log

�
S1

e
uk
2 .

Now we apply Proposition 4.7, passing to a subsequence if necessary:

I(uk, ρ) ≥ 16π − 2a− b
32π

�
D2

|∇uk|2 + a log

�
D2

euk − aε
�
D2

|∇uk|2 + b log

�
S1

e
uk
2

− bε
�
D2

|∇uk|2 − 2ρ log

�
D2

euk − 4(2π − ρ) log

�
S1

e
uk
2 + 2

�
S1

uk + C.
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Choosing a = 2ρ and b = 4(2π − ρ), and using the trace inequality:

I(uk, ρ) ≥
(

1

4
− ε
)�

D2

|∇uk|2 − 2C2‖uk‖H1(D2) + C, C2 > 0.

Finally, we choose ε small enough and apply Poincaré-Sobolev inequality:

I(uk, ρ) ≥ C1‖uk‖2
H1(D2) − C2‖uk‖H1(D2) + C, C1, C2 > 0

We highlight the fact that C1 is independent of ρ.

4.2 Proof of Theorem 1.4 and its generalizations

We begin this section addressing the limiting cases ρ = 0 and ρ = 2π. These cases
are interesting in their own, as will be shown, but their study is also necessary for
the proof of Theorems 1.4 and 1.5.

In the limiting case ρ = 0, the energy functional I0 is given by:

I0(u) = I(u, 0) =
1

2

�
D2

|∇u|2 + 2

�
S1

u− 8π log

�
S1

he
u
2 + 8π log(2π), (4.1)

and since K does not play any role, it can be defined on the bigger set

X0 =

{
u ∈ H1(D2) :

�
S1

heu/2 > 0

}
⊃ X.

The critical points of I0 on X0 are weak solutions of the problem{
−∆u = 0 in D2,

∂u
∂η

+ 2 = 4π heu/2�
S1 he

u/2 on S1,

which is clearly equivalent to the problem of prescribing Gaussian curvature K = 0
and geodesic curvature h, that is,{

−∆u = 0 in D2,
∂u
∂η

+ 2 = 2heu/2 on S1.
(4.2)

For this problem, we obtain the following result:

Theorem 4.10. Let G be as in Definition 1.3, and h : S1 → R a G−symmetric,
Hölder continuous and somewhere positive function. Then Problem (4.2) admits a
solution as a minimum of I0 on XG

0 .
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Proof. We recall the definition of the Energy Functional associated to the problem,
described in (4.1):

I0(u) = I(u, 0) =
1

2

�
D2

|∇u|2 + 2

�
S1

u− 8π log

�
S1

he
u
2 + 8π log(2π).

By Proposition 4.4, I0 is bounded from below in H1(D2) ⊃ XG
0 , so there exists

α = inf
u∈XG0

I0(u).

Our intention is to show that I0 admits a minimizer in the space of G−symmetric
functions XG

0 . Let (uk) be a minimizing sequence in XG
0 , that is, I0(uk) → α. By

Proposition 4.9 we know that I0 is coercive, so uk is bounded in the H1(D2) norm.
Therefore, since H1(D2) is reflexive, we can assume that there exists u0 in H1(D2)
such that, up to a subsequence, uk ⇀ u0. Then, by compactness we also have�

S1

uk →
�
S1

u0,

and by Lemma 3.16 �
S1

heuk/2 →
�
S1

heu0/2.

Combining this information with the fact that the function u→
�
D2 |∇u|2 is weakly

lower semicontinuous, we have I0(u0) ≤ α. It is easy to check that
�
S1 he

u0
2 > 0,

because if we had
�
S he

uk/2 → 0 then I0(uk) → +∞, which contradicts that uk
is minimizing. Also, notice that weak convergence respect symmetry, so u0 is a
G−symmetric function.

Analogously, we can consider the functional related to the limiting case ρ = 2π,

I2π(u) = I(u, 2π) =
1

2

�
D2

|∇u|2 + 2

�
S1

u− 4π log

�
D2

Keu + 4π + 4π log(2π), (4.3)

defined on

X2π =

{
u ∈ H1(D2) :

�
D2

Keu > 0

}
⊃ X.

One can check that its variation with respect to u produces weak solutions of the
problem {

−∆u = 4π Keu�
D2 Keu

in D2,
∂u
∂η

+ 2 = 0 on S1,

which is equivalent to the problem of prescribing geodesic curvature h = 0 and
Gaussian curvature K: {

−∆u = 2Keu in D2,
∂u
∂η

+ 2 = 0 on S1.
(4.4)
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Theorem 4.11. Let G be as in Definition 1.3, and K : D2 → R a G−symmetric,
Hölder continuous and somewhere positive function. Then Problem (4.4) admits a
solution as a minimum of I2π on X2π

G .

Proof. This proof is a trivial adaptation of the previous one: as before, we will find
a minimizer of the Energy Functional (4.3),

I2π(u) =
1

2

�
D2

|∇u|2 + 2

�
S1

u− 4π log

�
D2

Keu + 4π + 4π log(2π),

in the space of G−symmetric functions XG
2π. By Proposition 4.4, we can consider

the infimum

β = inf
u∈XG2π

I2π(u),

and a minimizing sequence (uk) in XG
2π, such that I(uk)→ β. Coercivity, granted by

Proposition 4.9, gives us the boundedness of (uk), so it is not restrictive to assume
that uk ⇀ u0 ∈ H1(D2). Compactness plus Lemma 3.16 make

�
S1

uk →
�
S1

u0,

�
D2

Keuk →
�
D2

Keu0 .

Then, I2π is weak lower semi-continuous and I2π(u0) ≤ β. To prove that u0 ∈ XG,
it is enough to notice that if

�
D2 Ke

uk → 0, then I(uk)→ +∞.

The existence result of Theorem 4.10 is known, see for instance [72]. We have
not found an explicit statement of the existence result of Theorem 4.11, but we
guess that it must be also known. However we have reinterpreted those solutions as
minimizers of I0 and I2π, respectively, needed in what follows.

The minimization of the functional I will be done in two steps: first, we freeze the
real variable ρ, and find a minimizer for each functional u→ I(u, ρ). After that, we
minimize the function ρ→ min I(·, ρ), and see that its minimum cannot be achieved
at the extrema of the interval. The following result guarantees that this approach
produces a global minimum for I(u, ρ).

Lemma 4.12. Let I : H1 × (0, 2π)→ R a real functional. Then,

inf
(u,ρ)∈H1×(0,2π)

I(u, ρ) = inf
ρ∈(0,2π)

(
inf
u∈H1

I(u, ρ)

)
.

Proof. Let us call

α = inf
(u,ρ)∈H1×(0,2π)

I(u, ρ), and β = inf
ρ∈(0,2π)

(
inf
u∈H1

I(u, ρ)

)
.
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We start proving that α ≤ β. By the characterization of the infimum, given ε > 0
there exists ρ′ ∈ (0, 2π) such that

inf
u∈H1

I(u, ρ′) < β + ε.

Clearly,
α = inf

(u,ρ)∈H1×(0,2π)
I(u, ρ) ≤ inf

u∈H1
I(u, ρ′) < β + ε.

Thus, α < β + ε, and it is enough to take limits when ε→ 0 to get α ≤ β.
Conversely, for a fixed ε > 0 we find (u′, ρ′) ∈ H1 × (0, 2π) such that

I(u′, ρ′) < α + ε.

Taking the infimum, firstly in ρ′ ∈ (0, 2π), and in u′ ∈ H1 afterwards, we are left
with

β = inf
ρ′∈(0,2π)

(
inf
u′∈H1

I(u′, ρ′)

)
< α + ε,

and it is enough to send ε→ 0 to obtain β ≤ α, concluding the proof.

Let us now conclude the proof of Theorem 1.4.

Proof of Theorem 1.4. If K = 0 or h = 0, then we are under the assumptions of
Theorem 4.10 or Theorem 4.11. Then, we can assume that both K and h are positive
in some point and non-negative. In this particular case, XG = XG

0 = XG
2π = H1

G(D2).
By Proposition 4.9, using Tonelli’s direct method as we did in the proofs of Theorems
4.10 and 4.11, it is easy to prove that, for each ρ ∈ (0, 2π), there exists uρ in XG

such that
Iρ(uρ) = min

u∈XG
Iρ(u).

Denote by ρ̂ the minimum of the function ρ→ I(uρ) in [0, 2π]. By Lemma 4.12, we
know (uρ̂, ρ̂) = (û, ρ̂) ∈ H1

G(D2)× [0, 2π] is a global minimizer for I. We conclude if
we exclude the possibilities ρ̂ = 0 or ρ̂ = 2π.

Assume that ρ̂ = 0. Observe that in this case, û is a minimizer for I(·, 0). Then,

I(û, 0) ≤ I(û, ρ) = I(û, 0)− 2ρ log
(�

D2

Keû
)

+ 4ρ log
(�

S1

heû/2
)

+8π log
(2π − ρ

2π

)
− 4ρ log(2π − ρ) + 2ρ+ 2ρ log ρ. (4.5)

But observe that, as ρ→ 0, the main term above is 2ρ log ρ, which is negative. This
gives a contradiction that excludes the case ρ̂ = 0. One can exclude the case ρ̂ = 2π
in an analogous way:

I(û, 2π) ≤ I(û, ρ) = I(û, ρ) + (4π − ρ) log

�
D2

Keû − 4(2π − ρ) log

�
S1

heû/2

+ 4(2π − ρ) log(2π − ρ) + 2ρ+ 2ρ log ρ− 4π − 4π log 2π. (4.6)
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In this case, the leading term is 4(2π − ρ) log(2π − ρ), which is again negative as ρ
approaches 2π.

The proof of Theorem 1.4 can be adapted to a more general setting as follows:

Theorem 4.13. Let G be as in 1.3, and let K, h be G−symmetric, Hölder contin-
uous functions that are positive somewhere. We define

S0 =

{
u ∈ X1

G : I0(u) = min
X1
G

I0

}
, S2π =

{
u ∈ X2

G : I2π(u) = min
X2
G

I2π

}
.

If S0 ∩ XG and S2π ∩ XG are nonempty, then (1.12) admits a solution.

Firstly, observe that Theorem 1.4 is an immediate consequence of Theorem 4.13.
Notice also that the sets S0 and S2π of the hypotheses are nonempty because of
Theorems 4.10 and 4.11.

Proof. The proof relies on the same energy comparison argument than above, but a
couple of details are worth to be written down. First, the existence of a minimizer
in XG × [0, 2π] is not clear a priori.

By Proposition 4.4, we can consider a minimizing sequence (uk, ρk) ∈ XG × (0, 2π),
that is, I(uk, ρk)→ inf I. Clearly uk is bounded in H1

G(D2) by Proposition 4.9, but
in this case the weak limit û could fall in ∂XG, which was empty in Theorem 1.4.
If either

�
D2 Ke

û = 0, or
�
S1 he

û/2 = 0, then knowing the leading term in (4.5) and
(4.6) requires a deeper analysis.

If ρk → ρ̂ ∈ (0, 2π), from the fact that I(uk, ρk) is bounded we obtain:

0 < ε <

�
D2

Keuk < C, 0 < ε <

�
S1

heuk/2 < C,

for some ε > 0, C > 0. Therefore, û ∈ XG and we conclude as in the proof of
Theorem 1.4.

Assume now that ρk → 0. For large values of k, the following estimate holds:

I(uk, ρk) ≥ −2ρk log

(�
D2

Keuk
)
− 4(2π − ρk) log

(�
S1

heuk/2
)

+ C. (4.7)

Notice that

lim inf
k→∞

−2ρk log

(�
D2

Keuk
)
≥ 0.

Substituting in (4.7), we see that − log
(�

S he
uk/2
)

must be bounded from above,
which means that

0 < ε <

�
S1

heuk/2.
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Now, we write:

I(uk, ρk) = I(uk, 0)− 2ρk log

(�
D2

Keuk
)

+ 4ρk log

(�
S1

heuk/2
)

+ 8π log

(
2π − ρk

2π

)
− 4ρk log(2π − ρk) + 2ρk + 2ρk log ρk.

From this we deduce that:

inf I = lim
k→∞

I(uk, ρk) ≥ lim inf
k→∞

I(uk, 0) ≥ I(u0, 0),

where u0 ∈ S0 ∩ XG. But, as in the proof of Theorem 1.4,

I(u0, 0) > I(u0, ρ),

for small values of ρ. This contradiction shows that ρk cannot converge to 0. In a
similar fashion we can exclude the case ρk → 2π.

4.2.1 A perturbation result

In this section it is necessary to specify the dependence of I on the curvature func-
tions K and h, so we are writting I(u, ρ) = I[K,h](u, ρ). We begin with a compact-
ness result:

Lemma 4.14. Let (Kk) and (hk) be sequences of Hölder continuous G−symmetric
functions, defined on D2 and S1 respectively, such that

Kk → K uniformly in D2 and K ∈ C0,α(D2),

hk → h uniformly on S1 and h ∈ C0,α(S1).

Let us consider a sequence (uk), where each uk is a solution of the problem{
−∆u = 2Kke

u in D2,
∂u
∂η

+ 2 = 2hke
u/2 on S1,

(4.8)

satisfying

ρk =

�
D2

Kke
uk > 0,

�
S1

hke
uk/2 > 0, ∀k ∈ N. (4.9)

Assume that I[Kk, hk](uk, ρk) is uniformly bounded from above. Then uk ⇀ u∞ on
H1(D2), being u∞ a solution of the problem{

−∆u = 2Keu in D2,
∂u
∂η

+ 2 = 2heu/2 on S1.
(4.10)
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Proof. First, by definition of convergence, for every ε > 0 we find n0 ∈ N such that,
for n ≥ n0:

‖Kk‖∞ < ‖K‖∞ + ε, ‖hk‖∞ < ‖h‖∞ + ε.

Condition (4.9), together with the Gauss-Bonnet theorem, give us 0 < ρk < 2π for
all k ∈ N. Then, for n ≥ n0 we have the following bound:

I[Kk, hk](uk, ρk) ≥ I(‖K‖∞ + ε, ‖h‖∞ + ε)(uk, ρk).

Then, by Proposition 4.9, there exist constants C1, C2 > 0, independent of k, such
that

I[Kk, hk](uk, ρk) ≥ C1‖uk‖2
H1 − C2‖uk‖H1 + Cε.

Since I[Kk, hk](uk, ρk) is uniformly bounded from above by hypothesis, we have that
uk is bounded in the H1(D2) norm. Hence, up to a subsequence we can assume that
there exists u∞ ∈ H1(D2) such that uk ⇀ u∞.

By Proposition 3.16, 2Kke
uk → 2Keu∞ and 2hke

uk/2 → 2heu∞/2 on Lp for 1 ≤
p < +∞. Since weak convergence agrees with continuous functions, we also have
〈∇uk, w〉 → 〈∇u∞, w〉 for all w ∈ H1(D2). Moreover, by the trace inequality

uk|S1 → u∞|S1 in L2(S1).

Passing to the limit in the weak formulation of (4.8):
�
D2

〈∇uk,∇v〉 − 2

�
D

Kke
ukv + 2

�
S
v −

�
S
hke

uk/2v = 0, (4.11)

for all v ∈ H1(D2). As a consequence u∞ is a weak solution of (4.10). By standard
regularity estimates u∞ is indeed a classical solution.

In the following step we prove that, when (uk) is a sequence of minimum type
solutions, the hypothesis of Lemma 4.14 are automatically satisfied.

Observe that in our framework, I[Kk, hk](·, ·)→ I[K,h](·, ·) pointwise in X×(0, 2π).
Then, if (uk, ρk) is a sequence of minimum type solutions of (4.8),

lim sup
n→+∞

I[Kk, hk](uk, ρk) = lim sup
n→+∞

min
X×(0,2π)

I[Kk, hk](·, ·) ≤ min
X×(0,2π)

I.

The previous inequality is due to the fact that (fn) converging pointwise to f implies
limn→+∞ inf fn(y) ≤ inf f(y).

Proof of Theorem 1.5. Our intention is to apply Theorem 4.13 to the problems{
−∆u = 2Keu in D2,
∂u
∂η

+ 2 = 2heu/2 on S1
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for which we need that the limiting problems

(P 1
K)

{
−∆u = 2Keu in D2,
∂u
∂η

+ 2 = 0 on S1,
(P 2

h )

{
−∆u = 0 in D2,
∂u
∂η

+ 2 = 2heu/2 on S1,

admit minimum type solutions, u1 and u2 respectively, verifying

�
D2

Keu2 > 0,

�
S1

heu1/2 > 0.

Reasoning by contradiction, take Kk and hk Hölder continuous functions converging
uniformly to K0 and h0. We can assume that k is large enough so that Kk and hk
are somewhere positive, and therefore u1 and u2 can be obtained via Theorems 4.10
and 4.11. Now, take (ũk) a sequence of minimum type solutions of the problems
(P 1

Kk
), and (ûn) a sequence of minimum type solutions of the problems (P 2

hk
) such

that

either

�
D2

Kke
ûk ≤ 0, or

�
S1

hke
ũn/2 ≤ 0, ∀k ∈ N. (4.12)

By Lemma 4.14 we know that ûn ⇀ û and ũn ⇀ ũ, solutions for the limiting
problems (P 1

K0
) and (P 2

h0
). But in that case we can taking limit when k → +∞ in

(4.12) and obtain:

either

�
D2

K0 e
ũ ≤ 0, or

�
S1

h0 e
û/2 ≤ 0,

which is a contradiction since both K0 and h0 are nonnegative functions somewhere
positive.





Chapter 5

The Scalar-Mean curvature prescription problem on a
manifold with boundary

The framework during this chapter will be that of a Riemannian manifold (M, g) of
dimension n ≥ 3, equiped with the Escobar metric detailed in §3.4. We deal with
(1.21), where K < 0 and H has arbitrary sign.

5.1 The variational study of the energy functional

Firstly, we analyze the geometric properties of the energy functional in (1.22). This
study will readily imply the proof of Theorems 1.6 and 1.7. Moreover, we will
show that under the assumptions of Theorem 1.8, I satisfies the hypotheses of
the mountain pass lemma. However, the proof of Theorem 1.8 will require the
compactness result of Theorem 1.9, which will be proved further on.

We begin with the following inequality, showing that the nature of the functional
is ruled by the interaction between its critical terms. This will allow us to prove
Theorems 1.6 and 1.7.

Proposition 5.1. For every ε > 0, there exists C > 0 such that

�
∂M

H|u|2] ≤ (D̄ + ε)

(
2(n− 1)

(n− 2)2

�
M

|∇u|2 +
1

2n

�
M

|K||u|2∗
)

+ C

�
M

|u|2] , (5.1)

where D̄ = maxx∈∂M{0,Dn(x)}.

Proof. Take a partition of unity {φj}mj=1 on M , a vector field N ∈ X(M) on M with
|N | ≤ 1 and such that N = η on ∂M . Firstly we see that, for every 1 ≤ j ≤ m and
u ∈ H1(M)

�
∂M

φj|u|2
]

=

�
∂M

φj|u|2
]

N · η.
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Calling Xj = φju
2]N , a direct computation shows that

divXj =

(
φj divN +∇φj ·N +

2(n− 1)

n− 2

φj
u
N · ∇u

)
u2] .

Thus, by the Divergence Theorem

�
∂M

φj|u|2
]

=

�
M

{φj divN +∇φjN}|u|2
]

+
2(n− 1)

n− 2

�
M

φj∇u ·N |u|
2

n−2u

≤ C

�
M

|u|2] +
2(n− 1)

n− 2

�
M

φj|∇u| · |u|
n
n−2 . (5.2)

Consider Dn as defined in (1.23), and let

Hj = max{H(x), x ∈ supp φj}, |K|j = min{|K(x)|, x ∈ supp φj}.

Then, summing (5.2) on j and assuming that the supports of the φj’s are sufficiently
small, we have:

(n− 2)

�
∂M

H|u|2] = (n− 2)
m∑
j=1

�
∂M

φjH|u|2
] ≤ (n− 2)

m∑
j=1

Hj

�
∂M

φj|u|2
]

≤ C(n− 2)

�
M

|u|2] + 2(n− 1)

(
m∑
j=1

Hj√
|K|j

)�
M

|∇u||u|
n
n−2

√
|K|

≤ C ′
�
M

|u|2] + 2

√
n− 1

n
(D̄ + ε)

�
M

|∇u||u|
n
n−2

√
|K|

≤ C ′
�
M

|u|2] + 2

√
n− 1

n
(D̄ + ε)

(
λ

2

�
M

|∇u|2 +
1

2λ

�
M

|u|2∗|K|
)
,

for every λ > 0. Choosing λ =
2
√
n(n−1)

n−2
, and renaming ε properly, we conclude.

5.1.1 Proof of Theorems 1.6 and 1.7

For this part, we will rely on the inequality proven in Proposition 5.1 with D̄ < 1. In

this case, the positive term of the Energy functional (1.22),
�
M
|K| |u|2

]

, dominates
over the boundary term, and the functional becomes coercive.

Proposition 5.2. Suppose K < 0, and that Dn as in 1.23 satisfies Dn < 1 every-
where on ∂M . Then, the energy functional I defined on (1.22) is coercive, that is
to say,

I(u)→ +∞ as ‖u‖H1(M) → +∞.
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Proof. The main idea is to use (5.1) with D̄ < 1, taking into account that by Hölder’s
inequality �

M

|u|2] ≤ δ

�
M

|u|2∗ + C.

Then, for sufficiently small δ > 0,

I(u) ≥ δ

�
M

|∇u|2 +
1

2

�
M

Su2 + δ

�
M

|K| |u|2∗ − C. (5.3)

Hence, if we take a sequence (ui) in H1(M) such that ‖ui‖H1 → +∞, then either
‖∇ui‖L2 or ‖ui‖L2 must tend to +∞, which implies by (5.3) that I(ui)→ +∞.

Proof of Theorems 1.6 and 1.7. First, let us show that a global minimizer for I can
always be found. Let us consider

α = inf
{
I(u) : u ∈ H1(M)

}
,

which is finite by inequality (5.3), and a minimizing sequence (ui) in H1(M) such
that I(ui)→ α. Proposition 5.2 implies that the sequence (ui) is bounded in H1(M).
Thus, up to a subsequence, (ui) ⇀ u in H1(M).

Using Brezis-Lieb’s result in [17], we decompose I(ui) as I(ui) = I(u) + I(ui− u) +
oi(1) and study the second term in the right-hand side. Using the trace inequality
(5.1) for ui−u and the compactness of the embedding H1(M) ↪→ L2](M), we obtain:

I(ui − u) ≥ δ

{
2(n− 1)

n− 2

�
M

|∇(ui − u)|2 +
n− 2

2n

�
M

|K| |ui − u|2
∗
}

+ oi(1).

