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Summary

Since their theoretical development in the �rst half of the XXth century,
surveys have been the standard procedure to obtain information from a po-
pulation of interest. The statistical properties of the estimators of population
parameters, such as totals, means or proportions, allow researchers to make
inferences about a target population using only a reduced sample of it, as
well as obtain a measure of the variability of the estimations.

The �rst surveys were administrated by directly interviewing the respon-
dents in person, a mode known as face-to-face surveying. This administration
mode has been considered the "gold standard"practice in surveys, but their
increasing costs and the advances in communication technologies favored the
rise of telephone surveys and self-administered questionnaires, such as those
used in mail surveys.

In the last decades, these modes have also experienced an increase in
costs and coverage problems, as well as a decline in response rates. Again,
the development of new technologies has been the factor that has allowed the
appearance of a new set of questionnaire administration techniques known as
online surveys. Some examples include SMS surveys, e-mail surveys, smartp-
hone surveys, and especially Web surveys, which are those that are adminis-
tered and completed in web browsers.

Online surveys comprise many advantages for researchers to conduct their
studies. Recruitment of participants can be done much faster than in other
survey modes, and at largely reduced costs. In addition, the use of techno-
logy allows researchers to design questionnaires with a wider spectrum of
possibilities than in face-to-face, telephone or mail surveys.

On the other hand, online surveys present several relevant sources of
error. By de�nition, such surveys can only reach online users or people with
some kind of access to information and communication technology networks.
This is an important coverage issue that can lead to biased estimates if the
composition of the o�ine population di�ers signi�cantly from that of the
online population, which is often the case as the di�erences are associated
to demographics such as education level or age.

In addition, the impossibility to �nd any reliable sampling frame of the
online population contributes to the use of self-selection procedures in onli-
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ne surveys. This practice constitutes an example of nonprobability sampling
where the estimators of population parameters and their variance cannot
be calculated because of the inability of inclusion probabilities to meet the
requirements of a probability sampling. The main consequence of the ap-
plication of these procedures is selection bias, which can be very relevant
if there is any relationship between propensity to participate (self-select) in
the survey and the variables of interest of the study.

In those cases where a sampling frame is available for an online survey,
and therefore it is possible to design a sampling scheme, non-response bias
is also prone to appear. This is a particularly relevant issue in online panel
surveys, and it has been associated with factors such as questionnaire length,
incentives or invitation reminders.

Some methods have been developed in survey methodology literature to
address these issues. Non-response error is a common problem to all proba-
bility sampling surveys, and in consequence many methods have been de-
veloped to mitigate it, from which imputation and reweighting techniques
can be pointed out. The correction of coverage and self-selection biases de-
pends on the auxiliary information available. If only population totals for a
set of covariates are available, calibration procedures can be applied; these
have been proven to reduce coverage error, but their use in the correction of
self-selection bias in online surveys is unclear.

In some cases, a probability survey of reference, conducted in the same
target population, is available. The variable of interest has not been measured
on it, but if some auxiliary covariates (also measured in the online survey) are
available, some adjustments can be considered. The most remarkable ones
are Propensity Score Adjustment (PSA) and Statistical Matching or Mass
Imputation. These adjustments focus on the mitigation of self-selection bias.

Finally, if a population census is available for some auxiliary covaria-
tes (also measured in the online survey), methods based on superpopula-
tion modeling can be considered, such as model-based, model-adjusted and
model-calibrated estimators. These methods have been mostly considered in
probability sampling contexts, although some recent works adapt some of
them to nonprobability sampling problems.

To contribute with the development of online surveys, we propose some
methodological advances, such as the development of estimators of general
parameters and the estimator of their variance, the study of the properties
of the combination of PSA and calibration, the use of modern prediction
techniques and variable selection methods in PSA, and the adaptation of all
the superpopulation modeling approaches to the nonprobability sampling
context considering modern prediction techniques as well.

We also adapt the weight smoothing strategy, developed for increasing
the e�ciency of the estimators in multipurpose probability surveys, to the
nonprobability sampling context. Adapting the weighting adjustments exis-
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tent for such samples to multipurpose surveys could be the key to their adop-
tation in the production of o�cial statistics or their inclusion in large-scale
studies.

Finally, we use PSA in the study of health-related variables in health-
care professionals using data from an online survey as the main source of
information and the population census as the reference sample. We compa-
re the results to the unadjusted case and evaluate the performance of the
aforementioned adjustment.

Note: This thesis is presented as a compendium of seven publications
in relation with the contents of the thesis. The full version of the papers is
included in Appendices A1 - A7.





Resumen

Desde su desarrollo teórico en la primera mitad del siglo XX, las encuestas
han sido el método estándar de obtención de información de una población
de interés. Las propiedades estadísticas de los estimadores de parámetros
poblacionales, como los totales, las medias o las proporciones, permiten a
los investigadores hacer inferencia sobre una población objetivo utilizando
únicamente una muestra reducida de ella, así como obtener una medida de
la variabilidad de las estimaciones.

Las primeras encuestas fueron administradas entrevistando directamen-
te a los encuestados en persona, un modo conocido como la encuesta cara
a cara. Este modo de administración ha sido considerado como la práctica
"gold standard.en encuestas, pero sus crecientes costes y los avances en las
tecnologías de la comunicación favorecieron el surgimiento de encuestas tele-
fónicas y cuestionarios autoadministrados, como los empleados en encuestas
por correo.

En las últimas décadas, estos modos también han experimentado un in-
cremento en costes y problemas de cobertura, así como un declive de las
tasas de respuesta. De nuevo, el desarrollo de nuevas tecnologías ha sido el
factor que ha permitido la aparición de un nuevo conjunto de técnicas de ad-
ministración de cuestionarios conocido como las encuestas online. Algunos
ejemplos incluyen las encuestas por SMS, las encuestas por e-mail, las en-
cuestas por smartphone y especialmente las encuestas Web, que son aquellas
que se administran y se completan en navegadores web.

Las encuestas online incluyen muchas ventajas para los investigadores
de cara a realizar sus estudios. El reclutamiento de participantes puede ser
realizado mucho más rápido que en otros modos de encuesta, y con costes
ampliamente reducidos. Además, el uso de la tecnología permite a los inves-
tigadores diseñar cuestionarios con un espectro más amplio de posibilidades
que en las encuestas cara a cara, telefónicas o por correo.

Por otra parte, las encuestas online presentan algunas fuentes de error
relevantes. Por de�nición, estas encuestas sólo pueden llegar hasta usuarios
online o personas con algún tipo de acceso a las redes de las tecnologías de la
información y comunicación. Este es un importante problema de cobertura
que puede traducirse en estimaciones sesgadas si la composición de la pobla-
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ción o�ine di�ere signi�cativamente de la de la población online, lo que suele
ser el caso dado que las diferencias están asociadas a variables demográ�cas
como el nivel educativo o la edad.

Junto a ello, la imposibilidad de encontrar algún marco muestral �able
de la población online contribuye al uso de técnicas de autoselección en las
encuestas online. Esta práctica constituye un ejemplo de muestreo no pro-
babilístico donde la varianza no puede ser calculada por la imposibilidad de
las probabilidades de inclusión de cumplir los requerimientos de un muestreo
probabilístico. La principal consecuencia de la aplicación de estos métodos
es el sesgo de selección, que puede ser muy relevante si existe alguna rela-
ción entre la propensión a participar (autoseleccionarse) en la encuesta y las
variables de interés del estudio.

En aquellos casos en los que haya un marco muestral disponible para una
encuesta online, y por tanto sea posible diseñar un esquema de muestreo, el
sesgo de no respuesta también es proclive a aparecer. Este problema es par-
ticularmente relevante en las encuestas de paneles online, y ha sido asociado
a factores como la longitud del cuestionario, los incentivos o los recorda-
torios de invitación. Se han desarrollado algunos métodos en la literatura
para atajar estos problemas. El sesgo de no respuesta es un problema común
a todas las encuestas probabilísticas, y en consecuencia se han desarrollado
muchos métodos para mitigarlo, de los cuales se pueden destacar las técnicas
de imputación y reponderación.

La corrección de los sesgos de selección y cobertura depende de la infor-
mación auxiliar disponible. Si sólo están disponibles los totales poblacionales
para un conjunto de covariables, se pueden aplicar métodos de calibración;
se ha comprobado que éstos reducen el error de cobertura, pero su uso en la
corrección del sesgo de autoselección en las encuestas online no está claro.

En algunos casos, una encuesta probabilística de referencia, llevada a ca-
bo en la misma población objetivo, está disponible. La variable de interés no
ha sido medida en ella, pero si hay disponibles algunas covariables auxilia-
res (también medidas en la encuesta online), se pueden considerar algunos
ajustes. Los más conocidos son el Propensity Score Adjustment (PSA) y
el Statistical Matching o Mass Imputation. Estos ajustes se centran en la
mitigación del sesgo de selección.

Finalmente, si está disponible un censo de la población para algunas
covariables auxiliares (también medidas en la encuesta online), se pueden
considerar métodos basados en los modelos de superpoblación, como los esti-
madores modelo basado, modelo asistido y modelo calibrado. Estos métodos
se han considerado principalmente en contextos de muestreo probabilístico,
aunque algunos trabajos recientes adaptan algunos de ellos a problemas de
muestreo no probabilístico.

Para contribuir al desarrollo de las encuestas online, proponemos algu-
nos avances metodológicos, como el desarrollo de estimadores de parámetros
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generales y el estimador de su varianza, el estudio de las propiedades de la
combinación de PSA y calibración, el uso de técnicas modernas de predic-
ción y selección de variables en PSA, y la adaptación de todos los métodos
de modelos de superpoblación al contexto del muestreo no probabilístico
considerando asimismo técnicas modernas de predicción.

Adaptamos también la estrategia de suavizado de pesos, desarrollada
para incrementar la e�ciencia de los estimadores en encuestas probabilísti-
cas multipropósito, al contexto del muestreo no probabilístico. Adaptar los
ajustes de ponderación existentes para estas muestras a las encuestas multi-
propósito podría ser la clave para adoptarlas en la producción de estadísticas
o�ciales o incluirlas en estudios a gran escala.

Finalmente, empleamos PSA en el estudio de variables relacionadas con
la salud en profesionales sanitarios utilizando datos de una encuesta online
como la principal fuente de información y el censo de la población como
la muestra de referencia. Comparamos los resultados al caso sin ajustar y
evaluamos el rendimiento del mencionado ajuste.

Nota: Esta tesis se presenta como un compendio de 7 publicaciones rela-
cionadas con los contenidos de la tesis. La versión íntegra de los artículos se
incluye en los Apéndices A1 - A7.
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Chapter 1

Introduction

Statistics, as the science of quantifying the characteristics present in real
word, rely largely on survey sampling theory. Throughout history, the met-
hods used to obtain �gures from a population, such as total tax revenue or
total number of crops available, were mainly censuses of the entire target
population. According to Bethlehem (2009b), the �rst known application
of a sample of individuals to make generalizations about a given popula-
tion was done in the popular book Natural and Political Observations Made
upon the Bills of Mortality by John Graunt in 1662. In one of its chapters,
Grant attempted to estimate the total population of London using the total
number of burials per year across the city, the estimated mean number of
family members and the estimated annual number of deceases per family.
By combining these �gures in a very similar calculation to that of the ratio
estimator used nowadays, he estimated a total population of 403,000 inha-
bitants in 1661 (see Chapter 7 in Hald (2003) for more details on Graunt's
book). The rise of empirical sciences in the XIXth century saw an important
increase in the use of samples for experimentation purposes. However, as
noted in Bethlehem (2009b), those e�orts did not account for any statisti-
cal sampling principles despite the earlier development of probability theory,
although some surveys attempted to follow a sample design to ensure repre-
sentativeness of the population but without accounting for sample variability
or inclusion probabilities. It was not until the work of Neyman (1934) when
a theoretical framework for probability sampling was established, which was
extended in the following decades. In this sense, we can outline the work
of Horvitz and Thompson (1952), which established that any sample with
known and positive inclusion probabilities can be used to obtain unbiased
estimates of population parameters. This basic de�nition of probability sam-
ple has withstood the test of time; it is the de�nition that will apply in this
work when we refer to probability samples.

Along with the sampling theory, questionnaire administration modes we-
re largely studied throughout the XXth century. Face-to-face interviews,
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2 Chapter 1. Introduction

which had been the usual method for sample recruitment, established them-
selves as the gold standard for representative survey sampling. However, the
increasing costs of deploying such method, caused by an increase of refusal
rates (see Díaz de Rada (2012) for a review on the matter) favoured the rise
of telephone surveys in the second half of the century, along with methods
that automatized their administration, such as Computer Assisted Telephone
Interview (CATI). Telephone surveys allowed practitioners to put strati�ed
sampling designs into practice, to administer more questionnaires at a lesser
cost than face-to-face surveys, and to easily perform multiple contacts in the
case of absent respondents (Díaz de Rada, 2012). However, in the last years
some serious drawbacks have arisen. Firstly, the fraction of the population
without a landline phone has grown critically because of the rise of mobile
phone services. This behavior makes those people harder to reach, as telep-
hone lists for mobile phone users rarely exist (in contrast to landline phone
owners), and, if available, they are likely to entail coverage errors which may
largely contribute to selection bias (see Pasadas-del-Amo (2012) for a review
of the matter for the case of Spain). On the other hand, telephone surveys
have experienced a notorious decrease in response rates. A study by Kohut et
al. (2012) showed that telephone surveys performed by Pew Research Center
dropped from 36% in 1997 to 9% in 2012. Another study by Marken (2018)
showed that response rates for telephone surveys done in the context of the
Gallup Poll Social Series dropped from 28% in 1997 to 7% in 2017. This
decrease might lead to a higher cost per questionnaire and a decrease in the
quality of the data.

At the same time, the rise of new information and communication tech-
nologies made it possible for practitioners to start using new forms of ques-
tionnaire administration. The increasing penetration of internet connections
and smartphones across the globe made it possible to consider these commu-
nication devices as a potential channel of questionnaire delivery for a wider
range of people, and to create the so-called online surveys. These surveys,
following the de�nition from Vehovar and Manfreda (2008), are all of those
that use any type of Information and Communications Technology (ICT)
network during the survey process. In this wide category, surveys administe-
red via SMS or in local networks in an organization (for instance, employees
in a company) are included, but research has focused mainly on Internet and
smartphone surveys, which share many principles with the surveys previously
described. Internet surveys, following again the de�nition from Vehovar and
Manfreda (2008), are all of those that can be administered and completed
using Internet technology. In this category, web surveys (administered and
completed in web browsers) and e-mail surveys can be included. Smartphone
surveys are regarded in the literature as those that can be completed using a
mobile phone device or tablet; however, there is an important divide (espe-
cially regarding data quality) between those completed in mobile phone web
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browsers but which may have not been optimized for them and smartphone
app-based surveys or questionnaires designed speci�cally for being comple-
ted in mobile phone devices (Buskirk and Andrus, 2014; Callegaro, 2013;
Couper and Peterson, 2017; Wells et al., 2014).

As mentioned above, the main extent of online surveys nowadays refers
to smartphone and specially web surveys. Therefore, this dissertation will
focus on them, although the conclusions can be extended to the other types
of online surveys given that the advantages and inconveniences are caused
by the same factors.

There are many strategies to perform web surveys. From the comprehen-
sive list included in Callegaro et al. (2015) and summarized in Díaz de Rada
et al. (2019), we could distinguish between probability and nonprobability
online surveys. The possibilities for nonprobability sampling include limitless
surveys with self-selected samples (which do not require a sampling frame),
such as snowball sampling in social media websites, and samples based on
lists of individuals who self-selected (also called opt-in panels) or do not co-
ver the whole target population. It is worth mentioning that interception
surveys, which çaptureïnternet users who are browsing a particular website
and invite them to participate in the survey, are included as a probability
sampling option in the list from Callegaro et al. (2015) and as a nonpro-
bability sampling approach in the review by Schonlau and Couper (2017).
According to the latter reference, the selection biases that may apply to this
type of sampling are uncertain. Regarding probability sampling options, the
possibilities include regular probability surveys targeted to online users, pro-
bability web surveys targeted to wider populations than internet users and
probability-based web panels. The latter option has already been adopted
by several statistical organizations around the world. From the review by
Schonlau and Couper (2017), most of them rely on recruiting candidates via
a probability survey with the objective of inviting them to be part of an on-
line panel. In some cases, the panels o�er free computer and internet access
to those candidates who have no access to either of them.

Each of the described strategies has its own advantages. For most of them
(except those involving o�ine recruitment), the most obvious one is the re-
duction in costs regarding interviewers and administration of questionnaires.
Online surveys, except for special needs or cases such as online focus groups
or chat rooms, are self-administered by the respondent itself, meaning that
interviewers are not required and therefore saving the costs of preparing and
displaying a team of interviewers to do the �eldwork. The inmediateness
of internet connection itself also allows survey designers to save the costs of
sending the questionnaire physically by post mail. Research showed that web
surveys have much lower costs in comparison to mail surveys, which are also
self-administered (Bech and Kristensen, 2009; Greenlaw and Brown-Welty,
2009; Díaz de Rada, 2012), and telephone surveys (Lee et al., 2019). On the
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other hand, it has been shown that online surveys can highly bene�t from in-
centives, such as paying each respondent a small quantity of money or giving
them the chance to win a prize, which increases the �nal budget (Bosnjak
and Tuten, 2003; Göritz, 2006, 2014).

In addition, online surveys o�er a substantial decrease in the time nee-
ded to achieve a given sample size, because of the smaller e�ort required to
perform the �eldwork. The review done by Ilieva et al. (2002) in the early
days of online surveys found that e-mail questionnaires were responded in
half of the time that it took to respond mail questionnaires. A study done in
three online panels by Reynolds et al. (2009) found that almost two thirds of
the sample completed the questionnaire in the �rst 72 hours after launching
the survey. These �ndings were corroborated in other studies, as mentioned
by Díaz de Rada (2012). Moreover, the time required to complete an online
questionnaire can be shorter than the time required to complete a question-
naire administered by an interview; for example, the comparison between
CATI, web and smartphone respondents done by Lee et al. (2019) showed
that web and smartphone respondents took two thirds of the time than CA-
TI responders took to complete the questionnaire. However, this could also
be a consequence of acquiescence or survey satis�cing (Barge and Gehlbach,
2012), a phenomenon that drives respondents to answer the questions wit-
hout paying the required attention to understand them, compromising the
quality of the data.

Another substantial advantage of online surveys is the computerization
of the questionnaire, which entails a wide spectrum of possibilities in terms of
�ux control, multimedia content, formulation of the question and its response
options, etc. As noted in Díaz de Rada et al. (2019), the computerization also
allows the introduction of mechanisms to prevent methodological problems in
questionnaires, such as randomizing the order of the questions or response
options [which has been shown to have an in�uence in the answers given
by respondents (Tourangeau et al., 2004, 2013)], or programming alerts to
warn users of the questions they left unanswered, in order to avoid partial
nonresponse.

The computerization of the questionnaire is tied to another important
advantage: the fact that online surveys are self-administered. Apart from
the advantages of self-administration in terms of costs and time mentioned
above, the absence of an interviewer might be positive regarding some e�ects
that can bias the results, such as social desirability. Social desirability refers
to the behavior which leads the respondent to answer the options that, ac-
cording to their values, are more socially desirable or accepted to give the
interviewer a good impression of them. This is a very common behavior in
compromising questions (such as sexual behavior, use of drugs or criminal
records) and some methods have been developed in face-to-face surveys to
renforce the anonimity of the response (Cobo-Rodríguez, 2018). Their appli-
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cation in online surveys has casted some doubts (Coutts and Jann, 2011), but
some studies have pointed out that social desirability in online surveys (both
internet and smartphone surveys) is not as common as in face-to-face surveys
(Heerwegh, 2009; Mavletova and Couper, 2013). However, a meta-study by
Dodou and de Winter (2014) found that there is no e�ect associated to the
administration of the questionnaire via online regarding social desirability,
although the heterogeneity level is high and the number of studies is scarce.

As a �nal advantage, we could mention the fact that self-selection pro-
cedures in online surveys may be helpful in order to �nd members of non-
demographic strata in a population. This can happen if the survey is released
using the topic that is covering as an incentive to answer (Lehdonvirta et
al., 2020); for example, a survey about soccer might make soccer fans more
prone to take it so they can express their views. These surveys can be used
to �nd respondents from hard-to-reach populations, at the cost of su�ering
the disadvantages of self-selection which will be described in the following
lines.

Although each of the possibilities for administration of online question-
naire has its own disadvantages, there are several inconveniences which are
common to all of them. For example, online surveys are particularly vul-
nerable to measurement error. The aforementioned informatization of the
questionnaires can lead to programming bugs or incompatibility issues that
can compromise the completion of the survey or the understanding of the
questions by the respondents, who may eventually produce erroneous ans-
wers (Díaz de Rada et al., 2019; Elliott and Valliant, 2017). In addition,
response error is also prone to appear in online surveys; although the absen-
ce of an interviewer can be seen as an advantage (as described in previous
lines), it can also lead to undesirable behaviors such as survey satis�cing.
This behavior can appear in any type of survey, but it constitutes a parti-
cularly serious problem in online surveys because of the lack of motivation
produced by the absence of an interviewer (Anduiza and Galais, 2017; Gao
et al., 2016).

Out of the possible sources of error in online surveys, the most important
one is selection bias. Generally speaking, selection bias in online surveys
happens if, as described in Elliott and Valliant (2017), the characteristics of
the sample obtained from the online survey di�er signi�cantly from those of
the target population in a way that disallows any attempt to generalize the
results of the sample. The term "selection bias.often refers to several sources
of error following the de�nition by Smith (2020); in the context of online
surveys, selection bias can entail non-response, coverage and self-selection
(also named as volunteer) bias. Although these biases can be observed in
other survey modes, it can be assumed that they play a more relevant role in
online surveys because of the characteristics of online population (Schonlau
et al., 2009).
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Coverage bias is common to practically all online surveys except those
that attempt to introduce o�ine population in their sampling frames. This
is a consequence of the lack of exhaustiveness of the internet penetration,
which, despite its substantial growth in the last few years, is still insu�-
cient in some speci�c population strata. According to 2020 data from the
Spanish National Institute of Statistics (Spanish National Institute of Sta-
tistics, 2020), 93,2% of the Spanish population between 16 and 74 years of
age access the internet at least once every three months, but this number is
not homogeneous across population groups. For instance, while 99,5% of the
people with a PhD access the internet at least once every three months, this
percentage decreases with the education level to the point that only 76% and
51,4% of the population with elemental studies and no studies respectively
uses the internet at least once every three months. There is also a notorious
age divide: while 99,8% of the population between 16 and 24 years of age
access the internet at least once every three months, only 69,7% of the po-
pulation between 65 and 74 years of age does so. Finally, a class divide can
be seen as well: while this percentage is 99% for people living in households
with monthly net earnings above 2.500 EUR, it decreases to 84,6% for people
living in households with monthly net earnings below 900 EUR. Evidences of
similar divides have been observed in the United States (Couper et al., 2018).
The described percentages indicate that any internet survey with no o�ine
recruitment will systematically leave some speci�c parts of the population
out, which makes them an example of nonprobability sampling (because not
all population members have a positive inclusion probability) and can lead
to signi�cant di�erences between the population represented in the samples
obtained from internet surveys and the actual target population. This dis-
crepancy can be seen as a consequence of selection bias (Elliott and Valliant,
2017).

In nonprobability surveys, such as self-selected samples using snowballing
in social media websites and surveys using opt-in online panels, self-selection
biases are common. From the de�nition of Bethlehem (2010), self-selection
surveys can be described as the surveys where the selection relies completely
on the individuals; they are the ones that choose to be selected in the sample
or not. In nonprobability online surveys as the ones described above, self-
selection takes place as the questionnaires are just left on the internet so that
anyone who browses the web and sees it can be a survey respondent if that
user decides to take it, meaning that there is no survey design associated to
the recruitment. The absence of that design means that the inclusion proba-
bilities for the members of the target population are unknown, and therefore
any sample drawn using this method is a nonprobability sample. The self-
selection mechanism can lead to important amounts of selection bias if there
is a relationship between the variables of interest of the survey and the pro-
bability of participating in it. Numerous real world examples of self-selection
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bias in online surveys can be found; for instance, Faas (2004) compared the
results of an o�ine election poll, an online election poll selected via online
panel, and an online election poll whose respondents had been self-selected.
The results showed very large di�erences between the composition of the
latter poll and the composition of the other two polls. Bethlehem (2009a)
mentions two examples of electoral polls in the Netherlands in 2003 and 2006,
where it is noticeable that online surveys with self-selection mechanisms ten-
ded to strongly favour the estimated vote for some parties. Bethlehem (2015)
also studied the opposition to Sunday shopping in three samples from the
Netherlands: an o�ine sample from shopping centers' clients, an online pa-
nel survey and an online self-selected sample. Results showed that both the
demographics and the observed opposition to Sunday shopping was largely
di�erent in the online self-selected sample in comparison to the other two
samples and the population demographics. Smironva et al. (2020) studied
self-selection biases in hotel online reviews, and found signi�cant di�erences
between online and o�ine mean rating scores. Self-selection biases can be
relevant even when the target population is the online population. Faas and
Schoen (2006) compared the results of 2002 German Election polls done with
face to face interviews of internet users, online panels and using self-selected
individuals, �nding that the latter poll showed estimates of population para-
meters and associations signi�cantly di�erent from those obtained from the
other sources of data. Khazaal et al. (2014) used a self-selected sample and
a random sample to study the virtual characters of online players, �nding
that the parameter estimates obtained from the self-selected sample di�ered
signi�cantly from those obtained from the random sample.

The third source of bias that takes place in online surveys is non-response
bias. It can happen when a fraction of the people able to participate in the
survey does not do it, and their characteristics are signi�cantly di�erent from
those that participate. This bias is related to self-selection bias, but there
are some di�erences: while self-selection bias refers to those cases when the
survey is open to anyone to participate, non-response bias occurs speci�cally
in those cases when a number of individuals have been selected to participate
(following a probability sampling scheme or not) in the survey. Non-response
bias is very common in online panels, where surveys are sent to certain mem-
bers of the panel who decide to participate or not. It can also be a problem
even when recruiting members of the panel, as noted in Elliott and Valliant
(2017). A meta-study by Manfreda et al. (2008) using 45 publications found
that the response rate (a key metric for non-response bias measurement) in
online surveys was, in average, 11% lower than response rate in other survey
modes. This trend has been observed in more recent studies comparing online
surveys with mail surveys (Millar and Dillman, 2011; Loomis and Paterson,
2018). The review on the value of online surveys done by Evans and Mathur
(2018) cites some factors that may promote nonresponse, such as excessive
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survey length, content and wording of the surveys themselves, incentives,
invitation wording and reminders, and researcher and sponsor identity.

It must be noted that, despite online surveys are able to recruit more
participants that other survey modes, larger sample sizes are not su�cient
to remove biases coming from any sources or make the survey estimates
e�cient (Meng, 2018). Due to the growing interest of online surveys for em-
pirical research, there has been a growing interest on developing methods
to mitigate these sources of bias in recent years. Some of that sources have
been widely studied besides their importance in online surveys. For exam-
ple, non-response bias is common to many probability surveys regardless of
their mode of administration, and a vast literature has been developed on
techniques to reduce this bias. We could mention:

Imputation for item non-response, where the individual has taken the
survey but not answered all the questions. This technique is based
on completing the missing responses with imputed values, obtained
from models �tted using the rest of the information on each individual
(Rubin, 1996).

Reweighting for unit non-response, which refers to the case where the
selected individual has not taken the survey (Särndal and Lundström,
2005)

The case of self-selection and coverage bias is more complicated. Regar-
ding coverage bias, calibration weighting (Deville and Särndal, 1992) has
been proposed as a method to approximate the sample to the target popula-
tion. This methodology, similar to reweighting for non-response treatment,
has been studied for the online survey context in several works. Dever et
al. (2008) used data from two health surveys to construct calibration es-
timators to mitigate undercoverage of online surveys. Although the results
showed e�ciency at addressing nonresponse and coverage errors, the authors
were doubtful on the application of the method in volunteer web surveys.
Bethlehem (2010) used a �ctitious population which aimed to emulate a
situation where a sample is drawn from an online population. The study
used post-strati�cation weights (which are a form of calibration) to remo-
ve bias; this approach was observed to be e�ective in Missing At Random
(MAR) situations, where the selection mechanism is indirectly related (i.e.
via a mediator variable) to the variable of interest, but not in Missing Not
At Random (MNAR) situations, where the selection mechanism is directly
related to the variable of interest. Valliant and Dever (2011) used calibra-
ted estimates with the general regression estimator (GREG) for a �ctitious
population based on real data. The estimates were approximately unbiased
when volunteering was not directly related to the analysis variables and the
relationship between calibration covariates and the analysis variables could
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be properly described with a linear model. The use of calibration in non-
probability samples, given the lack of a sampling design, is still a challenge
which has been discouraged by some authors (Devaud and Tillé, 2019).

On the other hand, methods to correct self-selection bias had not been wi-
dely studied before the rise of online surveys. Since then, some older methods
developed for other sources of bias were adapted to address self-selection.
Among the alternatives, we could mention the following ones:

Propensity Score Adjustment (PSA). This method was originally deve-
loped by Rosenbaum and Rubin (1983) to address selection bias in ex-
perimental designs. Although it was adapted to mitigate non-response
bias a few years later (Little, 1986), it was not fully developed to con-
trol selection bias in online surveys until the work by Lee (2006), which
stipulated that a reference probability sample must be available. The
method is based on predicting the propensity of an individual to parti-
cipate in the online sample, and using the predicted propensity as the
inclusion probability to be used in weighted estimators. The e�ciency
of PSA at successfully removing self-selection bias was proven in later
works by Lee and Valliant (2009) and Valliant and Dever (2011). Ho-
wever, this e�ciency can only be achieved if some conditions apply;
more precisely, the covariates used for the adjustment must be related
to both the selection mechanism and the variables of interest, and the
propensity weights obtained must be adjusted via calibration weigh-
ting. In addition, the application of PSA increases the variance of the
estimators.

Propensity Score Matching. This option is closely related to PSA, but
in this case the method is based on assigning each individual of the
reference probability sample an individual from the online sample who
approximately matches their values, producing a new sample that mat-
ches the population characteristics while being able to estimate popula-
tion parameters relative to the target variable (which is only measured
in the online sample). This approach has also been studied for the case
of opt-in online panels, with promising results (Rivers, 2006; Vavreck
and Rivers, 2008; Terhanian and Bremer, 2012).

Kernel weighting (KW). This approach was developed in Wang et al.
(2020) and it is closely related to PSA (it can even be considered a
generalization of the methods intended to transform propensities into
weights). The propensity estimates are used to calculate the distance
between every member of the nonprobability sample and every mem-
ber of the probability sample, and the resulting distances are smoothed
via a kernel function. Finally, the weight for an individual of the non-
probability sample is obtained as the sum of each smoothed distance
between that individual and every member of the probability sample,



10 Chapter 1. Introduction

multiplied by the design weight of the correspondent member of the
probability sample. Research shows that this method can largely bene-
�t from advanced data mining and prediction techniques (Kern et al.,
2020).

Statistical Matching (SM). This method, which is also named as "mass
imputationïn literature, was developed in Rivers (2007) as a technique
to address selection bias in web surveys by means of predictive mo-
delling. Beaumont and Bissonnette (2011), on their adaptation of SM
to address non-response bias, developed some important properties of
SM estimators, such as their variance.

Doubly Robust Inference. This method was originally proposed in Kim
and Haziza (2014) for the adjustment of nonresponse error in probabi-
lity surveys, and it was adapted to nonprobability sampling in Kim and
Wang (2019) and Chen et al. (2020b). It is based on the application of
Statistical Matching, but includes a term that takes into account the
prediction error, using the prediction residuals in the nonprobability
sample and weighting each one according to their estimated participa-
tion propensity.

Estimators based in superpopulation models. This approach was �rstly
developed by Royall (1970) for the probability sampling case where the
full census is available for some variables which have also been measu-
red in the sample and a superpopulation model is assumed. Valliant et
al. (2000) developed some properties of these estimators for the same
context. The use of model-based estimators in nonprobability surveys
has been recently studied by Buelens et al. (2018), using data on an-
nual mileages driven by vehicles in the Netherlands to build a pseu-
dopopulation from which several samples (with di�erent levels of bias)
are drawn. Model-based estimators were calculated using a wide range
of predictive models, including Machine Learning algorithms. Results
showed that selection bias can be removed if the right covariates are
used for prediction.

The aim of this thesis is to provide methodological advances in the es-
timation from online surveys, both by combining or improving the methods
that already exist, and by adapting methods from probability sampling to
the nonprobability sampling context. In Appendix 1, we study the feasibi-
lity of the combination of PSA and calibration, using actual or estimated
population totals, for mitigating bias in nonprobability online surveys. In
Appendix 2, we consider Machine Learning classi�cation algorithms for pro-
pensity estimation in PSA, and we study if they can be an alternative to
logistic regression. In Appendix 3, we develop a theoretical framework for
the estimation of general population parameters using nonprobability sam-
ples, including the two-phase procedure for estimation and the estimator of
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the variance of the parameters estimated in that procedure. In Appendix 4,
we study the impact of the application of variable selection techniques to
obtain subset of optimal covariates, in terms of bias reduction, to be used as
input variables in PSA. In Appendix 5, we adapt the methods from superpo-
pulation modeling to the nonprobability online sampling context, applying
modern prediction techniques to compare their performance. In Appendix
6, we adapt the methodology of weight smoothing for multipurpose non-
probability surveys, using two advanced prediction algorithms to obtain the
smoothed weights and comparing the results. In Appendix 7, we apply PSA
in a real world problem where we aim to estimate the prevalence of several
health-related issues in a population of healthcare professionals, studying se-
veral algorithms for propensity estimation and the results that they provide.





Chapter 2

Objectives

2.1. E�ciency of propensity score adjustment and

calibration on the estimation from non-probabilistic

online surveys

The combination of Propensity Score Adjustment (PSA) and calibration
weighting to address selection bias has been explored in literature (Lee and
Valliant, 2009; Valliant and Dever, 2011). On the other hand, calibration
weighting using estimated population totals instead of actual population
totals in the calibration equations was also studied by Bethlehem (2010).
However, research on the di�erent approaches to treat propensities obtained
with PSA in order to use them in weighted estimators is scarce. A compa-
rison between strati�ed and non-strati�ed propensities was done in Valliant
and Dever (2011), but some other transformations can be used, such as the
strati�cation proposed in Lee and Valliant (2009), which uses design weights
of the reference probability sample, and inverse propensity weighting propo-
sed in Schonlau and Couper (2017), which takes into account the fact that
individuals from the online sample have to be removed from the target po-
pulation of the reference sample (assuming that there is no overlap between
samples).

We study the combination of PSA and further calibration reweighting,
using the weights obtained from propensity scores as initial design weights
in the calibration process. To do so, we use a simulated population with a
multiclass target variable that re�ects each of the three possible scenarios for
the selection mechanism: Missing Completely At Random (MCAR), Missing
At Random (MAR), and Missing Not At Random (MNAR). We transform
propensity scores into weights using two approaches: the inverse propensity
weighting proposed in Schonlau and Couper (2017), and the strati�ed pro-
pensity weighting using design weights from the reference sample proposed in
Lee and Valliant (2009). We also compare the results from the combination

13
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of PSA and calibration using two approaches for the latter: actual popula-
tion totals and estimated population totals (from the reference sample) in
the calibration equations. The e�ciency is studied through the measures of
bias and standard deviation of the estimates.

2.2. Propensity score adjustment using machine lear-

ning classi�cation algorithms to control selec-

tion bias in online surveys

PSA is based on predicting propensities of being included in the nonpro-
bability sample using a combination of both the nonprobability (convenien-
ce) sample and the probability (reference) sample. As developed in theory,
PSA uses logistic models for this prediction, which enables the obtention of
probabilities based in the logistic formula with some covariates. Although
logistic regression is a robust model which can o�er good results in many
situations, its application in the online survey context poses some challenges.
The use of larger samples with a larger number of covariates, with di�erent
levels of association with the selection mechanism and the target variable,
can compromise the behavior of logistic regression. On the other hand, this
approach requires to establish in advance the interactions between variables,
which can be unfeasible in many situations.

The use of more advanced methods for predictive modelling, such as
Machine Learning (ML) classi�cation algorithms, can be an alternative to
logistic regression in this context. This approach has been already studied
for propensity scoring to address non-response issues, showing good results
(Phipps and Toth, 2012; Buskirk and Kolenikov, 2015).

We propose the use of ML algorithms for PSA with the objective of miti-
gating selection bias in online surveys. We aim to study the application of a
subset of the most popular classi�cation algorithms in the propensity mode-
lling step, after optimizing their hyperparameters with regard to minimizing
the log-Loss metric (which is related to the accuracy in the prediction of the
probability).

2.3. Estimating General Parameters from Non-Probability

Surveys Using Propensity Score Adjustment

Research on the estimation of population parameters using adjusted non-
probability samples has been focused on linear parameters, such as popula-
tion means, totals and proportions. On the other hand, the development of
a formula to estimate the variance of PSA estimators is still under study.
This work aims to �ll the gap in literature, developing a theoretical frame-
work for the estimation of general population parameters. The framework
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is based on the work by Chen et al. (2020a) at developing the properties of
the doubly robust estimator, extending them to the estimation of general
parameters, along with an expression for the estimation of the estimator's
variance. The estimator and its properties is tested in a simulation study
using three di�erent real world datasets.

2.4. Variable selection in Propensity Score Adjust-

ment to mitigate selection bias in online sur-

veys

The e�cacy of adjustments for nonprobability online samples depend to
a large extent on the available auxiliary information. That information must
be relevant regarding target variables and the selection mechanism of the
sample. For this reason, it is critical to properly select the information to
be used in the adjustments, in order to avoid including non-relevant or re-
dundant information that could lead to over�tting situations or unstability
of the estimators. In this context, recent data mining techniques which we-
re developed to extract relevant features in large datasets could be use to
automatize the process of selecting the proper covariates to be included in
the adjustments, without the need to have any prior information about the
relationships between variables.

The objective of the study is to evaluate the performance of variable
selection methods prior to PSA in di�erent contexts, where Machine Learning
classi�cation algorithms are used and PSA weights are used on their own or
combined with Raking calibration (in which the initial weights are the PSA
weights).

2.5. Evaluating Machine Learning methods for esti-

mation in online surveys with superpopulation

modeling

Estimators based in superpopulation modeling, such as model-based,
model-assisted and model-calibrated estimators, have been explored to re-
duce bias in nonprobability surveys, with promising results (Valliant et al.,
2000). These estimators are often adjusted using linear regressions, which
may entail several disadvantages for large populations in comparison to mo-
dern prediction methods such as ML algorithms. The use of those algorithms
for model-assisted estimators was proposed in Breidt et al. (2017), and they
were applied in the study by Buelens et al. (2018) on model-based estimation
in nonprobability surveys.

This study aims to obtain a full picture of the e�ciency of model-based,
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model-assisted and model-calibrated estimators for nonprobability online
surveys, and the ability of ML algorithms to be an alternative to linear
regression models. We compare the three approaches using three simulated
populations, obtained from real world datasets, and a set of prediction mo-
dels including advanced linear regression models, tree-based models, boos-
ting models, k-nearest neighbours classi�cation and neural networks with
and without regularization.

2.6. Weight smoothing in adjustments for nonpro-

bability surveys with multiple variables of in-

terest

The importance of online surveys in o�cial statistics is growing steadily
in the last years, as they can o�er substantial advantages in some crucial
areas which were a cause of concern in traditional survey modes. Apart from
their use in probability surveys as an alternative to personal interviews,
which can be troublesome in the case of hard-to-reach interviewees, non-
probability online surveys are starting to be considered as a considerably
fast way of obtaining timely estimates of multiple features from a given po-
pulation. The drawbacks that they pose might be corrected with the usual
techniques for addressing selection bias.

However, o�cial surveys are often multipurpose (i. e. have multiple va-
riables of interest) and, in some cases, the exact variables of interest are
unknown to the researcher at the moment of adjusting the sample. This is
an important issue because it makes unfeasible to apply adjustments based
on predicting the target variable: in the best-case scenario, we would need
one model for each variable of interest, which can be impractical and also
increase the probabilities of model misspeci�cation for any of the variables.
For these reasons, adjustments based on weighted estimates, which only re-
quire a single model to obtain a single vector of weights, are seen as a more
adequate choice.

Weighting adjustments use auxiliary covariates that should ideally be
related to the selection mechanism and the variable of interest. In a mul-
tipurpose survey, covariates can be strongly related to the propensity to
participate but weakly related to the variables of interest, or can also be re-
lated to some target variables but unrelated to others. Such covariates do not
contribute to bias reduction and might increase the variance of the estima-
tes. In this context, weight smoothing techniques developed for probability
samples can be used. Weight smoothing aims to model the relationship bet-
ween the vector of weights and the variables of interest, with the objective
of substituting the weights by the �tted values of the developed models.

The objectives of this work are twofold. The �rst objective is to evaluate
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the feasibility of weight smoothing techniques in the nonprobability online
survey context, where the weights are not given by design but by adjusment
methods that tend to increase the variability of the estimates and therefore
increase the contribution of the noise in the vector of weights. The second
objective is to study the performance of modern prediction techniques for
the modelization of the weight smoothing model; having algorithms that
perform variable selection prior to the prediction may be helpful in terms
of discarding those variables of interest that are not related to the weights,
leading to better model speci�cations.

2.7. Self-perceived health, life satisfaction and rela-

ted factors among healthcare professionals and

the general population: analysis of an online

survey, with propensity score adjustment

Health status of healthcare professionals (HCP) is an issue of growing
importance, due to the high levels of stress, anxiety and burnout that they
have to convey, especially after the irruption of the COVID-19 pandemic.
However, health status and life satisfaction among HCP has not been widely
studied because of limited data and resources to carry out quality studies on
the HCP population. In this context, nonprobability surveys can help to �ll
this gap, as long as methods to mitigate biases inherent to such surveys are
applied.

The objective of this study is to estimate the prevalence of health issues
and the factors related to life satisfaction and self-perceived health in HCP
from the region of Andalusia (Spain), and to study how PSA can address se-
lection bias in a real world situation. PSA is applied using several approaches
to predict propensities in order to compare their adequacy to such situations:
logistic regression, and a set of ML algorithms with varying hyperparameter
con�gurations. We also aim to study empirically the statistical behavior of
the weights, and the relationships between their stability and the properties
of the estimators that they produce.





Chapter 3

Methodology

3.1. Framework of probability and nonprobability

samples

Let U be a population of interest of size N = 1, 2, 3.... We are interested
in the estimation of a population parameter for a given variable of interest
y, θy. For such a task, we draw a sample s of size n from U , with a sample
design (sd, pd) where pd represents the probability of drawing a given sample
sd which belongs to the space of possible samples, δ = {s|s ∈ U}. As a result,
the �rst order inclusion probability of the individual i, πi, can be de�ned as

πi =
∑

s3i
pd(s), i = 1, ..., n. (3.1)

and the second order inclusion probability of the individuals i and j, πij ,
can be de�ned as

πij =
∑

s3{i,j}

pd(s), i, j = 1, ..., n. (3.2)

In a probability sampling design, pd > 0, ∀sd ∈ δ. From the results in
Horvitz and Thompson (1952), it can be shown that linear parameters, such
as the population total, Ty, can be unbiasedly estimated through the formula

T̂y =

∑
i∈sd yi

πi
=
∑

i∈sd

diyi (3.3)

where di = 1/πi is the design weight of individual i. The population
mean, Y (which is equivalent to the population proportion of a condition if
y is an indicator variable where 1 indicates the presence of the condition),
can also be estimated through the formula

19
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Ŷ
HT

=
1

N

∑
i∈sd yi

πi
. (3.4)

An expression for the variance of both estimators, as well as for the
estimator of the variance, is also given in the paper:

V ar(T̂y) =
∑

k∈U

∑

l∈U

ykyl
πkπl

πkl − πkπl (3.5)

ˆV ar(T̂y) =
∑

k∈sd

∑

l∈sd

ykyl
πkπl

πkl − πkπl
πkl

(3.6)

V ar(Ŷ
HT

) =
1

N2

∑

k∈U

∑

l∈U

ykyl
πkπl

(πkl − πkπl) (3.7)

ˆV ar(Ŷ
HT

) =
1

N2

∑

k∈sd

∑

l∈sd

ykyl
πkπl

πkl − πkπl
πkl

(3.8)

The Horvitz-Thompson estimator of the mean is not linearly invariant,
as shown in Tillé (2020). This is an undesirable property, as it introduces an
extra error term independent of y. The Hajek estimator, developed in Hájek
(1981), is an alternative for the estimation of a population mean based on
considering the sum of inverse inclusion probabilities as the population total:

Ŷ
H

=

∑n
i=1 yi/πi∑n
i=1 1/πi

. (3.9)

The Hajek estimator is linearly invariant, but it can be biased in some
applications since it depends on the quotient of two random variables.

In the case of nonprobability samples, the design (sd, pd) does not exist as
the probabilities of drawing each sample, pd, are not known or the condition
pd > 0,∀sd ∈ δ is not met. If a nonprobability sample (for example, a sample
of volunteers) is available, sv with a sample size nv, the usual estimator of
the mean is given by the expression

Ŷ
NP

=

∑
i∈U yiRi∑
i∈U Ri

=

∑
i∈sv yi

nv
, (3.10)

where R is an indicator variable which measures whether an individual
belongs to sv or not:

Ri =

{
1 i ∈ sv
0 i /∈ sv , i ∈ U (3.11)

It can be easily shown that
∑

i∈U Ri = nv. The usual estimator of the
total is given by a very similar formula, but multiplying by the size of the
population such that
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T̂NPy = N

∑
i∈U yiRi∑
i∈U Ri

= N

∑
i∈sv yi

nv
=
∑

i∈sv

dviyi, (3.12)

where the values of the vector dv = nv/N are equivalent to the design
weights previously de�ned, and can be seen as the weights that are assigned
to each unit of the nonprobability sample when they are unknown.

These estimators are subject to the selection mechanism that in�uences

the indicator variable R. Given {Ri, i ∈ U}, the error of Ŷ
NP

can be written
as in Kim and Wang (2019):

Ŷ
NP
− Y =

N

nv
Cov(R, Y ), (3.13)

where

Cov(R, Y ) =
1

N

∑

i∈U
(Ri −R)(yi − Y ) (3.14)

Given that R =
∑

i∈U Ri

N = nv
N , the previous formula for Cov(R, Y ) can

be rewritten as

Cov(R, Y ) =
1

N

∑

i∈U
(Ri −

nv
N

)(yi − Y ) (3.15)

The mean quadratic error, which is a measure of the error in the estima-
tion of Y , can be expressed as

ER[(Ŷ
NP
− Y )2] =

(
N

nv

)2

ER[Cov(R, Y )2]. (3.16)

where ER[.] denotes the expectation with respect to the selection mecha-

nism for R. An alternative expression of ER[(Ŷ
NP
− Y )2] for general cases

was developed in Meng (2018):

ER[(Ŷ
NP
− Y )2] = ER[Cov(R, Y )2] ·

(
N

nv
− 1

)
· σ2, (3.17)

where σ2 =
∑

i∈U (yi−Y )2

N . This form allows to divide the error in the es-
timation in three parts: the inherent variability associated to the variable
of interest (σ2), the amount of available data, represented as the inverse of

the sampling fraction
(
N
nv
− 1
)
, and the relationship between the selection

mechanism and the variable of interest. If that relationship is strong, the
error in the estimation tends to grow more rapidly than in the case where
the sample size is reduced, as shown in Meng (2018). Therefore, a reasonable
and e�cient strategy is to focus on reducing the e�ect of the relationship
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between the selection mechanism and the target variable, rather than focu-
sing on increasing the sample size, which may not be as e�ective unless the
sampling fraction is exceptionally large. The available techniques to miti-
gate the bias induced by the selection mechanism will be described in the
following subsections.

3.2. Estimation from nonprobability samples with

auxiliary population totals available

Let Tx = (Tx1 , ..., Txp) be a vector of population totals of p auxiliary
variables x = (x1, ..., xp), which have been measured for all the individuals
in the sample s. If s has been drawn following a non-probabilistic scheme,
it is possible that, as the bias appears, some individuals that take certain
values for x are more prone to be in the sample than others, mainly because
of undercoverage of certain subsets of U .

Calibration weighting, developed by Deville and Särndal (1992) for pro-
bability samples, uses the population totals to create new weights that solve
the aforementioned unbalance between the population totals and the obser-
ved sample. Let d = 1

π be the vector of design weights for s; the calibration
procedure aims to minimize the distance between the new weights, w, and
the design weights, while at the same time respecting the calibration equa-
tions, according to which the sample estimates of the auxiliary variables
using weights w should be equal to TX :

min
∑

k∈sG(wk, dk)

subject to
∑

k∈swkX = Tx

(3.18)

whereG(., .) can be any di�erentiable distance function. Deville and Särn-
dal (1992) propose a class of distance measures, with the linear distance being
the simplest case:

G(wk, dk) =
(wk − dk)2

2dk
(3.19)

When using linear distance, the solution to the optimization problem in
Eq. (3.18) via Lagrange multipliers provides an estimator for the population
total, T̂ caly , which is equivalent to the generalized regression estimator de-
veloped in Cassel et al. (1976) (further description of the estimator will be
done in Section 3.9):

T̂ caly = T̂y+(Tx−
∑

k∈s
dkxk)

′B̂s = T̂y+(Tx−
∑

k∈s
dkxk)

′(
∑

k∈s
dkqkxkxk

′)−1(
∑

k∈s

∑

k∈s
dkqkxkyk)

(3.20)
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where qk is a known positive weight unrelated to d for the individual
k ∈ s. The usual choice in applications is qk = 1, hence it has no relevance in
the results, although some cases might motivate other choices (see Example
1 in Deville and Särndal (1992)).

The case where s is a nonprobability sample sv is more complicated. In
fact, the lack of sampling design for nonprobability samples leads to the inabi-
lity of using d for calibration reweighting. In such a situation, the weights w
will be equal to those obtained after post-strati�cation (Smith, 1991). This
post-strati�cation strategy was studied in Bethlehem (2010) in order to re-
duce selection bias in nonprobability online surveys, with successful results.

3.3. Estimation from nonprobability samples with

a reference probability sample using Propen-

sity Score Adjustment

3.3.1. Propensity estimation

Let sr be a probability (reference) sample of size nr, drawn from U , with
a sample design (srd, prd) where prd represents the probability of drawing a
given sample srd which belongs to the space of possible samples, δ = {sr|sr ∈
U}, and prd > 0,∀srd ∈ δ. As a result, the �rst order inclusion probability
of the individual i, πri, can be de�ned as

πri =
∑

sr3i
prd(sr), i = 1, ..., nr. (3.21)

Let sv be a nonprobability (convenience) sample of size nv, drawn from U
or a subset of U which represents the potentially covered population, Upc ⊆
U . There is no sample design and therefore there are no design weights nor
known inclusion probabilities. Let x = (x1, ..., xp) be a vector of covariates
that has been measured in both sr and sv, and y a variable of interest that
has been measured only in sv. For the estimation of parameters of y, several
techniques can be applied taking into consideration the reference sample sr.

Propensity Score Adjustment (PSA) assumes that a relationship under-
lies between the inclusion probability for sv, πvi, and some auxiliar covariates
x.

πvi = Pr(Ri = 1|xi), i ∈ U (3.22)

This assumption implies that the selection mechanism for sv is ignorable,
which means that the e�ect of this relationship in the �nal estimates can
be reduced or eliminated with proper adjustments. In this case, we could
say that the non-sampled individuals follow a Missing At Random (MAR)
mechanism, given that the selection is not directly related to the variable
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of interest, although it can be indirectly related if some kind of relationship
lies between x and y. If that relationship does not exist, the mechanism is
Missing Completely At Random (MCAR) and, in that case, the use of sv
will provide unbiased estimates for parameters of y.

In a nonprobability survey, the inclusion probabilities πvi are not known,
but they can be estimated using the data available from sv and sr. We de�ne
the indicator variable R∗, de�ned for any individual in sv∪sr, which measures
whether an individual belongs to sv or sr:

R∗i =

{
1 i ∈ sv
0 i ∈ sr , i ∈ sv ∪ sr (3.23)

This variable is a proxy of the actual indicator variable R, which will be
less accurate as the overlap between sv and sr (number of individuals belon-
ging to both samples at the same time) increases. If the sampling fractions
nv
N and nr

N are small enough, the overlap probability will remain very low,
making R∗ a good approximation of R for sv ∪ sr. We can therefore de�ne
the approximate inclusion probabilities, π∗vi, as follows:

π∗vi = Pr(R∗i = 1|xi), i ∈ sv ∪ sr (3.24)

PSA is based on estimating the expected value of π∗vi for any i ∈ sv ∪ sr
through a model M if covariates x are available for both samples:

π̂∗vi = EM [R∗i = 1|xi] , i ∈ sv ∪ sr (3.25)

The usual choice is to consider a logistic regression model to estimate the
probabilities, hence their expression can be described as

π̂∗vi =
1

1 + exp(−βxi)
, i ∈ sv ∪ sr (3.26)

where β is the vector of coe�cients estimated in the logistic regression
modeling according to some optimization criteria.

3.3.2. Propensity weighting

Once the propensities to participate have been estimated for each indivi-
dual in sv, they can be transformed into weights to be used in the estimators
of the population total and the population mean. The simplest approach is
the inverse probability weighting (Valliant, 2020):

wPSA1i =
1

π̂∗vi
, i ∈ sv (3.27)

A similar alternative is the one proposed in Schonlau and Couper (2017),
which takes into account that members of sv do not belong to the target
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population in the sampling design of sr as their inclusion would enable both
samples to overlap, which is an undesirable behavior in this context.

wPSA2i =
1− π̂∗vi
π̂∗vi

, i ∈ sv (3.28)

Another approach that might be useful, specially if the vector of propen-
sities present extreme values (close to 0 or 1) that can a�ect the variability
of the estimates, is the strati�cation of propensities. Lee and Valliant (2009)
proposed a system based on obtaining the vector of propensities π̂∗i , i ∈ sv∪sr
for the combination of both samples, sorting the propensities and partitio-
ning them on C classes. Ideally, C = 5 following Cochran (1968) results
which show that �ve subclasses are su�cient to remove 90% of the bias
produced by subclassi�cation in univariate analysis. Rosenbaum and Rubin
(1984) showed that the percentage of removal of the bias from subclassi�ca-
tion also applies to propensity scores. Once the partition is made, we de�ne a
correction factor for a propensity stratum c, fc, based on the design weights
of each sample:

fc =

∑
k∈scr d

r
k/
∑

k∈sr d
r
k∑

j∈scv d
v
j/
∑

j∈sv d
v
j

(3.29)

where dr and dv represent the design weights of the reference and the
convenience sample respectively, and scr and s

c
v are the subset of individuals

from the reference and the convenience sample respectively that belong to the
c-th stratum. Note that, in the case where design weights are not available,
an alternative for fc can be de�ned:

fc =
ncr/nr
ncv/nv

(3.30)

where ncr and n
c
v are the number of individuals from the reference and

the convenience sample respectively that belong to the c-th stratum. The
�nal weights of sv are de�ned as the product of the correction factor and the
original design weights:

wPSA3i = fcd
v
i , i ∈ sv, c 3 i (3.31)

If the design weights are the inverse of the sampling fraction, dr = N
nr

and dv = N
nv
, which is a common choice when design weights are unknown,

fc is equivalent to the approach described in Eq. (3.30). In that case, when
the vector wPSA3 is applied in the Hajek estimator of the mean, the �nal
estimator is equivalent to the Horvitz-Thompson estimator of the mean.
Given that

wPSA3i = fcd
v
i =

ncrnv
ncvnr

· N
nv

= N
ncr
ncvnr

, i ∈ sv, c 3 i, (3.32)
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it can be shown that the sum of the weights vector wPSA3 equals the
population size if it is known and dvi =

N
nv
, ∀i ∈ sv:

nv∑

i=1

wPSA3i =

nv∑

i=1

N
ncr
ncvnr

=
N

nr

nv∑

i=1

ncr
ncv

=
N

nr

C∑

c=1

ncvn
c
r

ncv
=
N

nr

C∑

c=1

ncr =
N

nr
nr = N

(3.33)

When substituting in Ŷ
H
we get

Ŷ
H_PSA3

=

∑nv
i=1w

PSA3
i yi∑nv

i=1w
PSA3
i

=

∑nv
i=1w

PSA3
i yi
N

= Ŷ
HT_PSA3

(3.34)

An alternative approach that is also based in propensity strati�cation
is the one proposed in Valliant and Dever (2011). The segmentation step
follows the same principle (sorting propensities and dividing individuals in
C subgroups according to their values), but in this case, the weights are
de�ned as the inverse of the mean propensity in the stratum to which each
individual belongs to:

wPSA4i =
ncv∑

j∈scv π̂
∗
vj

, i ∈ sv, c 3 i (3.35)

3.3.3. Machine Learning algorithms in Propensity Score Ad-

justment

The propensity estimation step in PSA accepts the use of Machine Lear-
ning (ML) classi�cation algorithms as an alternative to logistic regression,
given that the goal in this context is to predict probabilities for the presence
of the attribute (in this case, being in the nonprobability sample) measured
by a binary variable (R∗). Most of the classi�cation algorithms are able to
provide such probabilities, based on non-parametric procedures. For instan-
ce, tree-based propensity estimation can be summarized in the formula

π̂∗vi =





n(s
J1
v )

n((sv∪sr)J1 )
{i ∈ sv/xi ∈ J1}

... ...
n(s

Jk
v )

n((sv∪sr)Jk )
{i ∈ sv/xi ∈ Jk}

(3.36)

where J1, ..., Jk represent the k terminal nodes of a decision tree �tted
using data from sv ∪ sr with R∗ being the target variable, each one repre-
senting a multivariate range of values according to which individuals are
classi�ed, and n(sJiv ) and n((sv ∪ sr)Ji) are the number of individuals from
the convenience sample and the combined sample respectively that meet the
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criteria to be classi�ed into the terminal node Ji, i = 1, ..., k. In bagging al-
gorithms such as Random Forests (Breiman, 2001), a set of m decision trees
(known as weak classi�ers) can be trained and then averaged to compute
the propensities as

π̂∗vi =

∑m
j=1 φj(xi)

m
,φj(xi) =

{
1 {i ∈ sv/xi ∈ J jpr}
0 {i ∈ sv/xi ∈ J jab}

, (3.37)

where J jpr and J
j
ab represent the set of terminal nodes of the jth decision

tree, j = 1, ...,m, where the individuals from the nonprobability sample are
majority and minority respectively:

J jpr = {J jl , l = 1, ..., k :
n(s

Jj
l
v )

n((sv ∪ sr)J
j
l )
≥ 0,5} (3.38)

J jab = {J
j
l , l = 1, ..., k :

n(s
Jj
l
v )

n((sv ∪ sr)J
j
l )
< 0,5} (3.39)

The m trees can be also �tted through an iterative process aiming to
improve the accuracy of the classi�cation, also known as boosting. In this
sense, Gradient Boosting Machine (GBM) algorithm (Friedman, 2001) is able
to provide propensities according to the formula

π̂∗vi =
1

1 + exp(−wTJ(xi))
, i ∈ sv (3.40)

where J(xi) is a matrix of terminal nodes of m decision trees, �tted th-
rough the aforementioned iterative process, whose multivariate range adjusts
to xi, and w is the weight assigned to each decision tree.