Therefore,

I(ui) ≥ I(u) + oi(1),

and it suffices to take limits to see that u is a minimizer for I in H1(M). The
relation I(u) = I(|u|) permits us to assume that the minimizer is non-negative. In
order to conclude, we neeed to ensure that u > 0.

Case 1: S = 0 and
�
∂M

H > 0, corresponding to Theorem 1.7. Firstly, we check
that 0 ∈ H1(M) is not a global minimum for I, so u must be positive somewhere.
Take ε > 0 and consider

I(ε) =
n− 2

2n
ε2∗

�
M

|K| − (n− 2)ε2]
�
∂M

H,

being the second the leading term as ε approaches zero since 2] < 2∗. Thus, there
exists ε0 > 0 such that I(ε) < 0 for all 0 < ε < ε0, and consequently inf I < 0. We
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can conclude that the minimizer u is not identically zero. Observe now that |u| is
also a minimizer, so we can assume that u ≥ 0.

In order to show that u > 0 in M , we start recalling that it solves the problem −4n−1
n−2

∆gu = Ku
4

n−2u on M,

2
n−2

∂u
∂η

= Hu
2

n−2u on ∂M.
(5.4)

Apply now the maximum principle ([48, Ch. 3]) to the elliptic operator

L(φ) =
4(n− 1)

n− 2
∆gφ+K|u|

4
n−2φ.

By Hopf’s Strong Maximum Principle ([48, Th. 3.5]), if there exists a point x ∈
Int M with u(x) = 0, then u achieves its minimum in Int M and thus u ≡ 0, which
is impossible.

Moreover, if there would exist x0 ∈ ∂M with u(x0) = 0, using the second equation
in (5.4) we would get that ∂u

∂η
(x0) = 0, which is a contradiction to Hopf’s Lemma.

Case 2: S < 0, corresponding to Theorem 1.6. Analogously, we can prove that
u 6≡ 0 by showing that 0 is not a global minimum. To see this, take ε > 0 and
consider

I(ε) =
ε2∗

2∗

�
M

|K| − ε2

2

�
M

|S| − ε2](n− 2)

�
∂M

H.

In this case, the leading term as ε → 0 is − ε2

2

�
M
|S| < 0, so, again, there exists

ε0 > 0 such that I(ε) < I(0) = 0 for all 0 < ε < ε0. To see that u > 0 one can
follow the same strategy as in the first case.

5.1.2 A first step for proving Theorem 1.8

This subsection is devoted to the proof of the following result:

Proposition 5.3. Assume S = 0, K < 0 and that H is taken so that

1.
�
∂M

H < 0,

2. Dn(p) > 1 for some p ∈ ∂M .

Consider a sequence of exponents pi ↗ n+2
n−2

. Then there exist κi → 1 and solutions
ui of the perturbed problem:{

−4(n−1)
n−2

∆u = Kupi in M,
2

n−2
∂u
∂η

= κiHu
pi+1

2 on ∂M.
(5.5)
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Moreover the solutions have bounded energy, that is, Ii(ui) is bounded, with

Ii(u) =
2(n− 1)

n− 2

�
M

|∇u|2 +
1

pi + 1

�
M

|K| |u|pi+1 − κi
4(n− 1)

pi + 3

�
∂M

H|u|
pi+3

2 .

(5.6)

Proposition 5.3 is a first step in the proof of Theorem 1.8 and gives existence of
solutions of aproximating problems. The proof of this result consists in applying
the classical Mountain-pass theorem to the perturbed functional Ii, defined in (5.6).

The following lemmas show that under the assumptions of Proposition 5.3, the
energy functional I has a mountain pass geometry. We prove them for I, since they
are preserved by continuity if κi is close enough to 1 and pi to n+2

n−2
.

Lemma 5.4. Assume that K < 0, S = 0 and
�
∂M

H < 0. Then there exists ε > 0
such that for any u ∈ H1(M), ‖u‖ = ε, we have that I(u) > δ > 0, where δ is
independent of u.

Proof. We write u = ũ+ ū, where

ū ∈ R,
�
M

ũ = 0.

Then, we can write:

I(u) ≥ 2(n− 1)

n− 2

�
M

|∇ũ|2 − (n− 2)

�
∂M

H|u|2]

=
2(n− 1)

n− 2

�
M

|∇ũ|2 − (n− 2)|ū|2
]

�
∂M

H − (n− 2)

�
∂M

H(|u|2] − |ū|2]).

(5.7)

Now we estimate the last term in the right hand side as:

∣∣∣∣�
∂M

H(|ū+ ũ|2] − |ū|2])
∣∣∣∣ ≤ ‖H‖L∞ �

∂M

2]|ũ|(|ũ|2]−1 + |ū|2]−1)

≤ C

�
∂M

|ũ|2] +

�
∂M

|ū| |ũ|2]−1.

By the trace and Sobolev’s inequalities,

�
∂M

|ũ|2] ≤ C

(�
M

|∇ũ|2
)2]/2

.

Moreover, by combining Young’s inequality with the trace and Sobolev’s inequality,
we have:
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�
∂M

|ū| |ũ|2]−1 ≤ γ

�
∂M

|ū|2] + C|ũ|2] ≤ γ|∂M ||ū|2] + Cγ

(�
M

|∇ũ|2
)2]/2

,

for some γ > 0 to be chosen. Coming back to (5.7), we obtain that for certain
constants c0 > 0, C > 0, one has

I(u) ≥ c0‖ũ‖2 + c0|ū|2
] − γ|∂M ||ū|2] − C‖ũ‖2] .

By choosing γ sufficiently small, we conclude the proof.

In next lemma we show that under the hypotheses of Theorem 1.8, the energy
functional I is not bounded from below.

Lemma 5.5. If there exists p ∈ ∂M such that Dn(p) > 1, then one can find a
sequence of functions (ϕk) in H1(M) such that I(ϕk)→ −∞ as k → +∞.

The proof of this lemma is postponed to the appendix.

Proof of Proposition 5.3. As it can be seen, the previous two lemmas imply that the
functional I has a mountain-pass geometry (see §3.3). However, there are several
obstacles in order to prove the existence of a solution. The first one is that we do
not know whether Palais-Smale’s sequences are bounded or not. But, even if they
are, we cannot guarantee compactness because of the lack of a compact embedding
in the critical Sobolev inequalities. We can bypass these difficulties by considering
the perturbed problems (5.5).

As we mentioned, if κi is close to 1 and pi is close enough to n+2
n−2

, the functional
Ii also satisfies the geometric assumptions of the mountain-pass lemma. Let us fix
i ∈ N: by Struwe’s Monotonicity trick, there exists a bounded Palais-Smale sequence
uik for Ii for some κi, with |κi − 1| < 1

i
.

In order to conclude the proof of Proposition 5.3, we intend to find a positive solution
as a strong limit of uik as k → ∞. We summarize the available information about
the sequence (uik)k:

1. ‖uik‖H1(M) is uniformly bounded in k. Therefore, there exists a weak limit

uik ⇀ ui in H1(M).

2. Ii(u
i
k) → ci as k → +∞, for some positive constant ci (which is, actually,

bounded also in i). Then,

2(n− 1)

n− 2

�
M

∣∣∇uik∣∣2 +
1

pi + 1

�
M

|K| |uik|pi+1

− κi
4(n− 1)

pi + 3

�
∂M

H|uik|
pi+3

2 = ci + ok(1). (5.8)
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3. I(uik)
′ → 0 in H−1(M), so I ′(uik)[v] = ok(1) for every v ∈ H1(M).

Using the compactness of the embedding H1(M) ↪→ Lp(M) for 1 ≤ p < 2∗ as well
as that of the trace inequality H1(M) ↪→ Lq(∂M) for 1 ≤ q < 2], we obtain

�
M

|K| |uik|pi+1 →
�
M

|K| |ui|pi+1,

�
∂M

H|uik|
pi+1

2 →
�
∂M

H|ui|
pi+1

2 , (5.9)

as k → +∞. By testing I ′i on uik − ui, we also find that:

I ′i(u
i
k)(u

i
k − ui) =

4(n− 1)

n− 2

( �
M

|∇uik|2 −∇uik · ∇ui
)

+ ok(1).

This implies the strong convergence uik → ui as k → +∞. Hence ui is a nontrivial
solution of the problem:{

−4(n−1)
n−2

∆ui = K|ui|pi−1ui in M.
2

n−2
∂ui

∂η
= κiH|ui|

pi−1

2 ui on ∂M.

As is well-known, the (PS) sequence can be taken very close to the family of curves
given by deformations of γ under the gradient flow of I i (see for instance [49]).
We can now use the fact that the gradient flow of I i leaves invariant the cone of
nonnegative functions to conclude that the limit of the (PS) sequence ui is nonneg-
ative. This is rather standard, see for instance [10, Lemma 4.1, (a)]. By using the
maximum principle as previously we conclude that ui > 0.

5.2 Blow-up analysis

5.2.1 Generalities on the singular set

In this section we prove (1) in Theorem 1.9. The tricky point here is that we cannot
assume that around points in S0 there are local maxima of ui. We perform then
a blow-up analysis around a suitably defined sequence of points, which are chosen
thanks to Ekeland’s variational principle.

Let Ki : M → R and Hi : ∂M → R be sequences of regular functions such that
Ki → K and Hi → H in the C2 sense. Assume that K < 0 and that S has constant
sign. For a sequence (ui)i of positive solutions to{

−4n−1
n−2

∆gui + Sui = Kiui
pi on M,

2
n−2

∂ui
∂η

= Hiui
pi+1

2 on ∂M,
(5.10)

with pi ↗ n+2
n−2

, we recall the definition of the singular set

S =
{
p ∈M : ∃(xi)→ p such that ui(xi)→ +∞

}
. (5.11)
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Proposition 5.6. S ⊂ {p ∈ ∂M : Dn ≥ 1}.

The idea is to make a suitable rescaling and pass to a problem in a half-space,
whose solutions have been classified ([30]). In general, this analysis is made around
points of local maximum for the sequence ui. However, in our situation we cannot
guarantee their existence, as for example ui might be monotone in some direction
when restricted to a portion of the boundary. We bypass this obstacle by choosing
good sequences, even if they are not local maxima, by means of Ekeland’s variational
principle. For convenience we state it below, see e.g. Chapter I in [90].

Lemma 5.7. Let (X, d) be a complete metric space and ϕ : X → (−∞,+∞] lower
semicontinuous, bounded from below and not identically equal to +∞. Let ε > 0
and λ > 0 be given and let x ∈ X be such that ϕ(x) ≤ infX ϕ+ ε. Then, there exists
xε ∈ X such that

1. ϕ(xε) ≤ ϕ(x),

2. d(xε, x) ≤ λ, and

3. ϕ(xε) < ϕ(z) + ε
λ
d(xε, z) for every z 6= xε.

Proof of Proposition 5.6. Let p ∈ S . Take geodesic normal coordinates around p,
valid in a small geodesic ball B, and (yi) → 0 a sequence in B such that ui(yi) →
+∞. We define

εi := ui(yi)
− pi−1

2 → 0. (5.12)

We apply Ekeland’s variational principle taking ϕ = u
− pi−1

2
i and λ =

√
εi. Then,

there exists a sequence (zi) such that

1. ui(zi)
− pi−1

2 ≤ ui(yi)
− pi−1

2 . Hence, ui(yi) ≤ ui(zi) and, consequently, ui(zi) →
+∞.

2. |zi − yi| ≤
√
εi. In particular (zi)→ 0.

3. ui(zi)
− pi−1

2 < ui(yi)
− pi−1

2 +
√
εi |zi − z| for every z 6= zi.

The idea is that the new sequence (zi) is more adequate to rescale and pass to the

limit. Now, we set δi = ui(zi)
− pi−1

2 → 0, Bi = B(zi,
r
2
) ∩ B and define the sequence

of rescaled functions

vi(x) = δ
2

pi−1

i ui(δix+ zi), (5.13)

for every x ∈ B̃i = 1
δi
Bi. Clearly

vi(0) =
ui(zi)

ui(zi)
= 1. (5.14)
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We claim that, for every given ε > 0 and R > 0, vi satisfies the following uniform
boundedness property:

vi(x) ≤ 1 + ε, ∀x ∈ B̃i with |x| < R. (5.15)

Indeed, from (3), if |z − zi| < Rδi, then:

ui(z) <

(
1

1−√εiR

) 2
pi−1

ui(zi). (5.16)

Taking z = δix+ zi in (5.16) and using (5.13) we obtain:

vi(x) <
1

(1−√εiR)
2

pi−1

, (5.17)

which proves (5.15). This allows us to make a scaling argument in the spirit of [47].
We distinguish between two cases:

Case 1: p ∈ ∂M and, up to a subsequence, d(zi,∂0B)
δi

→ t0 ≥ 0.

Straightforward computations show that the function vi satisfies

− (
√
|g|gjk)(δix+ zi)

∂2vi(x)

∂xj∂xk
+ δi

∂(
√
|g|gjk)
∂xj

(δix+ zi)
∂vi(x)

∂xk
+

+ δ2
i

1

Cn
(
√
|g|Ri)(δix+ zi)vi(x)− 1

Cn
(
√
|g|Ki)(δix+ zi)vi(x)pi = 0

for x ∈ B̃i, and

gjj
∂vi(x)

∂xj
ηj − n− 2

2
Hi(δix+ zi)vi(x)

pi+1

2 = 0

on the straight portion of its boundary. Using (5.15) and local regularity estimates
we obtain that, up to a subsequence, vi → v in C2

loc(Rn
+). Also, gjk = δjk + o(|x|2)

so, if we let i→ +∞, we get a solution to the limit problem (1.26).
The results in [30] (recalled in Proposition 3.17 above) establish that this problem
admits a solution whenever Dn(p) ≥ 1.

Case 2: d(xk,∂0B)
δk

→ +∞.

In this situation, the domains B̃i invade all of Rn: reasoning as before, we have
vi → v in C2

loc(Rn). Moreover, v solves the following equation:

−∆v =
n− 2

4(n− 1)
K(0)v

n+2
n−2 on Rn. (5.18)
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Consider R > 0 and the domain Ω = Bn(0, R). Since K < 0, we have ∆v > 0 in Ω
so, by the Maximum Principle, it cannot achieve its maximum unless it is constant.
However, passing (5.17) to the limit we obtain

v(x) ≤ 1 ∀x ∈ Ω,

while v(0) = 1. Thus, this second case can be dismissed and the proof of the
proposition is completed.

As remarked previously, we cannot guarantee that around singular points we have
a sequence of local maxima. We now show that, a posteriori, this is the case for
singular points in {Dn > 1}.

Lemma 5.8. Let p ∈ S1. Then there exists a sequence xi ∈ ∂M , xi → p, such that
ui(xi) → +∞ is local maximum of ui. Moreover, there exist Ri → +∞ and such
that, up to a subsequence,

ri := Riui(xi)
− pi−1

2 → 0 and∥∥∥ui(xi)−1ui

(
ui(xi)

− pi−1

2 x+ xi

)
− bβ0(x)

∥∥∥
C2(B(xi,Ri))

→ 0,

where bβ0 is given by (3.34).

Proof. Given p ∈ S1, we come back to the proof of Proposition 5.6 (case 1). Hence
we obtain that the rescaled functions vi converge locally in the C1 sense to the
function in (3.34). Observe now that the limit solution (3.34) has a global maximum.
As a consequence, the sequence vi attains also its maximum at a certain point x̃i.
Rescaling back, we obtain points xi which are local maxima of ui.

Let us now show that if i is large enough, xi ∈ ∂M . This is a consequence of the
subharmonicity, given in turn by the hypothesis K < 0, since

−∆ui(xi) = K(xi)ui(xi)
pi − S ui(xi) < 0.

The convergence is due to the convergence of the newly defined sequence of rescaled
functions vi, as in the proof of Case 1 of Proposition 5.6

5.2.2 Properties of isolated simple blow-up points

Along this section we analyze blow-up points x ∈ S1 and the sequence of maxima
(xi)→ x given by Lemma 5.8, where locally the blow-up has profile given by (1.26).
Below, we define the notions of isolated and simple blow-up points, first introduced
in [87], adapted to our framework. Then we study the asymptotic behaviour of
ui around such points. This analysis is the counterpart of some results from [68]
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and [35] (see also [44, 38, 39]), which we adapt here to the case of negative scalar
curvature. From this study, one obtains that there are only finitely many isolated
simple blow-up points. In next section we shall prove that if n = 3 all blow-up
points of S1 are isolated and simple. In particular this implies (2.1) of Theorem
1.9.
In the asymptotic analysis that follow, we sometimes use the notation of the Eu-
clidean space, which makes no difference in the computations.

Definition 5.9. x̄ ∈ ∂M is an isolated point of blow-up for (ui) if there exist local
maxima (xi) such that (xi)→ x, ui(xi)→ +∞ and

ui(y) ≤ C

dist(y, xi)
2

pi−1

, for every y ∈ B(xi, R)+, (5.19)

where C and R are positive constants independent of i.

Definition 5.10. Let (ui), (xi), x̄ be as in Definition 5.9, and consider the radial
averages

ui(r) =

 
∂+B(xi,r)+

ui.

x̄ is called an isolated simple blow-up point of blow-up if there exists ρ > 0, indepen-
dent of i, such that the 1-dimensional functions

ûi(r) = r
2

pi−1ui(r)

have exactly one critical point for r ∈ (0, ρ).

Next proposition gives a version of the well-known Harnack inequality:

Proposition 5.11. Let Ω = B(p,R0) ⊂ M . Assume that (ui) is a sequence of
solutions of (5.10) with 1 ≤ pi, p is an isolated point of blow-up. Let (xi) → p
and R < R0 be as in Definition 5.9. Then, for every 0 < r < R

4
, the following

Harnack-type inequality holds

max
B(xi,2r)+\B(xi,

r
2

)+

ui(y) ≤ C min
B(xi,2r)+\B(xi,

r
2

)+

ui(y),

where C is a positive constant independent of i and r.

The details can be found in [51].
The main result of this section is the following description of the sequence ui around
isolated simple blow-up points:

Proposition 5.12. Let us assume Ω = B2 = B(0, 2) for simplicity. Assume (Ki)→
K < 0, in C1(Ω+) and (Hi)→ H in C2(∂0Ω). Suppose that, for every i ∈ N, ui is a
positive solution of (5.10) and that xi → 0 is an isolated simple blow-up point with

ui(x) ≤ C1 |x− xi|
2

pi−1 , for all x ∈ Ω+. (5.20)
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Then there exists a constant C = C(K,S,H, n, C1) > 0 such that

ui(xi)ui(x) ≤ C |x− xi|2−n , for all x ∈ B(xi, 1)+. (5.21)

Moreover, there exist a > 0 and b : (B1)+ → R satisfying{
∆b = 0 in (B1)+
∂b
∂xn

= 0 on ∂0(B1)+
(5.22)

such that ui(xi)ui(x) → a |x|2−n + b in C2
loc

(
(B1)+\{0}

)
. Furthermore, for ρ < 1,

in (Bρ)+ one has that

ui = (1 + oi(1) + oρ(1))bβi ; ∇ui = (1 + oi(1) + oρ(1))∇bβi , (5.23)

with βi → +∞, where bβ is as in (3.34).

We split the proof of Proposition 5.12 into some lemmas. As a preliminary result,
we outline a version of the Maximum Principle that can be found in [51], pp. 539.

Lemma 5.13. Let Ω be a bounded domain with piecewise smooth boundary ∂Ω =
∂1Ω ∪ ∂2Ω, V ∈ L∞(Ω) and w ∈ L∞(Ω). Suppose that u ∈ C2(Ω) ∩ C1(Ω), u > 0,
satisfies: {

∆u+ V u ≤ 0 in Ω
∂u
∂η
− wu ≥ 0 on ∂1Ω

Then, for every v ∈ C2(Ω) ∩ C1(Ω) such that
∆v + V v ≤ 0 in Ω
∂v
∂η
− wv ≥ 0 on ∂1Ω

v ≥ 0 on ∂2Ω

we have v ≥ 0 in Ω.

Proof. Apply the standard Maximum Principle to the function w = v
u
.

In next lemma we give a less sharp version of (5.21).

Lemma 5.14. Under the same hypotheses of Proposition 5.12, there exists εi > 0,

εi = O
(
Ri
−2
)

, such that

ui(xi)
λiui(x) ≤ C |x− xi|2−n+εi , for all ri ≤ |x− xi| ≤ 1,

with λi = (n− 2− εi)pi−1
2
− 1.
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Proof. We follow some ideas in [68], together with the application of Lemma 5.13,
as it is done in [51]. Recall first the definition of ri in Lemma 5.8.

To begin, we claim that, for |x− xi| = ri, the following bound holds

ui(x) ≤ Cui(xi)Ri
2−n

. (5.24)

Indeed, rescaling back the second statement of Lemma 5.8, we have

ui(x) ≤ 1

ui(xi)

C

|x− xi|n−2 =
1

ui(xi)

C

rin−2

= CRi
2−n

ui(xi)
(n−2)( pi−1

2 )−1 ≤ CRi
2−n

ui(xi).

Consider the function ũi : r 7→ r
1

pi−1ui(r). By our assumptions, it has a unique
critical point in (0, 1). Moreover, by Lemma 5.8 we can always assume that i is so
large that the only critical point stays in (0, ri)). Therefore, we can suppose without
loss of generality that ũi is strictly decreasing in ri < r < 1. Then,

|x− xi|
2

pi−1 ui(x) ≤ Cr
2

pi−1

i ui(ri) = CRi

2
pi−1ui(xi)

−1

 
∂+B(xi,ri)+

ui.

Using (5.24), we conclude that

|x− xi|
2

pi−1 ui(x) ≤ CRi
− 2
pi−1 .

Consequently,

ui(x)pi−1 ≤ CRi
−2+oi(1) 1

|x− xi|2
, for all ri ≤ |x− xi| ≤ 1. (5.25)

Next, we apply a comparison argument. Consider the second-order elliptic operator

Li(ϕ) = ∆ϕ+
n− 2

4(n− 1)

(
Kiu

pi−1
i + S

)
ϕ,

and the boundary operator

Bi(ϕ) =
∂ϕ

∂η
− n− 2

2
Hiu

pi−1

2
i ϕ.

Since ui > 0 solves (5.10), Li(ui) = Bi(ui) = 0. Then, the pair (Li,Bi) satisfies
the Maximum Principle stated in Lemma 5.13. We start constructing an adequate
function to be compared with ui. Considering x 7→ |x− xi|−µ, it is clear that

∆ |x− xi|−µ = −µ(n− 2− µ) |x− xi|−µ−2 .
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Then

Li(|x− xi|−µ) = −µ(n− 2− µ)
1

|x− xi|µ+2

+ C−1
n Kiu

pi−1
i

1

|x− xi|µ
− C−1

n S
1

|x− xi|µ
.