Propensities can be estimated using other ML approaches. k-Nearest
Neighbours (kNN) algorithm (Cover and Hart, 1967) estimates the probabi-
lity of R∗i = 1, i ∈ sv as the proportion of individuals belonging to sv among
the k neighbours of individual i:

π̂∗vi =

∑
j∈sr∪sv/d(xi,xj)≤d(xi,x(k))

R∗j

k
, i ∈ sv (3.41)

where d is the distance function that measures the similarity between
two individuals given their covariates, and x(k) represents the covariates of
the k-th closest individual.

The Bayes theorem can also be used to estimate the propensities through
the Naïve Bayes classi�er as follows:

π̂∗vi = P (R∗i = 1|xi) =
P (xi|R∗i = 1)P (R∗i = 1)

P (xi)
, i ∈ sv (3.42)
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In spite of its simplicity (it assumes that the covariates are mutually in-
dependent), this approach can show a good behavior in classi�cation tasks;
however, it can lead to unstable estimates if the cardinality of the covariates
is high. This formula is equivalent to that of the Linear Discriminant Analy-
sis (LDA) approach, but in that case several parametric assumptions are
made on the conditional probability P (xi|R∗i = 1) which ultimately allows
the estimates to have an analytic expression. In Naïve Bayes, the probabi-
lities rely entirely on the available data from sv ∪ sr without making any
assumptions on their distribution.

3.4. E�ciency of propensity score adjustment and

calibration on the estimation from non-probabilistic

online surveys

We propose an approach based on applying PSA to obtain weights for
a nonprobability sample based in estimated propensities, and using them
as initial weights in calibration, using the weights provided by the latter
procedure to estimate population parameters. In order to evaluate this ap-
proach, we perform a simulation study based on the work of Bethlehem
(2010) using a �ctitious population of size N = 50, 000 with four covariates
(age, education, nationality and gender), an indicator variable which mea-
sures whether an individual has internet access or not, and a variable of
interest measuring the voting intention in a �ctitous election with three par-
ties (Party 1, 2 and 3). Across 1, 000 simulation runs, a reference sample of
size nr = 500 was drawn with simple random sampling without replacement
(SRSWOR) from the full population, while seven convenience samples of si-
zes nv = 500, 750, 1000, 2500, 5000, 7500, 10000 were drawn with SRSWOR
only from the subset of the population with internet access.

Vote to Party 1 is related to gender, which is only slightly related to
age, making the estimation of vote to Party 1 a Missing Completely At
Random (MCAR) situation as the target variable is not related to the selec-
tion mechanism. Vote to Party 2 is related to age, which is directly related
to internet access, making the estimation of vote to Party 2 a Missing At
Random (MAR) situation as the target variable is indirectly related to the
selection mechanism. Finally, vote to Party 3 is directly related to internet
access, which constitutes a Missing Not At Random (MNAR) case for the
estimation of vote to Party 3 as the target variable is directly related to the
selection mechanism.

The covariates were divided in four scenarios. In each one of them, a
couple of variables were used for PSA, while one variable was used for ca-
libration. In Scenarios 1 and 2, age and education were used in PSA, while
in Scenarios 3 and 4 age and nationality were used. In Scenarios 1 and 4,
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gender was used as the calibration variable, while nationality and education
were used for that task in Scenario 2 and 3 respectively. The estimation of
the voting intention for each of the three parties was done using the following
approaches:

1. Non-adjusted estimates from the convenience sample.

2. Calibration using actual population totals for the covariates selected
in the scenario.

3. Calibration using estimates for the population totals for the covariates
selected in the scenario, obtained by applying the estimator of the total
in the reference sample.

4. PSA, transforming estimated propensities into weights using the formu-
la from Schonlau and Couper (2017) (weights for the Hajek estimator),
with no further adjustments.

5. PSA, transforming estimated propensities into weights using the for-
mula from Lee and Valliant (2009) and assuming dr = N

nr
and dv = N

nv

(weights for the Horvitz-Thompson estimator), with no further adjust-
ments.

6. PSA, transforming estimated propensities into weights using the formu-
la from Schonlau and Couper (2017) (weights for the Hajek estimator),
and using those weights as initial weights for calibration with actual
population totals of the covariates.

7. PSA, transforming estimated propensities into weights using the for-
mula from Schonlau and Couper (2017) (weights for the Hajek esti-
mator), and using those weights as initial weights for calibration with
estimates for the population totals of the covariates.

8. PSA, transforming estimated propensities into weights using the for-
mula from Lee and Valliant (2009) and assuming dr = N

nr
and dv = N

nv

(weights for the Horvitz-Thompson estimator), and using those weights
as initial weights for calibration with actual population totals of the
covariates.

9. PSA, transforming estimated propensities into weights using the for-
mula from Lee and Valliant (2009) and assuming dr = N

nr
and dv = N

nv

(weights for the Horvitz-Thompson estimator), and using those weights
as initial weights for calibration with estimates for the population to-
tals of the covariates.
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3.5. Propensity score adjustment using machine lear-

ning classi�cation algorithms to control selec-

tion bias in online surveys

We study the feasibility of considering ML algorithms an alternative to
logistic regression regarding propensity estimation in PSA. To do so, two
simulation studies were considered: one using �ctitious data and another
one using a real dataset as pseudopopulation.

The �rst simulation used the same data described in Section 3.4 with
two exceptions: the removal of the relationship between gender and age, so
estimation for Party 1 would be fully MCAR, and the nonprobability sample
sv would be drawn in each simulation run using three di�erent mechanisms.
These are described in the following list:

1. SRSWOR from the subset of the population with internet access.

2. Sampling with unequal selection probabilities from the subset of the
population with internet access, where the probabilities were described
by the formula:

πiv =
1

1 + exp(−1 + 0,05Agei)
, i ∈ UI (3.43)

where UI represents the individuals with internet access in the full
population U .

3. Sampling with unequal selection probabilities from the subset of the
population with internet access, where the probabilities were described
by the formula:

πiv =
1

1 + exp(1− sin(Agei/20))
, i ∈ UI (3.44)

where UI represents the individuals with internet access in the full
population U .

The variable of interest was the voting intention, which estimation was
done using PSA (with no further adjustments) and the approaches described
in Section 3.3.3 for propensity estimation, with three algorithms for decision
tree �tting: C4.5, C5.0 (Quinlan, 1993) and CART (Breiman et al., 1984). In
each case, a grid of hyperparameters was de�ned so PSA would be performed
once for each combination of hyperparameters. The grid was the following
one:

Decision trees: 0.1, 0.25 and 0.5 as con�dence values for pruning, 0.5%,
1% and 5% of the training dataset size (nr + nv) as the minimum
number of observations per node.
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kNN: k = 3, 5, 7, 9, 11, 13.

Naïve Bayes: Laplace smoothing (number that is added to the nume-
rator result in Eq. 3.42 so the probability is not zero) equal to 0, 1, 2,
5 and 10.

Random Forest: 500 trees and 1, 2 and 4 variables randomly selected
out of the input covariates to �t each tree.

Gradient Boosting Machine: interaction depth of 4, 6 and 8 levels and
learning rates of 0.1, 0.01 and 0.001.

The second simulation used data from the 2012 edition of the Spanish
Living Conditions Survey. A sample of 28, 210 individuals (after applying a
�ltering procedure to the original sample of size 33, 573) and 61 variables was
used as a pseudopopulation from which sr and sv were obtained across 500
simulation runs, with nr = 500 and nv = 500, 750, 1000, 2000, 5000. sr was
drawn with SRSWOR from the full pseudopopulation, while sv was drawn
with SRSWOR from the subset of the pseudopopulation with a computer
at home. Two parameters were estimated: the proportion of the population
living in a household with more than two members, and the proportion of
the population whose self-reported health was poor. To do so, PSA was ap-
plied using the same algorithms as in the �rst simulation study, but the
hyperparameters were selected via an optimization process this time, using
cross-validation to �nd the combinations of hyperparameters (across the sa-
me grid) that minimized the log-Loss of the propensities. In addition, four
di�erent combinations of covariates were considered: demographic covaria-
tes, demographic plus health covariates, demographic plus poverty-related
covariates, and all eligible covariates.

3.6. Estimating General Parameters from Non-Probability

Surveys Using Propensity Score Adjustment

We de�ne a population parameter of interest, θN ∈ Rp, p ≥ 1, as the
solution of the census estimating equations

U(θN ) =
1

N

∑

U

ui(yi, θN ) (3.45)

where ui(yi, θN ) is a function of θN , which can de�ne a general parameter
of the variable of interest y that can be linear (mean, total) or nonlinear
(distribution function, quantiles). The estimate θ̂ is de�ned as the solution
of Eq. (3.45),
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Û(θN ) =
∑

U

Riui(yi, θN )

πvi
=
∑

sv

ui(yi, θN )

πvi
= 0, (3.46)

which is unbiased for the selection mechanism of sv, this is, the true pro-
pensity scores model. If we assume that the selection mechanism is a case of
Poisson random sampling, the solution of the equation above provides a con-
sistent (Godambe and Thompson, 1974) and normally distributed (Binder,
1983) estimator for θN . This assumption, which considers that the second
order inclusion probabilities are the product of �rst order inclusion proba-
bilities such that πvij = πviπvj , also allows to obtain an expression of the

variance of θ̂:

V ar(θ̂) = J(θ̂)−1V ar(Û(θN ))J(θ̂) (3.47)

where

J(θ̂) =
1

N

∑

U

∂ui
∂θ

(3.48)

and

V ar(Û(θN )) =
∑

U

(1− πvi)u2i
π2vi

(3.49)

Given that actual inclusion probabilities πvi are unknown in a nonproba-
bility sampling framework, PSA must be applied to obtain estimates of the
propensities to be used in the estimators described above. If we assume that
the propensities can be modeled such that

πvi = m(λ0,xi), i ∈ U, (3.50)

wherem(., .) is a function twice di�erentiable with respect to an unknown
parameter λ0, we can obtain the Maximum Likelihood Estimator (MLE)
of πvi as m(λ̂,xi), where λ̂ is the value that maximizes the log-likelihood
function:

l(λ) =
∑

sv

log
m(λ,xi)

1−m(λ,xi)
+
∑

U

log (1−m(λ,xi)) (3.51)

In practice, we consider the value that maximizes the pseudo-likelihood
function, which only uses sampled units from the population:

l̃(λ) =
∑

sv

log
m(λ,xi)

1−m(λ,xi)
+
∑

sr

1

πri
log (1−m(λ,xi)) (3.52)



3.7. Variable selection in Propensity Score Adjustment to mitigate selection
bias in online surveys 33

The estimator provided by the nonprobability sample, θ̂v, can be obtained
by calculating λ̂pl via solving the score equations

∂l̃(xi, λ)/∂λ = 0 (3.53)

and obtaining the solution of the estimating function

ÛV (θ) =
∑

U

Riui(yi, θ)

m(λ̂pl,xi)
= 0 (3.54)

We study the properties of θ̂ and V ar(θ̂) under a PSA approach, de-
veloping a theoretical framework for estimation of general parameters and
deploying a simulation study to obtain empirical results on the e�ciency
of the estimators in real world applications. The 2012 edition of the Spa-
nish Living Conditions Survey was used for the simulation study, where two
sampling schemes were studied for the reference sample: a strati�ed clus-
ter design, where the strata were the NUTS2 regions and the clusters were
the households (with probabilities proportional to the household size), and
a unequal probability sampling design, with probabilities proportional to
the income. The convenience sample was drawn with an unequal probability
sampling, where the inclusion probabilities depended on the gender, the age,
the population density of the living area, and having a computer at home.

3.7. Variable selection in Propensity Score Adjust-

ment to mitigate selection bias in online sur-

veys

The choice of the covariates is largely relevant regarding the e�ciency
of PSA at removing selection bias. Literature on PSA for reweighting of
treatment and control group in non-randomised studies (Hirano and Imbens,
2001; Brookhart et al., 2006; Austin, 2008; Schneeweiss et al., 2009; Austin,
2011; Myers et al., 2011; Patrick et al., 2011; Austin and Stuart, 2015) show
that selection of variables via expert knowledge or statistical procedures such
as stepwise can be fruitful, with better results when the selected covariates
are related to the variable of interest or both to the variable of interest and
the randomization mechanism.

Although literature on PSA in the context of nonprobability samples
adjustment recommends the use of all available covariates (Lee, 2006), the
use of variable selection techniques such as the LASSO regression have been
considered and studied (Breidt et al., 2017; Chen et al., 2019). The objective
of this work is to evaluate the impact of using a set of covariates x′ of length
p′ ≤ p with p being the number of covariates originally considered. Selecting



34 Chapter 3. Methodology

a subset of p′ relevant variables leads to less complex and more stable models
for propensity estimation that can result in lower variances of the estimators.

We have studied the performance of some variable selectors and �lters in
two simulation studies (one with a �ctitious simulated population and anot-
her one with a real world survey dataset used as pseudopopulation). The �rst
simulation study used a �ctitious simulated population of size N = 500, 000,
from which sr and sv were drawn (with nr = nv = 1000) with SRSWOR
and unequal probability sampling respectively, with eight covariates, eight
variables of interest and a inclusion probability for sv for each individual
(which was not used in estimation to emulate a nonprobability survey con-
text). Four of the covariates were not related to any other variable, while the
remaining four were related both to the inclusion probability and four of the
target variables. Four covariates were used in Raking calibration; two out of
the four not in the �rst group and two out of the four in the second group.
Out of the eight target variables, two were not related to any other variable,
two were related to the inclusion probability, two were related to the four
covariates described above and the remaining two were related both to the
inclusion probability and the four covariates described above. This con�gura-
tion enabled the study of variable selection methods under di�erent missing
data mechanisms.

The second simulation study used the dataset of the January 2019 Ba-
rometer Survey conducted by the Spanish Centre for Sociological Research
(CIS). The sample of n = 2, 156 individuals (�ltered to remove extreme cases
and missing data from the original dataset of n = 2, 989 individuals) and 17
selected variables was bootstrapped up to a size of N = 500, 000 individuals
to be used as a pseudopopulation. In the 17 selected variables, there were 6
target variables, 10 covariates (out of which 3 were used in Raking calibra-
tion) and a variable measuring the use of internet in the three months prior
to the survey as the delimiter of the internet population. Again, sr and sv
were drawn (with nr = nv = 1000) with SRSWOR from the full population
and the internet population respectively.

The variable selection approaches used were the following:

Correlation-based Feature Selection (CFS) (Hall, 1999).

Chi-Square �lter based on Cramer's V.

Gain ratio (Quinlan, 1986).

One-R (Holte, 1993).

Random Forest importance �lter (Breiman, 2001).

Boruta (Kursa and Rudnicki, 2010).

LASSO regression (Tibshirani, 1996).
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Variables selected by these algorithms would be used for PSA with lo-
gistic regression, kNN, GBM and neural networks for propensity estimation.
In addition, two options were considered for the �nal weights: direct PSA
weights (using the formula wPSA1i = 1/π̂∗iv) or Raking calibration weights
using wPSA1 as initial weights. For those approaches that provide a variable
importance index (Chi-Square �lter, gain ratio, One-R and Random Forest),
the set of covariates x′ was selected using the largest di�erence criteria for
cut-o�. In the rest of cases, the algorithms provided a list of selected varia-
bles which could sometimes be empty; if such thing happened, PSA would
not be applied and therefore the weights remained unitary.

3.8. Estimation using Statistical Matching

Amodel-based alternative for estimation of a parameter of y, given a refe-
rence probability sample sv, is Statistical Matching or Mass Imputation. We
assume that the population U of size N is a realization of a superpopulation
model m such that:

yi = m(xi) + ei, i = 1, ..., N, e ∼ N(0, σ2) (3.55)

where m(xi) = Em[yi|xi]. This method implies that the relationship
between y and a set of covariates x can be described with a model SM , and
therefore the imputation of values for y in sr such that

ŷj = ESM [yj |xj , Rj ], j ∈ sr (3.56)

enables the obtention of unbiased estimates for population parameters
of y through the usual estimators (described in Section 3.1) as long as the
model SM is properly speci�ed:

T̂SMy =

∑
i∈sr ŷi

πi
(3.57)

Ŷ
SMHT

=
1

N

∑
i∈sr ŷi

πi
. (3.58)

Ŷ
SMH

=

∑
i∈sr ŷi/πi∑
i∈sr 1/πi

. (3.59)

Note that the model SM must be �tted using data from sv, where the
variable of interest y has been measured. Under the ignorability assumption
P (Ri = 1|xi, yi) = P (Ri = 1|xi), the selection bias should not a�ect the
reliability of SM if the right covariates are used for modeling.

In the �rst reference to this approach (Rivers, 2007), the imputation was
done by giving to individual j ∈ sr the value of the closest match (according
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to x) to j in the nonprobability sample. This approach is equivalent to the
case where the model SM is a k-Nearest Neighbors algorithm with k = 1.
The theoretical properties of this particular case were developed eleven years
later in Yang and Kim (2018) (although the earlier work of Beaumont and
Bissonnette (2011) developed some properties and the variance estimator
for mass imputation in the nonresponse context, known as composite impu-
tation), who showed that the matching estimator is consistent under certain
assumptions, and gave an expression for the estimator of the variance as well,
but pointed out that the asymptotic bias of the estimator is not negligible
and the use of kNN is subject to the curse of dimensionality. The article al-
so considers the application of other prediction models such as Generalized
Additive Models (GAM). Kim et al. (2018) developed the theoretical pro-
perties of Mass Imputation with semi-parametric linear models as predictive
models for SM , proving their unbiasedness if the coe�cients of the models
are equal to the true coe�cients (i.e. the model is properly speci�ed). Chen
et al. (2020a) developed the theoretical framework and properties for the
application of nonparametric models in mass imputation of nonprobability
samples, including GAM and kernel smoothing.

3.9. Estimation from nonprobability samples with

population values for auxiliary variables

If a census of the full target population U is available for some covariates,
this is, we have observed xi, i ∈ U , we can use an approach very similar to
Statistical Matching which has been largely developed in literature throug-
hout the years. This approach is summarized in the model-based adjustments
for estimation of population parameters, which can be applied using di�erent
formulas.

In model-based estimation, we assume the superpopulation model from
Eq. (3.55), but this time we are able to extend the prediction of unobserved
values of y to the whole population through a model SP :

ŷj = ESP [yj |xj ], j ∈ U (3.60)

Let sd be a probability sample drawn from U with a sample design
(pd, sd). The simplest approach in the context of superpopulation mode-
lling is the model-based estimator, which is de�ned for estimation of the
population total as follows:

T̂MB
y =

∑

i∈sd

yi +
∑

j∈U−sd

ŷj (3.61)

Royall (1970) developed the theoretical properties of this estimator in
the context of probability sampling for the case where the model SP is a
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linear regression one, showing that T̂MB
y is unbiased as long as the estimated

coe�cients of the linear regression model, β̂, are unbiased. Cassel et al. (1976)
developed the model-assisted estimator in probability sampling, which can
be de�ned for estimation of the population total as follows:

T̂MA
y =

∑

i∈U
ŷi +

∑

j∈sd

wj(yj − ŷj) (3.62)

where w is the vector of weights (typically design weights but could be
any type of adjustment weights) of sd. In the particular case where SP
is linear, T̂MA

y is also named di�erence estimator and is equivalent to the
general regression estimator (Deville and Särndal, 1992). The model-assisted
estimator, as shown in Breidt et al. (2017), is asymptotically design-unbiased
for any model SP and has a known variance whose expression is

V ar(T̂MA
y ) =

∑

k,l∈U
(πkl − πkπl)wk(yk − ŷk)wl(yl − ŷl) (3.63)

Another case of superpopulation modelling estimator is the model-calibrated
estimator, developed in Wu and Sitter (2001) which can be de�ned as follows:

T̂MC
y =

∑

i∈sd

wMC
i yi (3.64)

where wMC is a vector of calibrated weights where the calibration varia-
ble is the variable representing the �tted values of SP , ŷ, such that wMC

minimizes the distance with the design weights of sd while respecting the
calibration equations:

1

N

∑

i∈sd

wMC
i = 1

∑

i∈sd

wMC
i ŷi =

∑

j∈U
ŷj (3.65)

The restriction 1
N

∑
i∈sd w

MC
i = 1 can be dropped out, leading to an

alternative estimator T̂MC∗
y . Both estimators are equivalent to the general

regression estimator if SP is a linear regression model.

These estimators have been developed in the context of probability sam-
pling. If we assume that the avaliable sample is a nonprobability sample sv,
we can reformulate the estimators. That was done in Buelens et al. (2018)
for the model-based estimator, which in the presence of sv can be rewritten
as

T̂MB
y =

∑

i∈sv

yi +
∑

j∈U−sv

ŷj (3.66)

An adaptation for the model-assisted and model-calibrated estimators
was developed in Rueda et al. (2020) for the nonprobability sampling context
such that
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T̂MA
y =

∑

i∈U
ŷi +

∑

j∈sv

wj(yj − ŷj) (3.67)

where w is a vector of weights de�ned for the nonprobability sample sv,
and

T̂MC
y =

∑

i∈sv

wMC
i yi (3.68)

where wMC
i minimize the distance with the initial weights of the nonpro-

bability sample while satisfying the calibration equations

1

N

∑

i∈sv

wMC
i = 1

∑

i∈sv

wMC
i ŷi =

∑

j∈U
ŷj (3.69)

Note that the lack of a sampling design for sv makes the theoretical
properties on the estimators not applicable in this case. On the other hand,
and similarly to the case of calibration in nonprobability sampling, the lack
of design weights a�ects the model-assisted and model-calibrated estimators.
The solutions to the issue might be the same as in the calibration case.

3.10. Evaluating Machine Learning methods for es-

timation in online surveys with superpopula-

tion modeling

We conduct a study to evaluate the e�ciency of model-based estimators
in the nonprobability online surveys context, using alternatives to linear re-
gression in the modelization of SP . The study is based in three experiments
with real world datasets conforming pseudopopulations of simulation expe-
riments, with 500 runs per simulation and three di�erent sample sizes (1000,
2000 and 5000) for sv.

The �rst simulation is based on data from the 2012 edition of the Spanish
Living Conditions Survey following the same procedure as in Section 3.5. In
this case, sv was drawn with two di�erent sampling schemes: SRSWOR from
the population with a computer at home, and unequal probability sampling
with the inclusion probability de�ned as a quadratic function of the age
(the younger, the more likely to be included in sv). The second simulation
is based on the BigLucy dataset (Gutiérrez, 2009) on �nancial data from
N = 85, 396 industrial companies which were used as the pseudopopulation.
Again, sv was drawn following two di�erent sampling schemes: SRSWOR
from the medium-sized and big-sized companies without SPAM options, and
unequal probability sampling with inclusion probabilities proportional to the
income tax of each company (the larger, the more likely to be included in
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sv). The third simulation is based on the Bank Marketing Data Set from
Moro et al. (2014) which comprises data of N = 41, 188 phone calls made
in the context of a marketing campaign. The two sampling designs tried for
selecting sv were SRSWOR schemes; in the �rst case, the sample was drawn
from those who were contacted more than three times, and in the second
case, from those who were contacted more than twice.

In each simulation, the population means of the selected variables of in-
terest were estimated via model-based, model-assisted and model-calibrated
estimators, using data from sv to train the models and assuming unitary
design weights for each individual of sv. The approaches used for the mode-
lization of SP were:

Generalized linear models (GLM).

LASSO regression, with and without Bayesian priors.

Ridge regression.

Bagged trees.

Gradient Boosting Machine (GBM).

Neural networks, with and without Bayesian regularization.

3.11. Weight smoothing in adjustments for nonpro-

bability surveys with multiple variables of in-

terest

In surveys with multiple variables of interest, also named multipurpose
surveys, the use of model-based approaches such as estimators based on the
superpopulation model assumption can be impractical. Those approaches
would require one adjustment per variable of interest, which would result in
the need for multiple model speci�cations and predictions, and therefore be
impractical or even unfeasible if the number of variables of interest is large.

For this reason, reweighting approaches are a more appropiate option
for multipurpose surveys. These approaches allow the adjustment of such
samples to mitigate selection bias, but only require one modelization step
and provide a single vector of weights that can be used for every variable
of interest. However, as the e�ciency of the weights at removing selection
bias depends on the covariates used for their estimation, their use can be
more adequate in some variables than in others. As discussed in Section 3.7,
adjustments may be better if the covariates used to estimate the weights are
related to the variable of interest. If we consider a single vector of weights
for every variable, it might work well for some variables but not so well
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for other ones, as the covariates used for their estimation might be related
only to certain variables of interest, or strongly related to some variables of
interest but weakly related to other ones.

Weight smoothing is a technique developed in Beaumont (2008), in the
context of probability sampling, to deal with this kind of situation. It is based
on the assumption that the adjustment weights w of a given probability
sample s are related to the variables of interest y through some measurable
function with a random noise term:

wi = f(yi, γ) + ei, i ∈ s (3.70)

where γ is a vector of unknown parameters and e is a random variable
with E[e] = 0 and V ar(e) < +∞. Weight smoothing is based on �tting a
model WS which represents that relationship, and substituting the original
weights by the smoothed weights, w̃, which are the predictions provided by
WS for each individual in s:

w̃i = EWS [wi|yi], i ∈ s (3.71)

Beaumont (2008) showed that this approach provides unbiased and e�-
cient estimates with the Horvitz-Thompson estimator. In the nonprobability
survey context, the design weights that would occupy the place of w are not
available, but instead the vector of weights can be a vector of calibration
weights or estimated propensity weights obtained with PSA. The model for-
mulated in Eq. 3.70 can then be rede�ned for a nonprobability sample sv
such that

wi = f(yi, γ) + ei, i ∈ sv (3.72)

and the smoothed weights can be de�ned for sv as well, with WS �tted
using data from the nonprobability sample (as it might be the only data
source where y has been observed) such that

w̃i = EWS [wi|yi], i ∈ sv (3.73)

Two simulation studies were performed for the attainment of the objec-
tives. The �rst study used a �ctitious simulated population of size N =
500, 000 with 10 covariates, 10 variables of interest and a variable measuring
the inclusion probability, with an U-shaped distribution, for each individual.
The covariates were not related to each other, but three of them were related
to three variables of interest, and another three of them were related to the
inclusion probabilities. Two scenarios, representing the extreme cases, were
considered: in the �rst one, there was no relationship between the variables of
interest and the inclusion probabilities, while in the second one every variable
of interest was related to the inclusion probabilities. The reference sample
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sr was drawn with SRSWOR from the full population, and the convenience
sample sv was drawn with unequal probability sampling using the vector of
inclusion probabilities.

The second simulation study used data from the 2012 edition of the Spa-
nish Living Conditions Survey following the same procedure as in Section
3.5 but bootstrapping the population up to N = 1, 000, 000 at the end and
removing refusal answers for a �nal pseudopopulation size of N = 990, 838,
and the same two scenarios for the selection of sv as in Section 3.10. In
this case, 10 variables were chosen as variables of interest: 3 related to house
issues, 3 related to deprivation, 2 related to health and 2 random variables
generated via simulation procedures which were not related to any other
variable. Two groups of covariates were de�ned: the �rst group had 9 demo-
graphic covariates, and the second group had 8 variables measuring economic
and material deprivation.

Each simulation had 500 runs, where sr and sv were drawn with equal
sample sizes (nr = nv = 1000). In each one, two procedures were applied to
obtain adjustment weights: PSA and Tree-Based Inverse Propensity Weigh-
ted estimation (TrIPW) (Chu and Beaumont, 2019), which uses a modi�ed
version of the CART algorithm (Breiman et al., 1984) and the design weights
from sr (which were unitary in this simulation, as sr was always drawn with
SRSWOR) to estimate propensities. The propensities were transformed in-
to weights using the formula from Valliant (2020), wPSA1i = 1/π̂∗vi, i ∈ sv,
and �nally those weights were substituted by the smoothed weights w̃ by
�tting models which used y as the input predictors and wPSA1i as the target
variable. Two modelling approaches were used for weight smoothing: XG-
Boost and LASSO. Finally, population means of y were estimated through
the Hajek estimator using w̃ as the estimator weights.

3.12. Self-Perceived Health, Life Satisfaction and

Related Factors among Healthcare Professio-

nals and the General Population: Analysis of

an Online Survey, with Propensity Score Ad-

justment

We deployed the methods for adjustment of nonprobability online surveys
in the study of self-perceived health and life satisfaction among healthcare
professionals (HCP) in the Spanish region of Andalusia. This study conduc-
ted an online survey among the students (university graduates working in the
Andalusian Health System) of an online course in holistic care for patients
with chronic pain organized by the Andalusian School of Public Health in
2014. The �nal sample size was n = 1, 797 and the objective of the study was
to measure several variables related to health status (hours of sleep, alcohol
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consumption, discapacity, presence of chronic diseases or health problems, sa-
tisfaction with life and self-perceived health). In addition, ordinal regression
models were developed for the study of factors associated to the two lat-
ter variables: satisfaction with life (10-point Likert scale) and self-perceived
health (5-point Likert scale).

The target population of the survey was the population of Andalusian
HCP with an university degree (N = 73, 465), meaning that the survey was
non-probabilistic as the probability of each member of the population to take
the survey was unknown, as their probability to take the online course was
unknown, and the selection did not follow any scheme: it was administered
(and responded) by all the participants of the course. This eventually meant
that each member indirectly self-selected to participate in the online survey,
which can be a source of selection bias given that the population of HCP with
internet access or interest in the course might have di�erent characteristics
than the general population of HCP.

In order to correct the selection bias, the parameters of interest were
estimated via Propensity Score Adjustment, using the full census of the po-
pulation (which was available for age, sex, healthcare area and degree subject
area, which were the covariates used for propensity estimation) as the refe-
rence sample. The use of full censuses as reference samples for PSA has been
acknowledged in literature as a possibility for data integration (Elliott and
Valliant, 2017). Estimated propensities were transformed into weights using
inverse propensity weighting wPSA1i = 1

π̂∗vi
, i ∈ sv (Valliant, 2020) and the

propensity strati�cation approach proposed in (Lee and Valliant, 2009). The
results of both approaches (Hajek in the �rst case, Horvitz-Thompson in
the second given that weights were unitary in both cases) were compared
in terms of stability and similarity of the weights, and variability of the es-
timates on the population proportion of some characteristics (<7 hours of
sleep, dissatisfaction with life, presence of discapacity, chronicity or health
problems, poor self-perceived health and consumption of alcohol at least on-
ce a week). The weights were also used in ordinal regression models for the
study of factors associated to self-perceived health and life satisfaction.
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Results

4.1. E�ciency of propensity score adjustment and

calibration on the estimation from non-probabilistic

online surveys

The results of the simulation study are summarized in the following
points:

Propensity Score Adjustment provides an important reduction in bias
if the selection mechanism is Missing at Random (MAR), and a noti-
ceable but modest reduction if the selection mechanism is Missing Not
At Random (MNAR).

The use of calibration after PSA provides di�erent results according to
the calibration variable used. Using education provides modest gains
in terms of bias removal, while using nationality adds bias to the es-
timates. Using gender, which is poorly related to any other variable,
does not have any e�ect on the estimates.

Bias of the estimates on voting intention for each party does not vary
across sample sizes or population totals used for calibration (actual or
estimated).

Standard deviation of the estimates, which drop considerably as the
sample size increased, is consistently larger for PSA and PSA + cali-
bration than calibration only for larger sample sizes when the selection
mechanism is MAR or NMAR.

If the selection mechanism is MCAR, using gender as the calibration
variable provides an increase in standard deviation of the estimates
only when the calibration totals used are the estimated ones (using
reference sample data) when the convenience sample size is large. In the
rest of the cases, the standard deviation is similar across adjustments.

43
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The transformation of estimated propensities into weights for Hajek or
Horvitz-Thompson estimators does not make any di�erence in the bias
reduction or the standard deviation of the estimates in the �rst two
situations (where age and education are used as PSA covariates). In
the other two situations (where age and nationality are used as PSA
covariates), weights for Horvitz-Thompson estimators are associated
to greater bias reduction than weights for Hajek estimators when the
selection mechanism is MAR, while the opposite situation occurs when
the selection mechanism is MNAR.

In the situations where age and nationality are used as PSA covaria-
tes, weights for Horvitz-Thompson estimators are associated to slightly
smaller variances than weights for Hajek estimators under any selection
mechanism when the sample size of the convenience sample is small.

Regarding the application study, PSA using all the available covariates
(age, gender and CAST score) without calibration provided the closest es-
timation to the mean SDS score estimated by the reference sample, while
the smaller estimated standard error (according to the results from jackkni-
fe) corresponded to the estimation using PSA (without further calibration)
with gender and CAST score as covariates.

4.2. Propensity score adjustment using machine lear-

ning classi�cation algorithms to control selec-

tion bias in online surveys

The results of the simulation study using arti�cial data are summarized
in the following points:

Approaches based on decision trees (C4.5, C5.0 and CART) are not
advantageous in terms of bias reduction in any situation or voluntee-
ring scheme, especially when compared to PSA with logistic regression,
except for the case where the selection mechanism is MCAR and the
convenience sample size is small. Mean Square Error (MSA) converged
to the unadjusted case. There were small di�erences across decision-
tree algorithms, which narrowed even more as the convenience sample
size increased, and parameter tuning only had a noticeable but small
e�ect when the selection mechanism was MCAR and the inclusion pro-
bability for the convenience sample was proportional to age.

The use of k-Nearest Neighbours algorithm (k-NN) provided larger
bias reductions than PSA with logistic regression in all situations and
volunteering schemes, as well as smaller MSE in the majority of the
situations. The choice of k is relevant, as it is shown that larger values
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of k provide better results overall when the selection mechanism is
MAR or MNAR, while lower values of k provide lower bias and MSE
when the selection mechanism is MCAR.

The use of Naïve Bayes classi�er in PSA for the case where the conve-
nience sample is drawn with SRSWOR from the computer population
is associated to a greater bias reduction in comparison to the case of
PSA with logistic regression when the selection mechanism is MAR,
but this advantage does not apply to the MCAR and MNAR situations
except when the convenience sample size is small and Laplace smoot-
hing is substantial. In the case of unequal probability sampling for the
convenience sample, Naïve Bayes provides better results than logistic
regression, decision trees or k-NN, both in terms of bias reduction and
MSE, when the selection mechanism is MNAR.

Random Forest in PSA provides substantially better results in bias
reduction and MSE than the rest of the alternatives for propensity
estimation when the selection mechanism is MNAR, regardless of the
sampling scheme for the convenience sample. However, its performance
depends on the number of covariates sampled to �t the trees and the
convenience sample size. For smaller samples, fewer covariates provide
better results, while for larger samples more covariates provide better
results. In MCAR or MAR situations, Random Forest provide worse
results than the rest of alternatives.

GBM for propensity estimation gives very di�erent results depending
on the hyperparameter con�guration. The algorithm removes bias to a
greater extent when the learning rate is kept in low values, especially
when the selection mechanism is MAR. In terms of MSE, the best
results are obtained when the learning rate is low in MCAR situations,
and when the learning rate is high in MAR and MNAR situations.

The results of the simulation study using real data from the 2012 edition
of the Spanish Living Conditions Survey are summarized in the following
points:

Estimation of the population fraction who perceive their health to be
poor.

• When only demographic covariates are available, PSA with Naïve
Bayes provides the largest bias reduction among all the algorithms
studied, regardless of the convenience sample size. However, Naïve
Bayes induces an instability that makes it provide the largest
variance among all the methods and, as a consequence, a larger
MSE. In this case, the method that provides the estimation with
the smallest MSE is logistic regression.
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• The results regarding capacity across methods to improve estima-
tions are the same when health or poverty covariates are available
and included in the models. However, it is noticeable that the bias
reduction is larger than in the case where only demographic co-
variates are available; in this sense, bias reduction is larger when
poverty covariates are used, which is the group of covariates rela-
ted to the variable of interest.

• When all covariates are used, PSA with logistic regression leads to
almost unbiased estimates. However, the variance of the estimates
is large, and therefore the MSE for PSA with logistic regression
presents poor values. The best choice, in terms of MSE, depends
on the convenience sample size: if it is small, decision trees present
the smallest term of error, and if it is large, GBM and Random
Forest occupy that place.

• Across all the algorithms, sample sizes and groups of covariates
used, the lowest MSE is observed in the case where PSA with lo-
gistic regression and demographic and health covariates are used.
Its MSE is close to that of PSA with GBM using all of the cova-
riates.

Estimation of the population fraction who live in households with more
than two members.

• When only demographic covariates are available, PSA with Ran-
dom Forest provides the largest bias removal and the smallest
MSE out of all the algorithms studied when the convenience sam-
ple size is large, but the opposite behavior is observed when the
convenience sample size is small. In the latter case, the performan-
ce of the rest of algorithms is very similar between them, although
PSA with logistic regression seem to provide better results both
in terms of bias removal and MSE.

• When health or poverty covariates are available in addition to
demographics, the same patterns than in the case with demo-
graphics only can be observed (albeit a limited bias reduction is
observed in comparison to the aforementioned case), except for
the fact that, when poverty covariates are used, PSA with logistic
regression provides the estimates with the smallest MSE out of
all the algorithms studied.

• When all covariates are included, J48 and GBM are the algorithms
that provide the smallest MSE when small and large convenience
sample sizes, respectively, are available. Naïve Bayes presents the
largest bias reduction for all sample sizes, but its variability leads
to poorer MSE values.
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• Across all the algorithms, sample sizes and groups of covariates
used, the lowest MSE is observed in the case where PSA with
Random Forest and demographic covariates are used. Its MSE is
close to that of PSA with GBM using all of the covariates, and
PSA with Naïve Bayes using all of the covariates as well.

4.3. Estimating General Parameters from Non-Probability

Surveys Using Propensity Score Adjustment

For a nonprobability sample which it is assumed to constitute a realiza-
tion of a Poisson sampling, it is proven that:

A consistent and asymptotically normal estimator of a general po-
pulation parameter, θ̂v, can be obtained via a two step optimization
procedure under the assumptions of double-di�erentiability for the es-
timating function, and unbiasedness and normality for the estimating
equation.

An expression for the asymptotic variance-covariance matrix of the es-
timators of a general population parameter and the population value of
λMLE can be obtained under the assumptions of double-di�erentiability
for both the estimating function and the estimating equation, and un-
biasedness and normality for the estimating equation.

The results of the simulation study are summarized in the following
points:

The relative mean bias in the estimation of the Gini index, poverty
risk (HCI), interquartile range (IQR) and interdecile range (IDR) is
substantially lower after the application of PSA with logistic regression,
especially in the estimation of HCI. The reduction in relative bias was
larger when the reference sample is drawn with inclusion probabilities
proportional to the income, in comparison to the case where it is drawn
with strati�ed cluster sampling (with probabilities proportional to the
household size).

The standard deviation of the estimates for the Gini index, IQR and
IDR are largely similar in all cases, both the adjusted and the unadjus-
ted ones, although small samples provide smaller standard deviations
in the case where the reference sample is drawn with inclusion proba-
bilities proportional to the income. However, PSA-adjusted estimates
of HCI have a substantially larger variability.

The Root Mean Square Error (RMSE) of the Gini index, HCI, IQR and
IDR estimates is remarkably lower in the cases where PSA is applied.
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Once again, the reduction in RMSE is larger when the reference sample
is drawn with inclusion probabilities proportional to the income.

Regarding the estimation of HCI under a cubic relationship and a
cosine-shaped relationship between the age and the inclusion proba-
bility in the convenience sample, PSA provided estimates with lower
relative bias and RMSE in all of the situations considered.

4.4. Variable selection in Propensity Score Adjust-

ment to mitigate selection bias in online sur-

veys

The results of the simulation study using arti�cial data are summarized
in the following points:

Variable selection provides estimates with a slightly reduced relative
bias for MCAR variables when the algorithm used to estimate propen-
sities is neural networks. However, the least biased results are observed
when using PSA with kNN and no variable selection or StepWise se-
lection. Reductions in MSE provided by variable selection are more no-
ticeable. Generally speaking, variable selection improves the e�ciency
of the estimates for obtained from PSA + Raking calibration. In the
case of one of the MCAR variable, the MSE was 10% lower when k-NN
and Raking are used to estimate it, with the Stepwise algorithm (in
comparison to using all variables). In the absence of Raking calibra-
tion, the Chi-square, Gain Ratio, LASSO and OneR methods provide
reductions of 7% in MSE.

In situations where the selection mechanism is MAR, variable selection
are able to reduce the relative bias for the majority of situations studied
(especially when PSA is performed using logistic regression), but the
most relevant intervention in that sense is Raking calibration, which
markedly reduces the bias in the estimates. The use of several variable
selection methods leads to a signi�cant improve of estimates' e�ciency,
especially in the case where Raking calibration is included among the
adjustments, with MSE reductions between 10% and 50%.

In terms of relative bias reduction, the estimation of parameters of
variables subject to MNAR selection bene�t from the application of
Raking calibration and variable selection techniques as well, but to a
more limited extent than the observed in the MAR case. The reduc-
tions in MSE, in comparison to the case where no variable selection
techniques are used, are around to 20% for OneR (when PSA with
logistic regression is applied) and Gain Ratio (for all situations as long
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as the outcome is �xed as the target variable of the selection algorithm)
techniques.

The results of the simulation study using real data are summarized in
the following points:

The best choice in variable selection depends on the propensity esti-
mation model considered. In the majority of cases, PSA using k-NN
provided the best results when using all the available covariates. When
other algorithms were used in PSA, selection algorithms improve the
results of the estimates, although there is not a single variable selection
algorithm that �ts all the cases but an ideal algorithm for each case.

Raking calibration has a modest positive e�ect on the variables mea-
suring the economic situation in Spain, the preference for a unitary
national state without autonomous communities and whether the res-
pondent self identi�ed as only Spanish, but the impact on the estima-
tion of other variables is insigni�cant.

Regarding e�ciency of the estimators, using variable selection algo-
rithms is associated to reductions in the MSE in all situations. These
reductions have a magnitude of 10% of the MSE using all the available
covariates, although it can be up to 20% in some cases (OneR algo-
rithm in the estimation of perceived economic situation in Spain, CFS
in the estimation of ideological self-positioning, and CFS, Chi-square,
Gain ratio and Random Forest in the estimation of the preference for
an unitary national state).

The results from the application study show that the use of variable
selection algorithms in the estimation from the nonprobability sample of
students are associated to point estimates closer to the estimate from the re-
ference sample. If we assume that the latter sample is closer to a probability
sampling, which is probably the case as it was drawn following a strati�ed
cluster sampling design, we can assume that these results are a proof of bias
reduction associated to variable selection algorithms, along with Raking ca-
libration (which also provides estimates closer to the reference sample one).
The estimated variance of the estimators, obtained with the jackknife met-
hod, the increase in variance induced by PSA is atenuated when variable
selection algorithms are used prior to PSA.
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4.5. Evaluating Machine Learning methods for esti-

mation in online surveys with superpopulation

modeling

The results of the simulation study show that model-assisted, model-
based and model-calibrated estimators provide important reductions in rela-
tive bias and RMSE for all of the datasets and volunteering schemes studied.
No di�erences are observed between any of the three estimators. The beha-
vior of the estimators was also consistent across all the convenience sample
sizes.

For the �rst dataset (Spanish Living Conditions Survey data), the re-
duction is maximized by bayesian-regularized neural networks (BRNN)
and linear regression methods with and without regularization (GLM,
Ridge and LASSO), regardless of the inclusion probability scheme for
the convenience sample.

In the second dataset (BigLucy), the largest reduction in bias and MSE
under the �rst sampling design of the convenience sample is observed
when using GLM, Ridge regression (with and without bayesian priors),
and Bayesian LASSO regression, as well as BRNN when the sample
size is large. However, in the second sampling design (with inclusion
probabilities proportional to taxes), the largest bias and MSE reduction
corresponds to k-Nearest Neighbors algorithm.

In the third dataset (Bank Marketing Data Set), the results are very
similar to those of BigLucy: the largest reduction in bias and MSE
under the �rst sampling design of the convenience sample is observed
when using GLM, Ridge regression, and LASSO regression, as well as
Gradient Boosting Machine when the sample size is nv = 1, 000 and
Bagged Trees algorithm when the sample size is nv = 2, 000. However,
in the second sampling design (with SRSWOR from people contacted
more than twice), the largest bias and MSE reduction corresponds to
k-Nearest Neighbors algorithm, and BRNN when the sample size is
nv = 1, 000

Results of the linear mixed-e�ects regression con�rm that there is no
evidence in the simulations' results that Ridge regression, GLM, LASSO
maximum-likelihood regression (both bayesian and non-bayesian), k-Nearest
Neighbors or Bayesian-regularized Neural Networks provide di�erent e�ects
on the e�ciency of the estimates.
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4.6. Weight smoothing in adjustments for nonpro-

bability surveys with multiple variables of in-

terest

The results of the simulation study with the arti�cial population are
summarized in the following points:

The application of weight smoothing does not produce any important
change in relative bias, regardless of whether all the target variables are
unrelated or directly related to the inclusion probability. In the former
case, the relative bias is negligible (given that the selection mechanism
is MCAR), while in the latter case a noticeable amount of bias can
be observed, although it can be succesfully removed up to half of the
original relative bias when using TrIPW. In this case, PSA is also able
to reduce the bias of the estimates to a lesser extent.

Weight smoothing is able to substantially improve the e�ciency of
the adjusted estimates in the case where the selection mechanism is
MCAR, especially when the adjustment is done via TrIPW. In this
case, weight smoothing with LASSO regression makes the MSE com-
parable to the unadjusted case (where no variance is induced by the
adjustment).

In the case where all the variables of interest are directly related to
the inclusion probability, the application of weight smoothing did not
provide any noticeable change in the e�ciency of the estimates.

The results of the simulation study using a real dataset as the pseudopo-
pulation depend on the sampling scheme of the nonprobability sample. When
the sample is drawn with SRSWOR from the subset of the pseudopopulation
with a computer at home, the results are the following ones:

When using the demographics covariates for propensity adjustment (in
PSA or TrIPW), the bias is reduced (and very similarly for both adjust-
ments) only in the variables measuring self-reported health, number of
months working part time, and whether the household has noise pro-
blems or not. When using the deprivation covariates, the bias reduction
is markedly more generalized amongst all the variables of interest, with
TrIPW presenting the best results in this sense. Weight smoothing did
not produce any noticeable change in the bias of the estimates.

The e�ciency of the estimates depends on the covariates used in the
adjustments. In general, there is always an adjustment that leads to
an improve in the e�ciency of the estimates, in comparison to the
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unadjusted case. The impact of weight smoothing also vary across ad-
justments; in those cases where the e�ciency is below 1 (the proposed
method leads to a more e�cient estimate than the unadjusted case),
the application of weight smoothing is counterproductive. However,
when the e�ciency is above 1, the smoothing procedure leads to a re-
duction of the quotient (and therefore, an improval of the e�ciency),
especially when LASSO regression is applied.

When the sample is drawn with unequal probability sampling, with inclusion
probabilities proportional to the age, the results are the following ones:

The relative bias of the estimates does not get reduced after the appli-
cation of the adjustments, except for the variable measuring whether
the household has a heating system or not, where the application of
TrIPW with deprivation covariates leads to a reduction of the bias up
to the point of making it almost zero. These results are also observed
in the MSE of the estimates.

This time, weight smoothing is able to improve the e�ciency in many
situations, including some of those where the MSE of the estimates is
already below 1. LASSO regression provides again the largest impro-
vements in e�ciency.

4.7. Self-Perceived Health, Life Satisfaction and Re-

lated Factors among Healthcare Professionals

and the General Population: Analysis of an

Online Survey, with Propensity Score Adjust-

ment

Results of the weighting process lead to the discarding of Horvitz-Thompson
weights, given their large variability which induces an increase in the varian-
ce of the estimators. The correlation between Horvitz-Thompson and Hajek
weights, when using the same algorithms for propensity estimation in PSA, is
high in the majority of cases, but Horvitz-Thompson weights present larger
skewness values and a considerable number of outliers in some cases.

In addition, Hajek weights obtained from PSA with decision trees and
neural networks with �ve units are discarded as well. The reason is that
those algorithms were unable to �t any model, and therefore provided unitary
propensities. Those propensities made Hajek weights to be equal to the initial
weights of the nonprobability sample, meaning that the results would be
equivalent to the unadjusted case.

The Multidimensional Scalling (MDS) analysis of the weights shows two
di�erentiated groups of weights largely similar between them: those provi-
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ded by PSA with neural networks (regardless of the number of units in the
hidden layer), and those provided by PSA with logistic regression, Gradient
Boosting Machine or Naïve Bayes. In addition, the analysis also shows three
clear outliers: weights provided by PSA with Random Forests (both Horvitz-
Thompson and Hajek) and Horvitz-Thompson weights obtained from PSA
with a neural net with �ve units in the hidden layer.

The results of the prevalence analysis are very similar across adjustments.
Although some of the point estimates di�er slightly, the estimated con�dence
intervals (at a con�dence level of 95%) overlap in all variables and PSA
approaches. In addition, it can be observed that the application of PSA leads
to an increase of the estimators' variance in comparison to the unadjusted
case. The minimum increase in variance is observed for PSA with logistic
regression. For this reason, we use the results provided by PSA with logistic
regression as the reference results, which show the following numbers:

10.3% of male HCPs and 12.6% of female HCPs are dissatis�ed with
their life and 8.4% of male and 7.8% of female professionals perceived
their own health as poor. These estimates are signi�cantly lower than
the estimates for the general Andalusian population.

62.3% of the men and 42.8% of the women drank alcohol at least once
a week. These estimates are sign�cantly higher than the estimates for
the general Andalusian population.

31.1% of the men and 26.7% of the women slept for less than seven
hours a day. These estimates are sign�cantly higher than the estimates
for the general Andalusian population.

31.8% of the men and 22.3% of the women reported having at least one
chronic disease. The estimate for women HCP is signi�cantly higher
than the estimate for the general Andalusian females population, but
that is not the case for men.

26.3% of the men and 20.6% of the women had one health problem,
and 10.4% and 6%, respectively, had two or more health problems.

7% of men and 6% of women had a disability. These estimates are
sign�cantly higher than the estimates for the general Andalusian po-
pulation.

The regression analysis was performed using weights from PSA with logis-
tic regression and PSA with a neural net with one unit, with the objective
of representing both of the groups of very similar weights that have been
found in MDS. The results were compared to the same regression analysis
with no weighting adjustment, showing that weighting makes the estimates
of the regression coe�cients to be closer to zero, which also in�uences the
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strength of the evidences against the null e�ect of a given factor on the target
variable.

The results of the regression analysis are summarized in the following
points:

The prior existence of one health problem increases the likelihood of
poor self-perceived health by 3 and 2 times, respectively, for men and
women. In the case of two or more health problems, this probability
rise to 8 and 10 times, respectively. In addition, there is evidence that
the presence of obesity, according to the BMI index, is signi�cantly
associated with a lower probability of good health among women (OR
= 2.1).

Nursing quali�cations are signi�cantly associated with poorer self-perceived
health, compared with respondents with a degree in medicine, regard-
less of sex (OR = 1.8), or even among women those whose degree
subject was reported as neither medicine nor nursing (OR = 2). Howe-
ver, no signi�cant di�erences in OR are observed between those who
worked in primary care or other level of healthcare.

Smoking every day is associated with a greater likelihood of poorer
self-perceived health in women; no physical activity or only occasio-
nal activity is also associated with poorer self-perception of health,
especially in men, as is sleeping less than seven hours per night.

The strongest negative association with life satisfaction is measured
for prior health problems, and this relationship become signi�cantly
stronger for both male and female respondents as the number of pre-
existing health problems increases. For men, furthermore, working in
primary rather than other levels of healthcare is also associated with
less life satisfaction.

Physical inactivity is associated with lower levels of life satisfaction.
Male and female HCPs who performed no physical activity at all are
5 and 2.5 times, respectively, more likely to have less satisfaction with
life than their more physically active counterparts.

Women who smoked (whether every day or less frequently) are more
likely to report lower levels of life satisfaction than those who have
never smoked.

HCPs who sleep less than seven hours per night are around 1.5 and
1.8 times (for men and women, respectively) more likely to report low
levels of life satisfaction than those who sleep for longer, assuming all
other variables remain constant.
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Conclusions

5.1. E�ciency of propensity score adjustment and

calibration on the estimation from non-probabilistic

online surveys

The adequacy of PSA (with di�erent weighting approaches) and the com-
bination between PSA and calibration is studied through a simulation study
that represents all types of missing data mechanisms, and an application
study on a real online survey of university students. We also study the beha-
vior of calibration using actual population totals and estimated population
totals (from the reference sample) . The results show that the bias can be
almost entirely reduced with the right combination of adjustments if the se-
lection mechanism is MAR, while it can be reduced only to a modest extent
if the selection mechanism is MNAR. The results support the hypothesis
that the combination of PSA and calibration can be more adequate for mi-
tigating bias than using only one of the methods on its own, as long as the
covariates for calibration and propensity estimation are properly speci�ed.
The observed di�erences between weighting procedures are not signi�cant
in terms of bias or estimators' variance reduction. It can also be concluded
that the application of PSA may lead to a larger variance of the estimates
in comparison to the unadjusted or calibrated-only case, but the increase
depends on the convenience sample size, with larger samples leading to a
larger increase of the variance. Finally, it can be concluded that the use
of actual population totals or estimated population totals does not make a
di�erence in bias reduction or variance of the estimates (except for the ca-
se where selection mechanism is MCAR) as long as the reference sample is
representative of the target population.

55
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5.2. Propensity score adjustment using machine lear-

ning classi�cation algorithms to control selec-

tion bias in online surveys

We study the application of Machine Learning classi�cation algorithms
in PSA in two simulation studies with �ctitious and real world data, con-
sidering di�erent hyperparameter con�gurations for each algorithm tried in
the �rst case. The results show that Machine Learning algorithms can be
viewed as an advantageous alternative to logistic regression for propensity
estimation, although the latter method is also shown to be a robust, relia-
ble one. There is not a single optimum approach for every case, and the
best Machine Learning algorithm in terms of e�ciency might be di�erent for
every scenario and dataset. When selection follows a MCAR scheme, CART
algorithm and Gradient Boosting Machine (GBM) are the best alternatives,
although the majority of the algorithms tested also improve upon the re-
sults obtained by PSA with logistic regression, especially as the convenience
sample size increases. With MAR or MNAR selection, logistic regression ge-
nerally provides good adjustments, especially when the dimensionality is low
and the covariates are not very discriminant. However, if more covariates are
available, logistic regression tends to destabilise and the MSE increases, and
GBM, k-NN, decision trees and Random Forests all represent good alter-
natives. The presence of balancing and over�tting issues suggests that data
preprocessing should be a key step in propensity estimation.

5.3. Estimating General Parameters from Non-Probability

Surveys Using Propensity Score Adjustment

We establish a theoretical framework for estimation of general parame-
ters in nonprobability surveys using PSA to estimate the unknown inclusion
probability. We propose a two-phase estimation procedure, in which the �rst
step is focused on �nding the value that maximizes the pseudo-likelihood of
the model considered to predict the inclusion probability conditional to a set
of covariates, and the second one is focused on �nding the solution to the
estimating equation. We prove that the provided estimators are consistent
and asymptotically normal under several conditions. We also provide the ex-
pression of the estimator for the variance of the estimators developed in the
two-step procedure.

Results observed in the simulation study provide strong evidence on the
e�ciency of methods based in estimating equations with estimated propen-
sities. However, it must be noted that the e�ciency depends on the selection
mechanisms of nonprobability samples and the availability of covariates for
propensity estimation. In our simulations, results show that PSA is more
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e�cient when the propensity of being in the nonprobability sample is less
related to the variable of interest.

5.4. Variable selection in Propensity Score Adjust-

ment to mitigate selection bias in online sur-

veys

We perform two simulation studies using synthetic data and a real sur-
vey where PSA is used to reduce selection bias in nonprobability samples,
applying variable selection methods to obtain an optimal set of covariates for
propensity estimation. We also apply Machine Learning classi�cation algo-
rithms for propensity estimation and Raking calibration after PSA, in order
to study the adequacy and e�ciency of each technique or combination of
techniques.

Our analysis shows that variable selection makes a signi�cant contribu-
tion to reducing relative bias, although the best method for �nding the best
subset of covariates depends on the dataset considered and the adjustment
choices made. Variable selection is associated with a reduction of model com-
plexity which leads to more e�cient estimators. Selecting variables according
to their impact on the outcome variable provided the best results overall.

In addition, we observe that the application of Raking calibration after
PSA is the most e�cient technique in almost all cases. On the other hand, the
use of classi�cation algorithms instead of logistic regression for estimating
propensities was only advantageous for certain algorithms, which are di�erent
depending on the scenario.

5.5. Evaluating Machine Learning methods for esti-

mation in online surveys with superpopulation

modeling

We describe some options for estimation in nonprobability samples using
ML techniques in three superpopulation modeling based approaches: model-
based, model-assisted and model-calibrated estimators. We clarify the re-
quirements for the application of these estimators and illustrate how they
perform empirically in three simulation studies using real world datasets. The
main conclusion of the simulation study is that the selection of the predictive
model used in the process is vastly more important than the approach used
in the estimation or the convenience sample size. No signi�cant di�erences
was found in e�ciency between any of the three estimators proposed nor any
of the three sample sizes studied. Regarding the modeling choice, we obser-
ve that advanced regression techniques, such as LASSO regression or Ridge
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regression, are similar in their good performance, although other techniques
such as bayesian regularized neural networks or k-Nearest Neighbors can
provide e�cient estimates in some speci�c situations. Linear models, which
are the standard choice considered in superpopulation modeling literature
and its theoretical framework, provide good results overall.

5.6. Weight smoothing in adjustments for nonpro-

bability surveys with multiple variables of in-

terest

We apply weight smoothing methods in two simulation studies, using ar-
ti�cial and real world data, in the context of nonprobability sampling. PSA
and TrIPW methods are used to estimate propensities, which are trans-
formed into weights using the inverse probability weighting approach. The
results of the simulation study with an arti�cial population show that weight
smoothing contributes to reduce the variance of the estimates in those si-
tuations where the e�ciency of non-smoothed estimates is poor. When the
estimates are already e�cient, weight smoothing does not add much, with
some exceptions where the set of covariates is good but not optimal. The bias
of the estimates remains unchanged after the application of weight smoot-
hing.

In the real data simulation, the conclusions that arise from the results
are di�erent. The adjusted estimators (with PSA or TrIPW) are largely
ine�cient in some cases, with weight smoothing being unable to increase their
e�ciency. This could be caused by misspeci�ed propensity models which
might contribute to increasing the bias, making the MSE to increase because
of the bias (which is the term that weight smoothing is unable to address)
and not the variance.

LASSO regression presents better results than XGBoost in terms of MSE
reduction in the majority of cases. Regarding di�erences in propensity esti-
mation methods, TrIPW provides better results overall than PSA.

5.7. Self-Perceived Health, Life Satisfaction and Re-

lated Factors among Healthcare Professionals

and the General Population: Analysis of an

Online Survey, with Propensity Score Adjust-

ment

We study a real world problem where the variables of interest of the
analysis (prevalence of certain diseases, life satisfaction and self-perception
of health) had been measured in an online nonprobability survey. PSA is ap-
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plied to remove selection bias using di�erent predictive models for propensity
estimation and two di�erent weighting procedures. The results on prevalence
estimates show that there are some di�erences across the estimations pro-
vided by di�erent adjustments and estimators, although several groups of
algorithms for PSA with similar behaviours have been spotted according to
the weights that they provide. Estimates provided by the Horvitz-Thompson
estimator have larger estimated variances, and Random Forest algorithm pro-
vides more extreme weights and therefore skewed vectors of weights, which
also contribute to an increase in the variance of the estimates. Some ad-
justments, especially PSA with logistic regression, present smaller variances,
making them more desirable in terms of reducing estimation error.

The regression analysis shows no signi�cant di�erences across selection
bias adjustments, although a shift towards the null hypothesis can be obser-
ved for some of the regression coe�cients after PSA reweighting. Prior health
problems, sleeping for less than seven hours per night, physical inactivity and
smoking (by women) are all associated with the perception of poorer health,
while obesity (among women), working as a nurse or in primary healthcare
(among male HCPs) are associated with less satisfaction with life.





Chapter 6

Conclusiones

6.1. E�ciency of propensity score adjustment and

calibration on the estimation from non-probabilistic

online surveys

La adecuación del PSA (con diferentes métodos de ponderación) y la
combinación entre PSA y calibración se estudia a través de un estudio de
simulación donde se representan todos los mecanismos de datos faltantes, y
un estudio de aplicación en una encuesta online real de estudiantes univer-
sitarios. Se estudia también el comportamiento de la calibración utilizando
totales poblacionales reales y totales poblacionales estimados (a partir de la
muestra de referencia). Los resultados muestran que el sesgo puede reducirse
casi en su totalidad con la combinación correcta de ajustes si el mecanismo
de selección es MAR, mientras que se puede reducir sólo hasta una modesta
cantidad si el mecanismo de selección es MNAR. Los resultados apoyan la
hipótesis de que la combinación de PSA y calibración puede ser más ade-
cuada para reducir el sesgo que utilizar únicamente uno de los métodos, en
tanto en cuanto las variables auxiliares para la calibración y la estimación
de la propensión estén correctamente especi�cadas. Las diferencias obser-
vadas entre métodos de ponderación no son signi�cativas en términos de
reducción de sesgo o varianza de los estimadores. Se puede concluir también
que la aplicación del PSA puede traducirse en una mayor varianza de las
estimaciones en comparación con el caso sin ajustar o con sólo calibración,
pero el incremento depende del tamaño de la muestra de conveniencia, con
mayores tamaños muestrales conllevando un mayor aumento de la varianza.
Finalmente, se puede concluir que el uso de totales poblacionales reales o es-
timados no supone ninguna diferencia en cuanto a reducción del sesgo o de la
varianza de las estimaciones (salvo en caso de que el mecanismo de selección
sea MCAR) en tanto en cuanto la muestra de referencia sea representativa
de la población objetivo.
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6.2. Propensity score adjustment using machine lear-

ning classi�cation algorithms to control selec-

tion bias in online surveys

Se estudia la aplicación de algoritmos de clasi�cación de Machine Lear-
ning en el PSA en dos estudios de simulación con datos tanto �cticios como
del mundo real, considerando diferentes con�guraciones de hiperparámetros
para cada algoritmo estudiado en el primer caso. Los resultados muestran
que los algoritmos de Machine Learning pueden verse como una alternativa
ventajosa a la regresión logística para la estimación de la propensión, aun-
que este último método se muestra también como uno robusto y �able. No
hay un solo método óptimo para todos los casos, y el mejor algoritmo de
Machine Learning en términos de e�ciencia puede ser diferente en cada es-
cenario y conjunto de datos. Cuando la selección sigue un esquema MCAR,
los algoritmos CART y Gradient Boosting Machine (GBM) son las mejores
alternativas, aunque la mayoría de algoritmos probados también mejoran
los resultados obtenidos por el PSA con regresión logística, especialmente
a medida que el tamaño de la muestra de conveniencia aumenta. Cuando
la selección es MAR o MNAR, la regresión logística generalmente produce
buenos resultados, especialmente cuando la dimensionalidad es baja y las
covariables no son muy discriminantes. Sin embargo, si hay más covariables
disponibles, la regresión logística tiende a desestabilizarse y el Error Cua-
drático Medio (ECM) aumenta, y el GBM, los k-NN, los árboles de decisión
y los Random Forests representan buenas alternativas. La presencia de pro-
blemas de balanceo y sobreajuste sugieren que el preprocesamiento de datos
debería ser un paso clave en la estimación de propensiones.

6.3. Estimating General Parameters from Non-Probability

Surveys Using Propensity Score Adjustment

Establecemos un marco teórico para la estimación de parámetros ge-
nerales en encuestas no probabilísticas utilizando el PSA para estimar la
probabilidad de inclusión desconocida. Proponemos un proceso de estima-
ción en dos fases, en el cual el primer paso se centra en encontrar el valor
que maximiza la pseudo-verosimilitud del modelo considerado para predecir
la probabilidad de inclusión condicionada a un conjunto de covariables, y el
segundo paso se centra en encontrar la solución a la ecuación de estimación.
Demostramos que los estimadores proporcionados son consistentes y asin-
tóticamente normales bajo ciertas condiciones. También proporcionamos la
expresión del estimador para la varianza de los estimadores desarrollados en
el proceso en dos fases.

Los resultados observados en el estudio de simulación proporcionan im-
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portantes evidencias de la e�ciencia de los métodos basados en ecuaciones de
estimación con propensiones estimadas. Sin embargo, se debe notar que la
e�ciencia depende de los mecanismos de selección de las muestras no probabi-
lísticas y la disponibilidad de covariables para la estimación de la propensión.
En nuestras simulaciones, los resultados muestran que el PSA es más e�cien-
te cuando la propensión a estar en la muestra no probabilística está menos
relacionada con la variable de interés.

6.4. Variable selection in Propensity Score Adjust-

ment to mitigate selection bias in online sur-

veys

Realizamos dos estudios de simulación utilizando datos sintéticos y una
encuesta real en la que se utiliza el PSA para reducir el sesgo de selección
en muestras no probabilísticas, aplicando métodos de selección de variables
para obtener un conjunto óptimo de covariables para la estimación de la pro-
pensión. También aplicamos algoritmos de clasi�cación de Machine Learning
para la estimación de la propensión y calibración Raking después del PSA,
con el objetivo de estudiar la adecuación y la e�ciencia de cada técnica o
combinación de técnicas.

Nuestro análisis muestra que la selección de variables supone una con-
tribución signi�cativa en la reducción del sesgo relativo, aunque el mejor
método para encontrar el mejor subconjunto de covariables depende en el
conjunto de datos considerado y en los ajustes realizados. La selección de
variables está asociada a una reducción en la complejidad del modelo que
se traduce en estimadores más e�cientes. Seleccionar variables según su im-
pacto en la variable objetivo proporcionó los mejores resultados en líneas
generales.

Además, observamos que la aplicación de la calibración Raking tras el
PSA es la técnica más e�ciente en casi todos los casos. Por otra parte, el uso
de algoritmos de clasi�cación en lugar de regresión logística para estimar
propensiones sólo es ventajosa para ciertos algoritmos, que son diferentes en
función del escenario.

6.5. Evaluating Machine Learning methods for esti-

mation in online surveys with superpopulation

modeling

Se describen algunas opciones para la estimación en muestras no probabi-
lísticas empleando técnicas de Machine Learning en tres métodos basados en
modelos de superpoblación: los estimadores modelo basado, modelo asistido
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y modelo calibrado. Se clari�ca los requerimientos para aplicar estos estima-
dores y se ilustra cómo actúan empíricamente en tres estudios de simulación
utilizando conjuntos de datos del mundo real. La conclusión principal del es-
tudio de simulación es que la selección del modelo predictivo utilizado en el
proceso es mucho más importante que el método utilizado para la estimación
o el tamaño de la muestra de conveniencia. No se encontraron diferencias sig-
ni�cativas entre ninguno de los tres estimadores propuestos ni ninguno de los
tres tamaños de muestra estudiados. En cuanto a la elección del modelo, ob-
servamos que las técnicas avanzadas de regresión, como la regresión LASSO o
la regresión Ridge, son similares en cuanto a su buen funcionamiento, aunque
otras técnicas como las redes neuronales regularizadas de forma bayesiana
o los k-vecinos más cercanos pueden proporcionar estimaciones e�cientes en
algunas situaciones especí�cas. Los modelos lineales, que son la elección es-
tándar considerada en la literatura de modelos de superpoblación y su marco
teórico, proporcionan en general buenos resultados.

6.6. Weight smoothing in adjustments for nonpro-

bability surveys with multiple variables of in-

terest

Se aplican métodos de suavizado de pesos en dos estudios de simulación,
utilizando tanto datos arti�ciales como del mundo real, en el contexto del
muestreo no probabilístico. Se emplean los métodos PSA y TrIPW para
estimar las propensiones, que se transforman en pesos utilizando el método
de ponderación de la probabilidad inversa. Los resultados del estudio de
simulación con una población arti�cial muestran que el suavizado de pesos
contribuye a reducir la varianza de las estimaciones en aquellas situaciones
en las que la e�ciencia de las estimaciones no suavizadas es pobre. Cuando
las estimaciones ya son e�cientes, el suavizado de pesos no añade mucho,
con algunas excepciones donde el conjunto de covariables es bueno pero no
óptimo. El sesgo en las estimaciones permanece sin cambios tras la aplicación
del suavizado de pesos.

En la simulación que emplea datos reales, las conclusiones que surgen de
los resultados son diferentes. Los estimadores ajustados (con PSA o TrIPW)
son ampliamente ine�cientes en algunos casos, con el suavizado de pesos
siendo incapaz de aumentar su e�ciencia. Esto podría estar causado por la
especi�cación errónea de modelos de propensión que podrían contribuir a
incrementar el sesgo, haciendo que incremente el Error Cuadrático Medio
(ECM) debido al sesgo (que es el término en el que el suavizado de pesos no
es capaz de intervenir) y no la varianza.

La regresión LASSO presenta mejores resultados que el XGBoost en tér-
minos de reducción del ECM en la mayoría de los casos. En cuanto a las
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diferencias entre métodos de estimación de la propensión, el TrIPW propor-
ciona mejores resultados que el PSA.

6.7. Self-Perceived Health, Life Satisfaction and Re-

lated Factors among Healthcare Professionals

and the General Population: Analysis of an

Online Survey, with Propensity Score Adjust-

ment

Se estudia un problema del mundo real en el que la única información
disponible sobre ciertas variables relacionadas con la salud es una muestra
no probabilística. Se aplica el PSA para eliminar el sesgo de selección utili-
zando diferentes modelos predictivos para la estimación de las propensiones
y dos métodos de ponderación diferentes. Los resultados de las estimaciones
de prevalencia muestran que hay algunas diferencias entre las estimaciones
proporcionadas por diferentes ajustes y estimadores, aunque se han identi�-
cado algunos grupos de algoritmos para PSA con comportamientos similares,
de acuerdo a los pesos que proporcionan. Las estimaciones proporcionadas
por el estimador de Horvitz-Thompson tienen mayores varianzas estimadas,
y el algoritmo Random Forest proporciona más pesos extremos y por tanto
vectores de pesos asimétricos, lo que también contribuye a un incremento
en la varianza de las estimaciones. Algunos ajustes, especialmente PSA con
regresión logística, presentan varianzas más pequeñas, lo que les hace más
deseables en términos de reducir el error de estimación.

El análisis de regresión no muestra diferencias signi�cativas entre ajustes
para el sesgo de selección, aunque se puede observar un desplazamiento hacia
la hipótesis nula en algunos de los coe�cientes de regresión tras la reponde-
ración con PSA. Problemas de salud previos, dormir menos de siete horas
por noche, inactividad física y fumar (en mujeres) están asociados con una
autopercepción de salud más pobre, mientras que la obesidad (en mujeres)
trabajar de enfermera o en atención primaria (en hombres) están asociados
con una menor satisfacción con la vida.





Chapter 7

Future Research

The research presented in this dissertation entails several limitations that
should be accounted for in future research. A major issue is the lack of a theo-
retical framework for estimation in nonprobability surveys for many of the
methods studied. Although such framework has been provided for estimation
of any parameter with Propensity Score Adjustment (PSA), the development
of the theoretical properties for estimators based in superpopulation mode-
ling in the nonprobability sampling context remains as a challenge to be
considered in future research lines. The importance of this development is
stated by the promising results provided by empirical research.

Regarding PSA, future research should focus on the inclusion of the de-
sign weights, often present in the reference sample, in the propensity estima-
tion procedure. Although an approach can be consulted in Valliant (2020),
there is still a lack of research on the path that provides the best results in
terms of bias reduction via propensity estimation. The Tree-based Inverse
Propensity Weighted estimator method, which has been studied as an al-
ternative to PSA in order to obtain propensity weights, consider the design
weights to estimate the population fraction that would �t in the terminal
node of a decision tree. The promising results provided by TrIPW in our
simulation studies might be a motivation to consider this issue as a future
research line.

Another important research line that has already shown its potential is
the combination of estimation procedures to reduce bias more signi�cantly.
Doubly robust estimators are an example of that combination: they use the
results from the Statistical Matching estimator but complement them with
a measure of the prediction error provided by the information present in the
nonprobability sample, which is weighted using PSA to make it representa-
tive for the population. The combination of di�erent approaches might be
useful to provide robustness and protection against misspeci�cations that
could be present in the statistical models used in the majority of adjustment
methods.
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The results presented in this dissertation are also limited by the reduced
set of predictive models and missing data situations studied. Although the
inclusion of real world datasets makes it possible to take into account com-
plex relationships and phenomena that can take place in data sets, the range
of possible situations that may appear in an application could be di�erent
from those studied. On the other hand, the algorithms used for propensity
estimation or mass imputation, although modern, only account for a mini-
mum part of the state-of-the-art prediction algorithms which could be used
for the matter. In addition, the preprocessing step, which has not been ex-
haustively studied in the context of bias reduction in nonprobability surveys
(except for variable selection), could help to provide better results in terms
of bias reduction.

Finally, a major issue that should be addressed in future research is the
adjustment of selection bias in those cases where the selection mechanism is
directly associated to the variable of interest, this is, the missing responses
for the variable of interest are Missing Not At Random (MNAR). These are
the most problematic yet most common cases in real data situations, and
the methods to mitigate the bias developed in literature can only remove it
to a small extent in such situations, although some promising results could
be observed (for example, PSA applying Random Forest to estimate the
propensities provided considerably better results in MNAR situations).
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Abstract

One of the main sources of inaccuracy in modern survey techniques, such as online and smart-

phone surveys, is the absence of an adequate sampling frame that could provide a probabilistic sam-

pling. This kind of data collection leads to the presence of high amounts of bias in final estimates of

the survey, specially if the estimated variables (also known as target variables) have some influence

on the decision of the respondent to participate in the survey. Various correction techniques, such as

calibration and Propensity Score Adjustment or PSA, can be applied to remove the bias. This study

attempts to analyze the efficiency of correction techniques in multiple situations, applying a combi-

nation of PSA and calibration on both types of variables (correlated and not correlated with the miss

of data) and testing the use of a reference survey to get the population totals for calibration variables.

The study was performed using a simulation of a fictitious population of potential voters and a real

volunteer survey aimed to a population for which a complete census was available. Results showed

that PSA combined with calibration results in a bias removal considerably larger when compared

with calibration with no prior adjustment. Results also showed that using population totals from the

estimates of a reference survey instead of the available population data does not make a difference in

estimates accuracy, although it can contribute to slightly increment the variance of the estimator.

1 Introduction

Traditional surveys are experiencing, along with society, a number of changes
which affect their validity and applicability. Several reasons can be cited (e. g.,
see Couper (2017) and Schonlau et al. (2009)) on the decline of participation and
completion rates in surveys conducted using traditional modes of contact, such
as telephone or face-to-face surveys. A review performed by Dı́az de Rada (2012)
stated that response rates in traditional surveys have been dropping for two decades.
The increasing difficulty of contacting households members in face-to-face surveys
results in increased costs per interview and therefore non-sampling errors are prob-
lematic to deal with in this context; regarding telephone surveys, the rise of mobile
phones makes it more difficult for government agencies to keep an adequate sam-
pling frame, in terms of coverage, of landline phones (Pasadas-del-Amo, 2018).

At the same time, the arrival of the Internet and mobile phone lines has led to
the usage of new survey administration methods, with online surveys and smart-
phone surveys being the most popular and promising ones to deal with the men-
tioned issues in order to contact respondents. Online surveys can be defined, given
how they are conducted nowadays as described by Mei and Brown (2017), as sur-
veys filled from computers that respondents can access anytime. Questionnaires
might have a conventional structure adapted to the online context (e. g. Survey-
Monkey) and might also be provided using online social networks. Smartphone
surveys differ in the filling mode: any survey completed using a mobile device or a
tablet can be considered a smartphone survey. Sometimes, the questionnaire might
be hosted in an URL, thus it could be considered a browser survey and therefore an
online survey. This states a clear divide in the smartphone surveys between those



app-based questionnaires or related and those filled using a browser available in the
device itself, as the latter do not properly seize the advantages of a mobile device.

The change from the traditional survey to the internet survey has brought im-
portant changes and new challenges have arisen (Dı́az de Rada and Domı́nguez
(2015); Dı́az de Rada and Domı́nguez (2016)). These new methods offer substan-
tial advantages against traditional survey techniques, specially in terms of mone-
tary and time costs as they usually do not require any effort by any interviewer and
the information collection becomes instantaneous. In addition, online surveys are
considered to be more advantageous for information collection; despite the advan-
tages of smartphones such as the audiovisual options and the possibility to retrieve
data on certain variables without the need of any extra question in the survey, web
surveys take less time to be completed by interviewers, as proved by Couper and
Peterson (2017).

Along with the described advantages, some serious concerns often arise when
using these new survey methods. As noted in Elliott and Valliant (2017), Inter-
net surveys (even when an structured voluntary panel is used) suffer mostly from
selection bias, specially from the bias induced by the Internet availability and pene-
tration in the general population. This issue will be broadly discussed later. Internet
surveys are also affected by nonresponse bias; a meta-analysis conducted by Man-
freda et al. (2008) estimated that online surveys are associated with a decrease in
response rates between 6% and 15% in comparison to other survey modes. In ad-
dition, the use of incentives as a method to improve cooperation have been proved
as less efficient in online surveys (Dı́az de Rada, 2012). Other important sources of
non sampling errors in online and smartphone surveys are measurement errors; al-
though the social desirability effect is less prone to appear in online surveys (Heer-
wegh, 2009), they still suffer from other effects such as technical issues (p. e. poor
Internet connection may lead to a lack of completion of a survey) or lack of veracity
in the responses given, which in the online case has a variety of causes.

Nonresponse bias, as well as measurement errors, have been widely studied in
the literature as they have been common issues in traditional survey methods since
their initial development. However, selection bias presents some particular charac-
teristics in the new survey methods which require other strategies in order to tackle
it. In all cases, online and smartphone surveys are often applied under inadequate
sampling conditions; they are generally filled by self-selected respondents which
conform a non-probabilistic sampling. Even if an acceptable random sampling is
eventually performed, it may be particularly troublesome to establish a reliable
sampling frame required to meet the probabilistic sampling assumptions (Couper
(2000); Couper and Peterson (2017)). On the other hand, the coverage of such
surveys is also limited by the population access to the Internet. Although no in-
terview mode is exempt from suffering coverage bias, it happens to be much more
important in Internet surveys (Couper (2007), according to Schonlau et al. (2009)),
as Internet access is often associated to sociodemographic variables which could
be eventually related to the outcome variables of a certain study. To mention some
examples, data from Pew Research Center (2017) reveals that in 2016 while 99%



of U. S. adults between 18 and 29 years old could be considered Internet users,
only a 64% of those above 65 years of age fell into the same group. In the case of
Spain, the generation gap is wider according to the National Institute of Statistics
(2017a); while the penetration rate is above 90% for all age groups below 54 years
of age, in citizens between 65 and 74 years old Internet penetration rate is 43.7%.

It is obvious that such a problem can be responsible for a large increase in
the bias of the final results. Therefore, developing methods to deal with the lack
of representativity has become a priority. To date, the more relevant methods are
considered to be calibration techniques and Propensity Score Adjustment (PSA).
Calibration weighting using auxiliary information (Deville and Särndal, 1992) has
been established as the main technique to deal with problematic sampling frames,
but its efficacy can decrease when the self-selection procedure is tied (directly or
not) to the target variables (Bethlehem, 2010). Calibration for coverage issues has
also been studied using the superpopulation model approach through general re-
gression (GREG) weights (Dever et al., 2008); despite it successfully address both
nonresponse and noncoverage in online surveys, it requires an structured sampling
design, something that does not apply to volunteer surveys. When calibration is
ineffective, PSA can be a proper substitute if it is feasible to use a probabilistic
sample on the same target population, on which a subset of variables measured on
the non-probabilistic sample have been measured on the probabilistic sample as
well. Research findings have shown that PSA successfully removes bias in some
situations, but at the cost of increasing the variance of the estimates (Lee (2006);
Lee and Valliant (2009)). The efficacy of bias removal by PSA is strongly depen-
dent on using covariates related to the actual propensity to participate and the target
variables (Schonlau and Couper, 2017), and its sole application without any further
adjustment can lead to biased estimates (Valliant and Dever, 2011). The aim of this
study was to examine the behavior of the estimators when both techniques, PSA
and calibration, are applied, in comparison to the situations where only calibra-
tion is performed or where no weighting technique is applied at all. Given that,
for most situations, auxiliary information can be troublesome to find, calibration is
tested using known population totals and using population estimates coming from
the reference (probabilistic) sample that it is supposed to be available. Under the
initial hypothesis of the study, the combined weighting of PSA in a first step and
calibration in a second one would outperform the estimates obtained with calibra-
tion weighting only in terms of bias reduction, although the estimators will have
a higher variance as the reference sample size gets smaller in comparison to the
convenience (non-probabilistic) sample size.



2 Methodology

2.1 Calibration weighting

Surveys often have a coverage error associated to them, in the sense of being made
using a sampling frame that does not cover the entire population to which survey
results are to be extrapolated. This coverage error, which can be the result of several
irregularities, can be controlled by the use of reweighting or calibration techniques.
Calibration was defined by Särndal (2007) as the combination of three items:

a) a computation of weights that incorporate specified auxiliary infor-
mation and are restrained by calibration equation(s), b) the use of these
weights to compute linearly weighted estimates of totals and other fi-
nite population parameters: weight times variable value, summed over
a set of observed units, c) an objective to obtain nearly design unbi-
ased estimates as long as non-response and other non-sampling errors
are absent.

Calibration theory can be explained as follows (Deville and Särndal, 1992): let
y be the interest variable in the survey estimation and s the sample collected in
the survey, with each element k in the sample having an associated probability of
selection, πk = 1/dk. Without any auxiliary information, the population total of y,
Y , is estimated in a non-biased way with the Horvitz-Thompson estimator:

ŶHT = ∑
k∈a

dkyk (1)

Let x be an auxiliary vector associated to y, which population total is assumed to
be known X = ∑N

k=1 xk. The calibration estimation of Y consists in the obtaining
of a new weights vector wk for k ∈ s which modifies as little as possible the orig-
inal sample weights, dk, which have the desirable property of producing unbiased
estimations, respecting at the same time the calibration equations:

∑
k∈s

wkxk = X. (2)

Given a distance G(wk,dk), the calibration process consists on finding the solution
to the minimization problem

min
wk

E{∑
k∈s

G(wk,dk)} (3)

while respecting the calibration equation (2). Several distances were defined in
Deville and Särndal (1992), being the linear distance one of the most commonly
used (Rueda et al. (2010), Martı́nez et al. (2010)). This distance is calculated by:

∑
k∈S

(wk−dk)
2

qkdk
(4)



qk are positive weights that are usually assumed as uniform (i. e. 1/qk = 1),
although unequal weights 1/qk are sometimes used. The problem now concerns
finding the minimum of (4) subject to ( 2), leading to the calibrated weight:

wk = dk(1+qkx′kλ ) (5)

where the vector of multipliers, λ , is calculated as:

λ = T−1
s (X−∑

s
xkdk) (6)

Ts, whose inverse is assumed to exist, is the equivalent of:

Ts = ∑
s

dkqkxkx′k (7)

The resulting estimator of Y is the general regression estimator (Cassel et al., 1976)

Y = ∑
s

wkyk = ∑
s

ykdk +(X−∑
s

xkdk)
′B̂s (8)

where B̂s is
B̂s = T−1

s ∑
s

dkqkxkyk (9)

In general, the resulting estimator for Y is biased, but it is assumed to be asymp-
totically unbiased as the new weights wk would approach to the sampling weights
dk.

2.2 Propensity Score Adjustment (PSA)

The Propensity Score Adjustment method was originally developed by Rosenbaum
and Rubin (1983) which sought to reduce the bias due to treatment and control as-
signment in non-randomized studies. The main idea of the adjustment is to balance
the differences between groups in non-randomized designs with the computation
of a score whose distribution is the same for all groups. The proposed score for a
given unit is equivalent to its probability of being in the treatment group, which can
be modeled using a regression model. Although the implications of this approach
in survey nonresponse were considered shortly after (Rubin (1986), according to
Little and Rubin (2002)), it was not proposed for online surveys until Harris Inter-
active took it into account in their Internet research (Taylor (2000); Taylor (2001)).
To a lesser extent, these first attempts added one element to the requirements for
performing PSA: a reference survey. The concept of reference survey was extended
in further studies (see Lee (2006)).



When treating an online survey, it is expected that the sampling was conducted
in a non-probabilistic manner or even not conducted at all, with the survey being
filled by volunteer respondents. It is feasible to consider that the decision to take
part on the survey depends on a probability which, depending on the respondent
characteristics, might be higher or lower. In this case, a reference survey can be
very helpful to determine the mentioned probability. A reference survey is con-
ducted on the same target population than the online survey, with the main differ-
ence that the former has a better coverage and higher response rates than the latter,
thus it is adequate to represent the behavior that the target population should have
when a probabilistic survey is performed on it.

Once data is collected from both surveys, the propensity for an individual to
take part on the volunteer (non-probabilistic) survey is obtained by binning the data
together and training a logistic regression model on the dichotomous variable, y,
which measures whether the respondent took part in the volunteer survey or in the
reference survey. The model uses covariates, x, that have been measured in both
surveys, thus the formula to compute the propensity of taking part in the volunteer
survey, π , can be displayed as

π(x) =
1

e−(γT xk)+1
(10)

for some vector γ , as a function of the model covariates.
We denote by sR the reference sample and by sV the volunteer sample. Follow-

ing the approach described in Lee and Valliant (2009) which will be used in this
study, propensity scores are divided in g classes, with g = 5 as the conventional
choice following Cochran (1968), where all units may have the same propensity
score or at least be in a very narrow range. For each class, an adjustment factor is
calculated as stated in (11):

fg =
∑k∈sRg

dRk/∑k∈sR dRk

∑k∈sV g
dV k/∑k∈sV dV k

(11)

where sRg is the set of individuals in the reference sample that are in the gth class
of propensity scores, and dRk is the original design weight of the k individual in
the reference sample, sV g is the set of individuals in the volunteer sample that are
in the gth class of propensity scores, and dV k is the original design weight of the k
individual in the volunteer sample. Finally, the adjusted weights d∗ are the product
of the original weights and the adjustment factor; following the same notation, the
adjusted weight for individual k in sV g (i. e. the individual k of the gth propensity
class in the volunteer sample) is computed as indicated in (12). These weights are
equivalent to the weights used for the Horvitz-Thompson (H-T) estimator.

d∗k = fgdV k =
∑k∈sRg

dRk/∑k∈sR dRk

∑k∈sV g
dV k/∑k∈sV dV k

dV k (12)

Alternatively, the approach proposed in Schonlau and Couper (2017) can be



used to obtain weights for a Hajek-type estimator using propensity scores. This
approach has the particularity of adjusting to the population of the probabilistic
sample, rather than the combined population of the two samples. Weights are de-
fined as the inverse propensity scores, as indicated in (13)

wi =
1− π̂(xi)

π̂(xi)
(13)

where π̂(xki is the estimated response propensity for the individual i of the volun-
teer sample as predicted by logistic regression with covariates x.

3 Simulation study

3.1 Data description

To explore the effectivity of PSA with further calibration compared to calibration
alone, a fictitious population was simulated in order to analyze and establish con-
clusions for the behaviour of these techniques when applied in real situations. The
simulation was based on the study presented in Bethlehem (2010), introducing sev-
eral changes to extend the spectrum of possible cases in which adjustment methods
can be used. In the proposed simulation study, a survey would be conducted to ex-
amine population’s voting intention. The population had a fixed size of N=50000,
and six variables were included in the study: age, nationality (native/non-native),
gender, education (primary/secondary/tertiary), access to the Internet (yes/no), and
party to which they intended to vote, with four possible options: Party 1, Party
2, Party 3 and Abstention. The distribution of the variables and the relationships
between them were fixed as follows:

• Age followed a Beta distribution with α = 2 and β = 3 to make it similar to
the Spanish population pyramid (National Institute of Statistics, 2017b), and
it ranged from 18 to 100 years old.

• Probability of being non-native depended on the age, which was divided
in three classes (< 35, 35-65, and >65 years old) and individuals on each
had a probability of 0.15, 0.1 and 0.025 respectively of being non-native.
This probability is similar to the nationality distribution by ages in Spain
(National Institute of Statistics, 2016).

• Probability of being a woman was fixed in 0.5 for everyone, except for indi-
viduals above 75 years old, whose probability of being a woman was 0.65, as
women in Spain tend to have a greater representation in older ages (National
Institute of Statistics, 2017b).

• Probabilities of having a specific education level were fixed to resemble as
much as possible to the Spanish adult population (National Institute of Statis-
tics, 2017c). These probabilities can be consulted in Table 1.



Table 1: Probability of each education level as the highest achieved by the fictitious indi-
vidual, by age groups

Education level / Age group < 35 years old 35-65 years old > 65 years old

Primary education 0.35 0.45 0.8
Secondary education 0.2 0.25 0.1
Tertiary education 0.45 0.3 0.1

• Access to the Internet was made dependent of two variables: age and nation-
ality. This time the probabilities assignment was not based in real data, in
order to capture more patterns in the experiment. Probability of access by
age groups and nationalities can be consulted in Table 2.

Table 2: Probability of access to the Internet by a given individual, by age groups and
nationality

Nationality / Age group < 35 years old 35-65 years old > 65 years old

Native 0.9 0.7 0.5
Non-native 0.2 0.1 0.0

• Probability of voting to each party depended on the party itself. The fol-
lowing relationships were established to make sure all kinds of missing data
mechanisms would be represented in the analysis:

– Voting to Party 1 depended on the gender of the individual; women had
a probability of 0.2 to vote for this party while men had a 0.0 probabil-
ity. Gender is not related to Internet access (which is the responsible for
non-response) thus the missing data mechanism could be considered as
MCAR (Missing Completely At Random).

– Voting to Party 2 depended on the age of the individual; voting prob-
ability was 0.0 for people younger than 35 years old, 0.4 for people
between 35 and 65 years old, and 0.6 for people older than 65 years
old. Given that age, which is an auxiliar variable, is related to Internet
access, the missing data mechanism was MAR (Missing At Random).

– Voting to Party 3 depended on the access to the Internet and the age;
people with no access to the Internet had a 0.1 probability, no matter
what old they were, while people with access had a 0.6, 0.4 and 0.2
probability for each respective age group. In this case, the target vari-
able is directly related to the non-response mechanism, configuring a
NMAR (Not Missing At Random) situation.



3.2 Results

To estimate the bias for every possible situation, several configurations of sample
sizes for the volunteer sample were considered, letting it vary between 500 and
10,000 individuals. On the other hand, the reference sample size was fixed in
500 individuals for all the experiments. For each volunteer sample size, 1,000
simulations were computed for the results on estimated percent of vote for each of
the parties, using the following methods:

• Non-adjusted (unweighted) estimates from the volunteer sample.

• Calibrating the volunteer sample with population totals or estimated popula-
tion totals (from the reference sample).

• Reweighting with PSA and applying those weights directly to the sample
with no further adjustments.

• Reweighting with PSA and calibrating those weights with population totals
or estimated population totals (from the reference sample).

Propensity scores were calculated using both approaches presented in Section 2.2
(with g = 5 for stratification in the Horvitz-Thompson estimator weights compu-
tation). Variables used for PSA and calibration were assigned in four different
situations with the following combinations:

• Situation 1: age and education as PSA covariates, gender as calibration vari-
able.

• Situation 2: age and education as PSA covariates, nationality as calibration
variable.

• Situation 3: age and nationality as PSA covariates, education as calibration
variable.

• Situation 4: age and nationality as PSA covariates, gender as calibration
variable.

For each method and situation, the bias, as a result of the difference between real
vote % and estimated vote %, was calculated, as well as the standard deviation of
the voting estimation for the 1000 simulations. Figures 1 and 2 summarize results
for Situation 1.
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Figure 1: Bias of each method in voting intention estimations by party in Situation 1
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Figure 2: Standard deviation of voting intention estimations by party provided by each
method in Situation 1

Results showed that the difference in bias when the missing data mechanism
was completely random is negligible; however, when data was MAR or NMAR,
using PSA (regardless of doing calibration afterwards or not) resulted in a reduction
in the amount of bias, although this reduction was much higher when data is MAR.
It is worth mentioning that these statements could be extended to all the studied
sample size situations.

In terms of standard deviations, which give a measure of the variance of the
estimator for each method, it can be observed that methods involving PSA resulted
in an increase in variance in comparison to methods involving calibration only.
However, it is important to point out that the use of estimates of population totals
did not increase variance of the survey estimates in MAR and NMAR cases. For
the MCAR case, methods involving estimates of population totals resulted overall
in greater variance of the estimators.



It is worth to mention that using Horvitz-Thompson weights or Hajek weights
after the computation of the PSA scores made almost no difference in final re-
sults in terms of bias reduction or estimators’ variance. The very slight differences
that could be observed between results may be attributed to the randomness of the
experiment rather to an actual effect of the type of weighting.
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Figure 3: Bias of each method in voting intention estimations by party in Situation 2
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Figure 4: Standard deviation of voting intention estimations by party provided by each
method in Situation 2

Figures 3 and 4 summarize results for Situation 2. Bias reduction kept its con-
sistence between weighting methods (Horvitz-Thompson and Hajek), but some
differences were found in reference to Situation 1. The only difference between
them was the calibration variable used (nationality instead of gender), but it turned
out to be a critical choice. As it can be seen in Figure 3, the application of cali-
bration in Situation 2 resulted in an increase of bias on the estimates, while PSA
with no further adjustment produced the same bias reduction than the registered in
Situation 1. Estimates involving calibration also had a higher variance, as it can be
observed in Figure 4.
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Figure 5: Bias of each method in voting intention estimations by party in Situation 3
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Figure 6: Standard deviation of voting intention estimations by party provided by each
method in Situation 3

Figures 5 and 6 summarize results for Situation 3. In this case, there is a dif-
ference in bias reduction motivated by the weighting method used. It is noticeable
that Hajek-type estimates are less biased than Horvitz-Thompson-type estimates in
the MCAR and MAR cases. It is also worth to mention that PSA with calibration
removed more bias than PSA with no adjustment in the MAR case using Horvitz-
Thompson weights. On the contrary, in the NMAR case Horvitz-Thompson-type
estimates are less biased than Hajek-type estimates. Finally, in terms of variance,
it can be observed in Figure 6 that Hajek-type estimators have a greater variance
than Horvitz-Thompson-type estimators, specially when the volunteer sample size
is relatively small.



−0.2

−0.1

0.0

0.1

500 750 1000 2000 5000 7500 10000

Volunteer sample size

%
 o

f 
b
ia

s
 (

re
a
l 
%

 −
 e

s
ti
m

a
te

d
 %

)

Voting estimates for Party 1 (MCAR) using H−T weights

−0.2

−0.1

0.0

0.1

500 750 1000 2000 5000 7500 10000

Volunteer sample size

%
 o

f 
b
ia

s
 (

re
a
l 
%

 −
 e

s
ti
m

a
te

d
 %

)

Voting estimates for Party 1 (MCAR) using Hajek weights

−2

−1

0

1

2

3

500 750 1000 2000 5000 7500 10000

Volunteer sample size

%
 o

f 
b
ia

s
 (

re
a
l 
%

 −
 e

s
ti
m

a
te

d
 %

)

Voting estimates for Party 2 (MAR) using H−T weights

−2

−1

0

1

2

3

500 750 1000 2000 5000 7500 10000

Volunteer sample size

%
 o

f 
b
ia

s
 (

re
a
l 
%

 −
 e

s
ti
m

a
te

d
 %

)

Voting estimates for Party 2 (MAR) using Hajek weights

−12

−9

−6

−3

0

500 750 1000 2000 5000 7500 10000

Volunteer sample size

%
 o

f 
b
ia

s
 (

re
a
l 
%

 −
 e

s
ti
m

a
te

d
 %

)

Voting estimates for Party 3 (NMAR) using H−T weights

−12

−9

−6

−3

0

500 750 1000 2000 5000 7500 10000

Volunteer sample size

%
 o

f 
b
ia

s
 (

re
a
l 
%

 −
 e

s
ti
m

a
te

d
 %

)

Voting estimates for Party 3 (NMAR) using Hajek weights

Adjustment
PSA + calibration on pop. data PSA + calibration on pop. estimates PSA with no further adjustment

Vol. sample calibrated on pop. data Vol. sample calibrated on pop. estimates Volunteer sample

Figure 7: Bias of each method in voting intention estimations by party in Situation 4



0.000

0.005

0.010

0.015

500 750 1000 2000 5000 7500 10000

Volunteer sample size

S
ta

n
d
a
rd

 d
e
v
ia

ti
o
n
s
 o

f
1
0
0
0
 c

o
m

p
u
te

d
 s

im
u
la

ti
o
n
s

Standard deviations of voting estimates for Party 1 (MCAR)
using H�T weights

0.000

0.005

0.010

0.015

500 750 1000 2000 5000 7500 10000

Volunteer sample size

S
ta

n
d
a
rd

 d
e
v
ia

ti
o
n
s
 o

f
1
0
0
0
 c

o
m

p
u
te

d
 s

im
u
la

ti
o
n
s

Standard deviations of voting estimates for Party 1 (MCAR)
using Hajek weights

0.00

0.01

0.02

500 750 1000 2000 5000 7500 10000

Volunteer sample size

S
ta

n
d
a
rd

 d
e
v
ia

ti
o
n
s
 o

f
1
0
0
0
 c

o
m

p
u
te

d
 s

im
u
la

ti
o
n
s

Standard deviations of voting estimates for Party 2 (MAR)
using H�T weights

0.00

0.01

0.02

500 750 1000 2000 5000 7500 10000

Volunteer sample size

S
ta

n
d
a
rd

 d
e
v
ia

ti
o
n
s
 o

f
1
0
0
0
 c

o
m

p
u
te

d
 s

im
u
la

ti
o
n
s

Standard deviations of voting estimates for Party 2 (MAR)
using Hajek weights

0.00

0.01

0.02

500 750 1000 2000 5000 7500 10000

Volunteer sample size

S
ta

n
d
a
rd

 d
e
v
ia

ti
o
n
s
 o

f
1
0
0
0
 c

o
m

p
u
te

d
 s

im
u
la

ti
o
n
s

Standard deviations of voting estimates for Party 3 (NMAR)
using H�T weights

0.00

0.01

0.02

500 750 1000 2000 5000 7500 10000

Volunteer sample size

S
ta

n
d
a
rd

 d
e
v
ia

ti
o
n
s
 o

f
1
0
0
0
 c

o
m

p
u
te

d
 s

im
u
la

ti
o
n
s

Standard deviations of voting estimates for Party 3 (NMAR)
using Hajek weights

Method
PSA + calibration on pop. data PSA + calibration on pop. estimates PSA with no further adjustment

Vol. sample calibrated on pop. data Vol. sample calibrated on pop. estimates

Figure 8: Standard deviation of voting intention estimations by party provided by each
method in Situation 4

Figure 7 and 8 summarize results for Situation 4. The differences between
weighting methods disappear in the MCAR case but remain in the MAR and
NMAR cases. In addition, no reduction in bias could be attributed to the cali-
bration of the sample, in contrast with Situation 3, where calibration resulted in
less biased estimates in all cases. Regarding standard deviations, the most remark-
able result in this situation is the increase in variance that calibration produces in
this situation.



4 Application study

4.1 Data description

The probabilistic sample data for the application case was obtained through a sur-
vey conducted amongst the students of the University of Granada, Spain (UGR)
in 2015, with a sample size of n = 856 participants. Respondents were recruited
through face-to-face interviews following a cluster sampling scheme in three phases,
in which Faculties were the primary units, degrees were the secondary units, and
academic years were the tertiary units. A total of 34 clusters were randomly drawn
from the population following this design. Sampling error was estimated at ±
3.3% given the sample size and a confidence level of 95%. Respondents had to fill
questionnaires which included several screening instruments for certain kinds of
abuse or dependency, including the Cannabis Abuse Screening Test (CAST) and
the Severity of Dependence Scale (SDS), which were both validated for the sample.
The questionnaire also measured the age and gender of the participants.

The non-probabilistic sample used in this application case came from a survey
performed in 2017 by students of the UGR amongst their peers, with a sample
size of n = 341 participants. Respondents were recruited following a snowball
sampling scheme in online social networks, and filled the questionnaire using an
online platform (Google DriveT M). The questionnaire included the CAST and the
SDS, as well as questions regarding the age and gender of the respondents. The
sampling method implied an Internet connection from the respondent and a certain
willingness to volunteer in the survey, meaning selection bias came from the same
sources than in most of the online non-probabilistic surveys.

The aim of the application was to estimate the SDS mean score for the non-
probabilistic sample using the aforementioned correction techniques. Given that
SDS scores were provided only for cannabis users in both samples, the original
sample sizes dropped out to n = 115 participants for the probabilistic survey and n
= 87 for the non-probabilistic survey.

4.2 Results

The probabilistic sample was used to estimate the total number of cannabis users
in the UGR by age groups and gender. These estimates were used as population
totals in calibration, in reference to the simulation study results which shown no
difference, in terms of bias reduction, between using actual population totals or
their estimates. However, this meant that only age and gender could be used as cal-
ibration variables. On the other hand, PSA could be performed using age, gender
and CAST scores. Differences in data for the three variables between both samples
can be consulted in Table 3.



Table 3: Means and relative frequencies of each sociodemographic level in the studied
samples, and p-values for tests of independence or difference in means performed on each
variable

Variable Level Probab. sample Non-probab. sample p-value

Gender
Male 51.30 % 74.71 % 0.001a

Female 48.70 % 25.29 %
Age

18 or younger 13.91 % 16.09 % 0.425b

19 13.91 % 18.39 %
20 9.57 % 12.64 %
21 20.87 % 10.34 %
22 12.17 % 14.94 %
23 or older 29.57 % 27.59 %

CAST score
Mean score 4.435 5.322 0.167c

aTwo sample test for equality of proportions with continuity correction
bPearson’s Chi-squared test
cWelch two sample t-test

The difference in gender proportions between both samples is statistically sig-
nificant (p = 0.001205), hence it can be assumed that the frames from which sam-
ples were withdrawn had different gender proportions. However, this assumption
cannot be made for any of the other variables; no practical or statistical signifi-
cance was found in the difference between samples. These results are an evidence
of the lack of discriminant power of PSA potential covariates, thus the propensity
of belonging to any of both samples might be much less explanatory.

Estimates of the SDS mean score were computed for each possible combina-
tion of techniques (no adjustment, calibration, PSA, and PSA with calibration),
auxiliary variables and PSA covariates. Hajek estimator weights were computed
in PSA considering the small number of covariates to be used in several combi-
nations, which might not allow to properly allocate the propensity in groups. In
each case, Jackknife leave-one-out was performed in order to compute an unbiased
estimate of the standard error committed by each method. Results are presented in
Table 4, along with the relative difference (in percentage) between each estimate
and the mean SDS score provided by the probabilistic sample.



Table 4: Estimated SDS mean, standard error and difference with the mean estimated with
the probabilistic sample by method, calibration auxiliary variables, and PSA covariates

Mean SDS score
Method Calibration

aux. variables
PSA covariates Estimated Std.

Err.
Dif.

Reference sample
Unweighted 6.261 0.199
Volunteer sample
Unweighted 7.264 0.272 16.03 %
Calibration

Sex 7.004 0.253 11.87 %
Age 7.206 0.276 15.09 %
Sex and age 6.904 0.253 10.26 %

PSA (Hajek)
Sex 6.939 0.252 10.84 %
Age 7.349 0.286 17.39 %
CAST 6.986 0.246 11.58 %
Sex, age 6.997 0.266 11.76 %
Sex, CAST 6.790 0.238 8.46 %
Age, CAST 6.971 0.251 11.34 %
Sex, age, CAST 6.742 0.247 7.68 %

PSA (Hajek)
+ calibration

Sex Sex 7.311 0.278 16.77 %
Age 7.007 0.253 11.92 %
CAST 7.028 0.253 12.25 %
Sex, age 7.323 0.280 16.97 %
Sex, CAST 7.311 0.278 16.78 %
Age, CAST 7.052 0.254 12.63 %
Sex, age, CAST 7.331 0.281 17.10 %

Age Sex 7.182 0.283 14.70 %
Age 7.126 0.264 13.82 %
CAST 7.239 0.278 15.62 %
Sex, age 7.086 0.270 13.19 %
Sex, CAST 7.195 0.282 14.92 %
Age, CAST 7.136 0.261 13.97 %
Sex, age, CAST 7.086 0.266 13.18 %

Sex and age Sex 7.216 0.283 15.26 %
Age 6.837 0.243 9.20 %
CAST 6.955 0.254 11.09 %
Sex, age 7.136 0.272 13.97 %
Sex, CAST 7.233 0.283 15.53 %
Age, CAST 6.875 0.240 9.81 %
Sex, age, CAST 7.145 0.269 14.12 %



In this application, reweighting with PSA and a Hajek-type estimator is the
less biased alternative when using gender, age and CAST score as PSA covariates.
When using only gender and CAST scores, the estimator achieves the minimum
standard error within all the alternatives. Overall, estimates reweighted with PSA
or PSA and calibration to gender and age presented the best results, both in terms of
least difference with the reference sample value and least standard error according
to Jackknife.

5 Discussion and Conclusions

In the last years we are witnessing a strong development of online research methods
in general and web surveys specifically. Web surveys are a very attractive option
because fieldwork costs are rather low when compared with other modes as mail,
telephone and face to face. In addition to cost-effectiveness, there are other rea-
sons that explain why the market research industry has decidedly embraced web
surveys in the last years such as the speed of data collection and the advantages
associated with the computerization of the questionnaire and self-administration.
However, currently the web survey mode has some limitations to adequately rep-
resent the general population. In spite of the fast adoption of the Internet in the
last decades, the number of non-users is still important in most countries. More-
over, non-internet users differ significantly from those who have access and use
this technology. As a result, web surveys that fail to include non-internet users are
at a high risk of incurring in coverage bias. A second problem that hinders the use
of probability sampling in web surveys of the general population is the lack of a
proper sampling frame.

In this paper we have focused on the problem of the the lack of coverage of
nonprobabilistic samples. It is obvious that such a problem can be responsible for
a large increase in the bias of the final results. Various correction techniques, such
as calibration and Propensity Score Adjustment or PSA, can be applied to remove
the bias. This study attempts to analyze the efficiency of correction techniques in
multiple situations, applying a combination of PSA and calibration.

The simulation study, which is a technique widely used when studying methods
to improve the estimates provided by problematic surveys and particularly calibra-
tion or PSA (Lee (2006); Lee and Valliant (2009); Kim and Park (2009); Bethlehem
(2010)), is performed in this work with several limitations, such as the variables se-
lected for PSA and calibration and the diversity among possible situations.

Some of the results presented in this work successfully reproduce relevant find-
ings of the existing literature. For example, it is proved in Bethlehem (2010) that
bias can be highly reduced through calibration with the right covariates when the
non-response due to volunteering has a MAR scheme, while it cannot be equally
done in NMAR situations. This is similar to the results obtained in the simulation
study; PSA achieves an improvement in the amount of bias much higher for MAR
than for NMAR, but as a difference, the right covariates were used for PSA this



time rather than for calibration. As a result, calibration fails to remove any bias if
not combined with PSA. These results can be linked to Lee (2006), where it was
stated that it is critical to add covariates related to the objective of the study, in
order to make PSA useful. These findings are relevant in the sense of finding a
procedure to remove coverage error when calibration with covariates is not possi-
ble; however, results also show that using estimates of the population totals does
not cause any significant difference in final results, therefore the usage of the ref-
erence survey to estimate population totals of covariates might be considered for
calibration purposes.

In addition, it is worth to note that this work introduces the comparison of the
efficiency of Horvitz-Thompson and Hajek weights for PSA, a duality proposed
in Schonlau and Couper (2017). Results of this study conclude that a difference
in efficiency can be made between both approaches only if the right covariates
and calibration totals have been chosen previously, and in fact the individual ob-
served differences in weights computed in the simulation study are negligible. This
could be explained by the fact that the strata formed with the propensity scores are
thought to have individuals whose propensity score is very similar between them,
something feasible given the features of the logistic regression model used for that
purpose. Under these circumstances, it is very likely that stratification makes no
effect in the computation of final weights. On top of that, PSA weights were sub-
sequently used as original calibration weights, contributing to dilute even more the
difference between the former.

Finally, the application of the developed adjustment methods in a specific vol-
unteer survey reflects the conclusions of several studies performed in the past on
PSA (Lee (2006); Valliant and Dever (2011)) that the choice of covariates used
for the PSA plays a fundamental role on its further efficiency. However, as it hap-
pens in most of health-related surveys, this application is limited by the fact that
there are no population totals that estimates can be compared with. Further stud-
ies should take into account the availability of population counts in their earlier
research steps.

On the other hand web surveys, as any other survey, suffer from non-response
even if the use of responsive or adaptive design features account for participation
rates. Non sampling errors are particularly important when the investigator has to
gather information concerning highly personal, sensitive, stigmatizing and perhaps
incriminating issues such as abortion, drug addiction, HIV/AIDS infection status,
duration of suffering from a disease, sexual behaviour... In these situations, col-
lecting data by means of survey modes based on direct questioning methods of
interview is likely to encounter two serious problems: (i) participants in the sur-
vey may deliberately release untruthful or misleading answers, or (ii) participants
may refuse to respond (”unit nonresponse” or ”item nonresponse”) due to the so-
cial stigma or because they feel threatened by such inquiries and fear that their
personal information may be released to third parties for purposes other than those
of the survey.

A considerable limitation of the presented approach could be the Big Data is-



sues that may arise when the volume of data gets larger. This is a feasible situation
in Internet surveys, given that their characteristics allow for an important number
of respondents to take part on them. The main potential limitation of PSA under
these circumstances could be related to the adequacy of logistic regression as a
predictor for propensity scores, as they would tend to oversimplify the actual rela-
tionships between covariates and target variables. The usage of some alternatives
to these models, such as Machine Learning algorithms (e. g. classifiers), should be
considered in future research in the area.
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Abstract

Modern survey methods may be subject to non-observable bias, from various sources. Among

online surveys, for example, selection bias is prevalent, due to the sampling mechanism commonly

used, whereby participants self-select from a subgroup whose characteristics differ from those of

the target population. Several techniques have been proposed to tackle this issue. One such is

Propensity Score Adjustment (PSA), which is widely used and has been analysed in various studies.

The usual method of estimating the propensity score is logistic regression, which requires a reference

probability sample in addition to the online nonprobability sample. The predicted propensities can

be used for reweighting using various estimators. However, in the online survey context, there are

alternatives that might outperform logistic regression regarding propensity estimation. The aim of

the present study is to determine the efficiency of some of these alternatives, involving Machine

Learning (ML) classification algorithms. PSA is applied in two simulation scenarios, representing

situations commonly found in online surveys, using logistic regression and ML models for propensity

estimation. The results obtained show that ML algorithms remove selection bias more effectively

than logistic regression when used for PSA, but that their efficacy depends largely on the selection

mechanism employed and the dimensionality of the data.

Introduction

One of the main drawbacks of online surveys is the selection bias [1] that may be
introduced in their use. This problem occurs when the population sample used dif-
fers from the non-observed population in such a way that the sample results cannot
be extrapolated to the full population. In online surveys, samples are often drawn
from volunteer participants, for reasons of time and financial economy, making
this population nonprobabilistic and therefore unsuitable for the usual sampling
methods employed for inference and estimation. Assuming that some groups are
more likely than others to participate, volunteer samples present an inherent se-
lection bias. Hence, determining optimum probabilistic sampling conditions in an
online survey is not a trivial undertaking. As [2] state, probabilistic online frames
can only be used when the population of interest is narrow (the members of well-
defined organizations); evidently, if the target population is not properly defined a
reliable sampling frame of internet users may not be achieved. Internet access is
often associated with sociodemographic variables related to the variables of inter-
est in a given study ([3]). For example, according to [4], the internet penetration
rate in Spain is above 90% of the population in all population groups aged under
54 years; however, among persons aged 65 to 74 years, the penetration rate is only
43.7%. In consequence, the potentially covered population (as defined in [1]) is
immediately subjected to a selection bias, which cannot be completely excluded
by the usual reweighting methods ([5]; [6]).