Using (5.25),

Li(|x− xi|−µ) =
(
−µ(n− 2− µ) + C−1

n KiRi
−2
) 1

|x− xi|µ+2 − C
−1
n Ri

1

|x− xi|µ
.

Then, we can choose εi ↘ 0, εi = O
(
Ri
−2
)

such that

Li(|x− xi|−εi) ≤ 0, and Li(|x− xi|2−n+εi) ≤ 0. (5.26)

Moreover, notice that

Bi(|x− xi|−µ) = µ
xn

|x− xi|µ+2 −
n− 2

2
Hiu

pi−1

2
i

1

|x− xi|µ

= µ
xn

|x− xi|µ+2 +O
(
Ri
−2
) 1

|x− xi|µ
,

again by (5.25). Reasoning as above, we also have

Bi(|x− xi|−εi) ≥ 0, and Bi(|x− xi|2−n+εi) ≥ 0. (5.27)

Set Mi = max∂+(B1)+
ui, λi = (n− 2 + εi)

pi−1
2
− 1 and define

ϕi = Mi |x− xi|−εi + αui(xi)
−λi |x− xi|2−n+εi , for all ri ≤ |x− xi| ≤ 1,

with α > 0 yet to be determined. In order to apply the Maximum Principle and
compare ϕi with ui, we choose as domain the semi-annulus A = B(xi, 1)+\B(xi, ri)+.
Observe that ∂+A is composed by two semi-spheres, namely,

∂+A = {x ∈ A : |x− xi| = 1} t {x ∈ A : |x− xi| = ri}.

By (5.26) and (5.27), Li(ϕi − ui) ≤ 0 in A and Bi(ϕi − ui) ≥ 0 on ∂0A. Then, we
just need to prove that ϕi ≥ ui on the circular boundaries.

If |x− xi| = 1, then ϕi = Mi + αui(xi)
−λi ≥ ui by the choice of Mi.

On the other hand, if |x− xi| = ri, then

ϕi = MiRi
−εi
ui(xi)

εi
pi−1

2 + αui(xi)
1+oi(1)Ri

2−n+oi(1)
.
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By (5.24), it is possible to choose α > 0 large enough so that ϕi ≥ ui for |x− xi| = ri.
Then, the application of Lemma 5.13 to ϕi − ui gives:

ui(x) ≤Mi |x− xi|−εi + αui(xi)
−λi |x− xi|2−n+εi .

Finally, using the monotonicity of the weighed radial averages, for every ri < θ < 1
we obtain

Mi ≤ Cui(1) ≤ Cθ
pi−1

2 ui(θ) ≤ Cθ
pi−1

2

(
Miθ

−εi + αui(xi)
−λiθ2−n+εi

)
. (5.28)

We can choose θ small enough (up to taking a larger i) and derive that

Mi ≤ Cui(xi)
−λi .

The proof can be concluded applying the Harnack inequality and absorbing the first
term of the right-hand side of (5.28).

Lemma 5.15. Under the assumptions of Proposition 5.12,

τi :=
n+ 2

n− 2
− pi = O

(
ui(xi)

−2
n−2

+oi(1)
)
, as i→ +∞.

Therefore,
ui(xi)

τi = 1 + oi(1).

Proof. We apply Corollary 3.20 for u(x) = ui(x+ xi) on Ω = B(0, 1), and estimate
all the terms using Lemmas 5.8 and 5.14:

�
∂+Ω+

|Ki|uipi+1 ≤ C

�
∂+Ω+

|Ki|ui(xi)λi(pi+1) |x|(2−n+εi)(pi+1)

= O
(
ui(xi)

−(pi+1)+oi(1)
)
.

Analogously,
�
∂+Ω+

|S|ui2 = O
(
ui(xi)

−2+oi(1)
)
,

�
∂(∂0Ω+)

|Hi|ui
pi+3

2 = O
(
ui(xi)

− pi+3

2
+oi(1)

)
.

In order to simplify the notation, let δi = ui(xi)
− pi−1

2 . We now bound the gradient
terms using a rescaling argument:

�
Ω+

ui(x+ xi)
pi+1 |X · ∇Ki(x+ xi)| dx

= ui(xi)
− 2
n−2

+oi(1)

�
(
B
δ−1
i

)
+

vi(y)pi+1Y · ∇Ki(δix+ xi)dy,
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where vi(y) = ui(δiy + xi). By Lemma 5.8, vi → bβ in C2
loc

(
(Bδ−1

i
)+

)
for some

β > 0. This, together with the asymptotic behaviour of bβ described in (3.35) and
the fact that Ki(δix+ xi)→ K(0) uniformly, gives:�

Ω+

ui(x+ xi)
pi+1 |X · ∇Ki(x+ xi)| dx = O

(
ui(xi)

− 2
n−2

+oi(1)
)
.

In the same way, we obtain:�
Ω+

ui(x+ xi)
2 |X · ∇S(x+ xi)| dx = O

(
ui(xi)

− 6
n−2

+oi(1)
)
,

�
∂0Ω+

ui(x+ xi)
pi+3

2 |X · ∇Hi(x+ xi)| dx = O
(
ui(xi)

− 2
n−2

+oi(1)
)
,

and, using the same argument,�
Ω+

|S(x+ xi)|ui(x+ xi)
2dx = O

(
ui(xi)

− 4
n−2

+oi(1)
)
.

Moreover, by standard elliptic theory, Proposition 3.21 and Lemma 5.14, we have:�
∂+Ω+

B1(ui,∇ui) = O
(
ui(xi)

−2+oi(1)
)
.

Again, by a rescaling argument we see that

τi

(�
B(xi,1)+

Kiu
pi+1
i + 2(n− 1)

�
∂0B(xi,1)+

Hiu
pi+3

2
i

)
= τi

(�
Rn+
K(0)bβ

2∗ + 2(n− 1)

�
∂Rn+

H(0)bβ
2] + oi(1)

)
. (5.29)

We need to check that the coefficient of τi is positive. With this in mind, we recall
that bβ solves the problem{

−4(n−1)
n−2

∆bβ = K(0)bβ
n+2
n−2 in Rn

+,
2

n−2

∂bβ
∂η

= H(0)bβ
n
n−2 on ∂Rn

+.

Multiplying by bβ and integrating by parts, we obtain�
Rn+
K(0)bβ

2∗ + 2(n− 1)

�
∂Rn+

H(0)bβ
2] =

4(n− 1)

n− 2

�
Rn+
|∇bβ|2 > 0. (5.30)

The combination of (5.29), (5.30) and Corollary 3.20 finally gives

τi

(�
Rn+
|∇bβ|2 + oi(1)

)
= O

(
ui(xi)

− 2
n−2

+oi(1)
)
. (5.31)

This concludes the proof.
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Lemma 5.16. Under the assumptions of Proposition 5.12, there holds:

ui(xi)

�
∂+(B1)+

∂ui
∂η
→ C < 0,

for a negative constant C = C(n, β).

Proof. Integrating (5.10) by parts, we get the relation

ui(xi)

�
∂+(B1)+

∂ui
∂η

= ui(xi)
n− 2

4(n− 1)

�
(B1)+

Sui

+ ui(xi)

(
n− 2

4(n− 1)

�
(B1)+

|Ki|uipi −
n− 2

2

�
∂0(B1)+

Hiu
pi+1

2
i

)
. (5.32)

Using Lemma 5.14, we can bound the previous integrals for ri ≤ |x− xi| ≤ 1, as in
[35]:

�
(B1)+\(Bri )+

ui
pi ≤ C

�
(B1)+\(Bri )+

ui(xi)
−λipi |x− xi|pi(2−n+εi) dx

≤ Cui(xi)
−1+oi(1)Ri

−2+oi(1)
= oi(1)ui(xi)

−1+oi(1),

and, analogously
�

(B1)+\(Bri )+

ui = O
(
Ri

2+oi(1)
)
ui(xi)

−1+oi(1)

�
∂0(B1)+\∂0(Bri )+

u
pi+1

2
i = oi(1)ui(xi)

−1+oi(1).

Then, (5.32) becomes:

ui(xi)

�
∂+(Bri )+

∂ui
∂η

= ui(xi)
n− 2

4(n− 1)

�
(Bri )+

Sui

+ ui(xi)

(
n− 2

4(n− 1)

�
(Bri )+

|Ki|uipi −
n− 2

2

�
∂0(Bri )+

Hiu
pi+1

2
i

)
+ ui(xi)

τi
(
oi(1) + ui(xi)

− 4
n−2Ri

2+oi(1)
)
.

By Lemmas 5.8 and 5.15 and a rescaling argument, we obtain:

ui(xi)

�
∂+(B1)+

∂ui
∂η

= lim
R→+∞

�
∂+(BR)+

∂bβ
∂η

+ oi(1)

= −C̃(β)ωn−1
n− 2

2
+ oi(1) < 0,

with C̃(β) > 0.
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Proof of Proposition 5.12. Inequality (5.21) for 0 ≤ |x− xi| ≤ ri is a consequence of
Lemmas 5.8, 5.14 and 5.15, so let us address the inequality only for ri < |x− xi| ≤ 1.

Let ui be the radial average of ui, and consider ui(1). By (5.25),

ui(x) = O
(
Ri
− 2
pi−1

+oi(1)
)
|x− xi|−

2
pi−1 , for ri ≤ |x− xi| ≤ 1,

then ui(1) ≤ CRi
− 2
pi−1 → 0, as i → +∞. Define the sequence ξi = ui(1)−1ui. It is

easy to see that ξi satisfies{
−∆ξi = n−2

4(n−1)
ui(1)pi−1Kiξi

pi − n−2
4(n−1)

Sξi in (B2)+\{0},
∂ξi
∂η

= n−2
2
ui(1)

pi−1

2 Hiξi
pi+1

2 on ∂0(B2)+\{0}.

Harnack’s Inequality holds in the annulus (B2)+\{0} and we can pass to the limit
to find a function h such that ξi → h in C2

loc ((B2)+\{0}). This function verifies{
−∆h = 0 in (B2)+\{0},
∂h
∂η

= 0 on ∂0(B2)+\{0}.
(5.33)

Since the origin is an isolated simple blow-up point, h must be singular at 0. Equa-
tion (5.33) allows us to consider the symmetric extension of h to B2\{0}, given
by

h̃(x) =

{
h(x) if xn ≥ 0,
h(x1, . . . , xn−1,−xn) otherwise,

which is positive and harmonic in B2. By uniqueness of the harmonic extension, it
must coincide with the one given by Schwartz’s Reflection Principle, so we can write

h(x) = a |x|2−n + b(x),

where a is a positive constant and b satisfies{
−∆b = 0 in (B1)+\{0},
∂b
∂η

= 0 on ∂0(B1)+\{0}.

Let us prove (5.12) for |x− xi| = 1, namely, ui(1) ≤ Cui(xi)
−1. By the harmonicity

of b,

0 =

�
(B1)+

∆b =

�
∂+(B1)+

∂b

∂η
,

from which we deduce that

lim
i→+∞

ui(1)−1

�
∂+(B1)+

∂ui
∂η

=

�
∂+(B1)+

∂h

∂η
= a

�
∂+(B1)+

∂ |x|2−n

∂η
< 0. (5.34)
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The result follows from Lemma 5.16. For the general case ri < |x− xi| < 1 we use a
rescaling argument to reduce ourselves to the case |x− xi| = 1, as in [68]. Assume
by contradiction that there exists x̃i, ri ≤ |x̃i − xi| ≤ 1, such that

lim
i→+∞

ui(x̃i)ui(xi) |x̃i − xi|n−2 = +∞. (5.35)

Set r̃i = |x̃i − xi|, and ũi = r̃
2

pi−1

i ui(r̃ix + xi). As in Section 5.2, one can prove that
ũi solves the boundary value problem{

4(n−1)
n−2

∆ũi(x) = Ki(r̃ix+ xi)ũi(x)pi − r̃2
i S(r̃ix+ xi)ũi(x) in (Br̃−1

i
)+,

2
n−2

∂ũi(x)
∂η

= Hi(r̃ix+ xi)ũi(x)
pi+1

2 on ∂0(Br̃i
−1)+.

We claim that 0 is isolated simple for ũi. First, observe that

ũi(0) = r̃
2

pi−1

i ui(xi) ≥ ri
2

pi−1ui(xi) = Ri

2
pi−1 → +∞.

Moreover, rescaling (5.20), we get:

ũi(x) = r̃
2

pi−1

i ui(r̃ix+ xi) ≤ C1 |x|−
2

pi−1 , for |x| ≤ 2

r̃i
.

Finally, it is easy to check that the weighed radial averages of ũi and ui verify the
relation

(̂ũi)(r) = r
2

pi−1 ũi(r) = r
2

pi−1
2

ωn−1rn−1

�
∂+(Br)+

r̃
2

pi−1

i ui(r̃ix+ xi)dx

= (rr̃i)
2

pi−1

 
∂+(B(xi,rr̃i))+

ui(y)dy = ûi(rr̃i), (5.36)

from which it follows that (̂ũi) has a unique critical point in the interval (0, r̃−1
i ),

concluding the proof of the claim. Therefore, the hypotheses of Proposition 5.12
hold for ũi, and in particular (5.21) in the unit sphere. This gives

ũi(0)ũi

(
x̃i − xi
r̃i

)
= r̃

4
pi−1

i ui(x̃i)ui(xi) ≤ C, for all i.

Hence,
ui(x̃i)ui(xi) |x̃i − xi|n−2 ≤ Cr̃τii ,

contradicting (5.35).
Concerning the final statement of the proposition, (5.23) clearly holds in a ball of size

Riui(xi)
− pi−1

2 , by Lemma 5.8. Notice then that by (5.21) and Lemma 5.15, the mea-

sures Kiui(xi)u
pi
i and Hiu

pi+1

2
i converge to Dirac masses at the origin on the closure

of (B1)+ and on ∂0(B1)+ respectively. This implies that ui(xi)ui(x) → a|x|2−n + b,
with a and b as in the statement, also uniformly on (B1(xi))+ \ (B

Riui(xi)
− pi−1

2
)+,

which proves the first estimate in (5.23). The gradient estimate follows by standard
regularity results.
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5.2.3 Blow-up points in S1 are isolated and simple for n = 3

In this section we prove the following result:

Theorem 5.17. Suppose that n = 3. Then S1 consists of isolated simple points of
blow-up. In particular, in view of Proposition 5.12, S1 is finite.

In order to prove Theorem 5.17, some preliminary results are needed. The following
proposition can be proved as in [51], with minor modifications.

Proposition 5.18. Let (ui) be a blowing-up sequence of solutions of (5.10). Given
a large R > 0 and a small ε > 0, for large enough i there exists a constant C =
C(R, ε) > 0 and a finite set of points

{
qi1, . . . , q

i
mi

}
, with mi ≥ 1, such that each (qij)

is a local maximum for ui and satisfies:

1.
{
B
(
qij, r

i
j

)
+

: j = 1, . . . ,mi

}
is a disjoint collection for rij = Rui(q

i
j)
− pi−1

2 ,

2. If y = (y1, . . . , yn) are geodesic coordinates centered at qij, then∥∥∥ui(qij)−1ui

(
ui(q

i
j)
− pi−1

2 y
)
− bβj(y)

∥∥∥
C2(BR)

< ε, (5.37)

with bβj being a solution of (1.26) in Rn
+ of the form (3.34).

3.

ui(x) ≤ C

dist(x, {qi1, . . . , qiN})
2

pi−1

for every x ∈M. (5.38)

Moreover, ui(q
i
j) dist(qij, q

i
k) ≥ C−1 for every j 6= k.

We highlight what condition (3) locally means; if y = (y1, . . . , yn) is a normal coor-
dinate system centered at qij, then

ui(y) ≤ C

dist(y, qij)
2

pi−1

, for y ∈ B(qij, r
i
j)+. (5.39)

Remark 5.19. The essential difference between (5.39) and (5.19) is that, in the
former, the radius depends on i and could colapse.

In the sequel, we follow the steps in [66], using the assumption n = 3 as in [35]. We
start proving that every isolated blow-up point in S1 is, in fact, isolated simple.

Proposition 5.20. Let n = 3. If q ∈ S1 is an isolated point of blow-up, then it is
isolated simple.
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Proof. We proceed by contradiction, recalling Definition 5.10. If (qi) → q ∈ S1 is
not isolated simple, then there are at least two critical points of ûi in the interval
(0, ti), for some sequence ti → 0.

We know by Lemma 5.8 that the sequence ui, after rescaling it as in that statement,
converges to a bubble bβ on arbitrarily large balls, so rescaling back we see that there

is, at most, one critical point in the interval
(

0, Riui(qi)
− pi−1

2

)
for the counterpart

of the function ûi in Definition 5.10. Therefore the second critical point, that we
call ti, must verify

Ri

ui(qi)
pi−1

2

≤ ti ≤ ti. (5.40)

Now, take normal coordinates y = (y1, . . . , yn) centered at qi, and rescale ui in the
following way:

wi(y) = t
2

pi−1

i ui(tiy), for y ∈ B
(
0, t−1

i

)
+
.

We claim that wi has an isolated simple blow-up point at the origin according to
Definition 5.10, after properly dilating the arguments of the functions Ki and Hi.

Since q is an isolated blow-up point for ui, (5.19) holds in a ball of fixed radius
ρ > 0. As this inequality is scale-invariant, the same stands for wi for |y| < ρt−1

i .
Moreover, inequality (5.40) implies that

wi(0) = ti
2

pi−1ui(0) ≥ Ri → +∞,

so {0} is an isolated blow-up point for wi. The next step is to show that the weighted
radial averages ŵi have a unique critical point in the interval (0, 1). This follows
from (5.36) together with the fact that, by definition of ti, ui has a unique critical
point in (0, ti), proving the above claim.
We highlight that this also implies, via the chain rule, that

d

dr

∣∣∣∣
r=1

ŵi(r) = tiû
′
i(ti) = 0. (5.41)

The sequence wi satisfies the hypotheses of Proposition 5.12, so after passing to a
subsequence we have

wi(0)wi(y)→ h(y) = a |y|2−n + b(y), locally in C2(Rn
+\{0}),

with a > 0 and b as in (5.22). We consider the function b∗ : Rn → R defined by
symmetrization as

b∗(x) =

{
b(x1, . . . , xn) if x ∈ Rn

+,
b(x1, . . . , xn−1,−xn) if x ∈ Rn

−,
, (5.42)
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and we notice that it is harmonic, by the fact that b satisfies Neumann boundary
conditions. Also, since h(y) > 0, lim inf |y|→+∞ b

∗(y) ≥ 0, so b∗ (and consequently b)
is constant by Liouville’s theorem, and using (5.41) we obtain:

0 =
d

dr

∣∣∣∣
r=1

ĥ(r)

wi(0)
=

1

wi(0)

d

dr

∣∣∣∣
r=1

(
a

r
n−2

2

+ br
n−2

2

)
= a− b.

Then,

wi(0)wi(y)→ a |y|2−n + a.

Proposition 3.21 then gives

lim
r→0

�
∂+(Br)+

B(wi,∇wi) = −(n− 1)(n− 2)ωn−1
a2

wi(0)2
. (5.43)

On the other hand, we can write wi in terms of the limiting profile. Set δi =

ui(0)−
pi−1

2 , and recall that vi(y) = δ
2

pi−1

i ui(δiy) satisfies vi(y) → bβ(y) in the C2

sense on balls of radius Ri. With this in mind, we can define λi := tiδ
−1
i ≥ Ri and

write

wi(y) = λ
2

pi−1

i δ
2

pi−1

i ui(λiδiy)→ λ
2

pi−1

i bβ(λiy).

With this notation, (5.43) becomes

lim
r→0

�
∂+(Br)+

B(wi,∇wi) = −(n− 1)(n− 2)ωn−1
a2

λ
n−2+O(τi)
i

. (5.44)

Now, we apply Corollary 3.20 with u(y) = wi(y), f(y) = Ki(tiy), g(y) = ti
2S(tiy)

and h(y) = hi(tiy). We estimate all the terms involved using the asymptotic be-
haviour of bβ described in (3.35), Lemma 5.15 and a rescaling argument:

�
(Br)+

wi(x)pi+1 |X · ∇Ki(tix)| dx = O
(
λ
−1+O(τi)
i

)
oi(1),

�
(Br)+

ti
2wi(x)2 |X · ∇S(tix)| dx = O

(
λi
−3+O(τi)

)
oi(1),

τi

�
(Br)+

Ki(tix)wi(x)pi+1dx = O
(
λ
−1+O(τi)
i

)
oi(1), and

�
(Br)+

ti
2S(tix)wi(x)2dx = O

(
λi
−2+O(τi)

)
oi(1).

We remark that, by Proposition 5.15

τi = O
(
ui(0)−

2
n−2

)
= O

(
δi
−1+oi(1)

)
= O

(
λi
−1+oi(1)

)
ti. (5.45)
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In a similar way, we estimate�
∂+(Br)+

ti
2S(tix)wi(x)2dx = O

(
λi
−2+O(τi)

)
oi(1),

�
∂+(Br)+

Ki(tix)wi(x)pi+1dx = O
(
λi
−3+O(τi)

)
,

τi

�
∂0(Br)+

Hi(tix)w
pi+3

2
i (x)dx = O

(
λi
−n+O(τi)

)
oi(1),

�
∂(∂0(Br)+)

Hi(tix)wi(x)
pi+3

2 |X · ν| dx = O
(
λi
−n+O(τi)

)
, and

�
∂0(Br)+

wi(x)
pi+3

2 |X · ∇Hi(tix)| dx = O
(
λi

1−n+O(τi)
)
oi(1).

Then, taking r > 0 small enough, by Corollary 3.20, (5.44) and the previous esti-
mates:

O
(
λi
−1+O(τi)

)
oi(1) +O

(
λi
−2+O(τi)

)
= −(n− 1)(n− 2)ωn−1a

2λi
2−n+O(τi). (5.46)

Note that, by Lemma 5.15 and (5.45),

λ
O(τi)
i = (1 + oi(1))ti

O(τi) = 1 + oi(1).

Therefore, (5.46) leads to a contradiction when n = 3.

We now proceed to rule out bubble accumulations.

Proof of Theorem 5.17. Our goal is to prove that there exists C > 0, independent of
i, such that dist(qij, q

i
k) ≥ C for every j 6= k in {1, . . . ,mi}. Assume by contradiction

that this is not the case. Then,

lim
i→+∞

min
j 6=k

dist(qij, q
i
k) = 0.