In recent years, propensity score adjustment (PSA) has increasingly been used
as a means of correcting selection bias in online surveys. This method, first pro-
posed by [7], was originally intended to correct the bias introduced by factors as-
sociated with exposure (group allocation) and outcome in the experimental design,



and studies have demonstrated its effectiveness in this regard ([8]; [9]). PSA, like
most adjustment instruments in population sampling, is based on the use of aux-
iliary information. However, in addition to the nonprobabilistic volunteer sample,
it also requires the availability of a probabilistic reference sample. This is usually
obtained from a survey focused on a different subject area. Accordingly, it does
not measure the present variable or variables of interest, but rather a set of covari-
ates that have also been recorded or the nonprobabilistic sample. The reference
survey does not have to address the same research questions, but it should be well
conducted and avoid all sources of bias as much as possible.

The efficacy of PSA at removing selection bias from online surveys has been
discussed in numerous studies. However, its performance depends on the covari-
ates chosen. Moreover, the use of PSA generally increases the sampling variabil-
ity of the estimators with respect to the unweighted case ([10]; [11]).Therefore,
PSA weighting should be complemented with further calibration adjustments us-
ing complementary variables to make estimates less biased ([11]; [12]).

Propensity scores in PSA are usually estimated using logistic regression mod-
els, where the target variable is a binary indicator that takes 1 if an individual
belongs to the nonprobabilistic sample and 0 otherwise. This approach is equiva-
lent to estimating the probability of an individual volunteering to participate in a
survey, given a specific set of covariates. Logistic regression provides estimates
that are robust, i.e. they remain stable when new data are incorporated, and sim-
ple to implement in most statistical packages. However, they also present certain
drawbacks that should be taken into account. Thus, in logistic modelling it is as-
sumed that the log-odds risks have a linear relationship with the covariates ([13]).
In the online survey context, this assumption could easily fail to hold, especially
with larger samples and a greater number of covariates.

Alternatives to logistic regression in PSA have appeared in parallel with the
development of machine learning (ML) classification algorithms. A vast and still-
increasing number of ML approaches provide the raw probabilities of occurrence
of a given class, both black-box and interpretable, the application of which in PSA
has mainly been studied with respect to experimental design. Research into in-
terpretable algorithms for PSA has focused on classification and regression trees
(CART) ([16]), concluding that these decision trees provide less biased effect es-
timates, even under conditions of non-additivity and non-linearity ([17]; [18]). In
this respect, [19] examined a special case of discriminant analysis, selecting the
best classification tree in terms of optimality.

Among the black-box alternatives that have been developed in the field of ML,
neural networks and bagging/boosting algorithms have attracted much attention.
Neural networks are discussed in [15] as a potential replacement for logistic re-
gression in PSA, but to our knowledge, they have only been successfully applied
in [17]. In addition, bagging algorithms such as Random Forest ([20]) and boost-
ing algorithms such as the Gradient Boosting Machine (GBM) ([21]) have been
included in several studies. It has been suggested that the use of GBM could pro-
vide more stable weights and greater bias reduction than is the case with logit



models ([22]) and multinomial models ([23]), at the cost of a minimal increase in
variance. Similarly, the incorporation of Random Forest into PSA may also reduce
the level of bias in the estimates obtained, compared to logistic models ([18] [24])
and classification trees ([25]). GBM has been successfully applied in real experi-
ments with propensity scores ([26], [27], [28]). In this field, too, [29] studied the
performance of boosted CART (GBM), but found that the performance of each
algorithm was strongly dependent on the scenario. Finally, [30] analysed the effi-
ciency of propensity estimation, using Random Forests for matching, taking into
account the existence of missing data from the predictors, and reported good results
for group balancing.

An interesting case of black-box algorithms is described by [31]. These au-
thors used the Super Learner paradigm proposed by [32], and estimated propensity
scores by choosing the best algorithm, in terms of goodness-of-fit, from a set of
ML classification algorithms, including Bayesian Generalised Linear Models, Sup-
port Vector Machines, Multivariate Adaptative Regression Splines and k-Nearest
Neighbours, apart from those mentioned above. This study showed that overall ef-
ficiency was dependent on the underlying covariate structure, but that PSA, using
the Super Learner strategy, presented good balancing properties.

In recent survey research, ML algorithms have been widely studied in the prob-
ability sampling context ([33]; [34]; [35]; [36]; [37]). In nonprobability sampling,
however, PSA has mainly been used in nonresponse propensity adjustments. The
PSA procedure for addressing the question of nonresponse bias, which was first
developed by [38], usually follows the same steps as in dealing with selection bias,
but some alternatives to logistic regression have been proposed. Thus, [39] used
local polynomial regression models to adjust nonresponse propensity estimates, in
a paper extending their previous work on propensity estimates via kernel regres-
sion. Further details of this method are discussed by [40]. These models provide
better estimates of propensity, in terms of likelihood, and lower variance than is the
case with logistic regression models, provided that the polynomial degree is prop-
erly specified. Applications of ML algorithms in PSA for nonresponse propensity
have been studied for classification and regression trees ([41]) and Random Forests
([42]); their ability to reduce nonresponse bias, in comparison with logistic regres-
sion, depends on the covariates available and on the complexity of the relationships.
These techniques for modelling nonresponse propensity are also addressed by [43].

In the present paper, the ML approach is extended to the question of reducing
selection bias, considering various online survey scenarios that are subject to selec-
tion bias and examining how PSA may reduce this bias, according to the algorithm
used to compute the propensity estimates. The study method and the ML methods
used are described in detail, after which we present a simulation study based on
artificial and real-world data. The implications of these results are then discussed,
and in the final section we suggest related lines of work for future research.



Propensity Score Adjustment (PSA) for volunteer online
samples

The procedure to perform Propensity Score Adjustment for removing volunteer
bias in online surveys can be described as follows: let sv be a volunteer nonprob-
abilistic sample of size nvs, self-selected from an online population Uv which is a
subset of the total target population U , and sr a reference probabilistic sample of
size nrs selected from U under a sampling design (sd , pd) with πi = ∑sr3i pd(sr) the
first order inclusion probability for the i-th individual. Note that each element in
both samples has a base weight associated, say dv

j , j = 1, ...,nvs for the volunteer
sample and dr

k, k = 1, ...,nrs for the reference sample (usually, dr
k = 1/πk). Covari-

ates X used to adjust the propensity scores have been measured on both samples,
while the variable of interest y has been measured only in the volunteer sample,
and the probabilistic sample cannot be directly used for its estimation as a result.
Let z be a binary variable which measures whether a participant of the complete
sample s = sr ∪ sv belongs to sr or sv.

zi =

{
0 i ∈ sr

1 i ∈ sv
, i = 1, ...,n,n = nvs +nrs (1)

Let π(xi) be the propensity score for participant i conditional on his/her covari-
ates’ value xi. π(xi) reflects the probability of zi = 1 given the set of covariates X.
The reference sample is assumed to suffer from a small selection bias or no bias at
all, and can be used to generate a reliable estimate of the covariates’ distribution
in the target population. This information could be used to calculate which types
of individuals are more or less prone to participate in an online survey. The above-
mentioned propensity scores, π̂(xi), are often estimated using a logistic regression
model which can be described as in Eq. 2.

π̂(xi) =
1

e−(γT xi)+1
(2)

where γ is the vector of regression coefficients obtained in the modelling process.
The original online sample is reweighted using the propensity estimates to take into
account the information on selection bias provided by PSA. This procedure can be
performed using weights for either the Horvitz-Thompson or the Hajek estima-
tors; the procedure for the Horvitz-Thompson-type weights is described in [10]
and [11] and can be summarised as follows. The combined sample is sorted and
then divided into C classes ([44] recommend the use of five classes) according to
each individual’s propensity score. An appropriate adjustment factor fc is obtained
using Eq. 3

fc =
∑k∈sc

r
dr

k/∑k∈sr dr
k

∑ j∈sc
v
dv

j/∑ j∈sv dv
j

(3)



where sc
r and sc

v are individuals from the reference sample and the volunteer sample
respectively, belonging to the c-th class. The new weights w for individuals in the
volunteer sample are then calculated as follows:

w j = fcdv
j =

∑k∈sc
r
dr

k/∑k∈sr dr
k

∑ j∈sc
v
dv

j/∑ j∈sv dv
j
dv

j (4)

Hajek-type weights can be calculated as described in [2] and according to Eq.
5. In this case, the weights adjust the volunteer sample to the population of the
probabilistic sample, Ur, rather than the complete population U .

w j =
1− π̂(x j)

π̂(x j)
(5)

According to [45], the difference between the two approaches to the final esti-
mates depends both on the discreteness of the support of the covariates and on the
selection mechanism used (i.e., whether or not it is related to the target variable).

Machine Learning classification algorithms for propensity
score estimation

As described above, various alternatives to logistic regression can be used in propen-
sity score estimation, leading to different formulas to obtain π̂(xi). In this sec-
tion, we present some formulas associated with the application of some algorithms
commonly used in PSA literature, together with other techniques frequently seen
in data mining ([49]), namely decision trees, Random Forests, GBM, k-Nearest
Neighbours and Naı̈ve Bayes.

Decision trees can be defined as a set of rules organised in a hierarchical struc-
ture, starting from an initial node that represents the complete dataset. To predict a
given individual, the dataset is split into different subsets according to a rule based
on an input predictor variable. Each subset can also be split, successively, until a
convergence criterion is met; then, the rule stops increasing in complexity, and a
terminal node is reached. Any input individual for the decision tree will meet the
criteria of a rule specified for it, and thus predicted according to data from the indi-
viduals meeting the rule criteria. In our study, the algorithms used for tree building
involve C4.5, C5.0 ([50]) and CART ([16]). They differ in some aspects of tree
building, such as the rule pruning and complexity, but for brevity these questions
are not addressed in the present paper.

This approach can be used to obtain the probabilities of the input individuals
of a decision tree belonging to any given class. In this context, these probabilities
represent the individuals’ propensity to participate in an online survey, where z rep-
resents the binary target variable. Let J1, ...,Jk be the set of rules (terminal nodes)
of a decision tree; each rule represents a multidimensional range for each covariate,
say: Ji = {X ∈ Bi} where Bi ∈ Rp, and where p is the number of covariates. Let



n(sJi
v ) and n(sJi) be the number of volunteer sample and combined sample mem-

bers, respectively, which meet the criteria of the ith terminal node. The formula for
estimating propensity scores for an individual i using decision trees is described in
Eq. 6.

π̂(xi) =





n(sJ1
v )

n(sJ1 )
{i ∈ s/xi ∈ J1}

... ...
n(s

Jk
v )

n(sJk )
{i ∈ s/xi ∈ Jk}

(6)

In the case of Random Forests, propensities are estimated by averaging the
number of times that an input individual is classified in the class representing the
presence (often denoted as ”1”) through a set of m trees known as weak classi-
fiers. Input variables for each tree are randomly selected, in subsets of fixed size,
from the available covariates. Therefore, the propensity score estimation can be
reformulated as in Eq. 7.

π̂(xi) =
∑m

j=1 φ j(xi)

m
, φ j(xi) =

{
1 {i ∈ s/xi ∈ Jpr}
0 {i ∈ s/xi ∈ Jab}

(7)

where Jab and Jpr represent the set of terminal nodes where individuals from the
volunteer sample are minority and majority, respectively. In other words:

Jpr = {Jl, l = 1, ...,k :
n(sJl

v )

n(sJl )
≥ 0.5} (8)

Jab = {Jl, l = 1, ...,k :
n(sJl

v )

n(sJl )
< 0.5} (9)

Note that in the cases where the volunteer and the reference sample are very
unbalanced in size, the propensity scores may be exactly zero or one for some
individuals and in such cases cannot be properly applied. In some studies, adjust-
ments have been made in order to avoid this situation; for instance, [42] applied a
(1000 ·x+0.5)/1001 transformation to move the propensities away from zero and
one.

For k nearest neighbours, computing the propensity score estimates involves
a distance function d which measures the closeness of each data point to a given
individual i using covariates X. This distance allows the n− 1 individuals to be
rearranged as x(1), ...,x(n−1), where x(1) and x(n−1) represent, respectively, the co-
variates of the closest and the furthest individual from i according to d. As the
target variable is binary, the propensity scores can be estimated with the following
formula:

π̂(xi) =
∑ j∈s/d(xi,x j)≤d(xi,x(k)) z j

k
(10)

Application of the formula shown in Eq. 10 is equivalent to calculating the
proportion of individuals from the volunteer sample out of the k nearest neighbours



to the individual i. The number of neighbours k is arbitrary, meaning that k = 1 or
even a small enough k will provide probabilities of zero or one.

Estimation of the propensity scores using the Naı̈ve Bayes algorithm is based
on the Bayes formula, derived from the observed probabilities of participants be-
longing to the volunteer sample and the occurrence of a given vector for X, that is,
the values of the covariates for a given individual i.

π̂(xi) =
P(zi = 1)P(X = xi|zi = 1)

P(X = xi)
(11)

If variables with very rare classes or presenting high cardinality are used as
covariates, the propensity estimates might present values significantly far from the
real propensity.

Finally, when using a GBM algorithm ([21]), the formula for propensity score
estimation has the same structure as that used in logistic regression, but is based on
a different parametrisation:

π̂(xi) =
1

e−wT J(xi)+1
(12)

where J(xi) represents a matrix of terminal nodes of m decision trees (the number
of trees used is decided by the user but should be correlated with the sample size,
as in Random Forests) and w is a vector representing the weights of each tree. The
development of trees in J(xi) is achieved through an iterative process minimising
of the specified loss function for a small sample of the input dataset (which, in this
context, is assumed to be the combined sample s) selected for testing purposes.

Simulation study

Artificial data

To evaluate the performance of classification algorithms applied under different
circumstances for PSA, we conducted an experiment using a fictitious population
of voters. This population was used originally by [45], following an experiment by
[5] to measure the efficiency of adjustments in selection bias. For the present study,
minor changes were made to the gender distributions by age so that a proper Miss-
ing Completely At Random (MCAR) situation could be simulated. This population
and the experiment are detailed below.

The fictitious population had a total size of N = 50,000 individuals. The study
aim was to estimate the fraction of votes obtained by each of three fictitious parties,
Party 1, 2 and 3, in a hypothetical election. Four sociodemographic variables –
age, nationality, gender and education – were measured in each sample and used
as covariates for the PSA models.

• The age variable was determined by applying the following transformation
of a simulated Beta distribution: Age = 82x+18,x∼ β (2,3). The resulting
age pyramid was similar to the real-world case in Spain ([46]).



• In the study population, 15% were non-natives aged under 35 years, 10%
were non-natives aged 35 to 65 years, and 2.5% were non-natives aged over
65 years, which is similar to the nationality distribution by ages in Spain
([47]).

• The probability of the individual being male or female was identical, for the
whole population, in contrast to the experiment performed by [45].

• Education was constrained to be dependent on the age strata (the same strata
as for the Nationality variable), in order to make it similar to the pattern of
education levels among Spanish adults ([48]).

– Of the individuals aged under 35 years, 35% had only primary educa-
tion, 20% had secondary education and 45% had higher education.

– Of the individuals aged 35 to 65 years, 45% had only primary educa-
tion, 25% had secondary education and 30% had higher education.

– Of the individuals aged over 65 years, 80% had only primary education,
10% had secondary education and 10% had higher education.

In addition, internet access was made dependent on age and nationality. Among
non-natives, internet access was available to 20% of those aged under 35 years,
but only to 10% of those aged 35 to 65 years and to 0% of those aged over 65
years. In contrast, for natives the corresponding values were 90%, 70% and 50%
respectively.

The probabilities of a person voting for Party 1, 2 or 3 were considered in
relation to the above variables. Party 1 would attract the votes of 20% of the female
population, but the men would not vote for it at all. As internet access did not
depend on gender, measuring the proportions of the population who would vote
for Party 1 could be considered an example of a Missing Completely at Random
(MCAR) selection mechanism. For Party 2, the voting probability increased in line
with the voter’s age; among the population as a whole, nobody aged under 35 years
would vote for this party, while 40% of those aged 35 to 65 years would do so, as
would 60% of those over 65 years old. The above-mentioned relationship between
age and internet access means that the measurement of voting intentions for Party
2 is also subject to a Missing At Random (MAR) selection mechanism. Finally,
voting intentions for Party 3 depended on both age and internet access: thus, 10%
of individuals with no internet access (regardless of their age) would vote for this
party, while among those with internet access, the party would attract the votes
of 60% of those under 35 years, 40% of those aged 35 to 65 years, and 20% of
those aged over 65 years. These relationships mean that the measurement of voting
intentions for Party 3 is subject to a Not Missing At Random (NMAR) selection
mechanism, as the target variable is in fact related to the selection variable.

The distribution of values for the population as a whole and for each of the
subpopulations, with and without access to internet, is shown in Table S1. As ex-



pected, there is a slight divergence in voting intentions for Party 2 between the pop-
ulation as a whole and those with internet, and a strong divergence in this respect
for Party 3. Persons with internet were more likely to have completed a course
of higher education, were on average two years younger and were five times less
likely to be non-native. However, differences in gender were negligible, and so
voting intentions for Party 1 were barely affected.

To estimate voting percentages for each party, we selected a convenience sam-
ple from the population with internet access, and a reference sample from the full
population. The reference sample was drawn by simple random sampling with-
out replacement (SRSWOR), and three different sampling schemes were tested to
select the convenience sample:

1. SRSWOR from the whole internet population.

2. Sampling from the whole internet population with unequal self-selection
probabilities, obtained by the following formula:

πi =
1

1+ e−1+0.05·Agei
, i = 1,2, ...,31,881 (13)

where Agei is the age of the i-th individual of the internet population.

3. Sampling from the whole internet population with unequal self-selection
probabilities, obtained by the following formula:

πi =
1

1+ e1−sin(Agei/20) , i = 1,2, ...,31,881 (14)

where Agei is the age of the i-th individual of the internet population.

The formulas for the inclusion probabilities in schemes 2 and 3 were tested to eval-
uate how ML algorithms perform in comparison with logistic regression when the
relationship between the covariates and the selection probability (which we assume
to be the self-selection probability) can be modelled using the logit function, with
either linear or nonlinear relationships. The experiment was replicated varying the
convenience sample size across nvs = 500, 750, 1,000, 2,000, 5,000, 7,500 and
10,000, and the size of the reference survey was established at 500 individuals for
each replication. The replication results were obtained by averaging the bias and
calculating the MSE of the estimates in 500 simulations. The mean bias of each
replication was obtained according to Eq. 15:

Biask =
∑500

m=1 p̂k
m

500
− pk (15)

where p̂k
m is the proportion of voters for Party k estimated in the m-th simulation

and pk is the real proportion of voters for Party k. The MSE for the estimators in
each replication was obtained directly from the estimates, as in Equation 16:



MSEk =
∑500

m=1(p̂k
m− p̂k

)2

499
+(Biask)

2 (16)

where p̂k is the mean of the estimates for the proportion of voters for Party k.

Real data

A set of real data was analysed to determine the usual patterns observed in real
applications. This real-data approach is commonly employed in studies of PSA
([10]; [11]; [12]).

The dataset used to simulate a pseudo-population was obtained from the mi-
crodata of the 2012 edition of the Life Conditions Survey (known by the Spanish
acronym, ECV) ([51]). This annual survey is conducted face-to-face by the Span-
ish Institute of Statistics, targeting the entire Spanish population aged 16 years or
older. The primary unit considered is the household, and the secondary units are
the members of the household. The variables considered include income, poverty,
equality, employment and household living conditions. In 2012, 12,714 households
were surveyed, providing a sample population of 33,573 individuals. In this study,
the full sample had to be preprocessed before the simulation due to the consider-
able volume of missing data. After this filtering process, the size of the pseudo-
population (that is, the full filtered dataset) was N = 28,210, and 61 variables were
identified as potential covariates for the PSA models.

The convenience and reference samples were selected by SRSWOR from the
volunteer (internet) population and the full population, respectively. The identi-
fying variable for volunteers and non-volunteers was the presence of a computer
in the household. According to the 2012 Spanish Survey on Equipment and Use
of Information and Communication Technologies in Households ([52]), 90.1% of
persons who had a computer in their household also had internet access, and 98.3%
of those with internet access at home also had a computer. Therefore, we believe
it reasonable to assume that taking the presence of a computer in the household as
the selection variable is a very good proxy of a variable measuring internet access
in the household. Two target variables were considered:

• The proportion of the population whose self-reported health was poor (those
who responded ”poor ” or ”very poor” to the question regarding their general
state of health.

• The proportion of the population living in a household with more than two
members.

The experiment was replicated 500 times, varying the size of the convenience
sample across nvs = 500, 750, 1,000, 2,000, 5,000 while the reference sample size
was maintained at nrs = 500, and considering the following groups of covariates:



• Group 1: Nine covariates measuring region, size of home town/city, gen-
der, marital status, nationality, country of origin and education level (both
achieved and currently studying).

• Group 2: All the covariates in Group 1 plus five health-related variables,
namely chronic diseases, presence of disability, and lack of access to medical
and/or dentistry services (and reasons for this lack).

• Group 3: All the covariates in Group 1 plus eleven poverty-related variables,
namely delays in bill payment, incidence of bills on the household econ-
omy, difficulty in living within household income, ability to acquire certain
household goods, possession of electrical appliances, income needed to live
without financial difficulty and calculated indicators of poverty risk and ma-
terial scarcity.

• Group 4: All 61 potential covariates. All of the above variables plus work-
ing conditions, care provision, energy poverty and household conditions and
expenditure.

The S1 Dataset includes the full dataset used to perform these analyses.

Algorithms and parameter tuning

The procedure in both simulations was the same: in each of the 500 simulations,
convenience and reference samples were selected, PSA was applied to reweight the
convenience sample using Hajek-type weights, and the population parameter was
estimated using the convenience sample with PSA. Measures of bias and MSE for
each scenario, algorithm and nvs were estimated as in (15) and (16). This procedure
was implemented in the statistical software R ([53]) using the packages RWeka
([54]; [55]),C50 ([56]), rpart ([57]), randomForest ([58]), e1071 ([59]) abd gbm
([60]). Packages ggplot2 ([61]), xlsx ([62]), gridExtra ([63]) and RColorBrewer
([64]) were used to generate the figures illustrating the results.

Propensity scores were calculated in each case using logistic regression, C4.5,
C5.0, CART, k-nearest neighbors, Naı̈ve Bayes, Random Forest, and GBM. For
exploratory purposes, in the artificial data simulation the parameter configuration
of each algorithm was selected on a grid, as follows:

• Decision trees (C4.5, C5.0 and CART) were applied taking 0.1, 0.25 and 0.5
as confidence values for pruning, and 0.5%, 1% and 5% of the dataset as the
minimum number of observations per node.

• K-Nearest Neighbours was applied taking k = 3,5,7,9,11,13.

• Naı̈ve Bayes was applied with a slight Laplace smoothing for the values
0,1,2,5,10.



• Random Forests were generated with 500 trees and 1,2,4 sampled variables
for each tree.

• GBM was applied with interaction depths of 4, 6 and 8, and learning rates of
0.1, 0.01 and 0.001.

The impact of tuning parameters in PSA is still poorly understood, and opti-
mality criteria are lacking. In this context, goal of classification algorithms is not
to achieve greater accuracy but a higher likelihood for the propensity of volunteer
participation in an online survey ([11]).

Parameter tuning was implemented for real data simulation. Thus, 10 times re-
peated 10-fold cross-validation was performed for each scenario, algorithm and nvs

using the caret package in R ([65]), except for the CART algorithm, for which the
cross-validation was coded separately, as caret does not allow us to refine the min-
imum number of observations per node. Log-Loss optimisation was used, as this
metric bettter explains the deviation of estimated propensities from real participa-
tion. The parameter grids were as described above, with the following exceptions:
the sampled variables for the Random Forest trees were taken as

√
p, p/2 and p,

where p is the number of covariates. In C5.0, we did not optimise the confidence
value for pruning and minimum number of observations in the nodes. The optimal
values obtained for C4.5 were used in C5.0, because the two algorithms are closely
related and likely to behave in a similar way. On the other hand, the trials, type of
model (rule-based or tree-based) and winnowing (feature selection) were tuned in
C5.0. The results obtained are summarised in Table S2.

Results

Artificial data

Tables S3 and S4 show the bias and MSE results, respectively, obtained from using
PSA with ML algorithms and SRSWOR from the internet population to build the
convenience sample. There are small differences in bias reduction between C4.5,
C5.0 and CART, especially for larger volunteer sample sizes. For Party 1, these
algorithms outperform logistic regression only when the volunteer sample size is
small, converging to the unadjusted case for larger samples. For Parties 2 and 3, the
three algorithms are only better than unadjusted estimations when the sample sizes
are balanced, but they never improve on PSA estimates using logistic regression.
The MSE estimators with C4.5, C5.0 and CART also converge to the unadjusted
case, which is smaller than PSA with logistic regression for Party 1 but greater
for Parties 2 and 3. The parameter tuning of decision trees (with any algorithm:
CART, C4.5 or C5.0) has no significant effect on bias removal, although greater
confidence in the pruning appears to be slightly advantageous in the case of Parties
2 and 3 if the C4.5 algorithm is used and the sample sizes are relatively balanced.

The use of the k-NN classifier yields less biased estimates than that of base-
line logistic regression for all of the missing data mechanisms considered. Thus,



PSA with k-NN provides estimates that are less biased, on average, than the unad-
justed estimates and the default-PSA reweighted estimates for Party 3. For Party
2, reweighting with PSA using k-NN transforms the bias in the opposite direction
to the original bias; however, this bias is lower than that produced by the PSA es-
timates with logistic regression in absolute terms. For Party 1, k-NN provides less
biased estimates than logistic regression but a low value for k; moreover, larger
sample sizes are required. When estimating the likelihood of an individual voting
for Party 1 or 2, the estimator MSE is smaller when PSA is used with k-NN rather
than logistic regression, for larger numbers of neighbours and balanced sample
sizes. When this is done for Party 3, the MSE of PSA with k-NN is significantly
lower than for PSA with logistic regression, although large values of k are required
for full efficiency.

Application of the Naı̈ve Bayes classifier in PSA produces a substantially greater
reduction in bias than when PSA is performed with logistic regression, but only for
the case of Party 2. For the other two parties, Naı̈ve Bayes does not outperform
logistic regression in PSA in terms of estimation bias except when samples are
balanced and larger integers are used for Laplace smoothing. In addition, the MSE
of the estimators is smaller with Naı̈ve Bayes when the sample sizes are balanced
and Laplace smoothing uses larger integers. The improvement, however, is rather
limited.

Propensity estimation with the Random Forest algorithm is only advantageous
in terms of bias removal in the estimations for Party 3, in which case the Random
Forests algorithm achieves the highest bias reduction of all the classifiers reviewed.
This is an important finding, as this missing data mechanism is particularly trou-
blesome and, moreover, is commonly encountered in real data. The results for
the MSE estimators under PSA with Random Forests show that this value may be
only half that obtained with PSA and logistic regression for Party 3. The number
of candidate variables for tree growing provides better results, remaining low for
balanced sample sizes, but high for larger samples.

Finally, the efficiency of PSA reweighting with GBM is crucially dependent on
the parameter configuration employed. For all kinds of missing data mechanisms,
PSA with GBM removes bias more effectively when the learning rate is relatively
low; thus, for Party 2, the bias reduction is almost complete. The MSE of the esti-
mators reveal that GBM for PSA is advantageous for Parties 1 and 2 if parameter
fitting is adequate (lower learning rates for Party 1, higher ones for Party 2), and
significantly advantageous for Party 3 when the learning rate is high. The effects
of interaction depth are mainly apparent with larger volunteer sample sizes, and
greater interaction depths provide estimations with lower levels of bias and MSE.

Tables S5 and S6 show the results obtained from using PSA with ML algo-
rithms with unequal selection probabilities in the internet population, following
the logistic formula described in Eq. 13 for convenience sampling, for bias and
MSE, respectively. As in the previous scenario, bias reduction with PSA using
decision trees (C4.5, C5.0 or CART) converges to the unadjusted case as the con-
venience sample size increases. The best results are provided by C4.5 trees, but



these are still much worse than those obtained with logistic regression. Regarding
MSE, the lack of variability produced by the inability of decision trees to grow in
samples with a large fraction of volunteer respondents leads them to have a smaller
error than is the case with logistic regression in the estimation of intentions to vote
for Party 1, especially with CART. Parameter tuning has a noticeable (albeit small)
effect only when the samples are relatively balanced in size: with C4.5, higher
confidence in pruning leads to better results, while with CART the opposite is true.

Using the k-NN algorithm in PSA produces a greater bias reduction than that
of logistic regression for Parties 2 and 3, provided the number of neighbours, k, and
the sample size are sufficiently large. The increase in variability provoked by the
use of this algorithm makes the MSE slightly higher than with logistic regression
in the intention to vote for Party 2. However, this is not the case regarding Party
3, where PSA with k-NN provides estimates with less error. In the case of Naı̈ve
Bayes, and regardless of the Laplace smoothing used, the bias and MSE are greater
for Party 2 than with logistic regression, but these values are smaller for Party 3.
Comparatively, Naı̈ve Bayes in PSA provides estimates which produce a smaller
error than either logistic regression, decision trees or k-NN.

The bias removal provided by PSA with Random Forest is strongly dependent
on the size of the convenience sample and the number of variables sampled to cre-
ate the trees. The bias for Party 3 is close to zero when the convenience sample is
around four times larger than the reference sample and only two variables are sam-
pled. If four variables are sampled, the bias reduction is greatest when the sample
is 10 to 15 times greater. These results show that the Random Forest algorithm
again provides the best MSE results in estimating voting probabilities for Party 3.

The GBM algorithm applied in PSA for sampling with unequal selection prob-
abilities produces a very similar situation to SRSWOR, except that efficiency de-
creases in line with the size of the convenience sample size. When comparing the
MSE in the voting estimation for Party 2 with that of k-NN and logistic regression,
GBM is poorer with small sample sizes but better with larger ones. Accordingly,
GBM is the best option for estimating voting intentions for Party 2 when a large
convenience sample is available.

Tables S7 and S8 show the results for unequal selection probabilities in the
internet population following the logistic formula described in Eq. 14 for con-
venience sampling, for bias and MSE, respectively. The performance of all the
algorithms, taking into account that the amount of inherent bias is smaller, is very
similar to the previous case. Among the differences observed, it should be noted
that bias reduction is worse with k-NN (especially in estimating voting intentions
for Party 2, for which this algorithm performs no better than logistic regression)
and that Naı̈ve Bayes performs better for Party 2 but worse for Party 3.

Table S9 summarises the bias and MSE measures obtained for each algorithm
and selection mechanism, revealing certain characteristic patterns. For Party 1,
while Naı̈ve Bayes provides the lowest mean bias and is the best adjustment more
frequently than the other algorithms, decision trees are better choices in terms of
MSE, especially CART. For Party 2, bias reduction is dominated by PSA with



k-NN and GBM but the former is surpassed by GLM in terms of MSE. Finally,
Random Forest seems to be the best algorithm for PSA regarding voting intentions
for Party 3, both in terms of bias and MSE. In general, ML algorithms (except for
decision trees) produce the largest reductions in bias and, in many cases too, the
lowest MSE.

Real data

Table S10 show the results obtained for the bias present in estimating the fraction
of the population who perceive their health to be poor. The table rows show the
estimations obtained after PSA reweighting with the four covariate groups. These
results clearly reflect the importance of the variables regarding PSA efficiency;
when only demographic variables are included, PSA with Naı̈ve Bayes provides the
least biased estimates for all sample sizes, but also greater variance than the other
methods and hence a larger MSE. In consequence, PSA with logistic regression
provides the smallest error term. The bias is smaller when variables related to the
outcome (health) or the exposure (poverty) are included in the models, with the
former group leading to greater reductions in bias and MSE, but in this respect the
situation for algorithms is unaffected. However, when all available covariates are
used, PSA with Naı̈ve Bayes appears to produce high levels of bias, while PSA with
logistic regression is almost unbiased for large volunteer sample sizes, at the cost of
high variance. As a result, MSE values are poor for PSA with logistic regression,
while decision trees (for small nvs) and bagging/boosting algorithms (for large nvs)
have the smallest term of error. The estimation with the lowest MSE was achieved
using PSA with logistic regression together with demographic and health-related
predictors, followed by PSA with GBM using all available predictors .

Table S11 shows the bias estimates for the fraction of households with more
than two members, after PSA reweighting. It is noticeable that PSA with Random
Forest removes most of the original bias as the volunteer sample size increases
when only demographic variables are used, to the point that the MSE of the es-
timates obtained by PSA with Random Forest with nvs is the lowest of all those
observed during the experiment. This pattern continues when health-related vari-
ables are added, although the bias of the estimates increases. On the other hand, if
small volunteer samples are used, PSA with logistic regression provides the esti-
mates with the smallest error term, and this true for all sample sizes when poverty
covariates are used. When all covariates are included, a similar pattern is observed:
thus, decision trees and GBM (with the latter providing the second-lowest MSE of
the experiment), are the best algorithms for PSA when small and large sample
sizes, respectively, are available.

Discussion

New technologies have had a profound impact on surveying techniques worldwide.
This impact is especially significant for social and political surveys, and most par-



ticularly for market research surveys, where the speed increases and cost reductions
achieved with new technologies have radically changed the ways in which data are
compiled. While in many cases the public sector continues to conduct interviews
face-to-face and/or via telephone landlines, private companies are using mobile
phones, tablets and the web, as standalone or combined strategies, thus obtaining
data from volunteer participants. On the other hand, the results obtained with such
nonprobability surveys present various problematic issues, notably the absence of
a sample design assigning weights to the sample units, the presence of frame cov-
erage issues and the risk of nonresponse bias. Although many statistical methods
have been proposed to alleviate the problems of noncoverage and nonresponse,
the question of nonrandomness in the sample is more complex and has not been
thoroughly addressed.

In this respect, [66] reviewed existing inference methods to correct for selec-
tion bias in nonprobability samples. These authors considered a situation where
only a nonprobability sample is available and compared a range of predictive in-
ference methods (pseudo-design-based and model-based) in a general framework.
The conclusion drawn from this study was that machine learning methods should
be incorporated to address the problem of misrepresentation in nonprobability sam-
ples.

The present study considers another class of methods that may be used to cor-
rect selection bias in volunteer online surveys, which combine a nonprobability
sample with a reference sample in order to construct propensity models. Our anal-
ysis compares logistic regression and ML classification algorithms for propensity
estimation to determine the extent to which ML may be considered a viable al-
ternative. ML algorithms present certain advantages over logistic regression; for
example, they present greater flexibility, and do not require the analyst to spec-
ify a model with its interactions on nonlinear relationships, as ML is capable of
capturing these relationships in the data learning procedure. Our study consid-
ers situations with few and with many covariates, for three different missing-data
mechanisms influencing the selection process, and for different parameter con-
figurations in the classifiers. To our knowledge, the only previous studies of the
efficiency of classifier parameter tuning in PSA are those of [17] and [18] for de-
cision trees, and to a more limited extent than in the present case. In addition, [42]
alluded to some preliminary tests for Random Forest parameters, suggesting that
optimum parameter selection would improve the estimations achieved.

The results we present show that most of the algorithms evaluated may provide
a valid alternative to logistic regression in PSA if circumstances make the latter in-
appropriate. The C4.5 and C5.0 algorithms for decision trees are particularly use-
ful when reference and volunteer sample sizes are balanced and the variables are
numerous. Decision trees can be considered as variable selectors, as they automat-
ically select subsets of optimal variables for classification, which is advantageous
when the dimensionality is high ([67]). However, they also increase estimation
variance when used for PSA, especially when there are significant nonlinear rela-
tionships between variables and the sample size is small ([18]; [29]).



The k-Nearest Neighbours (k-NN) algorithm is another useful alternative to lo-
gistic regression in PSA if the number of covariates available is low, especially with
NMAR selection. However, as the dimensionality increases, k-NN becomes less
efficient than other approaches. Its behaviour in both low and high-dimensional
contexts was studied by [68], who concluded that higher dimensionality results in
more concentrated distances, which makes k-NN less explicative of the actual class
of an individual.

Our evaluation of Naı̈ve Bayes in PSA for controlling selection bias revealed
the existence of certain very clear patterns. When used with balanced sample sizes
and few covariates, and not presenting rare or infrequent values, this algorithm
provides smaller MSE values. In any other case, although PSA with Naı̈ve Bayes
behaves in an unstable way, simulations for NMAR using real data show that MSE
is also substantially reduced. Ideally, Naı̈ve Bayes should be employed with dis-
crete input variables, as the probability computation performed by the algorithm
is based on cross-tabulations. In addition, Naı̈ve Bayes assumes independence be-
tween the variables, which may not be realistic in a high dimensional context due
to the redundancy and noise issues that often arise (see [67]).

The application of bagging and boosting algorithms produced interesting re-
sults. Random Forest, which has been widely tested for PSA ([18]; [24]; [23]; [25];
[31]; [42]; [30]), achieved the largest bias reduction when the selection mechanism
was NMAR, both for simulated data (under the condition of sample balancing) and
with real data. However, its application presented several drawbacks, especially the
fact that it is very prone to overfit propensity estimates on the data, as was apparent
in the MSE of the Random Forest estimates with PSA, which tended to decrease
and stabilise as the volunteer sample size increased. This pattern of behaviour has
been reported previously by [25] for treatment effect estimates, and by [42], who
observed an increase in variance when Random Forests of classification trees were
used. On the other hand, the GBM, also referred to in the literature as boosted
CART ([18]; [31]), provided weights that resulted in more stable behaviour of the
estimates, as has also been noted previously ([18]; [23]). The GBM is efficient if
the parameters are correctly tuned and the covariates are sufficiently discriminant.
In this respect, [22] proposed a default parameter configuration for the GBM with
low interaction depth and shrinkage. In the simulated data example described, bet-
ter results were obtained with greater interaction depths. On the other hand, the
best results with artificial data simulation were obtained when the learning rate
was maximal; this parameter is related to overfit, and therefore should not produce
a different pattern of behaviour in other situations. Nonetheless, further research
is needed on the question of GBM parameter fitting. Finally, let us note that PSA
with GBM in the real data simulation provided the best results in terms of MSE,
for a large volunteer sample and when all available covariates were used.



Conclusion

Our study findings support the use of ML algorithms as an alternative to PSA for
reducing or eliminating selection bias in online surveys, although logistic regres-
sion is also shown to be a robust, reliable technique for propensity estimation. The
efficiency of ML algorithms is closely related to the type of data considered and
therefore no single approach is optimum for every case. We provide evidence with
respect to MCAR, MAR and NMAR selection mechanisms, and for situations of
low or high dimensionality. When selection follows a MCAR scheme, CART and
GBM are the best alternatives, although the other ML algorithms tested, except
Random Forest, also improve upon the results obtained by PSA with logistic re-
gression, especially as the volunteer sample size increases. With MAR or NMAR
selection, logistic regression generally provides good adjustments, especially when
the dimensionality is low and the covariates are not very discriminant. However, if
more covariates are available, logistic regression tends to destabilise and the MSE
increases, despite its improved performance in bias removal; in this case, GBM,
k-NN, decision trees and Random Forests all represent good alternatives. Ran-
dom Forests provides good results when the data are MCAR, even if covariates
are nonsignificant, although more research is needed on the possible incidence of
overfitting on the final results obtained. The presence of balancing and overfitting
issues suggests that data preprocessing should be a key step in the estimation of
propensity scores, as observed previously by [19]. We recommend that further
studies should consider the application of data preprocessing techniques such as
noise filtering, sample balancing or feature selection (see [69]) before PSA appli-
cation, and also take into account the effects of dimensionality when designing
simulation experiments or applications.

In general, our findings support the view given in [66] that ML methods can
usefully be used to remove selection bias when dealing with non-probability sam-
ples. Prior research has shown that PSA successfully removes bias in some situ-
ations but at the cost of increasing the variance of the estimates ([10]; [11]). The
technique proposed by [11] and [12], applying a combination of PSA and calibra-
tion, may represent a good alternative in such situations. The behaviour of ML
methods when both PSA and calibration are applied is currently under study.
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Abstract

This study introduces a general framework on inference for a general parameter using nonprob-

ability survey data when a probability sample with auxiliary variables, common to both samples,

is available. The proposed framework covers parameters from inequality measures and distribution

function estimates but the scope of the paper is broader. We develop a rigorous framework for gen-

eral parameter estimation by solving survey weighted estimating equations which involve propensity

score estimation for units in the non-probability sample. This development includes the expression

of the variance estimator, as well as some alternatives which are discussed under the proposed frame-

work. We carried a simulation study using data from a real-world survey, on which the application of

the estimation methods showed the effectiveness of the proposed design-based inference on several

general parameters.

1 Introduction

Nonprobability samples are increasingly common in empirical sciences. The rise
of online and smartphone surveys, along with the decrease of response rates in tra-
ditional survey modes, have contributed to the popularization of volunteer surveys
where sampling is non-probabilistic. Moreover, the development of Big Data in-
volves the analysis of large scale datasets whose obtention is conditioned by data
availability and not by a probabilistic selection, and therefore they can be consid-
ered large nonprobability samples of a population [1].

The lack of a probability sampling scheme can be responsible for selection bias.
Following the description from [1, 2], we can distinguish the target population, UT ,
the subpopulation that a given selection method can potentially cover, Upc, and the
fraction of the subpopulation that is finally covered, U f c, and whose individuals
might participate in the survey. Selection bias occurs when the characteristics of
the individuals in U f c differ significantly from those in UT in a way that could affect
final estimates. Typically, differences between individuals in UT and individuals in
Upc are caused by a lack of coverage induced by the survey administration mode
(for example, an online questionnaire cannot be administered to the population
without internet access), while differences between Upc and U f c are caused by the
variability in the propensities to participate between social-demographic groups
(for example, an online questionnaire accesible in a thematic website might only be
fulfilled by visitors of the website who have a specific interests that could influence
the results).

Following the rise of nonprobability samples, a class of methods for reducing
selection bias have been proposed in the last decades. These methods were devel-
oped from different perspectives according to the availability of auxiliary informa-
tion. We can mention calibration, Propensity Score Adjustment (PSA), Statistical
Matching and superpopulation modelling as the most relevant techniques to miti-
gate selection bias produced by coverage and self-selection errors.

Calibration weighting was originally developed by [3] as a method to correct
representation issues in samples with coverage or non-response errors. It only



requires a vector of auxiliary variables available for each individual of the sample
and the population totals of those variables. Calibration is able to remove selection
bias in nonprobability samples if the selection mechanism is ignorable [4], and
despite being originally developed for parametric estimation, further work [5, 6, 7]
has extended calibration to distribution function, quantile and poverty measures
estimation.

Propensity Score Adjustment (PSA) and Statistical Matching require, apart
from the nonprobability sample, a probability sample to do the adjustments. PSA
was originally developed for balancing groups in non-randomized clinical trials [8]
and it was adapted for non-response adjustments shortly after [9, 10]. The applica-
tion of PSA for removing bias in nonprobability surveys was theoretically devel-
oped in [11, 12]. Statistical Matching was firstly proposed in [13] and extended
in [14] for non-response adjustments. The difference between both methods is the
sample used in the estimators: PSA estimates the propensity of each individual of
the nonprobability sample to participate in the survey and then this propensity is
used to construct the weights of the estimators, while Statistical Matching adjusts a
prediction model using data from the nonprobability sample, applies it in the prob-
ability sample to predict their values for the target variable y and uses them in the
parametric estimators. To the best of our knowledge, PSA and Statistical Matching
has not been developed for nonparametric estimation.

Superpopulation modelling requires data from the complete census of the tar-
get population for the covariates used in the adjustment, which is assumed to be a
realization (sample) of a superpopulation where the (unknown) target values fol-
low a model. It is based on the works by [15, 16], where the main idea is to fit a
regression model on the target variable with data from the nonprobability sample,
and use the model to predict the values of the target variable for each individual in
the population. The prediction can be used for estimation using a model-based ap-
proach or some alternative versions such as model-assisted and model-calibrated.
LASSO models [17] and Machine Learning predictors [18, 19] have been studied
as alternatives to ordinary least squares regression in superpopulation modelling.

The interest of society on poverty and inequality has increased in the last
decades given the successive economic cycles and crisis. In such a context, of-
ficial poverty rates and the percentage of people in poverty (or under a poverty
threshold) are some important measures of a country’s wealth. The common char-
acteristic of many poverty measures is their complexity. The literature on survey
sampling is usually focused on the goal of estimating linear parameters. However,
it is usual that the variable of interest in poverty studies is a measure of wages
or income, where the distribution function becomes a relevant tool because it is
required to calculate the proportion of people with low income, the poverty gap
and other measures. Estimators for the cumulative distribution function, quantiles
[21, 20] and poverty measures [22] can be found in literature regarding probability
samples, but there is hardly any work on the estimation of these parameters when
the samples are obtained from volunteers.

In this paper, we aim to develop a framework for statistical inference on a



general parameter with non probability survey samples when a reference proba-
bility sample is available. After introducing the problem of the mean estimation
for volunteer samples in Section 2, in Section 3, we consider the problem of the
estimation for a general parameter through general estimating equations. Section 4
presents a new estimator for a general parameter through the use of PSA to estimate
the propensity score of each individual in the survey weighted estimating equation
and major theoretical results are presented. Results from simulation studies are
reported in Sections 5 and 6 presents the concluding remarks.

2 Approaches to Estimation of a Mean for Volunteer On-
line Samples

Let UT be the target population with N elements and sv a nonprobability sample
drawn from a subset of UT , Uv, with a size of nv ≤ N. Let y be the target variable
of the survey, whose mean in the population UT is denoted as Y . The sample
estimation of Y , Ŷ , is done using the Horvitz-Thompson estimator:

Ŷ HT =
∑i∈sv wiyi

∑i∈sv wi
(1)

where w is a vector of weights that accounts for the lack of representativity of sv

caused by selection bias. If no auxiliary information is given, the weight would be
the same for every unit, wi = N/nv, which requires to assume that the sample was
drawn under a simple random sampling scheme. This is a naı̈ve assumption given
that sv is not probabilistic, this is, the probability of being in the sample is unknown
and/or null for any of the units in UT .

Let x be a matrix of covariates measured in sv along with y. If the population
totals of the covariates, X, are available, it is possible to estimate the mean using a
vector of weights obtained with calibration, wCAL. The calibration weights aim to
minimize the distance between the original and the new weights

min
wCAL

i

E

[
∑
i∈sv

G(wi,wCAL
i )

]
(2)

while respecting the calibration equations

∑
i∈sv

wCAL
i xi = X. (3)

Some choices for the distance G(., .) were listed in [3], along with the resulting
estimators. Calibration weighting for selection bias treatment was studied in [4],
where post-stratification, which is a special case of calibration [23], was used to
mitigate the bias caused by different selection mechanisms, showing its efficacy
when the selection of the units of sv is Missing At Random (MAR).



If a reference sample, sr, drawn from the population UT is available and a
number of covariates x have been measured both in sv and sr, two procedures can
be done to reduce selection bias present in sv. Let Iv be an indicator variable of an
element being in sv, this is

Ivi =

{
1 i ∈ sv

0 i /∈ sv
(4)

Propensity Score Adjustment (PSA) assumes that each element of UT has a
probability (propensity) of being selected for sv which can be formulated as

πv
i = Pr(Ivi = 1|xi,yi) (5)

where πv
i is the propensity of the i-th individual to participate in sv. The ran-

dom mechanism behind this probability is the selection mechanism that governs
the nonprobability sample. If the selection is Missing Completely At Random
(MCAR), then πv

i = Pr(Ivi = 1) and the selection bias is null, while if the selection
is MAR then πv

i = Pr(Ivi = 1|xi) and the selection mechanism is considered ignor-
able. This does not mean that the selection bias should be ignored but rather it can
be treated with the right techniques.

In PSA, we consider the situation where true propensities are not known and
therefore have to be estimated; we do it by combining sv and sr into a sample. The
probability that Iv = 1 is then estimated using a prediction model, traditionally a
logistic regression one:

π̂v
i =

1
1+ exp{−βxi}

(6)

Alternative models, such as non-linear regression and Machine Learning clas-
sification algorithms, have been studied in literature as a substitute of logistic re-
gression (see [24] for a review). The resulting propensities can be used to adjust
new weights, wPSA, with different alternatives:

• A simple inverse probability weighting is proposed by [25]

wPSA1
i =

wi

π̂v
i

(7)

which is a similar approach to the formula used in [26]

wPSA2
i =

1− π̂v
i

π̂v
i

(8)

• Alternatively, individuals of the combined sample (sv ∪ sr) can be grouped
in g equally-sized strata of similar propensity scores from which an average
propensity is calculated for each group. Let πg be the mean propensities of
the g-th strata. [2] use the means as in (7) to calculate the new weights:

wPSA3
i =

wi

πgi

(9)

where gi refers to the strata to which the i-th individual of sv belongs.



• A similar approach can be found in [12], but instead of using the means, a
factor is calculated for each strata:

fg =
∑k∈srg

w̃k/∑k∈sr w̃k

∑i∈svg
wi/∑i∈sv wi

(10)

where srg and svg are respectively the individuals from the probability and
nonprobability sample that belong to the g-th strata, and w̃ is the vector of
design weigths of the reference sample. The final weights are obtained by
multiplying the original weights and the correction factor:

wPSA4
i = wi · fgi (11)

PSA has been proven to successfully remove selection bias when prognostic
covariates are chosen [11] and further adjustments, such as calibration, are applied
in the estimations [12, 2, 27]. A recent paper [28] shows a real application of PSA
in web panel surveys where the reductions in bias, although present, were not large
enough to consider the estimates as unbiased.

As an alternative to PSA, Statistical Matching is another method to mitigate
selection bias when a reference sample is available. For the matter, a prediction
model for y using x as the dependent variables is built using data from sv. The
model is subsequently applied on the reference sample to obtain the estimates from
the predicted values of y in sr, ŷ:

Ŷ = ∑
k∈sr

wkŷk (12)

The choice of prediction models has been studied in literature; the usual method
is linear regression but other approaches such as donor imputation [13] or Machine
Learning algorithms [19, 29] have been listed as alternatives. Under certain con-
ditions, Statistical Matching can reduce bias and mean square error to a greater
extent than PSA [29].

When a complete census of the entire target population is available, with infor-
mation on the covariates present in sv, superpopulation modelling can be applied
to remove selection bias [19]. In this paper we consider the case when auxiliary
information is available only from a reference probability survey.

3 Estimation of a General Parameter by Using PSA

Let y be the variable of interest in a survey and yi be the value of the i-th unit in that
variable, i = 1, ...,N. Suppose we want to estimate a finite population parameter
θN of dimension p≥ 1 defined as the solution of the census estimating equations:

U(θN) =
1
N ∑

U
ui(yi,θN) = 0 (13)

where ui(yi,θN) is be a function of θN . Some unidimensional parameters of interest
can be:



• the population total Ty for ui = (yi−θN/N),

• the population mean Ȳ for ui = (yi−θN),

• the population distribution function Fy(t) for ui = (1(yi ≤ t)−θN) with 1(·)
being the indicator function,

• the finite population quantile of order j, Q j for ui = (1(yi ≤ θN)− j, where
0 < j < 1,

We denote by θ̂ the solution of the equation:

Û(θN) = ∑
U

Iviui(yi,θN)/πv
i = ∑

sv

ui(yi,θN)/πv
i = 0. (14)

It is clear the Er(Û(θN)) =U(θN) where r stands for the model of the selection
mechanism for the sample sv, this is, the true model that fits propensity scores. If πv

i
are known we can get the consistent estimator of θN by solving the equation above.
For the study of the properties of this estimator we consider a quasi-probability ap-
proach or pseudo-design-based inference ([19]) and we treat the volunteer sample
as a realization of a Poisson sampling with probabilities πv

i .
For any sample design that verifies certain regularity conditions, the solution

to Û(θ) = 0 provides a consistent estimator for the parameter θN (see [30]). Pois-
son sampling verifies these conditions, so that the consistency of the estimator is
obtained immediately from the result of [30]. The normality of the estimator is
demonstrated by [31], who also obtains the asymptotic variance of the estimator.
From said expression and taking into account that in Poisson sampling the extrac-
tions are independent and therefore the probability of second order is given by
πv

i j = πv
i πv

j we can obtain the variance of θ̂ :

V (θ̂) = J(θ̂)−1var(Û(θ))J′(θ̂)−1 (15)

being J(θ) = 1
N ∑U ∂ui/∂θ and var(Û(θ)) = ∑U(1−πv

i )u
2
i /(πv

i )
2

4 Estimation of a General Parameter with Estimated Propen-
sities

The propensity scores πv
i are not known are impossible to estimate using the non-

probability sample sv alone, so additional information must be included. Let sr be a
reference probability sample, of size nr, selected from UT under a sampling design
(sd , pd) where the first order inclusion probabilities, π p

i = ∑sr3i pd(sr), i = 1, ...,nr,
are known and non-null.

The covariates of the propensity model x have been measured both in sv and sr,
while the variable of interest y is only available for those individuals in sv.

Suppose that the propensity scores can be modelled parametrically as

πv
i = P(Ivi = 1/xi) = m(λo,xi) i = 1, ...,N (16)



for some known function m(·) with second continuous derivatives with respect to
an unknown parameter λo.

We estimate the propensity scores by using data of both the volunteer and the
probability sample. The maximum likelihood estimator (MLE) of πv

i is m(λ̂ ,xi)

where λ̂ corresponds to the value of lambda that maximizes the log-likelihood
function:

l(λ ) = ∑
U
(Ivilog(m(λ ,xi))+(1− Ivi)log(1−m(λ ,xi)) =

∑
sv

log
m(λ ,xi)

1−m(λ ,xi)
+∑

U
log(1−m(λ ,xi)). (17)

As it is usual in survey sampling, we consider the pseudo-likelihood given that
some units of the population have not been sampled:

l̃(λ ) = ∑
sv

log
m(λ ,xi)

1−m(λ ,xi)
+∑

sp

1
π p

i
log(1−m(λ ,xi)). (18)

We propose thus a two phase procedure in this manner:

Step 1: Calculate λ̂pl by solving the score equations:

∂ l̃(xi,λ )/∂λ = 0

Step 2: Calculate θ̂v as the solution of the estimating function:

ÛV (θ) = ∑
U

Iviui(yi,θ)
1

m(λ̂pl,xi)
= 0 (19)

We consider the following asymptotic framework for theoretical development,
which is equivalent to the framework in [32]. Let UT ν be a sequence of finite
populations of size Nν . Each UT ν has an associated non-probability sample svν
of size nvν and an associated probability sample spν of size npν . We consider
that the population size Nν → ∞, the nonprobability sample size nvν → ∞ and the
probability sample size npν → ∞ as ν → ∞. For notational simplicity the index
ν is suppressed for the rest of the paper. The properties of the estimator θ̂v are
developed under both the model for the propensity scores and the survey design
for the probability sample.

We make the following assumptions:

• A.1. The estimating function ui(yi,θ ,λ ) is twice differentiable with respect
to θ and λ .

• A.2. The propensities and the sampling design ensure that ÛV (θ)−U(θ) =
Op(n−1/2) for any θ ∈Θ.



• A.3. The propensities and the sampling design ensure that ÛV (θ) is asymp-
totically Normal with mean U(θ) and entries of the variance at the order
O(n−1) for any fixed θ ∈Θ.

Theorem 1. Under the conditions A.1, A.2 and A.3, θ̂v is a consistent and
asymptotically normal estimator for θ .

Proof. Under assumed conditions,
ÛV (θ) =U(θ)+Op(n−1/2), thus by using the mean value theorem, θ̂v has the

same asymptotic behaviour that θ̂ which is consistent for θ and asymptotically
normal distributed (see Section 3).

Variance estimation for θ̂v can be handled by combining the two estimating
equations, l̃ and Ûv, into a single system as it is done in [33].

The MLE of λ , λ̂pl is the solution to the equations:

U2(λ ) = ∑
sv

∂ log
m(λ ,xi)

1−m(λ ,xi)
/∂λ +∑

sp

∂
1

π p
i

log(1−m(λ ,xi))/∂λ = 0

and the PSA estimator of θN is the solution to the estimating equations

U1(θ ,λ ) = ∑
sv

ui(yi,θ)
1

m(λpl,xi)
= ∑

sv

g1(yi,xi,θ ,λ ) = 0.

Let U(θ ,λ ) = (U ′1(θ ,λ ),U ′2(λ ))′. Let ψ = (θ ′N ,λo)
′ be the true parameter

values defined through the census estimating equations and ψ̂ = (θ̂ ′N , λ̂o
′
)′ the so-

lutions to U(θ ,λ ) = 0.
We need an additional assumption:

• A.4. The propensities, the sampling design and the estimating function sat-
isfy ∂ Û/∂ψ = Op(1) and ∂ 2Û/∂ψ∂ψ′ = Op(1).