Since the blow-up points {qi1, . . . , qimi} as in Proposition 5.18 are finitely-many for
every i, without loss of generality we can assume that

σi := min
j 6=k

dist(qij, q
i
k) = dist(qi1, q

i
2).

A direct application of item (3) in Proposition 5.18 gives that

ui(q
i
j)σi ≥

1

C
, for j = 1, 2.

Hence, ui(q
i
k)→ +∞ as i→ +∞. Now, we take geodesic normal coordinates around

qi1 and rescale the functions ui in the following way:

vi(y) = σ
2

pi−1

i ui(σiy), for y ∈ B
(
0, σi

−1
)

+
.
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Moreover, if qik ∈ B
(

0, 1
σi

)
and if we set yik =

qik
σi

, then each yik is a local maximum

of vi and dist(yi1, y
i
2) = |yi2| = 1, so up to a subsequence we can assume that yi2 → y2

with |y2| = 1.

We claim that both y1 = 0 and y2 are isolated blow-up points for vi. In first place,
we check that vi(yj)→ +∞ for j = 1, 2.

If vi(y2) remains bounded but vi(0) → +∞, then 0 is an isolated simple blow-up
point for vi by Proposition 5.20, while the sequence is bounded from above around
y2. Then, by Proposition 5.12, vi(y2)→ 0. However, by item (1) of Proposition 5.18
and the fact that the radii must be collapsing, for R > 0,

σi ≥ max

{
R

ui(qi1)
pi−1

2

,
R

ui(qi2)
pi−1

2

}
. (5.47)

Rescaling back the previous inequality we obtain min {vi(0), vi(y2)} ≥ R, contra-
dicting vi(y2) → 0. On the other hand, if both vi(0) and vi(y2) are bounded, we
can apply Harnack’s inequality and find a limiting function vi → v in C2

loc(Rn
+) such

that 
−∆v = n−2

4(n−1)
K(p)v

n+2
n−2 on Rn

+.
∂v
∂η

= n−2
2
H(p)v

n
n−2 on ∂Rn

+.

∇v(0) = ∇(y2) = 0.

However, the classification given by [30], recalled in Proposition 3.17, yields v = 0,
which again contradicts (5.47). Now, observe that, by (1):

ui(x) ≤ C∣∣x− qij∣∣ 2
pi−1

, for |x| ≤ σi
2

and j = 1, 2.

Then, vi satisfies

vi(y) = σ
2

pi−1

i ui(σiy) ≤ C∣∣y − yij∣∣ 2
n−2

, for |x| ≤ 1

2
and j = 1, 2,

and the claim is proved. Proposition 5.20 then guarantees that 0 and y2 are isolated
simple blow-up points of vi (after a proper dilation of the arguments of Ki and Hi,
as in the proof of Proposition 5.20) and we can apply Proposition 5.12 to obtain

vk(0)vi(y)→ h(y) = a1 |y|2−n + a2 |y − y2|2−n + b(y), locally in C2(Rn
+\S),

with S being the blow-up set for vi, and b a function satisfying{
∆b = 0 on Rn

+\{S\{0, y2}},
∂b
∂η

= 0 on ∂Rn
+\{S\{0, y2}}.
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Define
f(y) = a2 |y − y2|2−n + b(y).

It is clear that, for small r > 0, f ∈ C1(B+(r)) and, by the maximum principle,
f(0) > 0. Thus, we are under the assumptions of Proposition 3.21 and we can reason
as in the last part of Proposition 5.20.

5.2.4 Blow-up with finite Morse index

In this final section, we prove Theorem 1.9 (2.1) in arbitrary dimensions n ≥ 3 under
the additional hypothesis of Morse index equal to b. This is a natural hypothesis
to add when working with Mountain-pass solutions, for instance. Furthermore, we
give a first step for proving Theorem 1.9 (2.2) and (2.3) in dimensions higher than
3, namely, we prove that if ind(ui) = b, then S1 is a single and isolated blow-up
point.

We begin defining and computing the Morse index of the solutions of (1.26). To
that aim, we first demonstrate that a certain quantity is conformally invariant. This
will be used for the study of the quadratic forms that define the Morse index.

Lemma 5.21. Let (Mn, g) be a compact Riemannian manifold and g̃ = ϕ
4

n−2 g a
conformal metric with ϕ smooth and positive. If we denote by f̂ = fϕ−1, then

4(n− 1)

n− 2

�
M

(∇g̃û · ∇g̃v̂) dVg̃ +

�
M

Sg̃ûv̂ dVg̃ + 2(n− 1)

�
∂M

hg̃ûv̂ dsg̃

=
4(n− 1)

n− 2

�
M

(∇gu · ∇gv) dVg +

�
M

Sguv dVg + 2(n− 1)

�
∂M

hguv dsg. (5.48)

Proof. We will use the following basic identities:

dVg̃ = ϕ2∗dVg, dsg̃ = ϕ2]dsg, ∇g̃ = ϕ−
4

n−2∇g,

and the relation between Sg̃, Sg, hg̃ and hg given by (1.17). The first term in the
left-hand side of (5.48) can be decomposed using the previous identities:�

M

(∇g̃û · ∇g̃v̂) dVg̃ =

�
M

ϕ2 (∇gû · ∇gv̂) dVg

=

�
M

(∇gu · ∇gv) dVg −
�
M

(
v̂∇gϕ · ∇gu+ û∇gϕ · ∇gv − ûv̂ |∇gϕ|2

)
dVg. (5.49)

On the other hand, integrating by parts on M and using (1.17):�
M

Sg̃ûv̂ dVg̃ =

�
M

ûv̂

(
Sgϕ

2 − 4(n− 1)

n− 2
(∆gϕ)ϕ

)
dVg

=

�
M

Sguv dVg − 2(n− 1)

�
∂M

hg̃ûv̂ϕ
2]dsg + 2(n− 1)

�
∂M

hguv dsg

+
4(n− 1)

n− 2

�
M

(
v̂∇gϕ · ∇gu+ û∇gϕ · ∇gv − ûv̂ |∇gϕ|2

)
dVg. (5.50)
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Finally, (5.48) can be obtained from a linear combination of (5.49) and (5.50).

Up to renaming v as
(
|K(p)| n−2

4(n−1)

)n−2
4
v, the problem (1.26) is equivalent to{

−∆v = −v
n+2
n−2 in Rn

+,
∂v
∂η

= −vn =
√

n−2
2
Dn(p)v

n
n−2 on ∂Rn

+.
(5.51)

If v solves (5.51), we define the quadratic form associated as follows:

Qv(ϕ) =

�
Rn+
|∇ϕ|2 +

n+ 2

n− 2

�
Rn+
v

4
n−2ϕ2 −

√
n

n− 2
Dn(p)

�
∂Rn+

v
2

n−2ϕ2, (5.52)

defined for ϕ ∈ C∞0 (Rn
+), the set of test functions with compact support (not nec-

essarly zero on ∂Rn
+). The Morse index of v is defined as the dimension of the

biggest subespace of C∞0 (Rn
+) which Qv is negative definite on, that is,

ind(v) = sup
{

dim(E) : E ≤ C∞0 (Rn
+), Qv(φ) < 0 ∀φ ∈ E

}
,

or ind(v) = +∞ if the previous set is unbounded from above.

Proposition 5.22. Let v be a solution of (1.26). Then,

(1) If Dn(p) = 1, then ind(v) = 0. In other words; 1−dimensional solutions are
stable.

(2) If Dn(p) > 1, then ind(v) = b ≥ 1.

Proof. In the first case, v is given by (3.33). We consider the linearized problem
−∆ϕ = −n+2

n−2

(
2√

n(n−2)
xn + 1

)−2

ϕ on Rn
+,

− ∂ϕ
∂xn

= n
n−2

(
2√

n(n−2)
xn + 1

)−1

ϕ in ∂Rn
+.

(5.53)

It is easy to check that ϕ(x) =
(√

n(n− 2) + 2xn

)−n
2

is a positive solution of (5.53),

which implies stability (see the book [37] for further information).

For the second case, let v = bβ0 as in (3.34), for some β0 > 0. If g̃ = v
4

n−2 g, then we

know that (Rn
+, g̃) is isometric to the hyperbolic space of curvature Sg̃ = −4(n−1)

n−2
.

We consider the prescription problem{
−∆g̃w − w = −w

n+2
n−2 in Rn

+,
∂w
∂η

+
√

n−2
n
Dn(p)w =

√
n−2
n
Dn(p)w

n
n−2 on ∂Rn

+,
(5.54)
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whose associated quadratic form is given by the expression

Pw(φ) =

�
Rn+
|∇g̃φ|2 dVg̃ +

n+ 2

n− 2

�
Rn+
w

4
n−2φ2dVg̃ −

�
Rn+
φ2dVg̃

−
√

n

n− 2
Dn(p)

�
∂Rn+

w
2

n−2φ2dsg̃ +

√
n− 2

n
Dn(p)

�
∂Rn+

φ2dsg̃.

Since w = 1 is a trivial solution of (5.54), we can consider

P1(φ) =

�
Rn+
|∇g̃φ|2 dVg̃ +

4

n− 2

�
Rn+
φ2dVg̃ −

2Dn(p)√
n(n− 2)

�
∂Rn+

φ2dsg̃. (5.55)

In our next step, we use Proposition 5.21 to show the similarities between (5.52)
and (5.55). Indeed, the following relation holds:

�
Rn+
|∇ϕ|2 dx =

�
Rn+
|∇g̃ϕ̂|2 dVg̃ −

�
Rn+
ϕ̂2dVg̃ +

√
n− 2

n
Dn(p)

�
∂Rn+

ϕ̂2dsg̃, (5.56)

where ϕ̂ = ϕv−1. Inserting (5.56) into (5.52), we get the relation

Qv(ϕ) = P1(ϕ̂),

for every ϕ ∈ C∞0 (Rn
+). Thus, it is enough to work with the quadratic form P1, and

the problem becomes finding φ0 such that P1(φ0) < 0.

In what follows, we will use the Poincaré Disk description for the hyperbolic space
(Rn

+, g̃), consisting on the ball

BR =
{
x ∈ Rn

+ : |x|2 < R2
}
, with R =

1√
−Sg̃

=
1

2

√
n− 2

n− 1
,

and the conformal metric

g =
4 |dx|2(

1 + Sg̃ |x|2
)2 .

Observe that

P1(1) =
4

n− 2
|BR| −

n− 2

2
H(BR) |∂BR| , (5.57)

where H(BR) denotes the mean curvature of ∂BR. The first variation of the area
gives us a relation between the (n − 1)−dimensional volume of ∂BR and its mean
curvature, namely,

d |∂Bs|
ds

∣∣∣∣
s=R

=

�
∂BR

H(∂BR)dsg.
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Since H(∂BR) is constant, (5.57) becomes

P1(1) =
4

n− 2
|BR| −

n− 2

2

d |∂Bs|
ds

∣∣∣∣
s=R

. (5.58)

We recall that a hyperbolic ball of radius s > 0 is isometric to an Euclidean ball of

radius R sinh s
R

. Therefore, |∂Bs| = ωn−1R
n−1
(
sinh s

R

)n−1
and we can compute the

different quantities that appear in (5.58) as follows:

∂ |∂Bs|
ds

∣∣∣∣
s=R

= (n− 1)ωn−1R
n−2 (sinh 1)n−2 cosh 1. (5.59)

On the other hand, integrating by parts:

|BR| =
� R

0

ωn−1R
n−1
(

sinh
s

R

)n−1

ds

= ωn−1

(
Rn

n− 1
(sinh 1)n−2 cosh 1−Rn−1n− 2

n− 1

� R

0

(
sinh

s

R

)n−3

ds

)
. (5.60)

Pluggin (5.59) and (5.60) into (5.58), we get

P1(1) = ωn−1R
n−2

(
1

(n− 1)2
− (n− 2)(n− 1)

2

)
(sinh 1)n−2 cosh 1

− 4

n− 1
ωn−1R

n−1

� R

0

(
sinh

s

R

)n−3

ds < 0,

finishing the proof.

Conjecture 5.23. Let v be a solution of (1.26) with Dn(p) > 1, then ind(v) = 1.

As it happens in the 2−dimensional case (see [74]), we are strongly convinced that
bubbles have Morse index equal to 1. In order to simplify the notation, let us call

ρ(s) =
4(

1− 4(n−1)
n−2

s2
)2 ,

and consider the quadratic form (5.55) on BR, given by

P1(φ) =

�
BR

|∇φ|2 ρ(|x|)
n−2

2 +
4

n− 2

�
BR

φ2ρ(|x|)
n
2 − 2Dn(p)√

n(n− 2)

�
∂BR

φ2ρ(R)
n−1

2 .

(5.61)

The linear operator associated to (5.61) has the following expression:{
−ρ∆φ− n−2

2
∇φ · ∇ρ = − 4

n−2
ρ2φ in BR,

∂φ
∂η

= 2Dn(p)√
n(n−2)

√
ρ(R)φ on ∂BR.



Blow-up analysis 87

Compared to the 2−dimensional case, here the presence of the term −n−2
2
∇φ · ∇ρ

difficults the search for explicit solutions of the first equation. Inspired by the
results obtained in [74], we study existence of solutions of the form φ = φ(r, xi),
where r = |x| is the radial variable and xi is a fixed coordinate function. We are led
to solve:

− ρ(r)

(
∂2φ

∂xi2
+
∂2φ

∂r2
+ 2

∂2φ

∂r∂xi

xi
r

+
n− 1

r

∂φ

∂r

)
− n− 2

2
ρ′(r)

(
∂φ

∂xi

xi
r

+
∂φ

∂r

)
=
−4

n− 2
ρ(r)2φ, in BR. (5.62)

Different versions of (5.62) have been considered, but we are yet to find explicit
solutions for any of them. If φ(r, xi) = φ(r), then

− ρ
(
φ′′ +

n− 1

r
φ′
)
− n− 2

2
ρ′φ′ =

−4

n− 2
ρ2φ, in BR. (5.63)

Alternatively, we can set φ(r, xi) = ψ(r)xi. In that case, we can use (5.62) to see
that the radial function ψ(r) solves

− ρ
(
ψ′′ +

n+ 1

r
ψ′
)
− n− 2

2
ρ′
(
ψ

r
+ ψ′

)
=
−4

n− 2
ρ2ψ, in BR. (5.64)

In the next step, we see that the Morse index of a blowing-up sequence of solutions
controlls the sum of the Morse index of its limiting profiles at different points.
Consequently, if we assume a bound on the Morse index of a blowing-up sequence,
the number of blow-up points whose associated blow-up profiles have positive Morse
index is finite.

Lemma 5.24. Let (ui) be a blowing-up sequence of solutions of (1.24) such that
ind(ui) is uniformly bounded. Then S1 is a finite collection of points.

Proof. Without loss of generality, for large values of i we set ind(ui) = m ∈ N0. We
recall that this number stands for the maximum of the dimensions of the subspaces
of C∞0 (M) on wich the following quadratic form is negative definite:

Qi(ϕ) =
4(n− 1)

n− 2

�
M

|∇ϕ|2 +

�
M

Sϕ2 − pi
�
M

Kiui |ui|pi−2 ϕ2

− (n− 1)(pi + 1)

�
∂M

Hiui |ui|
pi−3

2 ϕ2.

Now we rescale (ui) as in (5.13): let (zi) be the sequence of points given by Ekeland’s

variational principle, and define δi = ui(zi)
− 2
pi−1 and

vi(x) = δi
2

pi−1ui(δix+ zi).
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The proof of Proposition 5.6 gives us the existence of v solving (1.26) such that
ui → v in C2

loc(Rn
+). We claim that ind(v) ≤ m.

Assuming otherwise, there exists a set of m + 1 linearly independent functions
{ϕ1, . . . , ϕm+1}, with compact and disjoint supports, such that

Qv(ϕj) =
4(n− 1)

n− 2

�
Rn+
|∇ϕj|2 −

n+ 2

n− 2

�
Rn+
K(0)v

4
n−2ϕj

2

− 2n(n− 1)

n− 2

�
∂Rn+

H(0)v
2

n−2ϕj
2 < 0, ∀j = 1 . . . ,m+ 1.

Now, let us define

ϕj = δ
− 2
pi−1

i ϕj

(
x− zi
δi

)
. (5.65)

A rescaling argument, together with the fact that ui → v in C2
loc(Rn

+), give us:

Qi(ϕj) = Qv(ϕj) + oi(1).

For large values of i, this implies the existence of a family of linearly independent and
compactly supported functions {ϕ1, . . . , ϕm+1}, with disjoint supports, such that

Qi(ϕj) < 0, ∀j = 1, . . . ,m+ 1.

Hence, ind(ui) ≥ m+ 1, finishing the proof of the claim.

Finally, take p1, p2 ∈ S1, p1 6= p2, with associated blow-up sequences u1
i , u

2
i , and lim-

iting profiles v1, v2, respectively. We write ind(vj) = mj ∈ N0, for j = 1, 2. Thus, for
each j, there exists a collection of mj linearly independent functions {φj1, . . . , φjmj},
such that

Qvj(φ
j
k) < 0, ∀k = 1, . . . ,mj. (5.66)

Rescaling each family of functions as in (5.65), we obtain a collection of linearly
independent functions with compact and disjoint supports (because p1 6= p2),

C = {φ1
1, . . . , φ

1
m1
, φ2

1, . . . , φ
2
m2
},

which makes true the following inequality for large enough values of i:

Qi(φ) < 0, for every φ ∈ span(C).

The consequence is ind(ui) ≥ ind(v1) + ind(v2). An inductive reasoning, together
with Proposition 5.22 (2), shows that if ind(ui) is uniformly bounded, the number
of blow-up profiles of the form (3.34) respects the same bound.

Proposition 5.25. Let (ui) be a blowing-up sequence of solutions of (1.24) with
ind(ui) ≤ b, where b is as in Proposition 5.22. Then S1 is a single and isolated
blow-up point.
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Proof. By Lemma 5.24, we know that S1 = {p}, with p ∈ ∂M and Dn(p) > 1. Let
xi → p, Ri → +∞ and ri → 0 the quantities given by Lemma 5.8.

In order to check Definition (5.9) for ui, we take a fixed radius ε > 0 such that
Dn > 1 on ∂M ∩B(p, ε), whose existence is granted by the continuity of K and H,
and we will prove that

sup
x∈B(p,ε)\B(p,ri)

ui(x) dist(x, xi)
2

pi−1 ≤ C, (5.67)

for some uniform constant C > 0. Suppose by contradiction that there exists a
sequence yi, with ri ≤ |yi − xi| < ε, such that

ui(yi) dist(yi, xi)
2

pi−1 → +∞. (5.68)

The above equation shows that ui(yi)→ +∞, so there exists a singular point y ∈ S1

such that, up to a subsequence, yi → y. If y 6= p, then ui developes a second bubble,
and the proof of Lemma 5.24 shows that in that case ind(ui) ≥ 2b, in contradiction
with our hypothesis.

Hence, y = p. We now take geodesic normal coordinates on xi and define σi as
σi = dist(yi, xi) = |yi| → 0, and the sequence of rescaled functions

vi(y) = σi
2

pi−1ui(σiy).

By rescaling variables, one can show that ind(vi) ≤ ind(ui) = b, but we will prove
that vi produces two bubbles, getting a contradiction.

Let zi = σi
−1yi. Clearly dist(zi, xi) = 1, so up to a subsequence we can assume

zi → z, with dist(z, xi) = |z| = 1. On one hand, by (5.68) we have:

vi(zi) = ui(yi)σ
2

pi−1

i = ui(yi) dist(yi, xi)
2

pi−1 → +∞.

On the other hand, since σi ≥ ri, we have:

vi(xi) = σi
2

pi−1ui(xi) ≥ Ri → +∞.

Therefore, {0, z} ⊂ S1(vi), giving ind(vi) ≥ 2b again by the proof of Lemma 5.24.

5.3 Conclusion of the proof of Theorem 1.9

In this section we conclude the proof of Theorem 1.9. Let us recall that Proposition
5.3 and Theorem 1.9 imply Theorem 1.8.



90 Chapter 5: The Scalar-Mean curvature prescription problem

5.3.1 Proof of Theorem 1.9, (2.2)

In this subsection we prove that if n = 3 and the scalar curvature S satisfies S ≤ 0,
then S1 = ∅. For this purpose, we present a capacity argument that exploits
fundamental differences between sequences of solutions of (5.10) and sequences of
bubbles. Since we proved in the previous section that solutions resemble bubbles at
scales of order 1 near points in S1, we are able to dismiss this kind of blow-up in
three dimensions. We have first two propositions, which hold true for all dimensions
n ≥ 3.

Proposition 5.26. Consider a sequence of positive solutions (ui) of (5.10) with
Ki → K < 0 in C1(M), S ≤ 0, and Hi → H in C2(∂M). Then, given a small
δ > 0, for large enough values of i, there exists a positive constant C = C(δ) such
that �

{ui≤1}

|∇ui|2

ui
pi+3

2

+

�
{ui>1}

|∇ui|2

uipi+1+δ
< C. (5.69)

Proof. Consider the continuous function

f(u) =

{
u−( pi+1

2 ) if 0 < u ≤ 1,
u−(pi+δ) if u > 1.

Multiplying (5.10) by f(ui) and integrating by parts, we obtain:

4(n− 1)

n− 2

�
M

f ′(ui) |∇ui|2 = −
�
M

Suif(ui) +

�
{ui≤1}

Kiu
2

n−2
+oi(1)

i

+

�
{u≥1}

Kiu
−δ+oi(1)
i − 2(n− 1)

�
{u1≤1}∩∂M

Hi

+ 2(n− 1)

�
{ui>1}∩∂M

Hiu
− 2
n−2
−δ+oi(1)

i .

Notice that all terms in the right-hand side are uniformly bounded, with the possible
exception of the first one: however, that term is non-negative by our assumptions.
Hence, we get an upper bound for the left-hand side:

4(n− 1)

n− 2

{
pi + 1

2

�
{u≤1}

|∇u|2

u
pi+3

2

+ (pi − δ)
�
{u>1}

|∇u|2

upi+1+δ

}
< C,

concluding the proof.

Next, we show that the above property is not satisfied for the bubbles, i.e. the
solutions to (1.26) when Dn(p) > 1, described in (3.34). We recall that this one-
parameter family of solutions can be written as follows:

bβ(x) =
Cnβ

n−2
2(

|x− x0(β)|2 − β2
)n−2

2

∀x ∈ Rn
+, (5.70)
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with Cn = (n(n− 2))
n−2

4 and x0(β) = (0, . . . , 0,−Dn(p)β). Straightforward compu-
tations show that

|∇bβ|2

bβ
µ = C̃nβ

(2−µ)n−2
2

|x− x0(β)|2(
|x− x0(β)|2 − β2

)n−µn−2
2

,

where C̃n = (n − 2)2Cn
2−µ and µ > 0. Moreover, the domain {bβ ≤ 1} is the

complement of a ball centered in x0(β) with radius tending to zero. Notice that
bβ(x) ≤ 1 whenever |x− x0(β)|2 > β2 +

√
n(n− 2)β =: rβ

2, thus

{bβ ≤ 1} = Rn
+\Bn(x0(β), rβ).

For small enough values of β, we can take 0 < rβ < r < R so that

Aβ(r, R) := A(x0(β), r, R) ∩ Rn
+ ⊂ {bβ ≤ 1}.

The aim is now to prove that

lim
β→0

�
Aβ(r,R)

|∇bβ|2

bβ
µ = +∞ (5.71)

for some 0 < µ < 2], obtaining an opposite conclusion to that of Proposition 5.26.
For a fixed β > 0,

�
Aβ(r,R)

|∇bβ|2

bβ
µ = C̃n

� R

r

�
SCn−1(x0(β),s,s−βDn(p))

β(2−µ)n−2
2 s2

(s2 − β2)n−µ
n−2

2

dxds,

where SCn−1(x0, r, h) denotes the (n − 1)−dimensional spherical cap centered at
x0 ∈ Rn, with radius r > 0 and height 0 ≤ h < r. We know that∣∣SCn−1(x, r, h)

∣∣ = wnr
n−1J(r, h), (5.72)

for some uniformly bounded function J . Thus, for some dimensional constant Ĉn,
�
Aβ(r,R)

|∇bβ|2

bβ
µ ≥ Ĉnβ

(2−µ)n−2
2

� R

r

sn+1

(s2 − β2)n−µ
n−2

2

ds.

Since r > rβ > β, the integral is uniformly bounded when β → 0, so it is enough to
take µ > 2 to have (5.71). We then proved the following result.

Proposition 5.27. Let bβ be the family of functions in (5.70). Then,

lim
β→0

�
Aβ(r,R)

|∇bβ|2

bβ
µ = +∞,

for all Aβ(r, R) ⊂ {bβ ≤ 1} and µ > 2.

To prove that S1 is empty, it is then sufficient to combine Proposition 5.26, Propo-
sition 5.27, Proposition 5.20 and (5.23) in Lemma 5.8.
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5.3.2 Proof of Theorem 1.9, (2.3)

In this subsection we consider a sequence of solutions (ui) to (5.10) and we assume
that S0 6= ∅. We recall that the limit profile is one-dimensional, as given in (3.33).

In particular, we have that ρi :=
�
∂M

Hiui
pi+3

2 → +∞.

By assumption, Ii(ui) is uniformly bounded:

4

�
M

|∇ui|2+
1

2

�
M

Sui
2− 1

pi + 1

�
M

|Ki|uipi+1− 2

pi + 3

�
∂M

Hiui
pi+3

2 = O(1). (5.73)

A second relation between the integrals is given by the fact that I ′(ui)[ui] = 0,
namely

8

�
M

|∇ui|2 +

�
M

Sui
2 +

�
M

|Ki|uipi+1 − 4

�
∂M

Hiui
pi+3

2 = 0. (5.74)

Using the previous two relations, we will try to estimate the integrals in terms of ρi.
First notice that, by the positivity of the first and third terms in (5.74) and Hölder’s
inequality, �

M

Su2
i = O

(
ρi

2
pi+1

)
.

Therefore, by (5.73) and (5.74)

8

�
M

|∇ui|2 =
1

3

�
M

|Ki|uipi+1 + o(ρi) =

�
∂M

Hiui
pi+3

2 + oi(ρi). (5.75)

Now, take an arbitrary ϕ ∈ C2(M), multiply (5.10) by uiϕ and integrate by parts.
Then, the following identity holds:

�
M

(
8 |∇ui|2 + |Ki|uipi+1

)
ϕ− 2

�
∂M

Hiui
pi+3

2 ϕ

= −
�
M

Sui
2ϕ− 8

�
M

ui∇ui · ∇ϕ. (5.76)

By Hölder inequality

�
M

|S|ui2ϕ = O
(
ρi

2
2∗
)
,

�
M

ui∇ui∇ϕ = O
(
ρi

n−1
n

)
. (5.77)

The combination of (5.75), (5.76) and (5.77) yields that there exists a positive
measure σ defined in M̄ such that

(i) 4ρ−1
i Hiui

pi+3

2 ⇀ σ|∂M , and

(ii) ρ−1
i

(
8 |∇ui|2 + |Ki|uipi+1

)
⇀ σ weakly in the sense of measures.
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Observe that supp σ ⊂ S ⊂ {p ∈ ∂M : Dn(p) ≥ 1} by Theorem 1.9.
In dimension n = 3, each blow-up point in S1 is isolated and simple by Theorem
5.17, and around such points we can control ui with good precision by Proposition
5.12. We combine both results to conclude the following:

Lemma 5.28. If n = 3, then suppσ ⊂ S0.

Proof. Supose by contradiction that there exists p ∈ S1 and take ϕ ∈ C2(M), with
compact support contained in Bε(p), such that�

∂M

ϕ dσ > 0. (5.78)

Then, for large enough i, there exists a constant C > 0 such that

ρi
−1

�
∂M

Hiui
pi+3

2 ϕdsg = ρi
−1

�
Bε∩∂M

Hiui
pi+3

2 ϕdsg > C−1.

However, taking normal coordinates at p and using Proposition 5.12 jointly with
Lemma 5.15, we find

ρi
−1

�
∂M∩Bε

Hiui
pi+3

2 ϕdsg ' ρi
−1H(p)

�
R2

1

(1 + |x̃|2)2
dx̃

≤ ρi
−1O(1)→ 0,

where ’'’ represents equality up to a factor (1+O(ε2))(1+oi(1)) and x̃ = (x1, . . . , xn−1, 0).
This is a contradiction to (5.78).

We can extract more information from the finite-energy hypothesis on (ui). In fact,
following the steps of the proof for (5.1), we obtain the following identities for the
limiting measure σ.

Proposition 5.29. For n = 3, let (ui) be a sequence of solutions of (5.10) with
Ii(ui) uniformly bounded and S0 6= ∅. Then,

(i) 4ρi
−1Hiui

pi+3

2 ⇀ σ,

(ii) ρi
−1 |Ki|uipi+1 ⇀ 3

4
σ, and

(iii) 8ρi
−1 |∇ui|2 ⇀ 1

4
σ.

Proof. Take any test function φ ∈ C2
c (M) and a vector field N on M with |N | ≤ 1

and such that N = η on ∂M . Straightforward computations show that, calling

X = Hiφu
pi+3

2 N ,

div(X) = u
pi+3

2

(
Hiφ divN + φN · ∇Hi +Hi∇φ ·N +

pi + 3

2
Hiφ
∇u
u
·N
)
.

(5.79)
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Thus, by the Divergence Theorem, there exists a constant C, which depends on
‖φ‖C1 , ‖N‖C1 and ‖H‖∞, such that�

∂M

Hiφu
pi+3

2 ≤ C

�
M

u
pi+3

2 +
pi + 3

2

�
M

Hiφ |∇u|u
pi+1

2 .

By Cauchy-Schwartz’s inequality,�
∂M

Hiφu
pi+3

2 ≤ C

�
M

u
pi+3

2 +
pi + 3

2

(
δ2

2

�
M

|∇u|2 φ+
1

2δ2

�
M

H2
i u

pi+1φ

)
, (5.80)

for every δ > 0. Now, let us define the measures σ1, σ2 by

(i) 8ρi
−1 |∇ui|2 ⇀ σ1, and

(ii) ρi
−1 |K|uipi+1 ⇀ σ2.

Notice that by (5.75) and the definition of ρi these measures are finite. By Lemma
5.28, we also know that σ1 + σ2 = σ, and that suppσj ⊂ {Dn = 1}. Multiplying by
ρi
−1 and taking limits, using the fact that H2 = 1

6
|K| on {Dn = 1}, we obtain

1

4

�
∂M

φ dσ ≤ δ2

4

�
∂M

φ dσ1 +
1 + oε(1)

3δ2

�
∂M

φ dσ2.

Therefore, (
1

4
− δ2

4

) �
∂M

φ dσ1 ≤
(

1

3δ2
− 1

4

) �
∂M

φ dσ2.

Choosing δ2 = 2
3
, we get the inequality

�
∂M

φ dσ1 ≤ 3

�
∂M

φ dσ2.

Equality follows from (5.75).

Our final step will be to show that the support of the measure σ is formed by critical
points of Dn. In this way, the assertion (2.3) of Theorem 1.9 would be proved.

Proposition 5.30. For n = 3, let (ui) be a sequence of solutions of (5.10) with
Ii(ui) uniformly bounded and S0 6= ∅. Then, ∇TDn = 0 on suppσ.

Proof. Integrating by parts in (3.38), we obtain the following identity:

1

pi + 1

�
M

upi+1
i F · ∇Ki +

8

pi + 3

�
∂M

u
pi+3

2
i F · ∇THi +

1

pi + 1

�
M

Kiu
pi+1
i divF

+
8

pi + 3

�
∂M

Hiu
pi+3

2
i divT F − 4

�
M

|∇ui|2 divF +
1

2

�
M

SF · ∇(u2
i ) =

1

pi + 1

�
∂M

Kiu
pi+1
i F · η − 8

�
M

DF (∇ui,∇ui)− 4

�
∂M

|∇ui|2 F · η.

(5.81)
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The general idea is to choose suitable vector fields F in this identity, divide by ρi
and take the limit. Using Hölder’s inequality, one can see that

ρ−1
i

�
M

S F · ∇(u2
i )→ 0.

As a first step we consider the distance function d from the boundary, and with
positive sign inside M . Given a small number δ > 0, we consider smooth non-
increasing cut-off function χδ(t) such that{

χ(t) = 1 t ≤ δ;

χ(t) = 0 t ≥ 2δ,

and the vector field F = dχ(d)∇d. It is well known that the divergence of ∇d
equals the opposite of the mean curvature of the level sets of d, see e.g. [?, Chapter
6: Exercise 11.d], which are smooth near ∂M . Therefore we obtain that

divF = 1 +O(d); F |∂M = 0.

By (5.81), we obtain

1 + oi(1)

2∗

�
M

|Ki|upi+1 + (4 + oi(1))

�
M

|∇ui|2 = (8 + oi(1))

�
M

(∇ui · ∇d)2.

Using Proposition 5.29 we then deduce

�
M

|∇ui|2 = (1 + oi(1))

�
M

(∇ui · ∇d)2, (5.82)

which means that the gradient of ui is mostly normal to the boundary.

We now choose an arbitrary vector field V tangent to ∂M , and extend it as a vector
field F in the interior of M such that divF = 0 in a neighbourhood of ∂M . Observe
that now all terms in (5.81) involving F · ν on ∂M or divF will cancel.

If one splits on ∂M a vector field F̃ into its tangential component F̃ T and it normal
one F̃η, for a tangent vector v to ∂M there holds ∇M

v F̃
T = ∇∂M

v F̃ T + A(v, F̃ T )η,
where A is the second fundamental form of ∂M . Taking the trace of this relation
and adding the covariant derivative of the normal component, one finds for F̃ = F
as above

0 = (divM F )|∂M = divT F + h〈η, F 〉+DηFη,

where h is the mean curvature of the boundary. By the fact that 〈η, F 〉 = 0 and
F = V on ∂M , this implies in particular

DηFη = − divT V on ∂M.
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By (5.82) we then find

−8ρ−1
i

�
M

DF (∇ui,∇ui) −→
1

4

�
∂M

divT V dσ.

Observe also that, by Proposition 5.29,

ρ−1
i

8

pi + 3

�
∂M

Hiu
pi+3

2
i divT F → 1

4

�
∂M

divT V dσ.

Hence, when we divide (5.81) by ρi and pass to the limit, the above two terms cancel
and we obtain:

1

4

�
∂M

1

H
(V · ∇TH) dσ − 1

8

�
∂M

1

K
(V · ∇TK) dσ = 0.

Notice however that, by Lemma 5.28, σ is supported in {Dn = 1}, and hence on
its support we have that 1

H
∇TH − 1

2K
∇TK = 1

Dn
∇TDn = ∇TDn. This observation

and the last formula then imply�
∂M

(V · ∇TDn) dσ = 0

for all vector fields V on ∂M . This means that ∇TDn = 0 on the support of σ, as
desired.

The proposition implies (2.3) in Theorem 1.9, since we were assuming that 1 is a
regular value of Dn.

Remark 5.31. The proof of the latter proposition would work with minor changes
in general dimension if we had anyway the conclusion of Lemma 5.28 about the
support of the measure σ.

5.4 Appendix: proof of Lemma 5.5

Proof. Since M is a smooth manifold with boundary, we can find an extension
(M̂, ĝ) of the Riemannian structure including an exterior neighbourhood of ∂M .
For p ∈ ∂M , let η(p) be the the exterior unit normal vector: given two two positive
parameters β and D, with β small and D > 1√

n(n−1)
, define the point

Pβ,D = Expĝp(
√
n(n− 1)Dβη(p)),

where Expĝp stands for the exponential map of ĝ at p. Inspired by the solutions to
problem (1.26) classified in [30] , we consider the family of functions defined on M

ϕβ,D(x) =
β
n−2

2(
distĝ (x, Pβ,D)2 − β2

)n−2
2

, (5.83)
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and the modified family

ϕβ,D(x) = µ
n−2

2 ϕβ,D(x), (5.84)

where µ is a positive constant, yet to be set. The strategy will be to estimate the
energy I on such functions, choosing an adequate value for µ so that I(ϕβ,D)→ −∞
as D → 1√

n(n−1)
. In order to simplify the notation, let us also define

εD
2 = n(n− 1)D2 − 1,

and notice that εD → 0 as D → 1√
n(n−1)

. It is easy to see that

I(ϕβ,D) =
2(n− 1)

n− 2
µn−2

�
M

|∇ϕβ,D|2 +
µn−2

2

�
M

Sϕβ,D
2+

+
n− 2

2n
µn

�
M

|K|ϕβ,D2∗ − (n− 2)µn−1

�
∂M

Hϕβ,D
2] . (5.85)

Take r > 0 small but fixed: it is easy to show that all the above integrals, restricted
to the regions (both at the interior and at the boundary) outside B(p, r) tend to
zero as β → 0, uniformly for D close to 1√

n(n−1)
.

Having observed this, we proceed by estimating the boundary term as

(B) :=

�
∂M

Hϕβ,D
2] =

�
∂M∩Bn−1(p,r)

Hϕβ,D
2] + oβ(1)

≥
(

min
∂M∩Bn−1(p,r)

H

) �
∂M∩Bn−1(p,r)

ϕβ,D
2] + oβ(1),

where oβ(1) tends to zero as β does. Take normal coordinates {x1, . . . , xn} around
Pβ,D in such a way that the geodesic joining p to Pβ,D is mapped into the xn-axis,
and set x′ = (x1, . . . , xn−1). We can rewrite the previous integral in the following
way, up to multiplicative errors of the form (1 + or(1)), with or(1) tending to zero
as r → 0, due to the presence of integral volume elements:

(B) ≥
(

min
∂M∩Bn−1(p,r)

H

) �
Bn−1(p,r)

βn−1dx1 · · · dxn−1

(|x′|2 + n(n− 1)D2β2 − β2)n−1 + oβ(1)

=

(
min

∂M∩Bn−1(p,r)
H

) � r

0

�
Sn−2(0,s)

βn−1dx1 · · · dxn−1ds

(s2 + β2εD2)n−1 + oβ(1)

=

(
min

∂M∩Bn−1(p,r)
H

)
|Sn−2|βn−1

� r

0

sn−2ds

(s2 + β2εD2)n−1
+ oβ(1).

The latter integral can be addressed via the change of variable t = s
εDβ

:

βn−1

� r

0

sn−2ds

(s2 + β2εD2)n−1
=

1

εDn−1

� r
εDβ

0

tn−2dt

(1 + t2)n−1
. (5.86)
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We can always take r, β and D in such a way that r
εDβ
→ +∞ as εD tends to zero.

Calling

γn =

� +∞

0

tn−2dt

(1 + t2)n−1
=

√
π Γ

(
n−1

2

)
2n−1Γ

(
n
2

) ,
we finally have: �

∂M

Hϕβ,D
2] ≥ H(p)|Sn−2|γn

1 + or(1)

εDn−1
+ oβ(1). (5.87)

Now, in (5.85) we bound the critical term in the interior of M as:

(I) : =

�
M

|K|ϕβ,D2∗ =

�
M∩Bn(p,r)

|K|ϕβ,D2∗ + oβ(1)

≤
(

max
M∩Bn(p,r)

|K|
) �

M∩Bn(p,r)

ϕβ,D
2∗ + oβ(1).

Taking normal coordinates as before we obtain, up to multiplicative constants of
order (1 + or(1)):

(I) ≤
(

max
M∩Bn(p,r)

|K|
)�

Bn+(0,r)

βndx1 · · · dxn(
|x′|2 + (xn +

√
n(n− 1)Dβ)2 − β2

)n + oβ(1).

Notice that

(I’) :=

�
Bn+(0,r)

βndx1 · · · dxn(
|x′|2 + (xn +

√
n(n− 1)Dβ)2 − β2

)n
=

� r

0

� √r2−x2
n

0

�
Sn−2

βndx1 · · · dxnds(
s2 + (xn +

√
n(n− 1)Dβ)2 − β2

)n
≤
∣∣Sn−2

∣∣ βn � r

0

� r

0

sn−2dxnds(
s2 + x2

n + εD2β2 + 2xn
√
n(n− 1)Dβ

)n .
Since we are taking r → 0, x2

n is negligible compared to xn. This fact, together with
Fubini’s Theorem, gives:

(I’) ≤
∣∣Sn−2

∣∣ βn � r

0

� r

0

sn−2dxn(
s2 + εD2β2 + 2xn

√
n(n− 1)Dβ

)n
 ds =

=
|Sn−2| βn−1

2(n− 1)D
√
n(n− 1)

{� r

0

−sn−2ds(
s2 + 2r

√
n(n− 1)Dβ + εD2β2

)n−1 +

+

� r

0

sn−2ds

(s2 + εD2β2)n−1

}
.
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Since β and r are small but fixed parameters, the first term of the sum is non-
singular and can be uniformly bounded. On the other hand, the second term has
been computed in (5.86). If we put everthing together, we find:

�
M

|K|ϕβ,D2∗ ≤ |K(p)| γn
|Sn−2|

2(n− 1)

1 + or(1)

εDn−1
+ oβ(1). (5.88)

We can repeat these computations for the quadratic term in (5.85), and eventually
obtain:�

M

Sϕβ,D
2 ≤ S(p)

|Sn−2|Γ
(
n−5

2

)
Γ
(
n−1

2

)
4(n− 3)β2Γ (n− 3)

1 + or(1)

εDn−5
+ oβ(1) = o

(
1

εDn−2

)
. (5.89)

Finally, we address the Dirichlet energy. A direct computation shows that

|∇ϕβ,D(x)| = n− 2

2
β
n−2

2
|∇ dist(x, Pβ,D)2|

(dist(x, Pβ,D)2 − β2)
n
2

.

Using the inequality |∇ dist(x, p)2| ≤ 2 dist(x, p), we have

|∇ϕβ,D(x)| ≤ (n− 2)β
n−2

2
dist(x, Pβ,D)

(dist(x, Pβ,D)2 − β2)
n
2

. (5.90)

Reasoning as before, we find�
M

|∇ϕβ,D|2 ≤
�
M∩Bn(p,r)

|∇ϕβ,D|2 + oβ(1). (5.91)

Again, taking normal coordinates as above we have, up to multiplicative errors of
the form (1 + or(1))

(D’) :=

�
M∩Bn(p,r)

|∇ϕβ,D|2 =

= (n− 2)2βn−2

�
Bn+(0,r)

(
|x′|2 +

(
xn +

√
n(n− 1)Dβ

)2
)
dx(

|x′|2 +
(
xn +

√
n(n− 1)Dβ

)2

− β2

)n

= (n− 2)2


�
Bn+(0,r)

βn−2dx1 · · · dxn(
|x′|2 +

(
xn +

√
n(n− 1)Dβ

)2

− β2

)n−1

+

�
Bn+(0,r)

βndx1 · · · dxn(
|x′|2 +

(
xn +

√
n(n− 1)Dβ

)2

− β2

)n
 . (5.92)
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The first integral term is of lower order o
(

1
εDn−2

)
, and the second one is exactly

(I’), which is already calculated. Finally, combining (5.91) and (5.92), we conclude:

�
M

|∇ϕβ,D|2 ≤ γn
(n− 2)2 |Sn−2|

2(n− 1)

1 + or(1)

εDn−1
+ o

(
1

εDn−2

)
. (5.93)

Recalling that ϕβ,D(x) = µ
n−2

2 ϕβ,D(x), and substituting (5.87), (5.88), (5.89) and
(5.93) into (5.85) we finally have, up to multiplicative contants of the form (1+or(1))
in each term:

I(ϕβ,D) ≤ γnµ
n−2
∣∣Sn−2

∣∣ (n− 2)

(
|K(p)|

4n(n− 1)
µ2 −H(p)µ+ 1

)
1

εDn−1
+

+ o

(
1

εDn−2

)
. (5.94)

Denoting by P the polynomial in µ

P (µ) =
|K(p)|

4n(n− 1)
µ2 −H(p)µ+ 1, (5.95)

we know that there exist values for which P (µ) < 0 if, and only if, its discriminant
is positive, that is,

H(p)2 − |K(p)|
n(n− 1)

> 0, (5.96)

which is equivalent to our hypothesis Dn(p) > 1. In view of (5.94), we can assert that
there exist β, r > 0 9small) and µ > 0 such that I(ϕβ,D)→ −∞ as D → 1√

n(n−1)
.

Remark 5.32. Minimizing in (5.95) we can compute the optimal value for the
constant, namely,

µ =
2n(n− 1)H(p)

|K(p)|
= 2

Dn(p)√
|K(p)|

.



Chapter 6

Conclusions and future perspectives

In this thesis we have dealt with two boundary cases of the classical Kazdan-Warner
problem in Riemannian Geometry. In two dimensions, we have considered the prob-
lem of prescribing Gaussian and geodesic curvatures on topological disks via confor-
mal transformation of the metric, while we have addressed the existence of conformal
metrics with prescribed scalar and mean curvatures on Riemannian manifolds with
boundary of dimensions greater or equal to three. In particular, our contribution is
focused on the prescription of nonconstant curvatures.

In the case of a disk in R2, we obtain existence of solutions when the prescribed
curvatures are nonnegative and not simultaneously zero and satisfy a symmetry
condition by setting the problem in a variational framework which seems to be
completely new in the literature (see [31]). Thanks to compactness of solutions, we
were also able to prescribe sign changing curvatures whose negative part is small.