Theorem 2 Under the conditions A.1, A.2, A.3 and A.4, the asymptotic variance-
covariance matrix of ψ̂ is given by the expression:

V(ψ̂) = H−1V (Û(θ ,λ ))H′−1 (20)

with H =

(
H11 H12
0 H22

)

H11 = E{ ∂
∂θ

U1(θN ,λ )}

H21 = E{ ∂
∂λ

U1(θN ,λ )}

H22 = E{ ∂
∂λ

U2(λ )}



Proof. Since θ̂v and λ̂ are consistent estimator of respective parameters, we can
write ψ̂ =ψ+Op(1) and the Taylor series expansion gives:

ψ̂ =ψ−H−1Û(θ ,λ )+Op(‖ψ̂−ψ‖2),

Thus the asymptotic variance of ψ̂ is given by:

V(ψ̂) = H−1V (Û(θ ,λ ))H′−1.

Taking into account the two random mechanisms, and the probabilities of the
conditional expectation, we have V (Û(θ ,λ )) = VpEr(Û(θ ,λ )) + EpVr(Û(θ ,λ ))
where r stands for the model of the selection mechanism for the sample sv and p
refers to the probability sampling design for sp.

The asymptotic variance of ψ̂ depends on the probability of selecting the sam-
ple sp under the given sampling design and the selection mechanism described by
the propensity model. Plug-in estimators can be used to construct variance estima-
tors for all the required components but it is not a simple issue.

In practice, and as described in [7], the use of jackknife [34] and bootstrap
techniques [35] in the variance estimation for nonlinear parameters should be more
advantageous because of their wide applicability for different cases and conditions.
Direct applications of bootstrap methods for estimating the variance-covariance
matrix of ψ̂ involve solving the equation U(θ ,λ ) = 0 repeatedly for each bootstrap
sample. Multiplier Bootstrap with Estimating Functions was proposed by [36].

5 Simulation Study
5.1 Data

Data for the simulation study come from a wave of the Spanish Living Conditions
Survey collected between 2011 and 2012 [37], which contains an annual thematic
module that, in 2012, was dedicated to household conditions. The survey sampling
follows a two-phase cluster sampling, where the primary units are the households
and the secondary units are their members. In 2012, the final sample included
33,573 individuals. For this study, the dataset was filtered to rule out individuals
and variables with high quantities of missing data. After this procedure, the dataset
employed as pseudopopulation of the study had a size of N = 28,210 individuals
and p = 60 available variables.

From this pseudopopulation, two probability samples of size nr were drawn
according to the following sampling strategies:

• The first sample, sr1, was drawn with a stratified cluster sampling, where
the strata were defined by the Autonomous Communities (NUTS2 regions)
and the clusters were the households, which were drawn with probabilities
proportional to the household size. The number of households to be selected,
m, was estimated dividing nr by the medium household size in order to reach



the aforementioned size of nr = 2000, resulting in m = 902 households. The
final sample size of sr1 was nr1 = 2003.

• The second sample, sr2, was drawn with an unequal probability sampling,
where probabilities were proportional to the minimum income of the indi-
vidual’s household to make ends meet (variable HS130 in [37]).

The extraction of the nonprobability sample, sv, was done with unequal proba-
bility sampling from the full pseudopopulation, where the probability of selection
for the i-th individual, pi, was given by the formula:

pi =
1

1+ exp(−2x1
i +0.2x2

i +0.01x3
i +0.2x41

i +0.4x42
i )

(21)

where

• x1
i = 1 when the i-th sampled individual has a computer at home, and x1

i = 0
otherwise.

• x2
i = 1 when the i-th sampled individual is a man, and x2

i = 0 otherwise.

• x3
i is the age (in years) of the i-th sampled individual.

• x41
i = 1 when the i-th sampled individual lives in a medium population den-

sity area, and x41
i = 0 otherwise.

• x42
i = 1 when the i-th sampled individual lives in a low population density

area, and x42
i = 0 otherwise.

The reasoning behind this sampling procedure is to take into account more sim-
ilar mechanisms to self-selection procedures that take place in real nonprobability
surveys.

We have considered three different sample sizes, nv = 2000, 4000, 6000. 1000
simulation runs were performed for each procedure and sample size, drawing a
sample in each run.

5.2 Simulation

In each simulation, the parameters to be estimated were the following:

• The Gini coefficient [38], which measures the income inequality, estimated
as

Ĝy =
∑k∈sv

1
πk
(2F̂y(yk)−1)yk

∑k∈sv yk/πk

• The proportion of individuals with a disposable income below the at-risk-
at-poverty threshold. This measure can be referred to as poverty incidence,
poverty proportion, poverty risk or HCI ([39] and is estimated as

ˆHCI =
1
N ∑

k∈sv

1
πk

I(y < 0.6Q0.5)



• The interquartile range, estimated as

ÎQR =
Q̂0.75

Q̂0.25

• The interdecile range, estimated as

ÎDR =
Q̂0.9

Q̂0.1
.

Every parameter was estimated with and without applying PSA so we could
evaluate its performance. In order to estimate the propensities, a logistic regression
model was chosen:

m(λ̂ ,xi) =
exp(λ̂Txi)

1+ exp(λ̂Txi)

1000 simulations were executed for each context. The resulting mean bias,
standard deviation and Root Mean Square Error were measured in relative numbers
to make them comparable across different scenarios. The formulas used for their
calculation can be found below:

RBias (%) =

∣∣∣∣∣
∑1000

i=1 θ̂ (i)

1000
−θN

∣∣∣∣∣ ·
100
θN

(22)

RStandard deviation (%) =

√
∑1000

i=1 (θ̂ (i)− ˆ̄θ)2

999
· 100

θN
(23)

RMSE (%) =
√

RBias2 +RSD2 (24)

with θ̂ (i) the estimation in the i-th simulation and ˆ̄θ the mean of the 1000 estima-
tions.

5.3 Results

The relative mean bias of the estimations can be observed in Tables 1–3. We can
observe that PSA reduces the bias in all situations, specially in the estimation of
HCI. PSA using the reference sample drawn with probabilities proportional to the
income, sr2, provided much less biased estimates overall.

Table 1: Relative mean bias (%) of each parameter without applying PSA.

Size Gini HCI IQR IDR

6000 6.7 80.4 7.9 9.4
2000 3.2 93 3.8 3.1
4000 3.1 86 3.7 3
6000 3 79 3.5 3



Table 2: Relative mean bias (%) of each parameter applying PSA with the stratified refer-
ence sample.

Size Gini HCI IQR IDR

2000 1.7 3 2.5 1
4000 2.1 3.3 2.7 1
6000 2.2 3.1 2.7 0.9

Table 3: Relative mean bias (%) of each parameter applying PSA with the proportional
reference sample.

Size Gini HCI IQR IDR

2000 0.3 1.1 0 0.2
4000 0.1 1.3 0.1 0.3
6000 0 1.1 0.1 0.5

The relative standard deviation of the estimations can be observed in Tables
4–6. The standard deviation remained stable across estimates of Gini coefficient,
IQR and IDR, even with small gains for the latter when using the reference sample
with probabilities proportional to the minimum income to make ends meet, sr2, but
increased after applying PSA in the estimation of HCI.

Table 4: Relative standard deviation (%) of each parameter without applying PSA.

Size Gini HCI IQR IDR

2000 1.6 0.2 2.2 4.2
4000 1.1 0.3 1.5 2.9
6000 0.8 0.4 1.2 2.2

Table 5: Relative standard deviation (%) of each parameter applying PSA with the stratified
reference sample.

Size Gini HCI IQR IDR

2000 1.7 4.1 2.7 4
4000 1.1 2.8 1.8 2.6
6000 0.9 2.2 1.4 2



Table 6: Relative standard deviation (%) of each parameter applying PSA with the propor-
tional reference sample.

Size Gini HCI IQR IDR

2000 1.3 3.9 2.1 3.2
4000 0.9 2.8 1.5 2.2
6000 0.8 2.3 1.2 2.3

The relative Root Mean Square Error of the estimations can be observed in
Tables 7–9. As a result of the stability of standard deviation and the reduction in
bias, the RMSE of the estimates of the four parameters has a similar pattern than
the observed for bias. Although RMSE is reduced after applying PSA in all cases,
PSA was more efficient when the reference sample was drawn with probabilities
proportional to the minimum income to make ends meet, sr2.

Table 7: Relative RMSE (%) of each parameter without applying PSA.

Size Gini HCI IQR IDR

2000 3.6 93 4.4 5.2
4000 3.3 86 4 4.2
6000 3.1 79 3.7 3.7

Table 8: Relative RMSE (%) of each parameter applying PSA with the stratified reference
sample.

Size Gini HCI IQR IDR

2000 2.4 5.1 3.7 4.2
4000 2.4 4.3 3.2 2.8
6000 2.4 3.8 3 2.2

Table 9: Relative RMSE (%) of each parameter applying PSA with the proportional refer-
ence sample.

Size Gini HCI IQR IDR

2000 1.4 4.1 2.1 3.2
4000 0.9 3.1 1.5 2.2
6000 0.8 2.5 1.2 2.4

PSA performance could be deeply affected by the selection mechanisms, which
could lead to model misspecifications in propensity estimations. To test limitation



and robustness of the proposed approach we have repeated the simulation with
different patterns of non-response. The selection procedures can be described as
follows:

NP1 Simple Random Sampling Without Replacement (SRSWOR) from the pop-
ulation fraction of individuals with a computer at home, Uv.

NP2 The probability of selection for the i-th individual, is given by

pi =
1

1+ exp(−2x1
i +0.2x2

i +0.01x3
i +0.2x41

i +0.4x42
i )

(25)

NP3 The probability of selection for the i-th individual, is given by

pi = (x3
i −1925)3/(1995−1925)3 (26)

NP4 The probability of selection for the i-th individual, is given by

pi = 0.35+0.1∗ x1
i − cos((2012− x3

i )/5)/3 (27)

The procedure 1 is a typical case of coverage error (which is a type of selec-
tion bias itself [1]). The third scheme represents a cubic relationship between age
and the probability of selection, with young people being the individuals with the
highest probabilities and decreasing as age increases. The last scheme has two
components: one dichotomous and the other cosine-shaped.

Tables 10 and 11 show the results of bias and relative ecm for the HCI param-
eter, where the selection bias of the unweighted estimator is large.

Table 10: Relative mean bias (%) for estimating HCI without and with applying PSA.

Unadjusted PSA with Stratified Sample PSA with Proportional Sample

NP1 2000 93.5 1.7 4.5
NP1 4000 86.9 1.8 4.5
NP1 6000 80.4 1.9 4.5
NP2 2000 93 3 1.1
NP2 4000 86 3.3 1.3
NP2 6000 79 3.1 1.1
NP3 2000 92.9 1.3 1.3
NP3 4000 85.8 0.1 0.2
NP3 6000 78.7 0.5 0.5
NP4 2000 92.8 3 1.4
NP4 4000 85.5 3.2 1.5
NP4 6000 78.3 3.2 1.4



Table 11: Relative RMSE(%) for estimating HCI without and with applying PSA.

Unadjusted PSA with Stratified Sample PSA with Proportional Sample

NP1 2000 93.5 3.6 5.3
NP1 4000 86.9 2.8 4.9
NP1 6000 80.4 2.5 4.7
NP2 2000 93 5.1 4.1
NP2 4000 86 4.3 3.1
NP2 6000 79 3.8 2.5
NP3 2000 92.9 9.6 8.6
NP3 4000 85.8 6.4 5.6
NP3 6000 78.7 5 4.3
NP4 2000 92.8 4.7 4
NP4 4000 85.5 4.1 3.1
NP4 6000 78.3 3.6 2.4

The results show a large decrease in bias and MSE for all response patterns for
both PSA methods, which shows the robustness of the adjustment method. The
reduction in bias and MSE is different across them. Using PSA with the reference
sample drawn under a stratified design, sr1, provided less RMSE when the conve-
nience sample was drawn using NP1. On the other hand, PSA using the reference
sample drawn with probabilities proportional to the income, sr2 provided much less
biased estimates overall when the selection mechanism depended on NP2, NP3 or
NP4.

6 Conclusions

Technological development has made large amounts of inexpensive data (com-
monly known as Big Data) available for researchers to be used for inference. New
survey administration methods have also favoured the rise of data from nonprob-
ability samples. Inferences from Big Data and nonprobability surveys have im-
portant sources of error ([4, 28, 24], ...). Given the characteristics of these data
collection procedures, selection bias is particularly relevant.

Despite the growing interest raised by nonprobability data (both coming from
Big Data or nonprobability surveys), there is still a lack of rigorous theory to make
statistical inferences for general parameters through estimating equations. The cur-
rent paper aims to fill this gap by establishing a theoretical framework for estima-
tion of general parameters with nonprobability samples.

Results observed in our simulation study provide strong evidence on the effi-
ciency of methods based in estimating equations with estimated propensities. How-
ever, it must be noted that the efficiency depends on the selection mechanisms of
nonprobability samples and the availability of covariates for propensity estimation.
In our simulations, results showed that Propensity Score Adjustment is more ef-



ficient when the propensity of being in the nonprobability sample is less related
to the variable of interest. This behavior has been observed in literature regarding
PSA for parametric estimation [11, 24].

We used parametric methods to obtain the estimated propensities but we could
use machine learning techniques as regression trees, spline regression, random
forests etc. Recently [29, 24] presented simulation studies where decision trees, k-
nearest neighbors, Naive Bayes, Random Forest, Gradient Boosting Machine and
Model Averaged Neural Networks are used for propensity score estimation. These
studies compare the empirical efficiency of the use of linear models and Machine
Learning prediction algorithms in estimation of linear parameters, but the theory
is more complex and has not yet been developed. Other way to reduce the bias
of the PSA estimates is to combine the PSA technique with other techniques as
Statistical Matching or calibration. [27] apply a combination of propensity score
adjustment and calibration on auxiliary variables in a real volunteer survey aimed
to a population for which a complete census was available. [32] propose a doubly
robust estimator for population mean estimation by incorporating the model-based
estimator framework to PSA methods, improving their efficiency and making it
robust to model misspecifications. Further research should focus on extensions of
those methods for general parameter estimation.
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Abstract

The development of new survey data collection methods such as online surveys has been par-

ticularly advantageous for social studies in terms of reduced costs, immediacy and enhanced ques-

tionnaire possibilities. However, many such methods are strongly affected by selection bias, leading

to unreliable estimates. Calibration and Propensity Score Adjustment (PSA) have been proposed

as methods to remove selection bias in online nonprobability surveys. Calibration requires popula-

tion totals to be known for the auxiliary variables used in the procedure, while PSA estimates the

volunteering propensity of an individual using predictive modelling. The variables included in these

models must be carefully selected in order to maximise the accuracy of the final estimates. This study

presents an application, using synthetic and real data, of variable selection techniques developed for

knowledge discovery in data to choose the best subset of variables for propensity estimation. We also

compare the performance of PSA using different classification algorithms, after which calibration is

applied. We also present an application of this methodology in a real-world situation, using it to

obtain estimates of population parameters. The results obtained show that variable selection using

appropriate methods can provide less biased and more efficient estimates than using all available

covariates.

1 Introduction

In recent years, online surveys have undergone rapid development in a wide va-
riety of fields, including public opinion research (Couper 2000) and life sciences
(Thornton et al. 2016; Borodovsky et al. 2018). In contrast to traditional survey
modes, which are experiencing issues with response rates (according to Marken
(2018), response rates in Gallup Poll Social Series dropped from 28% in 1997 to
7% in 2017) and increasing costs, online surveys offer a faster and cheaper method
to measure certain features in individuals. In addition, there is an increasing avail-
ability of large volume datasets obtained from the Web with automatic procedures
(such as web scraping or APIs) that are often used for inference in finite popula-
tions.

These data sources emphasise certain types of nonsampling errors. It is not fea-
sible to obtain a representative sampling frame of the online population except in
specific situations where the target population is a well-characterised group (such
as company employees oruniversity studentseach of whom is associated with an
e-mail address). For this reason, most online surveys or large volume datasets are
based on volunteer samples. In addition, the coverage of this approach is limited
by the extent of Internet penetration among the population, which is often subject
to demographic characteristics. For instance, according to the Survey on Equip-
ment and Use of Information and Communication Technologies in Households
(National Institute of Statistics 2018), while 98.5% of the Spanish population aged
16-24 years make regular use of the Internet, only 49.1% of those aged 65-74 years
do so. Although the difference has narrowed in the last few years, online surveys
are still unable to provide representative samples except when special procedures



are used, such as offline recruitment, panels or mixed modes (see Schonlau and
Couper 2017 for a review of the available options).

The lack of a probability sampling scheme might lead to significant differences
between sampled and nonsampled individuals, which constitutes a selection bias
that cannot be redressed with the usual procedures (Elliott and Valliant 2017). Se-
lection bias is a particularly important concern in online surveys because of their
intrinsic characteristics (Couper 2000). Statistical adjustments are crucial to ob-
taining reliable estimates from online survey data; in this context, calibration or
Propensity Score Adjustment (PSA) can be used, according to the kind of auxil-
iary information available. While calibration only needs the vector of population
totals for some auxiliary covariates, PSA requires a probability sample drawn from
the same target population. This sample is used to estimate the (unknown) partic-
ipation propensities for the individuals in the nonprobability sample through pre-
diction models. These estimated propensities can be used as inclusion probabilities
to build weights for different parametric estimators.

The efficacy of PSA at removing selection bias has been proved, although some
considerations should be taken into account. First, PSA is strongly dependent on
the covariates used to estimate the propensities. Lee (2006) showed that the use
of covariates which are strongly related to the variables of interest in PSA models
achieves greater reductions in biasthan is the case with nonsignificant variables.
Second, further adjustments such as calibration procedures must be applied in order
to maximise the effectiveness of PSA (Lee and Valliant 2009; Valliant and Dever
2011; Valliant 2020). Finally, the use of PSA is associated with an increase in the
variance of the estimates.

In this study, we focus on the first point raised above: the choice of covari-
ates. Lee (2006) suggested that including all available covariates, as recommended
by Rubin and Thomas (1996), might be a reasonable practice. However, statisti-
cal models based on modern classification techniques such as Machine Learning
algorithms might benefit from feature selection to reduce the complexity of the
models (and the variance of their predictions), thus making them more general-
isable. Variable inclusion in propensity models for treatment weighting has been
widely studied (Hirano and Imbens 2001; Brookhart et al. 2006; Austin 2008;
Schneeweiss 2009; Austin 2011; Myers et al. 2011; Patrick et al. 2011; Austin and
Stuart 2015) and variables are often selected using a stepwise algorithm or they are
assessed prior to the study according to their known relationship to the outcome
or exposure variables. In this case, better results are obtained when the variables
in question are related to the outcome variables or to both the outcome and the
exposure variables.

In many real-world applications, there may be very little information about the
pre-existing relationships between variables, which increases the difficulty of se-
lecting the best subset of variables for propensity estimation. In the present study,
we consider how modern techniques of feature selection (or variable selection) de-
veloped for knowledge discovery in data can be used in propensity estimation mod-
elling. These techniques only require an appropriate dataset from which to locate



the variables more closely related to a given target variable or that may be more
influential with respect to predicted values, according to the behaviour observed
in the dataset. The benefits of feature selection, in terms of increased accuracy
and reduced computational costs, have been demonstrated in classification tasks
(Bolón-Canedo et al. 2013; Xue et al. 2015).

In survey research, feature selection has been studied with respect to the prob-
lem of calibration when a large number of variables must be considered. Breidt
and Opsomer (2017) reviewed this question and suggested that auxiliary variables
for calibration may be too closely correlated or have poor predictive power, and
therefore model selection should be employed to improve the estimates obtained
and to stabilise the weights. Stepwise and best subsets algorithms have been con-
sidered for this purpose, but models from the class of “least absolute shrinkage
and selection operator” (LASSO), which perform feature selection by shrinking
regression coefficients to zero in non-informative variables, seem to be the most
promising methods to improve the weighting. Their efficiency in non-probability
samples was highlighted by Chen et al. (2019), who showed that LASSO-weighted
estimators have a lower RMSE than PSA-weighted equivalents.

The rest of this paper is organised as follows: Section 2 presents the essential
aspects of calibration and PSA. The synthetic data and the real survey datasets used
in our experiments are then described in Section 3. In Section 4we describe the de-
ployment of PSA models with a grid of classifiers and feature selection algorithms
for the study data.The results of the experiments in terms of relative bias and effi-
ciency are detailed in Section 5, after which the method proposed is applied in a
real-world context concerning addiction and dependence, in Section 6. Finally, the
implications of our findings are discussed in Section 7.

2 Adjustments for nonprobability samples

2.1 Calibration

Calibration was developed by Deville and Särndal (1992) as a reweighting method
based on the availability of population totals for auxiliary variables measured in
a sample, although some later versions addressed missing data situations or the
use of dual frames for survey sampling (Ranalli et al. 2016). This adjustment is
intended to reduce the coverage error between the target population and the sample,
and takes the following form. Let x be a n× p matrix of p variables measured
in a sample of size n, xi j is the value of the i-th individual in the j-th auxiliary
variable, X = (X1, ...,X j, ...,Xp) are the known population totals for the auxiliary
variables and d = (d1, ...,di, ...,dn) is the vector of design weights of the sample.
If a probabilistic unbiased sample from the same population is available, estimated
population totals can be used for X as an alternative (see Ferri-Garcı́a and Rueda
2018 for a study of its efficiency). Calibration then attempts to obtain a new vector
of weights w = w1, ...,wi, ...,wn by minimising their distance frp, d (from a class



of distances leading to different estimators) subject to the calibration equations:

n

∑
k=1

wkxk j = X j, j = 1, ..., p (1)

When information on population totals is incomplete, and especially when the
cross-classification totals (also known as cell counts) are not known, it can be
useful to use the raking ratio as defined in Deville et al. (1993), which takes
advantage of the estimation of cell counts from the available data in the sample.
Here, let N̂ab = ∑k/xAk=a,xBk=b dk be the estimated cell count of ab, which repre-
sents the number of individuals whose measured value in the variables A and B is
a and b respectively. The raking ratio uses this information to reformulate the cal-
ibration equations, thus obtaining the calibrated weights wk = dkN̂w

ab/N̂ab, where
N̂w

ab = dkN̂ab represents the calibrated estimations of the cell counts. The efficiency
of calibration procedures depends on the relevance of the auxiliary information
in terms of relationship with the target variable and on the mechanism producing
the coverage error. Calibration has also been found to be effective for removing
selection bias when the target variable is not related to the selection mechanism
(Bethlehem 2010; Rueda 2019).

2.2 Propensity Score Adjustment

Propensity Score Adjustment (PSA) was originally developed by Rosenbaum and
Rubin (1983) as a technique for balancing comparison groups in nonrandomised
studies, where the inclusion in one group or another might be driven by or as-
sociated with variables not controlled by the researchers. PSA was subsequently
adapted to the context of online surveys (Taylor 2000; Taylor et al. 2001; Lee 2006;
Castro-Martı́n et al. 2020a) as a means of reducing selection bias when a reference
probability sample collected from the same target population is available. In this
case, let sr be the reference sample, sv the nonprobability sample obtained from
the online survey and s = sr∪ sv. Furthermore, let R be a binary variable measured
for U where Ri = 1 if i ∈ sv and Ri = 0 if i 6 insv. PSA assumes that the inclusion
probability or propensity score, π , for sv is conditional on a set of covariates, x,
such that:

πi = P(Ri = 1|xi), i ∈U (2)

The inclusion probability can therefore be modelled through a proxy of R. Let z
be a binary variable measured for s which zi = 1 if i ∈ sv and zi = 0 if i ∈ sr. The
propensity score is then estimated by predicting the values of z using a model M:

π̂∗i = EM[z = 1|xi], i ∈ sv∪ sr (3)

Note that in this case we are not estimating π but π∗, which is the propensity
obtained when we predict the measured participation z rather than the true partici-
pation R.



The propensity scores are used to reweight the nonprobability sample. In this
process, inverse probability weighting formulas can be used, such as the simple
inverse probability wPSAIPW1 = 1/π (Valliant 2020) or the inverse probability al-
lowing weights to be less than one, as proposed by Schonlau and Couper (2017):
wPSAIPW2 = (1− π)/π . Propensities can also be transformed into weights using
the subclassification methods proposed by Lee (2006) and Lee and Valliant (2009).
This technique stratifies the vector of propensities into c parts (following Cochran
(1968), c is usually taken as 5) with similar propensities, applying the formula:

wPSAsub1
i = fcdv

i =
∑k∈sc

r
dr

k/∑k∈sr dr
k

∑ j∈sc
v
dv

i /∑ j∈sv dv
i

dv
i (4)

where dr,dv represent the design weights for the reference and volunteer samples
respectively and sc

r ,s
c
v are the individuals belonging to the c-th strata of propensities

in the reference and volunteer samples respectively. Valliant and Dever (2011) pro-
posed a similar method, but instead of calculating a correction factor,the propen-
sities in each stratum were averaged and then transformed into weights by inverse
probability weighting, as follows:

wPSAsub2
i =

1

(π̂∗g )
(5)

3 Data

3.1 Artificial data

An experiment with artificial data was performed to evaluate the benefits of feature
selection under different conditions. In this experiment, a population U of size
N = 500,000 was generated with 17 variables: eight variables x = (x1, ...,x8) were
used as covariates for PSA algorithms, out of which variables x1, x3, x5 and x7
were used as calibration variables. Another eight variables y = (y1, ...,y8) were
considered as target variables and a variable π measured the probability of each
individual of the population being selected in the nonprobability sample.

The covariates were generated as described in Eq. 6. Four variables (x1, x3,
x5, x7) followed a Bernoulli distribution with p = 0.5 and the other four (x2, x4,
x6, x8) followed Normal distributions with a standard deviation of one and a mean
parameter dependent on the value of the previous Bernoulli variable for each in-
dividual; for instance, if the i-th individual had a value of 1 in x1, then its value
for x2 was simulated according to a N(2,1) distribution, and if it had a value of 0,
then it was simulated according to a N(0,1) distribution. This procedure induced a
collinearity in the models if all of the covariates were used, an issue that could be
addressed by variable selection algorithms.



x1i,x3i,x5i,x7i ∼ Be(0.5) i ∈U

x ji ∼ N(µ ji,1) i ∈U, j = 2,4,6,8

µ ji =

{
2 x( j−1)i = 1
0 x( j−1)i = 0

i ∈U, j = 2,4,6,8

(6)

The inclusion probability π was made dependent on x5,x6,x7 and x8 as de-
scribed in Eq. 7, which allowed the experiment to cover Missing At Random
(MAR) situations.

ln
(

πi

1−πi

)
=−0.5+2.5(x5i = 1)+

√
2πx6ix8i−2.5(x7i = 1), i ∈U (7)

The target variables were simulated as described in Eqs. 8 to 15. Four types of
relationship were considered: no relationship at all with any other variable (y1 and
y2), a relationship with the selection mechanism (y3 and y4), a relationship with
some covariates related to the selection mechanism (y5 and y6) and arelationship
both with the selection mechanism and with some covariates (y7 and y8).

y1 ∼ Be(0.5) (8)

y2 ∼ N(10,1) (9)

y3i ∼ Be
(

exp(πi)

1+ exp(πi)

)
, i ∈U (10)

y4i ∼ N(10,1)+5πi, i ∈U (11)

y5i ∼ Be
(

exp(0.5+0.25(x5i = 1)−0.25(x5i = 0)+ x6i)

1+ exp(0.5+0.25(x5i = 1)−0.25(x5i = 0)+ x6i)

)
, i ∈U (12)

y6i ∼ N(10,1)+2(x5i = 1)−2(x5i = 0)+ x6i, i ∈U (13)

y7i ∼ Be
(

exp(0.5+0.25(x7i = 1)−0.25(x7i = 0)+ x8i +πi)

1+ exp(0.5+0.25(x7i = 1)−0.25(x7i = 0)+ x8i +πi)

)
, i ∈U (14)

y8i ∼ N(10,1)+2(x7i = 1)−2(x7i = 0)+ x8i +5πi, i ∈U (15)

This procedure allowed the target variables to reflect all of the missing data
mechanisms; y1 and y2 are examples of Missing Completely At Random (MCAR)



data, where the outcome is not related to the selection. y5 and y6 are examples of
Missing At Random (MAR) data, where the outcome is indirectly related to the
selection through some variables.Finally, y3,y4,y7 and y8 are examples of Miss-
ing Not At Random (MNAR) data, where the outcome is directly related to the
selection mechanism.

3.2 Real data

The experiment was then repeated using a real dataset as a pseudopopulation to ex-
amine whether variable selection algorithms might be helpful when more complex
relationships are present in thedata. The dataset was obtained by the January 2019
Barometer Survey (study number 3238) conducted by the Spanish Centre for Soci-
ological Research (CIS, Spanish initials), a monthly survey that measures political
and social opinions among the Spanish adult population (Spanish Centre for Soci-
ological Research 2019). The original dataset of the survey sample made available
by the CIS included n = 2989 individuals and p = 203 variables, out of which 17
variables were finally selected:

• 6 target variables: assessment of the current economic situation in Spain and
in their own lives (binary, 1 if ”bad” or ”very bad”, 0 otherwise), score on the
ideological self-positioning scale (numeric, 1-10), assessment of the central
government’s performance(binary, 1 if ”Poor” or ”Very poor”, 0 otherwise),
territorial organisation preference (binary, 1 if ”State with no autonomous
structures”, 0 otherwise) and national sentiment (binary, 1 if ”Self identifi-
cation as only Spanish”, 0 otherwise).

• 10 variables to be used as covariates in PSA or calibration variables: fre-
quency of attendance at religious acts, gender, age, education level, socioe-
conomic status, autonomous community of residence, size of the munici-
pality of residence, nationality, marital status and degree to which voting is
expected to change things. Gender, age and size of the municipality were
chosen as calibration variables in each simulation run, and were also in-
cluded as potential covariates for PSA.

• One variable, use of internet in the three months prior to the survey (1 if
it was used, 0 otherwise), was taken as a delimiter of the population sub-
set from which nonprobability samples would be drawn. Individuals with a
value of 1, but not those with a value of 0, in this variable could belong to
the nonprobability sample. The rationale for this delimiter is that it repro-
duces the conditions that apply in real online surveys, in which people with
no internet access cannot be selected to participate.

The pseudopopulation was obtained by bootstrapping the original sample up to
N = 500000 individuals through simple random sampling with replacement. Prior
to the bootstrapping, anyone who did not answer (”Does not know”/”Does not
answer”) any of the 17 itemswas excluded, as were the persons who answered



”Other” for education level, or who gave ”Ceuta” or ”Melilla” as their autonomous
community of residence. The reason for this filtering process was to remove highly
uncommon classes that could produce inconsistencies in a simulated sample and
provoke errors in the propensity scoring algorithms. Moreover, the education levels
”No formal education” and ”Primary education” were collapsed into a single class,
while missing data in the variable concerning attendance at religious acts was taken
as a new class (given that everyone in this group was considered to be atheist or
agnostic). After the preprocessing, the sample size before bootstrapping was n =
2156.

4 Methods

4.1 Feature selection algorithms

Feature selection was performed prior to PSA, by considering a predictive model
for a target variable with a fixed outcome and exposure variable. In the PSA con-
text, the exposure variable is denoted by z,which measures whether an individual
has been exposed to the nonprobability sample, and the outcome (whose population
values we wish to estimate) is the variable of interest in each case. The following
feature selection algorithms were used in the experiment, and their performance
was compared to the use of all variables and to the use of the variables provided by
Stepwise:

• CFS (Correlation-based Feature Selection) filter with best first search. This
algorithm, proposed by Hall (1999), searches the subset of variables which
maximises the correlation with the target variable and minimises that be-
tween the variables of the subset. Thus, irrelevant and redundant features are
discarded from the optimal subset of features for prediction. Note that Pear-
son’s correlation is used to evaluate the relationships between the variables;
if any of the variables within a pair is non-numeric, it is binarised and each
of the binary variables is then used separately.

• Chi-square filter. This approach calculates the Cramer’s V value between the
target variable and each independent variable, and so the user must define
a cut-off point for selection. In our experiment, the cut-off point was the
Cramer’s V value with the biggest difference from the V of the next variable
in importance (ordered from highest to lowest).

• Gain ratio. This entropy-based filter (Quinlan, 1986) is calculated by divid-
ing the information gain by the entropy of the target variable. The informa-
tion gain is measured as the difference between the sum of the entropies of
the independent and the target variables and the entropy of the target variable
after introducing the independent variable into the predictive model (defined
as a decision tree). The gain ratio, thus, is a relative continuous measure of



the predictive performance of a variable. The cut-off point was chosen in the
same way as with the chi-square filter.

• One-R. This algorithm, developed by Holte (1993), is based on very simple
rules of association, by which each independent variable is tabulated with
the target variable. The number of errors is then determined and interpreted
such that higher values represent a stronger predictive power.

• Random Forest importance filter. This algorithm computes the mean impor-
tance value across the trees created in a Random Forest model (Breiman
2001) for each independent variable. In our experiment, the importance
value taken was the mean decrease in accuracy when the variable was dis-
carded from the Random Forest model.

• Boruta algorithm. This algorithm is based on the Random Forest importance
measure, but it considers a set of non-informative variables created from the
random shuffling of each independent variable included in the model. As a
result, the algorithm selects the variables that have greater importance than
non-informative variables. To obtain statistically valid results, the procedure
is repeated until every variable has been deemed as ”important” or ”unim-
portant”. Further details on this algorithm can be consulted in Kursa and
Rudnicki (2010).

• LASSO regression (Tibshirani 1996). This regression model performs a
variable selection based on introducing penalisation terms into the Ordinary
Least Squares equations. As a result, a regression model is provided but only
the variables selected have non-zero coefficients. In the present study, we
take advantage of the LASSO variable selection technique by extracting the
variables with non-zero coefficients and using them as inputs for the propen-
sity estimation models. When all the coefficients of the LASSO model are
zero, no PSA is performed and therefore the weights remain unitary.

4.2 Estimation with Propensity Score Adjustment and calibration

Once the optimal subset of variables had been selected, the Propensity Score Ad-
justment (PSA) was performed. As well as logistic regression, the standard algo-
rithm in PSA, several other algorithms were also tested for propensity estimation,
namely: k-Nearest Neighbours (kNN), Gradient Boosting Machine (GBM) and
feed-forward neural networks (NN). Parameter tuning was performed for these
three algorithms. Ten-fold cross-validation was applied to the model, predicting
z prior to PSA; the following parameter grids were used for each algorithm:

• k-Nearest Neighbours(kNN): k = 5,7,9.

• Gradient Boosting Machine (GBM): number of trees = 50,100,150, learn-
ing rate = 0.1, interaction depth = 1,2,3.



• Feed-forward neural networks (NN): number of units in the hidden layer
= 1,3,5, weight decay = 0.1,0.0001,0.

4.3 Experiment settings

In both scenarios, the same procedure was followed to measure the effects of vari-
able selection in PSA and calibration on the estimation from nonprobability sam-
ples. This procedure, repeated across 200 simulation runs for each dataset (artificial
and real), can be sequentially described as follows:

1. Two samples of size n = 1,000 are drawn. The first one, sr, is the proba-
bility sample and is drawn by simple random sampling without replacement
(SRSWOR) from the full population. The second sample, sv, is the nonprob-
ability sample and is drawn according to the following schemes:

• Artificial dataset: unequal probability sampling where π is the vector
of inclusion probabilities, calculated as described in Equation 7.

• Real dataset: SRSWOR from the subset of the population who had
accessed the internet during the three months prior to the survey.

2. Propensity of belonging to sv is estimated with PSA, using the variable se-
lection algorithms described in Section 4.1 to select the input covariates for
propensity prediction models, and the four choices of algorithms described
in Section 4.2 to model propensities. We also consider the choice where no
variable selection algorithm is applied and all covariates are included in the
models.

3. Estimated propensities are transformed into weights using the inverse prob-
ability weighting formula wi = 1/πi.

4. Weights are used to estimate the population mean of each target variable with
and without applying Raking calibration, on which the propensity weights w
obtained in step 3 are used as initial weights.

The resulting 200 estimates of the population mean for each combination of meth-
ods are subsequently used to obtain the relative bias of a given combination of
methods:

RB(%) =

∣∣∣∣∣
∑200

i=1
ŷi

200 −Y
Y

∣∣∣∣∣ (16)

where Y is the population mean of the target variable, and ŷi is the estimate of
the population mean of the i-th simulation obtained after applying bias reduction
methods. Together with the relative bias, the efficiency of each variable selection
method with respect to the case in which all variables are used is also shown, given
a propensity model m (Log. reg., GBM, kNN or NN), a Raking calibration choice



(yes or no) r, and a choice for the target variable (exposure or outcome) in selection
algorithms v:

Efficiencyk|m,r,v =
MSEk,m,r,v

MSEAll vars.,m,r,v
(17)

where k = {Boruta, CFS, Chi-squared, Gain ratio, LASSO, StepWise, OneR, Ran-
dom Forest importance} is the variable selection algorithm and MSE is the Mean
Squared Error observed for the combination of methods:

MSE = Bias2 +Variance =
(

∑200
i=1 ŷi

200
−Y
)2

+
∑200

i=1

(
ŷi− ∑200

i=1 ŷi
200

)2

199
(18)

An efficiency greater than 1 means that the use of the variable selection method k is
inefficient in comparison with using all covariates, while if it remains below 1 the
selector k provides more efficient estimates, provided all other adjustments remain
equal.

5 Results

5.1 Artificial data

The relative bias results obtained in the simulation with artificial data are shown in
Tables 1 and 2. For the MCAR variables (y1 and y2), variable selection was useful
when neural nets were used as the predictive model, although the improvements
were not dramatic. The least biased estimates were provided by PSA with kNN
using all variables in y1 and variables selected by StepWise in y2, although this
result was closely followed by the Gain Ratio, anyother algorithm and no Raking in
the latter case. However, the differences are too small to be considered significant.

With the MAR variables (y5 and y6), Raking calibration markedly reduced the
bias in the estimates. Regarding variable selection, some methods reduced the
bias when the predictive model was logistic regression, although some reductions
were also observed when other methods were applied in different models. The
chi-square filter, the Gain Ratio and Random Forest all reduced the bias from 2.88
(when using all available covariates) to 2.01 in y2 if Raking calibration was applied.

Finally, in NMAR situations (y3, y4, y7 and y8), the application of Raking cal-
ibration also reduced bias but not as much as for MAR variables. For y3 and y8,
the best choice for the target variable in the selection algorithms was the outcome,
while fixing the target variable in the exposure provided better results in y4. The
largest reductions in bias in y3 were obtained with the LASSO algorithm, although
CFS, Chi-squareand the Gain Ratio also worked well when combined with Raking.



Raking = No Raking = Yes Raking = No Raking = Yes
GLM GBM kNN NN GLM GBM kNN NN GLM GBM kNN NN GLM GBM kNN NN

y1 y2

Exposure All vars. 0.287 0.255 0.178 0.325 0.301 0.273 0.192 0.373 0.082 0.083 0.082 0.084 0.084 0.085 0.086 0.086
Boruta 0.289 0.302 0.300 0.328 0.301 0.336 0.333 0.367 0.082 0.081 0.082 0.085 0.083 0.084 0.086 0.088
CFS 0.302 0.312 0.346 0.315 0.296 0.305 0.319 0.300 0.083 0.081 0.083 0.083 0.082 0.083 0.076 0.085
Chi-sq. 0.327 0.336 0.384 0.347 0.298 0.335 0.383 0.353 0.083 0.086 0.085 0.082 0.083 0.089 0.080 0.085
Gain r. 0.282 0.316 0.323 0.323 0.275 0.295 0.266 0.326 0.083 0.084 0.084 0.084 0.083 0.090 0.078 0.086
LASSO 0.311 0.347 0.437 0.380 0.304 0.330 0.401 0.377 0.084 0.079 0.091 0.084 0.083 0.082 0.091 0.087
StepWise 0.285 0.319 0.309 0.342 0.299 0.339 0.293 0.340 0.083 0.083 0.091 0.086 0.084 0.089 0.095 0.092
OneR 0.310 0.327 0.293 0.356 0.300 0.319 0.272 0.374 0.084 0.082 0.082 0.085 0.083 0.082 0.086 0.088
RF imp. 0.318 0.350 0.350 0.312 0.296 0.367 0.296 0.290 0.084 0.084 0.092 0.087 0.083 0.090 0.095 0.093

Outcome All vars. 0.287 0.297 0.180 0.331 0.301 0.307 0.188 0.338 0.082 0.083 0.083 0.081 0.084 0.087 0.087 0.085
Boruta 0.361 0.347 0.348 0.375 0.352 0.330 0.325 0.321 0.082 0.084 0.090 0.088 0.085 0.083 0.094 0.095
CFS 0.324 0.318 0.295 0.319 0.286 0.288 0.286 0.291 0.113 0.106 0.087 0.110 0.098 0.096 0.079 0.102
Chi-sq. 0.336 0.323 0.297 0.325 0.287 0.273 0.287 0.284 0.081 0.080 0.082 0.081 0.083 0.081 0.083 0.082
Gain r. 0.328 0.323 0.296 0.322 0.286 0.285 0.286 0.285 0.077 0.078 0.082 0.078 0.083 0.083 0.083 0.083
LASSO 0.310 0.319 0.327 0.320 0.279 0.303 0.318 0.296 0.082 0.082 0.082 0.082 0.083 0.083 0.083 0.083
StepWise 0.299 0.280 0.267 0.267 0.311 0.296 0.234 0.269 0.082 0.081 0.077 0.081 0.083 0.081 0.076 0.082
OneR 0.348 0.332 0.291 0.337 0.301 0.292 0.291 0.287 0.080 0.080 0.082 0.080 0.083 0.082 0.083 0.081
RF imp. 0.320 0.316 0.245 0.314 0.337 0.314 0.249 0.293 0.084 0.088 0.089 0.083 0.088 0.088 0.094 0.088

y3 y4

Exposure All vars. 11.53 11.60 11.00 11.63 8.90 9.42 8.94 9.62 12.39 12.52 11.89 12.62 9.69 10.28 9.84 10.60
Boruta 11.53 11.65 11.23 11.75 8.91 9.47 9.27 9.78 12.39 12.56 12.06 12.69 9.69 10.36 10.08 10.73
CFS 11.42 11.51 11.10 11.57 8.77 9.20 9.01 9.33 12.27 12.38 12.00 12.46 9.55 10.02 9.85 10.20
Chi-sq. 11.48 11.58 11.26 11.68 8.77 9.30 9.22 9.52 12.34 12.48 12.10 12.57 9.55 10.16 10.00 10.36
Gain r. 11.38 11.50 11.16 11.56 8.78 9.23 9.11 9.35 12.25 12.37 12.01 12.45 9.56 10.04 9.86 10.20
LASSO 11.50 11.57 11.24 11.66 8.80 9.30 9.19 9.51 12.35 12.47 12.07 12.59 9.58 10.15 9.98 10.40
StepWise 11.53 11.62 11.20 11.74 8.90 9.44 9.19 9.77 12.39 12.57 12.09 12.70 9.69 10.34 10.11 10.71
OneR 11.38 11.39 11.10 11.46 8.71 9.02 8.96 9.13 12.23 12.26 11.93 12.32 9.50 9.82 9.69 9.94
RF imp. 11.43 11.57 11.22 11.66 8.82 9.41 9.26 9.60 12.28 12.51 12.11 12.63 9.61 10.31 10.09 10.56

Outcome All vars. 11.53 11.60 10.99 11.63 8.90 9.42 8.94 9.63 12.39 12.51 11.88 12.64 9.69 10.28 9.84 10.63
Boruta 11.42 11.57 11.13 11.61 8.88 9.42 9.12 9.54 12.37 12.55 12.05 12.68 9.67 10.34 10.05 10.68
CFS 11.25 11.23 10.51 11.22 8.60 8.60 8.58 8.60 12.20 12.51 12.09 12.62 9.67 10.41 10.10 10.58
Chi-sq. 11.26 11.24 10.51 11.22 8.59 8.60 8.58 8.59 12.38 12.58 12.13 12.71 9.66 10.38 10.19 10.75
Gain r. 11.23 11.22 10.51 11.20 8.60 8.60 8.58 8.61 12.36 12.56 12.16 12.69 9.59 10.33 10.14 10.63
LASSO 10.46 10.45 10.45 10.45 8.55 8.55 8.55 8.55 12.39 12.58 12.18 12.72 9.58 10.29 10.13 10.61
StepWise 11.36 11.31 10.86 11.37 8.76 8.80 8.70 8.82 12.40 12.58 12.12 12.70 9.62 10.31 10.09 10.61
OneR 10.95 10.97 10.72 11.02 8.72 8.93 8.74 9.03 12.39 12.60 12.13 12.71 9.69 10.41 10.18 10.76
RF imp. 11.23 11.33 10.99 11.41 8.85 9.18 8.97 9.27 12.38 12.58 12.17 12.71 9.61 10.36 10.18 10.67

Table 1: Mean Relative Bias of the estimates of population means for variables y1,y2,y3,y4
in the artificial data simulation for each combination of methods. The closer to zero a value,
the less biased the mean estimate obtained.



Raking = No Raking = Yes Raking = No Raking = Yes
GLM GBM kNN NN GLM GBM kNN NN GLM GBM kNN NN GLM GBM kNN NN

y5 y6

Exposure All vars. 18.13 16.50 14.93 15.84 8.72 7.79 6.89 7.31 16.78 14.79 13.35 14.29 2.88 2.49 2.12 2.30
Boruta 18.13 16.40 14.98 15.73 8.73 7.66 6.90 7.14 16.78 14.73 13.35 14.24 2.89 2.45 2.15 2.26
CFS 18.00 17.36 15.84 17.29 8.44 8.65 7.61 8.66 16.65 15.42 14.02 15.37 2.83 2.74 2.35 2.72
Chi-sq. 18.11 17.02 15.62 16.90 8.33 8.20 7.29 8.10 16.85 15.25 13.93 15.20 2.76 2.59 2.26 2.56
Gain r. 17.97 17.27 15.84 17.21 8.54 8.63 7.61 8.58 16.52 15.29 14.02 15.28 2.88 2.74 2.39 2.71
LASSO 18.11 16.99 15.51 16.77 8.39 8.12 7.23 7.91 16.83 15.25 13.81 15.13 2.78 2.58 2.25 2.50
StepWise 18.12 16.39 14.99 15.85 8.70 7.58 6.89 7.22 16.78 14.78 13.38 14.36 2.87 2.42 2.15 2.28
OneR 17.93 17.73 16.17 17.88 8.17 9.07 7.91 9.44 16.76 15.77 14.37 15.89 2.72 2.85 2.44 2.95
RF imp. 18.06 16.55 15.21 16.21 8.82 7.92 7.08 7.46 16.44 14.70 13.50 14.53 2.99 2.55 2.24 2.42

Outcome All vars. 18.13 16.54 14.93 15.86 8.72 7.83 6.88 7.31 16.78 14.81 13.37 14.30 2.88 2.51 2.12 2.30
Boruta 18.03 16.69 15.24 16.21 8.77 8.11 7.21 7.79 16.63 15.22 12.94 14.84 2.63 2.33 2.12 2.20
CFS 18.16 16.77 15.42 16.46 8.44 7.91 7.13 7.55 15.68 15.27 14.16 15.37 3.23 3.15 2.71 3.21
Chi-sq. 17.90 17.15 15.73 17.03 8.89 8.75 7.74 8.68 16.29 16.25 12.06 16.25 2.01 2.01 2.01 2.01
Gain r. 18.11 16.57 15.22 16.32 8.41 7.70 6.93 7.35 16.29 16.27 12.06 16.25 2.01 2.01 2.01 2.01
LASSO 17.84 17.86 16.31 18.04 8.63 9.49 8.19 9.77 16.74 15.88 14.45 16.00 2.72 2.89 2.48 3.01
StepWise 17.91 17.55 15.86 17.40 8.51 9.05 7.71 8.95 16.75 15.64 14.13 15.64 2.74 2.81 2.37 2.83
OneR 17.47 17.56 16.17 17.64 9.08 9.57 8.33 9.69 16.74 15.88 14.47 16.02 2.72 2.89 2.48 3.01
RF imp. 17.67 17.78 16.37 17.96 9.13 9.74 8.49 9.97 16.29 16.28 12.06 16.25 2.01 2.01 2.01 2.01

y7 y8

Exposure All vars. 10.77 10.36 9.16 10.17 7.73 6.79 6.24 6.95 15.42 15.53 14.07 15.30 11.07 11.04 10.50 11.41
Boruta 10.77 10.33 9.29 10.15 7.72 6.77 6.38 6.90 15.43 15.53 14.29 15.37 11.07 11.11 10.75 11.49
CFS 10.48 10.50 9.57 10.53 6.90 7.06 6.52 7.11 15.52 15.59 14.54 15.67 10.47 10.88 10.55 11.02
Chi-sq. 10.66 10.47 9.56 10.47 6.95 6.86 6.40 6.89 15.78 15.67 14.63 15.77 10.52 10.93 10.64 11.08
Gain r. 10.47 10.47 9.61 10.49 6.93 7.03 6.54 7.05 15.49 15.54 14.56 15.65 10.49 10.88 10.56 11.01
LASSO 10.67 10.50 9.56 10.47 7.08 6.89 6.46 6.90 15.72 15.67 14.57 15.74 10.62 10.94 10.66 11.13
StepWise 10.77 10.31 9.37 10.18 7.72 6.72 6.46 6.92 15.42 15.51 14.32 15.34 11.06 11.09 10.79 11.48
OneR 10.13 10.42 9.57 10.53 6.60 7.23 6.61 7.39 15.07 15.34 14.46 15.46 10.28 10.75 10.46 10.88
RF imp. 10.82 10.40 9.51 10.34 7.23 6.73 6.35 6.61 15.93 15.70 14.63 15.78 10.68 11.01 10.69 11.14

Outcome All vars. 10.77 10.35 9.16 10.17 7.73 6.78 6.24 6.93 15.42 15.54 14.06 15.30 11.07 11.04 10.49 11.41
Boruta 10.69 10.32 9.34 10.19 7.75 6.92 6.48 7.02 14.97 14.98 13.95 14.87 10.81 10.80 10.52 11.13
CFS 10.64 10.25 9.40 10.18 7.84 7.02 6.53 7.02 14.90 14.51 13.59 14.63 10.48 10.43 10.14 10.46
Chi-sq. 10.40 10.24 9.33 10.29 7.42 7.12 6.60 7.26 14.09 14.10 13.37 14.05 10.30 10.32 10.23 10.47
Gain r. 10.71 10.28 9.38 10.27 7.93 6.98 6.51 7.07 13.36 13.35 12.87 13.33 9.92 9.92 9.92 9.92
LASSO 9.98 10.09 9.20 10.19 7.03 7.28 6.60 7.34 15.42 15.52 14.34 15.39 11.07 11.13 10.85 11.50
StepWise 10.25 10.21 9.25 10.28 7.24 7.06 6.42 7.05 15.41 15.49 14.26 15.35 11.06 11.09 10.76 11.47
OneR 9.54 9.64 8.95 9.71 6.62 6.91 6.39 6.97 14.90 14.53 13.57 14.63 10.48 10.43 10.14 10.46
RF imp. 9.93 10.08 9.16 10.22 6.81 7.26 6.58 7.39 14.42 14.47 13.71 14.57 10.50 10.55 10.45 10.91

Table 2: Mean Relative Bias of the estimates of population means for variables y5,y6,y7,y8
in the artificial data simulation for each combination of methods. The closer to zero a value,
the less biased the mean estimate obtained.

The efficiency of each variable selection method in comparison to using all
variables, if the rest of methods remain equal, is detailed in Tables 3 and 4. These
results are in line with those for relative bias in each case, although they reflect
some improvement in a much larger set of situations. With the MCAR variables (y1
and y2), MSE reductions of up to 10% were obtained when k-NN and Raking were
used to estimate y2, with the Stepwise algorithm. When Raking calibration was
not applied, other variable selection methods (Chi-square, Gain Ratio, LASSO and
OneR) provided reductions of 7% in the same situation. In the case of y1, variable
selection improved the efficiency when Raking calibration was applied, especially
if propensities were estimated using neural nets.

Regarding the MAR variables (y5 and y6), very significant improvements in
efficiency were obtained in the estimation of y6. When Raking calibration was
applied, the use of the Chi-square filter, Gain Ratio or Random Forest reduced
MSE by 10% to 50%, when they selected variables using the outcome variable as
thetarget, depending on the predictive model used for the propensities. Reductions



in MSE with the same variable selection methods were also observed when Raking
was not applied. Other methods, too, provided larger efficiency values when y5
was estimated for the cases in which logistic regression was used to estimate the
propensities.

Finally, regarding the NMAR variables, the reductions in MSE were around
20% in several cases: in y3 when neural nets were used to estimate propensities
and Raking calibration was applied; in y7 when logistic regression was applied(in
this case OneR achieved the best results regardless of the target); and in y8 when
the Gain Ratio was used,for all situations when the outcome was fixed as the target
variable for the algorithm. In the remaining cases in which variable selection algo-
rithms were properly applied, the reductions obtained were around 10-15% of the
MSE observed when all available covariates were used.

Raking = No Raking = Yes Raking = No Raking = Yes
GLM GBM kNN NN GLM GBM kNN NN GLM GBM kNN NN GLM GBM kNN NN

y1 y2

Exposure Boruta 1.003 1.011 1.032 0.967 1.006 1.018 1.041 0.958 0.993 0.966 1.048 0.996 0.996 0.967 1.034 0.996
CFS 1.015 1.030 1.075 1.010 1.007 1.037 1.111 1.000 0.989 1.001 1.002 0.988 0.990 0.993 0.991 0.980
Chi-sq. 1.005 1.017 1.033 1.009 1.000 1.030 1.029 1.030 0.988 0.994 0.976 0.995 0.989 1.003 0.978 1.017
Gain r. 1.004 1.009 1.054 0.995 1.009 1.012 1.096 0.992 0.979 0.996 1.044 1.000 0.997 1.025 1.058 1.005
LASSO 0.996 1.024 1.056 1.018 0.990 1.023 1.042 1.004 0.999 1.003 0.994 1.012 0.988 0.999 1.005 1.008
StepWise 1.001 1.007 0.983 0.990 1.004 1.005 1.002 0.997 1.000 1.001 1.002 0.957 1.004 1.013 1.014 0.945
OneR 1.017 1.032 1.092 1.004 0.998 1.033 1.133 1.002 0.986 1.009 0.937 0.999 0.984 0.998 0.985 0.992
RF imp. 1.004 1.025 1.000 1.013 1.015 1.040 1.023 1.010 0.991 1.003 1.014 0.984 1.001 1.006 1.009 0.974

Outcome Boruta 1.032 0.997 1.042 1.034 1.001 0.963 1.027 0.964 1.005 0.974 1.020 1.023 1.009 0.975 1.010 1.028
CFS 0.996 1.014 0.994 1.013 0.974 0.975 0.986 0.953 1.007 1.030 0.940 1.039 0.987 0.998 0.956 1.025
Chi-sq. 1.001 1.022 0.994 1.021 0.974 0.982 0.986 0.953 0.973 0.992 0.928 1.003 0.975 0.989 0.948 1.012
Gain r. 0.995 1.014 0.994 1.012 0.974 0.977 0.986 0.954 0.966 0.988 0.928 0.982 0.976 0.989 0.948 1.001
LASSO 0.981 0.994 0.996 0.996 0.978 0.971 0.982 0.953 0.939 0.962 0.928 0.960 0.976 0.991 0.948 0.998
StepWise 0.993 0.997 1.017 0.966 0.986 0.980 1.021 0.932 0.991 1.000 0.956 1.012 0.976 0.978 0.907 0.993
OneR 1.024 1.059 0.989 1.056 0.966 0.983 0.983 0.950 0.969 0.988 0.928 0.995 0.975 0.988 0.948 1.002
RF imp. 1.001 1.027 1.022 0.997 1.001 0.984 1.022 0.935 0.948 0.983 1.020 0.976 1.005 0.990 1.021 1.011

y3 y4

Exposure Boruta 1.001 1.010 1.041 1.021 1.000 1.014 1.069 1.031 1.000 1.007 1.028 1.011 1.000 1.014 1.049 1.023
CFS 0.983 0.986 1.019 0.989 0.971 0.960 1.018 0.947 0.981 0.978 1.019 0.976 0.971 0.951 1.002 0.926
Chi-sq. 0.992 0.997 1.048 1.008 0.971 0.979 1.061 0.981 0.992 0.994 1.036 0.992 0.972 0.976 1.032 0.955
Gain r. 0.975 0.984 1.031 0.988 0.971 0.966 1.040 0.950 0.978 0.976 1.020 0.974 0.973 0.953 1.004 0.926
LASSO 0.995 0.996 1.046 1.006 0.977 0.979 1.055 0.980 0.993 0.993 1.030 0.996 0.977 0.974 1.029 0.964
StepWise 1.000 1.005 1.038 1.019 0.999 1.006 1.058 1.032 1.000 1.008 1.034 1.013 0.999 1.012 1.056 1.021
OneR 0.974 0.966 1.021 0.972 0.958 0.926 1.012 0.911 0.975 0.959 1.007 0.954 0.960 0.913 0.970 0.878
RF imp. 0.984 0.996 1.045 1.005 0.982 1.000 1.073 0.995 0.983 0.998 1.037 1.002 0.983 1.005 1.051 0.991

Outcome Boruta 0.982 0.997 1.027 0.997 0.996 1.003 1.044 0.983 0.997 1.006 1.028 1.007 0.996 1.012 1.044 1.008
CFS 0.953 0.940 0.919 0.932 0.933 0.844 0.928 0.809 0.970 1.000 1.035 0.997 0.996 1.025 1.054 0.990
Chi-sq. 0.954 0.941 0.920 0.933 0.932 0.844 0.929 0.806 0.999 1.012 1.043 1.011 0.994 1.021 1.072 1.023
Gain r. 0.950 0.938 0.919 0.930 0.933 0.845 0.928 0.809 0.995 1.008 1.047 1.009 0.979 1.011 1.062 1.000
LASSO 0.829 0.819 0.909 0.814 0.922 0.834 0.920 0.798 1.001 1.012 1.050 1.014 0.976 1.004 1.060 0.996
StepWise 0.972 0.953 0.983 0.958 0.968 0.885 0.959 0.850 1.002 1.011 1.040 1.010 0.986 1.007 1.051 0.997
OneR 0.915 0.908 0.960 0.912 0.961 0.917 0.965 0.897 1.000 1.014 1.042 1.012 0.999 1.027 1.071 1.024
RF imp. 0.952 0.958 1.001 0.967 0.987 0.954 1.007 0.930 0.999 1.011 1.050 1.013 0.982 1.016 1.071 1.007

Table 3: Efficiency of the estimates of population means for variables y1,y2,y3,y4 in the
artificial data simulation for each combination of methods. Values greater than one indicate
inefficiency, while values below one show that the use of a given variable selection method
provides more efficient estimates than the case in which all variables are used.