Concerning the problem in higher dimensions, we have treated the case of negative
scalar curvature and boundary mean curvature of arbitrary sign, which has not been
dealt with in the literature. Using a variational approach, we prove new existence
results, especially on dimension three (see [32]).

The following conclusions can be drawn from our work:

i. There exist substantial differences with respect to the analogous problems on
closed manifolds. It is false, in general, that the theory and results available
for this kind of problems in manifolds without boundary can be extended to
the boundary cases, and our work perfectly exemplifies it.

On one hand, for the problem in the disk and its boundary, the paremeter ρ
is not quantized, and therefore we cannot rewrite the problem in the form of
a mean-field equation. Therefore, ρ should be treated as another variable of
the problem and the variational approach changes significantly. Furthermore,
the presence of the boundary produces a nonnegligible interaction between the
integral terms associated to the curvatures, especially when both of them are
non zero. This phenomena does not find a counterpart in the closed version
of the problem.
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On the other hand, under the assumption K < 0 the problem of prescribing
scalar curvature on a compact and closed manifold of negative Yamabe con-
stant always admits a solution, as proved in [61], while the boundary version
exhibits a large variety of phenomena:

Firstly, there exists a strong interaction between the prescribed curvatures.
Evidenced by the trace inequality (5.1), which is also available for the two-
dimensional case in [74], the relation between the prescribed curvatures in the
boundary of the manifold plays a major role in the behaviour of our energy
functional. Being the critical term in the interior negative, if the prescribed
scalar curvature shadows the mean curvature, the boundary term gets ab-
sorbed, putting us in a nice coercive regime. On one hand, the use of min-max
theory and compactness of solutions is needed if the prescribed mean curva-
ture stands out in a single point in the boundary. In the closed case with
K < 0 and negative Yamabe class, the absence of the boundary term makes it
always coercive, simplifying its study. The analogous scenario on a manifold
with boundary would be that of prescribing K < 0 and h < 0.

Moreover, the presence of the boundary leads crucially to new non compact-
ness phenomena. Contrarily to what happens in the closed case, at least in
low dimensions, there exist blow-up profiles with infinite mass. In fact, an
explicit example of a sequence of solutions whose singular set contains the
whole boundary is given in the present work. Therefore, we need to develop a
blow-up analysis in a situation in which the number of blow-up points or the
volume of the blow-up profiles can be infinite. Our main tool for this was the
Ekeland variational principle.

ii. The particularities of the problem in dimension two, and the added difficulty of
the case of the disk. The variational study of the problem on a surface requires
the use of specific techniques, such as the Moser-Trudinger inequalities. In the
case of the disk, the constant that appears in the inequalities is sharp, and
refined versions of them, both for interior and boundary terms, are necessary
to achieve coercivity. This phenomenon is one of the consequences of the
non-compact group of Möbius transformations of the disk.

In that regard, we also remark the utility of our variational formulation. The
energy functional used in this thesis stands out both for its novelty, as it
seems to be completely new in the literature of this kind of problems, and for
its geometry, since it depends on two variables of very different natures. The
variational study of the functional permits us to recover some classical results
for the limiting cases where one of the curvatures is zero, and to give the first
known result when both of them are nonconstant.

iii. In Chapter 5 we followed the ideas of [74], but the adaptation to the Scalar-
mean curvature prescription problem was nontrivial.
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In what concerns the analysis of the singular set of blowing-up solutions, while
in higher dimensions we have more rigidity in the classification of blow-up
profiles, we lack the complex-analytical tools that are exclusive to the two-
dimensional case. Moreover, the domain-variation techniques applied in the
case of blow-up with unbounded mass required arbitrary deformations of the
tangent space at the boundary.

Because of the lack of compactness that the high-dimensional equation ex-
hibits, a subcritical approach becomes necessary to guarantee that bounded
Palais-Smale sequences admit a convergent subsequence.

iv. The importance of Struwe’s monotony trick and the subcritical approach in the
search for min-max solutions of the Scalar-mean prescription problem. As we
mentioned, two problems arise when we try to check the compactness condition
for the Palais-Smale sequences associated to our functional. The first one is
that the sequences may not be bounded because of the triple homogeneity
of the energy functional. Struwe’s monotonicity trick allows us to consider
bounded Palais-Smale sequences for approximated problems, but even then
it is not clear that we can pass to the limit because of the presence of the
critical exponents for the Sobolev embeddings. Only the combination of the
two strategies permits us to bypass these obstacles and get a min-max solution.

The results obtained in this thesis represent a first step in the study of the noncon-
stant versions of these prescription problems. At the same time, though, we have
shown that there are fundamental issues yet to be understood. This opens a research
door, behind which the most immediate objective is the extension of the results of
this thesis to more general settings. With this in mind, some interesting research
goals could be the following:

with respect to the Gaussian-geodesic prescription problem on the disk,

i. Remove the symmetry assumptions. In that case, the coercivity of the func-
tional is lost, and the search for critical points of minimum type is hampered.
One possible direction is to look for additional conditions ensuring coerciv-
ity under less restrictive symmetry assumptions, like the group of symmetries
having a finite number of fixed points in S1.

In addition, we could look for solutions of min-max type, taking advantage of
the recent development of the blow-up analysis in [59] and [11].

ii. Prescribe curvatures with different sign. If we consider curvatures with oppo-
site signs, from the Gauss-Bonnet equation we cannot deduce the boundedness
of any of the integral terms because of a possible compensation. Hence, the
study of the interaction between both terms will require techniques different
from the usual ones. In addition, the presence of bubbling solutions, confirmed
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in [11], shows the loss of compactness of this model. The blow-up analysis car-
ried out in [59] is a good starting point in the search for conditions to rule out
this behaviour.

The prescription of sign-changing curvatures is also an interesting question,
but the wide variety of cases that it covers makes it a challenging problem.

Moreover, the research in the Scalar-mean prescription problem can continue in the
following ways:

iii. Extend the compactness theorem, namely Theorem 1.9 (2.2) and (2.3), to di-
mensions n > 3, and consequently the min-max existence result, Theorem 1.8.
To this aim, we will work under the additional hypothesis that our blowing-up
sequences of solutions have bounded Morse index. This is not restrictive when
considering sequences of mountain-pass type solutions, for instance. We con-
jecture that, in such circumstances, the singular set S1 is a finite collection of
isolated and simple blow-up points, and therefore we could apply our energy
estimates, valid for all dimensions greater or equal to three, to dismiss the
bubbling solutions.

Some steps are already given in that direction, and the proof of that result
may involve a classification of the singular solutions of the problem{

−4(n−1)
n−2

∆v = K(0)v
n+2
n−2 on Rn

+,
2

n−2
∂v
∂η

= H(0)v
n
n−2 on ∂Rn

+\{0},

or at least an estimate over the Morse index of such solutions.

iv. Prescribe K < 0 on manifolds with S > 0. Partial positive results are known
for low dimensions, but the problem in dimensions higher than three has hardly
been considered. In this scenario, a priori, the above two types of blow-up
could coexist, and the compactness of solutions arises as a challenging question,
as well as the interaction between the critical terms. To start with, one could
ask for conditions under which only one type of blow-up is possible, and derive
new existence results.

In the case of K > 0 on a manifold with S > 0, the classification of the limiting
profiles in [30] discards the presence of one-dimensional blow-up. Then, in
order to gain compactness, a deep study around blow-up points of S1 becomes
essential.

v. Search for obstructions to the existence of solutions. These are expected to
exist, but the known results for the two-dimensional cases rely on rigidity
results that are not available in higher dimensions.
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Finally, we mention another curvature prescription problem that is related to the
problems studied here and that can become a subject of study in the future.

The Q-T prescription problem.

In the case of a compact and closed Riemannian manifold (M, g) of dimension n =
4, there exists another differential operator Pg which is invariant under conformal
transformations, called the Paneitz operator, which is associated to a natural concept
of curvature. This operator, discovered by Paneitz in [84], and the corresponding
Q curvature introduced by Branson ([14]), are defined in terms of the Ricci tensor
Ricg and the scalar curvature Sg as

Pgf = −∆2
gf + div

(
2

3
Sgg − 2Ricg

)
df,

Qg =
−1

12

(
∆gSg −R2

g + 3|Ricg|2
)

for every differentiable function f on M . Similarly to how the Laplace-Beltrami op-
erator governs the transformation rule of the Gaussian curvature, the same does the
Paneitz operator with the Q curvature. Indeed, under a conformal transformation
of the metric of the form g̃ = e2vg, we have:

Pgv + 2Qg = 2Qg̃e
4v on M. (6.1)

As before, one could ask if given a function Q defined on M , there exists a conformal
metric g̃ such that Qg̃ = Q. In the literature we can find some partial results, see
[16, 34, 22]. The analogue of the Nirenberg’s problem on S4 is again intrinsically
complex. In [92] positive results were obtained using Degree Theory, which are the
counterpart of those of [24] for the equation (1.2) on S2 (see also the flow approach
in [76]). On the other hand, a Kazdan-Warner type condition was obtained in [22].

If M has a boundary, Chang and Qing ([20]) discovered a differential operator P 3
g

defined on ∂M , and introduced a third order curvature related to it called the T
curvature, which will be denoted by Tg. Therefore, on a compact Riemannian 4-
manifold with boundary, the pair (Pg, P

3
g ) controls the transformation equations of

(Q, T ) under conformal changes of the metric. Indeed, if g̃ = e2vg, then

{
Pgv + 2Qg = 2Qg̃e

4v in M

P 3
g + Tg = Tg̃e

3v on ∂M.
(6.2)

Consequently, the pair (Qg, Tg) can be understood as a natural extension of (Kg, hg)
of a Riemannian surface in the context of the Conformal Geometry. Besides this
analogy with (1.8), we also have an extension of the Gauss-Bonnet theorem, namely
the Gauss-Bonnet-Chern theorem:�

M

(
Qg +

1

8
|Wg|2

)
dVg +

�
∂M

(Tg + Zg)dSg = 4π2χ(M),
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where Wg denotes the Weyl tensor of (M, g), and Zg = 0 if ∂M is totally geodesic.
In particular, in a locally conformally flat manifold with totally geodesic boundary,
we have the exact analogue of (1.9).

Prescribing Q and T curvatures on M and ∂M , respectively, consists in solving (6.2)
with Qg̃ = Q and Tg̃ = T . Since it is a fourth order problem with a third order
boundary condition, from the point of view of the PDEs it is natural to impose a
second condition of first order on the boundary. In this spirit of solvability, one can
impose that the boundary is minimal, that is,

∂v

∂ν
= 0 on ∂M.

This condition is not restrictive since it can always be obtained via a conformal
transformation of the metric. As far as we know, the Q − T prescription problem
has not been much considered, and the only available results at the present day are
[80], in which the case Q = 0 and constant T is treated, and [81], for the problem
of prescribing Q under T = 0. We would like to start our research on the problem
with the case of the half-space R4

+, and prescribed curvatures Q and T equal to
constants.



Chapter 7

Summary

7.1 Spanish

Esta tesis comprende el estudio de dos problemas eĺıpticos semilineales que aparecen
en el ámbito de la Geometŕıa Riemanniana. En concreto, estamos interesados en
prescribir determinadas cantidades geométricas en variedades Riemannianas con
borde mediante transformaciones conformes de la métrica, a saber, las curvaturas
Gaussiana y geodésica en una superficie compacta y su borde, y las curvaturas
escalar y media en una variedad de dimensión superior.

La mayor parte de los resultados disponibles se centran en el estudio de estas ecua-
ciones en variedades cerradas, mientras que el caso con borde ha sido mucho menos
tratado. En este sentido, destacamos que la presencia de borde da lugar a una mayor
cantidad de fenómenos, muchos de los cuales no encuentran análogo en las versiones
cerradas de estos problemas. En particular, la formulación variacional del caṕıtulo
4, y los argumentos de compacidad y existencia del caṕıtulo 5 están ı́ntimamente
relacionados con la presencia de borde.

Además, el foco de nuestra investigación está puesto en el caso en que las curvat-
uras prescritas son no constantes, para los cuales hay solo unos pocos resultados
conocidos.

Este tipo de problemas admite una estructura variacional, de modo que discutiremos
la existencia de soluciones desde el punto de vista del Cálculo de Variaciones. A veces
los funcionales de enerǵıa considerados estarán minorados y será posible encontrar
un mı́nimo global; en otros casos, sin embargo, esto no es posible y el uso de la teoŕıa
mı́n-máx se hace necesario. En esta última situación, esto nos conduce al análisis
de soluciones de blow-up de problemas aproximados.

El trabajo desarrollado en esta tesis ha dado lugar a dos art́ıculos de investigación,
[31] y [32].

Motivación.
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El principal objetivo de este trabajo es contribuir a la profundización en el conocimiento
de las propiedades de las clases de métricas conformes en variedades Riemannianas.
Recomendamos el trabajo [6] para conocer las nociones básicas de esta área de in-
vestigación.

El estudio de este tipo de problemas empezó con el clásico Teorema de Uniformización.
Éste fue conjeturado por Klein y Poincaré ([62, 85]), y afirma que toda superficie
Riemanniana simplemente conexa es conformemente equivalente a uno de los tres
espacios modelo: R2, S2 o H2. Este resultado fue demostrado por Koebe y Poincaré
([63, 64, 65]) y como consecuencia toda superficie compacta y orientable admite una
métrica conforme con curvatura de Gauss constante.

Llegados a este punto, uno puede preguntarse: dada una superficie compacta (Σ, g) y
una función K(x) definida en Σ, ¿puede encontrarse una métrica conforme g̃ ∈ [g],
tal que su curvatura Gaussiana sea igual a K? Este problema se conoce como el
problema de la curvatura Gaussiana prescrita, y fue propuesto por Kazdan y Warner
en [60]. Si denotamos por g̃ a la métrica conforme g̃ = eug, el problema equivale a
resolver la ecuación

−∆gu+ 2Kg = 2Keu en Σ. (7.1)

Integrando (7.1) en Σ y aplicando el teorema de Gauss-Bonnet, nos damos cuenta
de que existe una restricción de carácter topológico: el signo de K está condicionado
por el de la caracteŕıstica de Euler de la superficie, χ(Σ).

�
Σ

Keu =

�
Σ

Kg = 2πχ(Σ). (7.2)

Hasta el momento, solo los casos χ(Σ) = 0 y χ(Σ) = 1 han sido completamente

resueltos, véase [60, 78, 79]. Un caso especialmente delicado es el llamado problema
de Nirenberg, Σ = S2, debido al efecto del grupo no compacto de transformaciones
conformes de la esfera. En este caso, además, se conocen otras obstrucciones para
la existencia de soluciones aparte de (7.2), como las dadas en [60, 18].

La literatura sobre el problema de Nirenberg es extensa, y hay disponibles muchas
condiciones suficientes para la existencia de soluciones. Por ejemplo, en [79], Moser
demostró que es posible prescribir curvaturas de Gauss con simetŕıa antipodal, propi-
ciando el estudio de (7.1) bajo condiciones de simetŕıa. Otros resultados sin simetŕıas
fueron obtenidos en [23, 24, 89].

En dimensiones superiores, un resultado equivalente al Teorema de Uniformización
no es esperable debido a la naturaleza tensorial de la curvatura. Sin embargo, es
natural considerar contracciones de esta que aún aporten información. Por ejemplo,
en una variedad Riemanniana (M, g) compacta y cerrada de dimensión n ≥ 3, si

consideramos una métrica conforme de la forma g̃ = u
4

n−2 g, con u > 0, las curvaturas



Summary 109

escalares Sg y Sg̃ verifican la siguiente igualdad:

− 4(n− 1)

n− 2
∆gu+ Sgu = Sg̃u

n+2
n−2 en M. (7.3)

La cuestión de encontrar métricas conformes con curvatura escalar constante fue
propuesta por primera vez por Yamabe en [94], y resuelta completamente en [91,
4, 86]. Cuando la curvatura scalar a prescribir es una función arbitraria K(x), este
problema recibe el nombre de problema de la curvatura escalar prescrita.

En este caso también tenemos una restricción sobre el signo de Sg̃ dependiendo de
la clase conforme de M , aunque no se trata de una condición topológica como en el
caso dos-dimensional.

Cuando consideramos (7.3) con Sg̃ = K igual a cero o negativa, siempre existen
soluciones (véase [61]). Sin embargo, aparecen obstrucciones para la existencia de
estas en el caso positivo, y es necesario imponer hipótesis adicionales. Inspirados
por el trabajo pionero [79], en los art́ıculos [43, 54, 56] los autores dan teoremas
de existencia con K positiva verificando una condición de simetŕıa. Teoremas para
funciones más generales aparecieron en [8, 9, 88].

Como observación final, señalamos que las ecuaciones (7.1) y (7.3) son de tipo cŕıtico
desde el punto de vista de las Ecuaciones en Derivadas Parciales; el exponente n+2

n−2

es el exponente cŕıtico de Sobolev en (7.3), proveniente del significado geométrico de
esta, mientras que la no linealidad u→ eu en (7.1) es, de alguna manera, el análogo
al crecimiento cŕıtico en dimensión n = 2.

El problema de las curvaturas Gaussiana y geodésica prescritas

El primer objeto de estudio de esta tesis ha sido la ecuación (7.1) en una superficie
con borde, por lo que es necesario imponer condiciones de contorno. Las condiciones
Dirichlet y Neumann homogéneas en el borde han sido estudiadas en la literatura,
sin embargo, motivados por su significado geométrico consideramos una condición
de contorno no lineal.

En efecto, nuestro objetivo es prescribir no solo la curvatura Gaussiana en Σ, sino
también la curvatura geodésica en ∂Σ. Más concretamente, dada una métrica con-
forme g̃ = eug, si Kg y Kg̃ = K son las curvaturas Gaussianas y hg, hg̃ = h son
las curvaturas geodésicas de ∂Σ relativas a esas métricas, entonces el logaritmo del
factor conforme, u, verifica el siguiente problema de contorno:{

−∆gu+ 2Kg = 2Keu en Σ,
∂u
∂η

+ 2hg = 2heu/2 en ∂Σ,
(7.4)
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donde η denota el normal exterior unitario a ∂Σ. Integrando (7.4) en Σ, por el
teorema de Gauss-Bonnet se tiene:�

Σ

Kg̃e
v +

�
∂Σ

hg̃e
v/2 = 2πχ(Σ). (7.5)

Algunas versiones de este problema han sido ya estudiadas. El caso h = 0 ha sido
tratado en [21]. Además, si K = 0 se conocen los resultados [19, 70, 72] (véase
también [33] para un desarrollo más reciente del problema bajo la perspectiva de
operadores no locales). El caso K y h constantes también ha sido trabajado en
[15, 53, 58], al igual que el problema en el semi-plano ([71, 46, 95]).

Sin embargo, el caso en que ambas curvaturas son no constantes apenas ha sido
estudiado. En [29] se obtienen resultados parciales, pero están lastrados por la
presencia de un multiplicador de Lagrange fuera de control. Además, obstrucciones
para la existencia de soluciones en el caso del disco fueron encontradas en [50]. En
el reciente trabajo [74], el caso K < 0 en dominios diferentes del disco es tratado,
junto a un análisis de soluciones de blow-up.

El problema en el disco

En esta tesis, consideramos el caso χ(Σ) = 1. Por el Teorema de Uniformización,
podemos pasar mediante una transformación conforme al disco, obteniendo Kg = 0,
y hg = 1. Teniendo esto en cuenta, consideraremos el problema:{

−∆u = 2Keu in D2,
∂u
∂η

+ 2 = 2heu/2 on S1,
(7.6)

donde K y h son las curvaturas a prescribir.

Cuando K y h son funciones no constantes, hay algunos resultados parciales de
existencia disponibles. Por ejemplo, cuando una de las curvaturas es nula: [19,
72, 73] para el caso K = 0, y [21] para h = 0. Puede decirse que la acción no
compacta del grupo de transformaciones conformes del disco es lo que hace desafiante
el problema, como pasa para el problema de Nirenberg en Σ = S2. Este fenómeno
ha sido tratado en [19] para K = 0 (consúltese también [33]). En [59] se realiza un
análisis de blow-up con K < 0 y h no constantes. Además, la presencia de bubbles
fue confirmada en [11], mediante técnicas de perturbación singular.

Desde el punto de vista del Cálculo de Variaciones, uno de los principales obstáculos
que el problema de prescribir curvaturas Gaussiana y geodésica presenta es que, a
priori, no hay una estrategia variacional clara. Encontrar un funcional de enerǵıa
adecuado y estudiar sus propiedades es uno de los puntos fuertes de este trabajo;
no solo porque es nuevo en la literatura, sino también por su inusual geometŕıa.

Integrando (7.6), obtenemos:�
D2

Keu +

�
S1

heu/2 = 2π,
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lo cual deja claro que K y h no pueden ser escogidas arbitrariamente: por ejemplo,
no pueden ser simultáneamente no positivas. Definiremos el parámetro ρ como
ρ =

�
D2 Ke

u = 2π −
�
S1 he

u/2. Solo para fijar las ideas, supongamos que 0 < ρ < 2π
y que K y h son funciones positivas. Nuestra intención es demostrar que (7.6) es
equivalente a: 

−∆u = 2ρ Keu�
D2 Keu

en D2,
∂u
∂η

+ 2 = 2(2π − ρ) heu/2�
S1 he

u/2 en S1,

(2π−ρ)2

ρ
=

(
�
S he

u/2)
2

�
D2 Keu

para 0 < ρ < 2π.

(7.7)

Comparado con el problema de prescribir curvatura Gaussiana en una superficie
cerrada, aqúı la masa ρ no está cuantizada, y por tanto (7.7) no puede ser escrita
como una ecuación de campo medio. En su lugar, ρ debe considerarse como una
variable más del problema.

Por otra parte, obsérvese que ahora el problema (7.7) es invariante ante la adición
de constantes a u. Esta formulación variacional puede parecer artificiosa, pero tiene
la ventaja de estar relacionada con los puntos cŕıticos de un funcional de enerǵıa
con buenas propiedades, el cual definimos a continuación:

Definición 7.1. Sean K : D2 → R y h : S1 → R funciones Hölder-continuas y
positivas en algún punto. Se define el espacio de funciones

X =

{
u ∈ H1(D2) :

�
D2

Keu > 0,

�
S1

heu/2 > 0

}
,

que es no vaćıo por las hipótesis sobre K y h, y el Lagrangiano I : X× (0, 2π)→ R
dado por

I(u, ρ) =
1

2

�
D2

|∇u|2 − 2ρ log

�
D2

Keu + 2

�
S1

u− 4(2π − ρ) log

�
S1

heu/2 (7.8)

+ 4(2π − ρ) log(2π − ρ) + 2ρ+ 2ρ log ρ.