Raking = No Raking = Yes Raking = No Raking = Yes
GLM GBM kNN NN GLM GBM kNN NN GLM GBM kNN NN GLM GBM kNN NN

y5 y6

Exposure Boruta 1.001 0.987 1.006 0.987 1.001 0.970 1.006 0.960 1.000 0.992 0.999 0.992 1.003 0.968 1.027 0.967
CFS 0.987 1.103 1.123 1.187 0.940 1.210 1.210 1.367 0.986 1.086 1.102 1.156 0.969 1.198 1.232 1.388
Chi-sq. 0.999 1.063 1.094 1.138 0.917 1.100 1.118 1.226 1.009 1.064 1.089 1.131 0.921 1.078 1.140 1.230
Gain r. 0.983 1.092 1.124 1.176 0.963 1.207 1.215 1.349 0.972 1.068 1.102 1.142 1.005 1.202 1.273 1.388
LASSO 0.998 1.059 1.079 1.121 0.932 1.085 1.106 1.178 1.007 1.063 1.070 1.121 0.933 1.070 1.125 1.183
StepWise 1.000 0.986 1.006 1.001 0.996 0.957 1.007 0.986 1.000 0.998 1.004 1.010 0.996 0.946 1.039 0.981
OneR 0.979 1.151 1.171 1.268 0.886 1.316 1.292 1.592 0.998 1.136 1.158 1.235 0.895 1.287 1.324 1.602
RF imp. 0.993 1.006 1.039 1.048 1.020 1.040 1.065 1.054 0.961 0.988 1.022 1.034 1.080 1.055 1.132 1.117

Outcome Boruta 0.990 1.019 1.042 1.046 1.012 1.079 1.097 1.139 0.983 1.057 0.939 1.080 0.859 0.874 0.998 0.925
CFS 1.004 1.027 1.066 1.076 0.944 1.031 1.083 1.078 0.874 1.062 1.121 1.152 1.235 1.537 1.610 1.878
Chi-sq. 0.975 1.077 1.112 1.155 1.039 1.263 1.278 1.421 0.943 1.201 0.813 1.287 0.490 0.639 0.895 0.755
Gain r. 0.999 1.004 1.038 1.058 0.934 0.979 1.023 1.020 0.943 1.204 0.813 1.287 0.490 0.639 0.895 0.755
LASSO 0.968 1.162 1.192 1.285 0.991 1.427 1.394 1.695 0.995 1.148 1.167 1.249 0.890 1.308 1.352 1.669
StepWise 0.976 1.124 1.127 1.202 0.963 1.311 1.242 1.465 0.997 1.114 1.117 1.195 0.905 1.240 1.250 1.494
OneR 0.931 1.125 1.172 1.233 1.071 1.451 1.437 1.677 0.995 1.148 1.171 1.252 0.890 1.308 1.361 1.669
RF imp. 0.950 1.151 1.202 1.273 1.087 1.487 1.492 1.752 0.943 1.205 0.813 1.287 0.490 0.639 0.895 0.755

y7 y8

Exposure Boruta 1.000 0.995 1.030 0.993 0.999 0.998 1.043 0.981 1.001 1.000 1.032 1.008 1.000 1.012 1.049 1.014
CFS 0.950 1.026 1.092 1.065 0.806 1.074 1.089 1.040 1.015 1.008 1.068 1.047 0.895 0.970 1.009 0.933
Chi-sq. 0.981 1.021 1.088 1.055 0.820 1.022 1.051 0.981 1.047 1.018 1.081 1.059 0.903 0.979 1.026 0.943
Gain r. 0.948 1.018 1.100 1.058 0.814 1.066 1.094 1.028 1.010 1.001 1.071 1.043 0.898 0.970 1.011 0.931
LASSO 0.985 1.025 1.089 1.055 0.852 1.025 1.071 0.981 1.041 1.019 1.073 1.057 0.921 0.982 1.031 0.952
StepWise 1.000 0.991 1.049 1.000 0.998 0.986 1.074 0.993 1.000 0.998 1.035 1.005 0.999 1.009 1.056 1.014
OneR 0.885 1.008 1.090 1.064 0.740 1.118 1.110 1.113 0.953 0.975 1.054 1.018 0.863 0.948 0.991 0.911
RF imp. 1.009 1.007 1.080 1.030 0.880 0.985 1.038 0.906 1.067 1.023 1.080 1.063 0.931 0.994 1.036 0.954

Outcome Boruta 0.986 0.994 1.041 1.003 1.011 1.041 1.078 1.023 0.945 0.933 0.986 0.947 0.955 0.959 1.008 0.954
CFS 0.977 0.983 1.053 1.002 1.026 1.074 1.093 1.026 0.933 0.872 0.936 0.914 0.896 0.893 0.935 0.841
Chi-sq. 0.936 0.981 1.040 1.023 0.930 1.101 1.112 1.087 0.840 0.829 0.907 0.847 0.867 0.875 0.953 0.845
Gain r. 0.989 0.986 1.049 1.019 1.052 1.055 1.082 1.037 0.752 0.740 0.837 0.761 0.802 0.807 0.894 0.756
LASSO 0.863 0.953 1.011 1.002 0.835 1.141 1.114 1.110 1.000 0.997 1.041 1.012 0.999 1.017 1.071 1.016
StepWise 0.910 0.975 1.021 1.021 0.888 1.087 1.066 1.048 0.999 0.994 1.030 1.007 0.998 1.009 1.052 1.012
OneR 0.788 0.871 0.954 0.913 0.741 1.030 1.042 0.998 0.933 0.875 0.933 0.914 0.896 0.892 0.934 0.841
RF imp. 0.854 0.951 1.002 1.008 0.786 1.136 1.104 1.119 0.880 0.872 0.954 0.911 0.900 0.914 0.993 0.917

Table 4: Efficiency of the estimates of population means for variables y5,y6,y7,y8 in the
artificial data simulation for each combination of methods. Values greater than one indicate
inefficiency, while values below one show that the use of a given variable selection method
provides more efficient estimates than the case in which all variables are used.

5.2 Real data

The relative bias results obtained by each combination of methods in the simula-
tion using CIS data are listed in Table 5. Interestingly, the best choice in variable
selection differed according to the propensity estimation model considered. For
example, PSA using k-NN provided the best results when using all the available
covariates, except for the variable measuring central government performance. In
the remaining cases, the use of certain variable selection algorithms was associ-
ated with a decrease in relative bias. This was especially apparent for the variables
measuring the economic situation in Spain, central government management and
the preference for a unitary national state without autonomous communities. In
these cases, the largest reductions in relative bias(compared to the case in which
all variables were used) were obtained when the variable selection algorithms used
the outcome (the actual variable to be estimated) as the target variable. Raking
calibration had a modest positive effect on the variables measuring the economic
situation in Spain, the preference for a unitary national state without autonomous
communities and whether the respondent self identified as only Spanish, while its



impact on relative bias in the other variables was non-significant or negative. The
efficiency of each variable selection algorithm for a given combination of adjust-
ments (propensity model, use of calibration and target variable choice for selec-
tion), in comparison with the case in which all variables are used,is shown in Ta-
ble 6. For all variables, one or more selection algorithms increased the efficiency,
in comparison with the case in which all variables were used. MSE reductions of
around 20% were measured in some cases; for example, when the OneR algorithm
was used to estimate the variable measuring the economic situation in Spain, when
CFS was used to estimate ideological self-positioning, and when CFS, Chi-square,
Gain ratio or Random Forest were used to estimate the preference for a unitary na-
tional state without autonomous communities. In most cases, the efficiency gains
produced a 10% reduction in the MSE.



Raking = No Raking = Yes Raking = No Raking = Yes
GLM GBM kNN NN GLM GBM kNN NN GLM GBM kNN NN GLM GBM kNN NN

Econ. situation in Spain ”poor” or ”very poor” Personal econ. situation ”poor” or ”very poor”

Exposure All vars. 7.20 6.17 5.16 5.68 7.66 6.59 5.36 6.33 11.70 11.14 10.96 10.63 24.43 23.18 20.70 22.36
Boruta 7.15 6.09 5.93 5.57 7.53 6.46 6.29 6.02 11.21 10.81 11.47 10.86 23.98 23.13 21.85 22.80
Cfs 7.93 6.35 5.40 6.32 7.86 6.38 5.66 6.31 13.40 12.35 11.07 12.45 24.33 23.71 20.90 23.75
Chi 7.14 5.89 5.40 5.57 7.31 6.05 5.68 5.69 10.98 10.75 11.14 10.69 23.63 23.16 21.00 23.04
Gain 8.23 6.55 5.37 6.70 8.12 6.52 5.62 6.63 14.66 13.50 10.90 13.75 24.63 24.12 20.72 24.32
Lasso 7.15 5.98 5.77 5.65 7.37 6.19 6.09 5.86 11.09 10.83 11.59 10.69 23.95 23.36 21.68 23.21
StepWise 7.34 6.09 6.27 5.71 7.51 6.30 6.62 5.83 11.24 11.00 12.23 10.75 23.98 23.44 22.37 23.17
OneR 6.69 5.73 5.42 5.39 7.01 6.11 5.62 5.74 10.08 10.01 11.04 9.99 22.89 22.45 20.93 22.39
RF imp. 7.34 6.05 5.45 5.80 7.48 6.21 5.77 5.96 11.61 11.11 11.11 10.83 23.69 23.18 20.98 22.84

Outcome All vars. 7.20 6.14 5.14 5.77 7.66 6.50 5.35 6.35 11.70 10.97 10.95 11.04 24.43 23.02 20.70 22.62
Boruta 7.06 6.03 5.57 6.03 7.31 6.29 5.69 6.33 12.20 11.49 10.98 11.49 24.59 23.41 20.81 23.02
Cfs 6.87 6.13 6.06 5.92 6.90 6.26 6.06 6.13 10.68 10.13 11.48 9.95 22.64 21.74 21.38 21.40
Chi 6.13 5.64 5.40 5.58 6.37 5.94 5.57 5.87 10.84 10.40 11.24 10.49 22.26 21.59 21.16 21.46
Gain 6.59 5.89 5.38 5.97 6.72 6.07 5.63 6.17 11.16 10.81 11.06 10.97 22.39 21.92 21.03 21.93
Lasso 6.20 5.88 5.60 5.87 6.45 6.19 5.76 6.17 11.10 10.98 11.00 10.96 21.17 21.04 20.83 20.98
StepWise 7.60 6.47 6.15 6.37 7.71 6.76 6.40 6.66 12.36 11.59 12.67 11.06 24.60 23.52 23.06 22.86
OneR 5.78 5.56 5.53 5.54 6.08 5.86 5.77 5.87 10.76 10.63 11.05 10.59 21.61 21.34 20.92 21.13
RF imp. 7.00 6.02 5.46 5.48 7.51 6.46 5.66 6.15 11.68 11.02 11.01 10.80 24.18 22.81 20.79 22.28

Ideological self-positioning scale (1-10) Central gov. management ”poor” or ”very poor”

Exposure All vars. 2.83 2.74 2.39 2.55 2.13 2.15 1.86 2.05 0.87 1.28 1.98 2.34 5.88 5.93 4.99 6.61
Boruta 2.88 2.75 2.66 2.64 2.19 2.19 2.09 2.16 0.69 1.50 1.65 2.09 5.68 6.30 4.95 6.66
Cfs 2.73 2.63 2.39 2.62 2.11 2.06 1.86 2.06 1.80 2.32 1.97 2.39 5.88 6.81 5.05 6.89
Chi 2.77 2.66 2.40 2.60 2.08 2.05 1.86 2.04 0.93 1.68 1.98 2.00 5.77 6.62 5.10 7.00
Gain 2.71 2.62 2.40 2.63 2.14 2.08 1.86 2.08 2.23 2.63 1.95 2.59 5.87 6.76 5.01 6.70
LASSO 2.80 2.68 2.45 2.60 2.10 2.08 1.89 2.07 0.80 1.59 1.97 2.01 5.69 6.58 5.26 6.96
StepWise 2.78 2.67 2.51 2.61 2.08 2.07 1.94 2.07 0.91 1.70 1.76 2.11 5.79 6.70 5.05 7.08
OneR 2.74 2.65 2.42 2.60 2.05 2.03 1.88 2.02 0.85 1.44 2.06 1.81 5.72 6.24 5.20 6.61
RF imp. 2.76 2.65 2.41 2.58 2.09 2.06 1.87 2.03 1.23 1.80 1.97 2.22 5.81 6.57 5.08 6.95

Outcome All vars. 2.83 2.73 2.39 2.57 2.13 2.16 1.86 2.08 0.87 1.29 1.98 2.24 5.88 5.90 4.98 6.29
Boruta 3.31 3.31 2.40 3.28 2.80 2.81 1.87 2.76 0.65 1.03 1.73 1.52 4.91 5.19 4.75 5.39
Cfs 2.53 2.53 2.39 2.53 1.95 1.96 1.86 1.95 0.45 0.01 1.29 0.27 3.52 3.76 4.40 3.96
Chi 3.23 3.06 2.79 2.99 2.67 2.51 2.29 2.45 0.32 0.50 1.57 0.78 4.11 4.13 4.60 4.35
Gain 3.32 3.30 2.43 3.29 2.81 2.79 1.90 2.77 0.30 0.55 1.49 0.62 3.78 3.94 4.55 4.02
LASSO 3.14 2.97 2.77 2.86 2.58 2.42 2.21 2.34 0.73 1.04 1.89 1.29 4.34 4.48 5.00 4.76
StepWise 3.00 2.86 2.50 2.69 2.42 2.32 1.93 2.18 0.45 0.85 1.78 1.34 4.57 4.87 4.96 5.32
OneR 3.27 3.13 2.83 3.06 2.74 2.60 2.35 2.53 0.50 0.75 1.96 0.94 4.21 4.40 5.03 4.53
RF imp. 3.19 3.09 2.65 3.00 2.62 2.55 2.14 2.48 1.06 1.32 2.01 1.86 5.56 5.47 5.04 5.72

Preference for a state without autonomous comm. Feels only Spanish

Exposure All vars. 12.48 11.82 10.16 11.02 8.93 8.58 7.62 8.38 10.99 11.34 10.56 10.94 9.54 10.19 9.53 9.88
Boruta 12.57 11.79 10.73 11.17 8.96 8.46 8.03 8.22 11.35 11.51 10.77 11.18 9.96 10.48 9.84 10.31
Cfs 12.32 11.72 10.28 11.68 9.17 8.42 7.68 8.40 11.46 11.96 10.59 11.89 10.48 11.23 9.53 11.23
Chi 12.47 11.69 10.22 11.38 8.86 8.19 7.59 8.12 11.55 11.76 10.53 11.58 10.12 10.71 9.50 10.75
Gain 12.30 11.77 10.24 11.88 9.37 8.57 7.66 8.70 11.25 11.98 10.57 11.95 10.58 11.38 9.53 11.35
LASSO 12.52 11.73 10.47 11.37 8.99 8.29 7.81 8.27 11.64 11.75 10.80 11.56 10.19 10.75 9.70 10.84
StepWise 12.53 11.80 10.66 11.41 8.97 8.36 7.98 8.27 11.48 11.75 10.85 11.57 10.08 10.76 9.82 10.82
OneR 12.15 11.51 10.36 11.26 8.55 8.05 7.75 8.10 11.38 11.58 10.71 11.52 9.94 10.46 9.61 10.54
RF imp. 12.35 11.67 10.30 11.37 8.86 8.23 7.66 8.18 11.41 11.78 10.57 11.69 10.20 10.87 9.54 11.05

Outcome All vars. 12.48 11.81 10.18 11.01 8.93 8.52 7.65 8.32 10.99 11.26 10.55 10.80 9.54 10.13 9.53 9.74
Boruta 12.24 11.73 10.49 11.36 8.93 8.50 7.91 8.56 10.82 10.97 10.84 10.92 9.75 9.98 9.81 10.06
Cfs 11.02 10.93 10.54 10.94 8.29 8.19 7.93 8.21 10.58 10.53 10.64 10.50 9.64 9.60 9.59 9.54
Chi 10.70 10.69 10.28 10.67 8.01 8.00 7.70 7.97 10.61 10.61 10.58 10.61 9.74 9.73 9.54 9.73
Gain 10.82 10.76 10.34 10.73 8.11 8.04 7.72 8.03 10.49 10.48 10.64 10.39 9.58 9.57 9.64 9.45
LASSO 11.42 11.07 10.67 10.87 8.62 8.26 8.09 8.22 10.87 10.76 11.10 10.47 9.59 9.62 10.08 9.31
StepWise 12.65 11.88 11.29 11.67 9.52 8.84 8.52 8.93 11.18 11.13 11.46 10.67 9.90 10.01 10.43 9.41
OneR 11.43 11.26 10.26 11.15 8.63 8.51 7.67 8.53 10.94 10.97 10.72 10.83 9.82 9.91 9.72 9.83
RF imp. 10.83 10.71 10.30 10.65 8.08 8.04 7.73 7.95 10.60 10.61 10.60 10.67 9.74 9.73 9.57 9.79

Table 5: Mean relative bias of the estimates of population means in the real data simulation
for each combination of methods. The closer to zero a value, the less biased the mean
estimate.



Raking = No Raking = Yes Raking = No Raking = Yes
GLM GBM kNN NN GLM GBM kNN NN GLM GBM kNN NN GLM GBM kNN NN

Econ. situation in Spain ”poor” or ”very poor” Personal econ. situation ”poor” or ”very poor”

Exposure Boruta 0.983 0.995 1.100 0.993 0.970 0.984 1.112 0.981 0.962 0.990 1.041 0.989 0.966 0.995 1.070 1.006
Cfs 1.049 0.994 0.959 1.058 1.010 0.965 0.959 1.002 1.038 1.030 0.939 1.051 0.972 1.018 0.974 1.053
Chi 0.953 0.939 0.977 0.969 0.938 0.927 0.978 0.941 0.934 0.958 0.970 0.985 0.935 0.981 0.989 1.015
Gain 1.083 1.010 0.956 1.104 1.051 0.982 0.959 1.040 1.088 1.067 0.928 1.101 0.986 1.036 0.962 1.081
Lasso 0.975 0.964 1.032 0.992 0.951 0.941 1.033 0.948 0.953 0.983 0.994 1.027 0.961 1.002 1.034 1.039
StepWise 1.000 0.984 1.112 0.993 0.973 0.957 1.137 0.965 0.951 0.988 1.059 0.984 0.957 1.006 1.098 1.018
OneR 0.908 0.919 0.972 0.972 0.891 0.900 0.963 0.922 0.884 0.917 0.983 0.940 0.893 0.939 0.998 0.969
RF imp. 0.973 0.951 0.989 1.010 0.958 0.936 0.998 0.958 0.963 0.984 0.955 1.005 0.940 0.991 0.988 1.010

Outcome Boruta 0.984 0.990 1.023 1.004 0.980 0.973 1.017 0.988 0.988 1.011 1.045 0.998 1.002 1.017 1.029 1.015
Cfs 0.953 1.015 1.095 1.034 0.942 0.999 1.080 0.990 0.947 0.956 1.063 0.996 0.895 0.918 1.054 0.938
Chi 0.879 0.958 0.984 0.947 0.873 0.949 0.982 0.921 0.936 0.960 1.039 0.989 0.878 0.918 1.035 0.934
Gain 0.897 0.964 0.959 0.989 0.900 0.956 0.965 0.953 0.942 0.985 0.959 0.989 0.873 0.929 0.991 0.944
Lasso 0.844 0.936 0.999 0.951 0.879 0.943 0.985 0.934 0.889 0.928 0.940 0.926 0.796 0.858 0.975 0.865
StepWise 1.048 1.040 1.180 1.059 1.032 1.058 1.182 1.029 1.021 1.018 1.110 1.038 0.995 1.017 1.150 1.011
OneR 0.808 0.914 0.993 0.945 0.809 0.894 0.997 0.886 0.891 0.931 0.953 0.918 0.826 0.884 0.983 0.881
RF imp. 0.979 0.991 1.062 1.007 0.982 0.992 1.069 1.006 0.994 0.991 1.051 1.012 0.987 0.986 1.026 0.993

Ideological self-positioning scale (1-10) Central gov. management ”poor” or ”very poor”

Exposure Boruta 1.018 1.006 1.164 1.042 1.011 1.026 1.162 1.059 0.982 0.989 0.932 1.028 0.962 1.014 0.941 1.021
Cfs 0.890 0.901 0.966 1.006 0.898 0.887 0.939 0.940 1.016 1.005 0.910 1.016 0.938 1.023 0.894 0.992
Chi 0.927 0.929 0.981 1.003 0.890 0.885 0.961 0.932 0.948 0.965 0.905 1.003 0.927 1.021 0.895 1.033
Gain 0.882 0.897 0.968 1.011 0.915 0.895 0.945 0.949 1.038 1.019 0.911 1.024 0.940 1.016 0.895 0.963
Lasso 0.951 0.944 1.013 1.010 0.924 0.923 0.984 0.970 0.950 0.963 0.944 0.973 0.923 1.013 0.945 1.008
StepWise 0.939 0.941 1.068 1.014 0.906 0.916 1.025 0.964 0.948 0.959 0.922 0.985 0.927 1.014 0.917 1.009
OneR 0.915 0.920 0.997 0.993 0.884 0.886 0.975 0.919 0.951 0.953 0.926 0.991 0.925 0.976 0.928 0.986
RF imp. 0.917 0.920 0.985 0.990 0.895 0.891 0.965 0.924 0.983 0.993 0.908 1.000 0.933 1.015 0.913 1.012

Outcome Boruta 1.265 1.366 0.967 1.486 1.414 1.451 0.944 1.488 0.969 1.006 0.951 0.948 0.880 0.936 0.946 0.904
Cfs 0.796 0.855 0.965 0.947 0.817 0.832 0.941 0.870 0.968 0.968 0.924 0.931 0.806 0.830 0.919 0.784
Chi 1.225 1.211 1.233 1.300 1.348 1.251 1.260 1.281 0.971 0.953 0.916 0.919 0.818 0.829 0.888 0.831
Gain 1.272 1.358 0.992 1.487 1.427 1.441 0.975 1.486 0.977 0.956 0.886 0.935 0.806 0.816 0.866 0.790
Lasso 1.182 1.157 1.236 1.228 1.295 1.196 1.229 1.211 0.964 0.954 0.945 0.922 0.840 0.862 0.935 0.849
StepWise 1.100 1.085 1.095 1.104 1.181 1.113 1.074 1.109 0.980 0.974 1.027 0.955 0.880 0.925 0.984 0.896
OneR 1.247 1.253 1.258 1.342 1.384 1.314 1.300 1.332 0.994 0.975 0.943 0.933 0.827 0.847 0.926 0.812
RF imp. 1.204 1.228 1.152 1.307 1.319 1.283 1.165 1.286 1.017 0.994 0.988 0.957 0.970 0.965 0.976 0.912

Preference for a state without autonomous comm. Feels only Spanish

Exposure Boruta 0.997 0.981 1.074 1.015 0.978 0.955 1.053 0.982 1.012 0.990 1.026 1.025 1.009 1.003 1.020 1.073
Cfs 0.950 0.951 0.970 1.048 0.976 0.922 0.929 0.940 1.011 1.023 0.964 1.078 1.046 1.063 0.950 1.103
Chi 0.977 0.959 0.978 1.024 0.952 0.914 0.940 0.944 1.033 1.013 0.960 1.055 1.005 1.000 0.948 1.067
Gain 0.947 0.955 0.964 1.069 0.999 0.934 0.925 0.966 0.982 1.020 0.961 1.081 1.054 1.077 0.950 1.111
Lasso 0.980 0.964 1.008 1.017 0.964 0.923 0.968 0.939 1.039 1.010 0.990 1.058 1.015 1.020 0.972 1.092
StepWise 0.979 0.970 1.041 1.024 0.951 0.918 0.996 0.941 1.020 1.014 0.995 1.053 1.002 1.018 0.989 1.090
OneR 0.945 0.939 1.004 1.002 0.922 0.893 0.974 0.916 1.020 0.995 0.989 1.045 0.996 0.988 0.967 1.054
RF imp. 0.960 0.953 0.981 1.015 0.957 0.915 0.942 0.926 1.016 1.014 0.978 1.057 1.025 1.034 0.967 1.092

Outcome Boruta 0.972 0.990 1.018 1.029 0.982 0.988 0.990 0.984 0.980 0.985 1.029 1.023 1.012 1.006 1.022 1.033
Cfs 0.830 0.894 1.014 0.986 0.885 0.932 0.976 0.937 0.945 0.926 0.971 0.955 0.996 0.943 0.958 0.959
Chi 0.790 0.858 0.971 0.938 0.849 0.901 0.934 0.894 0.949 0.931 0.962 0.968 1.005 0.952 0.951 0.971
Gain 0.798 0.863 0.980 0.947 0.851 0.898 0.934 0.902 0.938 0.923 0.971 0.950 0.993 0.947 0.964 0.954
Lasso 0.861 0.899 1.036 0.962 0.919 0.941 0.996 0.920 0.974 0.945 1.064 0.958 0.995 0.944 1.056 0.948
StepWise 1.015 1.009 1.151 1.087 1.056 1.038 1.101 1.054 1.014 0.985 1.126 0.989 1.031 0.985 1.129 0.973
OneR 0.871 0.921 0.990 0.995 0.939 0.969 0.952 0.975 0.964 0.952 1.020 0.970 0.981 0.947 1.018 0.965
RF imp. 0.805 0.862 0.969 0.933 0.859 0.909 0.932 0.890 0.948 0.931 0.966 0.973 1.005 0.953 0.954 0.976

Table 6: Efficiency of the estimates of population means in the real data simulation for
each combination of methods. Values greater than one indicate inefficiency, while values
below one suggest that the use of a given variable selection method provides more efficient
estimates than the case in which all variables are used.

6 Application study

This section presents an application of variable selection for PSA in a real-world
context, to estimate the population mean of two variables using a probability and
a nonprobability sample. The application takes place within a study on abuse and
dependence in a population of university students.



The probability sample used as the reference sample was obtained from a sur-
vey conducted in 2015,targeting students at the University of Granada (UGR),
Spain. The sample was composed of nr = 856 respondents, recruited in face-
to-face interviews under a three-stage cluster sampling design, which produced
an estimated sampling error of ±3.3% in the case of p = q = 0.5 with a con-
fidence level of 95%. The survey questionnaire included screening instruments
for abuse and dependence, namely the Spanish Mobile Phone Abuse Question-
naire (ATeMo) (Olivencia-Carrión et al. 2018), the Cannabis Abuse Screening
Test (CAST)(Legleye et al. 2007) and the Severity of Dependence Scale (SDS)
(Gossop et al. 1995), together with subscales regarding internet and videogames
addiction from the MULTICAGE-CAD4 instrument (Pedrero Pérez et al. 2007).
The survey also recorded the age, gender and university faculty of each participant.

The nonprobability sample was derived from a survey completed by self-selected
respondents, conducted in January 2018 and also targeting UGR students. The
sample was composed of nv = 176 respondents, who were recruited via snowball
sampling performed by the students themselves. All of the variables included in
this survey were measured in the reference sample. However, some data prepro-
cessing was performed prior to the analysis; four respondents were ruled out be-
cause they were under 18 years old, as were another 43, who left more than 85% of
the questionnaire items unanswered or who left blank all of the items of any of the
scales. The final sample size, therefore, was nv = 129 individuals. Missing data
present in the sample was imputed using the Classification and Regression Trees
(CART) algorithm (Breiman 1984).

Age, gender and faculty were used as calibration variables in Raking, as the
population totals (but not the cross-probabilities) were available. The covariates
eligible for PSA were the total score for the CAST and SDS scales,the MUL-
TICAGE subscales (internet and videogames), and the variables used for calibra-
tion: age, gender, and faculty. In total, seven variables were eligible for propensity
modelling. The two variables of interest were present in both samples; this is not a
feasible situation in real-world applications of PSA (the target variable would not
be available in the probability sample) but in this case it allowed us to compare the
estimations from both samples. These variables were:

• Mean score on the total ATeMo scale, which was 30.066 in the reference
sample and 32.558 in the unweighted convenience sample.

• Mean score on the item ”I have tried to spend less time using my mobile
phone but I cannot do it” (number 16 in the ATeMo instrument). The mean
score of this item in the reference sample was 0.776 while in the unweighted
convenience sample it was 1.217, this being the greatest difference observed
in in any ATeMo item between the reference sample and the convenience
sample.

Table 7 shows the distributions of the covariates available for PSA in both
samples. Except for gender, the values differ greatly in the distribution of the



covariates between the two samples. Overall, respondents to the online sample
were younger and more prone to cannabis consumption. In addition, their score
for the MULTICAGE subscales of internet and videogames addiction tended to be
higher than those of the reference sample members. Finally, the Science Faculty at
the UGR was clearly overrepresented in the online sample, as to a lesser extent was
the Medicine Faculty, while the other faculties were underrepresented. Given that
the variability between samples can be identified in the covariates, it seems likely
that PSA balanced the online sample more efficiently.

Variable Level Online sample Reference sample p-value

Gender
Male 43.4% 37.6% 0.2443b

Female 56.6% 62.4%
Age

Mean age 20.39 ± 2.78a 21.12 ± 3.05a 0.0068c

Faculty
Computing 3.9% 9.7% < 2.2e-16d

Science 58.9% 10.6% (χ2 = 209)
Business 3.9% 8.9%
Law 3.9% 8.3%
Humanities 5.4% 7.5%
Medicine 10.9% 4.3%
Other faculties 13.2% 50.7%

MULTICAGE
(internet) 0 9.3% 32.8% 3.84e-07d

1 30.2% 27.3% (χ2 = 35.4)
2 31.0% 19.7%
3 17.1% 14.1%
4 12.4% 6.0%

MULTICAGE
(videogames) 0 72.1% 81.7% < 2.2e-16d

1 15.5% 8.5% (χ2 = 246.9)
2 9.3% 6.0%
3 3.1% 2.6%
4 0.0% 1.3%

CAST
No consumption 21.7% 86.6% < 2.2e-16d

No issues 42.6% 4.7% (χ2 = 308.8)
Few issues 27.1% 4.6%
Considerable issues 5.4% 3.0%
Many issues 3.1% 1.2%

SDS
No consumption 22.5% 86.6% < 2.2e-16d

No issues 53.5% 8.3% (χ2 = 279.7)
Few issues 15.5% 3.4%
Considerable issues 3.9% 1.4%
Many issues 4.7% 0.4%

aStandard deviation of the age
bTwo sample test for equality of proportions with continuity correction
cWelch two sample t-test
dPearson’s Chi-squared test

Table 7: Distributions of covariates in online and reference samples

Estimation of the population means followed the same procedure as described
in Section 4.3: each algorithm for variable selection was applied before PSA (with



the same predictive models -and hyperparameter optimisation- as in the simula-
tions: logistic regression, GBM, k-NN and neural networks) using the described
reference and convenience samples, and the resulting weights were used directly
in the estimators or as initial weights for Raking calibration. The estimated pop-
ulation means for each combination of methods and the estimated Leave-One-Out
jackknife variance (Quenouille 1956) are shown in Tables 8 and 9 respectively.

In all cases, the use of variable selection algorithms made the estimates closer
to the value observed in the reference sample. For estimation of Item number 16,
selecting variables that set the exposure as the target variable gave subsets that
provided the closest estimates for each predictive algorithm, while for the ATeMo
score the best choice was to set the outcome as the target in the variable selection
algorithms. Raking calibration also helped provide estimates that were closer to the
reference sample one, especially in the case of Item number 16. On the other hand,
the application of these methods increased the variance of the estimator, although
in general this increase was greater when any variable selection algorithm was used
(with some exceptions).

Estimation of pop. mean for Item number 16 Estimation of pop. mean for ATeMo score
No Raking Raking No Raking Raking

Exposure Outcome Exposure Outcome Exposure Outcome Exposure Outcome

Convenience sample 1.217 32.62
Reference sample 0.776 30.07

Log. reg. All vars. 1.424 1.424 0.816 0.816 30.32 30.32 30.64 30.64
Stepwise 1.411 1.105 0.819 0.812 30.43 30.10 30.58 30.20
CFS 1.329 1.105 0.810 0.812 31.65 30.10 31.86 30.20
Chi-sq. 1.329 1.329 0.810 0.810 31.65 32.00 31.86 31.83
Gain r. 1.271 0.972 0.810 0.862 33.62 31.18 31.96 31.66
OneR 1.262 1.329 0.827 0.810 33.59 32.00 32.59 31.83
RF imp. 0.972 1.105 0.862 0.812 31.18 30.10 31.66 30.20
Boruta 1.328 1.222 0.770 0.760 30.23 30.22 30.86 30.34
LASSO 0.939 1.217 0.805 0.862 28.93 30.10 29.94 30.20

GBM All vars. 1.093 1.242 0.768 0.797 29.98 31.19 30.84 31.12
Stepwise 1.190 1.143 0.776 0.858 30.37 30.42 30.70 30.05
CFS 1.129 1.151 0.772 0.864 31.95 30.05 31.68 29.97
Chi-sq. 1.243 1.222 0.777 0.801 31.36 31.32 31.42 31.15
Gain r. 1.267 1.000 0.821 0.862 33.58 31.26 32.08 31.66
OneR 1.259 1.168 0.832 0.797 33.54 32.31 32.61 31.46
RF imp. 0.995 1.144 0.862 0.854 31.32 30.25 31.66 29.97
Boruta 1.300 1.295 0.831 0.797 29.62 29.89 30.55 30.36
LASSO 1.017 1.217 0.836 0.862 29.09 30.37 30.11 30.11

k-NN All vars. 1.192 1.192 0.860 0.860 32.50 32.50 31.72 31.72
Stepwise 0.860 1.217 0.891 0.862 27.76 32.62 31.60 31.66
CFS 1.140 1.217 0.823 0.862 31.55 32.62 30.91 31.66
Chi-sq. 1.140 1.140 0.823 0.823 31.55 32.40 30.91 31.54
Gain r. 1.201 1.217 0.837 0.862 32.46 32.62 31.51 31.66
OneR 1.217 1.140 0.862 0.823 32.62 32.40 31.66 31.54
RF imp. 1.217 1.217 0.862 0.862 32.62 32.62 31.66 31.66
Boruta 1.191 1.217 0.855 0.862 32.53 32.63 31.67 31.51
LASSO 1.276 1.217 0.899 0.862 33.51 32.62 32.44 31.66

Neural nets All vars. 1.200 1.249 0.808 0.787 30.81 35.99 31.09 33.36
Stepwise 1.452 1.142 0.838 0.841 32.33 30.54 32.78 30.16
CFS 1.237 1.142 0.778 0.841 31.59 30.54 31.37 30.16
Chi-sq. 1.216 1.249 0.825 0.811 31.40 32.08 31.58 32.12
Gain r. 1.263 0.992 0.835 0.862 33.55 31.32 32.33 31.66
OneR 1.257 1.216 0.837 0.788 33.51 32.06 32.61 32.15
RF imp. 0.992 1.142 0.862 0.841 31.32 30.54 31.66 30.16
Boruta 1.269 1.315 0.765 0.837 31.19 30.18 31.19 30.48
LASSO 0.945 1.217 0.809 0.862 29.54 30.54 30.39 30.15

Table 8: Mean estimates of the population mean for both target variables after applying of
each combination of adjustments.



Estimation of pop. mean for Item number 16 Estimation of pop. mean for ATeMo score
No Raking Raking No Raking Raking

Exposure Outcome Exposure Outcome Exposure Outcome Exposure Outcome

Convenience sample 0.010 1.51

Log. regr. All vars. 0.171 0.171 0.036 0.036 14.12 14.12 6.71 6.71
Stepwise 0.179 0.009 0.036 0.022 14.03 1.24 6.43 6.14
CFS 0.125 0.009 0.034 0.022 11.76 1.24 5.38 6.14
Chi-sq. 0.125 0.125 0.034 0.034 11.76 10.07 5.38 5.51
Gain r. 0.026 0.022 0.034 0.024 4.26 3.28 5.40 5.08
OneR 0.025 0.125 0.036 0.034 4.16 10.07 5.17 5.51
RF imp. 0.022 0.009 0.024 0.022 3.28 1.24 5.08 6.14
Boruta 0.116 0.026 0.030 0.031 14.45 1.73 6.69 6.73
LASSO 0.021 0.010 0.022 0.024 4.00 1.24 6.48 6.14

GBM All vars. 0.077 0.060 0.027 0.027 8.21 9.88 6.57 6.08
Stepwise 0.032 0.009 0.025 0.024 3.71 1.62 5.98 7.46
CFS 0.086 0.009 0.029 0.024 8.11 1.72 5.86 7.69
Chi-sq. 0.051 0.032 0.028 0.026 4.81 3.88 5.45 4.87
Gain r. 0.024 0.021 0.034 0.024 4.02 3.08 5.22 5.08
OneR 0.024 0.033 0.037 0.025 4.02 3.64 5.26 5.32
RF imp. 0.021 0.009 0.024 0.024 3.13 1.71 5.08 7.65
Boruta 0.050 0.027 0.026 0.031 6.00 1.78 6.26 6.45
LASSO 0.019 0.010 0.023 0.024 3.84 1.56 6.81 7.24

k-NN All vars. 0.012 0.012 0.024 0.024 1.93 1.93 5.62 5.62
Stepwise 0.012 0.010 0.028 0.024 2.48 1.51 6.17 5.08
CFS 0.010 0.010 0.022 0.024 1.60 1.51 5.39 5.08
Chi-sq. 0.010 0.099 0.022 0.022 1.60 1.59 5.39 5.47
Gain r. 0.011 0.010 0.024 0.024 1.49 1.51 4.80 5.08
OneR 0.010 0.010 0.026 0.022 1.56 1.59 5.28 5.47
RF imp. 0.010 0.010 0.024 0.024 1.51 1.51 5.08 5.08
Boruta 0.012 0.011 0.024 0.025 1.81 3.41 5.61 6.11
LASSO 0.016 0.010 0.027 0.024 3.29 1.51 5.32 5.08

Neural nets All vars. 0.101 0.129 0.029 0.030 8.89 15.04 5.15 5.69
Stepwise 0.061 0.009 0.030 0.023 11.61 1.51 6.50 6.97
CFS 0.125 0.009 0.029 0.023 10.16 1.51 5.16 6.97
Chi-sq. 0.091 0.067 0.028 0.031 7.85 7.61 6.28 5.37
Gain r. 0.023 0.021 0.035 0.024 3.93 3.13 5.29 5.08
OneR 0.023 0.091 0.035 0.033 3.81 8.03 5.14 5.62
RF imp. 0.021 0.009 0.024 0.023 3.13 1.51 5.08 6.97
Boruta 0.121 0.025 0.030 0.038 10.32 1.54 5.72 7.22
LASSO 0.019 0.010 0.022 0.024 3.02 1.51 5.35 6.97

Table 9: Estimated variance of the estimators, obtained via Leave-One-Out jackknife, after
applying each combination of methods.

7 Discussion and conclusions

In propensity estimation models for online surveys, the question of the variables
to be included has been widely discussed, and in some cases questions have been
included specifically to distinguish between the potentially covered population and
target population individuals (Schonlau et al. 2007). Informative variables can
be selected by the practitioner prior to the study, especially when there is some
knowledge on the relationships between variables. However, there is often no in-
formation at all on the relationships present in the variables prior to the study, and
this circumstance is even more likely in high dimensional contexts, which are be-
coming ever-more frequent with the development of Big Data methods in survey
sampling.

In such cases, variable or feature selection algorithms may contribute to iden-
tifying the most informative subset of variables. The simulations performed in our
study, using synthetic data and a real survey, reveal the impact of variable selec-
tion. In building the models, we also considered machine learning classification



algorithms and the subsequent application of Raking calibration, in order to deter-
mine which alternatives are most effective in terms of bias removal.

Our analysis shows that feature selection makes a significant contribution to
reducing relative bias. However, the best feature selection algorithm, in this re-
spect and regarding efficiency, varies according to the dataset considered and the
adjustment choices made. As observed by Bommert et al. (2020), the best vari-
able selection method depends on the dataset, meaning there is no one-size-fits-all
solution. However, the reduction of model complexity associated with variable
selection consistently produced more efficient estimators. As expected, selecting
variables according to their impact on the outcome variable provided the best re-
sults overall. In line with Austin and Stuart (2015), we find that the propensity
score balances the covariates included in the model, so it is preferable to include
prognostically important variables (related to the outcome) as the probability to
balance the target variable will also be higher. In view of these results, in prac-
tice the combination of several variable selection approaches, rather than just one,
might be useful to identify the best subset in each situation.

Regarding other adjustment methods, Raking calibration after PSA proved to
be the most efficient technique in almost all cases. The redundancy of variables
between adjustments can reduce the efficiency of their combination in some cases,
as observed by Lee and Valliant (2009), who reported that the use of the same
variables for PSA and calibration resulted in estimates which, despite being less
biased than estimates using only PSA, underperformed versus adjustments with no
redundancy.

On the other hand, the use of classification algorithms instead of logistic re-
gression for estimating propensities was advantageous overall, but only for certain
algorithms and with no clear view as to which was the best algorithm for estima-
tion. The application of this sort of algorithm in nonprobability sampling was re-
cently studied by Buelens et al. (2018) as an option for model-based estimates, and
by Castro-Martı́n et al. (2020b), Ferri-Garcı́a and Rueda (2020) and Ferri-Garcı́a
et al. (2020) for PSA in online surveys. It has also been studied for PSA in non-
response adjustment (Phipps and Toth 2012; Buskirk and Kolenikov 2015), with
promising results. Further studies should take into account this approach, together
with the use of a wider range of algorithms, and should consider how preprocess-
ing (such as the feature selection applied in the present study) might influence their
performance in propensity estimation.

Further research is needed regarding the implications of variable selection on
nonprobability samples, as our study presents certain limitations. Most impor-
tantly, relatively few covariates were available for each simulation and for the ap-
plication study. Originally, feature selection algorithms were intended to reduce
dimensionality in large data sets, facilitating the selection of only the most signif-
icant variables for prediction. Further research into these algorithms in PSA for
selection bias treatment using a larger number of covariates would enhance our
understanding of these questions. However, our results also support their use in
a low dimensional context, meaning that the value of these algorithms could ex-



tend beyond computing optimisation. For example, the use of variable selection
algorithms could be extended to calibration; although research has shown their po-
tential and some methods have been developed in this area (Chen et al. 2019),
further study is needed to consider this topic, as calibration requires little informa-
tion and therefore can be more widely applied. Finally, the use of more powerful
algorithms for propensity estimation, such as deep learning techniques, should be
considered in future studies, as these methods usually involve automatic variable
selection and could provide more precise estimates.
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Abstract

Online surveys, despite their cost and effort advantages, are particularly prone to selection bias

due to the differences between target population and potentially covered population (online popula-

tion). This leads to the unreliability of estimates coming from online samples unless further adjust-

ments are applied. Some techniques have arisen in the last years regarding this issue, among which

superpopulation modeling can be useful in Big Data context where censuses are accesible. This

technique uses the sample to train a model capturing the behaviour of a target variable which is to

be estimated, and applies it to the nonsampled individuals to obtain population-level estimates. The

modeling step has been usually done with linear regression or LASSO models, but machine learning

(ML) algorithms has been pointed out as promising alternatives. In this study we examine the use of

these algorithms in the online survey context, in order to evaluate and compare their performance and

adequacy to the problem. A simulation study shows that ML algorithms can effectively volunteering

bias to a greater extent than traditional methods in several scenarios.

1 Introduction

Online surveys have become one of the most used modes of survey administration
worldwide. They are a powerful tool for recruiting respondents fast and effortlessly
with small costs in comparison to traditional survey administration modes. How-
ever, samples from online surveys are usually collected using a nonprobabilistic
scheme, given that access to all members of the target population is not guaranteed
in most cases and the inclusion probability cannot be obtained because of the ab-
sence of a sampling frame. As a result, selection bias derived from this procedure,
defined by [8] as the presence of a substantial difference between observed and
unobserved population, makes survey estimates not valid for inference [24].

Different inference procedures are proposed in the literature to correct for se-
lection bias induced by non-random selection mechanisms. There are three im-
portant approaches: the pseudo-design based inference (or pseudo-randomization
[6]), statistical matching and predictive inference.

In the pseudo-design based inference, the idea is to construct weights to correct
for selection bias. The first method consists of estimating response probabilities
and using them in Horvitz-Thompson type estimators to account for unequal se-
lection probabilities. The most used method to estimate the response probabilities
is propensity scoring proposed by [21] (see e.g. [14]). This method uses a prob-
ability reference sample to construct a propensity model for the non-probability
sample. Sample matching is another approach also applied to reduce selection bias
in non-probability samples by combining them with a probability sample.

In this paper, we consider the situation where there is only a non-probability
sample available for measuring the target information, in addition to some auxiliary
information of the full population of interest, and we consider several predictive
inference methods. Predictive methods are based on superpopulation models. In
this approach, a statistical model is fitted for the analysis variable y from the sample
and used to project the sample to the full population. This approach (that can be



used with probability and non-probability samples) let us use auxiliary information
about covariates on different methods for predicting the unknown values. The
objective of this study is to examine the use of Machine Learning algorithms in the
online survey context, to evaluate and compare their performance and adequacy to
the problem. A simulation study is performed for that matter.

2 Predictive inference for non-probability samples

Let s be the online sample, s the population not included in the sample, and U
the complete target population so s∪ s =U . The goal is to estimate the population
parameter of a target variable, y, which has been measured in s but it is not available
in data from s.

The prediction approach is based on superpopulation models, which assume
that the population under study y=(y1, ...,yN)

′ are observations of super-population
random variables Y = (Y1, ...,YN)

′ having a superpopulation model ξ . To incorpo-
rate auxiliary information xi available for all i ∈U we assume a superpopulation
for y built on some mean function of x:

Yi = m(xi)+ ei, i = 1, ...,N. (1)

The random vector e = (e1, ...,eN)
′ is assumed to have zero mean and a positive

definite covariance matrix which is diagonal.
Using a set of covariates, x, measured in s and s it is possible to estimate the

values of y in s with regression modeling such that the estimated value of y for an
individual i can be calculated through the following expression:

ŷi = Em(yi|xi) (2)

m alludes to the specific model which provides the expectation of yi, and xi are the
values of the i-th individual in the covariates x.

If we want to estimate the total of y, Y , we can use the auxiliary information in
several ways and we can define several estimators:

• the model-based estimator:

Ŷ m =
1
N

(
∑
i∈s

yi +∑
i∈s

ŷi

)
(3)

• the model-assisted estimator:

Ŷ ma =
1
N

(
∑
i∈U

ŷi +∑
i∈s
(yi− ŷi)wi

)
(4)

being wi a weight of the unit i (set by the researcher to adjust the lack
of response, lack of coverage, voluntariness, ... usually employing post-
stratification).



• the model-calibrated estimator:

Ŷ cal =
1
N ∑

k∈s
ykwCAL

k (5)

where wCAL
k are such that they minimize ∑k∈s G

(
wCAL

k ,wk
)
, where G(·, ·) is

a particular distance function, subject to ∑k∈s wCAL
k ŷi = ∑k∈U ŷi.

3 Machine learning techniques in superpopulation mod-
elling

Usually the linear regression model is considered for estimation, Em(yi|xi) = xT
i β ,

and the above estimators can be rewritten as a type of regression estimators. Al-
ternatively to the linear regression model, Machine Learning (ML) methods have
been proposed for the estimation of the nonsampled population values. In situa-
tions where additivity and/or linearity do not hold, ML algorithms are more suit-
able for regression and classification. Some of these algorithms, such as decision
trees and related (Random Forests, Gradient Boosting Machines) can also take in-
teractions into account without the need of specifying the terms. The use of some
ML algorithms for probabilistic samples has been studied in the last few years
for deriving model-assisted estimators ([15]; [1]; [23]; [25]; [4]). In this section,
we consider some of the most important ML algorithms that can be used to define
model-assisted, model-based and model-calibrated estimators for a non-probability
sample.

3.1 Advanced linear regression models

β coefficients of a linear regression estimated by ordinary least squares are es-
timated as β = (X′X)−1X′Y. However, as [10] stated, this estimation becomes
sensitive when X′X is far from being a unit matrix (i. e. multicollinearity is
present in covariates). In such a case, ridge regression can be an alternative.
It estimates regression coefficients adding an identity term to control instability,
β = (X′X+ kI)−1X′Y, where k ≥ 0 is a coefficient which depends on (unknown)
real regression parameters and therefore has to be chosen arbitrarily or via hyper-
parameter tuning. From a Bayesian point of view, the resulting β can be considered
the posterior mean of a prior Normal distribution with zero mean and a variance of
Iσ2/k as described in [11]. Gibbs sampling can provide Bayesian estimates for β
in such a case.

An alternative to ridge regression is the Least Absolute Shrinkage and Selection
Operator (LASSO) regression, described in [22], where coefficients are estimated
through minimizing the least-squares with a penalty parameter, α , subject to a
restriction on a tuning parameter:

argmin∑N
i=1(yi−α−∑ j β jxi j)

2

sub ject to∑ j |β j| ≤ t
(6)



The restriction t is fixed to allow shrinkage of the solutions towards zero, al-
lowing some coefficients to be equal to zero. As a consequence, this approach
performs variable selection, in contrast to ridge regression where coefficients are
always different from zero. LASSO estimates can be seen as posterior estimates
of the distribution mode of prior Laplace independent and identical distributions.
Therefore, Bayesian procedures can be used for LASSO estimation as described in
[19].

3.2 Bagged Trees

Estimating the expectance Em(yi|xi) under decision tree modeling results in the
following expression:

Em(yi|xi) =





y(sJ1) {i ∈ s/xi ∈ J1}
... ...

y(sJk) {i ∈ s/xi ∈ Jk}
(7)

where y(sJi) is the mean of y for the members of the sampled population, s, which
meet the criteria of the ith terminal node. If considering the Bagged Trees method,
predictions are made by averaging results from a range of m unpruned trees known
as weak classifiers, each one trained in a bootstrapped subsample of the complete
dataset:

Em(yi|xi) =
∑m

j=1 φ j(xi)

m
, φ j(xi) =





y(sJ j
1 ) {i ∈ s/xi ∈ J j

1}
... ...

y(sJ j
k ) {i ∈ s/xi ∈ J j

k}
(8)

where y(sJ j
i ) is the mean of y for the members of the sampled population, s, which

meet the criteria of the ith terminal node of the jth tree.

3.3 Gradient Boosting Machine

Gradient Boosting Machine (GBM) algorithm can be used for prediction in super-
population modeling. The new formula of the estimates of y would be:

Em(yi|xi) = vT J(xi) (9)

where J(xi) stands for a matrix of terminal nodes of m decision trees used for
boosting, which is obtained through an iterative process that aims to minimize a
given loss function, and v is a vector representing the weight of each tree.

3.4 k-Nearest Neighbors

k-Nearest Neighbors (k-NN) can also be used for prediction, although they con-
stitute a much simpler algorithm. The expectance of yi is calculated by averaging



the value of y for its k nearest neighbors, this is, the k individuals closer to the ith
individual according to the covariates xi:

Em(yi|xi) =
∑ j∈s/d(xi,x j)≤d(xi,x(k)) y j

k
(10)

where x(1),...,x(n−1) denote, respectively, the closest and the furthest individual to
xi according to the distance d.

3.5 Neural networks with Bayesian Regularization

Approaches based on neural networks have been considered in the literature for su-
perpopulation modeling [4]. In that class of models, expectance of yi is calculated
through an iterative process as defined in [18]:

Em(yi|xi) = g

(
L

∑
k=1

vk fk(·)+b

)
(11)

where g and fk stand for activation functions which can have the same image, vk are
the weights of the kth neuron of the hidden layer and b is the activation threshold.
The inputs are noted as fk(·) given that several hidden layers can be fixed and,
as a result, the inputs would go through an iterative process before reaching the
last layer where the outputs are calculated. Alternatively, and as a regularization
method to avoid overfitting, prior distributions can be imposed in vk weights so
they can be estimated by calculating those who maximize the posterior density or
via maximum likelihood. Further details are described in [18].

4 The simulation study

4.1 Data

We have selected 3 different populations to experiment with. Also, for each one,
we have tried different sampling strategies.

The first population, P1, consists of the 2012 edition of the Spanish Life Con-
ditions Survey microdata [17]. The dataset contains information on economic and
life conditions variables for 28,610 adult individuals. We pretend to predict the
mean self-reported health on a scale from 1 to 5. For training, we used the 56
related variables. In this population, we tested two sampling strategies. The first
one, P1S1, was a simple random sampling (SRS) among the population with inter-
net access. For the second one, P1S2, a propensity to participate was considered
according to the formula Pr(yr) = yr2−19002

19962−19002 , where yr is the year the individual
was born.

The second population, P2, is BigLucy [9]. It corresponds to some financial
variables of 85,396 industrial companies of a city in a particular fiscal year. We
used the annual income as the target variable. For training, we took into account the



level of the company (small, medium or big), the number of employees, whether
it is ISO certified and the company’s income tax. In this population, we tried two
different sampling methods. The first one, P2S1, was SRS excluding the companies
without SPAM options and the small companies. In this scenario, we tested if the
algorithms could accurately predict data without any training sample (since any
small company can be sampled). The second one, P2S2, only filtered by SPAM
availability but it included a propensity to participate with the formula Pr(taxes) =
min(taxes2/30,1) where taxes is the company’s income tax.

The third population, P3, is the Bank Marketing Data Set [16], related to direct
marketing campaigns (phone calls) of a Portuguese banking institution. We aimed
to estimate the mean contact duration. We trained the algorithms with 18 variables.
For sampling, we filtered by the number of contacts performed for each client and
tested two possibilities. In the first one, P3S1, we performed SRS among those
contacted more than 3 times. In the second one, P3S2, we tested another SRS
among those contacted more than twice.

4.2 Procedure

For each population and sampling strategy described, we ran an experiment with
3 different sample sizes: 1000, 2000 and 5000. For each sample size, 500 simula-
tions were executed. In each simulation, model-based, model-assisted and model-
calibrated estimates were obtained using the following predictive algorithms: lin-
ear regression (glm), Ridge regression with and without Bayesian priors (bridge
and ridge respectively), LASSO regression via penalized maximum likelihood
(glmnet), LARS-EN algorithm (lasso) and using Bayesian priors on the estimates
(blasso), k-Nearest Neighbors (knn), Bagged Trees (treebag), Gradient Boosting
Machine (gbm) and Bayesian-regularized Neural Networks (brnn). Default pa-
rameters were used for every algorithm except for k-Nearest Neighbors since its
results were especially sensitive to parameter optimization. The proper k is cho-
sen via bootstrap. The optimization, training of models and prediction steps were
performed in R ([20]) using caret package ([12]).

The relative mean bias, relative standard deviation and the relative Root Mean
Square Error in each scenario are measured as follows:

RBias (%) =

(
∑500

i=1 p̂yi

500
− py

)
· 100

py
; RSD (%) =

√
∑500

i=1(p̂yi− ˆ̄py)2

499
· 100

py

RMSE (%) =
√

RBias2 +RSD2

with py the value of the target variable, ˆ̄py the mean of the 500 estimations of py

and p̂yi the estimation of py in the i-th simulation.
To compare each estimator, we consider three metrics: its mean efficiency, its

median efficiency and the number of times it has been among the best. An estimator



has performed as the best when its RMSE differs from the minimum RMSE by less
than 1%. The efficiency is defined as follows:

E f f iciency (%) =
Baseline−RMSE

Baseline
·100

where the baseline is the RMSE of using the sample average as the estimation.
Additionally, the results were analyzed using linear mixed-effects regression,

to obtain estimates of the effect sizes of each algorithm on the final Root Mean
Square Error (RMSE). All the analyses were performed in R using packages lme4
([3]), lmerTest ([13]) and MuMIn ([2]).

4.3 Results

RMSEs of each estimator for each population, sampling method and sample size
can be observed in Table 1. Some algorithms achieve good results consistently,
like Ridge regression. Others can greatly outperform the rest for some cases while
getting poor results for the rest, like k-Nearest Neighbors. Bayesian-regularized
Neural Networks are a special case since they produce promising estimations but
can suffer due to a lack of data. Finally, there is a group of algorithms that never
seem to be the right choice, like Bagged Trees. In any case, there is not much
difference between model-based, model-assisted and model-calibrated estimates.

In order to confirm those impressions, the ranking can be seen in Table 2.
Model-assisted Ridge regression has the best mean efficiency, median efficiency
and the number of times it has been among the best. This is not a surprise since it is
a technique for analyzing data that suffer from multicollinearity, which is expected
to be the case for most biased samples.

Results of the linear mixed-effects regression (see Appendix) confirm these
conclusions: there is no evidence in the simulations’ results that the effect is dif-
ferent between Ridge regression, GLM, LASSO maximum-likelihood regression
(both bayesian and non-bayesian), k-Nearest Neighbors or Bayesian-regularized
Neural Networks. Nonetheless, there is evidence of a smaller RMSE reduction
effect for Gradient Boosting Machines and Bagged Trees in comparison to the al-
gorithms aforementioned, except for k-Nearest Neighbors.

5 Conclusions

This paper describes some options for estimation in non-probability samples us-
ing ML techniques in three approaches: model-based, model-assisted and model-
calibrated. The paper clarifies which assumptions are required and illustrates how
these proposed estimators perform empirically. The main conclusion in our simu-
lation study is that the selection of the ML algorithm used in the process is more
important than the approach used in the estimation. There is a group of ML tech-
niques that are similar in their good performance, highlighting the Ridge regression
method.
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Table 2: Mean and median efficiency (%) of each estimator and times it has been among
the best. ma = Model-assisted, mb = Model-based, mc = Model-calibrated

Mean Median Best Mean Median Best
ma ridge 62,2 64,3 13 mb blasso 57,4 60,8 10
mb ridge 61,9 64,1 12 mc bridge 56,3 60,9 9
ma glm 61,7 64,3 12 ma bridge 56,2 61,2 9
mb glm 61,7 64,1 12 mc brnn 55,8 61,4 9
mc glm 61,7 64,3 12 mb knn 55,7 51,6 6
mc ridge 61,6 64,3 12 mb bridge 55,7 61,3 7
ma glmnet 61,6 62,8 11 ma gbm 32,6 34,7 0
mc glmnet 61,5 63 12 mc gbm 32,4 35,1 0
mb glmnet 61,3 63 9 mb gbm 32,4 35 0
mc knn 59,1 53,1 7 mb treebag 32,3 49,6 0
ma knn 58,5 52,7 7 ma treebag 31,5 49,3 0
mc blasso 58,5 61,3 10 mc treebag 29,1 49,5 1
ma blasso 58,2 61,2 11 mc lasso 25,1 14,9 3
mb brnn 57,9 61,8 8 ma lasso 24,8 14,5 3
ma brnn 57,8 61,4 9 mb lasso 24,7 14,3 3

[6] also evaluates the behavior of various ML methods for model-based estima-
tors. We have conducted a study with a broader class of estimators and more ML
methods. The results obtained in our study agree on those obtained in the study
by [6] in the sense that Machine Learning methods are more powerful at remov-
ing selection bias in non-probability samples than traditional estimators. However,
their performance is strongly dependent on the dataset characteristics, meaning
that there could not be a unique algorithm for maximizing the estimates’ accuracy.
Further research should consider algorithm-specific data preprocessing steps in the
analysis.
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[10] Hoerl, A. E., & Kennard, R. W. (1970). Ridge regression: Biased estimation
for nonorthogonal problems. Technometrics, 12(1), 55-67.

[11] Hsiang, T. C. (1975). A Bayesian View on Ridge Regression. The Statistician,
24(4), 267. doi:10.2307/2987923

[12] Kuhn, M. (2019). caret: Classification and Regression Training. R package
version 6.0-84. https://CRAN.R-project.org/package=caret.

[13] Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. (2017). lmerTest
Package: Tests in Linear Mixed Effects Models. Journal of Statistical Soft-
ware, 82(13), 1-26. doi: 10.18637/jss.v082.i13

[14] Lee, S. & Valliant, R. (2009). Estimation for Volunteer Panel Web Surveys
Using Propensity Score Adjustment and Calibration Adjustment. Sociological
Methods and Research, 37(3), 319-343.

[15] Montanari, G. E. & Ranalli, M. G. (2007). Multiple and ridge model calibra-
tion. In: Proceedings of Workshop on Calibration and Estimation in Surveys,
Ottawa, Canada, October 31-November 1 2007.

[16] Moro, S., Cortez, P., & Rita, P. (2014). A data-driven approach to predict the
success of bank telemarketing. Decision Support Systems, 62, 22-31.



[17] National Institute of Statistics: Life Conditions Survey. Microdata
(2012). Retrieved from https://www.ine.es/dyngs/INEbase/
en/operacion.htm?c=Estadistica_C&cid=1254736176807&
menu=ultiDatos&idp=1254735976608 (accessed 7 november 2019).

[18] Okut, H. (2016). Bayesian regularized neural networks for small n big p data.
In Rosa, J. L. G. (Ed.). (2016). Artificial Neural Networks: Models and Appli-
cations. BoD–Books on Demand.

[19] Park, T., & Casella, G. (2008). The bayesian lasso. Journal of the American
Statistical Association, 103(482), 681-686.

[20] R Core Team (2018). R: A language and environment for statistical com-
puting. R Foundation for Statistical Computing, Vienna, Austria. URL
https://www.R-project.org/.

[21] Rosenbaum, P. R. & Rubin, D. B. (1983). The Central Role of the Propensity
Score in Observational Studies for Causal Effects. Biometrika, 70(1), 41-55.

[22] Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Jour-
nal of the Royal Statistical Society: Series B (Methodological), 58(1), 267-288.

[23] Tipton, J., Opsomer, J. & Moisen, G. (2013). Properties of endogenous post-
stratified estimation using remote sensing data. Remote Sensing of Environ-
ment, 139, 130-137.

[24] Valliant, R. (2019). Comparing Alternatives for Estimation from Nonprob-
ability Samples. Journal of Survey Statistics and Methodology, smz003,
https://doi.org/10.1093/jssam/smz003

[25] Wang, J. C., Opsomer., J. D. & Wang, H. (2014). Bagging non-differentiable
estimators in complex surveys. Survey Methodology, 40, 189-209.



Appendix

Coefficient Estimate Std. Error D. f. t value IC 95% p-value
(Intercept) 24.073 5.118 5.641 4.704 [11.354; 36.792] 0.0039

blasso -14.805 1.454 542.000 -10.183 [-17.661; -11.949] 2.10e-16
bridge -14.637 1.454 542.000 -10.068 [-17.493; -11.781] 5.69e-16

brnn -14.767 1.454 542.000 -10.157 [-17.623; -11.911] 2.63e-16
gbm -8.880 1.454 542.000 -6.108 [-11.736; -6.024] 1.93e-03
glm -15.444 1.454 542.000 -10.623 [-18.299; -12.588] 4.51e-18

glmnet -15.268 1.454 542.000 -10.502 [-18.124; -12.412] 1.31e-17
knn -14.132 1.454 542.000 -9.720 [-16.988; -11.276] 1.08e-14

lasso -3.509 1.454 542.000 -2.413 [-6.364; -0.653] 0.0161
ridge -15.457 1.454 542.000 -10.632 [-18.313; -12.602] 4.15e-18

treebag -8.964 1.454 542.000 -6.166 [-11.820; -6.108] 1.37e-03
Group Variance Std. Dev.

Dataset 147.66 12.151
Residual 28.53 5.342

Dataset Sampling Intercept
P1 P1S1 16.082
P1 P1S2 18.852
P2 P2S1 47.410
P2 P2S2 27.340
P3 P3S1 17.981
P3 P3S2 16.776

Table 3: Linear mixed-effects model considering algorithms as a fixed effect and datasets
as random effects.
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Abstract

Adjustment techniques to mitigate selection bias in nonprobability samples often involve weight-

ing. Procedures for estimating weights can be successful if the covariates selected for the adjustments

are related to the variable of interest and the propensity to participate in the nonprobability sample.

In many situations, especially in large-scale official surveys, the number of variables of interest can

be large, making adjustments difficult to determine as they could be suitable for some variables but

unsuitable for other ones in terms of variability. The standard compromise is to include a large num-

ber of explanatory variables in the weighting model but this may increase variability of the estimates.

Weight smoothing techniques, developed for weighting in probability surveys, could be helpful in

these situations. They aim to remove the variablity caused by overfit weighting models, using predic-

tion models to substitute the fitted values from the aforementioned models for the original weights.

In this study, we apply weight smoothing in the nonprobability survey context to understand how it

can be helpful in multipurpose surveys under several adjustment methods for the selection bias.

1 Introduction

Probability sampling has been the gold standard for empirical research since its de-
velopment in the XXth century based on the work of Neyman (1934) and Horvitz
and Thompson (1952) among others. For a sample to be considered probabilistic
and therefore valid for population inferences, it must be drawn under the assump-
tion that all the individuals in the target population have a known and non-null
inclusion probability. If any of these conditions do not apply, we have a nonproba-
bility sample instead. The use of such samples in empirical sciences is widespread
nowadays thanks to technological development and social media, which allows
pollsters and vendors to use new questionnaire administration methods such as
online and smartphone surveys. These surveys are usually administered via opt-in
panels or by recruiting volunteers via snowball sampling (see Schonlau and Couper
(2017) for an extensive review of methods).

Nonprobability survey methods offer several advantages over the traditional
ones: critical reduction in costs and time to accomplish the fieldwork (Bonsjak and
Tuten 2003; Greenlaw and Brown-Welty 2009; Dı́az de Rada 2012), and larger
sample sizes in comparison to traditional methods which are experiencing a de-
crease in response rates (Kohut et al 2012). On the other hand, nonprobability
sampling induces a selection bias in the estimates, as the sampled individuals can
differ substantially from non-sampled ones (Elliott and Valliant 2017).

It is possible to apply several methods to reduce selection bias when a probabil-
ity sample from the same target population is available. Here we mention Propen-
sity Score Adjustment (PSA), the Tree-based Inverse-Propensity-Weighted estima-
tor (TrIPW) and Statistical Matching (also referred to as Sample Matching), as well
as doubly robust estimators that combine Statistical Matching and PSA. Both PSA
and TrIPW aim to estimate propensities of participation in a nonprobability sample
by comparing to a probability sample drawn from the same population. However,



while PSA estimates the propensities via predictive modeling, TrIPW aims to ap-
ply the Classification And Regression Trees (CART) methodology (Breiman et al.
1984), based on learning decision rules (that optimize an homogeneity measure)
from data to build trees that allow to give a prediction of the response indica-
tor given a set of covariates. TrIPW can be viewed as an extension of Chen et
al. (2019) to CART. On the other hand, Statistical Matching focuses on another
model-based approach, where the objective is to predict the values of the variable
of interest for the probability sample, where the variable has not been measured.
The predictive model is fitted using data from the nonprobability sample.

When the propensity model is properly specified, PSA is able to reduce bias in
the estimation from nonprobability samples at the cost of increasing the variability
of the estimates (Lee 2006; Lee and Valliant 2009; Valliant and Dever 2011; Ferri-
Garcı́a and Rueda2018). TrIPW shows itself as a more robust adjustment under
complex relationships between variables, such as nonlinearities (Chu and Beau-
mont 2019), although PSA using Machine Learning algorithms to model propen-
sities could also be useful in those situations (Ferri-Garcı́a and Rueda 2020). Sta-
tistical Matching has also been proven to mitigate selection bias in nonprobability
samples (Castro-Martı́n et al. 2020). The combination of both strategies via doubly
robust estimators is able to outperform both approaches on their own (Chen et al.
2019).

Despite the statistical advantage of Matching techniques, they can be disad-
vantageous in multipurpose surveys where the variables of interest are multiple. In
those situations, which are common in official statistics surveys, each variable of
interest would need a specific model to predict its values in the probability sample.
This could lead to impractical situations and a higher probability of model mis-
specifications. The use of reweighting strategies such as PSA and TrIPW would
be a reasonable solution, as the same vector of weights could be used to estimate
all of the variables of interest. However, research has shown that propensity tech-
niques are more efficient when the covariates used for the estimation are related to
the outcome variables, that is, the variables of interest (Hirano and Imbens 2001;
Brookhart et al. 2006). In a multipurpose survey, the adequacy of the covariates
may vary between variables, leading to model misspecifications. The standard
compromise is to include a large number of covariates in the weighting model.
This may increase the variability of the resulting estimates due to overfitting.

In multipurpose probability surveys, weight smoothing (Beaumont 2008) has
been shown to be effective at minimizing the problem posed by the existence of
multiple target variables. Weight smoothing aims to reduce the variability of the
estimates, which can be large if the design variables are unrelated to the target vari-
ables, using predictive modeling. To the best of our knowledge, this technique has
not been evaluated in a nonprobability survey context, where the inclusion proba-
bilities have to be estimated. The objective of this study is to examine the adequacy
of weight smoothing for multipurpose nonprobability surveys, and explore the sit-
uations that could enhance the efficiency of this technique.



2 Weighting in nonprobability surveys

Let U be a target population of size N from which we want to estimate a population
parameter for a given variable of interest, Y . To this end, we obtain a nonprobability
sample, sv, from the population, U . The participation mechanism may depend
on features such as self-selection or device availability (computer, internet access,
etc.). In this case, the probability of being included in sv for each individual in U , π ,
cannot be known a priori. Let R be the indicator variable which measures whether
an individual from U has participated. If we assume that a vector of covariates, X,
is available and related to π such that:

πi = P(Ri = 1|Xi), i ∈U (1)

we can estimate the inclusion probability if a probability sample, sr, drawn from
the full population U is available or if Xi is known for every i ∈ U . For all the
individuals in sr, X must have been measured but Y is not measured. In that case,
we can obtain an estimate of π by modelling the response indicator.

PSA was originally developed to mitigate selection bias in nonrandomized clin-
ical trials (Rosenbaum and Rubin 1983), but it was adapted to the survey nonre-
sponse field shortly after (Little 1986). PSA adapted to the nonprobability survey
context as a method to mitigate selection bias was developed by Lee (2006) and
Lee and Valliant (2009). Research on PSA has focused on using logistic regression
to estimate propensities as

π̂LR
i =

exp(β̂xi)

1+ exp(β̂xi)
, i ∈U (2)

where β̂ is an estimator of the unknown vector of model parameters β obtained by
pooling sr and sv. Recent literature has also considered some nonparametric meth-
ods, such as Machine Learning classification algorithms, to estimate propensities
(Ferri-Garcı́a and Rueda 2020). This PSA approach is valid provided the partici-
pation rate is small (see Beaumont 2020). Chen et al. (2019) developed a method
that does not require this assumption.

The TrIPW estimator, developed in Chu and Beaumont (2019), uses one of the
mentioned Machine Learning classification algorithms: Classification And Regres-
sion Trees (CART) (Breiman et al. 1984), and does not require the participation
rate to be small. Although PSA and TrIPW use estimated participation propensi-
ties, the methodology of the latter is slighty different and takes into account design
weights of the probability sample. The propensity for each individual i ∈ sv is
estimated as:

π̃CART
i =

#(l(i)∩ sv)

#(l(i))
(3)

where l(i) represents the terminal node of the CART algorithm trained on U
in which i-th individual of sv lies. The formula above represents the proportion



of participants among the population individuals that would be classified in the
terminal node l. However, as data from U − sv is not available, the propensity has
to be estimated using a modified CART algorithm and estimating proportions by
taking design weights into account as follows:

π̂CART
i =

#(l(i)∩ sv)

#̂(l(i))
=

#(l(i)∩ sv)

∑ j∈l(i)∩sr
1
p j

(4)

where p j is the inclusion probability for individual j in sr. The equation above is
equivalent to dividing the number of individuals from sv that belong to l(i) by the
sum of the sampling weights of those individuals from sr that belong to l(i). This
non-parametric approach shows acceptable results under non-linearity conditions
(Chu and Beaumont 2019).

Propensities are often transformed into weights with the inverse probability
formula, as noted in Valliant (2019):

wIPW1
i =

1
π̂i
, i ∈ sv (5)

A variant of this formula was mentioned in Schonlau and Couper (2017), which
assumes a lower bound of 0 for the vector of weights:

wIPW2
i =

1− π̂i

π̂i
, i ∈ sv (6)

The original literature of PSA for nonprobability sampling (Lee 2006; Lee and
Valliant 2009) considered the stratification of propensities into g partitions, usually
g = 5 following the criteria of Cochran (1968), and the calculation of weights
using a correction factor that takes into account the original design weights of
those individuals belonging to a given propensity stratum:

wST R1
i = di · fc = di

∑ j∈sr(gi) d j/∑ j∈sr d j

∑ j∈sv(gi) dv
j/∑ j∈sv dv

j
, i ∈ sv (7)

where dv
i is some weight for individual i of sv, d j is the design weight of indi-

vidual j of sr, and sv(gi) and sr(gi) represent the set of individuals from the proba-
bility and the nonprobability sample respectively that belong to the g-th propensity
stratum, which contains individual i. Valliant and Dever (2011) used a similar ap-
proach that also involved stratification of propensities, but the strata are used to
construct inverse probability weights instead, using the mean propensity of each
strata:

wST R2
i =

#(sv(gi))

∑ j∈sv(gi) π j
, i ∈ sv (8)

An alternative approach is to compute weights using 4 and 5, with the terminal
nodes being taken as the propensity strata. This usually brings a certain robustness
to model failure.



3 Weight smoothing

Previous studies show that the application of adjustment techniques in nonproba-
bility samples contributes to reducing the bias by different degrees depending on
the selection mechanism, but at the cost of increasing the variance of the estimates
(Lee 2006; Lee and Valliant 2009; Ferri-Garcı́a and Rueda 2018). This variance
is directly tied to the weights’ variance; therefore it seems reasonable to focus on
strategies that reduce the variability of the weights, especially in case of model mis-
specification where no gains would be expected in terms of bias reduction, which is
often the case for multipurpose surveys where a single vector of weights is used for
the estimation of all population parameters. One of these strategies could be weight
smoothing developed by Beaumont (2008) for the probability sampling context.

This method assumes that, for a given probability sample s, the vector of design
weights d is linked to the set of variables of interest, Y, such that:

di = f (Yi;γ)+ εi, i ∈ s (9)

where γ is a vector of unknown coefficients and ε is a random variable with
E[ε] = 0 and Var(ε) < ∞ which represents the noise. Weight smoothing substi-
tutes the original weights, w, with smoothed weights, w̃, which are equivalent to
their expected value given the set of variables of interest Y and a model M:

w̃i = EM [wi|I,Y] , i ∈ s, (10)

where I is a binary variable indicating whether an individual from U belongs
to s or not. This approach has desirable properties, such as unbiasedness, as long
as the model M is properly specified. The smoothed estimator is also expected to
have a smaller variance than the non-smoothed estimator. As described in Haziza
and Beaumont (2017), this method aims to eliminate the random noise part of the
weights, hence reducing variance while maintaining unbiasedness.

It is reasonable to assume that nonprobability sample weights are associated
with the target variables, especially if the covariates of the propensity model are
related to Y. We propose the following weight smoothing approach for obtaining
w̃ in the nonprobability sample:

w̃i = EM

[
wk

i |R,Y
]
, i ∈ sv (11)

where k = { IPW1, IPW2, STR1, STR2 } represents the weighting approach
used to convert propensities to weights. Note that the indicator variable for the non-
probability sample, R, is substituted for I from Eq. 10 meaning that sv is used to fit
the model M. In order to evaluate weight smoothing, we applied this methodology
in two simulations, one with artificial data and the other with real data, considering
different scenarios using the weighting approach k =IPW1.



4 Data

4.1 Artificial data

We created a population of size N = 500000 with 10 covariates (x1, ...,x10), 10
variables of interest (y1, ...,y10) and a variable indicating the propensity of each
individual to take part in a volunteer sample, πi. The covariates followed Bernoulli
and Normal distributions:

x1,x4,x7 ∼ Be(0.5) (12)

x3,x6,x9 ∼ Be(0.2) (13)

x2,x5,x8,x10 ∼ N(0,1) (14)

The propensities depended on the values of x7,x8 and x9 according to the fol-
lowing logistic formula:

πi =
exp(−0.5+2.5x7 +

√
2πx8− (11/3)x9)

1+ exp(−0.5+2.5x7 +
√

2πx8− (11/3)x9)
, i = 1,2, ...,500000 (15)

This formula was intended to create weights with high variability, a situation
where the advantages of weight smoothing might be more visible. The histogram
of propensities can be observed in Figure 1; the mean value of π is 0.5089, with
a standard deviation of 0.3741 which means a coefficient of variation of 0.7351.
First and 3rd quartile are 0.1111 and 0.9002 respectively.

Probability of inclusion

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
20

00
0

40
00

0
60

00
0

80
00

0

Figure 1: Histogram of the population propensities

The variables of interest were created to have different relationships with the
covariates and the propensities according to two scenarios:

Sc. 1. No relationship between any variable in (y1, ...,y10) and π



Sc. 2. Relationship between every variable in (y1, ...,y10) and π

The generation of the variables of interest was performed according to the fol-
lowing formulas:

y1 ∼ B
(

exp(−1+3x1 + x2 + x3 +1Scenario 25π)
1+ exp(−1+3x1 + x2 + x3 +1Sc. 25π)

)
(16)

y2 ∼ N(0.1)−1+3x1 + x2 + x3 +1Sc. 25π (17)

y3 ∼ B
(

exp(−1+ x1 + x2 +3x3−1Sc. 25π)
1+ exp(−1+ x1 + x2 +3x3−1Sc. 25π)

)
(18)

y4 ∼ B
(

exp(1Sc. 2π)
1+ exp(1Sc. 2π)

)
(19)

y5 ∼ N(0.1)+2+1Sc. 22π (20)

y6 ∼ B
(

exp(−1.5+1Sc. 2π)
1+ exp(−1.5+1Sc. 2π)

)
(21)

y7 ∼ B
(

exp(−1Sc. 2π)
1+ exp(−1Sc. 2π)

)
(22)

y8 ∼ N(0.1)−2−1Sc. 22π (23)

y9 ∼ B
(

exp(−1.5−1Sc. 2π)
1+ exp(−1.5−1Sc. 2π)

)
(24)

y10 ∼ N(0.1)+1Sc. 22π (25)

where 1Sc. 2 is an indicator variable which takes the value 1 if the simulation is
in Scenario 2 and 0 otherwise. It can be observed that we also have 6 Bernoulli and
4 Gaussian variables among (y1, ...,y10) whose parameters depend on the scenario.
The vector of population means for Scenario 1 is (0.60, 0.70, 0.50, 0.50, 2.00,
0.18, 0.50, -2.00, 0.18, 0.00), while the vector of population means for Scenario 2
is (0.84, 3.25, 0.21, 0.62, 3.02, 0.28, 0.38, -3.02, 0.12, 1.02). Table 1 contains the
Pearson’s correlations between the propensities, π , and each variable of interest in
both scenarios. We see that the correlation is nonexistent in Scenario 1 and notable
for all of the variables in Scenario 2, with different levels of strength caused by the
limitations of using this measure on binary variables. Table 2 presents the results of
t-tests of the mean difference in π between yk = 0 and yk = 1, with k = 1,3,4,6,7,9,
in Scenario 2.

Table 1: Population Pearson’s correlations between π and (y1, ...,y10) in Scenarios 1 and
2.

y1 y2 y3 y4 y5 y6 y7 y8 y9 y10

Scenario 1 0.00 0.00 0.00 0.00 0.0 0.00 0.00 0.0 0.00 0.0
Scenario 2 0.39 0.66 -0.43 0.18 0.6 0.16 -0.18 -0.6 -0.12 0.6



Table 2: Results of t-tests for mean difference in π between binary classes of y1, y3, y4, y6,
y7 and y9 in the simulated population in Scenario 2.

k Mean of π (yk = 0) Mean of π (yk = 1) t p-value

1 0.1761 0.5728 -401.35 ¡2.2e-16
3 0.5922 0.2043 397.20 ¡2.2e-16
4 0.4234 0.5612 -128.61 ¡2.2e-16
6 0.4717 0.6061 -116.84 ¡2.2e-16
7 0.5613 0.4234 128.70 ¡2.2e-16
9 0.5259 0.3891 88.17 ¡2.2e-16

4.2 Real data

The dataset used to experiment in a real life situation came from the 2012 edition
of the Spanish Life Conditions Survey (National Institute of Statistics 2012). This
is an annual survey measuring several aspects of life conditions, such as health
status, degree of deprivation and employment conditions, in the Spanish adult pop-
ulation. The survey includes specific modules in each edition; in 2012, the mod-
ule consisted of a battery of questions regarding household conditions. The survey
sampling follows a stratified cluster scheme, where the primary units are the house-
holds and the secondary units are their members. The total sample size in 2012 was
n = 33579.

For its use as a pseudopopulation, the sample dataset was filtered to rule out
those individuals and variables with high amounts of missing data. This reduced
the dataset to n = 28210 and 146 variables, from which 61 were selected for the
simulations. The sample was subsequently bootstrapped in order to increase its size
to n = 1000000, and finally all the individuals who selected any of the responses
related to refusal options (”Does not know” or ”Does not answer”) were also ruled
out of the analysis to avoid further problems with rare classes in the simulations.
The final pseudopopulation size for the experiments was N = 990838.

For the experiments, we chose HS090 (Owning a computer at home) as the
volunteering variable, given that its behavior would be very similar to a variable
measuring access to internet (see Ferri-Garcı́a and Rueda (2020) for further details
on this matter). The extraction of the nonprobability sample was done under two
different mechanisms:

• SRSWOR from the population who have a computer at home.

• Unequal probability sampling without replacement from the population who
have a computer at home, where the probabilities are calculated through the
formula:

πi =
(Year of birth−1925)4

(1996−1925)4 (26)

Regarding covariates, two complementary sets were defined:



• A set of nine demographic variables, more precisely: region, urbanization
level, number of members of the household and consumption units (weighted
mean of the number of members of the household following OECD crite-
ria, where adults have more weight than teenagers and teenagers have more
weight than children), sex, marital status, country of birth, nationality, and
whether the individual is currently a student or not.

• A set of eight variables related to economic and material deprivation, more
precisely: capacity of the household to make ends meet, minimum income
required by the household to make ends meet, whether the household has the
capacity to go on holiday, have a meat or fish meal at least every two days,
and deal with unforeseen expenses, household under the poverty threshold,
person under the poverty threshold, and household in a situation of severe
material deprivation.

Ten variables were defined as variables of interest:

• y1 = Household expenses are a heavy burden (ordinal scale, 1-3)

• y2 = Household has a car (dichotomous)

• y3 = Self-reported health (5-point Likert scale)

• y4 = Disability in the previous 6 months (ordinal scale, 1-3)

• y5 = Number of months working part-time (integer, 0-12)

• y6 = Household expenses in EUR (continuous)

• y7 = Household with noise problems (dichotomous)

• y8 = Household with heating system (dichotomous)

• y9 = Simulated random Be(0.5) variable.

• y10 = Simulated random N(0, 1) variable.

5 Experimental design and metrics

The settings of the experiment were kept as equal as possible for all simulation
scenarios. Each simulation was run 500 times, drawing probability and nonproba-
bility samples of equal sizes (nr = nv = 1000) using the sampling designs described
in the previous section. Three approaches were applied to estimate nonprobabil-
ity sample propensities: logistic regression, k-Nearest Neighbors, and CART with
fixed parameters of minimum cell size (50) and minimum impurity of terminal



nodes (0.0001). Logistic regression modeled the propensities with the usual logit
link given the set of covariates x:

π∗i =
exp(β T xi)

1+ exp(β T xi)
, i ∈ sr ∪ sv (27)

where β is the vector of coefficients associated to each predictor, estimated through
Iterative Reweighted Least Squares (IWLS) with R∗ as the target variable, which
is defined as R∗i = 1 if i ∈ sv and R∗i = 0 if i ∈ sr. The proximity of R∗ to R depends
on the overlap between sr and sv, which tends to be smaller if the sampling fraction
for sv is small. k-Nearest Neighbors used the individuals in sr ∪ sv to estimate the
propensity of the i-th individual, i∈ sr∪sv, to be selected in sv using the proportion
of neighbors that belong to sv, that is, those for which R∗ = 1. The formula for
propensities can therefore be expressed as follows:

π∗i =
∑ j∈sr∪sv/d(xi,x j)≤d(xi,x(k)) R∗j

k
, i ∈ sr ∪ sv (28)

where d is the function (in this case Euclidean) that measures the distance between
two individuals given a set of covariates, and x(k) represents the covariates of the
k-th closest individual. This means that d(xi,x j) represents the distance between
the i-th individual for which propensity is calculated and an individual j ∈ sr ∪
sv, and d(xi,x(k)) represents the distance between the i-th individual and the k-th
closest individual according to function d. Any individual that provides a value
of d below d(xi,x(k)) is considered a neighbor and subsequently used to compute
the propensities. This is the same k-NN algorithm used in Ferri-Garcı́a and Rueda
(2020), where a more detailed explanation can be found. The optimal number of
neighbors was chosen by 10-fold cross-validation in each simulation run using the
R package caret (Kuhn 2018). CART was applied as defined in Section 2, where
all of the sampling probabilities for sr were p j = 1000/N, j ∈ sr given that the
reference sample was always drawn by SRSWOR. This means that the formula for
propensity estimation given in Equation 4 could be simplified to:

π̂CART
i =

#(l(i)∩ sv)

#̂(l(i))
=

#(l(i)∩ sv)
#(l(i)∩sr)·N

1000

=
#(l(i)∩ sv) ·1000

#(l(i)∩ sr) ·N
(29)

In all cases, inverse probability weighting was used to build the weights from
the propensities using the wi = 1/π̂∗i formula from Valliant (2019). The variance
and coefficient of variation of the vector of weights was calculated in each run
and weighting approach to evaluate how the inherent variability of weights could
further explain the performance of weight smoothing strategies.

Two different predictive models were used in the weight smoothing step, which
used the different sets of variables of interest described in the previous section as
input variables (with the weights as the output variable):

• XGBoost algorithm (XGB) using the xgboost package in R (Chen 2020).



• Least Absolute Shrinkage and Selection Operator (LASSO) regression using
the glmnet package in R (Friedman 2010).

XGBoost algorithm was trained with default hyperparameters: a L1 regulariza-
tion term of α = 0.1, a L2 regularization term of λ = 0.0001 and a learning rate of
η = 0.3. The number of rounds was fixed at 50. In the case of LASSO, the optimal
shrinkage parameter, λ , was obtained with a 10-fold cross-validation procedure in
each run of the simulation.

Relative measures of bias, standard deviation and MSE were also calculated
to allow the comparison between simulation scenarios, as well as the comparison
with the baseline cases where no adjustments are applied. More precisely, bias was
normalized by the true population parameter, Y , while standard deviation and MSE
were compared to the unadjusted case where no reweighting is applied.

RelBiask =

∣∣∣∣
Biask

Y

∣∣∣∣=
∣∣∣∣∣
Ŷ −Y

Y

∣∣∣∣∣=

∣∣∣∣∣∣

∑500
i=1 ŷi
500 −Y

Y

∣∣∣∣∣∣
(30)

StdDevk =

√√√√
(

∑500
i=1 ŷi− ∑500

i=1 ŷi
500

)2

499
(31)

RelMSEk =
MSEk

MSEUnw
=

Bias2
k +StdDev2

k

Bias2
Unw +StdDev2

Unw
(32)

where k ∈ {Unw, NS, XGB, LASSO} represents the algorithm used for weight
smoothing, the case where no smoothing is applied (NS), or the case where no
adjustment at all is applied (Unw) and ŷi is the estimated mean from the i-th simu-
lation run.

The calculation of ŷi for the unweighted case was the arithmetic mean of y in
the nonprobability sample:

ŷUnw
i =

∑ j∈si
v
y j

1000
, i = 1, ...,500 (33)

where si
v represents the nonprobability sample drawn in the i-th simulation run.

In the case where PSA or TrIPW were applied but no smoothing was done, ŷi was
calculated as follows:

ŷNS
i =

∑ j∈si
v
w jy j

∑ j∈si
v
w j

, i = 1, ...,500 (34)

where w = (w1, ...,w1000) is the vector of inverse propensity weights for the
individuals of si

v described before. Finally, when any weight smoothing method
was applied on PSA or TrIPW weights, the formula used to calculate ŷi was:

ŷk
i =

∑ j∈si
v
w̃ jy j

∑ j∈si
v
w̃ j

, i = 1, ...,500,k = {XGB, LASSO} (35)

where w̃ represents the vector of smoothed weights.



6 Results

6.1 Artificial data simulation

Relative bias of adjustments in each scenario can be consulted in Table 3. As
expected, all of the adjustments in Scenario 1 (where there is no relationship be-
tween any variable in (y1, ...,y10) and π), as well as the case where no adjustment
is done, present a very low amount of bias because of the independence between
the variables and the inclusion probabilities. The exception observed for y10 can
be explained by the nature of the variable itself: as it is centered on 0, the relative
bias tends to overstate otherwise negligible differences.

This is not the case of Scenario 2 (where each y variable is related to π), where
the bias induced by the sampling mechanism gets reduced with PSA and TrIPW.
When comparing the three propensity estimation methods, TrIPW provides the
smallest bias among them, achieving reductions of more than a half of the original
bias for almost every variable, although PSA is also able to reduce bias to a lesser
extent.

In both scenarios, the application of weight smoothing did not produce impor-
tant changes in bias.

Table 3: Relative bias (RelBias) for each variable, adjustment method and artificial data
scenario.

PSA (Log. reg.) PSA (k-NN) TrIPW
Sc. Obj. Unw NS XGB LASSO NS XGB LASSO NS XGB LASSO

1 y1 0.0001 0.0008 0.0007 0.0016 0.0017 0.0006 0.0012 0.0001 0.0013 0.0002
y2 0.0016 0.0026 0.0005 0.0035 0.0007 0.0007 0.0002 0.0054 0.0008 0.0001
y3 0.0007 0.0003 0.0009 0.0001 0.0017 0.0009 0.0009 0.0007 0.0011 0.0020
y4 0.0001 0.0006 0.0021 0.0004 0.0012 0.0002 0.0017 0.0035 0.0046 0.0015
y5 0.0007 0.0010 0.0014 0.0011 0.0011 0.0016 0.0008 0.0010 0.0005 0.0014
y6 0.0008 0.0026 0.0021 0.0011 0.0013 0.0038 0.0019 0.0113 0.0019 0.0047
y7 0.0002 0.0004 0.0021 0.0004 0.0007 0.0026 0.0007 0.0012 0.0011 0.0017
y8 0.0007 0.0009 0.0015 0.0012 0.0007 0.0024 0.0009 0.0004 0.0012 0.0010
y9 0.0006 0.0066 0.0028 0.0063 0.0058 0.0020 0.0065 0.0034 0.0045 0.0036
y10 0.6252 1.7615 1.4013 1.7762 0.2383 1.4420 0.6990 0.5801 0.5235 1.1523

2 y1 0.1256 0.0989 0.0993 0.0993 0.1104 0.1099 0.1117 0.0700 0.0709 0.0720
y2 0.4233 0.3088 0.3073 0.3098 0.3595 0.3605 0.3643 0.1778 0.1820 0.1848
y3 0.5961 0.4692 0.4642 0.4709 0.5264 0.5264 0.5347 0.3179 0.3296 0.3290
y4 0.1030 0.0771 0.0747 0.0780 0.0880 0.0883 0.0899 0.0464 0.0467 0.0507
y5 0.1826 0.1331 0.1320 0.1336 0.1554 0.1561 0.1578 0.0771 0.0772 0.0806
y6 0.1947 0.1385 0.1352 0.1405 0.1641 0.1612 0.1683 0.0749 0.0796 0.0853
y7 0.1682 0.1258 0.1271 0.1272 0.1422 0.1437 0.1460 0.0730 0.0749 0.0809
y8 0.1826 0.1331 0.1331 0.1336 0.1560 0.1553 0.1584 0.0752 0.0786 0.0786
y9 0.2374 0.1747 0.1799 0.1768 0.1997 0.2104 0.2047 0.1092 0.1203 0.1189
y10 0.5363 0.3923 0.3884 0.3937 0.4571 0.4546 0.4642 0.2234 0.2268 0.2335

Relative MSE or efficiency of adjustments in each scenario in comparison to
the unweighted case can be seen in Table 4. Values below 1 indicate that the adjust-
ment performed better than the non-adjusted case. In Scenario 1, weight smoothing
is able to slightly increase the efficiency of PSA. The application of weight smooth-
ing is highly beneficial when adjusting with TrIPW, given that this method induces
a large variability that decreases efficiency. When smoothing TrIPW weights with
LASSO, the MSE of the estimates were comparable to the MSE of the unadjusted
case. In the non-smoothed case, the MSE of the estimates was around twice the



MSE of the unadjusted one. In Scenario 2, the application of weight smoothing
strategies did not provide any noticeable improvement in terms of MSE.

Table 4: Relative MSE (RelMSE) for each variable, adjustment method and artificial data
scenario.

PSA (Log. reg.) PSA (k-NN) TrIPW
Sc. Obj. NS XGB LASSO NS XGB LASSO NS XGB LASSO

1 y1 1.0650 0.9965 1.0373 1.1940 0.9698 1.1072 2.1226 2.0063 1.2088
y2 0.7589 0.7271 0.8387 0.8758 0.8472 0.8643 2.0490 2.1111 1.1808
y3 0.9735 0.8442 0.9613 0.9254 0.8901 0.8556 1.9767 1.8238 1.1513
y4 1.2027 1.1451 1.0477 1.3222 1.3840 1.1168 2.2965 1.8026 1.3997
y5 1.0973 1.0343 1.0034 1.0782 1.1426 0.9731 1.5602 1.8057 0.9491
y6 0.9953 1.1502 0.9141 1.1862 1.3163 0.9953 1.8365 1.9509 1.0120
y7 1.2386 1.2535 1.1363 1.2386 1.2386 1.0660 2.2152 1.8522 1.2837
y8 1.1755 0.9830 1.0738 1.2964 1.3110 1.0938 1.9624 2.1363 1.1343
y9 1.0034 0.9876 0.9254 1.1180 1.0518 0.9562 1.9357 1.8052 1.1690
y10 0.9037 0.9981 0.8359 1.0533 1.0409 0.9327 1.8232 1.8560 1.1036

2 y1 0.6279 0.6339 0.6324 0.7787 0.7721 0.7989 0.3398 0.3454 0.3577
y2 0.5335 0.5282 0.5369 0.7223 0.7263 0.7418 0.1871 0.1949 0.2013
y3 0.6198 0.6064 0.6247 0.7765 0.7765 0.8000 0.3082 0.3239 0.3283
y4 0.5897 0.5574 0.6039 0.7520 0.7600 0.7787 0.3021 0.3038 0.3348
y5 0.5337 0.5247 0.5377 0.7257 0.7322 0.7493 0.1903 0.1895 0.2064
y6 0.5632 0.5496 0.5769 0.7772 0.7360 0.8097 0.2676 0.2887 0.3066
y7 0.5944 0.6015 0.6063 0.7388 0.7573 0.7733 0.2823 0.2888 0.3208
y8 0.5353 0.5356 0.5393 0.7333 0.7268 0.7558 0.1816 0.1967 0.1974
y9 0.6203 0.6463 0.6306 0.7728 0.8553 0.8018 0.4272 0.4620 0.4488
y10 0.5377 0.5268 0.5417 0.7282 0.7208 0.7508 0.1852 0.1910 0.2010

6.2 Real data simulation

Relative bias of the estimates in the real data simulation with the different covari-
ates for the adjustments and SRSWOR can be observed in Table 5. It is noticeable
that the performance of the adjustments depends on the set of covariates used;
when using the demographics set, the bias is mostly reduced in variables y3 (self-
reported health, 5-point Likert), y5 (number of months working part time, integer
0-12) and y7 (household with noise problems, dichotomous) after the application
of the methods for propensity estimation. The comparison between algorithms
shows that TrIPW has the largest reduction in bias, but the differences are scarce.
When using deprivation covariates, which are assumed to be more related to the
target variables, the bias is reduced in most of the cases, with TrIPW showing an
advantage again. As in the previous example, weight smoothing did not produce
substantial changes in bias, except for y10 (independent Gaussian random variable)
where the application of weight smoothing with LASSO regression modifies the
distribution of the estimator and therefore the relative bias differs from the non-
smoothed and smoothed with XGBoost cases.



Table 5: Relative bias (RelBias) for each variable, adjustment method and covariates, in
the real data experiment when drawing sv with SRSWOR from the subpopulation having a
computer at home.

PSA (Log. reg.) PSA (k-NN) TrIPW
Cov. Obj. Unw NS XGB LASSO NS XGB LASSO NS XGB LASSO

Dem.

y1 0.011 0.014 0.014 0.013 0.016 0.016 0.013 0.021 0.021 0.018
y2 0.119 0.113 0.113 0.114 0.108 0.108 0.112 0.110 0.111 0.112
y3 0.083 0.072 0.073 0.074 0.073 0.073 0.077 0.069 0.069 0.072
y4 0.036 0.031 0.031 0.032 0.032 0.032 0.033 0.030 0.031 0.031
y5 0.197 0.192 0.192 0.197 0.175 0.176 0.196 0.155 0.155 0.168
y6 0.106 0.094 0.094 0.096 0.091 0.091 0.098 0.090 0.090 0.094
y7 0.047 0.043 0.043 0.048 0.032 0.032 0.046 0.027 0.027 0.036
y8 0.083 0.081 0.080 0.080 0.088 0.088 0.084 0.089 0.089 0.087
y9 0.000 0.001 0.001 0.001 0.002 0.002 0.002 0.002 0.002 0.001
y10 2.379 6.151 6.191 5.400 11.816 11.898 9.837 3.239 3.355 0.819

Dep.

y1 0.011 0.004 0.004 0.005 0.006 0.006 0.008 0.002 0.002 0.003
y2 0.119 0.110 0.110 0.110 0.106 0.106 0.109 0.097 0.097 0.100
y3 0.083 0.080 0.080 0.081 0.078 0.078 0.080 0.075 0.076 0.077
y4 0.036 0.034 0.034 0.035 0.034 0.034 0.035 0.033 0.033 0.033
y5 0.197 0.211 0.210 0.207 0.216 0.216 0.209 0.218 0.217 0.209
y6 0.106 0.084 0.085 0.086 0.085 0.086 0.092 0.066 0.067 0.072
y7 0.047 0.061 0.061 0.062 0.068 0.068 0.064 0.076 0.076 0.071
y8 0.083 0.051 0.051 0.053 0.055 0.055 0.063 0.026 0.026 0.033
y9 0.000 0.001 0.001 0.001 0.002 0.002 0.002 0.001 0.001 0.001
y10 2.379 2.238 2.193 2.306 13.331 13.499 19.138 6.116 6.124 0.200

Relative bias of the estimates in the real data simulation with the different co-
variates for the adjustments and unequal probability sampling proportional to age
can be seen in Table 6. Adjustments perform generally poorly at reducing bias,
except for y8 (household with heating system, dichotomous) where TrIPW with
deprivation covariates achieves a large reduction making it almost zero.

Table 6: Relative bias (RelBias) for each variable, adjustment method and covariates, in
the real data experiment when drawing sv with unequal probability sampling (proportional
to age) from the subpopulation having a computer at home.

PSA (Log. reg.) PSA (k-NN) TrIPW
Cov. Obj. Unw NS XGB LASSO NS XGB LASSO NS XGB LASSO

Dem.

y1 0.011 0.013 0.014 0.018 0.013 0.013 0.018 0.012 0.012 0.018
y2 0.119 0.124 0.123 0.122 0.124 0.124 0.122 0.131 0.130 0.126
y3 0.083 0.204 0.204 0.215 0.204 0.204 0.213 0.173 0.173 0.182
y4 0.036 0.074 0.074 0.076 0.075 0.075 0.075 0.072 0.072 0.072
y5 0.197 0.426 0.423 0.351 0.365 0.362 0.320 0.603 0.594 0.493
y6 0.106 0.184 0.184 0.180 0.193 0.193 0.183 0.255 0.255 0.233
y7 0.047 0.076 0.077 0.090 0.078 0.079 0.097 0.090 0.092 0.096
y8 0.083 0.041 0.042 0.039 0.047 0.048 0.043 0.062 0.063 0.060
y9 0.000 0.002 0.002 0.003 0.001 0.001 0.002 0.000 0.000 0.002
y10 2.379 6.943 6.755 12.126 29.566 29.440 3.778 50.925 50.706 38.733

Dep.

y1 0.011 0.012 0.012 0.013 0.012 0.012 0.015 0.002 0.002 0.005
y2 0.119 0.118 0.118 0.118 0.113 0.113 0.116 0.106 0.106 0.109
y3 0.083 0.243 0.243 0.243 0.241 0.241 0.243 0.239 0.239 0.241
y4 0.036 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080
y5 0.197 0.310 0.309 0.300 0.319 0.318 0.299 0.360 0.359 0.332
y6 0.106 0.153 0.153 0.155 0.155 0.155 0.163 0.131 0.131 0.138
y7 0.047 0.091 0.091 0.092 0.094 0.095 0.093 0.110 0.111 0.105
y8 0.083 0.012 0.012 0.014 0.015 0.015 0.021 0.004 0.004 0.002
y9 0.000 0.003 0.003 0.003 0.005 0.005 0.004 0.004 0.004 0.004
y10 2.379 8.167 8.128 10.613 17.879 17.923 21.377 12.155 12.150 18.735

Relative MSE of the estimates in the real data simulation with the different co-
variates for the adjustments and SRSWOR can be seen in Table 7. It is noticeable
that, when using demographic covariates, there is always an efficient adjustment for



each variable but the best one differs across variables. TrIPW works better for vari-
ables y2 to y7 but PSA with logistic regression for propensity estimation is the best
option for y1 (household expenses are a heavy burden, ordinal from 1 to 3) and y8
to y10 (household having a heating system and the two simulated independent ran-
dom variables). The situation is similar when using deprivation covariates: TrIPW
provides the largest efficiency for y2 to y4 (household having a car -dichotomous-
, self-reporting health -5-point Likert scale- and presence of a disability -ordinal
from 1 to 3-), y6 (household expenses in EUR, numeric) and y8, while PSA with
logistic regression works better for the rest of variables. In both cases, it is impor-
tant to note the impact of weight smoothing: when the efficiency is already below 1
(that is, the proposed method is more efficient than the unadjusted case), applying
weight smoothing does not improve it, and can even contribute to increase the quo-
tient. On the other hand, when the efficiency is above 1, weight smoothing helps to
reduce the quotient and move it towards 1, with LASSO regression revealing itself
as the best option in this case.

Table 7: Relative MSE (RelMSE) for each variable, adjustment method and covariates, in
the real data experiment when drawing sv with SRSWOR from the subpopulation having a
computer at home.

PSA (Log. reg.) PSA (k-NN) TrIPW
Cov. Obj. NS XGB LASSO NS XGB LASSO NS XGB LASSO

Dem.

y1 1.229 1.187 1.123 1.624 1.591 1.243 2.252 2.101 1.803
y2 0.906 0.911 0.918 0.832 0.837 0.890 0.868 0.873 0.900
y3 0.772 0.779 0.797 0.785 0.780 0.876 0.706 0.715 0.764
y4 0.783 0.786 0.810 0.799 0.783 0.879 0.750 0.745 0.794
y5 0.988 1.018 1.021 0.900 0.970 1.030 0.754 0.804 0.805
y6 0.793 0.816 0.825 0.752 0.795 0.859 0.731 0.778 0.803
y7 0.894 0.930 0.947 0.930 0.986 0.986 0.883 0.916 0.921
y8 0.953 0.936 0.950 1.100 1.034 1.008 1.154 1.098 1.095
y9 0.915 0.907 0.901 1.189 1.142 1.097 1.185 1.139 1.095
y10 0.917 0.912 0.889 1.097 1.079 0.997 1.154 1.136 1.060

Dep.

y1 0.497 0.513 0.517 0.620 0.651 0.693 0.694 0.665 0.659
y2 0.852 0.865 0.862 0.800 0.806 0.848 0.673 0.694 0.707
y3 0.945 0.949 0.959 0.899 0.890 0.933 0.812 0.812 0.850
y4 0.943 0.939 0.949 0.937 0.906 0.951 0.840 0.814 0.854
y5 1.168 1.162 1.135 1.234 1.283 1.167 1.241 1.265 1.141
y6 0.646 0.681 0.669 0.669 0.715 0.770 0.417 0.472 0.486
y7 1.191 1.191 1.185 1.464 1.487 1.319 1.719 1.706 1.549
y8 0.457 0.475 0.484 0.526 0.526 0.639 0.232 0.244 0.286
y9 1.030 1.022 1.013 1.240 1.186 1.140 1.154 1.105 1.046
y10 1.030 1.028 1.030 1.166 1.144 1.120 1.093 1.080 1.035

Relative MSE of the estimates in the real data simulation with the different co-
variates for the adjustments and unequal probability sampling proportional to age
can be seen in Table 8. Adjustments for nonprobability samples only work for y8
(with PSA showing the best results) when using demographic covariates, and y1
(household expenses are a heavy burden, ordinal from 1 to 3), y2 (household has a
car, dichotomous), y8 (household has a heating system, dichotomous) and y9 (in-
dependent Bernoulli random variable) with TrIPW showing the best results when
using deprivation covariates. It is important to note that in this case, and in contrast
to the SRSWOR scenario, weight smoothing worked in some of those favourable
situations as well as many of the unfavourable ones, although its performance was
limited when the estimator was largely inefficient. In those cases where weight



smoothing worked well, LASSO provided the largest efficiency gains (except for
y1 and y2 when using demographic covariates); however, in cases where weight
smoothing did not help, LASSO sometimes performed worse than XGBoost.

Table 8: Relative MSE (RelMSE) for each variable, adjustment method and covariates, in
the real data experiment when drawing sv with unequal probability sampling (proportional
to age) from the subpopulation having a computer at home.

PSA (Log. reg.) PSA (k-NN) TrIPW
Cov. Obj. NS XGB LASSO NS XGB LASSO NS XGB LASSO

Dem.

y1 1.501 1.396 1.776 1.471 1.420 1.930 1.705 1.695 2.072
y2 1.092 1.046 1.059 1.100 1.042 1.053 1.218 1.113 1.130
y3 5.982 6.108 6.656 6.026 6.127 6.568 4.336 4.519 4.780
y4 4.311 4.234 4.435 4.314 4.213 4.408 4.046 3.935 3.991
y5 3.924 4.044 2.692 2.955 3.195 2.238 7.484 7.309 5.308
y6 2.973 3.189 2.813 3.242 3.528 2.920 5.679 5.971 4.767
y7 2.040 2.026 1.722 1.930 2.149 1.963 2.817 2.887 2.264
y8 0.432 0.373 0.342 0.466 0.402 0.359 0.786 0.686 0.654
y9 1.714 1.331 1.100 1.603 1.355 1.012 2.083 1.737 1.340
y10 1.794 1.636 1.077 1.818 1.727 1.207 2.143 1.989 1.277

Dep.

y1 0.993 1.043 1.064 1.060 1.065 1.335 0.712 0.709 0.768
y2 0.982 0.992 0.993 0.905 0.911 0.953 0.804 0.822 0.843
y3 8.463 8.474 8.493 8.381 8.362 8.463 8.235 8.234 8.334
y4 4.948 4.947 4.953 4.945 4.905 4.958 4.922 4.879 4.932
y5 2.017 1.980 1.912 2.208 2.273 1.947 2.782 2.763 2.410
y6 2.033 2.099 2.085 2.089 2.179 2.316 1.522 1.646 1.686
y7 1.727 1.733 1.746 1.946 1.981 1.807 2.352 2.337 2.133
y8 0.134 0.137 0.141 0.152 0.146 0.171 0.141 0.135 0.134
y9 0.998 0.994 0.990 1.145 1.097 1.030 1.098 1.044 0.993
y10 1.015 1.010 0.998 1.142 1.119 1.032 1.287 1.263 1.181

7 Discussion

This paper introduces the use of weight smoothing methods in the nonprobability
survey context. Given its advantages in probability sampling, which were proven
by Beaumont (2008), in terms of minimizing the variance induced by sampling
design variables, it was expected that such methods could be used to address the
issue of modeling propensities with prognostically irrelevant covariates. We de-
signed two simulation studies which considered this approach in nonprobability
sampling for both artificial and real data, using PSA and TrIPW to estimate propen-
sities. The results show that weight smoothing contributes to reduce MSE in those
situations where the efficiency of non-smoothed estimates is poor. These are the
situations where the propensity models are not correctly specified or their covari-
ates are weakly related to the variables of interest. When the estimates are already
efficient, weight smoothing does not add much, with some exceptions where the
set of covariates is good but not optimal.

In the real data simulation, there were some remarkable exceptions to the be-
havior described above. In some cases, the adjusted estimates (with PSA or TrIPW)
were largely inefficient, but weight smoothing could not improve the results. The
explanation could be that propensity adjustments can sometimes contribute to in-
creasing the bias, rather than reducing it, when the models do not capture the ac-
tual relationships between covariates (Lee 2006; Ferri-Garcı́a and Rueda 2020). In
those cases, the MSE increases but not because of an increase in variance, meaning



that weight smoothing is unable to make an impact as its focus is on reducing the
noise.

Regarding weight smoothing, LASSO regression presented better results over-
all than XGBoost in terms of MSE reduction. LASSO regression involves variable
selection, which can be particularly relevant in those cases where some target vari-
ables are more related to the weights than others. Finally, and despite the fact
that the suitability of propensity estimation adjustments varies across situations,
TrIPW provided better results than PSA in a majority of cases. It is also important
to note that in those cases where TrIPW could not perform as well as PSA, weight
smoothing succeeded at reducing MSE and getting TrIPW estimates to a similar
level as PSA estimates. Therefore, a reasonable strategy could be to use TrIPW
with further weight smoothing as a default choice when adjusting for selection
bias in nonprobability surveys.

The present study has some limitations that should be noted. First, transfor-
mation of propensities in weights was performed only using one approach: the
wi = 1/πi formula from Valliant (2020). Other formulas might be useful in those
contexts where the weights are less concentrated or have larger variability, and
therefore propensity stratification could lead to smaller variances and larger effi-
ciency values. Second, only two predictive algorithms were proposed in weight
smoothing. There is currently a wide range of possibilities in Machine Learn-
ing literature regarding regression techniques that involve different approaches and
paradigms, whose performance depends largely on the available dataset. Further
studies could explore new applications of weight smoothing in nonprobability sam-
pling where other regression techniques might provide better results. Finally, the
data used for simulations covers a limited range of situations; for instance, the ar-
tificial data simulation only considered the most complicated scenario for weight
smoothing (an U-shaped distribution for the vector of weights), and the real data
simulation presented a situation where the selection bias was not extremely large.
More realistic situation, such as right-skewed vectors of weights or more biased
nonprobability samples, should be considered in future research on the matter.
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Abstract

Healthcare professionals (HCPs) often suffer high levels of depression, stress, anxiety and

burnout. Our main study aimswereto estimate the prevalences of poor self-perceived health, life

dissatisfaction, chronic disease and unhealthy habits among HCPs and to explore the use of machine

learning classification algorithms to remove selection bias. A sample of Spanish HCPs was asked

to complete a web survey. Risk factors were identified by multivariate ordinal regression models.

To counteract the absence of probabilistic sampling and representation, the sample was weighted by

propensity score adjustment algorithms. The logistic regression algorithm was considered the most

appropriate for dealing with misestimations. Male HCPs had significantly worse lifestyle habits than

their female counterparts, together with a higher prevalence of chronic disease and of health prob-

lems. Members of the general population reported significantly poorer health and less satisfaction

with life than the HCPs. Among HCPs, the prior existence of health problems was most strongly

associated with worsening self-perceived health and decreased life satisfaction, while obesity had an

important negative impact on female practitioners’ self-perception of health. Finally, the HCPs who

worked as nurses had poorer self-perceptions of health than other HCPs, and the men who worked in

primary care had less satisfaction with their lives than those who worked in other levels of healthcare.

1 Introduction

One of the elements of the physician’s pledge in the 2017 revision of the Decla-
ration of Geneva, adopted by the World Medical Association (WMA), states: ‘I
will attend to my own health, well-being, and abilities in order to provide care
of the highest standard [1]’. This addition to the previous Declaration of Geneva
acknowledges that patients suffer when the well-being of healthcare professionals
(HCPs) is compromised [2] and was adopted in response to the growing aware-
ness that physicians and nurses present high levels of depression, stress, anxiety
and burnout [3]. In fact, suicide is the only cause of death that has a higher preva-
lence among physicians than in the general population [4], and the situation among
nurses is likely to be similar [5]. Moreover, the prevalence of substance abuse
and/or addiction among physicians is likely to be similar to that found among the
general public, or even higher [6].