Volvemos a destacar el hecho de que el funcional de enerǵıa anterior depende del
par (u, ρ), donde u ∈ H1(D2) y ρ es un número real positivo. Para simplificar
la notación, para un ρ ∈ (0, 2π) fijo, denotaremos por Iρ al funcional u → Iρ(u),
definido en X.

Los resultados de existencia derivan de procesos de minimización. Si congelamos la
variable ρ, la familia de funcionales Iρ es apta para la aplicación de las desigualdades
de tipo Moser-Trudinger (o desigualdades tipo Onofri), que tienen sus análogos
para los términos de borde. De hecho, interpolando estas desigualdades junto a
variaciones de las mismas podemos demostrar que el funcional I está acotado por
debajo, puesto que la cota inferior no depende de ρ, pero no conseguimos coercividad.
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Como primer paso en el estudio del problema, imponemos condiciones de simetŕıa
en K y h para eliminar este fenómeno, à la Moser [79].

En concreto, trabajaremos con un grupo de simetŕıas de la siguiente forma:

Definición 7.2. Denotaremos por G a uno de los siguientes grupos de simetŕıa del
disco:

G es el grupo diédrico Dk con k ≥ 3, o

G es el grupo de rotaciones generado por el giro de ángulo 2π/k, k ≥ 2, o

G es el grupo completo de simetŕıas del disco O(2).

Nótese que ninguno de los grupos enumerados en la definición anterior tiene puntos
fijos en S1, esto es, para cada x ∈ S1 existe φ ∈ G de modo que φ(x) 6= x. Además,
diremos que una función f es G−simétrica si f(x) = f(φ(x)) para toda φ ∈ G y x
en el dominio de f .

Cuando nos restringimos a espacios de funciones G−simétricas, versiones locales o
mejoradas de las desigualdadesde Moser-Trudinger aplican y nos garantizan coer-
cividad para Iρ, permitiéndonos encontrar un mı́nimo global. Nuestro resultado de
existencia principal para el caso del disco es el siguiente:

Teorema 7.1. Sea G como en la definición 7.2, y K : D2 → R, h : S1 → R
funciones G−simétricas, Hölder continuas y no negativas, no simultáneamente cero.
Entonces el problema (7.6) admite una solución.

Este teorema se obtiene minimizando la función ρ → minXG Iρ. Para descartar la
posibilidad de que el mı́nimo se alcance en los extremos del intervalo, son necesarias
estimas de enerǵıa junto a un análisis de los problemas ĺımite.

Gracias a la compacidad de soluciones del problema (7.6), podemos lidiar con el
caso de curvaturas K y h cambiando de signo, siempre que su parte negativa sea
suficientemente pequeña:

Teorema 7.2. Sea G como en la definición 7.2, y K0 : D2 → R, h0 : S1 → R fun-
ciones G−simétricas, Hölder continuas y no negativas, no simultáneamente nulas.
Entonces existe ε > 0 tal que el problema (7.6) admite solución para cualesquiera
funciones Hölder continuas y G−simétricas K, h con ‖K−K0‖L∞+‖h−h0‖L∞ < ε.

El problema de las curvaturas escalar y media prescritas

El segundo problema que estudiamos en esta tesis hace referencia a la ecuación (7.3)
en una variedad Riemanniana con borde, bajo condiciones geométricas de contorno.
Para ser precisos, si (M, g) es una variedad Riemanniana compacta de dimensión
n ≥ 3 con borde ∂M , estamos interesados en la transformación de la curvatura
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escalar Sg y de la curvatura media de ∂M bajo transformaciones conformes de la
métrica.

Si g̃ = u
4

n−2 g es una métrica conforme y escribimos Sg̃ = K, y hg̃ = H, entonces se
tiene la siguiente relación:{

−cn∆gu+ Sgu = Ku
n+2
n−2 en M,

2
n−2

∂u
∂η

+ hgu = Hu
n
n−2 en ∂M.

(7.9)

En la literatura, podemos encontrar varios problemas asociados a esta ecuación.
Han sido menos investigados que el caso cerrado, pero aún aśı hay resultados que
merece la pena comentar.

El primero es el análogo al problema de Yamabe, esto es, estudiar si es posible
deformar g de forma conforme de tal manera que las nuevas curvaturas escalar y
media sean constantes. Un primer criterio para la existencia de soluciones fue dado
en [29], aunque depende de multiplicadores de Lagrange. Escobar trabajó en el
caso en que H = 0 y K es una constante positiva, ahora conocido como problema
de Escobar, y dio algunos resultados parciales positivos [40, 41, 42], que fueron
posteriormente completados en los trabajos [52, 51]. Consúltese también [77] y sus
respectivas referencias.

El caso de curvaturas variables ha sido estudiado en situaciones espećıficas. El caso
H = 0 en la semiesfera fue tratado en [68, 12, 13]. En [25] se da un resultado pertur-
bativo, a saber, los autores estudian el problema de prescribir curvatura escalar nula
y curvatura media cercana a una constante. Los trabajos [1, 36, 25, 93] también
versan sobre el caso K = 0.

Cuando ambas curvaturas son variables, destacamos el trabajo [2], el cual contiene
resultados perturbativos para curvaturas cercanas a constantes en la esfera unidad
de Rn, y [35], en el que se considera el problema con K > 0 en la semiesfera S3

+,
además de realizar un estudio minucioso de las soluciones de blow-up. Finalmente,
en [28] también se estudia el problema para curvaturas negativas, pero las soluciones
arrastran multiplicadores de Lagrange.

Nuestro objetivo aqúı es considerar curvaturas variables K < 0 y H de signo arbi-
trario, y dar resultados acerca de la existencia de soluciones y del comportamiento
de las soluciones tipo bubble. Algunos de nuestros resultados son la contraparte
de otros que aparecen en [74], en el que se estudia el caso dos-dimensional en do-
minios con género positivo. Como veremos, aparecen muchas diferencias cuando la
dimensión es mayor que dos.

Para el enunciado de nuestros teoremas, primero reducimos el problema a un caso
más sencillo usando un resultado de Escobar ([41]), que afirma que toda variedad
Riemanniana compacta de dimensión n ≥ 3 con borde admite una métrica conforme
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con curvatura escalar que no cambia de signo y borde minimal. Esto implica que, sin
perder generalidad, mediante una transformación conforme de la métrica podemos
considerar una métrica de partida con hg = 0 y Sg = S que no cambia de signo.
Siendo aśı, en lo que sigue supondremos que la métrica inicial de nuestra variedad
es aquella dada por el resultado de Escobar, aśı como el hecho de que n ≥ 3.

En vista de (7.9), nuestro objetivo es encontrar soluciones positivas del problema de
contorno: {

−4(n−1)
n−2

∆gu+ Su = Ku
n+2
n−2 en M,

2
n−2

∂u
∂η

= Hu
n
n−2 en ∂M.

(7.10)

La formulación variacional de (7.10) es clásica; las soluciones débiles del problema
se corresponden con los puntos cŕıticos del siguiente funcional de enerǵıa, definido
en H1(M):

I(u) =
2(n− 1)

n− 2

�
M

|∇u|2 +
1

2

�
M

Su2− 1

2∗

�
M

K |u|2
∗
− (n−2)

�
∂M

H |u|2
]

, (7.11)

siendo 2∗ = 2n
n−2

y 2] = 2(n−1)
n−2

los exponentes cŕıticos de Sobolev para M y ∂M ,
respectivamente. Como hemos mencionado antes, asumimos que K < 0, de modo
que el tercer término a la derecha de la igualdad (7.11) es positivo. La interacción
entre este término y el término cŕıtico de borde es crucial para el comportamiento
del funcional.

De hecho, a través de una desigualdad de traza demostramos que la naturaleza del
funcional está fuertemente condicionada por el cociente de las curvaturas prescritas
en el borde, lo cual a su vez nos permite comparar ambos términos cŕıticos. Por
comodidad, definimos la función invariante por dilataciones Dn : ∂M → R como

Dn(x) =
√
n(n− 1)

H(x)√
|K(x)|

. (7.12)

Dependiendo de si Dn es estrictamente menor que 1 o no, nos encontramos en
escenarios completamente diferentes. Remarcamos el hecho de que las fronteras de
esferas geodésicas en espacios hiperbólicos satisfacen Dn > 1, mientras que Dn = 1
en los bordes de horoesferas. Por tanto, si Dn ≥ 1, podŕıan existir soluciones de
blow-up para (7.10) con dichos perfiles.

Suponiendo que Dn(x) < 1 para todo punto x ∈ ∂M , resulta que K eclipsa a H,
y el término positivo asociado en I domina sobre el término de borde con H. El
resultado es que el funcional es coercivo y admite un mı́nimo global.

Nuestro primer resultado hace referencia al caso en que la métrica de Escobar sat-
isface S < 0, y si lo comparamos con [29, 28], resolvemos el problema geométrico
original sin multiplicadores de Lagrange.
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Teorema 7.3. Supongamos que K < 0 en M , y que Dn dada por (7.12) satisface
Dn < 1 en todo punto de ∂M . Entonces, si S < 0, el problema (7.10) tiene solución.

Si S = 0, necesitamos imponer hipótesis adicionales sobre H para evitar la posibili-
dad de que el mı́nimo sea idénticamente cero, y que por tanto la solución obtenida
sea geométricamente admisible.

Teorema 7.4. Supongamos que K < 0 en M , y que Dn < 1 en ∂M . Entonces, si
S = 0 y

�
∂M

H > 0, el problema (7.10) tiene solución.

Por otro lado, si existe un punto p ∈ ∂M con Dn(p) > 1, podemos construir una
sucesión de soluciones ui, con masas concentradas en torno a p, de modo que la
enerǵıa I(ui) tienda a −∞. A pesar de que esto impide la existencia de minimizantes,
en dimensión n = 3 podemos servirnos del Teorema de Paso de Montaña para
obtener una solución de (7.10).

Teorema 7.5. Sea n = 3, y supongamos que S = 0, K < 0 y que H es tal que

(1)
�
∂M

H < 0,

(2) Dn(p) > 1 para algún p ∈ ∂M , y

(3) 1 es un valor regular de Dn.

Entonces, (7.10) admite una solución positiva.

Más adelante explicamos por qué aparece la restricción dimensional n = 3 en el Teo-
rema 7.5, y damos un esbozo de su demostración. Para demostrar la existencia de
soluciones de mı́n-máx es necesario probar que las sucesiones de Palais-Smale de solu-
ciones aproximadas convergen. Al hacer esto, dos obstáculos aparecen: en primer
lugar, necesitamos demostrar que están acotadas en norma, lo cual no está claro en
nuestro caso debido a la triple homogeneidad del funcional de Euler-Lagrange. En
segundo lugar, debido a la presencia de los exponentes cŕıticos en (7.10), incluso las
sucesiones de Palais-Smale acotadas podŕıan no converger.

Para sortear el primer obstáculo usaremos el truco de monotońıa de Struwe, véase
[57, 90], que consiste en perturbar el problema mediante un parámetro de forma que
la enerǵıa sea monótona. Además, utilizamos una aproximación subcŕıtica que nos
garantizará la compacidad para las sucesiones de Palais-Smale. Por tanto, consid-
eraremos la siguiente situación:

Sea (Ki)i una sucesión de funciones regulares definida en M tal que Ki → K en
C2(M), y sea (Hi)i una sucesión de funciones diferenciables en ∂M tal que Hi → H
en C2(∂M). Suponiendo que K < 0, consideramos soluciones positivas (ui)i del
problema perturbado{

−4n−1
n−2

∆gui + Sui = Kiui
pi en M,

2
n−2

∂ui
∂η

= Hiui
pi+1

2 en ∂M,
(7.13)
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es decir, puntos cŕıticos del funcional de enerǵıa:

Ii(u) =
2(n− 1)

n− 2

�
M

|∇u|2 +
1

2

�
M

Su2− 1

pi + 1

�
M

Ki|u|pi+1−4
n− 1

pi + 3

�
∂M

Hi|u|
pi+3

2 ,

(7.14)
con pi ↗ n+2

n−2
. Nos preguntamos si esta sucesión de soluciones está uniformemente

acotada, en cuyo caso convergeŕıa a una solución del problema original (7.10). Ra-
zonando por contradicción, tomamos (ui) de la forma detallada anteriormente, y
definimos su conjunto singular como

S = {p ∈M : ∃xi → p tal que ui(xi) es no acotada}.

A este respecto, obtenemos el siguiente resultado de compacidad:

Teorema 7.6. Sea (ui) una sucesión de soluciones de (7.13), y S el conjunto
sigular asociado. Entonces

(1) S ⊂ {p ∈ ∂M : Dn(p) ≥ 1}.

Por tanto, podemos escribir S = S0 t S1, con S1 = S ∩ {Dn > 1} y S0 =
S ∩ {Dn = 1}. En dimensión n = 3, tenemos además:

(2.1) S1 es una colección finita de puntos.

(2.2) Si S ≤ 0, entonces S1 = ∅.

(2.3) Si Ii(ui) está uniformemente acotada y 1 es un valor regular de Dn, entonces
S0 = ∅.

El resultado anterior describe dos tipos de puntos de blow-up, agrupados en los
subconjuntos S0 y S1. Estos perfiles están en correspondencia con las diferentes
soluciones del siguiente problema en el semiespacio{

−4(n−1)
n−2

∆v = K(p)v
n+2
n−2 en Rn

+,
2

n−2
∂v
∂η

= H(p)v
n
n−2 en ∂Rn

+,
(7.15)

donde p ∈ S . Las soluciones de (7.15) fueron clasificadas en [30] (véase también
[71]) de la siguiente forma:

? Si Dn(p) < 1, entonces (7.15) no tiene soluciones.

? Si Dn(p) = 1, las únicas soluciones son 1−dimensionales y vienen dadas por:

v(x) = vα(x) :=

(
2√

n(n− 2)
xn + α

)−n−2
2

, (7.16)

para todo α > 0.
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? Si Dn(p) > 1, las soluciones reciben el nombre de bubbles y están dadas por la
expresión:

v(x) = bβ(x) :=
(n(n− 2))

n−2
4 β

n−2
2(

|x− x0(β)|2 − β2
)n−2

2

, (7.17)

con x0(β) = −Dn(p)β, en ∈ Rn, para β > 0 arbitrario.

Nos gustaŕıa enfatizar que el perfil de blow-up puede tener masa infinita, contraria-
mente a lo que sucede en el caso sin borde, al menos en dimensión baja. El desarrollo
de un análisis de blow-up en una situación en la que podŕıan aparecer perfiles con
masa infinita, o un número infinito de puntos de blow-up es uno de los principales
objetivos de este trabajo. Además, ambos tipos de blow-up podŕıan coexistir; el
blow-up en puntos de S1 puede entenderse por la invarianza del problema frente a
transformaciones conformes del disco, en analoǵıa a lo que sucede en el caso cerrado.
Sin embargo, en este contexto podemos tener blow-up alrededor de un conjunto in-
finito S0. De hecho, damos un ejemplo expĺıcito de este fenómeno.

Comparado con el caso dos-dimensional estudiado en [74], disfrutamos de una mayor
rigidez en la clasificación de los perfiles ĺımite, puesto que para el semiplano existen
otras soluciones generadas por funciones meromorfas, véase [46]. Por otro lado, en
dimensión n = 2 podemos hacer uso de herramientas del Análisis Complejo, que no
están presentes en dimensiones superiores.

Para tratar la pérdida de compacidad en puntos con Dn > 1, realizamos un estudio
minucioso del comportamiento de las soluciones de blow-up alrededor de ellos, de-
mostrando que en dimensión n = 3 son aislados y simples, y por tanto forman un
conjunto finito de puntos (véase también [35]). Una vez que esto está demostrado,
es posible controlar el comportamiento de estas soluciones también lejos de estos
puntos, excluyendo la presencia de bubbles mediante estimas integrales válidas para
S ≤ 0.

Por otra parte, cerca de puntos de blow-up con Dn = 1, los términos
�
M
|∇ui|2,�

M
|Ki|uipi+1 y

�
∂M

Hiui
pi+3

2 divergen. Asumiendo la acotación de las enerǵıas
Ii(ui), (que es una condición natural para sucesiones de soluciones de mı́n-máx)
demostramos que convergen débilmente a una misma medida en el borde después
de una normalización apropiada. Entonces, mediante una técnica de variación de
dominio demostramos que en tales puntos el gradiente de Dn a lo largo de ∂M
en {Dn = 1} se anula, contradiciendo las hipótesis de regularidad impuestas en el
nivel {Dn = 1}. Comparado con un paso similar de [74], en este caso necesitamos
considerar deformaciones arbitrarias tangentes a ∂M .
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7.2 Italian

Questa tesi riguarda lo studio di due problemi ellittici semilineari che appaiono nel
campo della Geometria Riemanniana. In particolare, siamo interessati a prescri-
vere certe quantità geometriche su varietà Riemanniane con bordo per mezzo di
trasformazioni conformi della metrica, cioè le curvature Gaussiana e geodetica su
una superficie compatta e il suo bordo, e le curvature scalare e media su una varietà
di dimensione superiore.

La maggior parte dei risultati disponibili si concentra sullo studio di queste equazioni
in varietà chiuse, mentre il caso con bordo è stato trattato molto meno. In relazione
a ciò, evidenziamo che la presenza del bordo produce una più ampia varietà di
fenomeni, molti dei quali non trovano una controparte sulle versioni chiuse di questi
problemi. In particolare, la formulazione variazionale del capitolo 4, e gli argomenti
di compattezza ed esistenza del capitolo 5 sono intimamente legati alla presenza del
bordo.

Inoltre, la nostra ricerca è focalizzata sul caso in cui le curvature prescritte sono non
costanti, per il quale ci sono solo pochi risultati noti.

Questo tipo di problemi ammette una struttura variazionale, quindi discuteremo
l’esistenza di soluzioni dal punto di vista del Calcolo delle Variazioni. A volte i
funzionali di energia considerati saranno limitati dal basso e sarà possibile trovare
un minimo globale; in altri casi, tuttavia, questo non è possibile e l’uso della teoria
min-max diventa necessario. In quest’ultima situazione, questo ci porta all’analisi
di blow-up delle soluzioni dei problemi approssimati.

Il lavoro sviluppato in questa tesi ha portato a due articoli di ricerca, [31] e [32].

Motivazione.

L’obiettivo principale di questo lavoro è quello di contribuire all’approfondimento
della conoscenza delle proprietà delle classi conformi delle varietà Riemanniane.
Consigliamo la referenza [6] per le nozioni di base di questa area di ricerca.

Lo studio di questi problemi è iniziato con il classico Teorema di uniformizzazione.
Questo è stato ipotizzato da Klein e Poincaré ([62, 85]), e afferma che ogni superficie
Riemanniana semplicemente connessa è conformemente equivalente a uno dei tre
spazi modello: R2, S2 o H2. Questo risultato fu dimostrato da Koebe e Poincaré
([63, 64, 65]) e come conseguenza ogni superficie compatta e orientabile ammette
una metrica conforme con curvatura di Gauss costante.

A questo punto, ci si può chiedere: data una superficie compatta (Σ, g) e una funzione
K(x) definita su Σ, si può trovare una metrica conforme g̃ ∈ [g] tale che la sua
curvatura gaussiana sia uguale a K? Questo problema è noto come problema della
curvatura Gaussiana prescritta, ed è stato proposto da Kazdan e Warner in [60]. Se



Summary 119

denotiamo con g̃ la metrica conforme g̃ = eug, il problema è equivalente a risolvere
l’equazione:

−∆gu+ 2Kg = 2Keu in Σ. (7.18)

Integrando (7.18) in Σ e applicando il teorema di Gauss-Bonnet, ci rendiamo conto
che esiste una restrizione topologica: il segno di K è condizionato da quello della
caratteristica di Eulero della superficie, χ(Σ).

�
Σ

Keu =

�
Σ

Kg = 2πχ(Σ). (7.19)

Finora, solo i casi χ(Σ) = 0 e χ(Σ) = 1 sono stati completamente risolti, vedi

[60, 78, 79]. Un caso particolarmente difficile è il cosiddetto problema di Nirenberg,
Σ = S2, dovuto all’effetto del gruppo non compatto delle trasformazioni conformi
della sfera. In questo caso, inoltre, sono noti altri ostacoli all’esistenza di soluzioni
oltre a (7.19), come quelli dati in [60, 18].

La letteratura sul problema di Nirenberg è ampia e sono disponibili molte condizioni
sufficienti per l’esistenza di soluzioni. Per esempio, in [79], Moser ha dimostrato che
è possibile prescrivere curvature gaussiane con simmetria antipodale, portando allo
studio di (7.18) sotto condizioni di simmetria. Altri risultati senza simmetrie sono
stati ottenuti in [23, 24, 89].

In dimensioni superiori, un risultato equivalente al Teorema di uniformizzazione
non è da aspettarsi a causa della natura tensoriale della curvatura. Pertanto, è
naturale considerare contrazioni della metrica che forniscono ancora informazioni.
Per esempio, in una varietà Riemanniana compatta e chiusa (M, g) di dimensione

n ≥ 3, se consideriamo una metrica conforme della forma ug̃ = u
4

n−2 g, con u > 0, le
curvature scalare Sg e Sg̃ verificano la seguente uguaglianza:

− 4(n− 1)

n− 2
∆gu+ Sgu = Sg̃u

n+2
n−2 in M. (7.20)

La questione di trovare metriche conformi con curvatura scalare costante è stata
proposta per la prima volta da Yamabe in [94], e completamente risolta in [91, 4, 86].
Quando la curvatura scalare da prescrivere è una funzione arbitraria K(x), questo
problema si chiama problema della curvatura scalare prescritta.

In questo caso abbiamo anche una restrizione sul segno di Sg̃ che dipende dalla
classe conforme di M , sebbene questa non sia una condizione topologica come nel
caso bidimensionale.

Quando consideriamo (7.18) con Sg̃ = K uguale a zero o negativa, ci sono sempre
soluzioni (vedi [61]). Tuttavia, nel caso positivo appaiono degli ostacoli all’esistenza
di questi, ed è necessario imporre delle ipotesi supplementari. Ispirati dal lavoro
pioneristico [79], negli articoli [43, 54, 56] gli autori danno teoremi di esistenza
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con K positivo verificando una condizione di simmetria. Teoremi per funzioni più
generali sono apparsi in [8, 9, 88].

Come osservazione finale, sottolineiamo che dal punto di vista delle equazioni dif-
ferenziali parziali, le equazioni (7.18) e (7.20) sono di tipo critico; l’esponente n+2

n−2

è l’esponente di Sobolev critico in (7.20), derivante dal suo significato geometrico,
mentre la non linearità u→ eu in (7.18) è, in un certo senso, l’analogo della crescita
critica in dimensione n = 2.