The WMA recommends that more research be conducted into physicians’ health
and well-being and into the impact of these parameters on the patient care provided
[7]. In view of these considerations, the main objectives of this research were to
estimate the prevalence among HCPs of ill health, dissatisfaction, chronic disease
and unhealthy lifestyle habits and to identify and analyse factors associated with
life satisfaction and perceived health status.

We addressed these study goals by means of an online survey, an approach
that offers substantial advantages over traditional survey techniques in terms of
financial and time savings.Health surveys have traditionally used probability sam-
pling of addresses and data collection facilitated by an interviewer who visits each
address, but this traditional approach has some limitations, such as the great eco-
nomic and temporal cost and the susceptibility to nonresponse bias. The main mo-



tivation for using nonprobability samples (as volunteer web surveys) is their low
cost, lowrespondent burden and quick turnaround since they allow for producing
estimates shortly after the information needs have been identified.

Although the validity of internet research for subjective surveys of personal
well-being is well established [8] and online questionnaires are recognised as an
important tool for epidemiological research [9], many surveys of this type are sub-
ject to self-selection [10,11]. Ref. [12] found in a health study that the bias in web
surveys is too important, even when additional quotas are set. Statistical adjust-
ments are the key to obtaining reliable estimates from online survey data. Among
the various techniques to remove bias in web surveys, we could underline propen-
sity score adjustment (PSA). This method, originally developed for reducing se-
lection bias in non-randomised clinical trials [13], was adapted to nonprobability
surveys in the work of [14,15]. PSA aims to estimate the propensity of each in-
dividual’s participation in a survey by using logistic regression. [16] assessed the
ability of PSA to remove bias in the context of sensitive sexual health research and
the potential of web panel surveys to replace or supplement probability surveys.

Another goal of this research was to explore the use of machine learning (ML)
classification algorithms to remove selection bias by reweighting the study vari-
ables via PSA. ML techniques are commonly employed in epidemiology [17,18,19],
and statistical algorithms have been used to weight variables in recent health sur-
veys [20,21,22].These techniques have also shown good properties in simulated
data in terms of bias reduction [23,24] but at the cost of increasing the variance of
the estimates. However, the mean square error (MSE), which combines bias and
variance, is reduced with PSA in some situations, meaning that its application can
be recommended in nonprobability sampling contexts. The objective of this study
was to compare the performance and applicability of ML algorithms for PSA using
several transformations to convert the probabilities provided by PSA into weights
in a real-world context. This work pioneers the use of ML techniques to adjust the
voluntary response bias in a real health survey and shows the capabilities of the
different methods compared with the usual non-adjustment methodology.

2 Materials and methods

2.1 Target population

In 2014, according to census data, the Public Health System of Andalusia (SAS)
employed 137,882 HCPs. However, for the purposes of this study, only those with
a university degree were considered for inclusion, and so the target population was
composed of the 73,465 HCPs who had this academic qualification.

2.2 Sample

In 2014, the participants in an online course on holistic care for patients with
chronic diseases were asked to complete a web survey. These participants (n =



1797) were all university graduates working in the SAS as HCPs.

2.3 Variables

The following variables were present in both datasets (web survey and census):
sex, age, degree and type of medical care provided (Table 1).

Table 1: Variables present in both datasets.

Variable Web Survey (%) Census (%)
Sex

Male 31.66 33.12
Female 68.34 66.88
Age1

<25 1.11 2.16
26–35 21.09 26.96
36–45 34.78 25.74
46–55 32.78 24.50
>55 10.24 20.65

Healthcare area
Specialised 50.97 66.74

Primary 49.03 33.26
Degree subject area

Medicine 43.80 40.44
Nursing 44.46 52.86
Other 11.74 6.69

Valid sample n = 1797 n = 73,465
1 Age data were not available for 383 individuals (0.52%) in the census data.

In addition to the variables presented in the table, the following variables were
also addressed in the web survey:

• Self-perceived health status (scored on a 5-point Likert scale, ranging from
1 = very bad to 5 = very good)

• Satisfaction with life (scored on a 10-point Likert scale, ranging from 1 =
completely unsatisfied to 10 = completely satisfied)

• Alcohol intake (once a day/once a week/once a month/less than once a month/never)

• Tobacco use (never/ex-smoker/occasional smoker/regular smoker)

• Physical activity (none/occasional/regular/intensive)

• Body mass index (BMI), obtained from dividing the weight (in kilograms)
by the square of the height (in centimetres) and categorised as low or normal



weight (<25 kg/m2), overweight (25–29 kg/m2) and obesity (≥30 kg/m2)
[25]

• Hours of sleep per night (numeric)

• Physical, mental or sensorial disability (presence/absence)

• Chronic disease (presence/absence)

• Health problems (none/one/two or more)

In order to make the prevalences of the healthcare professional survey com-
parable with those of the general population, the same categorisation and cut-off
points of the Andalusian Health Survey [26] were applied for those study variables
considered in both surveys, as follows: poor health ≤3 (i.e., fair, bad or very bad);
dissatisfaction with life ≤6; ≥1 alcoholic drink per month; and insufficient sleep
<7 h of sleep per night.

2.4 Sampling Weights

As shown in Table 1, HCPs aged 36–55 years were over-represented in the web sur-
vey sample with respect to the target population as well as to primary care HCPs.
On the other hand, there was an under-representation of HCPs with a degree in
nursing. Given a volunteer survey sv, the usual estimator of the population propor-
tion is the Horvitz–Thompson estimator given by

pht =
1
N ∑

i∈sv

Aiwi (1)

where Ai = 1 if the unit i in the sample sv has the desired characteristics and 0
else, and wi is the weight (the inverse of the sampling rate).

To adjust for the lack of probability sampling and the resulting non-representativeness,
the sample was weighted, using the standard procedure of propensity score adjust-
ment (PSA) for web surveys [14,15].

This approach aims to estimate the propensity of an individual to be included
in the nonprobability sample by combining the data from the sample sv with a
reference probability sample sr and training a predictive model on the variable δ ,
with δi = 1 if i ∈ sv and δi = 0 if i ∈ sr. PSA assumes that the selection mechanism
of sv is ignorable and follows a parametric model:

P(δi = 1|xi) = π(xi,γ) (2)

for some function π of the observed covariates xi and a parameter γ . The
usual procedure is to estimate the parameter γ by using logistic regression and to
transform the estimated propensities to weights by inverting them:

pPSA1 =
1

∑i∈sv 1/ ˆπ(xi)
∑
i∈sv

Ai ∗1/ ˆπ(xi) (3)



where ˆπ(xi) denotes the estimated propensity for the individual i ∈ sv. This
transformation is equivalent to the Hajek estimator of the population proportion.
An alternative that takes into account the fact that individuals of sv must be ex-
cluded from the target population of sr is the formula presented in [27]:

pPSA2 =
1

∑i∈sv(1− ˆπ(xi))/ ˆπ(xi)
∑
i∈sv

Ai ∗ (1− ˆπ(xi))/ ˆπ(xi) (4)

We considered the following algorithms for estimating the aforementioned
propensities:

• Logistic regression

• Decision trees (C5.0 algorithm [28])

• The k-nearest neighbours algorithm, with k = 5 (5-NN)

• Naı̈ve Bayes with no Laplace smoothing

• Random forest with 500 trees

• Gradient boosting machine (GBM) with 100 trees, interaction depth of 1 and
learning rate of 0.1

• Feed-forward neural networks with one hidden layer, initialising weights to
0 and considering three cases with 1, 3 and 5 units in the hidden layer

In all cases, the probabilities calculated in PSA were transformed into weights
for Hajek estimators, following the formula for pPSA2 stated in [27]. Weights for
Horvitz–Thompson estimators were also calculated, in accordance with [15]. PSA
was performed in R 3.1.5 [29] using the packages sampling [30], survey [31], C50
[32], randomForest [33], gbm [34], e1071 [35], caret [36] and nnet [37]. The
weights for the Horvitz–Thompson estimators were discarded, as they were unsta-
ble and produced unacceptably high variances. In general, the Horvitz–Thompson
weights, although they correlated with the Hajek weights obtained by the same
methods, presented higher levels of skewness, probably caused by the grouping
features of the weighting method (see Appendix A). Moreover, the weights ob-
tained by PSA using decision trees and neural networks with five units were also
discarded, as they were found to be equal to the design weights and so provided
the same outputs as in the unadjusted case.

2.5 Statistical Analysis

Several weights were applied in estimating the prevalence of each of the variables
considered. To reflect potential differences between male and female HCPs in these
prevalence values, sex was taken as a stratification variable. The variances of the
proportion estimators were calculated using the leave-one-out jackknifealgorithm
[38], implemented in the bootstrap package in R [39]. Prevalence values for the



study population were compared with those for the general population [26] in the
same age range (22–67 years).

Multivariate ordinal logistic regression models were run to characterise the
ordinal variables of life satisfaction and self-perceived health status. Sampling
weights were applied in the models, which were constructed independently for
male and female HCPs. In the statistical analysis, the scales for life satisfaction
and self-perceived health status were inverted; thus, odds ratios (OR) > 1 mean
that the explanatory variable increases the probability of dissatisfaction with life
or of poor self-perceived health. In addition, those reference categories of the ex-
planatory variables which obtained a better interpretation of odds ratios (i.e., OR >
1) were chosen. The following explanatory variables were included in the models:

• Health problems (none/one/two or more)

• Tobacco use (never/ex-smoker/occasional smoker/regular smoker)

• Hours of sleep per night (<7 h/≥7 h)

• Physical activity (none/occasional/regular/intensive)

• Body mass index (BMI), categorised as low or normal weight (<25 kg/m2),
overweight (25–29 kg/m2) and obesity (≥30 kg/m2) [25]

• Level of healthcare (Primary/ Other)

• Age in years (numeric)

• Degree (Medicine/Nursing/Other)

Multicollinearity of the independent variables was assessed using the variance in-
flation factor (VIF) [40], which indicates collinearity if the factor takes large val-
ues. The factor was discarded for VIF > 3 [41]. Therefore,‘chronic diseases’
and ‘physical, mental or sensorial disability’ were not included in the final model.
Alcohol consumption was also excluded because of its low association with the
dependent variables of the models, which was assessed with a preliminary regres-
sion analysis where the alcohol variable was not significant and had a beta coeffi-
cient around zero. The rest of the coefficients and test statistics remained almost
unchanged with respect to the case without the alcohol consumption variable.To
observe the range of values in which the coefficients would be applicable to the
entire population, 95% confidence intervals were calculated. Hypothesis testing
of the beta coefficients was performed with the Wald test. Statistical and graph-
ical analyses were performed in R 3.5.1 using the packages poliscidata [42] and
ggplot2 [43], respectively, in addition to those mentioned above.



3 Results

3.1 Prevalence Estimations

According to results provided by PSA with logistic regression,10.3% of male HCPs
(Table 2) and 12.6% of female HCPs (Table 3) were dissatisfied with their life
and 8.4% of male and 7.8% of female professionals perceived their own health as
poor. Regarding lifestyle habits, 62.3% of the men and 42.8% of the women drank
alcohol at least once a week, while 31.1% of the men and 26.7% of the women
slept for less than seven hours a day. Finally, 31.8% of the men and 22.3% of the
women reported havingat least one chronic disease. Moreover, 26.3% of the men
and 20.6% of the women had one health problem, 10.4% and 6%, respectively, had
two or more health problems, and 7% of men and 6% of women had a disability
(Table 2 and Table 3).

Table 2: Point estimate, variance and difference from the non-adjusted case of estimators of
prevalence in male healthcare professionals (HCPs) for each propensity score adjustment
(PSA) (algorithms are sorted from the least to the most complex).

Algorithm Used in PSA Poor Self-Perceived Health Dissatisfied with Life (Score of 6 or Less)
Estimate Variance Diff. from no adj. (%) Estimate Variance Diff. from no adj. (%)

No adjustment 0.088 0.00014 Estimate Variance 0.1002 0.00016 Estimate Variance
Logistic regression 0.084 0.00016 -4.34% 17% 0.1031 0.00023 2.93% 45%
Neural net (1 unit) 0.087 0.00023 -0.58% 62% 0.1090 0.00043 8.84% 174%

Algorithm Used in PSA Alcohol once a week <7 h of sleep
Estimate Variance Diff. from no adj. (%) Estimate Variance Diff. from no adj. (%)

No adjustment 0.6232 0.00041 Estimate Variance 0.3093 0.00038 Estimate Variance
Logistic regression 0.6234 0.00053 0.02% 29% 0.3118 0.00049 0.82% 30%
Neural net (1 unit) 0.6004 0.00085 -3.66% 106% 0.3395 0.00085 9.76% 126%

Algorithm Used in PSA Disability (physical. mental or sensorial) Chronic disease
Estimate Variance Diff. from no adj. (%) Estimate Variance Diff. from no adj. (%)

No adjustment 0.0645 0.00011 Estimate Variance 0.3369 0.00040 Estimate Variance
Logistic regression 0.0695 0.00016 7.74% 46% 0.3179 0.00048 -5.63% 19%
Neural net (1 unit) 0.0584 0.00015 -9.42% 43% 0.3065 0.00065 -9.03% 63%

Algorithm Used in PSA One health problem Two or more health problems
Estimate Variance Diff. from no adj. (%) Estimate Variance Diff. from no adj. (%)

No adjustment 0.2742 0.00036 Estimate Variance 0.1072 0.00017 Estimate Variance
Logistic regression 0.2630 0.00044 -4.09% 22% 0.1037 0.00019 -3.23% 13%
Neural net (1 unit) 0.2361 0.00054 -13.90% 51% 0.1048 0.00024 -2.22% 41%



Table 3: Point estimate, variance and difference from the non-adjusted case of estimators
of prevalence in female HCPs for each propensity score adjustment (PSA) (algorithms are
sorted from the least to the most complex).

Algorithm Used in PSA Poor Self-Perceived Health Dissatisfied with Life (Score of 6 or Less)
Estimate Variance Diff. from no adj. (%) Estimate Variance Diff. from no adj. (%)

No adjustment 0.0839 0.00006 Estimate Variance 0.1205 0.00009 Estimate Variance
Logistic regression 0.0784 0.00007 -6.49% 15% 0.1261 0.00012 4.61% 39%
Neural net (1 unit) 0.0720 0.00008 -14.21% 29% 0.1270 0.00019 5.36% 114%

Algorithm Used in PSA Alcohol once a week <7 h of sleep
Estimate Variance Diff. from no adj. (%) Estimate Variance Diff. from no adj. (%)

No adjustment 0.4223 0.00020 Estimate Variance 0.2671 0.00016 Estimate Variance
Logistic regression 0.4275 0.00026 1.23% 30% 0.2670 0.00021 -0.03% 29%
Neural net (1 unit) 0.4281 0.00039 1.39% 95% 0.2547 0.00028 -4.64% 79%

Algorithm Used in PSA Disability (physical. mental or sensorial) Chronic disease
Estimate Variance Diff. from no adj. (%) Estimate Variance Diff. from no adj. (%)

No adjustment 0.0628 0.00005 Estimate Variance 0.2230 0.00014 Estimate Variance
Logistic regression 0.0602 0.00006 -4.14% 23% 0.2228 0.00019 -0.05% 29%
Neural net (1 unit) 0.0581 0.00008 -7.46% 74% 0.2253 0.00029 1.05% 99%

Algorithm Used in PSA One health problem Two or more health problems
Estimate Variance Diff. from no adj. (%) Estimate Variance Diff. from no adj. (%)

No adjustment 0.2122 0.00014 Estimate Variance 0.0562 0.00004 Estimate Variance
Logistic regression 0.2056 0.00017 -3.13% 22% 0.0601 0.00006 6.95% 50%
Neural net (1 unit) 0.2095 0.00025 -1.26% 83% 0.0568 0.00010 1.17% 123%

Figure A8 and Figure A9 of Appendix B show the 95% confidence intervals
for the prevalence of each of the variables considered. All of the estimations were
very similar, whichever method was applied, although some point estimates var-
ied slightly due to the influence of certain algorithms on the propensity estimation
step. In consequence, there were no statistical differences between the prevalences
estimated among any of the weighting methods applied. The logistic regression
algorithm obtained the best results in terms of both prevalence and variance de-
viations compared with no weighting adjustment (see Table A3 and Table A4 of
Appendix B). As stated before, PSA contributed to increasing the variance of the
estimators but reduced their bias, meaning that the estimates based in PSA might
be more valuable as they mitigated the effect of non-sampling errors in the final es-
timates. Given that the estimates provided by PSA with different algorithms were
very similar (and therefore might reduce the bias in the same amount), the choice
that reduced MSE to the minimum extent might be the estimate with the lowest
variance.

Table 4 shows the prevalences of the study variables for the general population
[26] and the HCPs. The latter group self-reported significantly better health and
greater satisfaction with life than the general population. In addition, while women
in the general population reporteda significantly worse perception of their health
than men (17.5% and 12.1%, respectively, reported poor health), female HCPs
had a better, although non-significant, perception in this respect, compared with
their male counterparts (7.8% and 8.5%, respectively). On the contrary, women
reported significantly less satisfaction with their life than men, both those in the
general population (19.2% vs. 16.3%, respectively) and among the HCPs (12.6%
vs. 10.3%, respectively).



Table 4: Prevalence of the study variables in the general population [26] and in healthcare
professionals according to survey data (Andalusia).

Study Variables
General Population Healthcare Professionals

(Weighted with Propensity
Score Adjustment Using Logis-
tic Regression)

% 95% CI % 95% CI
Poor self-perceived health
(fair/bad/very bad) in the last 12
months

Total 14.8 (13.5; 16) 8.1 (6.7; 9.5)
Men 12.1 (10.6; 14) 8.4 (5.9; 1.,9)

Women 17.5 (15.6; 19) 7.8 (6.2; 9.5)

Dissatisfied with life (6 or less
on a scale from 1 to 10)

Total 17.8 (16.2; 20) 10.7 (9.2; 12.3)
Men 16.3 (14.6; 18) 10.3 (7.3; 13.3)

Women 19.2 (17.1; 21) 12.6 (10.5; 14.8)

Alcohol consumption (at least
once in a month)

Total 49.5 (47; 52) 66.4 (63.9; 68.8)
Men 62.5 (59.9; 65) 79.8 (76.1; 83.5)

Women 37.1 (33.7; 41) 60.0 (56.9; 63.1)

Less than 7 h of sleep
Total 20 (17.8; 22) 27.9 (25.6; 30.3)
Men 17.7 (15.3; 20) 31.2 (26.8; 35.5)

Women 22.1 (19.7; 25) 26.7 (23.9; 29.5)

Presence of a chronic disease
Total 40.7 (38.6; 43) 26.6 (24.2; 28.9)
Men 35.9 (33.6; 38) 31.8 (27.5; 36.1)

Women 45.3 (42.7; 48) 22.3 (19.6; 25)

Physical, mental or sensorial
disability

Total 3.54 (2.94; 4) 6.0 (4.8; 7.2)
Men 3.95 (3.16; 5) 7.0 (4.5; 9.4)

Women 3.16 (2.45; 4) 6.0 (4.5; 7.5)

With respect to alcohol consumption (at least once in a month), the men in the
general population and among HCPs reportedsignificantly higher prevalencesthan
women. In addition, alcohol consumption was significantly more prevalent among
male and female HCPs than among men and women in the general population
(79.8% and 60%, 62.5% and 37.1%, respectively). Regarding hours of sleep per
day, significantly more HCPs than persons in the general population slept for less
than 7 h. This difference was especially marked among men (31.2% vs. 17.7%,
respectively). In addition, significantly more male than female HCPs slept for less
than 7 h per day (31.2% vs. 26.7%, respectively), which is contrary to the pattern
observed in the general population.

The presence of chronic disease was much more prevalent among women in
the general population than among female HCPs (45.3% vs. 22.3%, respectively),
but no such difference was observed between the two groups of men (35.9% vs.
31.8%, respectively). The prevalence of disability was almost twice as high among
HCPs as in the general population (6% vs. 3.5%, respectively). In this respect,
there were no differences between men and women.



3.2 Regression Modelling

As described above, the regression modelling was performed using three types of
weighting: no adjustment, PSA using logistic regression for prevalence estima-
tion and PSA using a neural net with one unit for prevalence estimation. These
weighting methods were selected taking into account the low degree of variabil-
ity among them, which means that one or more could be discarded if necessary to
avoid redundancy (see Appendix A for further information on the similarity among
weights).

In almost every case, the strength of evidence against the explanatory vari-
able having a null effect weakened with reweighting, not only because the vari-
ance increased (for example, with larger confidence intervals) but also when the
beta coefficient shifted towards zero (or towards one; see Table 5, Table 6, Table
7 and Table 8). In other words, when reweighting was performed, it merely ad-
dressed misestimation of the association between explanatory variables, caused by
the nonprobabilistic sampling method applied in the survey.

Table 5 and Table 6 depict the results for the models assessing self-perceived
health, and Table 7 and Table 8 depict those concerning satisfaction with life. Fig-
ure 1 and Figure 2 illustrate the OR for self-perceived health and satisfaction with
life, respectively, for male and female participants.

Table 5: Regression models for poorer self-perceived health among men according to each
weighting adjustment method. Reference classes for categorical variables: no health prob-
lems, never smoked,≥7 h of sleep, physical exercise several days a week, normal weight or
underweight, working in a specialised field of healthcare and degree in medicine (n = 558
observations, Nagelkerke R2=0.281).

No PSA Adjustment PSA with Logistic Regression PSA with Neural Net (1 Unit)
Predictors Odds ratio 95% CI Odds ratio 95% CI Odds ratio 95% CI

1—2 intercept 7.44 2.71–20.4 9.43 3.26–27.3 10.15 2.90–35.5
2—3 intercept 279.11 249–313 331.25 289–380 314.56 264–375
3—4 intercept 2411.0 1733–3354 2979.3 2078–4273 3151.0 2100–4728
4—5 intercept 5792.5 2086–16,085 7636.5 2635–22,132 6489.2 1890–22,276

One health problem 3.23 2.14–4.86 2.82 1.78–4.45 2.59 1.53–4.38
Two or more health problems 8.31 4.11–16.8 7.24 2.99–17.6 7.18 1.79–28.9

Daily smoker 1.30 0.66–2.58 1.46 0.72–2.96 1.43 0.67–3.05
Non-daily smoker 0.45 0.18–1.12 0.39 0.16–1.00 0.19 0.07–0.50

Ex-smoker 0.88 0.59–1.31 0.85 0.54–1.33 0.60 0.34–1.05
<7 h of sleep 1.78 1.23–2.59 1.83 1.19–2.81 1.95 1.17–3.26

No physical activity at all 2.94 1.36–6.35 2.76 1.02–7.43 1.98 0.32–12.3
Occasional physical activity 1.60 1.03–2.46 1.65 1.01–2.69 1.78 1–3.17

Regular physical activity 1.36 0.84–2.19 1.36 0.81–2.28 1.45 0.78–2.71
Obesity 1.39 0.78–2.49 1.40 0.71–2.77 1.78 0.81–3.95

Overweight 1.50 1.01–2.22 1.50 0.96–2.36 1.60 0.93–2.75
Age (5 years) 1.14 1.02–1.27 1.16 1.02–1.31 1.17 1.00–1.36
Primary care 1.16 0.77–1.75 1.24 0.78–1.98 1.37 0.77–2.44

Nursing degree 1.91 1.33–2.74 1.85 1.25–2.76 1.86 1.20–2.89
Other degree 0.92 0.46–1.87 1.07 0.51–2.27 1.17 0.51–2.67



Table 6: Regression models for poorer self-perceived health among women according to
each weighting adjustment method. Reference classes for categorical variables: no health
problems, never smoked, ≥7 h of sleep, physical exercise several days a week, normal
weight or underweight, working in a specialised field of healthcare and degree in medicine
(n = 1211 observations, Nagelkerke R2=0.23).

No PSA Adjustment PSA with Logistic Regression PSA with Neural Net (1 Unit)
Predictors Odds ratio 95% CI Odds ratio 95% CI Odds ratio 95% CI

1—2 intercept 6.96 3.65–13.2 6.7 3.24–13.8 7.2 2.97–17.5
2—3 intercept 252.80 234–273 242.22 222–264 253.71 230–280
3—4 intercept 2705.6 2141–3419 2481.2 1886–3264 2252.8 1643–3088
4—5 intercept 6655.2 3093–14,319 5758.5 2337–14,191 4897.8 1816–13,210

One health problem 2.27 1.64–3.14 1.90 1.33–2.72 1.76 1.15–2.70
Two or more health problems 10.81 6.22–18.8 10.25 5.32–19.8 10.15 4.91–21.0

Daily smoker 1.54 1.07–2.23 1.64 1.10–2.45 1.60 1.02–2.51
Non-daily smoker 1.56 0.98–2.51 1.59 0.96–2.64 1.46 0.83–2.59

Ex-smoker 0.93 0.71–1.22 0.96 0.71–1.29 0.99 0.70–1.41
<7 h of sleep 1.27 0.97–1.65 1.46 1.09–1.97 1.53 1.10–2.13

No physical activity at all 1.94 1.25–3.00 1.54 0.93–2.55 1.48 0.82–2.65
Occasional physical activity 1.50 1.13–2.00 1.43 1.04–1.97 1.47 1.02–2.11

Regular physical activity 1.17 0.842–1.64 1.13 0.78–1.65 1.10 0.72–1.69
Obesity 2.14 1.23–3.72 2.10 1.10–4.02 1.84 0.81–4.20

Overweight 1.39 1.04–1.85 1.27 0.91–1.77 1.16 0.81–1.67
Age (5 years) 1.19 1.11–1.28 1.18 1.09–1.28 1.19 1.07–1.32
Primary care 1.24 0.95–1.60 1.21 0.92–1.59 1.29 0.98–1.70

Nursing degree 1.67 1.29–2.16 1.78 1.33–2.38 1.87 1.36–2.56
Other degree 1.93 1.30–2.88 1.99 1.31–3.03 2.20 1.45–3.33

The strongest OR for poor self-perceived health was obtained when the re-
spondent had one or more pre-existing health problems. Thus, the prior existence
of one health problem increased the likelihood of poor health by 3 and 2 times,
respectively, for men and women. In the case of two or more health problems, this
probability rose to 8 and 10 times, respectively, see Table 5 and Table 6. In addi-
tion, there was evidence that the presence of obesity, according to the BMI index,
was significantly associated with a lower probability of good health among women
(OR = 2.1).

Regarding the type of university degree held, nursing qualifications were sig-
nificantly associated with poorer self-perceived health, compared with respondents
with a degree in medicine, regardless of sex (OR = 1.8), or even among women
those whose degree subject was reported as neither medicine nor nursing (OR =
2). However, no significant differences in OR were observed between those who
worked in primary care or other level of healthcare.

In relation to lifestyle habits, smoking every day was associated with a greater
likelihood of poorer self-perceived health in women; no physical activity or only
occasional activity was also associated with poorer self-perception of health, espe-
cially in men, as was sleeping less than seven hours per night.



Figure 1: Confidence intervals at 95% for the odds ratio for each explanatory variable
on self-perception of health, using logistic regression for the propensity score adjustment.
Reference classes for categorical variables: no health problems, never smoked, ≥7 h of
sleep, physical exercise several days a week, normal weight or underweight, specialised
field of healthcare and degree in medicine. The x axis scale is logarithmic to facilitate
interpretation of the data.
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Table 7: Regression models for poorer self-perceived life satisfaction among men accord-
ing to each weighting adjustment method. Reference classes for categorical variables: no
health problems, never smoked, ≥7 h of sleep, physical exercise several days a week, nor-
mal weight or underweight, specialised field of healthcare and degree in medicine (n = 558
observations, Nagelkerke R2 = 0.266).

No PSA Adjustment PSA with Logistic Regression PSA with Neural Net (1 Unit)
Predictors Odds ratio 95% CI Odds ratio 95% CI Odds ratio 95% CI

1—2 intercept 0.35 0.14–0.87 0.21 0.08–0.57 0.24 0.07–0.80
2—3 intercept 3.05 2.60–3.58 2.43 2.05–2.89 3.25 2.69–3.93
3—4 intercept 18.54 16.4–20.9 15.01 13.1–17.1 20.24 17.4–23.6
4—5 intercept 91.95 77.6–109 75.94 63.1–91.4 100.31 80.4–125
5—6 intercept 227.57 162–320 180.36 121–269 255.27 156–418
6—7 intercept 509.65 296–877 442.63 245–799 577.23 300–1111
7—8 intercept 1597.5 776–3290 1938.1 975–3852 2483.3 1187–5196
8—9 intercept 1597.6 612–4175 2281.3 838–6212 2919.1 1047–8136

9—10 intercept 3223.0 790–13,165 4045.2 853–19,181 4846.0 993–23,640
One health problem 2.60 1.79–3.77 2.58 1.70–3.91 2.65 1.67–4.20

Two or more health problems 3.98 2.13–7.44 4.44 2.18–9.04 3.65 1.38–9.70
Daily smoker 1.53 0.84–2.76 1.43 0.74–2.75 1.41 0.69–2.89

Non-daily smoker 0.91 0.41–2.03 0.94 0.43–2.07 0.74 0.29–1.89
Ex-smoker 0.81 0.57–1.16 0.82 0.55–1.21 0.65 0.40–1.07

<7 h of sleep 1.51 1.07–2.14 1.69 1.13–2.53 1.87 1.15–3.05
No physical activity at all 5.10 2.73–9.51 4.39 2.09–9.26 3.69 1.26–10.8

Occasional physical activity 1.95 1.29–2.96 2.03 1.27–3.23 2.09 1.21–3.61
Regular physical activity 1.94 1.30–2.90 1.84 1.18–2.89 1.94 1.12–3.35

Obesity 0.99 0.58–1.70 0.92 0.50–1.70 1.03 0.52–2.02
Overweight 1.20 0.83–1.73 1.02 0.69–1.52 1.07 0.68–1.68

Age (5 years) 1.08 0.98–1.19 1.06 0.96–1.18 1.11 0.98–1.27
Primary care 1.43 1.00–2.05 1.54 1.03–2.30 1.42 0.89–2.25

Nursing degree 1.00 0.71–1.41 0.84 0.57–1.25 0.75 0.49–1.15



Table 8: Regression models for poorer self-perceived life satisfaction among women ac-
cording to each weighting adjustment method. Reference classes for categorical variables:
no health problems, never smoked, ≥7 h of sleep, physical exercise several days a week,
normal weight or underweight, specialised field of healthcare and degree in medicine
(n = 1211 observations, Nagelkerke R2 = 0.159).

No PSA Adjustment PSA with Logistic Regression PSA with Neural Net (1 Unit)
Predictors Odds ratio 95% CI Odds ratio 95% CI Odds ratio 95% CI

1—2 intercept 0.23 0.12–0.42 0.24 0.12–0.49 0.26 0.11–0.59
2—3 intercept 1.48 1.32–1.66 1.52 1.33–1.72 1.58 1.37–1.83
3—4 intercept 7.20 6.62–7.84 7.55 6.86–8.31 7.93 7.08–8.88
4—5 intercept 32.10 28.8–35.8 35.79 31.7–40.5 40.47 35.0–46.8
5—6 intercept 79.91 64.3–99.3 81.36 63.5–104 88.66 66.7–118
6—7 intercept 177.46 127–248 185.18 127–269 194.14 127–298
7—8 intercept 437.33 273–700 441.97 259–755 411.03 223–758
8—9 intercept 820.65 365–1847 938.97 396–2224 949.42 385–2344

9—10 intercept 2901.2 1147–7338 2710.6 892–8233 2447.5 690–8684
One health problem 1.57 1.19–2.07 1.50 1.12–2.01 1.55 1.13–2.13

Two or more health problems 3.71 2.33–5.92 3.34 2.03–5.51 3.74 2.20–6.33
Daily smoker 1.83 1.25–2.66 1.78 1.18–2.70 1.57 0.99–2.49

Non-daily smoker 1.92 1.13–3.25 1.90 1.01–3.54 1.40 0.71–2.77
Ex-smoker 1.21 0.94–1.54 1.11 0.84–1.46 1.07 0.79–1.47

<7 h of sleep 1.80 1.42–2.30 1.72 1.31–2.25 1.86 1.34–2.58
No physical activity at all 2.47 1.65–3.70 2.56 1.62–4.03 2.17 1.33–3.56

Occasional physical activity 1.57 1.21–2.04 1.49 1.12–1.99 1.28 0.93–1.77
Regular physical activity 1.10 0.82–1.50 1.08 0.77–1.50 1.05 0.71–1.55

Obesity 1.54 0.94–2.51 1.48 0.85–2.60 1.43 0.84–2.43
Overweight 1.11 0.87–1.43 1.07 0.81–1.42 1.13 0.82–1.57

Age (5 years) 1.06 0.99–1.13 1.08 1.00–1.16 1.10 1.00–1.21
Primary care 1.10 0.87–1.38 1.11 0.87–1.42 1.04 0.81–1.34

Nursing degree 0.88 0.70–1.11 0.88 0.68–1.15 0.87 0.65–1.16
Other degree 1.14 0.78–1.66 1.08 0.73–1.60 1.08 0.71–1.63

The results obtained from the analysis of self-perceived life satisfaction are
detailed in Table 7 and Table 8 and illustrated in Figure 2. As in the case of self-
perceived health, the strongest negative association with life satisfaction was mea-
sured for prior health problems, and this relationship became significantly stronger
for both male and female respondents as the number of pre-existing health prob-
lems increased. For men, furthermore, working in primary rather than other levels
of healthcare was also associated with less life satisfaction. Another important
factor was that of physical inactivity, which was also associated with lower levels
of life satisfaction, especially among men, although the differences with women in
this respect were not statistically significant. Thus, male and female HCPs who per-
formed no physical activity at all were 5 and 2.5 times, respectively, more likely to
have less satisfaction with life than their more physically active counterparts. With
respect to tobacco consumption, women who smoked (whether every day or less
frequently) were more likely to report lower levels of life satisfaction than those
who had never smoked. Finally, HCPs who slept less than seven hours per night
were around 1.5 and 1.8 times (for men and women, respectively) more likely to
report low levels of life satisfaction than those who slept for longer, assuming all
other variables remained constant.



Figure 2: Confidence intervals at 95% for the odds ratio for each explanatory variable
on self-perceived life satisfaction after applying logistic regression to the propensity score
adjustment. The following reference classes are assumed for the qualita-tive variables: no
health problems, never smoked, seven or more hours of sleep per night, physical exercise
several days a week, normal weight or underweight, working in specialised healthcare and
holding a degree in medicine. The xaxis scale is logarithmic to facilitate interpretation of
the data.
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4 Discussion

The stress of addressing the COVID-19 pandemic is having significant ill effects
on HCPs’mental and physical health [44]. In consequence, the analysis of relevant
data compiled before the present crisis is of crucial assistance to efforts to maintain
and/or improve HCPs’well-being and to facilitate the application of more effective
supportive interventions targeting policies, institutions and individuals [45]. In this
regard, attention to personal welfare and service quality is of the utmost importance
[46].



Regarding the methodological aspects of this study, in the analysis of non-
probability samples, any inference drawn must take into account the selection bias
inherent in the sampling procedure, which in most internet surveys is equivalent to
self-selection bias. Propensity score adjustment can be a useful means of overcom-
ing the effects of this kind of bias, although additional calibration may be needed
to remove the bias completely [47,48]. In our study, PSA alone produced no sub-
stantial changes in the estimates except for the effect of certain variables on the
indicators of health and life satisfaction. From this, we conclude that either the
original sample was sufficiently representative of the target population or the vari-
ables in question did not properly model the self-selection mechanism.

The outcomes from algorithms used to estimate prevalences, as an alternative
to logistic regression, did not differ from those obtained by assigning weights to
decision trees and 5-unit neural networks. In the first case, this was because the
algorithm was unable to grow any branch for the tree, as it did not detect any
variable enabling it to classify an individual, either in the self-selected or in the
reference sample. In the second case, the feed-forward technique achieved conver-
gence in the first iteration, and therefore no adjustment was needed (see Appendix
A for further information). Either or both of these cases might reflect a lack of
predictability in the covariates available for both samples. On the other hand, the
Horvitz–Thompson weights, which were also obtained for each PSA performed,
had to be discarded as they resulted in a higher variance of the estimators and
produced unstable and misleading point estimates.

The study has several limitations that have to be pointed out. First of all, there
were no available measures to assess whether the bias removal had been successful
or not. It is reasonable to assume that adjustments to mitigate selection bias may
have a significant effect; however, model misspecification in PSA can increase
the bias of the estimates, although the logistic regression model that was used as
the reference result showed a relative robustness to changes in the covariates or
sample size [23]. Further studies could consider the use of estimators that ensure
robustness against model misspecifications, such as the doubly robust estimator
proposed in [49].

Moreover, the available covariates did not show a very different behaviour in
the online sample in comparison with the full population. This can indicate that the
online sample was fairly representative of the population but can also indicate that
the available covariates failed to capture the differences between the sampled and
the non-sampled population, which could reduce the potential of PSA to mitigate
the selection bias.

It was also observed that PSA increased the variance of the estimators in com-
parison with the unadjusted case. As stated in Section 1, it is known that PSA
can reduce the selection bias at the cost of increasing the variance because of the
complexity added by the predictive models. However, the bias–variance trade-off
is often positive, as the mean square error gets reduced after the application of PSA
in certain situations, according to literature [11,14,15,23,24].

Our analysis shows that, although there were no significant differences be-



tween male and female HCPs regarding self-rated health and dissatisfaction with
life, male personnel had significantly poorer lifestyle habits than their female coun-
terparts, together with a higher prevalence of chronic disease, of disability and of
health problems. A different tendency was observed in sleep, chronic disease and
health problems when comparedwith the general population. Further research is
needed in this area in order to justify interventions which encourage male HCPs to
modify their lifestyle habits in order to prevent problems from spiralling through
the burnout cascade stages of reduced activity, distress and despair [50].

In our survey, members of the general population reported significantly poorer
health and less satisfaction with life than the HCPs consulted. Although female
HCPs consumed alcohol at least once in a month in a significantly higher frequency
than those in the general population, they were only half as likely to suffer chronic
disease. A limitation of that result is that the quantity of consumed alcohol was not
reported in the survey. Other studies have also found a lower prevalence of chronic
diseases among physicians than in the general population, with similar percentages
to ours, ranging from 13–44% [51,52]. Nevertheless, further detailed, up-to-date
research is needed in this area.

Among HCPs, the prior existence of health problems was the factor most
strongly associated with worsening self-perceived health and decreased life sat-
isfaction, while obesity had an important negative impact on female practitioners’
self-perceived health. Our study did not include work environment, workplace
characteristics and other factors such as quality of management, professional de-
velopment and colleague support/team spirit. Allof those factors have a stronger
positive association with HCPs’ satisfaction compared with personal and intrinsic
factors [53].

5 Conclusions

For almost all of the explanatory variables, any misestimations caused by the non-
probabilistic nature of the sampling process for the online survey were corrected
by reweighting. There were some differences across the estimations provided by
different adjustments and estimators, although several groups of algorithms for
PSA with similar behaviours could be spotted according to the weights that they
provided. Horvitz–Thompson estimates had larger estimated variances, and tree-
based bagging algorithms provided more skewed weights, which contributed to
an increase in the variance of the estimates. The point estimates finally consid-
ered were similar, meaning that they probably removed bias to the same extent,
but some adjustments presented lower variances, which made them more desirable
in terms of reducing estimation error.According to our analysis, male HCPs re-
ported poorer lifestyle habits and health conditions than their female counterparts,
although men and women had similar perceptions of health and life satisfaction.
All HCPs self-reported much better health conditions and life satisfaction than the
general population. The prevalence of chronic disease among female HCPs was



half that of the prevalence measured among the general population but that of dis-
ability among all HCPs was almost twice that of the general population. Prior
health problems, sleeping for less than seven hours per night, physical inactivity
and smoking (by women) were all associated with the perception of poorer health,
while obesity (among women), working as a nurse or in primary healthcare (among
male HCPs) were associated with less satisfaction with life. Accurate knowledge of
HCPs’ self-perceived health, life satisfaction and associated factors is essential to
enabling policy makers and healthcare managers to design and implement effective
programmes to improve the attention paid to human resources. The study results
we report can be used as a baseline for monitoring the health effects produced in
HCPs by the COVID-19 pandemic and for assessing interventions to benefit the
welfare of these professionals, whose current role makes them priority beneficia-
ries of such attention.
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Appendix A

Descriptive statistics of weights obtained through PSA with Horvitz–Thompson
weighting applying each predictive algorithm can be observed in Table A1.

Table A1: Descriptive statistics for Horvitz–Thompson weights.

Logistic
Regres-
sion

C5.0 5-NN Naı̈ve
Bayes

Random
Forest

GBM Neural
Net (1
Unit)

Neural
Net (3
Units)

Neural
Net (5
Units)

Mean 40.67 7.38 40.67 40.88 15.67 40.88 40.67 40.67 7.38
Std. Dev. 26.22 0 109.39 33.7 28.07 40.65 33.44 52.35 0

CV 0.64 0 2.69 0.82 1.79 0.99 0.82 1.29 0
Minimum 20.19 7.38 13.02 17.52 7.96 17.93 17.87 14 7.38

Q1 20.19 7.38 13.02 17.52 7.96 17.93 17.87 14 7.38
Median 31.62 7.38 13.02 38.39 7.96 33.24 30.24 14 7.38

Q3 50.85 7.38 36.8 54.9 7.96 49 56.25 64.61 7.38
Maximum 115.89 7.38 1373.45 166.92 117.85 231.42 139.74 323.55 7.38

MAD 16.94 0 0 27.75 0 22.7 18.33 0 0
IQR 30.66 0 23.78 37.38 0 31.07 38.38 50.62 0

Skewness 1.63 NaN 11.1 2.58 3.36 3.67 1.75 4.12 NaN
Kurtosis 2.15 NaN 131.95 7.24 9.32 14.52 2.22 19.39 NaN

It can be noticed that weights obtained using C5.0 and neural networks with
5 units in the hidden layer for propensity estimation provide constant weights as
a result, equivalent to not doing any adjustment at all and using design weights.
The rest of the weights move around the same values given the similarity of means
(except for weights using random forest in PSA), but the variability is not the same
for all of them. More precisely, variability of weights after using logistic regression
is relatively smaller, as well as after the use of naı̈ve Bayes, neural networks with
1 unit in the hidden layer or gradient boosting machines. Variability begins to
be relatively high when 3 units are placed in the hidden layer in neural networks



and very high when using random forest and 5-NN. In these last two cases, very
significant outliers are present. All of the weightings present a high skewness,
along with a high kurtosis in a majority of the cases.

Histograms and boxplots for each weighting can be observed in Figure A1 and
Figure A2, where some of the patterns detected in the descriptive statistics are
notorious. Positive skew is present in all weights, but although some of them are
more uniform (such as weights using logistic regression in PSA), positive skew
is more pronounced in others and even attributable exclusively to outliers. For
example, when using GBM in PSA, most of the weights are below 80, except for
only 65 of those weights (3.6% of the individuals) which take values over 220.
However, the most notorious cases are those provided by random forest and 5-NN.
In the case of random forest, all of the individuals have a weight of 7.96, except
for 126 individuals (around 7% of the sample) that take a value of 117.85, much
higher than the rest, leading to an increase of the skewness and the variability. On
the other hand, weighting using 5-NN in PSA provides weights under 200 (with
most of them being under 36.8, as described in Table A1), while a small subset of
11 individuals (0.6% of the sample) has a weight of almost 1400. This disposition
largely increases variability, as well as skewness.

Figure A1: Histograms of Horvitz–Thompson weights.
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Figure A2: Boxplots of Horvitz–Thompson weights.
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Descriptive statistics of weights obtained through PSA with Hajek weighting
applied to each predictive algorithm can be observed in Table A2.

Table A2: Descriptive statistics for Hajek weights.

Logistic
Regres-
sion

C5.0 5-NN Naı̈ve
Bayes

Random
Forest

GBM Neural
Net (1
Unit)

Neural
Net (3
Units)

Neural
Net (5
Units)

Mean 0.00056 0.00056 0.00056 0.00056 0.00056 0.00056 0.00056 0.00056 0.00056
Std. Dev. 0.00030 0 0.00063 0.00040 0.00015 0.00031 0.00052 0.00063 0

CV 0.53 0 1.12 0.71 0.27 0.56 0.93 1.14 0
Minimum 0.00022 0.00056 0.00001 0.00019 0.0000002 0.00011 0.00025 0.0000067 0.00056

Q1 0.00032 0.00056 0.00019 0.00027 0.0005985 0.00032 0.00027 0.000217 0.00056
Median 0.00049 0.00056 0.00033 0.00046 0.0005985 0.00050 0.00028 0.0003098 0.00056

Q3 0.00071 0.00056 0.00071 0.00064 0.0005985 0.00068 0.00069 0.0008019 0.00056
Maximum 0.00202 0.00056 0.00710 0.00340 0.0005985 0.00365 0.00392 0.0048296 0.00056

MAD 0.00028 0 0.00027 0.00028 0 0.00027 0.00004 0.000314 0
IQR 0.00039 0 0.00052 0.00037 0 0.00036 0.00042 0.0005849 0

Skewness 1.42 NaN 3.28 2.28 -3.26 2.57 3.51 4.28 NaN
Kurtosis 2.77 NaN 16.88 8.29 8.70 14.08 16.91 25.10 NaN

Weights obtained for Hajek estimators are more stable than those obtained for
Horvitz–Thompson ones. In each weighting, values are around the same numbers
(mean is identical in all cases), and the coefficient of variation is, in all cases,
relatively low and below its counterpart for Horvitz–Thompson weights. Skewness
coefficients again show that weights tend to be right-skewed, except for weighting
with PSA using random forest, which provides very left-skewed values. Kurtosis



coefficients are high as well, showing leptokurtic distributions.

Figure A3 and Figure A4 show histograms and boxplots for Hajek weights ob-
tained with each algorithm in PSA. In this case, skewness appears in a smoother
manner as propensities were not grouped in strata as was done with Horvitz–Thompson
weights. This allows weights to be closer to the arithmetic mean, which results in
the decrease in variability previously mentioned. The use of 5-NN or random forest
provides the most unstable situations because of the presence of outliers.

Figure A3: Histograms of Hajek weights.
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Figure A4: Boxplots of Hajek weights.
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Following one-dimensional analysis, Pearson bivariate correlations between
weights were analysed. Results of correlations can be observed in Figure A5 and
Figure A6.



Figure A5: Representation of Pearson correlations between weights. The darker and larger
the circle, the closer the correlation is to 1 (in caseswith a blue circle) or -1 (in caseswith a
red circle).
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Figure A6: Pearson’s bivariate correlations between weights.
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It is noticeable how correlations are generally positive and relatively high ex-
cept for two cases: Horvitz–Thompson weighting using 5-NN in PSA and using
random forest. In the former case, correlations with the rest of weights are positive
but weaker than the rest of the cases (it only shows a slightly stronger relationship
when the same algorithm is used but weights are developed for Hajek estimator
instead). The random forest case is more remarkable: correlations with any other
set of weights are very low, except with Hajek weights using the same algorithm
where the correlation is highly negative. It is likely that this lack of correspon-
dence is caused by the propensities estimated by the random forest algorithm,
which assigns probabilities very close to the limits 0 and 1, and therefore corre-
lation depends almost exclusively on the few individuals that have been assigned
probabilities far from those limits.

In order to better visualise the existent relationships between weights, the cor-
relation matrix was used as an input for multidimensional scaling (MDS) in two
dimensions, which explains 89.65% of the total variance. Results of the analysis
can be observed in Figure A7.



Figure A7: Multidimensional scaling for two dimensions of the correlations between
weights.
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Thanks to the scaling, the existence of two differentiated groups can be noted:
the group composed of weights obtained using PSA with logistic regression, GBM
and naı̈ve Bayes and another group composed of those obtained with neural net-
works and 5-NN (for Hajek estimators). For 5-NN, if Horvitz–Thompson weight-
ing is used, weights separate from the groups previously mentioned but are closer
to the second group than to the first one. Weights obtained with PSA using random
forest are very separated from the rest of the weights, no matter which estimator
weights were developed for.



Appendix B

Table A3: Point estimate, variance and difference from the non-adjusted case of estimators
of prevalence in male HCPs for each propensity score adjustment (PSA) (algorithms are
sorted from the least to the most complex).

Algorithm Used in PSA Poor Self-Perceived Health Dissatisfied with Life (Score of 6 or Less)
Estimate Variance Diff. from no adj. (%) Estimate Variance Diff. from no adj. (%)

No adjustment 0.088 0.00014 Estimate Variance 0.1002 0.00016 Estimate Variance
Logistic regression 0.084 0.00016 -4.34% 17% 0.1031 0.00023 2.93% 45%

5-NN 0.086 0.00029 -2.29% 103% 0.1019 0.00041 1.68% 159%
Naı̈ve Bayes 0.081 0.00017 -8.24% 21% 0.1049 0.00031 4.67% 98%

Random Forest 0.087 0.00015 -1.12% 8% 0.1026 0.00018 2.38% 11%
GBM 0.082 0.00016 -6.12% 11% 0.0965 0.00020 -3.68% 28%

Neural net (1 unit) 0.087 0.00023 -0.58% 62% 0.1090 0.00043 8.84% 174%
Neural net (3 units) 0.086 0.00025 -1.77% 76% 0.1190 0.00061 18.75% 285%

Algorithm Used in PSA Alcohol once a week <7 h of sleep
Estimate Variance Diff. from no adj. (%) Estimate Variance Diff. from no adj. (%)

No adjustment 0.6232 0.00041 Estimate Variance 0.3093 0.00038 Estimate Variance
Logistic regression 0.6234 0.00053 0.02% 29% 0.3118 0.00049 0.82% 30%

5-NN 0.5940 0.00095 -4.69% 129% 0.3252 0.00083 5.12% 121%
Naı̈ve Bayes 0.6240 0.00066 0.12% 59% 0.3055 0.00059 -1.25% 56%

Random Forest 0.6145 0.00046 -1.40% 10% 0.3136 0.00041 1.40% 10%
GBM 0.6107 0.00058 -2.02% 40% 0.3034 0.00048 -1.91% 27%

Neural net (1 unit) 0.6004 0.00085 -3.66% 106% 0.3395 0.00085 9.76% 126%
Neural net (3 units) 0.5942 0.00109 -4.67% 163% 0.3609 0.00114 16.69% 204%

Algorithm Used in PSA Disability (physical. mental or sensorial) Chronic disease
Estimate Variance Diff. from no adj. (%) Estimate Variance Diff. from no adj. (%)

No adjustment 0.0645 0.00011 Estimate Variance 0.3369 0.00040 Estimate Variance
Logistic regression 0.0695 0.00016 7.74% 46% 0.3179 0.00048 -5.63% 19%

5-NN 0.0587 0.00020 -8.96% 81% 0.3280 0.00082 -2.66% 104%
Naı̈ve Bayes 0.0688 0.00017 6.64% 54% 0.3065 0.00055 -9.03% 37%

Random Forest 0.0574 0.00011 -10.98% -3% 0.3412 0.00044 1.27% 10%
GBM 0.0707 0.00016 9.51% 45% 0.3211 0.00050 -4.70% 26%

Neural net (1 unit) 0.0584 0.00015 -9.42% 43% 0.3065 0.00065 -9.03% 63%
Neural net (3 units) 0.0506 0.00013 -21.56% 16% 0.2974 0.00077 -11.73% 91%

Algorithm Used in PSA One health problem Two or more health problems
Estimate Variance Diff. from no adj. (%) Estimate Variance Diff. from no adj. (%)

No adjustment 0.2742 0.00036 Estimate Variance 0.1072 0.00017 Estimate Variance
Logistic regression 0.2630 0.00044 -4.09% 22% 0.1037 0.00019 -3.23% 13%

5-NN 0.2487 0.00067 -9.30% 89% 0.1158 0.00038 8.06% 128%
Naı̈ve Bayes 0.2527 0.00048 -7.83% 35% 0.1003 0.00020 -6.43% 21%

Random Forest 0.2684 0.00038 -2.12% 8% 0.1084 0.00019 1.12% 10%
GBM 0.2634 0.00045 -3.95% 26% 0.1059 0.00020 -1.23% 20%

Neural net (1 unit) 0.2361 0.00054 -13.90% 51% 0.1048 0.00024 -2.22% 41%
Neural net (3 units) 0.2235 0.00062 -18.49% 74% 0.1044 0.00025 -2.58% 51%



Table A4: Point estimate, variance and difference from the non-adjusted case of estimators
of prevalence in female HCPs for each propensity score adjustment (PSA) (algorithms are
sorted from the least to the most complex).

Algorithm Used in PSA Poor Self-Perceived Health Dissatisfied with Life (Score of 6 or Less)
Estimate Variance Diff. from no adj. (%) Estimate Variance Diff. from no adj. (%)

No adjustment 0.088 0.00014 Estimate Variance 0.1002 0.00016 Estimate Variance
Logistic regression 0.084 0.00016 -4.34% 17% 0.1031 0.00023 2.93% 45%

5-NN 0.0597 0.00006 -28.78% -3% 0.1234 0.00022 2.41% 158%
Naı̈ve Bayes 0.0774 0.00009 -7.71% 41% 0.1270 0.00015 5.34% 68%

Random Forest 0.0833 0.00007 -0.74% 7% 0.1183 0.00009 -1.82% 6%
GBM 0.0753 0.00006 -10.22% 3% 0.1261 0.00013 4.62% 45%

Neural net (1 unit) 0.087 0.00023 -0.58% 62% 0.1090 0.00043 8.84% 174%
Neural net (3 units) 0.0638 0.00007 -23.90% 6% 0.1292 0.00025 7.16% 187%

Algorithm Used in PSA Alcohol once a week <7 h of sleep
Estimate Variance Diff. from no adj. (%) Estimate Variance Diff. from no adj. (%)

No adjustment 0.6232 0.00041 Estimate Variance 0.3093 0.00038 Estimate Variance
Logistic regression 0.6234 0.00053 0.02% 29% 0.3118 0.00049 0.82% 30%

5-NN 0.4451 0.00048 5.42% 139% 0.2574 0.00038 -3.65% 138%
Naı̈ve Bayes 0.4277 0.00031 1.28% 56% 0.2607 0.00023 -2.40% 43%

Random Forest 0.4239 0.00021 0.38% 8% 0.2671 0.00017 0.02% 8%
GBM 0.4251 0.00026 0.67% 33% 0.2599 0.00020 -2.70% 23%

Neural net (1 unit) 0.6004 0.00085 -3.66% 106% 0.3395 0.00085 9.76% 126%
Neural net (3 units) 0.4227 0.00049 0.12% 144% 0.2503 0.00034 -6.27% 113%

Algorithm Used in PSA Disability (physical. mental or sensorial) Chronic disease
Estimate Variance Diff. from no adj. (%) Estimate Variance Diff. from no adj. (%)

No adjustment 0.0645 0.00011 Estimate Variance 0.3369 0.00040 Estimate Variance
Logistic regression 0.0695 0.00016 7.74% 46% 0.3179 0.00048 -5.63% 19%

5-NN 0.0583 0.00010 -7.10% 114% 0.2353 0.00036 5.55% 151%
Naı̈ve Bayes 0.0605 0.00008 -3.67% 64% 0.2224 0.00022 -0.27% 54%

Random Forest 0.0612 0.00005 -2.44% 5% 0.2219 0.00015 -0.48% 7%
GBM 0.0618 0.00008 -1.51% 56% 0.2241 0.00020 0.52% 37%

Neural net (1 unit) 0.0584 0.00015 -9.42% 43% 0.3065 0.00065 -9.03% 63%
Neural net (3 units) 0.0627 0.00014 -0.06% 183% 0.2273 0.00038 1.94% 162%

Algorithm Used in PSA One health problem Two or more health problems
Estimate Variance Diff. from no adj. (%) Estimate Variance Diff. from no adj. (%)

No adjustment 0.2742 0.00036 Estimate Variance 0.1072 0.00017 Estimate Variance
Logistic regression 0.2630 0.00044 -4.09% 22% 0.1037 0.00019 -3.23% 13%

5-NN 0.2164 0.00032 1.95% 133% 0.0566 0.00011 0.65% 150%
Naı̈ve Bayes 0.2013 0.00019 -5.16% 39% 0.0616 0.00008 9.63% 96%

Random Forest 0.2136 0.00015 0.66% 8% 0.0542 0.00004 -3.58% 3%
GBM 0.2047 0.00017 -3.56% 21% 0.0607 0.00008 8.08% 81%

Neural net (1 unit) 0.2361 0.00054 -13.90% 51% 0.1048 0.00024 -2.22% 41%
Neural net (3 units) 0.2152 0.00034 1.41% 150% 0.0575 0.00013 2.26% 205%



Figure A8: The 95% confidence intervals for the prevalence of variables related to self-
perceived health and lifestyle satisfaction among male HCPs, according to the algorithms
used in the propensity score adjustment (facets are sorted by confidence interval values in
order to obtain common yaxis limits in each row).
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Figure A9: The 95% confidence intervals for the prevalence of variables related to self-
perceived health and lifestyle satisfaction among female HCPs, according to the algorithms
used in the propensity score adjustment (facets are sorted by confidence interval values in
order to obtain common yaxis limits in each row).
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