Il problema delle curvature Gaussiana e geodetica prescritte

Il primo oggetto di studio di questa tesi è stata l’equazione (7.18) su una superficie
con bordo, quindi è necessario imporre condizioni al bordo. Le condizioni omogenee
di Dirichlet e Neumann sul bordo sono state studiate nella letteratura, tuttavia,
motivate dal suo significato geometrico, consideriamo una condizione al contorno
non lineare.

Infatti, il nostro obiettivo è di prescrivere non solo la curvatura gaussiana in Σ, ma
anche la curvatura geodetica in ∂Σ. Più concretamente, data una metrica conforme
g̃ = eug, se Kg e Kg̃ = K sono le curvature gaussiane e hg, hg̃ = h sono le curvature
geodetiche di Σ relative a quelle metriche, allora il logaritmo del fattore conforme,
u, sodisfa il seguente problema al contorno:{

−∆gu+ 2Kg = 2Keu in Σ,
∂u
∂η

+ 2hg = 2heu/2 in ∂Σ,
(7.21)

dove η denota la normale esterna unitaria a Σ. Integrando (7.21) in Σ, dal teorema
di Gauss-Bonnet abbiamo:

�
Σ

Kg̃e
v +

�
∂Σ

hg̃e
v/2 = 2πχ(Σ). (7.22)

Alcune versioni di questo problema sono già state studiate. Il caso h = 0 è stato
trattato in [21], mentre che il caso K = 0 in [19, 70, 72] (vedi anche [33] per
uno sviluppo più recente del problema nella prospettiva degli operatori non locali).
Inoltre, il caso con K e h costanti è stato trattato in [15, 53, 58], cos̀ı come il
problema nel semipiano ([71, 46, 95]).

Tuttavia, il caso in cui entrambe curvature sono non costanti non è stato appena
studiato. Risultati parziali sono ottenuti in [29], ma sono appesantiti dalla presenza
di un moltiplicatore di Lagrange fuori controllo. Inoltre, ostacoli all’esistenza di
soluzioni nel caso del disco sono stati trovati in [50]. Nel recente articolo [74], viene
trattato il casoK < 0 in domini diversi dal disco, insieme ad un’analisi delle soluzioni
blow-up.
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Il problema sul disco

In questa tesi, consideriamo il caso χ(Σ) = 1. Usando il Teorema di uniformiz-
zazione, possiamo passare attraverso una trasformazione conforme al disco, otte-
nendo Kg = 0, e hg = 1. Fatta questa osservazione, consideriamo il problema:{

−∆u = 2Keu in D2,
∂u
∂η

+ 2 = 2heu/2 in S1,
(7.23)

dove K e h sono le curvature da prescrivere.

Quando K e h sono funzioni non costanti, sono disponibili alcuni risultati parziali
di esistenza. Per esempio, quando una delle curvature è zero: [19, 72, 73] per il
caso K = 0, e [21] per h = 0. Si può dire che l’azione non compatta del gruppo
di trasformazioni conformi del disco è ciò che rende il problema impegnativo, come
accade per il problema di Nirenberg in Σ = S2. Questo fenomeno è stato trattato
in [19] per K = 0 (consultare anche [33]). In [59], viene fatto un’analisi di blow-up
con K < 0 e h non costante. Inoltre, la presenza di bolle è stata confermata in [11],
utilizzando tecniche di perturbazione singolare.

Dal punto di vista del Calcolo delle Variazioni, uno dei principali ostacoli che pre-
senta il problema delle curvature Gaussiana e geodetica prescritte è che, a priori,
non esiste una chiara strategia variazionale. Trovare un funzionale di energia adatto
e studiare le sue proprietà è uno dei punti salienti di questo lavoro; non solo perché
è nuovo nella letteratura, ma anche per la sua insolita geometria.

Integrando (7.23), abbiamo:

�
D2

Keu +

�
S1

heu/2 = 2π,

da dove è chiaro che K e h non possono essere scelti arbitrariamente: per esempio,
non possono essere contemporaneamente non positive. Definiamo il parametro ρ
come ρ =

�
D2 Ke

u = 2π−
�
S1 he

u/2. Solo per fissare le idee, supponiamo che 0 < ρ <
2π e che K e h siano funzioni positive. La nostra intenzione è mostrare che (7.23)
è equivalente a: 

−∆u = 2ρ Keu�
D2 Keu

in D2,
∂u
∂η

+ 2 = 2(2π − ρ) heu/2�
S1 he

u/2 in S1,

(2π−ρ)2

ρ
=

(
�
S he

u/2)
2

�
D2 Keu

per 0 < ρ < 2π.

(7.24)

Se confrontiamo questo con il problema di prescrivere la curvatura gaussiana su una
superficie chiusa, qui la massa ρ non è quantizzata, e quindi (7.24) non può essere
scritta come un’equazione di campo medio. Invece, ρ deve essere considerata come
un’altra incognita del problema.
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D’altra parte, ora il problema (7.24) è invariante per la somma di costanti a u.
Questa formulazione variazionale può sembrare artificiosa, ma ha il vantaggio di
essere legata ai punti critici di un funzionale di energia con buone proprietà, che
definiamo qui di seguito:

Definizione 7.3. Siano K : S1 → R e h : S1 → R funzioni Hölder-continue e
positive in qualche punto. Definiamo lo spazio di funzioni

X =

{
u ∈ H1(D2) :

�
D2

Keu > 0,

�
S1

heu/2 > 0

}
,

che è non vuoto per le condizioni su K e h, e la Lagrangiana I : X × (0, 2π) → R
data da

I(u, ρ) =
1

2

�
D2

|∇u|2 − 2ρ log

�
D2

Keu + 2

�
S1

u− 4(2π − ρ) log

�
S1

heu/2 (7.25)

+ 4(2π − ρ) log(2π − ρ) + 2ρ+ 2ρ log ρ.

Sottolineiamo il fatto che il funzionale I dipende dalla coppia (u, ρ), dove u ∈ H1(D2)
e ρ è un numero reale positivo. Per semplificare la notazione, per un ρ ∈ (0, 2π)
fissato, denotiamo con Iρ il funzionale u→ Iρ(u), definito su X.

I risultati di esistenza derivano dai processi di minimizzazione. Se congeliamo la vari-
abile ρ, la famiglia di funzionali Iρ è adatta per l’applicazione delle disuguaglianze
di tipo Moser-Trudinger (o disuguaglianze di tipo Onofri), che hanno i loro analoghi
per i termini al bordo. Infatti, interpolando queste disuguaglianze insieme a vari-
azioni di esse possiamo mostrare che il funzionale I è limitato dal basso, poiché il
limite inferiore non dipende da ρ, ma non abbiamo coercitività. Come primo passo
nello studio del problema, imponiamo condizioni di simmetria su K e h per eliminare
questo fenomeno, à la Moser [79].

In particolare, lavoreremo con un gruppo di simmetrie come segue:

Definizione 7.4. Denotiamo con G uno dei seguenti gruppi di simmetria del disco:

G è il gruppo diedrale Dk con k ≥ 3, oppure

G è il gruppo ciclico generato dalla rotazione di angolo 2π/k, k ≥ 2, oppure

G è il gruppo completo delle simmetrie del disco O(2).

Si noti che nessuno dei gruppi elencati nella definizione precedente ha punti fissi in
S1, cioè, per ogni x ∈ S1 esiste φ ∈ G in modo che φ(x) 6= x. Inoltre, diremo che
una funzione f è G−simmetrica se f(x) = f(φ(x)) per tutti φ ∈ G e x nel dominio
di f .

Quando ci limitiamo a spazi di funzioni G−simmetriche, si applicano versioni locali
o migliorate delle disuguaglianze di Moser-Trudinger e ci garantiscono la coercitività
per Iρ, permettendoci di trovare un minimo globale. Il nostro principale risultato di
esistenza per il caso del disco è il seguente:
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Teorema 7.7. Sia G come nella Definizione 7.4, e K : D2 → R, h : S1 → R, fun-
zioni G−simmetriche, Hölder continue e non negative, non simultaneamente nulle.
Allora il problema (7.23) ammette una soluzione.

Questo teorema si ottiene minimizzando la funzione ρ → minXG Iρ. Per escludere
la possibilità che il minimo sia raggiunto agli estremi dell’intervallo, sono necessarie
stime dell’energia e un’analisi dei problemi limite.

Grazie alla compattezza delle soluzioni del problema (7.23), possiamo affrontare il
caso di curvature K e h che cambiano segno, a condizione che la loro parte negativa
sia abbastanza piccola:

Teorema 7.8. Sia G come nella definizione 7.4, e K0 : D2 → R, h0 : S1 → R
funzioni G−simmetriche, Hölder-continue e non negative, non contemporaneamente
nulle. Allora esiste ε > 0 tale che il problema (7.23) ammette soluzione per qualsiasi
funzioni Hölder-continue e G−simmetriche K, h con ‖K−K0‖L∞+‖h−h0‖L∞ < ε.

Il problema delle curvature scalare e media prescritte

Il secondo problema che abbiamo studiato in questa tesi si riferisce all’equazione
(7.20) su una varietà Riemanniana con bordo, sotto condizioni geometriche al con-
torno. Per essere precisi, se (M, g) è una varietà riemanniana compatta di dimen-
sione n ≥ 3 con bordo ∂M , siamo interessati alla trasformazione della curvatura
scalare Sg e la curvatura media di ∂M sotto trasformazioni conformi della metrica.

Se g̃ = u
4

n−2 g è una metrica conforme e scriviamo Sg̃ = K, e hg̃ = H, allora abbiamo
la seguente legge di evoluzione:{

−cn∆gu+ Sgu = Ku
n+2
n−2 in M,

2
n−2

∂u
∂η

+ hgu = Hu
n
n−2 in ∂M.

(7.26)

Nella letteratura, possiamo trovare diversi problemi associati a questa equazione.
Sono stati meno indagati del caso chiuso, ma ci sono ancora risultati che vale la
pena commentare.

Il primo è l’analogo del problema di Yamabe, cioè studiare se è possibile deformare
g conformemente in modo tale che le nuove curvature scalare e media siano costanti.
Un primo criterio per l’esistenza di soluzioni è stato dato in [29], anche se dipende
da moltiplicatori di Lagrange. Escobar ha lavorato sul caso in cui h = 0 e K è
una costante positiva, ora noto come problema di Escobar, e ha dato alcuni risultati
parziali positivi, che sono stati poi completati negli articoli [52, 51]. Vedi anche [77]
e i loro rispettivi riferimenti.

Il caso in cui le curvature sono variabili è stato studiato in situazioni specifiche. Il
caso h = 0 nella semisfera è stato trattato in [68, 12, 13]. In [25] viene dato un
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risultato perturbativo, cioè gli autori studiano il problema di prescrivere curvatura
scalare zero e curvatura media vicina ad una costante. Gli articoli [1, 36, 25, 93]
considerano pure il caso K = 0.

Quando entrambe curvature sono variabili, evidenziamo il lavoro [2], che contiene
risultati perturbativi per curvature prossime a costanti sulla sfera unitaria di Rn, e
[35], dove considerano il problema con K > 0 sulla semisfera S3

+, oltre ad uno studio
approfondito delle soluzioni di blow-up. Infine, in [28] è studiato anche il problema
per curvature negative, ma le soluzioni includono moltiplicatori di Lagrange.

Il nostro obiettivo qui è quello di considerare curvature variabili K < 0 e H di
segno arbitrario, e di dare risultati sull’esistenza di soluzioni e sul comportamento
delle soluzioni di tipo bolle. Alcuni dei nostri risultati sono la controparte di altri
che appaiono in [74], in cui il caso bidimensionale è studiato in domini con genere
positivo. Come vedremo, appaiono molte differenze quando la dimensione è maggiore
di due.

Per enunciare i nostri teoremi, riduciamo prima il problema a un caso più semplice
usando un risultato di Escobar ([41]), che afferma che ogni varietà Riemanniana
compatta di dimensione n ≥ 3 con bordo ammette una metrica conforme con cur-
vatura scalare che non cambia segno e bordo minimale. Questo implica che, senza
perdita di generalità, per mezzo di una trasformazione conforme della metrica possi-
amo considerare una metrica di partenza con hg = 0 e Sg = S che non cambia segno.
Alla luce di questo fatto, in ciò che segue assumeremo che la metrica iniziale della
nostra varietà sia quella data dal risultato di Escobar, e anche il fatto che n ≥ 3.

In virtù della (7.26), il nostro obiettivo è trovare soluzioni positive del problema al
contorno: {

−4(n−1)
n−2

∆gu+ Su = Ku
n+2
n−2 in M,

2
n−2

∂u
∂η

= Hu
n
n−2 in ∂M.

(7.27)

La formulazione variazionale di (7.27) è classica; le soluzioni deboli del problema
corrispondono ai punti critici del seguente funzionale di energia, definito su H1(M):

I(u) =
2(n− 1)

n− 2

�
M

|∇u|2 +
1

2

�
M

Su2− 1

2∗

�
M

K |u|2
∗
− (n−2)

�
∂M

H |u|2
]

, (7.28)

essendo 2∗ = 2n
n−2

y 2] = 2(n−1)
n−2

gli esponenti critici di Sobolev per M e ∂M , rispet-
tivamente. Come abbiamo detto prima, assumiamo che K < 0, quindi il terzo
termine a destra dell’uguaglianza (7.28) è positivo. L’interazione tra questo termine
e il termine critico al bordo è cruciale per il comportamento del funzionale.
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Infatti, attraverso una disuguaglianza di traccia mostriamo che la natura del fun-
zionale è fortemente condizionata dal quoziente delle curvature prescritte sul bordo,
che a sua volta ci permette di confrontare entrambi i termini critici. Per comodità,
definiamo la funzione invariante per riscalamento Dn : ∂M → R come

Dn(x) =
√
n(n− 1)

H(x)√
|K(x)|

. (7.29)

A seconda che Dn sia strettamente inferiore a 1 o meno, ci troviamo in scenari
completamente diversi. Sottolineiamo il fatto che i bordi delle sfere geodetiche negli
spazi iperbolici soddisfano Dn > 1, mentre Dn = 1 ai bordi delle orosfere. Quindi,
se Dn ≥ 1, potrebbero esistere soluzioni di blow-up per (7.27) con tali profili.

Assumendo che Dn(x) < 1 per ogni punto x ∈ ∂M , risulta che K eclissa H, e il
termine positivo associato in I domina sul termine di bordo con H. Il risultato è
che il funzionale è coercitivo e ammette un minimo globale.

Il nostro primo risultato è per il caso in cui la metrica di Escobar soddisfa S < 0, e
confrontato con [29, 28], risolviamo il problema geometrico originale senza moltipli-
catori di Lagrange.

Teorema 7.9. Supponiamo che K < 0 in M , e che Dn dato da (7.29) soddisfa
Dn < 1 in ogni punto di ∂M . Allora, se S < 0, il problema (7.27) ha una soluzione.

Se S = 0, dobbiamo imporre ipotesi su H per evitare la possibilità che il min-
imo sia identicamente zero, e quindi che la soluzione ottenuta sia geometricamente
ammissibile.

Teorema 7.10. Supponiamo che K < 0 in M , e che Dn < 1 in ∂M . Allora, se
S = 0 e

�
∂M

H > 0, il problema (7.27) ha una soluzione.

D’altra parte, se esiste un punto p ∈ M con Dn(p) > 1, possiamo costruire una
successione di soluzioni ui, con masse concentrate intorno a p, in modo che l’energia
I(ui) tenda a −∞. Anche se questo impedisce l’esistenza di minimizzatori, in di-
mensione n = 3 possiamo usare il Teorema del passo montano per ottenere una
soluzione di (7.27).

Teorema 7.11. Sia n = 3, e supponiamo che S = 0, K < 0 e che H sia tale che

(1)
�
∂M

H < 0,

(2) Dn(p) > 1 per qualche p ∈ ∂M , e

(3) 1 è un valore regolare di Dn.

Allora, (7.27) ammette una soluzione positiva.
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Più avanti spiegheremo perché la restrizione n = 3 appare nel Teorema 7.11, e
daremo un’idea della sua dimostrazione. Per provare l’esistenza di soluzioni min-
max è necessario provare che le successioni di Palais-Smale di soluzioni approssimate
convergono. Nel fare questo, appaiono due ostacoli: in primo luogo, abbiamo bisogno
di dimostrare che sono limitate in norma, e questo non è chiaro nel nostro caso
a causa della triplice omogeneità del funzionale di energia. In secondo luogo, a
causa della presenza degli esponenti critici in (7.27), le successioni di Palais-Smale
potrebbero non convergere.

Per aggirare il primo ostacolo useremo il trucco della monotonia di Struwe, vedi
[57, 90], che consiste in perturbare il problema inserendo un parametro in modo che
l’energia sia monotona. Inoltre, usiamo un’approssimazione sottocritica che garan-
tisce la compattezza per le successioni di Palais-Smale. Pertanto, considereremo la
seguente situazione:

Sia (Ki)i una successione di funzioni regolari definite su M tale che Ki → K in
C2(M), e siaa (Hi)i una successione di funzioni differenziabili su ∂M tale che Hi →
H su C2(∂M). AssumendoK < 0, consideriamo soluzioni positive (ui)i del problema
perturbato {

−4n−1
n−2

∆gui + Sui = Kiui
pi in M,

2
n−2

∂ui
∂η

= Hiui
pi+1

2 in ∂M,
(7.30)

cioè, i punti critici del funzionale di energia:

Ii(u) =
2(n− 1)

n− 2

�
M

|∇u|2 +
1

2

�
M

Su2− 1

pi + 1

�
M

Ki|u|pi+1−4
n− 1

pi + 3

�
∂M

Hi|u|
pi+3

2 ,

(7.31)
con pi ↗ n+2

n−2
. Ci chiediamo se questa successione di soluzioni è uniformemente lim-

itata, nel qual caso convergerebbe ad una soluzione del problema originale (7.27).
Ragionando per contraddizione, prendiamo (ui) come sopra, e definiamo il suo in-
sieme singolare come

S = {p ∈M : ∃xi → p tale che ui(xi) non è limitata}.

A questo proposito, otteniamo il seguente risultato di compattezza:

Teorema 7.12. Sia (ui) una successione di soluzioni di (7.30), e S l’insieme sigo-
lare associato. Allora

(1) S ⊂ {p ∈ ∂M : Dn(p) ≥ 1}.

Quindi, possiamo scrivere S = S0 t S1, con S1 = S ∩ {Dn > 1} y S0 =
S ∩ {Dn = 1}. In dimensione n = 3, abbiamo inoltre
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(2.1) S1 è una collezione finita di punti.

(2.2) Se S ≤ 0, allora S1 = ∅.

(2.3) Se Ii(ui) è uniformemente limitata e 1 è un valore regolare di Dn, poi S0 = ∅.

Il risultato precedente descrive due tipi di punti di blow-up, raggruppati nei sot-
toinsiemi S0 e S1. Questi profili corrispondono alle diverse soluzioni del seguente
problema nel semispazio.{

−4(n−1)
n−2

∆v = K(p)v
n+2
n−2 in Rn

+,
2

n−2
∂v
∂η

= H(p)v
n
n−2 in ∂Rn

+,
(7.32)

dove p ∈ S . Le soluzioni di (7.32) sono state classificate in [30] (vedi anche [71])
come segue:

? Se Dn(p) < 1, allora (7.32) non ha soluzioni.

? Se Dn(p) = 1, le uniche soluzioni sono 1-dimensionali e vengono date da:

v(x) = vα(x) :=

(
2√

n(n− 2)
xn + α

)−n−2
2

, (7.33)

per tutti α > 0.

? Se Dn(p) > 1, le soluzioni sono chiamate bolle e hanno l’espressione:

v(x) = bβ(x) :=
(n(n− 2))

n−2
4 β

n−2
2(

|x− x0(β)|2 − β2
)n−2

2

, (7.34)

con x0(β) = −Dn(p)β, en ∈ Rn, per β > 0 arbitrario.

Vorremmo sottolineare che il profilo di blow-up può avere una massa infinita, con-
trariamente a quanto accade nel caso senza bordo, almeno in dimensione bassa. Lo
sviluppo di un’analisi di blow-up in una situazione in cui potrebbero apparire profili
con massa infinita o un numero infinito di punti di blow-up è uno degli obiettivi
principali di questa tesi. Inoltre, entrambi i tipi di blow-up potrebbero coesistere; il
blow-up nei punti S1 può essere capito dall’invarianza del problema per le trasfor-
mazioni conformi del disco, in analogia con il caso chiuso. Tuttavia, in questo con-
testo possiamo avere blow-up intorno ad un insieme infinito S0. In effetti, diamo
anche un esempio esplicito di questo fenomeno.

In confronto al caso bidimensionale studiato in [74], abbiamo una maggiore rigidità
nella classificazione dei profili limite, poiché per il semipiano ci sono altre soluzioni
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generate da funzioni meromorfe, vedi [46]. D’altra parte, in dimensione n = 2 possi-
amo fare uso di strumenti di Analisi Complessa, che non sono presenti in dimensioni
superiori.

Per affrontare la perdita di compattezza nei punti con Dn > 1, eseguiamo uno studio
approfondito del comportamento delle soluzioni di blow-up intorno a quei punti,
mostrando che in dimensione n = 3 sono isolati e semplici, e quindi formano un
insieme finito di punti (vedi anche [35]). Una volta dimostrato questo, è possibile
controllare il comportamento di queste soluzioni anche lontano da questi punti,
escludendo la presenza di bolle per mezzo di stime integrali valide per S ≤ 0.

Invece, vicino ai punti di blow-up con Dn = 1, i termini
�
M
|∇ui|2,

�
M
|Ki|uipi+1 e�

∂M
Hiui

pi+3

2 divergono. Assumendo la limitatezza delle energie Ii(ui), (che è una
condizione naturale per le successioni di soluzioni min-max) mostriamo che conver-
gono debolmente alla stessa misura sul bordo dopo un’appropriata normalizzazione.
Poi, con una tecnica di variazione del dominio mostriamo che in tali punti il gradi-
ente di Dn lungo ∂M in {Dn = 1} si annulla, contraddicendo le ipotesi di regolarità
imposte sul livello {Dn = 1}. Paragonato ad un argomento simile in [74], in questo
caso dobbiamo considerare deformazioni arbitrarie tangenti a ∂M .
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[74] López-Soriano, R., Malchiodi, A., Ruiz, D., Conformal metrics with
pescribed Gaussian and geodesic curvatures, Annales Scient. E.N.S., to appear.
arxiv.org/1806.11533.
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